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ABSTRACT: When the operation and maintenance (O&M) of infrastructure components is modeled as
a Markov Decision Process (MDP), the stochastic evolution following the optimal policy is completely
described by a Markov transition matrix. This paper illustrates how to predict relevant features of the
time evolution of these controlled components. We are interested in assessing if a critical state is
reachable, in assessing the probability of reaching that state within a time period, of visiting that state
before another, and in returning to that state. We present analytical methods to address these questions
and discuss their computational complexity. Outcomes of these analyses can provide the decision
makers with deeper understanding of the component evolution and suggest revising the control policy.
We formulate the framework for MDPs and extend it to Partially Observable Markov Decision
Processes (POMDPs).

1. INTRODUCTION

The operation and maintenance (O&M) of an
infrastructure component can be modeled as a
sequential decision making problem, where the
decision maker infers and predicts the compo-
nent’s condition that evolves due to deterioration
and maintenance, and takes periodic actions with
the goad of minimizing a long-time maintenance
costs (Frangopol et al., 2004). This stochastic
decision process can be formulated as a Markov
Decision Process (MDP) (Scherer and Glagola,
1994; Madanat and Ben-Akiva, 1994; Smilowitz
and Madanat, 2000; Robelin and Madanat, 2007;
Gao and Zhang, 2013). When the state can-
not be perfectly observed, O&M can be for-
mulated as a Partially Observable Markov De-
cision Processes (POMDPs) (Papakonstantinou
and Shinozuka, 2014; Memarzadeh et al., 2014;
Memarzadeh and Pozzi, 2016). A policy defines the
O&M action as a function of the observable state

(for MDPs) or of the belief (for POMDPs). The
optimal policy, identified by solving the Bellman
equation, is guaranteed to provide the minimum ex-
pected discounted economic cost to go. Still, a de-
cision maker adopting that policy may wonder if
critical condition states can ever be visited, and how
often.

In this paper, we investigate how to predict rele-
vant features of the condition evolution of an infras-
tructure component following a Markov process,
and how to apply analytical methods on MDP or
POMDP models under a selected policy. Outcomes
of these analyses can provide the decision makers
with deeper understanding of the component evolu-
tion, and suggest revising the control policy. After
an introduction to sequential decision making mod-
eling in Section 2 and some properties of Markov
chains in Section 3, we formulate the general prob-
lem and propose methods for predicting specific
features in MDPs in Section 4. Section 5 shows
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how to extend our analysis to POMDPs, and Sec-
tion 6 gives examples before conclusions in Sec-
tion 7.

2. SEQUENTIAL DECISION MAKING
In sequential decision making, an agent selects a
sequence of actions, paying periodic maintenance
costs and receiving possibly observations from the
system she is interacting with, with the aim of min-
imizing the long-term expected maintenance costs.

2.1. Markov chains
A Markov chain completely describes a Markov
process with discrete time and a countable state
set S = {1,2, . . . ,n}. Transition probability pi j =
P[st+1 = j|st = i] defines the probability that a pro-
cess, currently in st = i at time t, moves to st+1 = j
at the next step. These probabilities are listed in
transition matrix T, where T (i, j) = pi j.

2.2. MDP framework
In MDPs, the system is in some state st ∈ S at each
time step t. The agent chooses an available action
at ∈ A, and pays a cost depending on the current
state and the selected action. Future costs are dis-
counted by factor γ per step. The long-term ex-
pected discounted cumulative cost is optimized by
selecting an appropriate policy π that can be iden-
tified by solving the Bellman equation. The evolu-
tion of the controlled system will follow a Markov
process (Gardiner, 2009), completely described by
a transition matrix that depends on π .

2.3. POMDP framework
In POMDPs, the state is not fully observable, and
the agent, at time step t, only receives an observa-
tion zt ∈ Z, which can be a noisy and incomplete
measure of the current state by the probabilistic ob-
servation matrix Oa(i, j) = P[zt = j|st = i,at−1 =
a]. The agent’s belief about the current state is
represented by probability distribution bt , where
bt(i) = P[st = i|z1,z2, . . . ,zt ,a0,a1, . . . ,at−1]. For-
mally, a POMDP is equivalent to a MDP in the be-
lief state (Ibe, 2013).

