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Abstract

The Tomato naked Mutant Affects Trichome

Development and Plant Growth

Won-Ki Hong
Department of International Agricultural Technology
The Graduate School of International Agricultural Technology

Seoul National University

Trichomes are hair-like structure derived from plant epidermis that acts as a
plant defense against biotic and abiotic stresses. Trichomes exist in the wide
range of plant species and are classified as either glandular or non-glandular
types. Glandular trichomes function in chemical defense against herbivore, and
non-glandular trichomes function as physiological barriers for biotic and
environmental stresses. In this study, we characterized a monogenic recessive
tomato mutant called naked. To analyze the morphology of trichomes on the
naked mutant in detail, we observed trichomes with a dissecting microscope
(DMS) and a scanning electron microscopy (SEM). Compared with wild-type
plants which have four types of glandular (type I, IV, VI, VII) and three types
of non-glandular (type 11, 111, V) trichomes on the all aerial tissue, the naked
mutant does not have all types of trichomes on young stems. In addition, the
naked mutant has shorter stems and fewer branches compared with wild-type
plants. Genetic mapping experiments positioned the Naked locus within a 1.9
cM interval on chromosome 9. The physical distance of the mapping region is



about 250 kb and this region contains 31 hypothetical genes. Based on
candidate gene approaches, RT-PCR and genomic DNA PCR, we identified
that 3’ region of Solyc09g075140 (monoacylglycerol lipase, MAGL) gene was
deleted in the naked mutant, suggesting that Solyc09g075140 is Naked gene.
Now we are doing complementation experiment with naked mutant by

expressing the wild-type SIMAGL gene from its native promoter.

Keyword: map-based cloning, monoacylglycerol lipase, naked, tomato,
trichome

Student Number: 2017-25003
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Introduction

The epidermis of a plant is varied and multifunctional tissue. The epidermal
cells directly interact with the surrounding environment and adapt to the
environment. To adapt effectively to the surroundings the epidermal cells
differentiate into various types of cells such as stomata guard cells, pavement

cells, and trichomes.

Trichomes differentiate from epidermal pavement cells, having uni- or
multicellular structures and functions as a physical and chemical deterrent to
herbivores. Trichomes have been implicated in several physiological functions
against various biotic and abiotic stress conditions. For example, trichomes
protect plants from infections caused by various insects and pathogens
(Shepherd ., 2005; Kang et al., 2016), prevent water loss in drought conditions
(Ju et al., 2012), and may provide protection from UV-B radiation (Yan et al.,
2012). Moreover, due to its relatively simple cell structure, trichomes serves et
alas an excellent model for studying gene regulatory networks that control the

fate of plant cells.

In addition, these structures are often distinguished as being non-glandular
(simple hairs) or glandular. Generally, non-glandular trichomes play a role in
physical defense and glandular trichomes oversee physical defense and
chemical defense (Werker et al., 2000). Glandular trichomes include various
structures and shapes, but they can be identified through their capacity to

synthesize, store, or secrete large quantities of specialized metabolites,
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including alkaloids, polysaccharides, terpenoids polyphenols, and organic
acids (Yan et al., 2016). These compounds can protect plants from pests and
pathogens and have high commercial value (Wagner et al., 1991). Thus, the
glandular trichomes are a suitable model for metabolic engineering and
breeding, as it is capable of producing chemicals of high commercial value
(Xiao et al., 2016). However, almost nothing is known about the molecular

mechanisms based on the development of the glandular trichome.

The model plant Arabidopsis has only one type of unicellular structure and
a non-glandular trichome composed of three branches. The trichome initiation
pathway in Arabidopsis has been well studied and over 40 other genes were
known to control the developmental processes (Pattanaik et al., 2014; Perazza

etal., 1999).

The GLABROUS 1 (GL1) gene encodes an R2R3 MY B family featuring two
MYB repeat (Oppenheimer et al., 1991) and essential for trichome initiation
and subsequent outgrowth (Marks and Feldmann et al., 1989).
TRANSPARENT TESTA GLABRA 1 (TTG1) gene plays a crucial role in
trichome formation in Arabidopsis (Koornneef et al., 1981), which encodes a
protein containing four conserved WD repeats (Walker et al., 1999). Genetic
studies show that GL1 and TTG1 regulate the same pathway in the trichome

initiation (Larkin et al., 1999).

Another two bHLH regulators, GLABRA 3 (GL3) and ENHANCER OF
GLABRA 3 (EGL3), functions in a redundant manner to specify trichome cell
fate in Arabidopsis (Bernhardt et al., 2003). The WD Repeats/bHLH/MYB

complexes consisting of these four genes triggers trichome formation in



Arabidopsis by enhancing the expression of three downstream genes, GLABRA
2 (GL2), ENHANCER OF GLABRA 2 (EGL2), and TRANSPARENT TESTA
GLABRA 2 (TTG2) (Ishida et al., 2007; Zhao et al., 2008; Qi et al., 2011).
Simultaneously, this complex promotes the expression of several single-repeat
R3 MYB genes, CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER OF
TRY AND CPC 1 (ETC1), ETC2, ETC3, TRICHOMELESS 1 (TCL1), and
TRICHOMELES 2 (TCL2), which functions as a negative regulator by
competing with GL1 for binding to the bHLH factors when they move to
adjacent cells (Chang et al., 2018).

In contrast to Arabidopsis, cultivated tomato (Solanum lycopersicum L.) and
its wild relatives have at least seven distinct types of trichomes that differ with
respect to size, cell number, and the presence of glandular secreting cells
(Simmons and Gurr et al., 2005). The Woolly (Wo) gene, encoding an HD-ZIP
IV transcription factor, mainly regulates type I trichome development through
heterodimer formation with the B-type cyclin SICycB2 in tomato (Yang et al.,
2011). Ectopic expression of Wo in Nicotiana tabacum (tobacco) and Solanum
tuberosum (potato) induces to increased trichome density, implying that
trichomes in the Solanaceae family may share a common regulatory pathway
(Yang et al., 2015). It has been pointed out that the initiation of multicellular
trichomes may be controlled by a different pathway to unicellular trichomes
(Payne et al., 1999). However, the actual molecular mechanism that forms the

basis of multicellular trichome formation in tomato has not yet been identified.

naked is a radiation mutation in tomato (Solanum lycopersicum), which is
responsible for plant growth and trichome development on young stems. In this

study, we analyzed the naked mutants absent trichomes on young stems. We
3



report the results of a map-based identification of the best candidate gene
which may be responsible for trichome development in tomato. We identified
a deletion in Solyc09g075140, which may cause the trichome absent on the
young stem. Such a truncation of Solyc09g075140 protein most probably to
regulate the trichome initiation pathway and results in the absent of trichome

in the naked mutant.



