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ABSTRACT: The main purpose of structural health monitoring (SHM) is to provide accurate and real-

time information about the state of a structure, which can be used as objective inputs for decision-making 

regarding its management. However, SHM and decision-making occur at various stages. SHM assesses 

the state of a structure based on the acquisition and interpretation of data, which is usually provided by 

sensors. Conversely, decision-making helps us to identify the optimal management action to undertake. 

Generally, the research community recognizes people tend to use irrational methods for their 

interpretation of monitoring data, instead of rational algorithms such as Bayesian inference. People use 

heuristics as efficient rules to simplify complex problems and overcome the limits in rationality and 

computation of the human brain. Even though the results are typically satisfactory, they can differ from 

results derived from a rational process; psychologists call these differences cognitive biases. Many 

heuristic behaviors have been studied and demonstrated, with applications in various fields such as 

psychology, cognitive science, economics and finance, but not yet to SHM-based decision problems. 

SHM-based decision making is particularly susceptible to the representativeness heuristic, where 

simplified rules for updating probabilities can distort the decision maker’s perception of risk. In this 

work, we examine how this heuristic affects the interpretation of data, providing a deeper understanding 

of the differences between a heuristic method affected by cognitive biases and the classical approach. 

Our study is conducted both theoretically through comparison with formal Bayesian methods as well as 

empirically through the application to a real-life case study in the field of civil engineering. With this 

application we demonstrate the heuristic framework and we show how this cognitive bias affects 

decision-making by distorting the representation of information provided by SHM. 

1. INTRODUCTION 

Structural health monitoring (SHM) is commonly 

seen as a powerful tool that allows bridge 

managers to make decisions on maintenance, 

reconstruction and repair of their assets. The logic 

of making decision based on SHM is formally 

stated in Cappello et al. (Cappello, et al., 2016), 

under the assumption that the decision maker is an 

ideal rational agent, who judges using Bayes’ 

theorem (Bolstad, 2010), and decides consistently 

with Neumann-Morgenstern’s Expected Utility 

Theory (EUT) (Neumann & Morgenstern, 1944). 

However, we often observe real-life decision 

makers departing from this ideal model of 

rationality, judging and deciding using common 

sense and privileging fast and frugal heuristics to 

rational analytic thinking. Hence, if we wish to 
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describe mathematically and predict the choices 

of a real word bridge manager, we have to accept 

that their behavior may not be necessarily fully 

rational. Biased judgement and decision making 

have been widely reported and investigated 

starting the 1970s in the fields of cognitive 

sciences, social sciences and behavioral 

economics: key papers include the fundamental 

works by Kahneman and Tversky (Tversky & 

Kahneman, 1974) (Kahneman & Tversky, 1972) 

(Kahneman & Tversky, 1973); Kahneman’s 

famous textbook (Gilovich, et al., 2002) is an 

exhaustive reference for those approaching the 

topic for the first time. Apparent irrational 

behavior in SHM-based bridge management is 

reported in (Zonta, et al., 2014) and suggested in 

(Cappello, et al., 2016). Another typical example 

of cognitive bias frequently observed in bridge 

management, is the confusion between condition 

state and safety of a bridge, as reported for 

example in (Zonta, et al., 2007). We remind here 

for clarity that safety is about the capacity of a 

bridge to withstand the traffic loads and the other 

external actions without collapsing, while the 

condition state expresses the degree of 

deterioration of a bridge respect to its design state. 

The condition state is usually apprised through a 

combination of routing visual inspections, non-

destructive evaluation and SHM. It is expressed in 

the form of a condition index that depends on the 

particular management system. For example, 

bridge management systems based on AASHTO 

Commonly Recognized (CoRe) Standard Element 

System, such as the APT-BMS reported in (Zonta, 

et al., 2007), classify the state of an element on a 

scale from 1 to 5, where 1 means ‘as per design’ 

and 5 corresponds to the most severe observable 

deterioration state. On the contrary, the safety of 

a bridge is typically encoded in its probability of 

failure PF, reliability index β, or safety factor γ, 

evaluated through formal structural analysis. 

