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ABSTRACT: In seismic risk assessment of structures, fragility functions are the typical representation 
of seismic vulnerability, expressing the probability of exceedance of a given performance level as a 
function of a ground motion intensity measure (IM). Fragility curves, in general, are structure- and site-
specific, thus a comparison of fragility curves is not straightforward across multiple structures and/or 
sites. The study presented in this paper discusses possible strategies to convert a fragility curve from an 
original IM to a target IM for a given site. In particular, three conversion cases, under different 
assumptions on the explanatory power with respect to structural failure of the involved IMs, are 
considered: (i) a vector-valued IM consisting of two different IMs (to say, original and target), magnitude, 
and source-to-site distance, (ii) a vector-valued IM consisting of the original and target IMs, and (iii) the 
original IM only, supposed to be a sufficient one; i.e., the structural response given IM statistically-
independent of the other ground motion characteristics. The original fragility functions are supposed to 
be obtained through the state-of-the-art methods, then the fragility functions in terms of the target IM are 
obtained via applications of the probability calculus rules, which ensure consistency with the seismic 
hazard at the site of interest. The considered cases are illustrated via an example referring to an Italian 
code-conforming RC building designed for a site in L’Aquila. As far as the case-study is concerned, all 
conversion cases show agreement, likely because of the hazard-consistent record selection and to the 
explanatory power of the original IM with respect to structural failure. 

1. INTRODUCTION 
Probabilistic seismic risk assessment of 

structures evaluates the mean annual frequency of 
exceeding a given performance level (i.e., failure 
rate) by integrating seismic fragility and seismic 
hazard, both expressed in terms of the same 
ground motion (GM) intensity measure (IM) 
serving as a link between the two probabilistic 
models. The choice of the IM to be employed in 
the risk analysis is structure-specific. In principle, 
it is mainly determined by the desired properties 
of the selected IM, e.g., sufficiency and efficiency, 
and also considering issues such as robustness to 
GM scaling (Tothong and Luco, 2007). 

In earthquake engineering practice, the peak 
ground acceleration (PGA) and the spectral 
acceleration at the fundamental vibration period 
of the structure,  Sa T , are common IMs. PGA is 

convenient because hazard models are typically 
developed in terms of PGA.  Sa T  is generally 

considered more efficient than PGA, and 
sufficient in several situations. Hence, it is often 
used as the IM for the development of fragility 
functions; however, fragility expressed in terms of 
spectral acceleration at different vibration periods 
cannot be directly compared. 

Several studies addressed approaches for 
converting IMs of fragility curves in the last 
decades. For example, Ohtori and Hirata (2007) 
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presented an approach based on the first-order 
second moment approximation although the 
relationship between original and target IMs (to 
convert from and to, denoted as 1IM  and 2IM , 
respectively) is not completely characterized. 
Michel et al. (2018) recently proposed a 
probabilistic approach to convert fragility curves 
to a common IM considering the conditional 
probability of 2IM  given 1IM , yet the converted 
fragility functions in terms of 2IM  are conditional 
to a specific earthquake scenario, beyond 2IM . 
Furthermore, these past studies seem to assume 

1IM  of a specific structure to be sufficient, which 
is not the general case. 

Aiming at discussing fragility conversion 
between spectral accelerations in a rigorous 
probabilistic framework, the study presented 
herein examines three conversion cases, with 
different assumptions on the IMs involved. In 
particular, the fragility curve of a structure in 
terms of the target intensity (i.e., 2IM ) is derived 
through hazard-consistent conversion of a 
fragility function varying the number of the 
original IMs; i.e., 1IM , 2IM  and the GM 
characteristics for hazard assessment of the site. 
The IMs considered in each case are: (i) a vector-
valued intensity measure ( ΙΜ) consisting of 1IM
, 2IM , magnitude  M  and source-to-site 

distance  R , hereafter denoted as 4vΙΜ ; (ii) a 

vector-valued ΙΜ  consisting of 1IM  and 2IM , 
hereafter denoted as 2vΙΜ ; and (iii) the original 

1IM  which is supposed to be a sufficient IM. 
The converted fragility functions are 

obtained with the state-of-the-art methods for 
structural response analysis within the 
Performance-Based Earthquake Engineering 
framework (PBEE; Cornell and Krawinkler, 
2000), which ensures consistency with the 
earthquake scenarios at the site of interest; i.e., the 
multiple stripe analysis method (MSA; Jalayer 
and Cornell, 2003), and hazard-consistent record 
selection based on the conditional spectra (CS; 
Lin et al., 2013). 

