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ABSTRACT: Resilience of urban communities hit by extreme events relies on the prompt access to
financial resources needed for recovery. Therefore, the functioning of physical infrastructures is strongly
related to that of the financial system, where agents operate in the markets of insurance contracts. When
the financial capacity of an agent is lower than the requests for funds from the communities, it defaults
and fails at providing these requests, slowing down the recovery process.
In this work, we investigate how the resilience of urban communities depends on the reliability of the
financial agents operating in the insurance markets, and how to optimize the mechanism adopted by
these agents to share the requests for funds from the policyholders. We present results for a set of loss
functions that reflect the costs borne by society due to the default of the financial agents.

1. INTRODUCTION
The design of communities that are resilient to nat-
ural and/or man-made shocks is the central focus
of modern urban design. When an extreme event
strikes a community, it causes damages and fail-
ures to its physical assets and infrastructures, that,
in their turn, determine a slowdown of the eco-
nomic activities in the involved geographic area.
To overcome this, in the aftermath of such a dis-
ruption, the recovery process aims at restoring or
improving the preexisting functionality of the af-
fected community. The outcome of the recovery
process relies on the access to financial resources,
including public aids from the government and in-
surance payments from financial agents operating
in insurance markets. The demands for funds from
the affected communities, in the form of insur-

ance claims, pose a risk of default for the finan-
cial agents. Indeed, these agents satisfy their debts,
that we call demands in the continuation of the pa-
per, using their availabilities of assets, that we call
financial capacity. If the demand for funds to-
wards an agent overpasses its capacity, it defaults
and fails to provide the whole amount of funds, or
part of them, to the communities. This causes fur-
ther losses and slowdowns to the whole affected
communities (Cimellaro (2016)). The economic
demands caused by damages of the physical infras-
tructures due to the extreme events can be proba-
bilistically predicted and modeled by engineering
models, e.g. for earthquakes in the reports by Hunt
and Stojadinovic (2010) and Aviram et al. (2010).
In this work, we focus on the design and optimiza-
tion of a risk-sharing mechanism among financial
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agents, that allows them to share with each other
the demands for funds from the affected commu-
nities. The risk-sharing mechanism determines a
way of cooperation among financial agents in order
to maximize the amount of provided funds and to
avoid their default. The main questions that we aim
at addressing in this work are the following: is it
better to connect the agents through the risk-sharing
mechanism, or to leave them isolated to face the ex-
ternal demands for funds? To what extent should
the financial agents cooperate in order to lower the
risk of systemic default? Intuition suggests that, if
agents are connected, those that face low insurance
claims could help those that, instead, face a high
amount of claims from the policyholders. This is
the phenomenon of diversification of the risk. The
seminal work by Allen and Gale (2000) discusses
this positive aspect of risk-sharing. However, con-
nectivity can trigger the negative phenomenon of
contagion. Under contagion an agent fails because
of the additional demand transferred from other
agents via the mechanism, whereas it would not
have failed if operating in isolation. An exhaus-
tive survey on the topic of contagion in financial
networks is presented in the work by Glasserman
and Young (2016). The work by Elliott and Jack-
son (2014), analyzes the dichotomy between con-
tagion and diversification. The possibility of conta-
gion suggests that, in some settings, it is better not
to connect the agents, because the likelihood of the
default increases by joining them. A detailed anal-
ysis of how contagion spreads in the financial net-
works is presented by Eisenberg and Noe (2001).

2. PROBABILISTIC MODEL OF DEMAND
AND RISK-SHARING MECHANISM

2.1. General Settings
Consider a set of financial agents, operating in
the insurance markets, whose index set is N =
{1,2, ...,n}. Agent i has an initial amount of ex-
ternal capacity, ci, and faces external demands
for funds, modeled as non negative random vari-
ables, Si, that correspond to the claims of the pol-
icyholders (i.e. the urban communities) after the
occurrence of extreme events. The random vec-
tor of external demands is S = [S1, S2, . . . , Sn]

> ∼
pS, where pS is a known joint distribution,

while the vector of deterministic capacities is c =
[c1, c2, . . . , cn]

>. A general assumption is that, in
the expected sense, the agents do not default, i.e.
E [Si ]< ci, ∀ i ∈N .

