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ABSTRACT: Many infrastructure systems can be modeled as networks of components with binary
states (intact, damaged). Information about components’ conditions is crucial for the maintenance
process of the system. However, it is often impossible to collect information of all components due to
budget constraints. Several metrics have been developed to assess the importance of the components in
relation to maintenance actions: an important component is one that should receive high maintenance
priority. Instead, in this paper we focus on the priority to be assigned for component inspections and
information collection. We investigate metrics based on system level (global) and component level
(local) decision making after inspection for networks with different topology, and compare these results
with traditional ones. We then discuss the computational challenges of these metrics and provide

possible approximation approaches.

1. INTRODUCTION

Many civil infrastructures consist of multiple bi-
nary components, arranged as a network to ful-
fill the function of the system. The binary states
of the components, either intact or damaged, de-
termine the system condition. The belief of the
agent controlling the maintenance process can be
described by a probabilistic distribution on the pos-
sible states of the components. Maintenance ac-
tions are selected to trade off the risk of system
malfunctioning with the cost of maintenance (repair
and retrofitting). Observations of the components’
states can improve decision making and reduce the
uncertainty and maintenance cost. However, due to
budget constraints, it is often impossible to inspect
all components. Therefore it is important to assign
inspection priorities among components. Therefore

it is important to assign inspection priorities among
components.

Traditionally, importance measures have been
developed for assigning priority to maintenance ac-
tions. Based on the needed input to determine the
rank among the components, they can be catego-
rized into structure, reliability and lifetime mea-
sures (Birnbaum, 1968). The structure importance
measures take the topology structure of the network
as input, such as the Fussell-Vesely structure im-
portance (Vesely, 1970) and the permutation im-
portance (Boland et al., 1989). The reliability im-
portance measure also considers the failure proba-
bility of the system and the components, such as
Birnbaum reliability importance (Birnbaum, 1968).
The lifetime importance measures further take into
account the varying distribution of failure probabil-
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ities over time, such as Birnbaum lifetime impor-
tance (Lambert, 1975).

Hwang (2005) summarized the dominant re-
lations among importance measures of different
forms. If importance measure A is dominant over
B, then when component i has higher priority in A,
it will also have higher priority in B.

2. IMPORTANCE MEASURES FOR BINARY SYS-
TEMS

When a binary system is composed of N compo-
nents, cy,---,cn, their conditions are described by
vector s = (s1,52,---,Sn), where s; = 1 if compo-
nent ¢; functions, and s; = 0 if ¢; fails. The sys-
tem state u = @(s) is also a binary variable, where
¢ : BY — B is the component-to-system function,
and B = {0, 1}.

Birnbaum structure importance measure (Birn-
baum, 1968) quantifies whether component c; is es-
sential for the system as:

8i(s) = 9j.1(s) — ¢;0(s)

where: ¢, = @(s1,---,5;=a,---,sN).

c;j is essential for the system in state s when
0j(s) = 1: this means that the system functions if
and only if that component does.

The reliability Birnbaum measure considers the
possible failure of the components and the system:

2)

where Py,|5,~¢ 1s the posterior system failure proba-
bility when component c; is damaged, and Py|s;—1
is the posterior probability when c; is functioning
(properly, the first equality of (2) holds only for
independent components, while the second is gen-
eral).

Another intuitive approach for measuring impor-
tance, directly related to the cost of maintenance
and system failure risk, is to compare the difference
of the expected cost before and after maintenance.
We define the system failure cost as Cr and replace-
ment cost for component j as Cg;. The value of
maintenance for component j is defined as:

(D

8j = E[8;(8)] = Pojs;—0 — Pojs -1

§j = PrCr — (Py|s,=1CF +Cr;) (3)

where Py is the prior system failure probability.
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Generally, the metrics can be formulated under
the Critical Node Detection Problem (Lalou et al.,
2018) for different applications, such as network
robustness, security analysis, etc. However, as far
as we know, few research has focused on the in-
spection process, i.e. how additional information
collected at component level can affect the results
of the importance measures. In this paper, we as-
sess the value of information (Vol), i.e. the differ-
ence of expected cost before and after inspection
(Malings and Pozzi, 2016) to assign inspection pri-
orities among components, and compare the result
with the extended Birnbaum measure of (2) and the
value of maintenance of (3).