The considered cases are investigated for an 
Italian code-conforming RC building for which 
the fragility conversion is performed from the 
spectral acceleration at a period close to the 
fundamental vibration period of the structure (i.e., 

1IM ) to PGA (i.e., 2IM ). For comparison, a 
fragility curve expressed in terms of 2IM  (i.e., 
PGA) is also evaluated by performing nonlinear 
dynamic analyses (NLDAs) carried out with 
reference to 2IM . 

2. METHODOLOGY 
The considered framework assumes that 

structural response data are obtained through 
NLDA, aiming to assess the fragility in terms of 

1IM , and intends to convert to 2IM  without 
carrying out further structural analyses.  

2.1. Conversion equations 
When structural failure (denoted as F) is 

defined as the exceedance of a given performance 
level, the probability of failure given a certain  y  

value of the target 2IM , that is  2|P F IM y , 

can be computed via Eq. (1) based on the total 
probability theorem. In the equation: the first term 
of the integrands 

1 2P F IM x IM y M w R z          is the 

failure probability conditional to 
 1 2, , ,IM IM M R ;  1 2, , | , , |IM M R IMf x w z y  is a 

probability density function (PDF), given by the 
product of the following two PDFs:

 1 2 , , , ,IM IM M Rf x y w z  and  2, ,M R IMf w z y . The 

former can be obtained from a ground motion 
prediction equation (GMPE), considering the 
statistical dependency between 1IM  and 2IM  
conditional to M  and R , while the latter is 
computed through seismic hazard disaggregation 
(e.g., Bazzurro and Cornell, 1999) that provides 
the probability (density) of a certain M  and R  
scenario given the occurrence of 2IM . 

 1 2

1

2 1 2 , , | , , |IM M R IM

IM M R

P F IM y P F IM x IM y M w R z f x w z y dz dw dx                      (1) 
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If the vector  1 2,IM IM  is a sufficient ΙΜ , 

the structural response given ΙΜ  is, by definition, 
statistically-independent of M  and R , and Eq. 
(1) can be reduced to Eq. (2). 

If the original 1IM  is a sufficient one (also 
with respect to 2IM ), then Eq. (2) can be further 
simplified as per Eq. (3). 

2.2. Fragility modelling 
The fragility functions within the integrals at 

the right-hand sides of Eqs. (1)-(3) can be 
obtained via NLDA, which provides the seismic 
demand in terms of an Engineering Demand 
Parameter (EDP). The modelling approaches 
discussed herein assume structural assessment 
procedures such as the cloud method (Cornell et 
al., 2002) and MSA method. The former typically 
employs a set of unscaled GM records, while the 
latter approach employs, for different values of 

1IM , different record sets each of which is 
selected consistent with the seismic hazard at the 
site of interest in terms of 1IM . 

Log-linear regression models are often 
employed to calibrate the relationship between the 
EDP and IMs. For example, in the case of 4vΙΜ , 
the logarithm of EDP, in its simplest format, is 

given by Eq. (4), where ln EDP  is the conditional 
mean,  0 1 2 3 4, , , ,      are regression 

coefficients, and   (i.e., the regression residual) 
is a zero-mean Gaussian random variable, with 
standard deviation  . At this point, if fEDP  is a 
threshold identifying failure, the lognormal 
fragility is given by Eq. (5) (Baker, 2007). 

It should be noted that the numerical model 
of the structure does not yield meaningful EDP 
values in cases numerical instability, according to 
the definition in Shome and Cornell (2000), 
occurs. Even in such cases, one can derive a 
fragility model that accounts for the contribution 
from these data (e.g., Elefante et al., 2010). 