The risk-sharing mechanism transforms the ex-
ternal demands in the nominal demands, through
the redistribution function, f : R n

+ → R n
+, f =

[ f1, f2, . . . , fn ]. The nominal demand for agent i,
di, is equal to:

di = fi(S) = Si +∑
j

l i j (1)

so that, in vector notation, Eq.(1) reads:

d = S+L ·1n×1 (2)

where 1n×1 = [1, 1, . . . , 1 ]> and the term l i j be-
longs to the matrix of internal liabilities, i.e. debts,
L, defined as follows:

L =


0 l12 · · · l1n

l21 0 · · · l2n
... · · · . . . ...

ln1 ln2 · · · 0

 (3)

l i j represents the payment due by agent i to agent
j, which we call internal demands and depends on
the chosen redistribution mechanism. Indeed if, ac-
cording to the mechanism, agent j transfers 10% of
its external demand to agent i, then l i j = 0.1 ·S j.

The diagonal of matrix L is composed of zeros,
meaning that there are no reflexive debts. The el-
ements on the i-th row of matrix L represent the
debts of agent i towards each of the other finan-
cial agents, while the elements on the i-th column
correspond to credits of agent i. Eq.(1) shows that
when an agent is part of the risk-sharing mecha-
nism it faces a demand that is higher than its ex-
ternal one, because it is increased by the internal
demands claimed by other agents. On the other
side, the mechanism also increases the capacities.
The nominal amount of increased capacity of agent
i due to the demand transfered to the other agents
in the system is:

∆ci = ∑
j

l ji (4)
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We call it internal capacity, to differentiate it with
the external one, ci, that is not directly affected by
the mechanism. However, the internal capacity de-
pends on the ability of the other financial agents to
satisfy their debts towards agent i. We define the
available internal capacity, ∆̃ci, as the actual inter-
nal capacity available to agent i, depending on the
possible default of some of its debtors. We always
have ∆̃ci ≤ ∆ci, where the equality stands when no
debtor of agent i defaults.

We define the vector of nominal demands, d,
whose i-th element, di, defined in Eq.(1), is the
amount of demand that agent i must satisfy in fa-
vor of both the policyholders and the other finan-
cial agents. If the available capacity of agent i,
c̃i = ci + ∆̃ci, is lower than di, then it defaults. On
the other side, let d̃ =

[
d̃1, d̃2, . . . , d̃n

]> be the vec-
tor of satisfied demands, where d̃i represents the de-
mand that agent i is able to effectively satisfy. If
agent i does not default d̃i = di, while if it does
c̃i = d̃i < di. An agent that is not in default satis-
fies its nominal demand in full, while an agent that
defaults serves the demands with its total capacity
corrected for some cost, the so-called liquidation
costs.

Let v = [v1, v2, . . . , vn]
> be the vector of net val-

ues for all agents. The net value of agent i, vi =
c̃i− di, is the difference between its available ca-
pacity and its nominal demand. In reliability anal-
ysis, because of its role in defining the agent’s de-
fault, the net value of an agent corresponds to its
limit state function. Let h : Rn→ Bn be the default
state function, where B = {0, 1}, and let y be the
default state vector. We have y = h(v), or element-
wise:

yi = hi(vi) = 1{vi < 0} (5)

where 1{·} is the indicator function that takes value
1 if the condition in the parenthesis is satisfied and
zero otherwise. We assume a proportionality prin-
ciple in distributing the assets of a defaulted agent.
After the defaults of a financial agent in the system,
its available assets are distributed to its internal and
external debtors according to the proportion of their
demand with respect to the total demands of the de-
faulted agent: for example, if agent j defaults, the

