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ABSTRACT 

 

Estrogen is a steroid hormone that plays an important role in female reproductive 

function and sexual development. As women get older, the secretion of estrogen 

decreases and estrogen supplementation is crucial to alleviate symptoms related to 

estrogen deficiency. CYP19 (also called aromatase) is the key enzyme responsible for 

estrogen production and it is expressed in a tissue-specific manner. Aromatase should 

be expressed in sites that require estrogen synthesis and inhibited overexpression in 

estrogen-dependent cancer tissues. Therefore, it is necessary to investigate natural 

products that can supplement estrogen and regulate aromatase expression tissue-

specifically for menopausal women’s health. 

 



ii 

 

In this study, we found that Yak-Kong seed coat extract increases 17β-estradiol 

production in human adrenocortical carcinoma NCI-H295R cells and mouse antral 

follicles. It promotes 17β-estradiol biosynthesis by increasing the protein and gene 

expression of CYP19A1 and 3β-HSD in steroidogenesis pathway. Furthermore, it 

suppresses proliferation of breast and ovarian cancer cells known as estrogen-

dependent cancer cells and regulates aromatase expression of adipocytes followed a 

different pattern from that of H295R cells. These results suggest that the extract of Yak-

Kong seed coat could be a potential alternative to selective aromatase modulator for 

menopausal women.  
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Ⅰ. INTRODUCTION 

 

Estrogen is a steroid hormone that plays an important role in female reproductive 

function and sexual development. There are three types of natural estrogen; estrone 

(E1), estradiol (E2), and estriol (E3). Estradiol (E2) is also known as 17β-estradiol, and 

it is the most potent form of estrogenic steroids [1]. The primary sites of estrogen 

synthesis are reproductive organs; ovary and testis [2], but estrogen is also regulated in 

many extra-gonadal sites including adrenal gland [3], body fat [4], bone [5], brain [6] 

and etc. In menopause, ovary which is primary site of estrogen production in women 

stops working gradually and the secretion of estrogen decreases [7]. Various symptoms 

related to estrogen deficiency such as hot flush [8], weight gain [9], insomnia [10] and 

etc. appear. Thus, for peri-menopausal women, it is important to promote estrogen 
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synthesis in dysfunctional ovary. There is a difference in their signaling that gonads 

secret estrogen into target tissues as an endocrine factor and extra-gonadal estrogen acts 

locally in paracrine, intracrine, and autocrine manners [11]. In post-menopausal 

women, ovarian estrogen no longer functions as an endocrine factor because the main 

sources of estrogen production are extra-gonadal sites [12]. Therefore, post-

menopausal women should produce estrogen locally where it is needed.  

In this study, NCI-H295R was used to observe the ability of estrogen synthesis 

because it is the most appropriate in vitro model for verifying steroid hormone 

synthesis and represents steroidogenesis in adrenal cortex [13-15]. Moreover, 

circulating androgens produced by adrenal cortex are sources of local estrogen 

production by aromatization and they might be more important than circulating 
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estrogens in post-menopausal women [16]. Mouse antral follicles were also used to 

observe estrogen production in gonadal site as functional unit of ovary [17].  

Hormones can develop human cancer in certain organs [18], and estrogen especially 

acts as a causative factor of breast, endometrial, and ovarian cancers with reference to 

cellular proliferation [19, 20], decreased apoptosis, and genomic damage [21]. As 

mentioned above, there is a difference of hormone action between gonads and extra-

gonadal sites. Thus, total circulating estrogen levels of post-menopausal women may 

not be high, but the levels of estrogen in certain tissue related to estrogen-dependent 

cancer may be high [16]. In aspect of breast cancer, locally produced estrogen in breast 

tumor and surrounding tissue influences breast cancer development [22]. 

Steroidogenesis is the biosynthetic pathway producing steroid hormones such as 

estrogen from cholesterol via steroidogenic enzymes. In steroidogenesis pathway, 
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steroidogenic enzymes are divided into two groups; the Hydroxysteroid 

Dehydrogenases and the Cytochrome P450 [23]. 3β-HSD is one of the hydroxysteroid 

dehydrogenases and it is responsible enzyme producing androgens that are direct 

precursors of estrogens: pregnenolone to progesterone, dehydroepiandrosterone to 

androstenedione [24]. CYP19 (also called aromatase) is involved in the cytochrome 

P450 heme-containing proteins and it is the key enzyme responsible for the conversion 

of androgens to estrogens: androstenedione to estrone, testosterone to estradiol [23].  

