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ABSTRACT: In this paper, a life-cycle cost (LCC) based Markovian framework for determining 
optimum post-earthquake restoration strategies of highway bridges is proposed. LCC analysis is 
performed for a highway transportation network as a whole considering seismic hazards on an infinite 
time horizon, and the optimum restoration strategy for each bridge is determined by a continuous-time 
Markov decision process (CTMDP) model. The indirect economic losses are calculated according to 
earthquake-induced traffic congestion which is estimated by the Frank-Wolfe algorithm. The state 
transition probabilities used in the CTMDP are derived from probabilistic seismic hazard analysis as 
well as fragility analysis. A 7-node, 12-link transportation network with three bridges is studied to 
demonstrate the application of the proposed model. 

 
A highway transportation network consists of 
various components, such as roads, bridges, and 
tunnels, which are spatially distributed but 
connected to each other to meet the needs of the 
community served. Severe damage to bridges 
after a major earthquake can impair traffic flow 
within the transportation network significantly.  
Apart from the direct costs required for repairing 
or rebuilding damaged bridges, significant 
indirect economic losses (e.g. delayed 
emergency response, increased travel time, 
business disruption, among others) will also be 
incurred, as have been observed in past 
destructive earthquakes, such as the San 
Fernando earthquake in 1971, the Loma Prieta 
earthquake in 1989, the Northridge earthquake in 
1994, and the Kobe earthquake in 1995 (Priestley 
et al. (1996)). The state or local transportation 
authority must decide to either restore the 
damaged bridges to their original intact states or 
to upgrade their seismic capacities. This is a rare 
opportunity for enhancing the resilience of the 

transportation infrastructure system through 
well-supported restoration and rebuilt decisions. 

The idea of upgrading infrastructure 
facilities in post-hazard recovery is encapsulated 
in the concept of Build Back Better (BBB), 
which was proposed during the multi-national 
recovery effort following the Indian Ocean 
Tsunami (Clinton (2006)). The principle of BBB 
provides a promising means for improving post-
hazard resilience level of communities. Most of 
the current work in this field, however, has 
focused on definition and evaluation of 
resilience, short-term post-hazard recovery 
modeling, and restoration prioritization. For 
instance, Cimellaro et al. (2010) provided a 
framework for the quantitative definition of 
resilience using an analytical function that may 
fit both technical and organizational issues; Lin 
and Wang (2017a, b) proposed a simulation-
based building portfolio recovery model to 
predict the functionality recovery time and 
recovery trajectory of both individual buildings 
and building portfolios following a natural 
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hazard event, and applied the model to a midsize 
community. The common objective of these 
approaches is to restore the network functionality 
to their pre-hazard condition quickly through 
efficient resource allocation in the recovery 
process. Such analyses have been confined to a 
one-event timeframe and do not investigate the 
appropriate (or better) performance levels for 
rebuilt activities in order to mitigate a 
community’s risk to future events. 

Considering a future time horizon of hazard 
exposure and the need to amortize possible 
added restoration costs to enhance the resilience 
of the highway network as a whole, it is essential 
to adopt a life-cycle perspective as the basis for 
designing BBB strategies. Life-cycle cost (LCC) 
analysis was initially applied to the optimum 
design of structures subject to hazards more than 
four decades ago by Liu and Neghabat (1972) 
and Rosenblueth (1976a, b), and was gradually 
improved by other scholars (Kanda and 
Ellingwood (1991); Ang and De Leon (1997); 
Wen and Kang (2001a, b); Frangopol and Maute 
(2003)). In recent years, some LCC-based 
optimization frameworks for finding optimum 
maintenance schedules of infrastructures have 
been proposed (Bocchini and Frangopol (2011); 
Dong et al. (2014); Tapia and Padgett (2016)). In 
these studies, it is tacitly assumed that a bridge is 
restored to their original states after an 
earthquake, which is, however, not always the 
case in practice. On one hand, essential 
interventions (e.g. replacement of damaged 
structural components) are not necessarily 
required before the strength of the bridge 
degrades to a certain performance threshold; On 
the other hand, upgrading the bridge beyond its 
original intact strength is sometimes preferable 
from the viewpoint of network resilience and 
future risk. 