actual demand paid to agent i is equal to the frac-
tion l ji

d j
· d̃ j < l ji. If agent j is not in default then, as

l ji
d j
· d̃ j = l ji, it satisfies all the nominal debt towards

agent i.
Let βi ∈ [0, 1 ] be the loss-given-default rate for

agent i. When agent i defaults, agent j with in-
ternal demand towards agent i, receives a smaller
fraction of its nominal internal demand from the
defaulted agent, i.e. (1−βi) ·

li j
di
· d̃i. We, therefore,

assume that the liquidation costs are linear in the
total amount of available capacity of the agents. It
results that c̃i = ci +∑ j(1− β j · y j)

l ji
d j
· d̃ j and that

d̃i =min{ di , c̃i}. The overall framework is, hence,
recursive, so that to compute the vectors y, v and
d̃ , we rely on the fictitious defaults algorithm pre-
sented in the work by Eisenberg and Noe (2001).
It works as follows. Given the realization of S, we
construct the matrix L according to the risk-sharing
mechanism and we derive d by Eq.(1). Then, we
proceed as follows:

Step 0) Assign d̃
0
= d and ∆̃c0

i = ∆ci, ∀ i ∈ N .
Compute the net value of each agent given by:

v0
i = ci +∆ci−di (6)

Apply the default state function to the vector
of initial net values to obtain the vector of ini-
tial defaults at step 0, y0 = h(v0 ).

Step t) Compute:

∆̃c t
i = ∑

j
(1−β j · y t−1

j )
l ji

d j
· d̃ t−1

j (7)

so that c̃ t
i = ci+ ∆̃c t

i . Compute the elements of
the vector d̃

t
as follows:

d̃ t
i = min

{
di , c̃ t

i
}

(8)

Compute the net value of the agent as follows:

v t
i = c̃ t

i −di (9)

Apply the default state function to the vector
v t to obtain the vector of defaults at step t,

y t = h(v t )

3



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

The algorithm stops when y t = y t−1, for some
t ∈ {1, 2, . . . , n}. When the algorithm ends we ob-
tain the vector of satisfied demands, d̃ = d̃

t
and

the vector of final defaults, y = y t . Both vector d̃
and vector y exist and are unique given a certain
realization of the external demands, as shown by
Eisenberg and Noe (2001).

Let `(y, d) : Bn×Rn
+→R be the loss function,

that returns the total cost for society. For example,
` can be the number of defaulted agents or the total
amount of unsatisfied policies due to the default of
some agents in the system. Note that the cost func-
tion ` is a function of the random vector S, and,
thus, it is a random variable itself.

We assume that a central decision-maker aims at
finding the best risk-sharing mechanism among fi-
nancial agents, minimizing the expectation of the
chosen loss function:

f ∗ = arg min
f ∈F

ES [ `(h(v(S) , d(S)) ] (10)

In this work, we restrict the optimization problem in
Eq.(10) to the set of linear redistribution functions:
accordingly, l i j =α ji ·S j, where α ji is the linear re-
distribution coefficient that corresponds to the frac-
tion of external demand transferred from agent j to
agent i.

Let A be the matrix of linear redistribution co-
efficients, whose i j-th entry is α i j. Under the as-
sumption of linear redistribution mechanism, the
optimization problem is equivalent to finding the
optimal matrix A∗, as matrix A completely defines
the redistribution network. Indeed, for a given ma-
trix A and a realization of the external demands, S,
we can compute the matrix of internal debts L. We
impose the conditions that α i j ∈ [0, 1], ∀ i, j ∈N
and ∑

n
j=1 α i j = 1, because the agents cannot trans-

fer more than their total external demand to a sin-
gle agent or to the set of financial agents; we also
impose the "fairness" condition, ∑

n
j=1 α ji = 1, to

avoid that a large portion of the total external de-
mands is transferred towards a single agent or a
small group of agents. In summary, we assume that
matrix A belongs to the set of doubly stochastic ma-
trices.