CYP19 gene, encoding aromatase, is expressed with tissue-specificity because 

unique promoters are used for each tissue and they are regulated by distinct factors and 

signaling pathway [25]. In ovary, follicle stimulating hormone (FSH) binds to the 

receptor and cyclic AMP (cAMP) acts as second messenger. As a result, promoter II 

regulates aromatase expression [26]. In adipose tissue, promoter I.4 primarily controls 
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basal levels of aromatase expression under normal conditions. However, in breast 

cancer, tumorigenic breast epithelial cells increase adipose fibroblasts and the 

regulation of aromatase expression is switched to promoter I.3 and II under the control 

of prostaglandin E2 from breast tumor. [27]. Moreover, adipose tissue adjacent to 

malignant breast epithelial cells may affect aromatase overexpression of breast cancer 

tissue through paracrine interactions, which account for most of the aromatase 

expression of breast tumors [28, 29]. Thus, regulation of aromatase expression in 

adipose tissue can be therapeutic target for breast cancer.  

Recently, aromatase inhibitors (AIs) such as letrozole and anastrozole are used to 

treat breast cancer. However, they inhibit aromatase expression in all tissues throughout 

the body and can cause osteoporosis and cognitive impairment as side effects [30]. 

Hence, selective aromatase modulator (SAM) can be used as an appropriate 
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therapeutic method in menopausal women [31]. SAM inhibits aromatase expression 

in tissues related to estrogen-dependent cancer, but not in sites that require estrogen 

synthesis [32]. For menopausal women, it is necessary to regulate local estrogen 

production and SAM can selectively regulate aromatase producing estrogen in each 

tissue.  

The aim of this study is to identify the effects of Yak-Kong seed coat extract on the 

estrogen biosynthesis via steroidogenic enzymes and tissue-specific regulation of 

aromatase expression. It can be a potential alternative to SAM that stimulates 

aromatase in dysfunctional gonadal site in peri-menopausal women and extra-gonadal 

sites in post-menopausal women and inhibits aromatase overexpression in adipose 

tissues adjacent to estrogen-dependent breast cancer. 
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Ⅱ. MATERIALS AND METHODS 

 

1.  Soybean materials 

Two different soybeans (Glycine max) were used in this study. Standardized YK 

soybean (Registration number: 01-0003-2013-3) was provided by the Rural 

Development Administration, Republic of Korea. The yellow soybean was purchased 

from local suppliers in Danyang and Boeun, Republic of Korea in 2016. Peeled seed 

coats and embryos used were assessed using the different extraction conditions. The 

conditions selected were previously optimized for antioxidant extraction through 

multiple antioxidant assays (data not shown). Briefly, the peeled seed coats were 

extracted with 50% ethanol at 75 ℃ for 1.5 h. The 3 mm cut embryos were extracted with 

70% ethanol at 75 ℃ for 3 h. YK seed coat and embryo extracts were freeze-dried as powders.  



8 

 

2. Animals 

Animal study was performed in accordance with recommendations in Guide for the 

Care and Use of Laboratory Animals of the National Institutes of Health. Animal 

handing was done in accordance with the protocols approved by the Seoul National 

University’s Institutional Animal Care and Use Committee (IACUC). At 25-30 

postnatal days of wild type C57BL/6 female mice were used.  

 

3. Cell culture 

The NCI-H295R human adrenocortical cell line (CRL-2128) was purchased from 

the American Type Culture Collection (ATCC, Virginia, USA). Cells were cultured in 

DMEM/F-12 medium; 1:1 mixture of Dulbecco’s-modified Eagle’s and Ham’s F-12 

media containing L-glutamine and 15mM HEPES (Welgene, Gyeongsan, South 
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Korea), supplemented with 2.5% Nu-Serum, 1% insulin/transferrin/selenium premix 

(Corning, New York, USA) and 0.1% Penicillin-Streptomycin (Corning, New Yok, 

USA). The serum-free media contained only 0.1% Penicillin-Streptomycin in 

DMEM/F-12. Cells were maintained in 75 𝑐𝑚2 flasks at 37 ℃ in an atmosphere of 

5% 𝐶𝑂2. For RNA, protein extraction and media collection, 2.5 x 106 cells were 

plated in a 6 𝑐𝑚2 cell culture dish. After subculturing for 48 h, cells were treated with 

dimethyl sulfoxide (DMSO) (vehicle), Yak-Kong seed coat extract at the doses 

indicated, or 40 μg/ml of Yellow Soybean seed coat extract, Yak-Kong seed coat extract, 

Yellow Soybean embryo extract, and Yak-Kong embryo extract in serum-free media. 

