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ABSTRACT: The US Gulf Coast is often struck by severe hurricane events. These natural events can 
cause massive economic and life losses. Based on the projected increase in global sea surface temperature 
and in population residing along the US Gulf Coast region, the intensity of future hurricanes is expected 
to increase with time in conjunction with an increase in vulnerability, leading to a significant increase of 
the risk for future catastrophic hurricane events. Therefore, there is an urgent research need for hurricane 
risk assessment and mitigation techniques that can quantify the effects of climate change. This paper 
presents a comprehensive statistical model to account for the effects of climate change on hurricane wind 
hazard. The model is based on a linear regression of historical hurricane characteristics versus historical 
sea surface temperature at the time and location of the hurricanes. The proposed model is validated by 
comparing the simulated hurricane wind speed distributions at any given site along the US Gulf Coast 
with the wind speed data from the National Institute of Standards and Technology. The validated wind 
speed model is used, in conjunction with the future climatological scenarios proposed by the 5th 
Assessment Report of the Intergovernmental Panel on Climate Change, to forecast future hurricane wind 
speed distributions along the US Gulf Coast. These wind speed distributions are used within a multi-
layer Monte Carlo simulation implementation of the Performance-Based Hurricane Engineering 
framework to estimate potential hurricane-induced losses for a single-family residential building located 
near Miami, FL. The loss analysis results show that the expected hurricane-induced losses could increase 
by up to 35% under the projected worst-case scenario in 2060 when compared to the expected losses 
corresponding to the 2015 climatological conditions. 

 

1. INTRODUCTION 
The US Gulf Coast is often struck by severe 
tropical storms that are locally known as 
hurricanes. These natural events usually cause 
extensive economical and life losses, with recent 
examples such as Hurricane Katrina (2005) with 
$160 billion losses and Hurricane Harvey (2017) 
with $125 billion losses normalized to 2017 US 
dollar (NOAA, 2018). The increasing rate of 
residential population (NOAA, 2013) contributes 
to increasing the vulnerability of the region to 
hurricanes.  

The global warming phenomena known as 
climate change are responsible for increasing the 

air temperature at the troposphere level of the 
earth, increasing the sea water level, increase in 
the sea water temperature, and intensified extreme 
weather events including hurricanes (IPCC, 
2013). Climate scientists generally agree that 
climate change will most likely results in the 
intensification of future hurricanes. Thus, 
significant research efforts have been directed 
toward understanding the relation between 
hurricane hazard and climate change. Grinsted et 
al. (2013) related the Atlantic hurricane records of 
hurricane-induced storm surges to global 
temperature and concluded that the frequency of 
Katrina-like hurricane could double during the 
20th century due to global warming.  
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Significant work has been also done to assess 
the effects of intensified hurricane actions on 
structures and infrastructures in a warmer climate, 
often based on the climate projection scenarios  
suggested in the reports issued by the 
Intergovernmental Panel on Climate Change 
(IPCC) (IPCC 2007, 2013). Bjarnadottir et al. 
(2011) developed a performance-based 
framework that accounts for the effects of climate 
change on residential buildings and concluded 
that, if the average hurricane wind speed increases 
about 5% over a 50-year period, the annual 
regional damage to housing units in the coastal 
areas of Miami-Dade County in Florida could 
increase up to $120 million annually. Cui and 
Caracoglia (2016) developed a framework for 
estimating lifetime costs of tall buildings due to 
hurricane-induced damage under the climate 
change scenarios provided in the IPCC 5th 
assessment report (AR5) (IPCC, 2013). Their 
model was based on simulating the hurricane 
track path from its origin to its dissipation to 
derive the wind speed distributions at different 
locations under different global climate 
conditions. They concluded that, under a worst-
case scenario, the hurricane-induced losses on tall 
buildings could increase as much as 30% from 
2015 to 2115. 

