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ABSTRACT: Modeling parameter uncertainty can affect significantly the structural seismic reliability 
assessment. However, this type of uncertainty may not be described by a Poisson process as it lacks 
renewal properties with the occurrence of each earthquake event. Furthermore, considering uncertainties 
related to ground motion representation by employing as-recorded ground motions together with 
modeling parameter uncertainties can prove quite challenging. Robust fragility assessment, proposed 
previously by the authors, employs the structural response to recorded ground motion as data in order to 
update prescribed seismic fragility models. Robust fragility can be extremely efficient for considering 
also the structural modelling uncertainties by creating a dataset of one-to-one assignments of structural 
model realizations and as-recorded ground motions. This can reduce the computational effort by about 
two orders of magnitude. However, it should be kept in mind that the fragility concept is based on the 
underlying assumption of Poisson-type renewal. Using the concept of updated robust reliability, 
considering both uncertainty in ground motion representation based on as-recorded ground motion and 
non-ergodic uncertainties, the conservative error introduced by adopting Poissonian structural reliability 
assessment based on the robust fragility concept can be quantified.  

 
INTRODUCTION 
The concept of average fragility, first introduced 
for probabilistic risk assessment of the nuclear 
power plants (Kennedy and Ravindra 1983), 
considers the uncertainty in the estimation of 
median for a Lognormal fragility model. By 
treating the results of structural analysis for a suite 
of ground motion records as data and by 
employing the Bayesian inference, one can 
propagate the uncertainties in the parameters of a 
given fragility model. This technique which is 
dubbed as “robust fragility” (Jalayer et al. 2015, 
2017), inspired from the concept of updated 
robust reliability (Papadimitriou et al. 2001, Beck 

and Au 2002), can provide an extremely efficient 
way for considering the modeling uncertainties, 
record-to-record variability and the limited 
sample size (Miano et al. 2017).  

However, the concept of fragility itself is 
implicitly built upon a Poissonian stochastic 
description of the uncertain parameters, which 
does not seem to be suitable for describing the 
uncertainties which do not renew after occurrence 
of each earthquake event (non-ergodic 
uncertainties, Der Kiureghian 2005). Thus, it is 
important to quantify the error introduced by 
using the fragility curves for describing both the 
record-to-record variability and the non-ergodic 
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uncertainties. This paper strives to propagate the 
uncertainties in a prescribed fragility model 
parameters and the structural modelling parameter 
uncertainties for the more general case in which 
the fragility concept is applied only to the 
“Poissonian” or the ergodic subset of the 
uncertain parameters in the problem (e.g., those 
related to earthquake occurrence). The results are 
compared to the “equivalent” robust fragility used 
for describing both ergodic and non-ergodic 
uncertainties. This is done for a bi-dimensional 
MDOF frame of an existing older RC school 
building designed for gravity loading only (in its 
pre-retrofit state).  

1. METHODOLOGY 
The uncertainty propagation here is studied in the 
context of the PEER performance-based 
framework. 

1.1. The Intensity Measure (IM) and the 
Structural Damage Measure 

First-mode spectral acceleration denoted by Sa(T1) 
or simply Sa is adopted herein as the intensity 
measure. Recently, many researchers have 
focused on IMs that are more suitable with respect 
to Sa for predicting the structural performance 
such as the spectral acceleration averaged over a 
period range or vector-valued IMs (e.g., 
Ebrahimian et al. 2015). However, this paper does 
not focus on selecting the most suitable IM. 

The structural damage measure herein is 
taken to be the critical Demand to Capacity Ratio 
(DCR) (Jalayer et al. 2017) for a desired limit state 
(LS), denoted as DCRLS. It is defined as the 
demand to capacity ratio for the component or 
mechanism that brings the system closer to the 
onset of a limit state LS (herein, the Near-Collapse 
limit state). The formulation is based on the cut-
set concept (Ditlevsen and Madsen 1996), which 
is suitable for cases where various potential 
failure mechanisms (both ductile and brittle) can 
be defined a priori. DCRLS, which is always equal 
to unity at the onset of limit state, is defined as: 

max minmech l jlN N
LS l j

jl

D
DCR

C
  (1)