Condition state and safety are obviously 

correlated (logically, the load-carrying capacity of 

a deteriorated bridge is equal or lower than that of 

the same bridge in undamaged condition) but are 

not the same thing. For example, an old bridge can 

be unsafe, regardless its preservation state, simply 

because designed to an old code, which does not 

comply with the current load demand. As a 

counterexample, we may have the case of bridge, 

severely deteriorated, but still with enough 

capacity to safely withstand all the external loads, 

either because overdesigned or simply because its 

deterioration does not affect its load-carrying 

capacity. In principle, rational bridge 

management should target the safety of the bridge 

stock, and therefore prioritize retrofit of unsafe 

bridges, regardless they degree of deterioration. In 

practice we frequently observe that bridge 

managers tend to delay retrofit of substandard 

bridges which do not show sign of deterioration, 

while repair promptly deteriorated bridges as soon 

as the damage is observed, regardless their actual 

residual load-carrying capacity. The biased 

rationale behind this apparent behavior is that 

undamaged bridges ‘look’ safe, while damaged 

bridges ‘look’ unsafe, simply because we know 

that deterioration negatively affects safety. 

The ambition of this paper is to tackle 

mathematically this observed biased judgement, a 

condition that, we will show, is broadly described 

by Kahneman and Tversky’s representativeness 

heuristic (Kahneman & Tversky, 1972). We begin 

reminding, in Section 2, the formal framework of 

rational decision based on SHM information. We 

introduce the concept of heuristic in Section 3, 

focusing in detail on the representativeness. In 

Section 4 we use representativeness models to 

reproduce the biased evaluation of the safety of a 

bridge concrete slab, based on the condition state 

apprised through visual inspections. Concluding 

remarks are presented at the end of the paper. 

2. SHM-BASED DECISION MAKING 

RATIONAL FRAMEWORK 

We refer to the problem of optimal decision based 

on data provided by visual inspection or SHM. 

Generally speaking, this is a two-step process, as 

shown in Figure 1, which includes the judgement 

of the state h based on the observations y, and the 

decision of the optimal action aopt based on the 

uncertain knowledge of the state. 
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Figure 1: The rational process of an SHM-based decision problem. 

Assume that the safety state of the bridge is 

described by one of n mutually exclusive and 

exhaustive state hypothesis ℋ = 
{h1,h2,…,hj, … , hn}  (e.g.: h1  = ’safe’, h2  = 

’failure’, …). Further assume that observing the 

bridge, or element, either through visual 

inspection or SHM, ultimately consists of 

assessing its condition out of a number of m 

possible classes  C1,C2,…,Ci,…,Cm  which 

express its degree of damage or deterioration (e.g. 

C1 = ’not damaged’, C2 = ’moderately damaged’, 

C3 = ’severely damaged’). Therefore, the value of 

an observation y
i
, is one of the possible condition 

classes: y
i
∈{C1,C2,C3,C4,C5} . Multiple 

independent observations on the same bridge may 

occur because of repeated inspections by different 

inspectors, or redundant independent 

measurements by the monitoring system. We 

indicate with vector y the full set of observations 

y = { y
1
,y

2
,…,y

k
…,y

N
} . The likelihood of 

condition Ci  for a bridge/element in state hj  is 

encoded in the probabilistic distribution P(Ci|hj). 

If we restrict the problem to a single-observation 

case, the first step of the process consists of 

judging the state of a structure hj based on the i-th 

class observed Ci. In the presence of uncertainty, 

the state of the structure after observing the class 

Ci is probabilistically described by the posterior 

P(hj|Ci), and the inference process followed by a 

rational agent is mathematically developed in the 

Bayes’ rule (Bolstad, 2010): 

P(hj|Ci) = 
P(Ci|hj)P(hj)

P(Ci)
, (1) 

where P(hj|Ci) is the posterior knowledge of the 

structural state and represents the best estimation 

after the acquisition of SHM observation; it 

depends on the likelihood P(Ci|hj)  and on the 

prior knowledge P(hj), which is our estimate of hj 

before the acquisition of the observation. P(Ci) is 

simply a normalization constant, called evidence. 

The second step starts after the assessment of the 

posterior probability of the structure, and 

concerns choosing the ‘best’ action based on 

Expected utility theory (EUT) axioms. EUT, 

introduced by von Neumann and Morgenstern in 

1944 (Neumann & Morgenstern, 1944) and later 

developed in the form that we currently know by 

Raiffa and Schlaifer in 1961 (Raiffa & Schlaifer, 

1961), describes the analysis of decision making 

under risk and is considered as a normative model 

of rational choice (Parmigiani & Inoue, 2009). 