This paper presents a simulation model based 
on the indirect statistics approach (Unnikrishnan 
and Barbato, 2017) to describe the hurricane wind 
hazard (expressed as hurricane wind distribution 
at a given location) as a function of climatological 
conditions. The developed model is validated 
through a comparison with the wind speed 
distributions provided by the National Institute of 
Standards and Technology (NIST, 2016) at 
different mileposts along the US Gulf Coast and 
Florida East Coast and representing historical 
conditions. The validated model is used in 
conjunction with the projection scenarios from the 
IPCC AR5 (IPCC, 2013) to predict the wind 
hazard for future climatological conditions in the 
US Gulf Coast. Finally, a Multi-layer Monte-
Carlo Simulation (MMCS) implementation of the 
Performance-Based Hurricane Engineering 

(PBHE) framework (Barbato et al., 2013)  is used 
to predict the changes in the losses of a single-
family house in different location along the US 
Gulf Coast when considering different 
climatological conditions.  

2. HURRICANE INTENSITY MEASURES 
MODELED AS FUNCTION OF 
CLIMATOLOGICAL CONDITIONS 

Wind hazard is described in this study in terms of 
a vector of intensity measures (IM). Among the 
different IMs proposed in literature (Unnikrishnan 
and Barbato, 2013), the following IMs are 
selected here: hurricane frequency, hν ; maximum 
hurricane wind speed, maxV ; radius of maximum 
wind speed, maxR ; and hurricane translational 
speed, tV . These IMs are highly correlated with 
the sea surface temperature (SST) (Bjarnadottir et 
al., 2011; Emanuel, 2011; Vickery et al., 2006, 
2009). This relation can be explained by 
considering that the energy that fuel hurricanes 
derive from evaporation of warm water from the 
sea surface. In the present study, an indirect 
statistics approach is used to model the wind 
speed distribution (i.e., the wind speed statistics 
are obtained indirectly based on the site-specific 
statistics of fundamental hurricane parameters 
considered as IMs) at any given location 
(Unnikrishnan and Barbato, 2017). 

The changes in hurricane frequency were 
determined based on the yearly number of 
hurricanes affecting the US Gulf Coast during the 
1851-2017 period expressed as function of the 
yearly global SST, yT . The hurricane data were 
derived from the HURDAT2 database (Landsea et 
al., 2017), whereas the temperature data were 
obtained from the NOAA database (NOAA, 
2017). Figure 1 reports these data for the entire 
US Gulf Coast together with a linear regression 
line. It is observed that the slope of the regression 
line is almost zero (p-value = 0.93). Thus, it is 
assumed that changes in yT  do not affect the 
overall hurricane frequency in the US Gulf Coast. 
Using the same approach, it was determined that 
climate change has only minimal or negligible 
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effects on the hurricane annual frequency at 
different locations along the US Gulf Coast, as 
identified by the marine milepost used in the NIST 
database (NIST, 2016). In this analysis, a 
hurricane was considered to affect a specific site 
at a given milepost if either its landfall or its path 
are within a specified radius (referred to as 
influence radius, infr , hereinafter) from the site of 
interest. This radius of influence was obtained by 
matching the historical hurricane frequency with 
the hurricane frequency provided by the NIST 
database (NIST, 2016). 

 

 
Figure 1. Number of hurricanes per year in the US 
Gulf Coast region during the 1851-2017 period 
plotted as function of yT . 
 

Observations based on the historical data 
reported in in the literature suggest that the 
remaining IMs considered in this study are better 
correlated with the temperature at the time and 
location of the hurricanes, T (Cui and Caracoglia, 
2016; Emanuel, 2005) than with the yearly global 
SST, yT . Therefore, a linear regression model is 
developed here to obtain the statistical parameters 
of T as a function of yT . The data for this 
regression are derived for the years 1988-2017 
from the NOAA database (NOAA 2017). Based 
on the results of a Kolmogorov-Smirnov test 
(Soong, 2004), the normal distribution was 
identified as the distribution with the best fit to the 

historical data of T . The distribution mean, Tμ , 
is given as: 
 ( ) ( )y 0 1 y y 25.5 CT T a a T Tμ = + ⋅ ≥ °   (1) 

in which o
0 26.36 Ca = −  and 1 2.07a = . For 

these data, the standard deviation calculated for 
the entire US Gulf Coast region is equal to 

o1.22 CTσ =  and is assumed to a constant (i.e., 
not dependent on yT ).  