3. SYSTEM AND COMPONENT LEVEL ACTIONS

FOR BINARY SYSTEMS
We assume that observations of the components

are perfect and that any subset of components can
be replaced. Given the topology of the system, the
prior (joint) failure probability of the components,
and the cost of system failure and component re-
placement, we are focusing on the following ques-
tion: what is the most valuable component to in-
spect?

The Vol for inspecting component ¢; can be for-
mulated as:

VoI(i) = Cy — ECy (4)

where the expected posterior cost is:
ECq,i = PiCop,5=0+ (1 — P)Co 5,1

P, 1s the failure probability for ¢;, and Cy, is the prior
cost.

We define two alternative metrics: global metric
for system level replacement and local metric for
component level, to investigate the Vol.

3.1.  Global metric
The global metric only allows two actions: do-

ing nothing or replacing all components. The un-
certainty on binary variable u, defining the system
state, can be quantified by a penalty function f,
that we can call classification cost function, and it
depends on the system failure probability P. Ex-
amples of penalty functions are the misclassifica-
tion rate, Shannon entropy and Gini index (Murphy,
2012).
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Figure 1: Misclassification and generalized misclassifi-
cation rate

Here we assume that f(P) can be any function
that satisfies the following properties: (i) f is a con-
cave function defined on [0, 1]; (ii) £(0) = f(1) =0.
This is because when the system is known to fail
(P =0) or work (P = 1), there is no misclassifica-
tion error.

Fig 1 shows two possible penalty functions. The
misclassification rate is the probability that the op-
timal guess of the system state u is incorrect, which
is f = min{P,1 — P}. We define the cost to re-
place all components as Cg = };Cg,. The general-
ized misclassification rate minimizes the expected
cost of the corresponding action, as f = min{(Cr —
Cr)P, (1 — P)Cg}.

3.1.1. Value of Information

The Vol is the expected reduction of penalty f.
The global metric calculates Vol for each compo-
nent and selects the one with the highest. From (4),
the Vol of the global metric is:

Volg(i) = f(Pr) —Efp; >0 )

where the expected misclassification cost after in-
spection is:

Efa),i = (1 _Pi)f(Pa)|s,-:1) +I)if(Pw|Si:0) (6)

Because the classification penalty f is con-
cave, the Vol is always non-negative according to
Jensen’s Inequality.

3.1.2.  Global metric on series systems
A series system works if and only if all com-
ponents function properly. For this system, the

Seoul, South Korea, May 26-30, 2019

global metric will always select the most vulner-
able component, i.e. the component with highest
failure probability. This conclusion also holds for
systems with interdependent components. This can
be proved as follows.

Because of the law of total expectation, the prior
and posterior probabilities can be related as:

Pr = (1 _Pi)Pa)|s,-:1 +PiPa)\s,-:0 (7)

In a series system, Py(,—o = 1. As f(Py|s,—0) = 0,
we derive:

VOIG(i) = f(Pn) - (1 _Pi)f<P(0\s,~:l)
- f(P(D‘Siil)
= f(Px) _Rﬂ.Twpi:l
where _p
Pojs—1 = 1= 5— €[0.1]

is a non-increasing function of P;, and prior relia-
bility

Rr=1-P>0
is independent of the component.

Ignoring the constant, because f(x)/(1 —x) is a
non-increasing function of x (the proof is included
in the appendix), the component with highest P; will
have the highest Vol. Notice that the proof does not
require the statistical independence between com-
ponents’ states.

3.1.3. Global metric on parallel systems

A parallel system will function if and only if at
least one component is intact. For such systems,
the global metric will focus on the most reliable
component instead, i.e. the component with low-
est failure probability. This conclusion is also true
for systems with interdependent components.

In a parallel system, Pg;,—; = 0 since any func-
tioning component can prevent the system failure.
Therefore f(Py|s,—1) = 0, and:

VOIG<i) = f(Prt) _Psizof(Pa)\si:O)

Again, (7) holds even when the failure probabil-
ity of each component is dependent. Hence Vol(i)
can be simplified as:

SfOi)
1 —yi

Vol (i) = f(Pr) — Rn
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where R
=1--C¢€l0,1
yi p €01
is a non-decreasing function of P,.
Ignoring the constant, because f(y)/(1 —y) is
a non-decreasing function of y, which is a non-
decreasing function of P;, the component with low-
est P; will have the highest Vol.