In conclusion, Bayes theorem and EUT 

provide a rational method to solve respectively the 

two steps of a classical SHM-based decision 

process, as shown in Figure 1. However, most 

people use heuristics (Tversky & Kahneman, 

1974) (Gilovich, et al., 2002) to determine their 

action which does not coincide with the rational 

decision. Therefore, we will investigate the 

impact of the representativeness heuristic on 

classical SHM-based decision problems. 

3. THE REPRESENTATIVENESS 

HEURISTIC 

The concept of heuristic has been subject to 

several definitions during the history and 

everyone who made use of the term seemed 

obliged to give his own interpretation of it. A very 
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important contribution is the work of Daniel 

Kahneman and Amos Tversky in the early 1970s, 

which revolutionized the academic research on 

human judgment (Tversky & Kahneman, 1974) 

(Kahneman & Tversky, 1973). They developed 

the so–called heuristics and biases approach, 

challenging the dominance of strictly rational 

models. The main innovation lays in the analysis 

of the descriptive adequacy of ideal models of 

judgment and in the proposal of a cognitive 

alternative that explained human error without 

invoking motivated irrationality. In this paper we 

want to focus on the representativeness, which 

seems the most affecting heuristic in judgments 

under uncertainty: events are ranked according to 

their representativeness and people consistently 

judge the more representative event to be the more 

likely, whether it is or not (Kahneman & Tversky, 

1972). Its definition was: “A person who follows 

this heuristic evaluates the probability of an 

uncertain event, or a sample, by the degree to 

which it is: (i) similar in essential properties to its 

parent population; and (ii) reflects the salient 

features of the process by which it is generated”. 

This means that an event A is judged more 

probable than an event B whenever A appears 

more representative than B, that is, the ordering of 

events by their subjective probabilities coincides 

with their ordering by representativeness. 

Therefore, to be representative an uncertain event 

should not only be similar to its parent population, 

but it should also reflect the properties of the 

uncertain process by which it is generated, i.e. it 

should reflect the idea of randomness. There are 

various models attempting to explain this 

heuristic from a mathematical perspective, see for 

example  (Edward, 1968),  (Grether, 1980), 

(Grether, 1992), (Gigerenzer, 1995), (Barberis, et 

al., 1998),  (Tenenbaum & Griffiths, 2011), 

(Bordalo, et al., 2016). While introducing the 

models, we want to point and analyze the two 

main aspects regarding the definition of 

representativeness and its application: what is the 

representativeness and how is defined among the 

different authors? To what extent and how does 
the representativeness affect the final judgment 

according to the Bayes’ rule? 

3.1. Definition of Representativeness 

All models described in the following propose 

representativeness as the ratio between the 

likelihood of the reference hypothesis hj  and its 

negation −hj, or a set of alternative hypotheses. 

This agreement on the representativeness 

formulation is in line with Tversky and Kahneman 

definition of representativeness (Tversky & 

Kahneman, 1983), they write that “an attribute is 

representative of a class if it is very diagnostic; 

that is, the relative frequency of this attribute is 

much higher in that class than in the relevant 

reference class.” Bordalo et al. state the 

representativeness that a class Ci observed from a 

set of data y, such that y
k
∈{C1,…,Ci,…,Cm} , 

provides for the reference hypothesis hj, as:  

R(Ci, hj) =
P(Ci|hj) 

P(Ci|−hj) 
. (2) 

Therefore, they assume that a class Ci  is 

representative for a hypothesis hj, relative to an 

alternative hypothesis −hj, if it scores high on the 

likelihood ratio described by Eq. (2). Edward and 

Gigerenzer agree on Eq. (2). Tenenbaum and 

Griffiths and Grether measure it with the same 

likelihood ratio, but adjusted with a logarithm 

scale to have a natural measure of how good a 

class Ci is in representing a hypothesis hj: 

R(Ci, hj) =  log
P(Ci|hj) 

P(Ci|−hj) 
. (3) 

3.2. Representativeness in judgments 

To evaluate how representativeness affects the 

final judgment of a hypothesis, we must 

understand how to calculate the posterior 

probability of the hypothesis hj, by considering a 

possible distortion in the likelihood term due to 

this heuristic. This issue is clearly defined by the 

above-mentioned authors. In general, they 

provide a specific definition about what 

representativeness is, but they do not explain how 

it affects the posterior probability, i.e. how the 

standard Bayes’ rule, which reflects the judgment 

of a rational thinker, must be adjusted to consider 
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representativeness instead. Just Bordalo et al. and 

Grether try to explain how to calculate this 

distorted posterior probability. Bordalo et al. 

define this distorted Bayesian likelihood due to 

representativeness: 

P(Ci|hj)
st

 = P(Ci|hj)∙(R(Ci,hj))
θ
, (4) 

where θ  is a subjective parameter that has to be 

calibrated with cognitive tests and could vary 

considerably among different people. 