In this paper, we propose an LCC-based 
Markovian framework to determine the optimum 
post-earthquake restoration strategies for 
damaged bridges in a highway transportation 
network. Since the occurrence of earthquakes is 
modeled as a Poisson process, the problem is 

formulated as a continuous-time Markov 
decision process (CTMDP). 

1. PROBABILISTIC SEISMIC HAZARD 
ANALYSIS 

The goal of probabilistic seismic hazard analysis 
(PSHA) is to quantify the exceedance 
probabilities of different ground motion 
intensities by taking into account the randomness 
in the seismic source (occurrence and intensity), 
propagation path, and site condition. The 
framework for PSHA was proposed by Cornell 
(1968), which has since evolved into modern 
PSHA. 

Different models have been proposed for 
earthquake occurrence and intensity (McGuire 
(2004)). The attenuation of seismic ground 
motion from the epicenter to the engineering site 
is described by a mathematical model that relates 
a ground motion intensity (e.g. peak ground 
acceleration, spectral acceleration) to several 
seismological parameters including earthquake 
magnitude, source-to-site distance, and local site 
condition (Campbell (2003); Bozorgnia et al. 
(2010)). For simplicity, we adopt the Poisson 
model for earthquake occurrence, an idealized 
point model for earthquake source, the truncated 
Gutenberg-Richter law for magnitude-frequency 
relationship (Gutenberg and Richter (1944)), and 
the Campbell empirical model (Campbell 
(2003)) for attenuation propagation. 

The seismic source model and attenuation 
relationship suffice to calculate the probabilistic 
distribution of the ground motion intensity at an 
individual facility. However, in the analysis of a 
spatially distributed infrastructural network, the 
correlation relationship between the ground 
motions must be considered. Assuming that the 
network consists of N facilities, the correlation 
between two ground motions resulting from the 
common hazard can be described by an 
exponential function (Wang and Takada (2005)): 

( )cexpij i j Lr = - -    (1) 
where i j-  denotes the distance between the ith 
site and the jth site; Lc denotes the correlation 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 3 

length, which is taken as the maximum distance 
between two sites in the network. In this case, for 
a given moment magnitude MW=m, the 
conditional joint PDF of the ground motion is 
described by the multivariate lognormal 
distribution: 
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The mean ( )ln iY
mµ  and standard deviation 

( )ln iY
ms  are given in Campbell (2003). The total 

joint PDF of the ground motions at facility sites 
is 
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where the conditional PDF of magnitude 
( )

WM
f m  can be derived from the Gutenberg-

Richter (G-R) Law. 

2. STATES AND ACTIONS 
The state of a bridge network is the Cartesian 
product of the states of the bridges it contains. 
The same holds for the action. The state of an 
individual bridge is defined by its seismic 
capacity, assumed to be related to its design 
response spectrum. The design response 
spectrum for buildings in the United States is 
anchored to the pseudo-spectral accelerations 
(PSAs) SS and S1 associated with the risk-
adjusted maximum considered earthquake 
(MCER) at periods of 0.2s and 1.0s, respectively 
(ASCE (2017)). The collapse probability of a 
code-compliant building should be 
approximately 10%. The AASHTO Guide 
Specifications for LRFD Seismic Bridge Design 

(Transportation Officials (2011)) does not have 
comparable requirements. Thus, to achieve a 
consistent measure of public safety for bridges 
and buildings, we assume that the collapse 
probability of an intact bridge under the MCER 
should also be approximately 10%. Obviously, 
the MCER that a damaged bridge can bear with 
the same collapse probability decreases as its 
aseismic capacity deteriorates. Thus, we define 
the aseismic capacity (CE) of a bridge as the 
MCER PSA at its fundamental period 
corresponding to a 10% collapse probability. 

Fragility analysis is used for estimating the 
collapse probabilities under different PSAs. A 
collapse fragility function takes the following 
form: 

                   ( ) ( )ln y
F y

a
b
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where ( )F × denotes the standard normal 
cumulative distribution function; y denotes the 
MCER PSA of ground motion; α and β denote 
the median and dispersion parameters, 
respectively. α is related to the aseismic capacity 
of the bridge, while β is set as a constant 0.6 
(MRl (2003)). Given the α value, the aseismic 
capacity of the bridge can be easily calculated 
from Eq. (5): 