Materials and Methods

1. Plant materials and growth conditions

Tomato (Solanum lycopersicum) cv M82 (LA3475) was used as the wild-
type (WT) for all experiments. Seeds for WT and wild tomato species seeds S.
pimpinellifolium (LA1589) were obtained from C.M. Rick Tomato Genetics
Resource Center (University of California, Davis, CA, USA). Tomato seeds
were sown on half-strength Murashige and Skoog (MS) and Gamborg’s B5
medium (#M0231, Duchefa, Haarlem, Netherlands) containing 2 % sucrose,
0.05 % MES, and 0.75 % agar and placed in a growth room at 25 °C under a
16-h light/8-h dark cycle with the light intensity of 50 uE m?s™. After 6- to 7-
days, seedlings were transferred to Jiffy peat pots (Hummert International,
USA) and grown in a greenhouse under natural light. 3- to 4-week-old plants

were sampled for morphological analysis.

2. Morphology analysis

A dissecting microscope (DMS) CH-M205A (Leica, Germany) was used to
analyze tomato trichomes on leaves, young stems, old stems, and hypocotyls.
The images were analyzed with Leica Application Software (LAS v4.8) and
assembled with Photoshop Imaging Suite. Scanning electron microscopy
(SEM) TM3030plus (Hitachi High-technologies Corporation, Japan), and
equipped with DEBEN Coolstage (Deben, UK) was used to freeze and fix
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examine epidermal tissues of tomato. Images were captured using 15 kV to
minimize surface charging of the trichomes. The images were analyzed with
TM3030 plus application software (ver. 01-05-02) and assembled with
Photoshop Imaging Suite. All measurements were performed on wild-type
(WT) plants and naked mutants grew the same growth room at 25 °C under a

16-h light/8-h dark cycle with the light intensity of 50 uE m2s™,

3. Map-based cloning of Naked

Fine mapping of Naked was performed with F> population derived from a
cross between naked mutant and S. pimpinellifolium (LA1589) and was
predicted based on ITAG 3.2 gene models offered by the Sol Genomics

Network (https://solgenomics.net/jbrowse_solgenomics/). A population of 91

F2 plants was scored for does not have any trichome on the young stem
compared to WT. The recombination frequency was identified in the mapping
population by designed primer using putative Single nucleotide
polymorphisms (SNPs) containing contigs that showed no significant
homology to the naked mutant and LA1589. Recombination frequency in
tomato genome with recurrent crossover events was measured using allele-
specific digital PCR (Integrated Fluidic Circuit, Fluidigm, USA). And the
Cleaved Amplified Polymorphic Sequences (CAPS), insertion/deletion (InDel)
markers in Table 1, were used to narrow down the genomic region of 211 F
plants. Genomic DNA extraction was as described previously (Kang et al.,

2010).


https://solgenomics.net/jbrowse_solgenomics/

4. RT-PCR and genomic DNA PCR

Total RNA extracted from the young stems in about 2 cm length of right
below the apical bud of naked mutants and WT plants for cDNA synthesis with
Invitrogen™ TRIzol™ Reagent (#15596018, Thermo Fisher Scientific, USA)
according to manufacturer’s protocol. cDNA was synthesized with 2 ug of
total RNA using RevertAid Reverse Transcriptase (#£P0442, Thermo Fisher
Scientific, USA) and Oligo (dT) 18 Primer (#50131, Thermo Fisher Scientific,
USA) according to manufacturer’s protocol. The PCR reaction was performed
with Solg™ 2X Taq PCR Smart mix 2 (#SEF02, Solgent, Korea) in a 20 puL
using a T100™ Thermal Cycler (#186-1096, Bio-Rad, USA) with the
following cycling program: 2 min at 95 °C, 30 or 35 cycles of 20 s at 95 °C,
40sat60°C,30s-3minat72°C, and one cycle of 5minat 72 °C. Amplified
DNA products were separated on a 1 - 2% agarose gel. Primers used to amplify

each gene are listed in Table 2.

5. Total RNA extraction and gRT-PCR for expression pattern analysis

The individual core of stem right below the shoot apical meristem tissues of
naked mutants and WT plants samples were collected by snap-freezing in
liquid nitrogen. Total RNA extraction and cDNA synthesis were performed as
mentioned above. Quantitative Real-time PCR analysis was performed using
2X Real-Time PCR Smart mix (25 mM MgCl.) and 20X EvaGreen™
(#SRHT71, Solgent, Korea) with an AriaMX Real-time PCR system (#G8830A,
Agilent Technologies, USA). ACT (Solyc03g078400) was used as an internal



standard. Data are shown as the mean + standard deviation (SD) of three

biological and three technical replicates.

6. Vector construction

The coding sequence of Solyc09g075140 was amplified from WT plant
cDNA using PrimeSTAR® GXL DNA Polymerase (#R050A, TaKaRa, Japan)
with 5 - GTCTCTAGAATGGGTGTTGAATATCATGAGGTATT - 3’ and
5" — CGCCTCGAGCTACATAGATGAATGATGATGCATTC — 3’ primer
set. pBI-121 binary vector, which has a 35S promoter, and PCR product were
digested with Xbal and Xhol restriction enzyme and purified using a
LaboPass™ Gel and PCR Clean-up Kit (#CMA0112, Cosmogenetech, Korea).
Purified PCR products were inserted into the pBI-121 vector. The promoter of
Solyc09g075140 was amplified from WT plant gDNA using PrimeSTAR® GXL
DNA  Polymerase  (#R050A, TaKaRa, Japan) with 5 -
GCGCCTGCAGGAAAGGGAGAAGCGTGTATGAAGT - 3" and 5 -
GCATCTAGAATATGATGAGGAGAAGTGTATTCG - 3’ primer set. pBI-
121-Solyc09g075140 and PCR product were digested with Sbfl and Xbal
restriction enzyme and purified. Purified PCR products were inserted into the
pBI1-121-Solyc099075140. To generate Solyc099075140 knockout vector,
single-guide RNA (sgRNA) candidates for Solyc099075140 were designed by
using CRISPR RGEN Tools (http://rgenome.ibs.re.kr). pHAtC binary vector

was received from Dr. Sang-Gyu Kim (Institute for Basic Science, Korea) and
pHALtC-Solyc09g075140-sgRNA vectors were constructed as described

previously (Kim et al., 2016). The sequence information of SgRNAs are listed


http://rgenome.ibs.re.kr/

in Table 2. The final constructs were introduced into Agrobacterium

tumefaciens strain LBA4404 and used to transform WT cotyledon explants.

7. Phylogenetic analysis and conserved sequence analysis

The homologs of Solyc09g075140 protein in tomato and Arabidopsis were
obtained from BLAST searches using the non-redundant protein sequences
database at the National Center for Biotechnology Information

(https://blast.ncbi.nlm.nih.gov). Phylogenetic tree of Solyc09g075140 made in

MEGA?7 software using Neighbor-Joining method based on an amino acid
sequence in tomato and Arabidopsis. The reliability of the tree was tested by bootstrap
resampling (1,000 replications). The amino acid sequences of Solyc099075140 protein
homologs are aligned by using the Multiple Sequence Alignment tool

(https://www.ebi.ac.uk/Tools/msa/clustalo/).