3.1.4. Computational complexity for general sys-
tems
The main complexity in applying the global met-
ric is to compute the posterior probabilities Pg,|5,—o
and Pg;,—1. This can be tackled by numerical ap-
proaches, including Monte Carlo simulations.

3.1.5. Comparison to Birnbaum reliability impor-
tance
For independent components, the Birnbaum reli-

ability importance can be measured by (2).
T .
1-P’
~ 1—Ry
For parallel systems, we have: 6; = 5
Obviously, we will select the most Vullnerable
component in series systems and the most reliable
component in parallel systems, which is consistent
with the global metric.
For general systems, such consistency may be vi-
olated. Consider a general system and its two com-
ponents ¢; and c;, such that:

For series systems, we have: 0; =

Pr =0.4375
P; = 0.875, Pyjs,—0 = 0.50, Py = 0
P; = 0.167, Pyjy,—o = 0.75, Py)s,—y = 0.375

Since Si =05> Sj = 0.375, the Birnbaum’s mea-
sure will prioritize component c;. Suppose:

f(P) = min{P,1 - P}
VolI for component ¢; and c; is:

Volg(i) =0
Volg(j) = f(Pr) —0.354 = 0.083

thus the global metric prioritizes c; for inspection.
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3.2.  Local metric

The previous global metric refers to a single ac-
tion at system level (e.g. replace all components).
The local metric refers to actions at component
level. The general decision process is to first se-
lect a component to inspect and then to select a set
of components to replace based on the inspection
outcome. The total cost is the sum of replacement
cost and the system risk after replacement.

We define r as the binary decision vector for the
components. If r; = 1, component i is replaced;
and r; = 0 otherwise. Cr o 5,—0 15 the expected cost
when we discover that component i has failed, and
Cr,0,s—=1 1s the cost when component i is working
accordingly. Cg = (Cg,,---,Cgy) is a replacement
cost vector for all components. The optimization
searches for the replacement decision vector r to
minimize the total cost. When the components are
independent, the expected total cost for ¢; can be
calculated as follows:

Cr,o.5=0 = mrin{Pw\sjzl,vrj:lCF + Cgr}
Cr@5=1 = Min{Pojs,—1,5,=1,vr=1CF + Crr} (8)
E[Cr.0,] = PCr.os—0+ (1 —P)Cro.5—1

The component with highest Vol can be found by:

argminE[Cr ¢ ]
i
3.2.1.  Value of Information
The Vol (4) according to the local metric is de-
fined as the difference of the expected total cost be-
fore and after inspection on component i:

Vol (i) = Cr.x — E[Cr.0.]

Here Cr z = Cp Py is the expected total cost before
inspection.

3.2.2.  Local metric on series systems
For series systems, if components’ states are in-
dependent, (8) reads:

Crws=0=min{(1— ] (1-P;))Cr+Cgr}
Jirj=0
[T (1-P))Cr+Cir}

CT7a>,s,~:1 = mrln{(l -
Jirj=0,j#i
9)
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For small probability of failures, the series sys-
tem under local metric can be simplified as a cumu-
lative system. A cumulative system has indepen-
dent and isolated components, i.e. no connection.
The system cost is the sum of the cost for each com-
ponent (Malings and Pozzi, 2016).

The system failure risk for a series system is:

RISK; = Cr[l — H(l —P)l)

1

For a cumulative system with component failure
cost Cp:

RISK. =Cr ) (1-r)P,

By neglecting higher order terms, the risk for se-
ries system can be written as:

RISK; = Cr[) (1—r;)P,+0(P)] ~ RISK,

1

The approximation reduces the computation
complexity for series systems when searching for
optimal replacement plans, since r; = 1 if and only
if Cg, < P,Cr. If we treat the series system as a cu-
mulative system, the objective function is linear.

Other approximations for the local metric are
provided in Section 4.

3.2.3.  Local metric for parallel systems

The local metric will select the most reliable
component in a parallel system, which is consistent
with the global metric.