3. PROPERTIES OF MARKOV CHAINS
3.1. Transient, recurrent and absorbing States
Given a Markov chain, a state can be either tran-
sient or recurrent. A recurrent state is one that keeps

returning, while a transient state is one that sooner
or later will stop returning. Let a = P[ ∃t > 0 : st =
i|s0 = i]. We say a state i is recurrent if a = 1 and it
is transient if a < 1. State i is an absorbing state, a
special case of a recurrent one, if pii = 1.

3.2. Ergodicity
A Markov chain is ergodic if there exists a positive
integer k such that for all pairs of states i and j, if
the process starts at time t = 0 in state s0 = i then
for all t > k, the probability of being in state st = j
at time t is positive (Schütze et al., 2008). A nu-
merical method to check the ergodicity of a Markov
chain with n states is to test if all elements of Tm are
positive for m = (n−1)2 +1 (Meyer, 2000).

Given an ergodic Markov chain, there exists a
limiting distribution βββ = (β1,β2, . . . ,βn)

> that sat-
isfies βββ

>T = βββ
>, where β j represents the long-

term probability of being in state j and ∑
n
j=1 β j = 1.

The limiting distribution can be defined as

∀i, β j = lim
m→∞

(Tm)i j (1)

3.3. Communication Class
States i and j communicate if they are accessible
from each other. The set of states can be partitioned
into communication classes. To identify commu-
nication classes, we adopted the method proposed
by James (2009). First, we define zero pattern tran-
sition matrix D as

D(i, j) =
{

1 if T (i, j)> 0
0 otherwise

And then we define the reachability matrix R as

R(i, j) =
{

1 if (I+D)n−1(i, j)> 0
0 otherwise

where I is an identify matrix and D(i, j) = 1 indi-
cates state i can reach state j. We assign states i and
j to the same class if and only if each of these states
can reach and be reached by the other. Q denotes
the communication relationship as:

Q(i, j) =
{

1 if R(i, j) ·R( j, i) = 1
0 otherwise

where states i and j belong to the same class if
Q(i, j) = 1.
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Figure 1: A Markov transition graph.

A communication class can be either closed or
open. It is open if there is a directed connection
from this class to another, otherwise it is closed.

3.4. Transition graphs
As illustrated in Figure 1, a Markov chain can be
represented as a directed graph G. Each node in G
corresponds to a state. G contains edge (i, j) if and
only if pi j > 0. A subset of S, of interest for our
analysis, can be referred to a critical region. For
example, all failure states can be grouped into that
region. In Figure 1, state n is the critical region,
marked in red.

4. PREDICTING EVOLUTION
In sequential decision problems, the optimal pol-
icy finds the best trade-off between maintenance
costs and frequency of critical events. To do so,
a high penalty cost is usually assigned to the visit
of critical states, as those related to the failure
events. However, even if adopting that optimal pol-
icy, the agent cannot easily predict how the com-
ponent evolves. That policy is not directly informa-
tive, for example, about whether some critical states
are reachable or not, when and how frequent the
process will visit those states (if reachable). Tran-
sition time from one state to another is a random
variable, and we can compute some of its features,
such as the expected transition time, its variance,
the probability of that transition given a time pe-
riod, etc. In this section, we are going to introduce
analytical methods to compute these features and
discuss the computational complexity.

4.1. Moments of first passage time
The first passage time is defined as the time taken
to the process being at one state to first reach an-
other. Let τi j denote the number of steps needed
to first reach state j from state i (Ibe, 2013). τ j j
denotes the number of steps needed to first return
to state j from state j. For an ergodic Markov
chain, the mean time between visits to state j can
be easily computed from the limiting distribution
by E[τ j j] = 1/β j. However, we also are interested
in the mean time to reaching another state, e.g. a
critical state. Let mi j = E[τi j], then we define a re-
cursive equation to compute mi j as

mi j = 1+ ∑
k 6= j

pi jmk j (2)

It can be rewritten in a matrix equation as:

(I−T)M = 111−TMd (3)

where M(i, j) = mi j, Md(i, j) = δi jmii, a diagonal
matrix only with elements in the diagonal elements
of M, and 111 is a matrix with all elements equal to
one.

Hunter (2008) proposed an effective way to solve
Eq. (3), and showed how to compute the second
moment of first passage time.

4.1.1. First moment (mean time)
If G is any g-inverse of (I−T), then Eq. (3) is

M = [GΠΠΠ−1(GΠ)d + I−G+1Gd]Md (4)

where ΠΠΠ= eeeβββ
>,eee= [1,1, . . . ,1]>, and βββ is the lim-

iting distribution (Hunter, 2008).