8. RNA extraction, library preparation, and sequencing

Total RNA was extracted from the young stems in about 2 cm length of right
below the apical bud of naked mutants and WT plants using the RNA Isolation
Kit (Qiagen, Germany), according to the manufacturer's instructions. To check
the RNA quality, all the RNA samples were examined for concentration and
purity using an Agilent Bioanalyzer 2100 (Agilent Technologies, USA). RNA-
Seq. paired end libraries were prepared using the Illumina TruSeq RNA
Sample Preparation Kit v2 (#RS-122-2001, Illumina, USA). And the library

was quantified using the KAPA library quantification kit (#KK4854, Kapa
9
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Biosystems, USA) following the manufacturer’s instructions. Each library was
loaded on the HiSeq™ 2000 System (#SY-401-1001, Hlumina, USA), and we
performed for high-throughput sequencing to ensure that each sample met the

desired average sequencing depth.

9. Reads mapping to the reference genome

To collect high-quality trimmed data, we filtered the sequencing data by
phred score (DynamicTrim, Q >20) and minimum length (LengthSort, short
read length > 25 bp) using the SolexaQA software. The paired-end clean reads
were aligned to the reference genome using TopHat v2.1.1. The number of
mapped reads for each mRNA was counted and then normalized using the
DESeq library in R package (Anders et al., 2010). The filtered reads were
mapped to 35,768 reference transcripts from Solanum lycopersicum (cv Heinz

1706) using the SGN SL3.2 gene models.

10. Differential expression genes (DEGSs) analysis

Differentially expressed genes (DEGSs) analysis were performed using the
DESeq library in R package. DESeq library provides statistical routines for
determining DEGs using a model based on a binomial test. Genes with an
adjusted p-value determined to be < 0.01 (false discovery rate, FDR < 0.01)
using DESeq library and that had a fold change value >2 (|Log> fold change| >
1) between wild-type and naked mutants were considered to be differentially

expressed.
10



11. Gene Ontology (GO) and KEGG enrichment analysis

Gene Ontology (GO) term annotation including all three GO categories
(biological process, cellular component, and molecular function) of a subset of
DEGs (p < 0.05) was conducted using the Blast2GO with default parameters.
In addition, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database (http://www.genome.jp/kegg/) to identify the biological mechanisms

and metabolic pathways associated with the DEGs corresponding their enzyme

commission numbers.

11
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Results

1. naked mutant affect plant growth and trichome development on stems

The overall plant growth of naked mutant was smaller than that of its wild-
type parent (cv M82, WT). For example, the length of main stem of naked
mutant was extremely significantly reduced to 38% of that of WT plants in the
3-week-old plants (unpaired t-test: **** p < 0.0001, Fig. 1A and 1B). Branch
number was also extremely significantly reduced to 30% in naked mutant
compared to WT plants (unpaired t-test: **** p < 0.0001, Fig. 1C and 1D). In
addition, fruit morphology was different. The naked mutant had smaller fruits

with less gloss on the surface compared with WT plants (Fig. 1E).

The most noticeable phenotype of naked mutant was trichome development.
The dissecting microscope (DMS) was used to compare the morphology of
trichomes on the leaves, stems, and hypocotyls of the naked mutant to WT
plants. Compared to WT in which type I trichomes were aligned perpendicular
to the epidermal surface, naked mutant had normal type | trichomes on leaves
and hypocotyls but no type | trichomes on young stems or smaller type I
trichomes on old stems (Fig. 2) The identity of other types of trichomes as well
as type | trichomes was confirmed low-temperature scanning electron
microscopy (Cryo-SEM). This analysis showed that the naked mutant has all
types of trichomes including type | on leaves, old stems, and hypocotyls
although the length of type I trichomes on old stems and hypocotyls of naked

mutant is smaller than WT plants (Fig. 3). However, the effect of the naked

12



mutant on trichome morphology in young stems was not specific to type |
trichomes but rather extended to other types of trichomes as well. The young
stems of naked mutant did not have all types of trichomes (Fig. 3). Also, the
length of type | trichome, an additional defect related to trichome, was
observed in the naked mutant (Fig. 4). The length of WT and naked type |
trichomes on the leaves was 10.1 £ 1.4 mm and 7.0 £ 2.1 mm, respectively
(mean = SD; n = 35 type | trichomes on each of three leaflets; unpaired t-test:
**** p <0.0001). In the WT of young stems, the type | trichomes were 35.4 +
4.1 mm, while the young stems of naked were impossible to measure because
all trichome was absent (mean + SD; n = 35 type | trichomes of three WT stems;
unpaired t-test: **** p <0.0001). The length of type I trichomes on naked old
stems (16.1 + 3.4 mm) was also short in comparison with the WT (27.8 + 3.4
mm; n = 35 type I trichomes on each of three stems; unpaired t-test: **** p <
0.0001), as was the length of type I trichomes on naked hypocotyls (34.9 £ 4.6
mm and 19.6 + 3.2 mm; n = 35 type | trichomes on each of three hypocotyls;

unpaired t-test: **** p < 0.0001).

2. Genetic mapping of Naked

F1 plants derived from a cross between naked and its wild-type parent
showed normal trichome phenotypes, indicating that the mutation is recessive.
An F2 population obtained by selfing the F1 plants was scored at the seedling
stage (3-week-old plants) for the trichome phenotype (no trichome on young
stems). Among 80 F. plants, 18 plants exhibited no trichomes, whereas the

remaining F. plants appeared normal trichomes on stems. This ratio (3.4:1) is

13



in good agreement with that predicted for a single recessive mutation (y* =
0.267; P = 0.606). To identify the Naked gene, we conducted the map-based
cloning (Fig. 5). We used a 211 F, population derived from a cross between
naked mutant and S. pimpinellifolium (LA1589) to locate the map position of
Naked to ~250 kb region flanked by markers Solyc09g075010 and
Solyc09g075360 on chromosome 9 (Fig. 5). The ~250 kb region is predicted
to contain 31 hypothetical genes (ITAG 3.2 gene models;

https://solgenomics.net/jbrowse_solgenomics/) (Fig. 5, Table 2).

3. Naked likely encodes the tomato homolog of monoacylglycerol lipase

Among the hypothetical genes, 13 genes related to the development of
trichomes or epidermal cells in the previous studies were selected and
conducted RT-PCR to predict Naked candidate genes (Fig. 6). RT-PCR results
showed that the expression level of Solyc09g075130, Solyc099075140,
Solyc09g075170, and Solyc099075260 genes were less in naked stems
compared to WT stems (Fig. 6). We conducted RNA-Seq. using RNA derived
from WT and naked stems to study which genes are regulated by Naked gene
and to predict Naked gene. Among the 31 hypothetical genes, four genes were
differentially expressed between WT and naked plants and two genes
(Solyc09g075140 and Solyc09g075260) were down-regulated in naked
compared to WT plants (Table 3). Sequencing of fragments amplified from
genomic DNA PCR of Solyc09g075260 containing ~3 kb promoter and whole
structural region from WT and naked plants did not reveal nucleotide

polymorphisms at this locus (Fig. 7). RT-PCR of Solyc09g075140 gene
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showed that full-length and 3-termins region were not amplified in naked
mutant (Fig. 8A and 8B). Genomic DNA PCR of this gene also showed that
full-length and 3-termins region were not amplified in naked mutant (Fig. 8C).
Further genomic PCR with a primer set (F and R) covering 3’ structural gene
and 3’ intergenic region showed that naked mutant produced a smaller
fragment compared to WT plants (Fig. 8D). The sequencing of these fragments
confirmed that ~2.1 kb including translation termination sequence is deleted in
naked mutant (Fig. 9). This deletion generates a premature stop codon that
truncates the C-terminal 224 amino acids of the protein (Fig. 10), suggesting

that Solyc09g075140 is Naked gene.