Consequently, according to Bayes’ theorem, the 

posterior probability of hj becomes: 

P(hj|Ci) = 
P(Ci|hj)

st
 P(hj)

P(Ci)
. (5) 

A different approach is provided by Grether; he 

suggests a model that provides the final judgment 

of hj, by considering the representativeness: 

log O(hj|Ci) = 𝛼 + 𝛽1∙R(Ci, hj) + 𝛽2∙logO(hj) , (6) 

where log𝑂(ℎ𝑗|𝐶𝑖) is the posterior odds, R(Ci, hj) 

is the representativeness, logO(hj)  is the prior 

odds, while 𝛼 , 𝛽1  and 𝛽2  are subjective 

parameters that must be calibrated. Thus, the 

interpretation of Kahneman and Tversky’s 

representativeness heuristic suggested by the 

author is that individuals place greater weight on 

the likelihood ratio than on the prior odds. 

Consequently, the author proposed β
1
 > β

2
 ≥  0 

for the representativeness model, in contrast with 

α = 0, β
1
 = β

2
= >0 of the Bayes’ rule. 

4. RELIABILITY-BASED BRIDGE 

MANAGEMENT 

The Autonomous Province of Trento (APT) has 

the ownership and the management of 

approximately 936 bridges. Consequently, APT 

committed the realization of a Bridge 

Management System (BMS) to University of 

Trento in 2004. The aim was to develop a 

management tool which could enable a systematic 

determination of the present and future need for 

maintenance, rehabilitation and replacement of 

bridges using various scenarios, along with a 

prioritization system which would provide 

guidance in the effective utilization of available 

funds. To combine simplicity and efficiency, the 

bridge is broken down into Structural Units (SU), 

such as deck, piles, abutments, which include a set 

of Standard Elements (SE), specified in terms of 

quantity and Condition State (CS). CS are 

evaluated based on scheduled inspections 

according to the APT evaluation manual, which in 

turn partially refers to AASHTO (1997) 

Commonly Recognized (CoRe) Standard Element 

System (American Ass. State Highway and 

Transportation Off, 1997). Since 1995, the CoRe 

element standard has been adopted by FHWA and 

AASHTO to measure bridges condition on a 

single scale that reflects the most common 

processes of deterioration, to provide 

performance-based decision support that includes 

economic considerations. Five deterioration 

levels, called CS, have been defined, among 

which each bridge element is allocated based on 

the visual observations of an inspector. Based on 

the outcomes of a special inspection, the System 

Manager can stop the evaluation procedure, 

activate a safety assessment procedure or directly 

proceed with an intervention (Zonta, et al., 2007). 

The goal of this work is to estimate how big is the 

error committed by a biased manager in judging 

the bridge state when this is presented under low 

frequency CS, i.e. very representative of failure. 

4.1. Application: SP65 bridge on the Maso River 

The SP65 bridge on the Maso river (Figure 2), is 

a common type of bridge in the APT stock. The 

bridge was formally evaluated during the start-up 

phase, through the full application of the five-step 

assessment procedure (Zonta, et al., 2007). To 

analyze representativeness in visual inspections, 

we limit our analysis to a single SU, the slab. 

Table 1 reports slab state descriptions and the 

related possible actions for every CS, available 

from the website of the APT-BMS. We want to 

assess how much representativeness distorts 

manager’s judgment compared to the Bayesian 

approach and to investigate how much high CS, 

as CS5, are representative for two possible state of 

the slab: “SAFE=hS” and “FAIL=hF”. 
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Figure 2: SP65 bridge: (a) overview; (b) plan 

view, elevation and cross section of the deck. 
 