2.2. Loss Function

The loss function represents a measure of the over-
all costs borne by the communities and/or finan-
cial agents, due to the extreme events. In this
section, we list three loss functions that we con-
sider in this work, namely: (i) X := ‖y‖1, is
the number of agents in default state; (ii) m :=

n−1 ·
[

∑i

(
1− d̃i

di

)
·Si

]
, are the unpaid insurance

claims; (iii) δ := n−1 ·
[

∑i

(
1− d̃i

di

)
·Si + γ ·X

]
, is

a mix of the previous loss functions.

Loss function X measures the implicit costs re-
lated to the default of the agents. Function m is a
measure of the losses on insurance claims of the
policyholders due to the default of financial agents.
Function δ combines the losses suffered by the pol-
icyholders and the penalty for the default of the
agents, and parameter γ weights the importance of
the two contributions.

2.3. Some Configurations of Risk-Sharing Mech-
anisms

In this subsection, we describe some special con-
figurations of risk-sharing mechanisms. The first
two are extreme configurations. (i) In the isolated
agents configuration, each agent faces only its ex-
ternal demand for funds: this configuration corre-
sponds to matrix AIS = In×n, where In×n is the
identity matrix, and to the set of isolated nodes in
a network. (ii) In the perfect team configuration,
each agent transfers equal parts of its external de-
mand to each other financial agent and to itself.
In network representation, the perfect team corre-
sponds to the complete graph with homogeneous
weights on each arc. In this case, the redistribu-
tion matrix is APT = n−1 · 1n×n, where 1n×n is the
matrix of ones. (iii) The intermediate mechanism
is an intermediate configuration between the two
extreme ones. In this case, the matrix is AIM =
(1−ϕ)In×n− (n−1)−1 ·ϕ · (1n×n− In×n), where
ϕ ∈

(
0, 1

2

]
is the transferred part.
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3. PROBABILISTIC MODELING OF THE
DEMANDS

3.1. General Settings: Bernoulli External De-
mands

In this section, we present results for the Bernoulli
demand distribution, pS. Let the external de-
mands be independent and identically distributed
Bernoulli random variables, i.e. S1, S2, . . . , Sn ∼
Ber(p). This models n insurance companies un-
derwriting policies in separated geographical re-
gions/insurance markets with same probability, p,
of occurrence of the independent extreme events,
i.e. the occurrence of a shock in one area does not
influence the likelihood of occurrence in another
area. We assume that the agents have the same ex-
ternal capacity, ci = c̄ < 1, ∀ i ∈N , where 1 is the
magnitude of the costs caused by each shock, ex-
pressed in normalized units. Under these settings,
we are referring to the homogeneous case.

3.2. Risk metric: Expected number of defaults
Considering the loss function `= X , we restrict the
set of possible risk-sharing mechanisms to the ex-
treme configurations. Let Λ =

{
AIS, APT} be that

set. When the agents are homogeneous, minimiz-
ing the expected number of defaulted agents is the
same as minimizing the probability that a single
agent defaults, i.e. the probability of failure Pf .
The probability of failure of agent i in the isolated
agents configuration is equal to P IS

f = P(Si > c̄i) =

P(Si = 1)= p, while for the perfect team, it is equal
to the probability that the sum of external demands
is greater than the team total capacity, that we called
pooled capacity. We thus conclude that:

P PT
f = P

(
∑

i
Si > n · c̄

)
= 1−FY (bn · c̄c) (11)

where we define Y =∑i Si∼Bin(n, p) and FY being
its cumulative distribution function.

Fig.(1) plots Pf vs the number, n, of agents in the
system under the perfect team configuration, where
all the agents participate in a single team. More
generally, it is possible to show the following.