4. Expression pattern of Solyc09g075140

To analyze the tissue-specific expression pattern of Solyc09g075140 gene,
we measured mRNA levels of leaves, floral buds, roots, epidermal stems, and
peeled stems in wild-type (cv Ailsa craig) plants by gRT-PCR analysis (Fig.
11). The Solyc09g075140 mRNA was constitutively expressed in all analyzed
tissues, with higher levels detected in leaves and floral buds, and the lowest

expression in roots.

5. Phylogenetic and conserved sequence analysis

The homologs of Solyc09g075140 gene in Arabidopsis and tomato are used
to construct the phylogenetic tree (Fig. 12). Solyc09g075140 and 8 tomato

genes are annotated as o/f-hydrolases superfamily protein, Arabidopsis 10
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genes are annotated as monoacylglycerol lipase (MAGL). MAGL, a member
of the serine hydrolase family, shares fold of the o/p-hydrolase which
consisting of a central B-sheet surrounded by a variable number of a-helices
(Ollis et al., 2009). In Arabidopsis, MAGL8 known to associated with the
surface of oil bodies in germinating seeds and leaves accumulating oil bodies
(Kim et al., 2016). While the function of tomato genes are not studied yet.
Alignment of the amino acid sequences from the Arabidopsis MAGL genes
and mouse MAGL gene showed that o/B-hydrolase domain and catalytic triad
(Ser, Asp, and His residues) corresponding to the active site of MAGL was
conserved in Solyc099075140 (Karlsson et al., 1997) (Fig. 13). Also, o/p-
hydrolase is related to the cuticle layer formation of the epidermis (Kurdyukov
et al., 2006). The cuticle layer consists of cutin, which biosynthesis genes
affect the development of trichomes in Arabidopsis (Kurdyukov et al., 2006)
and Artemisia annua (Shi et al., 2017). So, we predicted the Solyc09g075140
protein is may function in cuticle synthesis. Furthermore, cutin synthase
homologs in the cutin synthesis pathway of Arabidopsis were down-regulated
in naked (Fig. 14, Table 4). This result suggests that naked has no trichome
due to an abnormal cuticle layer of the epidermis. These findings support the
inference that Solyc09g075140 is the gene responsible for naked phenotypes

and will confirm through a plant transformation (Fig. 15).

6. Identification of DEGs and functional classification

RNA-Seq. data were used for identification of DEGs in young stem tissue

of WT and naked mutants. DEGs were identified using the following filters:
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adjusted p-value < 0.01, and |Log> fold change| > 1. From the 35,768 genes,
which mapped by the RNA-Seq. data (Table 5), 797 DEGs were identified (Fig.
16).

To overview functions of DEGs, the 2,285 annotated DEGs were assigned
to at least one Gene Ontology (GO) category that belonged to three major terms:
cellular component, molecular function, and biological process. GO term
enrichment analysis results varied from GO classification and expression
change of DEGs. As to biological process, the up-regulated DEGs in naked
significantly enriched in biological process, response to stimulus and
oxidation-reduction process, and the down-regulated DEGs in naked
significantly enriched in oxidoreductase activity, carbohydrate metabolic
process, lipid metabolic process, and oxoacid metabolic process. For cellular
component, the up-regulated DEGs in naked were no enriched in this category,
and the down-regulated DEGs in naked significantly enriched in cell wall,
external encapsulating structure, and cell periphery. About molecular function,
the up-regulated DEGs in naked significantly enriched in catalytic activity and
oxidoreductase activity, and the down-regulated DEGs in naked significantly
enriched in catalytic activity, oxidoreductase activity, cofactor binding, iron
ion binding, oxidoreductase activity, acting on paired donors, with
incorporation or reduction of molecular oxygen, heme binding, and
tetrapyrrole binding. More detailed GO enrichment analysis results are shown

in Figs. 17 and 18.

Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways of down-regulated genes in naked were mainly involved in

metabolism and included biosynthesis of other secondary metabolites (163
17



genes), lipid metabolism (31 genes), metabolism of terpenoids and polyketides

(40 genes) (Fig. 19).
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Figure 1. Phenotypic appearance of wild-type (WT) and naked plants. (A)
Three-week-old WT and naked plants. Scale bar represent 2 cm. (B) Stem
length of three-week-old WT and naked plants. Each mean represents data
from 36 replicates. Asterisks denote extremely significant differences between
WT and naked plants (unpaired t-test: **** p < 0.0001). (C) Detached
branches from three-week-old WT and naked plants. (D) Branch number of
three-week-old WT and naked plants. Each mean represents data from 36
replicates. Asterisks denote extremely significant differences between WT and
naked plants (unpaired t-test: **** p < 0.0001). (E) Ripened fruit of WT and

naked plants.
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Figure 2. Light micrographs of trichomes on the leaf, young stem, old stem,
and hypocotyl of wild-type (WT) and naked plants. Photographs show the
adaxial leaf surface (1% row), young stem (2" row), old stem (3™ row), and
hypocotyl (4" row) of each genotype. All photos were taken from 3-week-old

plants. The arrows indicate type | trichomes. All scale bars represent 2 mm.
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Figure 3. SEM micrographs of trichomes on the leaf, young stem, old stem,
and hypocotyl of wild-type (WT) and naked plants. Photographs show the
adaxial leaf surface (1% row), young stem (2" row), old stem (3™ row), and
hypocotyl (4™ row) of each genotype. All photos were taken from 3-week-old
plants. Type I and VI trichomes are indicated by arrows. Scale bars represent
500 pum in the leaves, and 2 mm in the young stems, old stems, and hypocotyls.
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Figure 4. The length of type | trichomes on the leaves, young stems, old
stems, and hypocotyls of wild-type (WT) and naked plants. All the plants
were three-week-old. Type | trichome length is defined as the distance from
the base of the cell to the tip. Bars represent the mean values (+ SD) of the leaf,
young stem, old stem, and hypocotyl samples from different three plants.
Asterisks denote extremely significant differences between WT and naked

plants (unpaired t-test: **** p <0.0001).
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Figure 5. Fine genetic mapping of Naked gene. Genetic mapping of Naked

gene delimited the target gene to an interval between marker Solyc099g075010

and Solyc09g075360 on tomato chromosome 9. Numbers in parentheses

indicate the number of recombination events identified between markers and

the target gene.
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Figure 6. RT-PCR for candidate genes in the mapping region from wild-