 

Table 1: SU SLAB - State description and action for 

each Condition State (CS). 
 Slab surface state description  Action 

1 
No delamination, spalling or 

water infiltration 

No intervention 

2 

Possible delamination, spalling 

or water infiltration. Possible 

segregation and consequently 

reinforcement exposure 

No intervention 

Repairing affected 

areas 

3 

Previously repaired or subjected 

to delamination or spalling. 

Segregation and consequently 

reinforcement exposure. 

Limited water infiltration 

No intervention 

Repairing affected 

areas 

Protection system  

4 

Extended parts previously 

repaired or subject to 

delamination or spalling; deep 

segregation phenomena with 

extended exposure of 

reinforcement. Extended water 

infiltration 

No intervention 

Repairing affected 

areas 

Protection system  

5 

Deep deterioration or 

anomalies. Reinforcement 

corrosion and cross-section loss 

require a deep analysis to verify 

the struct. safety of the element 

Interventions 

Repairing affected 

areas 

Protection system 

Slab replacement 

We know that, in average, among all the APT 

bridges stock, the percentage of possible failure is 

very low compared to the safe condition. 

Consequently, we chose a prior probability 

P(hF)=0.001 for the state hypothesis “FAIL” and 

P(hS)=0.999 for the state hypothesis “SAFE”. We 

want to answer, from a mathematical point of 

view, the frequent questions: “How much CS5 is 

representative of bridge failure?”, “How distorted 

could be the judgment of a biased inspector that 

observe the bridge classified in CS5”, “Is his 

judgment coherent with the Bayes’ rule?” We 

have first to define a proper likelihood distribution 

for each hypothesis P(CSi|hF)  and P(CSi|ℎ𝑆) . 

According to (Melchers, 1999), we employ II 

level probabilistic methods, which allows to 

calculate the reliability index β=-Φ(PhF
), where Φ 

is a cumulative normal distribution function. Two 

normal distributions are considered: the loads 

effect S and the starting resistance R0  of the 

bridge. We assume that the structure will not 

maintain its mechanical characteristics in the 

years, i.e. we have to consider the deterioration of 

construction material through a probabilistic 

degradation model 𝑅 = 𝑅0(1 − δ(CSi))  (Zonta, 

et al., 2007), where δ(CSi)  is a probabilistic 

capacity degradation function, depending only on 

the CSi of the SE that control the capacity of the 

SU at the limit state. Typically, low values of CS 

are not associated with any loss of capacity, and 

in this case δ𝑖  coincides with a Dirac delta 

function. Higher CSs are associated with 

distributions that reflect the uncertainty of the 

system in correlating the actual loss in capacity. 

CS4 is associated with a uniform distribution δ4 

of loss in capacity, for values of δ = [0,5%]. In the 

same way, the system associates CS5  with a 

triangular distribution, for δ =[5%,70%]. It is 

convenient to define a normalized capacity r =
R0  μ

S
⁄ , with mean value  μ

r
=  μ

𝑅0
 μ

S
⁄ , equal to 

the central safety factor γ
0

 associated with the 

limit state Z, and a normalized demand s = S  μ
S

⁄  

with mean value  μ
S

= 1 . The coefficients of 

variations of the normalized variables are equal to 

those of R and S.  The failure probability PhF
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associated with normalized limit state equation 

z = r-s  is PhF
(CS𝑖)= P(Z<0)=P(z<0). According 

to Eurocode 0, if we employ II level probabilistic 

methods, the target reliability index β for Class 

RC2 structural member in the ULS and with a 

reference time of 1 year is equal to β=4.75. Using 

V𝑅=0.05 and V𝑆=0.10, from the equation β = (𝛾0 -

1)/( √𝑉𝑅
2 ∙ 𝛾0

2 + 𝑉𝑆
2 ), we can obtain γ

0
= 1.96 . 

Then PhF
(CS𝑖) is calculated through Montecarlo 

by computing the cumulative-time failure 

probability of the normalized limit state z, by 

using the normalized Gaussian distribution for the 

demand  f
𝑆
(r)=norm(𝑠, 1, 𝑉𝑆)  and a normalized 

non-Gaussian distribution for the reduced 

capacity  f
r
(r,CSi ) = norm(γ

0
, 1, 𝑉𝑅) ∙ (1-δ(CSi) . 