4.1.2. Second moment

The second moment of first passage time M(2),

M(2) = 2[GM−1(GM)d ]+ [I−G+1Gd ][M
(2)
d +Md ]−M

(5)

where M(2)
d = 2Md(ΠΠΠM)d−Md .

The variance matrix V can be computed as V
= M(2)−M2 (Hunter, 2008). Hence, M(i, j) and
V (i, j) are the mean and variance of first passage
time from state i to j, respectively.
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4.2. Probability of reaching states
For an ergodic Markov chain, given any three states
i, j,c∈ S, we want to find the probability of moving
from state i to j before hitting state c. This proba-
bility can be expressed as

P(∃t : st = j,sk 6= c,sk 6= j,∀k∈{1,2, . . . , t−1}|s0 = i)

We define hi as the probability of moving from
the initial state i to state j before reaching the state
c. The transition matrix T satisfies the following
equation with the boundary conditions,

hi =
n

∑
k=1

T (i,k)hk, i 6= j,c, h j = 1 and hc = 0 (6)

We define h = (h1,h2, . . . ,hn)
>, and let T̂ be T

after deleting the cth and jth rows and columns, of
the size (n− 2)× (n− 2). Let r be the jth column
of T after deleting cth and jth elements, with the
size of (n−2)×1. Let ĥ be h after deleting the cth
and jth elements, with the size of (n−2)×1. Then
we can solve the Eq. (6) by

ĥ = (I− T̂)−1r (7)

4.3. Probability of transition time
We now want to investigate the probability of first
passage time from state i to state j. We define fi, j(t)
as the probability of first reaching the state j within
t steps, starting from state i. We define a new tran-
sition matrix T+ by setting the jth row and col-
umn of the original transition matrix T to zero. Let
x j(t) = [ f1, j(t) f2, j(t) . . . fn, j(t)]>. We can de-
rive x j(t) at any time t by the following recursive
equation:

x j(t) = x j(0)+T+x j(t−1) (8)

where the initial condition x j(0) is a vector with
all element being zero except for jth element being
one. After solving Eq. (8), we can derive the proba-
bility of first reaching state j from state i in exactly
t steps as

∆ fi, j(t) = fi, j(t)− fi, j(t−1) (9)

Table 1: Transition probability matrices under the opti-
mal policy for the MDP example 1.

T =



0.8580 0.1358 0.0062 0 0 0 0 0
0.7625 0.2215 0.0159 0.0002 0 0 0 0
0.2375 0.5249 0.2215 0.0159 0.0002 0 0 0
0.1420 0.4975 0.3234 0.0364 0.0007 0 0 0
0.0766 0.4234 0.4234 0.0744 0.0021 0 0 0
0.2375 0.5249 0.2215 0.0159 0.0002 0 0 0
0.0161 0.2215 0.5249 0.2215 0.0159 0.0002 0 0
0.0002 0.0159 0.2215 0.5249 0.2215 0.0159 0.0002 0



5. EXTENSION ON POMDPS
POMDPs can be expressed as Markov processes in
the belief state. Consider a O&M process of an in-
frastructure component with n possible states mod-
eled as a POMDP. In order to build a transition ma-
trix Tπ from one belief state to another following
policy π in POMDPs, we discretize the belief do-
main into N belief states, B = {b1,h2, . . . ,bN}. For
a single discrete belief state bk ∈ B, its one-step
transition is defined as follows,

ba
k = bkTa

v j =
n

∑
l=1

Oa(l, j) ba
k(l)

u( j, i) =
Oa(i, j) ba

k(i)
v j

(10)

where action a = π(bk) is selected by the determin-
istic policy. ba

k is an updated belief after taking ac-
tion a, and v j represents the probability of getting
jth observation based on the belief ba

k . The jth row
of u is an updated belief state ba, j

k from jth obser-
vation, which is obtained by ba, j

k (i) = u( j, i), for
i = 1,2, . . . ,n. Then ba, j

k can be approximated to
bh ∈ B by the minimum Euclidean distance. The
transition probability from belief state bk to bh is
the sum of all v j related to the observations taking
from bk to bh. Transition matrix T, with the size
N ×N, can be constructed by considering all dis-
crete beliefs and all possible observations. Also,
linear interpolation among beliefs can be used for
approximating the inference process.

6. EXAMPLES
6.1. MDP example 1
The transition matrix of a MDP example, related
to a pavement management problem (Durango and
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Table 2: Transition matrices for the MDP example 2.