For maxV , maxR , and tV , the following linear 
regression model is used  
 ( )0 1( ) 24 Cp p pT b b T Tμ = + ⋅ ≥ °   (2) 
in which pμ is the mean of the variable 

max max t, , ,p V R V=  and 0 pb and 1pb are the 
corresponding regression parameters. These 
regression models are based on data from 1988 to 
2017 (for which the temperature T  at the time 
and location of the hurricane is available) from the 
HURDAT2 database (Landsea et al., 2017) and 
the tropical cyclone extended best track dataset 
(Demuth et al., 2006). The standard deviation of
p is identified with the symbol pσ . The best fit 

distribution for each parameter was also selected 
based on the results from a two-sided 
Kolmogorov-Smirnov test (Soong, 2004). In 
particular, a translated Weibull distribution (with 
a location parameter = 33.4 m/s) was selected to 
model max ,V  a truncated normal distribution 
(defined only for positive values of the random 
variable) was selected for max ,R  and a log-normal 
distribution was selected for t .V  While the values 
of maxV  and maxR  were given explicitly in the 
databases, the values of tV  were calculated using 
the hurricane positions at different times along the 
hurricane paths. For 

tVμ , the slope of the 
regression was found to be very close to zero (p-
value = 0.77); thus, 

tVμ  is considered constant 
and independent of T . It is also noted that, based 
on historical records for the hurricanes in the 
Atlantic basin during the years 1988-2017 
(Demuth et al., 2006), a correlation factor of 
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max max, 0.30R Vρ = − was obtained and used to 
generate correlated random samples of maxV  and 

maxR . 
The obtained values of the regression 

parameters are reported in Table 1. The values of 
the standard deviations were found to be 
dependent on the ranges of T  and are reported in 
Table 2. 

 
Table 1. Regression parameters for the mean of 
different IMs as functions of T. 

Regression 
parameter 

maxV  
[m/s] 

maxR  
[km] 

tV  
[m/s] 

0 pb  -30.86 104.40 6.68 

1pb  2.99 -2.55 0.00 
 

Table 2. Standard deviations for different IMs as 
functions of different T ranges. 

T ranges 
o( C)   

maxV  
[m/s] 

maxR  
[km] 

tV  
[m/s] 

24 26T≤ <  6.12 10.73 
4.28 26 28T≤ <  9.50 16.52 

28T ≥  12.83 14.40 
 

3. CALCULATION OF WIND SPEED AT 
SITE FOR GIVEN HURRICANE IMS  

For a given site and given hurricane IMs, the wind 
speed V at the site can be calculated based on the 
Willoughby’s hurricane wind profile for the 
rotational component rV  (Willoughby et al., 
2006). The location of the hurricane eye that 
produces the highest wind speed at the site is 
randomly sampled within a circular region of 
radius infr  centered on the site as a function of the 
relative distance, r , and the bearing angle, θ   
(i.e., the angle formed by the line between the 
hurricane eye and the site with respect to the 
South-North line). The distribution for r was 
derived for different mileposts along the US Gulf 
Coast and East Coast of Florida based on the 
hurricane frequency from NIST for the 1851-2017 
period (NIST, 2016). Using a Kolmogorov-

Smirnov test (Soong, 2004), a generalized 
extreme value distribution with positive values 
and maximum value equal to infr  was determined 
for all mileposts along the coast. For the bearing 
angle θ , a uniform distribution between 0 and 
2π  was assumed. It is further assumed that, if the 
hurricane eye location generated by this 
procedure is on land, the wind speed at the site of 
interest is negligible. This constraint is imposed 
by identifying the geographical location of 
sampled hurricane eye by using the spherical 
geometry formulations (Todhunter, 2006) and 
comparing the obtained geographical coordinates 
with a digitized map of the region. 