Proposition 1. If bn · c̄c < nS, where nS is chosen

Figure 1: Comparison of probability of failure for the
isolated agents (horizontal red line) and for the per-
fect team for several values of c̄ < 1 (other lines), as n
increases.

such that:

nS = min

{
k : P

(
n

∑
j=1

S j > k

)
< p, k ∈N

}
(12)

then the probability of failure Pf is lower for the
isolated agents than for the perfect team.

In the above proposition, nS is the number of
shocks hitting the team so that the probability of
having more than this number is less than the prob-
ability that a shock hits an agent.

Proposition 1 states that if there are enough
agents in the team so that their pooled capacity,
bn · c̄c, is able to face more than a certain number,
nS, of shocks, then the team configuration is to be
preferred over the isolated one.

It is important to note that the above proposition
is valid for any value of β , because the probabil-
ity of default both of the isolated agents and of a
member of the perfect team, does not depend on
the value of the loss-given default rate.

3.3. Risk metric: Expected loss on insurance pay-
ments

Function E[m ] measures the costs for the com-
munities via the expected lack of insurance pay-
ments. Therefore, by designing an optimal risk-
sharing mechanism that minimizes this risk-based
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Figure 2: Analysis of E[m ] for β equal to 0, 0.5 and 1
in the perfect team, when c̄ = 0.125, p = 0.1.

Figure 3: Analysis of E[m ] in the intermediate mecha-
nism, when c̄ = 0.125, p = 0.1.

metric, the central decision-maker achieves the goal
of increasing the short-term resilience of the urban
communities.

In Fig.(2) and Fig.(3) we assume that βi = β , ∀i,
and we show how the value of this parameter af-
fects the risk-based metric for the perfect team and
the intermediate configuration, as presented in sec-
tion (2.3). The metric for the isolated agents does
not vary with n, so that we do not plot the analy-
sis for this configuration. The results of this sec-
tion are obtained by averaging on 10,000 simulated
scenarios. In the figures, we also include the 95%
confidence bounds for the estimated metric based
on Monte Carlo simulations.

Figure 4: Metric E[m ]. Comparison of perfect team,
isolated agents and intermediate mechanism as n in-
creases and β = 0. c̄ = 0.125, p = 0.1.

As we would expect, the larger the loss-given-
default rate, β , the larger the losses for the policy-
holders in the communities, for any fixed number
of agents in the financial system, n. This is true for
any mechanism. In Fig.(4) and (5) we compare the
three mechanisms, for β = 0 and β = 1.

We note that the isolated agents perform the
worst among the three mechanisms compared in the
figure, while the perfect team is the best mechanism
for any β . It is also worth noting that, for any group
dimension, we never prefer the isolated agents to
the perfect team. This is due to the fact that the
value of the metric E[m ] for the isolated agents is
equal to the following value:

E
[

mIS
]
= [1− (1−β ) · c̄] · p (13)

No diversification effect takes place in Eq.(13). On
the other hand, for the perfect team, as the number
of agents increases, the losses for the policyholders
diminish on expectation. This is because the proba-
bility of default of the agents decreases with n, due
to the diversification effect, so that we observe the
metric going to zero as n→ ∞.

According to this metric, also when n < nS, we
still prefer the perfect team. The reason is that by
joining the agents we exploit more efficiently the
capacities available in the financial system. Indeed,
under this configuration, the financial system is able
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Figure 5: Metric E[m ]. Comparison of perfect team,
isolated agents and intermediate mechanism as n in-
creases and β = 1. c̄ = 0.125, p = 0.1.

to satisfy more external demands than it would be
under the isolated agents, even if all the agents in
the perfect team default. It follows that we prefer to
join the agents in the perfect team, for every group
dimension n. However, this result does not quantify
the losses related to the collapse of large parts of the
financial system. For this reason, we investigate the
behavior of the metric E [ δ ] that takes into account
some penalty for the default of groups of financial
agents.