where Nmech is the number of considered potential 
failure mechanisms; Nl is the number of 
components taking part in the lth mechanism; Djl 
is the demand evaluated for the jth structural 
component of the lth mechanism; Cjl is the limit 
state capacity for the jth component of the lth 
mechanism. The limit state of Near-Collapse is 
considered according to Eurocode 8 (CEN 2005). 
DCRLS takes into account also brittle failure 
modes such as shear failure in the structural 
members (see Jalayer et al. 2015 and 2017 for a 
more detailed description of the defined cut-sets). 
Such formulation is particularly useful in cases 
where the non-linear shear behavior is not 
modeled explicitly at the element level (the case 
of this work, as it will be explained hereafter). 
When predicting non-linear response of 
structures, it is necessary to account for the 
possibility that some records may cause global 
“Collapse”; i.e., very high global displacement-
based demands or non-convergence problems in 
the analysis software (see for example Shome and 
Cornell 1999, Jalayer et al. 2017). Herein, the 
“collapse-cases” are identified as those cases in 
which either a numerical non-convergence occurs 
or the maximum inter-story drift exceeds 10% (to 
account for global dynamic instability). 

1.2. Propagating the ergodic uncertainties: 
Poissonian limit state excursion 

When the limit state excursion can be described 
by a homogenous Poisson distribution, the 
probability of at least one limit state excursion in 
time t can be calculated as: 

 
 
1;

1 exp 1

LS

LS

P DCR t

DCR t

 

     
 (2)

where (DCRLS>1) represents the mean annual 
frequency of exceeding limit state LS. 
(DCRLS>1) in its turn can be calculated as: 

 ( 1) 1| d
a

Sa

LS LS a SDCR P DCR S 


    (3)

where P(DCRLS>1|Sa) is the fragility function and 
Sa is the hazard expressed in terms of the mean 
annual frequency of exceeding a given Sa value. If 
record-to-record variability constitutes the only 
source of uncertainty (e.g., neglecting modelling 
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uncertainties), it can be assumed –neglecting 
time-dependent deterioration in structural 
properties– that the limit state excursion is 
described by a homogenous Poisson distribution. 
Hence, Eqs. (2) and (3) can be used to calculate 
the structural reliability. The uncertain parameters 
that lead to Poissonian limit state excursion are 
also referred to as ergodic uncertain parameters as 
per Der Kiureghian (2005) and Der Kiureghian 
and Ditlevsen (2009). 

1.3. Propagating the non-ergodic uncertainties 
Let the vector  represent all the uncertain 
parameters in a given seismic structural reliability 
problem. The subset of parameters that do not 
necessarily lead to Poissonian limit state 
excursion, are denoted as NE (non-ergodic 
parameters that do not renew with the occurrence 
of new events and may lead to dependence 
between different limit state excursion 
occurrences). Therefore, the probability of at least 
one limit state excursion in time t in this case can 
be written as: 

     

  

1; 1; | d

1 exp 1| ( ) d

NE

NE

LS LS NE NE NE

LS NE NE NE

P DCR t P DCR t f

DCR t f





  

      




θ

θ

θ θ θ

θ θ θ

(4)

where (DCRLS>1|θNE) represents the mean 
annual frequency of exceeding limit state LS 
given a specific realization of the vector of non-
ergodic parameters θNE; f(θNE) is the joint 
probability density function for vector θNE and 
ΩθNE is the domain of θNE. (DCRLS>1|θNE) can be 
calculated from Eq. (3) by substituting 
P(DCRLS>1|Sa) with P(DCRLS>1|Sa,θNE), where 
P(DCRLS>1|Sa,θNE) is the fragility function 
conditioned on a given realization of the vector of 
non-ergodic uncertain parameters.  