If component ¢; is found to be working, no ac-
tion at system level is needed. Based on the optimal
action we take after we discover the component is
damaged, we can divide the components into two
groups: for component ¢, in the first group, replace
itif s, =0, and we get:

Cro. = PiminCr; < PiPojs—oCr = [1PiCr
J

For ¢ in the second group, do nothing if s, = 0,
and we get:

Cr.ox = PiPo.s,=0CF = HPjCF > Cr,o,i
J
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Thus the optimal component can only be in the first
group. Then we prove that P, > P, for all ¢; in the
second group and ¢; in the first group. Suppose we
find ¢, and ¢y such that Py > P, we have:

CT.,a),k’ = HPjCF > Py rntil’lCRj > Py m}nCRj
J

which means that for ¢y, replacing it cost less than
doing nothing, and it belongs to the first group.
However, we have assumed cp is in the second
group. Hence, the component with lowest expected
posterior cost must be in the first group:

argminCr ; = argmin P
i i

(10)

3.2.4. Computational complexity

As we can see from (8), even for a series sys-
tem, the computational difficulties are not only the
assessment of the posterior probability for differ-
ent combinations of replacement plans, but also the
optimization of the maintenance actions, which is
a non-linear integer programming with non-linear
objective function and linear constraints. Generally
the problem is NP-hard (Hemmecke et al., 2010).

4. LOCAL METRIC UNDER SPECIAL ASSUMP-
TIONS
For series systems, we have introduced one pos-
sible approximation in Section 3.2.2 related to cu-
mulative systems. For general systems, we restrict
our attention on cases where the following three as-
sumptions hold:

1. Optimism
We assume that the agent’s belief is that the

system is in good condition. The prior deci-
sion is to do nothing, which requires:

Pr+Cr = minE[Cog] (11)

where

E[C(D,Q] = Z Cr; +Pw\si=1,c,-€Q
i€Q

(12)

Also, if any observation decreases the system
failure probability, the agent will still do noth-
ing. For example, if the agent discovers that
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components in subset 7 are functioning and
there is no negative correlation among compo-
nents’ states, the agent will do nothing:

Pajy1aerCr = ,min_ ElCoor]  (13)
where
E[CMQ,T] = Z CRi +Pa)|s,:17c,-€QUT (14)

icQ

ii. Responsiveness

We assume that when the agent discovers a
component is damaged, the expected cost of
replacing the component is less than that of do-
ing nothing:

Pa)|s,:1CF + CRi < Pa)\sl:OCF7 Vi
iii. Coherence
We extend the original concept of "coherent"
systems (Xie, 1987). We assume that the sys-
tem failure probability cannot increase after
discovering that some components are func-
tioning. For any set Q:

P(D|S,‘:1,C,‘€Q < PS,TC

Based on the above three assumptions, the op-
timal actions under different inspection outcomes
can be derived explicitly:

1. If a component is functioning, the agent will
do nothing due to optimism assumption;

ii. If component i is discovered to be damaged,
the agent will only replace the component.

First, we prove that the agent will not replace
any other components. Compare the two cost:

CR,’ +Pa)|si=1CF
CRi + CRj +Pa)|si:1,Sj:1CF

Because of the "Coherence" assumption, re-
placing any other components is equivalent
as doing nothing and replacing ¢; when we
discover ¢; is working and the system fail-
ure probability reduces. From "Optimism"
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assumption we know the former is a better
choice.

Therefore, from the "Responsiveness" as-
sumption the optimal decision is to replace the
damaged component other than doing nothing.

Hence, the expected posterior cost after inspect-
ing ¢; is:

E[Cr.0.i| = Po|s;=1CF + Cr,P; (15)

4.1. Comparison with the replacement metric
The replacement metric compares the difference

of the cost before and after maintenance, as in (3).
Because the replacement metric does not consider
the inspection process, the results can be different
from the approximate local metric of (15) (though
they have similar closed forms).

Suppose the replacement cost is identical for ev-
ery component, and Cr/Cg, = c. Following (3),
minimizing &; is equivalent to minimizing Pylsi=1-
Instead, following (15), we minimize Py, 0t +F.
Our question is whether (16) holds.

argmin{Py|s,— } = argmin{Py,—;a+F} (16)
l l

Suppose we have k = argmin;{P; o|s,—1}, and
there exists a component #, such that

Pa)|sk:1a+Pk > Pa)\slzla"‘Pt

i.e. if we can find component ¢ that satisfies the
above inequality, the results from the replacement
metric and approximate local metric are different.
Such example can be easily found.

Consider a series system with two independent
components ¢i and ¢;. Assume that ¢« =2, P; = 0.8
and P, =0.6. Thus k =1 and r = 2, i.e. the replace-
ment metric selects component 1 while the approx-
imate local metric gives higher priority to compo-
nent 2.

