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ABSTRACT: Response sensitivity computations for nonlinear geometry are required in structural
reliability, optimization, and system identification. Compared to finite difference and complex
perturbation methods, the direct differentiation method (DDM) of the governing response equations
offers an approach to response sensitivity computations that is both accurate and efficient. Several
formulations of DDM response sensitivity have been developed for material nonlinear planar and space
frame finite elements; however, the DDM has only been applied to geometrically nonlinear frame
elements in two dimensions. The corotational formulation of large displacements is versatile for three
dimensional simulations of frame structures because it separates geometric and material nonlinearity at
the element level. However, the main difficulty of the corotational formulation for space frame elements
is that finite rotations are not true vector quantities and the structural response depends on the order in
which rotations are applied. Through analytic differentiation of an approximate algorithm to apply
rotations, the response sensitivity equations are obtained for the corotational formulation of space frame
elements and are implemented in the OpenSees finite element framework. To verify the accuracy of the
derived sensitivity equations, standalone sensitivity analysis compares the proposed DDM with the finite
difference method (FDM) for a space frame structure.

1. INTRODUCTION
Uncertainty quantification is an essential compo-
nent to the design and assessment of engineered
structures. As simulation capabilities advance,
capabilities for uncertainty quantification need to
keep pace. Performance-based approaches to as-
sessment require the probability of a structural fail-
ure across limit states ranging from service level to
collapse prevention.

Monte Carlo simulation (MCS) is a straightfor-
ward means of computing probabilities of failure
for any structural system and external loads char-
acterized by properties with joint probability distri-
bution functions. Although it is widely applicable,
the drawback to MCS is its computational expense,
requiring at least 10,000 simulations to get an accu-

rate estimate for a probability of failure.
The first order reliability method (FORM) offers

an efficient alternative to MCS in that it requires a
relatively small number of simulations to estimate
a probability of failure. Whereas MCS can han-
dle nonlinearity of the limit state, the FORM esti-
mate of failure probability is first order approxima-
tion. The second order reliability method (SORM)
makes a second order approximation in estimating
the probability of failure.

FORM and SORM fall in to the wider class of
gradient-based applications in structural engineer-
ing where the gradients, or first derivatives, of the
structural response with respect to each uncertain
parameter are required in order to find the probabil-
ity of failure. The finite difference method (FDM)
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and the complex perturbation method (CPM) Kiran
et al. (2017) compute gradients by repeated analy-
ses with perturbed parameter values. Although the
CPM is more accurate than the FDM, it requires
complex arithmetic to be carried out through all lev-
els of a finite element software framework. The
adjoint system method (ASM) and the direct dif-
ferentiation method (DDM) compute gradients an-
alytically. The ASM uses Lagrange multipliers and
is limited to specific types of structural response,
mainly it cannot be used for path-dependent behav-
ior.

The DDM implements analytic derivatives of the
finite element response alongside the regular re-
sponse implementation Kleiber et al. (1997). At
the one-time expense of derivation, implementa-
tion, and debugging, the DDM gives accurate and
efficient derivatives of the structural response. The
DDM has been applied at all levels of nonlinear
structural finite element analysis ranging from the
material and section levels to the element formula-
tions for material and geometric nonlinearity inside
the basic system Scott et al. (2004). In addition, the
DDM has been developed for the corotational for-
mulation of geometric nonlinearity outside the ba-
sic system for two-dimensional problems Scott and
Filippou (2007), but has not been developed for the
corotational transformation in three dimensions due
to the complexity of rotational transformations in
space.

The objective of this paper is to apply the DDM
to the corotational geometric transformation for
frame finite elements in three dimensions. Ana-
lytic derivatives are obtained for the nodal triads
and quaternions that define the orientation and de-
formation of a frame element in three-dimensional
space. A verification example shows that the DDM
corotational response sensitivity is correct by com-
parison with finite difference computations of the
derivatives. The DDM equations developed herein
have been implemented in the OpenSees finite ele-
ment software framework.