Furthermore, in case of MSA, the fragility 
function can be also modelled estimating different 
regression coefficients for each 1IM  stripe (an 
option not considered in the following 
application). 

2.3. Hazard terms 
The calculations to obtain 

1 2 , ,IM IM M Rf  have 

been discussed in previous research (e.g., Baker 
and Cornell, 2005; Iervolino et al., 2010) 
Provided that 1T  and 2T  denote the vibration 
periods corresponding to  1 1IM Sa T  and 

 2 2IM Sa T , it is often assumed that 
1 2 , ,IM IM M Rf  

is a lognormal distribution. The mean value of 
1ln IM  given  2ln , ,IM M R  and the standard 

deviation of 1ln IM  given 2ln IM , denoted as 

1 2ln ln , ,IM IM M R  and 
1 2ln lnIM IM , respectively, can 

be calculated as: 

1 1 2 2 11 2

1 2 11 2

ln | , , lnln ln , ,

2
, lnln ln 1

IM M R T T T IMIM IM M R

T T IMIM IM

    

  

    


  
 (6) 

where 1ln | ,IM M R   and 1ln IM   are the mean and 
standard deviation of 1ln IM conditional to M  

and R  (i.e., from a GMPE), 1 2,T T  is the 
correlation coefficient between the logarithms of 

 1 2

1

2 1 2 , , | , , |IM M R IM

IM M R

P F IM y P F IM x IM y f x w z y dz dw dx                  (2) 

 1 2

1

2 1 , , | , , |IM M R IM

IM M R

P F IM y P F IM x f x w z y dz dw dx                (3) 

0 1 2 3 4ln ln ln ln lnEDP EDP x y w z                   (4) 

ln ln
1 f

f
EDP EDP

P F P EDP EDP


             
 

IM IM  (5) 
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the two IMs, and 2T  is the number of the standard 
deviations by which 2ln IM  is away from the 
mean conditional to M  and R  (provided by the 
GMPE). Finally, 

2,M R IMf  can be computed via 

hazard disaggregation. 

3. ILLUSTRATIVE EXAMPLE 

3.1. Structure and site 
This study considered, as an example, one of 

the code-conforming RC residential buildings 
examined in the RINTC project; see Ricci et al. 
(2018) for details. In particular, the selected case 
study is the equivalent single-degree-of-freedom 
(ESDoF) system of the six-story 5 3  bay RC 
pilotis-frame building in Figure 1a. The building 
is supposed to be located in L’Aquila, central Italy 
(42.35° N, 13.40° E, on soil C-type, according to 
Eurocode 8 classification; see CEN, 2004). The 
ESDoF system was calibrated according to 
Baltzopoulos et al. (2017); i.e., leading to the 
ESDoF mass *m , vibration period *T , the critical 

viscous damping ratio * , and the 
characterizations of the hysteretic behavior for the 
static pushover (SPO) backbone. Figure 1b shows 
the tri-linear backbones of the ESDoF systems for 
the two horizontal directions (X and Y in Figure 
1a). Each backbone of the ESDoF system is 
compared with that of the original three 
dimensional (3D) structural model scaled by the 
modal participation factor of the first-mode 
vibration,  . In the figure, the definitions of 
backbone parameters, that is, yield strength and 
displacement  ,y yF   , post-yielding hardening 

and softening ratio  ,h ca a , capping ductility 

 c c y    , and the residual strength ratio  pr

, are also illustrated. 
The EDP was defined as the demand-

capacity (D/C) ratio of the roof-top displacement 
(i.e., 1fEDP  ) and the end of each backbone 

corresponds to the failure ductility   ,f f y     

which was defined on the basis of the 
displacement that determines a 50% drop from the 
maximum base-shear on the original structure’s 
SPO curve. These parameters, including the 
yielding spectral acceleration at the equivalent 
vibration period  ySa T  , are summarized in 

Table 1 and Table 2. 
Finally, a moderately-pinching, peak-

oriented hysteretic behavior without any cyclic 
stiffness/strength deterioration (e.g., Vamvatsikos 
and Cornell, 2006), was applied to the ESDoF 
system. For more detailed information on 
structural features, see Suzuki et al. (2018). 