However, consider a system which has high «
and the components have low failure probabilities,
which is true for many infrastructure systems. For
an independent series system, such counter exam-
ple cannot be found and the two metrics produce
the same result. In this example, previous inequal-
ity becomes:

1/(1-P) >«
which is impossible when o > 2 and P; < 0.5.
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Figure 2: Examples of a general system. Inside each
node, the first number is the node index, the second is
the prior failure probability. Node 1 is the source and
node 8 is the sink.

© o

5. EXAMPLES OF APPLICATION TO NETWORKS

In the following examples, we assume that the
components have identical replacing costs of $1K
(the unit for all the following costs) and indepen-
dent prior failure probabilities.

5.1. Inconsistency of prior action and optimal in-
spection

In Fig 2, we assume & = Cr/Cg, = 16000. The
prior decision is to replace cs, but the optimal in-
spection is ¢p. Table 1 shows the action and cost
under different inspections and outcomes. For ex-
ample, if we inspect c5 and discover it is intact, we
do nothing with a cost of 0.97; otherwise, we re-
place c¢s with a cost of 1.97. Hence, the expected
cost for inspecting cs is 1.01 (the cost unit is $1K).

It is also obvious that the inspection outcome can
change the prior replacing plans. For example, if
we discover component 3 is intact, we decide to re-
place component 6 rather than cs, which is the prior
optimal.

5.2.  Approximate local metric

When a = 4000, Fig 2 becomes a system that
satisfies the three assumptions in Section 4. Table 2
shows the optimal action under different inspection
outcomes and its cost.

The optimal decision is to inspect c¢5. The intu-
ition is that the system is a parallel system made of
series systems. We first focus on ¢, and c5 since
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Insp. Intact Damaged EC

2 5(1.00) 2,5(2.00) 1.0100
5 DN(0.9737) 5(1.9737) 1.0137
3 6(1.00) 3,6(2.00) 1.0200
6 3(1.00) 3,6(2.00) 1.0500
4 7(1.00) 4,7(2.00) 1.0300
7 4(1.00) 4,7(2.00) 1.0600

Table 1: Optimal repair plan and the cost for each
inspection scenario, the cost unit is $1K

Insp. Intact Damaged EC

2 DN(0.9737) 2(1.9737) 0.9837
5 DN(0.2434) 5(1.2434) 0.2834
3 DN(0.8749) 3(1.8749) 0.8949
6 DN(0.3500) 6(1.3500) 0.4000
4 DN(0.8214) 4(1.8214) 0.8514
7 DN(0.4107) 7(1.4107) 0.4707

Table 2: Optimal repair plan and the cost for each
inspection scenario: approximate local metric, the cost
unit is $1K

they form the most reliable link in the parallel sys-
tem; then we narrow the attention to c5 as it is the
most vulnerable in the series system of ¢, and cs.

In this case, (16) holds, i.e. if we have to choose
a component to replace without inspection, c¢s will
also be the optimal choice.

5.3.  General system example

Fig 3 shows a more complicated general net-
work. We assume that the failure probability for
each component is 0.05, except for components

Figure 3: General system example
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filled with diagonal stripes is 0.2, and o = 100.
The generalized global, local and approximate lo-
cal metric select either one of the components with
solid fill. When the prior decision is to do noth-
ing, the posterior probability is dominant compared
to component prior failure probability, as shown in
(16), which causes the consistency.

6. DISCUSSIONS AND FUTURE WORK

This paper presents an overview of assigning pri-
ority for component inspections in binary systems,
and develops global and local metrics based on
the possible actions (system or component level).
These metrics are based on the value of informa-
tion. We have provided simple rules for assigning
priorities among components in series and parallel
systems. We have developed approximations for lo-
cal metric in general networks. We have also com-
pared these metrics with previous criterion on net-
work examples. For parallel systems, global metric,
local metric, and Birnbaum reliability importance
provide the same results. For series systems, global
metric and Birnbaum reliability importance priori-
tize the same component. For general systems, we
have shown that the Birnbaum measure is not al-
ways consistent with the more general Vol metric.
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APPENDIX

Proof that f(x)/(1 — x) is non-decreasing
Suppose x; < xp. Let o0 = i:ﬁ € (0,1). Because

f(x) is concave, we know:

flr)=flaxi+(1—-a)-1)
>af(xa)+(1-oa)f(1)=
flx) o fla)

1—xp = 1—x

1—x

f(x1)

1—)61

=
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