1.4. Data D 
The Data D, rather than representing observed 
data, herein represents the damage measure values 
calculated for several simulations Nsim of the 
vector of uncertain parameters ϴ. More 
specifically, data D, in the ergodic case (only 
record-to-record variability as the source of 
uncertainty) represents the pairs of (DCRLS, Sa) 

values for a set of N ground motion records 
(Nsim=N). In case the structural modelling 
uncertainties are also considered (the non-ergodic 
case), D represents the vector containing the pair 
of (DCRLS, Sa) values in two different 
configurations: (a) each record is applied to a 
different realization of the structural model (i.e., 
the one-to-one assignment); note that the number 
of simulations Nsim is equal to the number of 
records N (used for the case in which the Poisson 
formulas are applied for calculating risk from Eqs. 
2 and 3); (b) each set of N (DCRLS, Sa) pairs, 
denoted herein as D(θm), corresponds to a 
different realization of the structural model θm (a 

subset of non-ergodic uncertain parameters NE); 
i.e., Nsim is equal to the product of the number of 
records N and the number of structural model 
realizations NM. (used for the general case in 
which Eq (4) is employed for calculating the risk). 

1.5. Robust fragility  
Inspired from the concept of updated robust 
reliability (Beck and Au 2002), predictive 
fragilities (Sasani and Der Kiureghian 2001) and 
average fragilities (Kennedy and Ravindra 1983), 
the Robust Fragility is defined as the expected 
value for a prescribed fragility model considering 
the joint probability distribution for the (fragility) 
model parameters. The Robust Fragility can be 
expressed as: 

 
 

 |

1 ,

1 , ( )d

1 ,

LS a

LS a

LS a

P DCR S

P DCR S f

P DCR S



 

 

  


χ

χ D

D

χ χ D χ

χ

 
(5)

where χ is the vector of fragility model parameters 
(e.g., median and standard deviation of the 
logarithm for the Lognormal Distribution) and Ωχ 
is its domain; f(χ|D) is the joint probability 
distribution for fragility model parameters given 
the vector of data D (see Section 1.4). The term 
P(DCRLS>1|Sa,χ) is the fragility function given 

that the vector χ is known. χ|D(·) is the expected 

value over the vector of fragility parameters χ. It 
has been assumed that, once conditioned on 
fragility parameters χ, the fragility is independent 



13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 
Seoul, South Korea, May 26-30, 2019 

 4

of data D. The variance σ2
χ|D in fragility estimation 

can be calculated as: 
 
 

  

2
|

2

|

2

|

1 ,

1 ,

1 ,

LS a

LS a

LS a

P DCR S

P DCR S

P DCR S

    
 
 

   

χ D

χ D

χ D

χ

χ

χ





 

(6)

Note that calculating the variance in fragility 
estimation σ2

χ|D(∙), provides the possibility of 
estimating a confidence interval for the fragility 
considering the uncertainty in the estimation of 
the fragility model parameters. It should be 
mentioned that the fragility model parameters χ 
are non-ergodic (a subset of NE) and probability 
of limit state excursion –strictly speaking-- should 
be calculated according to Section 1.3. 

1.6. The updated Robust Reliability 
In the specific case when NE=[θm,χ], the Robust 
updated reliability in Eq. (4) can be written as: 

 
 

   

    

 , |
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1; | , | , ( ) ( )d d
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1 exp 1| ,

m

m

m
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LS m m m m m

LS m m m m m

LS m

P DCR t

P DCR t f f

DCR t f f

DCR t





 

 

 



     

        

 

 
χ θ

χ θ

θ χ D

D

θ χ χ θ D θ θ χ θ

θ χ χ θ D θ θ χ θ

θ χ
 

(7) 

where χ is the vector of fragility model parameters 
and Ωχ is its domain; f(χ|θm, D(θm)) is the joint 
probability distribution for fragility model 
parameters given the vector of data D (see Section 
1.4) and a given realization of θm. The term 
P(DCRLS>1;t|θm,χ) is the probability of at least 
one limit state excursion in time t given that the 
vectors χ and θm are known. The term 
(DCRLS>1|χ,θm) is the rate of limit state 
excursion given χ and θm; this term can be 
calculated as the integral of fragility 
P(DCRLS>1|Sa,χ,θm) multiplied by d|(Sa)| 
(similar to Eq. 3). Note that it assumed that once 
conditioned on fragility model parameters χ, the 
fragility and limit state excursion rate do not 
depend on data D. The variance σ2 can be 
calculated as: 

 
    

  