type (WT) and naked stems. Actin (ACT) mRNA was used as a loading

control.
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COGCECTGAATCACTTAAATTTCATTTCTTTAGAAAAAAATGGTGAAAAGT ATTAAATCTAAT AAAAATAATGTGC
CTAGAGATGCAAGCTTTGGTCAAATTTTGTAATGTAGCT TAGAAAACAAGACAAAAATATATT AATGACAACCCTT
CTTTCAGTCCCAACAGTTCTCATCACACTCCTAATTTTTCTCACCTACT TCCCCATAGAAGCT AAAAAAGAAATAG
CAGTTCATAGTGGTTAAGAATAATAATTTAAAGAATGTGTCATTTTTTTTTAATTATTTGGTAATTAAGACTTAAT
ATATTCTATTAATTTARATTTGTATGCATCTCATCATTACCTATTAAGGAATAATGTTCCCTTTTTTTTTTCAAGA
ACATCTTTCTAACTATATTCCAAACTTCAATTATATCCT TAGAGTATTCAGTAGAAAACATTTTTAAGTATTTAAA
ATGGAAAATTTTCATCCTTCTATTTGAATTTATTGGACAACGATTARATTTCTCAAAAATTGAGCCATTTCTTCGT
AATTATATGTTATTCTGTATACATCAAGAATATTATCGTGAACTTTTTCAGTAATTAAGTTCAGCATTATGAAAAA
GAAATTCATTTGACAGTTTTATCATTTATTTTTTCATGT AATTTGATAT TAAATATATTTTAGTTGAAATATATTT
CTTCTCAGTTGATATGCTAGCT AGAAGCAGCGCT TATTGAAGATTTTTTATTCTAATACTATAGAATGAAACTCAA
ATACGAGACATAATCAATATTTTAATCACTTCTATATTAAATTGACTGTAACAT TTATTGATCTAAAT ACAATCTA
GCTTTGTAAAAGGTAAATATATTTAAGTCCAGCT TCTTTCAGTTACTAATGTTAAAAAGAGCAGGTCGTGTATTAT
CACACCTTTCARATATTTTTTTATTATAGT AAGCAGTAGTGTCTAAGAT TTTAAATATTTTTT TAGGAACTTCTTA
CACTAGGTAATGAAATTAGACAGAAAAACTTTTGTTGATAATCACGTGAACTATTCATGTTTTGTAAGATCCCTTA
ATTTTTTTGAAAATATCTAATAAAAGGATGAAAATTATTCACTTTTARATACTTGAATAATGT TTCCTGATAAAAT
TAAACT TTGAGGATATAGTTAAATTTGAGGTATAATT TAACAATATTTTTTAAAAAAAACTCTTCGAATCTCATAT
TTCAATTCACACCACGAAAAAT CAAAAACTTCATATTCAARACCAAAATTTAATTTTTTTTAT TAAAGAT TAAACG
GTCACATTCATTGTGTCATT TCAAACTTATTTGGGCATCACCATTGAAGGTGTTGTAATAGGGTAAAAAT AAGCAT
TACATACTCTATATAAATTCATATGTAATACACCTATTTATGTTAT TGGTAACTACGATTGGTGTATTTTTTATAT
TTGCAAGGAATGAGT TTAAACATTTTATTTTATT TTTAAAGAATTTTCTATGAAAT TAAAAATATTATGATATTTA
AAAATTTATTAGT TTCTATAAGAATCTTATAATT AAATTATGGGAGTAGAT AAT TGTTGTAAATCGCT CAAGT TGA
TCTTTTCACCAAACAATATGTCAAAGAAGAGGACACGTGCTGACCCETAGAGTTCTCACGTGCAGCGT GTGGEGTTC
TTGGET TTGCCCACGTGAAGTATGAGGAAGTAGAAAAAATAAATTTTATCTTTTCTTCTAAGGTATTTTGATTTTG
COTAAATT TAAGAAAGAGAT TTTTAAAATTTATGATGTAAAAAAATATTACATAATTGTGGAT TTTAT TAAGAAT A
AAATAGCTACTTTATTTTTAAATTGTTATTCATTCCGTT TATTATAATT TGATAAGTACACTAAAATAATTGTCCT
AACTAATTGTCAATTTAAATAATTAACAAATAATTAGTTATGTTTTTTCAATTTTGTCCTTAATAATT ACATAGCT
ACTTAAATAGTTATCTAAACGAATTGTTGATTTTAAACAATCAATAAACTGTTAGTGATTTTATAATACTAATTTC
AAAAAGTAATCATTTTAATGTTAAACGACTACT T TAATGTGAAAAAAGT TGTTTAGACCAT TTTAATTATGATTAG
TAGTAAGGTTATATTAATAAAATTGCACCTTATATTAATTTTTTTTTCAAGGACATGATTTTATCATACAATCAAT
AGTGAATGAAGGGAATACTTAATATAGAAATGTGTCAATCTTTTTGAGATCGACTAAAAAGAAAAATARAGAGAAA
ATGTCAAAAATCACATACTGTTACGACAAATGTACTATTTGTCCCT TATAAGTT TATGACTACATAAAATGCTATA
TACCCAATTTACACTTATAACTTGATATTTATCATCTTAAATGTGTGTGGAGTGTTATTTTTATATAAAGTTATAT
AAATTGTGTTTCTAATTGTATAAAGCGAGAGAAAATTATATAAACACATTCARATACATGTATTTTTATCATATAC
GCTTATAATTATTACAATAAAAGTACTCCCCTGTCCAATCTCTCTCTTTCTCGTATTATACAAATTCARATTGTAT
ATAATTTATCTATTTCTCGT TTTATACAATTCGATTCAGTTGTATATTCCCTACCAAAGTCTCTTTTGTCTTTCTC
TCTTTCTCATTTTATACAAATT CAAATCATATAATCGTTCTATACACTTATAAT TATACACTTCGTTCTATGCAAT
TCTCTAGCCAAGTCTCTTTATCTTTCTCTTTTTATACACTTTCTTTTATACAAT TCACTTAAATTGTATATGTACA
GCAAAT TATACATATATATGTTTGCTATACAACGCAATTATGCAAACTTTGTTATAGTATACAAATAT AAATTTTA
TATTCGCTATATGTGAAAGT TGCACTTACAGAAARACTTARACTGATATAATAATATAAGTGT TGTACATTAATCT
GATGCACGAATACATTAATCGT TAAGT AAGATACATTATATTTTACACATGATACACTAATATAATATAACTTTTAT
ACATGATAAGCTAATT TAATGCTCGAGATACATTGCAACAAGATGATAAAATAATTCATCGGCAATTACTTATTTTGA
TATAGCAATATTATTTTTATCT TTGATTAGAAAAT AATTAATTAATTCTAAAATAACTTATTTCCGT TGTCTTCCCCA
TTTACCCAACGTTTTTCATAGGGCTACACCATAGCTACTCAATAGT TCAAGTTTCAAATTCAAGCTCTTCAATATTTA
AGATTAATATCTCAAT TTCAAATTAAAATAAATAAGAGTAATATCTCAACTTCAAGTTAATTTAATTTAACTACTAAC
CAGAT
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B