( ){ }1exp 10%EC b a-= F × ×   (6) 
Conversely, the collapse fragility curve 
corresponding to a specified aseismic capacity 
CE is 
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Further, the continuous range of aseismic 
capacity can be discretized into a series of values. 
Without loss of generality, we set ten bridge 
states from State 1 to State 10, corresponding the 
aseismic capacities 1.2C0, 1.1C0, …, 0.4C0, and 

00.3C£ . Note that 0.8C0, C0, and 1.2C0 represent 
the aseismic capacities according to the low 
standard, the normal standard and the high 
standard, respectively. 
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Given the state of a bridge, the optional 
restoration actions are as follows: If it is above 
the prescribed threshold, which is taken as 0.5C0 
in this paper, the bridge can continue to work or 
be elevated to a better state. Otherwise, the 
bridge has to be shut down for major repairs or 
complete reconstruction. 

3. CONTINUOUS-TIME MARKOV 
DECISION PROCESSES 

Markov decision process (MDP) theory can date 
back to as early as the 1950s (Bellman (1957)). 
An MDP can be discrete-time or continuous-
time, depending on whether the decision epochs 
are uniform or random. CTMDP is briefly 
introduced in this section. 

For the infinite-horizon decision-making 
problem for post-earthquake restoration, the 
governing stochastic optimality equation is as 
follows: 
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where {}×E  denotes an expectation operator; π 
denotes a restoration policy; S and A denote a 
state and the action determined by the state and 
the policy, respectively; C is the cost incurred; λ 
denotes the discount rate; tn denotes the time 
point of the nth earthquake occurrence. 

The stochastic optimality equation can be 
decomposed by dynamic programming into a set 
of subproblems (Bradtke and Duff (1995)) 
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where ν denotes the mean occurrence rate of 
earthquakes; ( )( ),P s s A sp¢  denotes the state 

transition probability from s to s¢ , given that the 
restoration action ( )A sp  is implemented. 

Eq. (9) can be solved by policy iteration 
which has good convergence properties (Powell 

(2007)). Policy iteration randomly selects an 
initial policy and then performs the following 
two steps iteratively: (1) Given a policy, evaluate 
the corresponding values of the states; (2) Given 
the values, find a better policy. The iteration 
procedure is illustrated below. 

1. Initialization: 
Select a policy 0p  and set n=1. 

2. Policy evaluation: 
Given a policy 1np - , compute the values ( ){ }1

,
n

V s sp -

ÎS  by solving a set of linear 

equations as follows: 
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3. Policy improvement: 
Based on the values ( ){ }1

,
n

V s sp -

ÎS , find a better policy np  defined by 
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n n
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4. If 1n np p -= , set * np p=  and stop; otherwise, set n=n+1 and go back to step 1. 
Figure 1: Procedure of Policy Iteration
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4. STATE TRANSITION 
The amount of decrease in aseismic capacity is 
measured by damage, the conditional probability 
distribution of which can be derived by fragility 
analysis. In order to simplify the derivation, we 
assume that damage is independent of the state. 

We define structural collapse as a complete 
loss of aseismic capacity. Therefore, in 
combination with the definition of bridge states 
in Section 2, the collapse of a bridge during an 
earthquake means the damage caused is no less 
than its aseismic capacity. Therefore, according 
to Eq. (7), given a ground motion PSA y, the 
conditional cumulative distribution function of 
damage is 

 ( ) ( )( )1exp 10%1 ln
y

P D d y
d

b
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Further, we can obtain the conditional 
probability masses of discrete damage 
magnitudes through lumping, as follows: 
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The conditional state transition probabilities 
can be derived from the conditional probability 
masses of damage as follows: 
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For a network of N bridges, statistical 
independence of conditional state transition is 
further assumed. Thus, the network-level 
conditional state transition probabilities are 
products of the individual components: 

           ( ) ( )Net
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Finally, the total state transition probabilities 
( )NetTP ¢s s  are the convolution of ( )Net ,P ¢s s y  

and ( )Netf y , which can be dealt with by Monte 
Carlo simulation. 