22
, |

2

, |

1; | 1 exp ( 1 | , )

1 exp ( 1 | , )

LS LS m

LS m

P DCR t DCR t

DCR t

 



          

      

m

m

Θ χ D

Θ χ D

D θ χ

θ χ





 
(8)

1.7. Cloud Analysis considering the collapse-
cases 

A modified version of the Cloud Analysis 
introduced in Jalayer et al. (2017) is employed 
(hereafter referred to as Modified Cloud Analysis, 
MCA). The MCA formally considers the 
structural response to collapse-inducing records, 
signaled herein by occurrence of very large DCR 
values, or non-convergence in the analyzing 
software. Let the Cloud data, that is the pairs of 
(DCRLS, Sa) for the suite of selected records, be 
partitioned into two parts: (a) NoC data which 
corresponds to that portion of the suite of records 
for which the structure does not experience 
“Collapse”, (b) C data corresponding to the 
“Collapse”-inducing records. The structural 
fragility for a prescribed LS can be expanded with 
respect to NoC and C sets using Total Probability 
Theorem (see also Shome and Cornell 1999): 
 

     
   

1 1 , 1 ( )

1 ,

LS a LS a a

LS a a

P DCR S P DCR S NoC P C S

P DCR S C P C S

    

  
 (9)

where P(DCRLS>1|Sa,NoC) is the conditional 
probability that DCRLS is greater than unity given 
that “Collapse” has not taken place (NoC) and can 
be described by a Lognormal distribution (a 
widely used assumption that has been usually 
verified for cases where the regression residuals 
represent unimodal behavior, e.g., Shome et al. 
1998): 

  | ,

| ,

ln
1 , LS a

LS a

DCR S NoC

LS a
DCR S NoC

P DCR S NoC



 
    

 

 (10)

where DCRLS|Sa,NoC=a·Sa
b and DCRLS|Sa,NoC are 

conditional median and standard deviation 
(dispersion) of the natural logarithm of DCRLS for 
NoC portion of the data (a and b are least squares 
logarithmic linear regression coefficients). 
P(DCRLS>1|Sa,NoC) is calculated in exactly the 
same manner as the standard Cloud Analysis. The 
term P(DCRLS>1|Sa,C) is the conditional 
probability of that DCRLS is greater than unity 
given “Collapse”. This term is equal to unity in 
the cases of “Collapse”; i.e., the limit state LS 
(herein, Near-Collapse) is certainly exceeded. 
Finally, the probability of collapse P(C|Sa) in Eq. 
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(9), which can be predicted by a logistic 
regression model (a.k.a., logit) as a function of Sa 
(see also Jalayer and Ebrahimian 2017), is 
expressed as follows: 

   0 1 ln( )

1

1 a
a S

P C S
e

   



 

(11)

where o and 1 are the parameters of the logistic 
regression.  

2. APPLICATION 
One of the frames in an existing school (Fig. 1) 
structure located in Avellino, Italy is considered 
for the application. 

2.1. The structural model 
The case-study structure consists of three stories 
with a semi-embedded story and lies on Eurocode 
8 (CEN 1998) soil type B. The building is 
constructed in the 1960s and is designed for 
gravity loads only. The structure is composed of 
bi-dimensional parallel frames, without 
transversal beams. The main central frame in the 
structure is used herein as structural model (Fig. 
1). The columns have rectangular sections with 
the following dimensions: first storey, 40×55cm2, 
second storey 40×45cm2, third storey, 40×40cm2, 
and forth storey, 30×40cm2. The beams, also with 
rectangular section, have the following 
dimensions: 40×70cm2 at first and second storey, 
and 30×50cm2 for the ultimate two floors. The 
finite element model of the frame is constructed, 
using OpenSees (http://opensees.berkeley.edu), 
assuming that the non-linear behaviour in the 
structure is concentrated in plastic hinges (see 
Jalayer et al. 2015 for more information about the 
structural model). The Beam-with-hinges element 
from the library of OpenSees is used to model the 
member-end plasticity. As the uniaxial material 
from OpenSees library, Pinching4 is used. The 
points on the backbone curve are defined as 
cracking, yielding, and the peak point, 
respectively. The coordinates of the peak point are 
the ultimate bending moment and the 75% of the 
ultimate curvature. The first two vibration periods 
for the considered 2D frame are 0.727 and 0.257 
seconds. 