ATGCCTTCTGTAGCTTTTCCCTTATGCATTTTCCTCCTCCTACTCT TTGCAGCTTCTCCGGTCATCGGLGATGAGG
ATTCTCAGTCCCCGACGECATACGAGATTCTACAGGAAT ACGAT AT TCCGECAGGGATACT TCCGAAGGGCGT AAC
AAGGTACGAACTCGACAAAACAACGEGCAATTTCGCCGT TTACT TTAACAAATCGT GCAGT TTCAGCATAAGCGGEC
TATGATCTCAAGTATATGAGTAAAATTACTGGTAAAATCTCTAAGGATCGECTTGCGAACT TGAAAGGCGTACAGG
TCAAACTGCTTTTTTTTTTTGTCAATATTGTGGGAGT TACTCGT GACGGCGATGATCTCGGTTTCTCCGTCEETET
TTCTTCTGTTGATTTTGCAATTGAGTACT TCTAT GAACCGCCAGAGTGT GEGATGTGGATTTGATTGTGTCAATTCT
GEAGAAAACGGTACTGGTGAGT TCAAT TTAAAGCAGCTTATCTCTTCCACT TGAATTGTTAACTAAAATT TTCAGA
GATTGECTGTAAATTCAGTTGATTTGGGATGGAATTTGGAAT TAGGGCAACTTTGTATTTCAGAATCCCACGGGAC
TGEAAGCATATGCTTTTGATGCTCCT T TAGAATGAATATGTATTTTTTTTCATATATCTCCGTGGACTCTTATGGA
AATTGAAATAAAT ARAATTTTCTTTTATTCGCTAC

Figure 7. Genomic DNA sequence of Solyc09g075260 in wild-type and
naked plants. (A) Sequence of 3 kb promoter region. 5> UTR region is in bold.
(B) Sequence of structural region. Translation initiation and termination

sequence are underlined.
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Figure 8. Solyc09g075140 gene is mutated in naked mutant. (A) Genomic
DNA structure of Solyc09g075140. (B) Agarose gel showing the results of RT-
PCR amplification of Solyc099075140 cDNA using mRNA isolated from WT
and naked stems. Actin (ACT) mRNA was used as a loading control. The
amplified full length, 5°, and 3’ region is indicated in (A). (C) PCR
amplification of Solyc09g075140 genomic DNA from WT and naked plants.
The amplified full length, 5°, and 3’ region is indicated in (A). (D) PCR
amplification of Solyc09g075140 genomic DNA containing the mutated region

from WT and naked plants. F and R primer set indicated in (A) is used.
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AACGETTTCTGTAT GEGGAGTCGATGGGAGGRGCCGTGECTCTTTTAACACAC ALGAAGG
AACGETTTCTGTAT GEGGAGTCGATGGGAGGRGCCGTGECTCTTTTAACACAC ALGAAGG
ATCCTTCCTTTTRECATGRTGCTCTTCTGGTTGCACCT ATGTGT AAGGTAGGCCTATTGA
ATCCTTCGTT

Aok A

GATTTTTAGTCTCAACTCATTTACTGTAATATATATGCTTTAGTGCTTGCATTTAGTATT

GAGGGACCATTGGAAGTCRETTATGRTGTTGCTAATGCATTGCAAAA TCACCAGAT ATCT

GAGAAGGTGAAGCCACATCOTGTGGT TATAAGCTTACT AACTAAAGT GGAGGATGTCAT A

CCAAGATGGAAGAT AGTCOCTACGAAGGATGTCATTGATTCGGCCTT CAAGGACCOOGET

A AAGGGAAGAGET GAGGCT AATTGT TAAGTT AATATGCAACAT TTGCTAGCT TCC AAGT

ATTAATGATGTGOGGRCATCC AT TCTTGTCCTCCATCAAAACATGATGTCCATTTCTTGT

CATTTTGCAAGTGT AGGTACGCGAGAACAAGT TAATTTATCAGGCAAAGCCAAGACTAAA

GACAGCTTTGGAAA TGCTALGAACCAGCATGCACCTTGAGGAAAGT T TGCACGAGG TAAC

TATTACCTAACCGTCTTCCATGT AAACAATAATTGAATCAT TCCGACASATTGGAAACTG

GAAATGATGTGTAGTTGAAAATGTTTCGACAGGTCACT GTACCATTTTTAGTGTTACATG

GGGAAGCAGACATAGTAACT GATCCAGAAATAAGT AAGGCT TTATACGAGCAAGLGAGT A

GLAAAGACAAGACTATAAALCTCTATCCAGGAATGTGGCATGGT TTGACATAT GET GAGC

CAGAAGASAACATT GAAATCGTATTTTCAGATATCATCTCGTGGCTTGACAAGCGAAATG

GAGAGAATACTGGT GATGCTAGT TTAATCGAGAGATCAGTTTGTCGAGCTACATCT ACTC

CTCCATATGAGATGCACACAGTTTCT TCACCT GCAACAATGAAAGAAACAAAACCACAT A

GAACGCGTOCCCAAGET AATTATCTGTGTGGATTGAAAGGACGTCGAATGLATCATCATT

CATCTATGTAGAAACT TGATCGATAGAT ATGGCGTGT TGCATCTCCTTCATTTGTTCATT

CGOGTTACGGTGRCATAAATGTTACTACTATTATT TATCAAGGAAGT GGAAAA TAACATG
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WT TTTTACAAGTTTGAGGT TGATAACCTAGCTTTATTCTTAAATTTAAGCATCCTCATTTGT 1560
naked

WT TGTAGTAGTATCATCACAGAGTGTATTATAAACTCTACGAT GGTCATGAATCATCTAGTT 1620
naked
WT TTTTCTAGTTTTTATTTTTTTTATGCTTGTTAATTAGTAGAGGT TTGATGTCAGTAAGGT 1680
naked
WT AAGGCTTAGCCCCCTTGCTTGTACTTTTCTCT TTATTAATAAAACTAGCCCTTGGCACAC 1740
naked
WT CTTACCTAGCGGAATTGCTTCAAAGAATAAAAAAAAGATTGTTTTCCAGATAT TGT AAGA 1800
naked
WT TEAAAAAT CTTTTAAGT TAT TTATGATATCTTAATGTTTGT GTAAACTTGTTGCTCAATG 1860
naked
WT ATGGTTACACTTGGTAGTCTTGTTCCTTTTTGCTCAATCAGGTTATGTATAAATTAACTA 1920
naked
WT TAACATTAAATTGATCCAAAAAAAATCAATCAATAATACACCAAGTAAAATGGTTTAATG 1980
naked
WT AAGTAAATTAGCACCTAAGT TGATGACAAAATGATGTAACACAT AAATAGGTTAACATAA 2040
naked
WT TTAATAAT TAGATAGACAACTCGAAGCAT AAAACATCACAT TAGCGAGAT TTGAGAAAAT 2100
naked
WT ATCGCACCTAAATAGCTTCTAATCTTTGTATCAGGATAAACTATTTGCTGCACGTTTCAT 2160
naked
WT ATAMACCGTTTATT TTAATGTAGACATTAAAAGTTATTTTCACTCCTAAAACTCTTTACA 2220
naked
WT CTTAGGGGCGTAGCTACCCT TTGGCT AAGGTATCACCCTTCATT AGAAAATTACACTGTA 2280
naked
WT TTTATAAGTAAAATAGT AATTTAAATGGT TAAATAACACAT GCTGGACATCCT AATAATT 2340
naked
WT TTTTTCTAGCT TAGTGGTTT TAATTTTCAACTCTTGCTAAGTTCTTTGCAACGTGCAGTG 2400
naked
WT CACGGGTTCGATTCTCGTTATTTGAGTTTGATTTTTTTCTTTTCATTAAAAAATTAAATA 2460
naked
WT AATTTALAATAATTATTTAATTTAAAGTTAAT AAGCAAATCCTATTCTTTTTATTAALAT 2520
naked TTTAAAGTTAAT AAGCAA-TCCTATTCTTTTTATTAAAAT 403
WT TTTAAATAAAATTTAAAAAT AATTATTTAATT TAAAGT TAATAAGCAAATTCTATTTATT 2580
naked TTTAAATAAAATTTARAAAT AATTATTTAATT TAAAGT TAATAAGCAAATTCTATTTATT 463