For each Condition State CS𝑖 , we obtain: 

PhF
(CS𝑖) = [6.12 ∙ 10-5, 2.68 ∙ 10-6, 6.47 ∙ 10-6, 

6.61 ∙ 10-4, 2.04 ∙ 10-1]. Assuming a priori 

P(CSi)=[50, 20, 15,10, 5]% , we obtain 

PhF
=0.0103 and consequently PhS

=0.9897. Then, 

according to Bayes’ rule , for both hypothesis 

“S=SAFE” and “F=FAIL”, we can calculate the 

relative likelihood distributions for each 

Condition State CS𝑖 (Figure 3). To be consistent 

in our case study with these outcomes, we choose 

the following likelihood distributions: 
P(CSi|hF)=[0,0,0,2,98]%, P(CSi|hS)=[50,20,15,10,5]%. 

Once we know the likelihood distributions, we 

can calculate how much CS5 is representative of 

the hypothesis hF  through all the 

representativeness models of Section 3; we can 

also calculate the posterior odds of the inspector 

distorted by the representativeness heuristic. 

 
Figure 3: Likelihood distributions for each hi. 

Table 2 reports all the results: as we can observe, 

rational managers, in line with Bayes’ rule and 

after observing  CS5, would judge the possibility 

that the bridge could fail as very unlikely, i.e. 

P( hF | CS5 )= 1.92%  and P( hS | CS5 )= 98.08% . 

Contrary, representativeness models provide a 

significantly distorted probability. For instance, 

according to Bordalo et al., the failure probability 

of the bridge P(hF|CS5)=69.74%, is double the 

probability of a safe state, i.e. P(hS|CS5)=30.26%. 

According to Grether’s model, the posterior odds 

of the failure condition against the safe condition, 

given CS5, are clearly higher than one. CS5 is very 

representative for the failure condition and all 

models agree on that, R(CS5|hF)≫R(CS5|hS) . 

Consequently, when irrational managers judge the 

state of a bridge by observing a high CS, as CS5, 

they are biased by representativeness: in their 

posterior judgments they tend to neglect the prior 

probability of the failure condition and to weight 

too much the likelihood of the observations; so, 

their final judgments are distorted.

Table 2: Achieved results for each model. 

Model 

Likelihood P(C𝑖 |h𝑗) or 

Representativeness 

R(C𝑖 |h𝑗) 

Posterior (distorted) 

probability P(h𝑗|C𝑖) 

Posterior odds 

P(h𝑗|C𝑖)/P(h−𝑗 |C𝑖) 

 

Bayes 

 

P(CS5|hF) = 98 

P(CS|hS) = 5 

P(hF|CS5) = 1.92% 

P(hS|CS5) = 98.08%  

P(hF|CS5)  

P(hS|CS5) 
 = 0.20  

Grether 1980-1992 

(α=0; β1=0.8; β2=0.2) 

R(CS5 |hF) = 2.98 

R(CS5 |hS) = -2.98 
 / 

P(hF|CS5)  

P(hS|CS5) 
 = 2.73  

Bordalo et al. 

2016 (θ=0.8) 

R(CS5 |hF) = 19.6 

R(CS5 |hS) = 0.05 

P(hF|CS5) = 69.74% 

P(hS|CS5) = 30.26%  

P(hF|CS5)  

P(hS|CS5) 
 = 2.30  
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5. CONCLUSIONS 

Nowadays managers are faced with many 

competing priorities and must rely on 

computerized data processing when managing 

large infrastructure assets. This “management by 

data” is only possible when there is an 

understanding of what the data represents and a 

trust in the quality of the data. For collecting 

bridge data, it can be used the “Commonly 

Recognized (CoRe) Elements for Bridge 

Inspection”, which allow to classify bridges in a 

limited number of Condition States (CS). 

However, questions as: “How is a single CS 

representative of the real state of the bridge under 

exam?”; “Are decision makers biased by 

heuristics when they face highest CS?”; “How are 

posterior probabilities distorted by 

representativeness if people behave irrationally?”, 

have still no answer. We tried to answer by 

analyzing how representativeness, the main 

heuristic by Kahneman and Tversky, influences 

the interpretation of data, leading different results 

in comparison to those achieved with the classical 

rational method of Bayes’ rule. After defining and 

contextualizing representativeness from a 

mathematical point of view, we applied existing 

representativeness models from literature to the 

judgment of the state of a concrete bridge, based 

on visual inspections. Our results demonstrate the 

consequential distortions from rational decision 

making of this heuristic. 
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