2. COROTATIONAL FORMULATION IN
THREE-DIMENSIONS

Three-dimensional frame elements have 12
degrees-of-freedom (DOFs), as shown in Figure 1,

collected in four vectors of nodal displacements
and rotations at each end of the element

uT =
[

uT
I γT

I uT
J γT

J
]

(1)

where the translations at ends I and J are

uI =

 u1
u2
u3

 uJ =

 u7
u8
u9

 (2)

while the rotations at ends I and J are

γI =

 u4
u5
u6

 γJ =

 u10
u11
u12

 (3)
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Figure 1: Degrees of freedom of global and basic coor-
dinate systems of space frame (3D) element.

Six rigid body displacement modes correspond
to these DOFs, leaving six basic DOFs that measure
the element deformations

ub =


ub1
ub2
ub3
ub4
ub5
ub6

=


Ln−L

θI3
θJ3
−θI2
−θJ2

θJ1−θI1

 (4)

where Ln is the deformed element length, which is
computed from the nodal coordinate offset, XIJ =
XJ−XI , and relative nodal translations, uIJ = uJ−
uI

Ln = ‖XIJ +uIJ‖2 (5)

The rotations θI1 through θJ3 in Equation (4) are
measured with respect to the local element axes,

2



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13
Seoul, South Korea, May 26-30, 2019

a coordinate system in between the global and ba-
sic systems. Due to the non-vectorial nature of ro-
tations in three-dimensions, an approximate algo-
rithm is required in order to compute the six ba-
sic deformations from the nodal rotations at the el-
ement ends.

To this end, a normalized unit quaternion We-
hage (1984); Spring (1986) is defined for the nodal
rotations at each of the element

q =


q0
q1
q2
q3

=

[
cos(θ/2)
sin(θ/2)t

]
(6)

where θ and t are the magnitude and unit vector,
respectively, of the nodal rotations at either end of
the element. The matrix that describes the rotation
of a point in space to a second point is described in
terms of the unit quaternion

R =

 q2
0 +q2

1−0.5 q1q2−q0q3 q1q3 +q0q2
q2q1 +q0q3 q2

0 +q2
2−0.5 q2q3−q1q0

q3q1−q0q2 q3q2 +q0q1 q2
0 +q2

3−0.5


(7)

Full details on the quaternion and the computation
of the rotation matrix are omitted here, but can be
found in Crisfield (1997); De Souza (2000).

Three triads define the orientation of an element
in its displaced configuration. The element base
triad, E, describes the orientation of the element,
while the nodal triads NI and NJ describe the rota-
tions at ends I and J, respectively.

The base vector, e1, defines the element chord,
the line from end I to end J, in the displaced con-
figuration

e1 =
XIJ +uIJ

Ln
(8)

The other two vectors, e2 and e3, in the element
base triad depend on the nodal rotations in the de-
formed configuration. The Crisfield algorithm Cr-
isfield (1997) is a common approach to obtain these
vectors in terms of the mean triad matrix

R̄ =
[

r̄1 r̄2 r̄3
]
= R

(
ζ

2

)
NI (9)

where ζ is the pseudo-rotation vector De Souza
(2000). Then, the basis vectors are expressed in

terms of the mean triad and the base vector of the
element chord

e2 = r̄2−
r̄T

2 e1

2
(r̄1 + e1) (10)

and

e3 = r̄3−
r̄T

3 e1

2
(r̄1 + e1) (11)

3. DIRECT DIFFERENTIATION OF THE
COROTATIONAL FORMULATION

Direct differentiation of the 3D corotational trans-
formation begins with the sensitivity of the unit
base vectors in the displaced configuration of an el-
ement. The derivative of the unit base vector, e1,
with respect to an uncertain parameter, h, of the
structural model is found from Equation (8)

∂e1

∂h
=

Ln

(
∂XIJ
∂h + ∂uIJ

∂h

)
− (XIJ +uIJ)

∂Ln
∂h

L2
n

(12)

where ∂XIJ/∂h is non-zero only if h corresponds to
a nodal coordinate at the element ends and ∂uIJ/∂h
comes from the nodal displacement sensitivity. The
derivative of the deformed element length, Ln, de-
fined in Equation (5) is