A AR TR A AR T R TR A A R TR A AR TR T AR A R R TR TR A A R A R T ok

Figure 9. Comparison of Solyc099g075140 gDNA sequence between wild-
type (WT) and naked plants. Translation termination sequence is underlined
in WT. In the naked mutants, Solyc09g075140 gene is deleted about 2.1 kb

containing translation termination sequence.
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Figure 10. Alignment of Solyc09g075140 amino acid sequence from wild-

type (WT) and naked mutant.
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Figure 11. Expression pattern analysis of Solyc09g075140. Expression of
Solyc09g075140 was analyzed by qRT-PCR. Total RNA was extracted from
different tissues in 4-week-old wild-type (cv Ailsa Craig) plants and used to
synthesize cDNA. Values were normalized to actin. All results are expressed

as the means + SD of three biological and technical repeats.
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Figure 12. Phylogenetic tree of Solyc09g075140 and its homologs in other
species. Phylogenetic tree of Solyc09g075140 made in MEGAY software
using Neighbor-Joining method based on amino acid sequence in tomato and
Arabidopsis. S. lycopersicum, Solyc09g075140, A. thaliana, AtMAGL9
(NP_566106.1), A. thaliana, AtMAGL12 (NP_191845.1), S. lycopersicum,
Solyc04g010250, A. thaliana, AtMAGL11 (NP_191079.1), A. thaliana,
AtMAGL10 (NP_191078.1), A. thaliana, AtMAGL6 (NP_565903), A.
thaliana, = AtMAGL7 (NP_850316.1), A. thaliana, AtMAGLS
(NP_181474.2) ), S. lycopersicum, Solyc05g009390, A. thaliana, AtMAGL5
(NP_177867.1) , S. lycopersicum, Solyc029g063200, A. thaliana, AIMAGL15
(NP_001119234), S. lycopersicum, Solyc02g063160, S. lycopersicum,
Solyc029086040, S. lycopersicum, Solyc03g119980, S. lycopersicum,
Solyc05g056000, S. lycopersicum, Solyc03g006560, A. thaliana, AtMAGL1
(NP_172576.1). Numbers next to branch points are the percentage of replicate
trees in which the associated taxa clustered together. The scale bar indicates
the branch length corresponding to 0.050 amino acid substitutions per site.
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Figure 13. Protein sequence alignment of Solyc099g075140 and MAGLs.
The predicted amino acid sequence alignments of Solyc09g075140, DrMGL
(NP_956591.1), and 10 AtMAGLs by Clustal Omega. The position of
premature stop codon in Solyc099075140 of naked mutant is marked by a
black triangle. The o/B-hydrolase domain is underlined and the catalytic triad
(Ser, Asp, and His) residues are highlighted in grey color. AtMAGL1
(NP_172576.1), AtMAGL5 (NP_177867.1), AtMAGL6 (NP_565903),
AtMAGL7 (NP_850316.1), AtMAGL8 (NP_181474.2), AtMAGL9
(NP_566106.1), AtMAGL10 (NP_191078.1), AtMAGL11 (NP_191079.1),
AtMAGL12 (NP_191845.1), AtMAGL15 (NP_001119234). Species prefixes
are as follows: Solyc, Solanum lycopersicum; Dr, Danio rario; At, Arabidopsis
thaliana.
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Figure 14. The expression level of biosynthetic and regulatory factors that
control cutin synthesis and their localization in epidermal cells. Names
shown in red denote proteins, or protein complexes, with a demonstrated
function; names shown in orange denote proteins with an unknown or
speculative function. Red squares represent genes or proteins that were
significantly up-regulated in naked; green squares represent genes or proteins
that were significantly down-regulated in naked. Abbreviations: C, carbon;
CoA, coenzyme A; FA, fatty acid; FAE, fatty acid elongase complex; FAS,
fatty acid synthase complex; MAG, monoacylglycerol;, MAGL,
monoacylglycerol lipase. For steps involving multiple paralogs, only the gene

subfamily name is given; for the names and IDs of each gene, in Table 4.
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Figure 15. Schematic information of binary vectors for plant
transformation. (A) Vectors for overexpression of Solyc09g075140 with 35S
promoter and the native promoter. (B) and (C) Guide RNA sequence of
Solyc09g075140 used for knock-out (B) and schematic diagram of CRISPR-
Cas9 vector containing Solyc09g075140 guide RNA (C).
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Figure 17. Functional analysis and classification of DEGs with Gene GO
term (up-regulation). The top 20 Gene ontology (GO) terms of up-regulated
DEGs in naked. The DEGs were summarized in 2 main GO categories,
biological process and molecular function. The X-axis shows the number of

DEGs while the Y-axis represents the GO terms.
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Figure 18. Functional analysis and classification of DEGs with GO term
(down-regulation). The top 20 Gene ontology (GO) terms of down-regulated
DEGs in naked. The DEGs were summarized in 3 main GO categories,
biological process, cellular component , and molecular function. The X-axis

shows the number of DEGs while the Y-axis represents the GO terms.
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Figure 19. Functional analysis and classification of DEGs with KEGG.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of
significantly DEGs between the wild-type (WT) and naked mutants. The X-
axis shows the number of DEGs while the Y-axis represents the sub

classification.
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Table 3. List of genes in the mapping region between marker
Solyc09g075010 and Solyc09g075360. “: DEG comparison obtained from

RNA-seq. data between WT and naked stems.