3.2. Original fragilities  
To derive the original fragilities, MSA was 

performed for ten IM, that is  0.5Sa T s , 

values (i.e., stripes). The considered values 
correspond to exceedance return periods  RT  

ranging from 10 to 105 at the site, in line with the 
framework of the aforementioned RINTC project. 
For each stripe, 20 GM records were collected 
based on the CS method (Iervolino et al., 2018) 
then the EDP was measured for each record. 
Figure 2 shows the mean spectra of the GM 
records and the obtained D/C ratios for all stripes 

 

 
Table 1: Dynamic parameters of the ESDoF system. 

Dir. T   m     ySa T     

X 0.65 1401 1.26 0.27 5% 
Y 0.57 1251 1.33 0.37 5% 

 
Table 2: SPO parameters of the ESDoF system. 

Dir. yF  y   ha  c  ca  pr  f  

X 3671 0.03 0.01 9.0 -0.02 0.66 30.0 
Y 4581 0.03 0.17 2.2 -0.03 0.67 17.9 

 

Figure 1: Case study RC building; 
(a) 3D model; (b) SPO curves. 
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of 1IM , against the two IMs. The observed trends 
are then characterized by performing regression 
analysis via Eq. (4). 

Given the response data from NLDA, the 
multiple linear regression analyses were 
performed with Eq. (4) varying the number of the 
intensity measures involved in the computation. 
According to the adopted GMPE (to follow), the 
considered Sa -based IM is the maximum 
horizontal acceleration response, and the 
considered GM characteristics were surface wave 
magnitude and Joyner-Boore distance ( jbR ; 
Joyner and Boore, 1981). Table 3 provides the 
regression results corresponding to the three IM 
cases. It is observed that the joint consideration of 
all four variables resulted in the lowest  . 
Nonetheless, all the cases showed a comparable 
standard deviation of the residuals. 
 
Table 3: Multiple linear regression analysis results. 

IM 0  1  2  3  4    

4vIM  -2.71 0.72 0.19 0.14 -0.11 0.41 

2vIM  -2.12 0.88 0.17 - - 0.43 

1IM  -2.23 1.03 - - - 0.44 

 
For each case, the related fragility function 

(i.e., P F  IM ) was derived using Eqs. (4)-(5). 

As an example, the computed fragility (surface) is 
shown in Figure 3 for the case of 2 .vIM  It can be 
seen that the failure probability increases 
principally with 1IM  and mildly with 2IM  for a 

given 1IM , which reflects the regression results in 
Table 3. 
 

 
Figure 3: Fragility surface for the IM2v case. 

 

3.3. Hazard 
PSHA was performed to characterize the 

conditional distribution 
1 2 , ,IM IM M Rf  for the site of 

interest. For the conditional PDF of 1IM  given 

2IM , this study employed the GMPE by 
Ambraseys et al. (1996) with the correlation 
coefficients proposed by Baker and Jayaram 
(2008). The correlation coefficient between PGA 
and  0.5Sa s  was 1 2, 0.68T T  . 

To perform hazard disaggregation for the 
site, this study utilized REASSESS (Chioccarelli 
et al., 2018) considering the Branch 921 of the 
official Italian hazard model (Stucchi et al., 2011) 
and the GMPE cited above. 

IM  = PGA [g]
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Figure 2: MSA for original fragility; (a) mean spectra of GM records; (b),(c) D/C ratios for the two IMs. 
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As an example, Figure 4a shows hazard 
disaggregation for PGA equal to 0.9g at the site of 
interest (i.e., L’Aquila). Figure 4b gives 

1 2 , ,IM IM M Rf  for  6, 6.5kmM   and 

 0km,5kmjbR  , which is the scenario 

dominating the hazard being disaggregated in 
Figure 4a. 