2.2. The Data D 
The record-to-record variability is represented 
herein as the Data D. Therefore, the suite of 
selected ground motions is treated as data. The 
records need not necessarily be generated from a 
probability distribution. This aspect is particularly 
helpful when working with registered ground 
motion. 

 
Figure 1: The moment-resisting frame considered in 
the application  

2.2.1. The set of ground motion records 
N=90 as-recorded ground motion records are 
considered herein as a combination of the 20 
ground motions in Jalayer et al. (2015) and the 70 
ground motions in (Jalayer et al. 2017). It is to 
note that both records sets (that present no 
common records) are selected for Cloud Analysis 
and are intended to span a wide range of 
intensities. The set of 20 ground motions are 
recorded on stiff soil (400m/s<Vs30<700m/s) 
which is consistent with the Eurocode 8 (CEN 
1998) soil type B (the soil type for the site of the 
case study). The set of 70 records are selected 
from the Next Generation of Attenuation (NGA)-
West2 database and are recorded on (NEHRP) site 
classes C-D (180 m/s<Vs30<760 m/s). Fig. 2 
shows the pseudo-spectral acceleration spectra for 
the suite of records. 

2.3. The non-ergodic uncertain parameters 
Non-ergodic uncertainties considered in this work 
can be classified as model parameter 
uncertainties. They include the vector of fragility 
model parameters χ=[lna, b, DCRLS|Sa,NoC, o, 1] 
and the vector of structural modelling parameters 
m. The latter consists of two categories of 
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parameters namely: (1) those representing the 
uncertainties in the component capacities; (2) 
those representing the uncertainties in mechanical 
material properties and the structural construction 
details (herein, stirrup spacing).  

 
Figure 2: Pseudo acceleration spectra for the 90 as-
recorded ground motions 

2.3.1. The uncertainty in component capacities 
Component capacities are modelled herein as the 
product of predictive formulas Ci and unit-
median Log Normal variables Ci (with 
logarithmic standard deviation equal to Ci) 
accounting for the uncertainty in component 
capacity (as described in Jalayer et al. 2007 and 
2015). It is assumed that the deviations Ci from 
the predictive formulas are fully-correlated across 
the entire frame for each type (i.e., yield rotation, 
ultimate rotation and shear capacity). 

2.3.2. Uncertainties in the mechanical material 
properties and the construction details 

The parameters identifying the probability 
distributions for the material mechanical 
properties (concrete strength and steel yielding 
force) have been based on the values typical of the 
post-world war II construction in Italy (see Jalayer 
et al. 2015 for more details). It is assumed that the 
material properties are fully correlated across 
each floor and uncorrelated between different 
floors.  

Stirrup spacing in the beams and columns 
is assumed to be the only source of uncertainty 
related to construction details. Having a 
presumably shear-critical structure, the spacing of 
the shear rebar is expected to affect significantly 
the seismic structural behavior. It is assumed that 
the information about the shear rebar is limited to 

the knowledge of stirrup diameter (equal to 6 
mm), and the intervals in which the stirrup 
spacing is supposed to vary (the minimum values 
for stirrup spacing are equal to those specified in 
the original design documents and maximum 
values are loosely based the maximum admissible 
stirrup spacing according to the code). Hence, a 
uniform distribution is assumed in the interval 
formed by the minimum and the maximum values 
(Jalayer et al. 2015). It is assumed that the stirrup 
spacing values are fully correlated across beam 
and columns (considering no cross-correlation 
between the stirrup spacing in beams and 
columns). 

2.4. Robust reliability estimation using 
simulation 

The Robust fragility curve and its standard 
deviation in Eqs. (5-6) and the updated robust 
reliability in Eqs. (7-8) can be calculated 
efficiently using Monte Carlo Simulation (see 
also Jalayer et al. 2017). Herein, an advanced 
simulation scheme known as Markov Chain 
Monte Carlo (MCMC) simulation is employed in 
order to directly sample from the posterior joint 
PDFs f(χ|D) and f(χ|D(θm), θm) where χ=[lna, b, 
DCRLS|Sa,NoC, o, 1]. 