5. CASE STUDY 

5.1. Description of a Hypothetical Highway 
Transportation Network 
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Figure 2: Schematic Diagram of Highway 
Transportation Network 
The proposed method is applied to a hypothetical 
7-node, 12-link highway transportation network, 
as illustrated in Figure 2. E denotes the epicenter. 
Z1 - Z7 and L1 - L12 are the nodes and two-way 
highways of the transportation network, 
respectively. The flow capacity of L3 and L10 is 
30,000 passenger car units per day (pcu/d), while 
for other links the number is 60,000 pcu/d. The 
design traffic speed of all the links is assumed to 
be 60 km/h. B1 and B2 are two bridges. The 
origin-destination (O-D) demands are given in 
the following O-D matrix (pcu/d) 
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And the coordinates of the nodes, bridges and the 
epicenter are given in Table 1. 
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Table 1: Two-dimensional Coordinates (km) 
 Z1 Z2 Z3 Z4 Z5 Z6 Z7 E B1 B2 

X -24 -12 -12 0 12 12 24 -24 7 -3 
Y 0 16 -16 0 16 -16 0 32 16 4 

The depth of the epicenter is assumed to be 
20 km. The lower and upper limits of earthquake 
magnitude are taken as M0=5.0 and Mu=8.5, and 
the mean return period of earthquakes in this 
range is taken as 20 yrs. The discount rate is 
assumed to be 4%. The b-value in the G-R model 
is assumed to be 0.8 (Petersen et al. (2008)). The 
attenuation coefficients in the Campbell 
empirical model corresponding to T=0.30s can 
refer to Campbell (2003). The site condition of 
the two bridges belongs to Class B. Since the 
Campbell empirical model is only valid for 
estimating ground motions on hard rocks, 
estimates of ground motion for a different site 
condition need to be modified using empirical or 
theoretical site factors. According to ASCE 
(2017), all the PSAs given by the Campbell 
empirical model are adjusted by an amplification 
factor of 1.25 (Table 11.4-1). The normal 
aseismic capacity is taken as C0=0.8g. 

The two bridges are assumed to be the same. 
The direct economic costs required for 
restoration or reconstruction are listed in Table 2. 
Note that although these data are, in fact, random, 
they are represented by their mean values for 
simplicity here. 
Table 2: Direct Economic Cost ( 103 $) 
 Post-decision state 

State 1 
(High 
standard) 

State 3 
(Normal 
standard) 

State 5 
(Low 
standard) 

State 1 0 - - 
State 2 200 - - 
State 3 400 0 - 
State 4 600 200 - 
State 5 800 400 0 
State 6 1,000 600 200 
State 7 1,200 800 400 
State 8 1,400 1,000 600 
State 9 1,600 1,200 800 
State 10 3,400 3,000 2,600 

Further, the durations required for major 
restoration are 45 days for State 8 and 60 days 

for State 9, and complete reconstruction of a 
bridge takes 210 days. The social influence 
caused by earthquake-induced traffic delay is 
converted into indirect economic losses, which is 
simply assumed to be proportional to the 
difference of total travel time (TTT) before and 
after an earthquake event. The empirical 
coefficient β is taken as 20 $/pcu/hr. TTT is the 
summation of the daily travel time of all the 
passengers in the transportation network. The 
average daily travel flows and times on the links 
are estimated by the Frank-Wolfe algorithm. 

5.2. Results and Discussion 
Based on these parameters, the optimum post-
earthquake restoration strategies for the two 
bridges in the highway transportation network is 
obtained by the proposed method, as shown in 
Figure 3. 

 
Figure 3: Optimum Post-earthquake Restoration 
Strategies 

For B1, if it is in State 1 or State 2, no 
restoration is required; otherwise, it should be 
restored according to the high design standard. 
The optimum performance requirement for B2 is 
lower than for B1. When B1 is in State 2, B2 
should be restored according to the high design 
standard; otherwise, it is sufficient to restore B2 
according to the normal standard. We can tell 
that B1 is more important than B2 in this 
transportation network, which is mainly 
determined by the topology of the network alone 
since the other two critical influencing factors 
(source-to-site distance and normal traffic 
volume) are set to be equal. In addition, the 
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restoration strategy of B2 depends not only on 
the state of its own but also on the state of B1. 

6. CONCLUSIONS 
A CTMDP-based framework for determining 
optimum post-earthquake restoration strategies 
of highway bridges is introduced in this paper 
and is applied to a simple highway transportation 
network with two bridges. Two primary 
conclusions are drawn from the results: (1) The 
importance ranking of bridges in a transportation 
network is determined by their locations, apart 
from the common influencing factors; (2) The 
optimum restoration strategy of a bridge not only 
depends on its own state, but may also depend on 
the states of other bridges. 
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