Once the rotational component rV  at the site 
is known,  the Georgiou’s model (Georgiou, 
1986) is used to calculate the maximum wind 
speed (expressed as 1-minute wind speed at a 
height of 10 meters on open terrain) as follows: 

 
( )

t

2 2
t r

1 ( sin )
2

1 sin
4

V V f r

V f r V

α

α

= − ⋅

+ − ⋅ +
  (3) 

in which f is the Coriolis parameter at the 
location of maxV  and α  is the hurricane heading 
direction, the distribution of which is derived 
from the literature (Vickery et al., 2000). 

4. SIMULATION OF HURRICANE WIND 
SPEED AT LOCATION OF INTEREST 

A Monte-Carlo simulation approach is used to 
determine the wind speed distribution at the site 
of interest. Here, the simulation scheme is briefly 
described step-by-step: 
• Select the site of interest. 
• Select the number of samples needed, s .n  
• For s1:i n=  

o Set yT : use historical data for past years or 
sample a temperature increment based on 
IPCC AR5 (IPCC, 2013) and sum it to 

o
2005 26.32 CT =  for future years. 

o Sample the number of hurricanes per year, 
hn , from a Poisson distribution with hν  
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equal to the NIST hurricane frequency for 
the site of interest. 

o If h 0 0 m/sn V= → =  
o Else: for h1:j n=  
 Find the location of the hurricane eye 

that corresponds to the highest wind 
speed at the site by sampling r  and .θ  

 If the location of the hurricane eye is 
on land 0 m/sV→ = . 

 Else:   
• Calculate Tμ  from Eq. (1) and 

sample .T   
• Calculate 

max max t
, ,V R Vμ μ μ  from Eq. 

(2) and sample max max t, , .V R V  
• Sample the parameters needed to 

define the Willoughby’s hurricane 
wind profile and calculate rV . 

• Sample α  and calculate V  at the 
site. 

 End 
o End 

• Build the desired wind speed distribution 
(using directly the empirical cumulative 
distribution function or fitting an analytical 
function to the sampled data). 

5. MODEL VALIDATION 
The developed simulation model for wind hazard 
was validated by comparing its simulated data 
with the data provided by the NIST database 
(NIST, 2016) for selected milepost along the US 
Gulf Coast and East Coast of Florida. The NIST 
data is based on hurricane data for the 1887-1963 
period, for which the average yearly SST was 

o
1871-1963 25.94 CT = (NOAA, 2017). Wind speed 

distributions were generated using 1,000,000 
samples for coastal mileposts from the Texas 
border to the border between Florida and Georgia 
at intervals of 50 nautical miles with an input 

o
y 25.94 C.T =  

Figure 2 compares the mean wind speeds 
obtained from the proposed simulation model and 
the NIST database. For both sets of estimates, a 
95% confidence interval is also provided. 

However, the confidence interval for the 
simulation results is so small that it is almost 
invisible at the scale used in this figure. It is 
observed that all mean wind speed estimated 
obtained from the simulation results fall within 
the confidence intervals of the mean wind speeds 
obtained from the NIST database. The normalized 
average differences between the two sets of mean 
wind speeds is -0.60%, which indicates an 
excellent agreement between the two sets of data.  

 

 
Figure 2. Comparison of simulation and NIST wind 
speed means at different mileposts. 

 
Figure 3 compares the standard deviations of 

the wind speeds obtained from the proposed 
simulation model and the NIST database. As for 
the mean wind speeds, a 95% confidence interval 
is also plotted; however, the confidence interval 
for the simulation results is too small to be visible.  

 

 
Figure 3. Comparison of simulation and NIST wind 
speed standard deviations at different mileposts. 
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It is observed that the wind speed standard 
deviation estimates obtained from the simulation 
results and from the NIST database are generally 
in good agreement, even though some of the 
simulation values are outside the 95% confidence 
interval of the NIST values. The normalized 
average differences between the two sets of wind 
speed standard deviations is +0.88%, which still 
indicates an excellent agreement between the two 
sets of data. It is also observed that the modified 
root mean squared error (Peng et al., 2014) is 
equal to 0.60 m/s for the mean and 0.38 m/s for 
the standard deviation. Based on these results, it is 
concluded that the proposed simulation method is 
able to reproduce wind speed distributions based 
on historical data at different locations along the 
US Gulf Coast region. 