∂Ln

∂h
=

1
Ln

(XIJ +uIJ)
T
(

∂XIJ

∂h
+

∂uIJ

∂h

)
(13)

Likewise, the derivative of the base vectors, e2 and
e3, are obtained from differentiating Equation (10)
with respect to h

∂e2

∂h
=

∂ r̄2

∂h
− 1

2

[(
∂ r̄T

2
∂h

e1 + r̄T
2

∂e1

∂h

)
(r̄1 + e1)

+r̄T
2 e1

(
∂ r̄1

∂h
+

∂e1

∂h

)]
(14)

and similarly Equation (11)

∂e3

∂h
=

∂ r̄3

∂h
− 1

2

[(
∂ r̄T

3
∂h

e1 + r̄T
3

∂e1

∂h

)
(r̄1 + e1)

+r̄T
3 e1

(
∂ r̄1

∂h
+

∂e1

∂h

)]
(15)

The remaining unknowns in the two preceding
equations are the derivatives of the mean rotation
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triad. This derivative is obtained from Equation (9)

∂ R̄
∂h

=
[

∂ r̄1
∂h

∂ r̄2
∂h

∂ r̄3
∂h

]
= R

(
ζ

2

)
∂NI

∂h
+

∂R
(

ζ

2

)
∂h

NI (16)

where the derivative of the rotation matrix is ob-
tained from differentiation of Equation (7), which
in turn depends on the derivative of the unit quater-
nion defined in Equation (6)

∂q
∂h =

[
−0.5sin(θ/2)∂θ

∂h
sin(θ/2)

θ

∂θ

∂h +(θ

2 cos(θ/2)− sin(θ/2))∂θ

∂h t/θ

]
(17)

Additional details on the derivative of the quater-
nion and the rotation matrix are found in Al-
Aukaily (2017).

3.1. Sensitivity of the local-basic transformation

With the derivative of the element orientation de-
fined, attention now turns to the sensitivity of
the equilibrium and compatibility relationships be-
tween the local and basic coordinate systems. The
displacements transform from the local system to
deformations of the basic system via

ub = Tblul (18)

where Tbl is a matrix of ones and zeros. Accord-
ingly, the derivative of this compatibility relation-
ship is

∂ub

∂h
= Tbl

∂ul

∂h
(19)

Assuming there are no member loads, the conjugate
equilibrium relationship is given by the transpose of
the compatibility matrix

pl = TT
blpb (20)

and the derivative of the equilibrium relationship is

∂pl

∂h

∣∣∣∣
ul

= TT
bl

∂pb

∂h

∣∣∣∣
ub

(21)

3.2. Sensitivity of the global-local transformation
The transformation from displacements in the
global coordinate directions to the local element
displacements is given by

ul = Tu (22)

where T is defined in terms of the element basis
vectors and mean triads

TT =
[

tT
1 tT

2 tT
3 tT

4 tT
5 tT

6I tT
6J
]

(23)

where t1 corresponds to axial deformation

t1 =
[
−eT

1 0T eT
1 0

]
(24)

and t2 corresponds to flexural deformation

t2 =
1

2cos(θI3)
[L(r̄2)nI1 +hI3]

T (25)

with L and h defined in Al-Aukaily (2017) and sim-
ilar definitions for t3 through t6J . The derivative of
the compatibility relationship is then

∂ul

∂h
= T

∂u
∂h

+
∂T
∂h

u (26)

where

∂TT

∂h
=
[

∂ tT
1

∂h
∂ tT

2
∂h

∂ tT
3

∂h
∂ tT

4
∂h

∂ tT
5

∂h
∂ tT

6I
∂h

∂ tT
6J

∂h

]
(27)

∂ t1

∂h
=
[
−∂eT

1
∂h 0T ∂eT

1
∂h 0T

]
(28)

and the derivatives of t2 through t6J are defined
in Al-Aukaily (2017).