3.4. Risk metric: Mixed Losses
In this section, we present some results for the met-
ric E [ δ ], that takes into account both the losses on
claims of the communities and the number of de-
faulted agents that serve the external demands. We
consider this metric because it gives a more com-
prehensive estimate of the losses for society. In-
deed, the resilience of the communities does not
only depend on the unsatisfied demands, but also
on the number of agents that survive the extreme
event, so that they could provide funds to the com-
munities if other shocks occur.

Figs.(6 - 7) show that, according to this metric,
the perfect team is not always as good as other
mechanisms for any group dimension, as happened
for metric m in Figs.(4 - 5). We observe that both
for β = 0 and β = 1 there is some threshold of
group dimension below which we prefer the iso-

Figure 6: Metric E[δ ]: comparison of isolated agents,
intermediate mechanism, ϕ = 0.5, and perfect team, for
β = 0, c̄ = 0.125, p = 0.1 and γ = 1.

lated agents to the perfect team. When we compare
the two extreme configurations, for low n contagion
prevails on diversification, so that the likelihood of
the failure of all the members of the perfect team
is large enough to make the metric larger than in
the isolated agents, even if the perfect team fulfills
more external demands, i.e. E

[
δ PT ]≥E

[
δ IS ]. As

soon as the threshold of group dimension is crossed,
diversification in the perfect team prevails, so that
less agents default on average in this configuration,
and the direction of the inequality between the met-
rics for the two extreme mechanisms is reversed,
i.e. E

[
δ PT ] < E

[
δ IS ]. When β increases the

threshold increases, since the losses due to the de-
fault of the agents are exacerbated.

From Figs.(6 - 7), we also observe that the in-
termediate mechanism is preferred to the perfect
team, for some group dimensions n. In the interme-
diate mechanism the agents retain a larger amount
of their external demands, so that the level of con-
nectivity in the associated network of internal de-
mands is lower than that in the perfect team. This
feature of the intermediate configuration limits con-
tagion and, as a consequence, for the group dimen-
sions n for which contagion prevails in the perfect
team, by choosing an intermediate configuration we
limit this phenomenon and we are better off. This
happens both for β = 0, as shown in Fig.(6), and
for β = 1, as we see in Fig.(7). The lower level of
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Figure 7: Metric E[δ ]: comparison of isolated agents,
intermediate mechanism, ϕ = 0.5, and perfect team, for
β = 1, c̄ = 0.125, p = 0.1 and γ = 1.

connectivity of the intermediate configuration also
limits the diversification of the risk if compared to
the perfect team. This translates in the preference
of the latter when n→ ∞, or else when the group
dimension of the financial system is large enough.

When β is close to one, the characteristics of the
intermediate mechanism, low diversification and a
level of connectivity that allows for a large shock
to be redistributed to all the agent in the system,
make this intermediate configuration fragile to the
shocks, so that it performs poorly with respect to
both the extreme ones.

4. CONCLUSIONS
Our results show that, in some settings, contagion
prevails on the diversification of the risk, making us
prefer a risk-sharing mechanism with a lower level
of redistribution with respect to the perfect team.
This is clear for the metric E [X ] that, however,
does not quantify how much the affected communi-
ties lose after the default of some financial agents.
The metric E [m ], instead, is a measure of the un-
paid insurance claims by the defaulted agents and
it tends to favor the mechanisms that, as the perfect
team, fully exploits the capacity of the agents even
at the price of the default of all its members. This
metric, however, fails at taking into account disrup-
tions due to the defaults of agents, so that we have
proposed the metric E [δ ] that combines the costs

suffered by the communities due to the defaulted
agents with the number of defaults in the financial
system. The resilience of a community, indeed, de-
pends also on the number of agent that do not de-
fault after the extreme event and are able to fulfill
insurance claims if other shocks occur. The result
is that, according to metric E [δ ], the perfect team
is not always at least as good as the other mecha-
nisms, especially for low n when the diversification
effect is small and contagion prevails. Moreover, in
some cases, we prefer intermediate mechanisms to
the extreme configurations.
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