T1 =


0.9 0.05 0.02 0.02 0.01 0
0 0.8 0.1 0.06 0.03 0.01
0 0 0.75 0.1 0.1 0.05
0 0 0 0.5 0.3 0.2
0 0 0 0 0.35 0.65
0 0 0 0 0 1.0



T2 =


0.4 0.32 0.1 0.1 0.078 0.002
0.4 0.32 0.1 0.1 0.078 0.002
0.4 0.32 0.1 0.1 0.078 0.002
0.4 0.32 0.1 0.1 0.078 0.002
0 0 0 0 0.6 0.4
0 0 0 0 0 1.0



T3 =


0.9 0.05 0.02 0.02 0.008 0.002
0.9 0.05 0.02 0.02 0.008 0.002
0.9 0.05 0.02 0.02 0.008 0.002
0.9 0.05 0.02 0.02 0.008 0.002
0.9 0.05 0.02 0.02 0.008 0.002
0.9 0.05 0.02 0.02 0.008 0.002



Table 3: Transition probability matrices under the opti-
mal policy for the MDP example 2.

T =


0.9 0.05 0.02 0.02 0.01 0
0.4 0.32 0.1 0.1 0.078 0.002
0.4 0.32 0.1 0.1 0.078 0.002
0.4 0.32 0.1 0.1 0.078 0.002
0.9 0.05 0.02 0.02 0.01 0
0.9 0.05 0.02 0.02 0.01 0



Madanat, 2002), following the optimal policy, is
shown in Table 1. The pavement segment condition
is discretized into 8 states, from a new pavement
(s = 1) to the failure state (s = 8). Following the
optimal policy, we can see the failure state is not
reachable and states 1,2,3,4,5 form a closed com-
munication class by the method from Section 3.3.
Therefore, states 6,7,8 are transient.

6.2. MDP example 2
Also inspired by Durango and Madanat (2002)’s
model, let us consider a component with n = 6
states, referring to five different level of deteriora-
tion from intact (s = 1) to severely damaged (s = 5)
state and a failure state (s= 6), considered as a criti-
cal state. The three maintenance actions include do-
nothing(a = 1), minor repair (a = 2), replace (a =

Table 4: Mean of first passage time in years for the
MDP example 2.

M =


1.22 15.9 34.9 34.9 48.2 3177.0
2.29 10.8 30.6 30.6 42.5 3166.0
2.29 10.8 30.6 30.6 42.5 3166.0
2.29 10.8 30.6 30.6 42.5 3166.0
1.22 15.9 34.9 34.9 48.2 3177.0
1.22 15.9 34.9 34.9 48.2 3177.0



3), and the transition probabilities for each action
are shown in Table 2. Time is discretized in years.
Costs of minor repair, major repair and for failure
are $8K, $20K and $500K, respectively. The dis-
count factor is 0.95 per year. By solving that MDP,
the optimal policy π = [1 2 2 2 3 3]> is obtained,
and the expected discounted maintenance costs are
$33.5K, $50.91K, $50.91K, $50.91K. $53.53K and
$553.53K for initial states from s0 = 1 to s0 = 6,
respectively. The corresponding transition matrix
T is shown in Table 3. All the states are reach-
able and the chain is ergodic by the method from
Section 3.2. Table 4 shows the mean time ma-
trix M in years. The expected time to first reach
the failure state is relatively much longer than that
to first reach any other state from the same initial
state. By computing the standard deviation matrix
Vstd =

√
V, we find that the coefficient of varia-

tion of transition time is around 1. Figure 2 illus-
trates the probability of transition time to the fail-
ure. As an example of the results, the probability of
failure within 20 years starting from state s0 = 1 is
around 0.54%. Also, the probabilities of reaching
failure before visiting state s = 5 starting from state
s0 = 1,2,3,4 are 1.5%, 1.67%, 1.67% and 1.67%,
respectively. Hence, we predict that, with 98.5%
probability, a new component will be replaced (as
it will be at state 5) before its failure.

6.3. POMDP example 1
Consider an infrastructure component with n = 4
states, intact, minor damaged, major damaged and
failure states. The three maintenance actions are
available: Do-nothing (a = 1), Minor Repair (a =
2) and Replace (a = 3). The transition matrices
are shown in Table 5. 10 different observations are
available and assume the failure can be immediately
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Figure 2: Probability of transition time to failure for
the MDP example 2

Table 5: Transition matrices for POMDP example 1.