Equilibrium of element forces between the local
and global systems is

p = TT pl (29)

where the derivative of the equilibrium relationship
is

∂p
∂h

∣∣∣∣
u
= TT

(
kl

∂T
∂h

u+
∂pl

∂h

∣∣∣∣
ul

)
+

∂TT

∂h
pl (30)

This derivative of element forces in the global co-
ordinate system is assembled in to the structural
level equations of DDM response sensitivity and
incorporated in a two-phase computation process
for path-dependent constitutive models Zhang and
Der Kiureghian (1993).
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4. NUMERICAL EXAMPLE
A frame structure demonstrates that the DDM equa-
tions for the three-dimensional corotational trans-
formation are correct. Verification of the DDM
takes place against finite difference computations
for uncertain material, cross-section, and nodal co-
ordinate parameters of the frame. This frame has
been studied by several researchers in the devel-
opment of large displacement frame finite element
formulations Argyris (1982); Abbasnia and Kassi-
mali (1995); De Souza (2000).
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Figure 2: Two-story frame with cross-section dimen-
sions and pattern of applied loads.

The frame dimensions and loading are shown
in Figure 2. The stress-strain response of the
frame members is assumed to be elastic-perfectly-
plastic (EPP) with modulus E=19613 MPa and
yield strength fy=98 MPa. All members are ori-
ented for strong-axis bending for the direction of
lateral load shown in Figure 2. The response of
each member is simulated using one material non-
linear force-based frame element Neuenhofer and
Filippou (1997) with four Gauss-Lobatto integra-
tion points and fiber-discretized cross-sections.

The load-displacement response of the frame is
shown in Figure 3 with the reference load value P
and the roof displacement, U . It is noted that all
loads, vertical and lateral, increase linearly with re-
spect to pseudo-time in the nonlinear analysis using
displacement control static integration Clarke and
Hancock (1990). After reaching a peak load value
of P≈ 128 kN at a roof displacement of U ≈ 70 cm,

the frame starts to lose load carrying due to both
material and geometric nonlinearity.
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Figure 3: Load-displacement relationship for two-story
frame.

The DDM sensitivity of the frame response is
computed with respect to the yield strength, fy, of
the column members. Comparisons of the DDM
response sensitivity with finite difference compu-
tations using a parameter perturbation of 0.0001 fy
are shown in Figure 4 for the load factor, λ , and
the roof displacement, U , in the displacement-
controlled pushover analysis Al-Aukaily and Scott
(2018).

In addition to verification of the DDM by match-
ing finite difference computations, Figure 4 shows
the onset of material yielding in the structure at a
roof displacement of U ≈ 20 cm, where the sensi-
tivity with respect to fy becomes non-zero for both
the load factor and the roof displacement. The pos-
itive values for sensitivity of the load factor Fig-
ure 4 (a)) indicate that as fy increases, the load fac-
tor must also increase in order to reach the same
target displacement in the displacement-controlled
analysis. On the other hand, the negative sensitivity
values for displacement (Figure 4 (b)) indicate that
as fy increases, the roof displacement will decrease.

Sharp transitions in the displacement response
sensitivity are noted in Figure 4 (b). These tran-
sitions are due to the yielding of fibers in the beam
and column member cross-sections and they are ob-
served in both the DDM and finite difference sensi-
tivity response indicating that the transitions are not
an artifact of either numerical method, but rather an
inherent behavior of the underlying finite element
model.
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Figure 4: Response sensitivity of load factor and lateral
roof displacement with respect to the yield strength, fy,
of all members.

5. CONCLUSIONS
The direct differentiation method (DDM) provides
accurate gradients of the large displacement re-
sponse with respect to uncertain parameters of
three-dimensional frame finite elements that uti-
lize the corotational transformation. Although
analytical derivatives of the corotational transfor-
mation are complex, their implementation in the
OpenSees finite element software framework leads
to efficient gradient computations compared to
perturbation-based computations, e.g., finite differ-
ences. The verified DDM implementation for coro-
tational space frame finite elements supports a wide
range of gradient-based applications such as reli-
ability, optimization, and system identification for
complex structures.
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