2.5. The results 
Fig. 3 demonstrates the data D corresponding to 
the Modified Cloud Analysis (MCA) when 
structural modelling parameters m are considered 
(following option (a) described in Section 1.4). 
This dataset consists of the pairs of (DCRLS, Sa) 
for the suite of Nsim=90 as-recorded ground 
motion records for the limit state of Near 
Collapse. Note that each record is applied to one 
of i=1:NM realizations of the structural model (the 
total number of structural analyses performed is 
Nsim=NM=90). The non-collapse (NoC) data pairs 
are plotted as blue circles and the “collapse” data 
pairs are plotted as red circles. The figure shows 
in dashed grey line the linear regression fitted in 
the logarithmic scale to the non-collapse portion 
of the data. The figure also shows the median 
prediction based on both linear and logistic 
regression considering the “collapse” portion of 
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data (solid grey line). The MCA analysis also 
provides the histogram for linear regression 
residuals for the non-collapse portion of data. The 
histogram seems to visually justify the 
assumption of Normal logarithmic regression 
residuals.  

 

 
Figure 3: Modified Cloud Analysis (MCA) for data 
pairs (DCRLS, Sa) considering record-to-record 
variability and structural modelling uncertainties 
 

Fig. 4 demonstrates the robust fragility 
curve P(DCRLS>1|Sa, D) (from Eq. 5, thick black 
solid line) and the robust fragility plus/minus one 
standard deviation (from Eq. 6) curve (the grey 
area) for the case were both structural modelling 
uncertainties m and record-to-record variability 
are considered (based on data D plotted in Fig. 3). 
The figure also demonstrates the robust fragility 
(blue solid line) and the robust fragility 
plus/minus one standard deviation curves (dashed 
blue lines) for the case where only record-to-
record variability is considered. The fragility 
curve considering the structural modeling 
uncertainties seems to follow the expected trends 
with respect to the fragility curve without the 
consideration of modeling parameter 
uncertainties; namely, reduced median and 
increased dispersion. 

 
Figure 4: The robust fragility and the robust fragility 
plus/minus one standard deviation  

 
Fig. 5 represents the probability of at least 

one limit state excursion, when modelling 
parameter uncertainties are considered (i.e., 
NE=[θm,χ]), calculated as updated reliability in 
Eq. (7) in thick soli grey line and its plus/minus 
one standard deviation interval (the grey area) as 
in Eq. (8). The black lines represent the limit state 
excursion according to Eq. (2) for the very 
efficient robust fragility curve (Eq. 5) plotted in 
solid lines and the limit state excursion 
probabilities corresponding to the robust fragility 
plus/minus one standard deviation (Eq. 6) --based 
on data on data D as in option (a) in Section 1.4 
(Nsim=N). 

The robust updated reliability and its 
plus/minus one standard deviation confidence 
interval, when only record-to-record variability 
and the fragility model parameter uncertainties 
are considered (Eqs. 7-8 considering only 
NE=[χ]), are plotted as blue dashed-dot and 
dashed lines, respectively. 

It can be observed that employing the very 
efficient (Nsim=N) robust fragility concept, 
provides reliability estimates within plus one 
standard deviation of the more rigorous and more 
computationally intensive robust updated 
reliability. However, it underestimates the 
uncertainties in reliability estimation (the 
confidence band is significantly “narrower” than 
the rigorous case). However, this aspect needs to 
be further investigated for larger NM values. 
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Figure 5: The updated robust reliability and its 
plus/minus one standard deviation interval 

3. CONCLUSIONS 
The paper discusses robust reliability assessment 
considering the uncertainties in the fragility 
model parameters, the structural modelling 
parameter uncertainties and record-to-record 
variability based on registered records. It is 
demonstrated that a very efficient method based 
on the robust fragility concept –implicitly 
assuming ergodic type of uncertainties-- leads to 
conservative estimates of limit state excursion 
probability within plus one standard deviation of 
the robust reliability calculated through explicit 
treatment of non-ergodic uncertainties.  
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