6. FUTURE WIND SPEED PROJECTIONS  
The proposed simulation model is used in 
conjunction with the four projection scenarios 
from the IPCC AR5 (IPCC, 2013) to derive the 
wind speed distributions along the US Gulf Coast 
region for the 2020-2060 period. The IPCC AR5 
provides the mean and 95% confidence interval 
for four different projection scenarios for the 
increase in yearly SST, yTΔ , for the period of 
interest with reference to the year 2005. Hence, 
the temperature for future years is calculated as: 

 y 2005 yT T T= + Δ   (4) 
where yTΔ is sampled from a normal distribution 
fitted on the projection scenarios and 

o
2005 26.32 CT = . The simulated wind speed 

means and standard deviations for the mileposts 
along the US Gulf Coast and the East Coast of 
Florida for year 2015 (based on the measured 
yearly SST) and year 2060 (for all four projection 
scenarios) are reported in Figure 4 and Figure 5, 
respectively. 

The results of the hurricane wind simulations 
show that the average wind speed mean for all the 
mileposts of under consideration is expected to 
increase between 2015 and 2060 by 3.65% for 
RCP 2.6, 6.73% for RCP 4.5, 6.04% for RCP 6.0, 
and 11.09% for RCP 8.5. The corresponding 

average increases of the wind speed standard 
deviations are 4.64% for RCP 2.6, 7.92% for RCP 
4.5, 7.23% for RCP 6.0, and 11.89% for RCP 8.5. 
 

 
Figure 4. Wind speed means for year 2015 and 2060 
under different projection scenarios.  
 

 
Figure 5. Wind speed standard deviations for year 
2015 and 2060 under different projection scenarios.  

 

7. LOSS ESTIMATION UNDER CHANGING 
CLIMATE CONDITIONS. 

A typical single-family wooden-frame house is 
used as benchmark structure for a loss analysis 
based on a multi-layer Monte-Carlo simulation 
implementation of the Performance-based 
Hurricane Engineering (PBHE) framework 
(Barbato et al., 2013). The general scheme of the 
building is given in Figure 6. For this building, the 
strength properties and cost statistics of all 
building components are taken from 
Unnikrishnan and Barbato (2017). The 
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benchmark house was analyzed at different 
locations along the US Gulf Coast region 
(corresponding to the mileposts for which the 
wind speed distributions were derived in the 
hazard analysis phase) and for the four IPCC AR5 
climate change projection scenarios using 
1,000,000 samples for each considered case. It is 
noteworthy that, due to reduced computational 
cost of the proposed simulation method, all 
simulations for all cases were completed in a 
couple of hours on a personal computer.  

 

 
Figure 6. Unfolded scheme for the benchmark house. 

 
Figure 7 compares the expected annual losses 

due to hurricane winds for the benchmark 
structure at different locations and for different 
climate change scenarios in year 2060 with the 
expected annual losses for the same structure 
under the climatological conditions 
corresponding to year 2015. 

 

 
Figure 7. Hurricane wind-induced expected annual 
losses for the benchmark house under different 
changing climate conditions. 

 
It is observed that the expected increase in 

mean annual hurricane wind-induced losses 
(averaged over all considered locations) is equal 
to 11.21% for RCP 2.6, 21.04% for RCP 4.5, 

18.59% for RCP 6.0, and 34.66% for RCP 8.5. 
This increase is clearly more than proportional to 
the mean wind speed increase.  

8. CONCLUSIONS 
In this research work, the effects of climate 
change on hurricane wind risk for buildings in the 
US Gulf Coast region was investigated. A 
simulation procedure to derive wind speed 
distributions under changing climate conditions 
was presented. The proposed model was validated 
by comparing the simulation results with 
hurricane wind speeds from the NIST database. 
This model was used in conjunction with the 
IPCC AR5 climate change projection scenarios to 
predict changes in hurricane wind speed 
distributions and expected losses for single-family 
wooden-frame houses. The results indicate that, 
between 2015 and 2060, the average hurricane 
wind speed for the region is expected to increase 
by 3.65% to 11.09%, and the expected annual 
losses for the benchmark house are expected to 
increase by 11.21% to 34.66%.  
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