Name Description naked vs WT ~
Solyc09g075010 HSP20-like chaperones superfamily protein 0.07
Solyc09g075020 Multidrug resistance protein ABC transporter family protein 0.26
Solyc09g075030 Nucleolar 16 -0.04
Solyc09g075040 E3 ubiquitin-protein ligase 0.07
Solyc09g075050 Mannose-binding lectin superfamily protein 0.10
Solyc09g075060 Beta-glucosidase 0.39
Solyc09g075070 Beta-glucosidase 0.69
Solyc09g075080 Phytochrome A-associated F-box protein 0.27
Solyc09g075090 RNA-binding (RRM/RBD/RNP motifs) family protein 0.00
Solyc09g075100 Complex 1 family protein 0.08
Solyc09g075110 Vacuolar sorting protein 39 0.60
Solyc09g075120 UDP-glucuronic acid decarboxylase 1 -0.03
Solyc09g075130 Small nuclear ribonucleoprotein family protein -0.36
Solyc09g075140  alpha/beta-Hydrolases superfamily protein; Lipase-like protein -3.24
Solyc09g075150 60S ribosomal protein L.22-2 0.19
Solyc09g075160 608 ribosomal protein L.22-2 0.06
Solyc09g075170 Pentatricopeptide repeat (PPR) superfamily protein -0.38
Solyc09g075180 cryptochrome DASH family protein 0.19
Solyc09g075190 Gamma-tubulin complex component -0.11
Solyc09g075200 Ul small nuclear ribonucleoprotein -0.03
Solyc09g075210 Late embryogenesis abundant protein Lea5 1.68
Solyc09g075220 LOW QUALITY :pectinesterase 0.47
Solyc09g075230 pectinesterase (Protein of unknown function, DUF538) 0.03
Solyc09g075260 Pectinesterase -3.59
Solyc09g075270 transmembrane protein -0.49
Solyc09g075280 exocyst complex component secl15B 0.06
Solyc09g075290 60S ribosomal protein L18 -0.02
Solyc09g075300 Epoxide hydrolase, putative -0.30
Solyc09g075310 Unknown Protein -
Solyc09g075320 RING/U-box superfamily protein -0.69
Solyc09g075330 Pectinesterase 5.15
Solyc09g075350 Pectinesterase -0.33
Solyc09g075360 4-beta-glucanase precursor -0.04
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Table 4. Genes involved in cutin biosynthesis, transport, and regulation in
Arabidopsis and tomato. Names shown in red denote proteins, or protein
complexes, with a demonstrated function; names shown in orange denote
proteins with an unknown or speculative function. Red squares represent genes
or proteins that were significantly up-regulated in naked; green squares
represent genes or proteins that were significantly down-regulated in naked.
Species prefixes are as follows: Sl, Solanum lycopersicum; At, Arabidopsis
thaliana. “: DEG comparison obtained from RNA-seq. data between WT and

naked stems.
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Discussion

The plant epidermal surface provides a powerful protective barrier against
various biotic and abiotic stress. Trichomes, the epidermal outgrowths
covering most aerial plant tissues, are found in a very large number of plant
species and are composed of uni- or multicellular structures. The genetic
analysis of trichome development has been done extensively in the Rosids
including Arabidopsis and cotton, which are composed of unicellular structure
trichome. The homologs responsible for unicellular trichome development in
Rosids were analyzed in Asterids to find multicellular structure development
pathways, but the results showed no correlation. In tomato, the molecular
mechanisms of trichome development are still far from being fully understood.
The mutant analysis is an effective approach to explore the function of genes
in trichome development. Thus, we used forward genetics to find genes

involved in the multicellular trichome development pathway.

In this study, we used tomato mutant naked, which has a young stem
trichome absent phenotype. A map-based cloning strategy was used to select a
potential candidate gene responsible for the young stem trichome absent
phenotype. Genetic mapping experiments narrowed down the physical
distance of the mapping region about 250 kb. This region is predicted to
contain 31 hypothetical genes. To predict the located of the genes, Sol

Genomics Network (https://solgenomics.net/jbrowse solgenomics/) was used

for annotation of the sequence. Among the 31 hypothetical genes, protein

families of the 13 genes have been identified to either regulate the development

fo2e)


https://solgenomics.net/jbrowse_solgenomics/

of trichomes or epidermal cells in previous studies. For example,
Solyc09g075040 gene is predicted to encode an E3 ubiquitin ligase. Previous
studies had suggested that the E3 ubiquitin ligase regulates branching of
trichome in Arabidopsis (Downes et al.,, 2003). The Solyc09g075060,
Solyc09g075070 gene is predicted to encode a B-glucosidase protein which is
involved with the densities of trichome in Arabidopsis. (Singh et al., 2016).
The Solyc09g075130 gene is predicted to encode a small nuclear
ribonucleoprotein (SnRNP), which is involved in branching and density in
trichome (Swaraz et al., 2011). The Solyc09g075140 gene is predicted to
encode o/B-hydrolase, which is known to control the cuticle development of

the epidermis (Kurdyukov et al., 2006).

Through RT-PCR and genomic DNA PCR results, we identified that 3’
region of Solyc09g075140 gene was deleted in the naked mutant.
Solyc09g075140 gene is expected to encode o/p-hydrolase and has been found
to belong to monoacylglycerol lipase 9 (MAGL9) which is homologs to
Arabidopsis. Generally, MAGL acts to breakdown monoacylglycerol into fatty
acid and glycerol, but its function is not well known in plants. MAGLs have
been identified to function in cytosol and plasma membranes in humans and
rabbits (Gkini et al., 2009). Animal MAGL represents the specificity of MAG
hydrolysis and can effectively hydrolyze substrates with various double bonds

and acyl chain lengths (Labar et al., 2010).

We also revealed that Solyc09g075140 gene could be involved in the
biosynthesis pathways of cutin, a component of the cuticle layer of the
epidermal cell in the cytosol (Fich et al., 2016). We found the genes related to

cutin biosynthesis in tomato and compared them with RNA-Seq. data. We
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confirmed that the cutin synthases were down-regulated in the naked mutant.
Previous studies have shown that trichome development is repressed if the
cutin synthesis gene is defective (Kurdyukov et al., 2006). It is expected that
poor synthesis of the cutin affects the epidermal cells, ultimately causing the
naked mutant phenotype. Considering these findings, the Solyc099075140
gene is highly similar to the genes encoding MAGL, which is considered
responsible for the Naked gene. Based on our genetic analysis, we assume that
the mutation in Solyc09g075140 may be responsible for the absence of
trichomes on the young stem in the naked mutant, although the
complementation experiment of the naked mutant must be carried out to
confirm this. We are currently executing this experiment with the naked mutant
by expressing the wild-type Solyc099075140 gene through the 35S promoter

or its native promoter.

In addition to the defects in trichome development, naked mutants also
exhibit several developmental phenotypes, including stem length, branch
number, and fruit color. It is thus possible that Naked serves a primary role in
the plant developmental process, the perturbation of which alters trichome- and
defense-related traits. According to RNA-Seq. data, genes related to lipid
metabolism and secondary metabolism are predominantly down-regulated in
the naked mutant. It is assumed that the function of MAGL is critical in lipid
metabolism. It is also predicted that the absence of trichomes on the young
stem in naked mutant contributes to the down-regulation to secondary

metabolism-related genes.

In conclusion, the identification of the Naked genes will provide the basis

for multicellular trichome development research. In addition, revealing the
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pathway of the trichome development will provide a cornerstone for plant
breeding in terms of metabolic engineering and enhancing plant stress

tolerance.
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Abstract in Korean
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