T1 =


0.9 0.08 0.02 0
0 0.7 0.2 0.1
0 0 0.5 0.5
0 0 0 1.0

 T2 =


0.9 0.08 0.02 0
0 0.85 0.12 0.03
0 0 0.6 0.4
0 0 0 1.0



T3 =


0.9 0.08 0.02 0
0.9 0.08 0.02 0
0.9 0.08 0.02 0
0.9 0.08 0.02 0



detected. Cost is assumed to be $3.5K, $25K for
a = 2,3, respectively, $500K for the failure, and
the discount factor is 95% per year. Time is dis-
cretized in years. The belief domain with four pos-
sible states can be represented by an equilateral tri-
angle and a single point when the failure is imme-
diately detectable. In Figure 3, the belief domain
is non-uniformly discretized with N = 2929 points.
Each belief corresponds to an action controlled by
the optimal policy that is obtained by the SARSOP
solver (Kurniawati et al., 2008). We also plot the
beliefs belonging to the only closed communication
class, marked in red. The process will only move
among those beliefs, in the long term. Figure 4
shows the cumulative distribution function (CDF)
and probability mass function (PMF) of failure for
an initial belief b0 = [1 0 0 0] depending on time t.

Figure 3: Optimal policy for the discrete belief domain
for the POMDP example 1

Figure 4: Probability of transition time to failure for
the POMDP example 1

Table 6: Transition and observation matrices for the
POMDP example 2.

T1 =


0.97 0.02 0.01 0

0 0.85 0.1 0.05
0 0 0.7 0.3
0 0 0 1.0

 T2 =


0.97 0.02 0.01 0
0.1 0.8 0.08 0.02
0 0.2 0.6 0.2
0 0 0 1.0



T3 =


0.97 0.02 0.01 0
0.21 0.75 0.03 0.01

0 0.62 0.36 0.02
0 0 0 1.0

 T4 =


0.97 0.02 0.01 0
0.97 0.02 0.01 0
0.97 0.02 0.01 0
0.97 0.02 0.01 0



O1−4 =


1− ε ε/2 ε/2 0
ε/2 1− ε ε/2 0
ε/2 ε/2 1− ε 0

0 0 0 1.0


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Figure 5: Probability of transition time to failure for
the POMDP example 2

Figure 6: Expected time to failure for the POMDP
example 2

Figure 7: Optimal policy for the POMDP example 2

Figure 8: Probability of failure within 20 years when
C f = $300K,ε = 0.05.

6.4. POMDP example 2
Consider an infrastructure component with four
states (n = 4). Four maintenance actions includ-
ing do-nothing (a = 1), minor repair (a = 2), ma-
jor repair (a = 3) and replace (a = 4), are avail-
able. Costs of a = 2,3,4 are $3.5K, $9K and $25K,
respectively. The discount factor is 0.95 per year.
The transition and observation matrices are shown
in Table 6. By varying cost of failure (C f ) from
$25K to $1000K, the optimal policy changes. Fig-
ure 5 illustrates how the cost of failure influences
the probability of failure depending on time t from
an intact state under two different inaccuracy of ob-
servations ε = 0.05,0.1. Figure 6 shows the ex-
pected time from an intact state to the failure when
ε = 0.05,0.1. The expected time to failure is mono-
tonically increasing with C f . When C f = $300K
and ε = 0.05, we plot the optimal policy in Figure 7
and the corresponding probability of failure within
20 years for all discrete beliefs in Figure 8.

7. CONCLUSIONS

This paper has illustrated how to predict the future
evolution of an infrastructure component modeled
by a MDP or POMDP under a selected policy. That
evolution can also be investigated by analyzing the
outcomes of Monte Carlo (MC) simulations. How-
ever, MC methods require high computational cost
for simulating rare events, as the component fail-
ure, and they are not efficient to achieve results as
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those in Figure 8.
In POMDPs, the computational complexity is

highly dependent on the number of discrete beliefs,
and the accuracy of the approximation increases
with the number of discrete beliefs. When the num-
ber of states increases, the accuracy suffers from the
"curse of dimensionality". However, approaches
not based on the grid discretization of Section 5,
can also be investigated.

In this work, we have assumed that the control
optimal is pre-assigned. The task of identifying
the optimal policy is generally harder than that of
predicting the evolution. An interesting line of re-
search is to couple analytical methods for finding
the optimal policy and for predicting the evolution,
to improve the process achieving both goals.
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