3.4. Reference target fragility 
To evaluate the considered conversion cases, 

the PGA-based (reference) fragility curve was 
also computed by performing NLDA via MSA; 
i.e., as in Section 3.2 but with respect to PGA 
rather than  0.5Sa s . The record selection was 

analogous to  0.5Sa s  (i.e., 20 GM records 

fitting the CS given PGA). Figure 5 provides the 
mean spectra of GM records conditioned at PGA 
and the MSA results. A smaller number of failure 
cases was observed in this case (5 vs 14 failure 
cases at the tenth IM level; see Figure 2). Hence, 
the analysis was also performed at the two 
additional IM levels corresponding to 610RT   

and 710RT   years so as to observe failure cases 
in at least 50% of the records. The target 
lognormal fragility was fitted through a maximum 
likelihood estimation criterion (Baker, 2015). 

3.5. Conversion results 
The PGA-based fragility curves were derived 

from the presented fragility and hazard models 
through the conversion formulas of Eqs. (1)-(3). 
The results of the three conversion strategies, each 
involving 4vIM , 2vIM  and 1IM , are presented in 
Figure 6, together with the reference fragility 
curve described in Section 3.4. As seen in the 
figure, the 4vIM  case provided the curve closest 
to the reference, while all cases provided 
apparently comparable results, showing the 
curves located slightly at the left side of the 
reference case. In fact, the median PGA causing 
failure  .50%fPGA  and the standard deviation 

  , computed as the difference between the 16th 

and 50th percentiles of each converted curve, 

 
Figure 4: PSHA results;(a) hazard 

disaggregation for PGA = 0.90g corresponding 
to 5580RT   yrs at L’Aquila; (b) example of 

conditional PDF of  0.5Sa s  given PGA. 

 

 
Figure 5: MSA for reference target fragility; 

(a) mean spectra of GM records;  
(b)D/C ratios and number of failure cases. 

 

T = 5580 yearsR 

L’Aquila Soil C
PGA = 0.90g

R  [km]jb

M

(a)

Sa(0.5s) [g]
PGA [g]

M = 6-6.5
R  = 0-5kmjb

f
(x

|w
,z

,y
)

IM
1

|M
,R

,I
M

2

(b)

f
(w

,z
|y

)
M

,R
|I

M
2

IM2 = PGA
IM1 1 = Sa(T )

mean maximum horizontal component

Periods [s]

S
a(

T
)

(a)

(b) 11Num. of failure   8    5  

IM2=PGA [g]

D
/C



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 7 

resulted in less than 12% difference with respect 
to the reference target in all cases (Table 4). 
 

 
Figure 6: Converted and reference fragility curves. 

 
Table 4: Comparisons of the conversion strategies. 

Parameter\IM 
Approach 

4vIM  2vIM  1IM  Reference 

.50%fPGA  [g] 4.34 3.96 4.19 4.46 

Difference -3% -11% -6% 0% 

  0.65 0.62 0.72 0.71 

Difference  -8% -12% -2% 0% 

 
All the converted curves appear to be similar, 

likely because of the fact that the two GM 
characteristics considered herein are accounted 
for through the hazard-consistent record selection 
via the CS approach, as well as owing to the 
relative-sufficiency of the original 1IM  with 
respect to structural response. 

4. CONCLUSIONS 
The presented study discussed equations for 

converting IMs of fragility functions with the aid 
of the state-of-the art methods within PBEE, 
without any additional structural analyses. 

On the premise that structural response given 
an IM is available from a preliminary analysis, 
three possible conversion cases with different 
assumptions on the IMs involved, were discussed. 
In all cases, the fragility in terms of the target IM 

was computed based on the total probability 
theorem. 

The considered conversion cases were 
illustrated through the application study using the 
ESDoF system of an Italian code-conforming RC 
building. The PGA fragility curves were obtained 
from the structural response given  Sa T  and 

then were compared with a reference fragility 
directly developed in terms of the target IM. 

As far as the case study is concerned, all 
cases provided the parameters of the converted 
curves within 12% difference from those of the 
reference fragility (the four-variables conversion, 
involving the original and target IMs, magnitude 
and distance, resulted to be the closest as 
expected). This is likely owing to the hazard-
consistent record selection according to the CS 
approach and to the explanatory power of the 
original IM; i.e.,  Sa T  for the structural response 

analysis.  
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