RNA extraction was performed after 12 h of sample treatment. Protein extraction was 

done after 24 h of sample treatment. Media was collected after 48 h of sample treatment 

and immediately frozen in liquid nitrogen. 
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The MCF-7 human breast adenocarcinoma cell line (HTB-22) was purchased from 

the American Type Culture Collection (ATCC, Virginia, USA). The OVCAR-8 

human ovarian carcinoma cell line was a kind gift from Laboratory of Prof. Zigang 

Dong (The Hormel Institute, University of Minnesota, MN 55912, USA). Cells were 

cultured in DMEM medium (Welgene, Gyeongsan, South Korea), supplemented with 

10% Fetal Bovine Serum (VWR, PA, USA) and 0.1% Penicillin-Streptomycin 

(Corning, New Yok, USA). Cells were maintained in 75 𝑐𝑚2 flasks at 37 ℃ in an 

atmosphere of 5% 𝐶𝑂2 . For cell viability assay, cells were treated with dimethyl 

sulfoxide (DMSO) (vehicle), Yak-Kong seed coat extract at the doses indicated.  
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4. Antral follicle culture 

Female mice were euthanized on postnatal days (PND) 25-30 and their ovaries were 

collected. Antral follicles about 250-400 μm were isolated mechanically from the 

ovaries using fine watchmaker forceps. Isolated antral follicles placed individually in 

wells of a 96-well culture plate, and covered with supplemented α-minimum essential 

media (α-MEM). Supplemented α-MEM was prepared with 1% ITS (10 ng/ml insulin, 5.5 

ng/ml transferrin, 5.5 ng/ml selenium), 100 U/ml penicillin, 100 mg/ml streptomycin, 5 IU/ml 

human recombinant follicle stimulating hormone (FSH; Sigma, Missouri, USA), 5% fetal bovine 

serum (VWR, PA, USA). 2 – 4 mice were used per experiment, approximately 20 - 30 

antral follicles were isolated from each mouse. Each experiment contained a minimum 

of 3 - 5 follicles per group. Antral follicles were treated with dimethyl sulfoxide 

(DMSO) (vehicle), Yak-Kong seed coat extract at the doses indicated in supplemented 
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media and cultured for 96 hours in an incubator with 5% 𝐶𝑂2 at 37 ℃. After culture, 

media was collected and frozen immediately in liquid nitrogen.  

 

5. Hormone measurement 

The concentrations of 17β-estradiol in the media were measured by enzyme-linked 

immunosorbent assays ELISA (DRG International, Germany). The samples were run 

in triplicates and had intra- and inter-assay coefficients of variability were below 10%.  

 

6. Real-time quantitative PCR 

Cells were harvested with RNAiso Plus (Takara Bio Inc., Shiga, Japan). RNA was 

quantified using NanoDrop ND-2000 spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA). After reverse transcription with oligo-dT primers using a 
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PrimeScriptTM 1st strand cDNA synthesis Kit (Takara Bio Inc.), Real-time 

quantitative RT-PCR was performed using IQ SYBR (Bio-Rad Laboratories). 2 μl of 

cDNA in triplicate with β-actin as internal control. Before PCR amplification, the 

primers were denatured at 95 ℃ for 3 min. Amplification was made up of 44 cycles at 95 ℃ 

for 10 seconds, 60 ℃ for 30 seconds, and 72 ℃ for 30 seconds. PCR was performed by CFX 

Connect™ Real-Time PCR Detection System (Bio-Rad Laboratories). cDNA was probed by the 

following primer: CYP11A1 forward (5’- GAG ATG GCA CGC AAC CTG AAG -3’); 

CYP11A1 reverse (5’- CTT AGT GTC TCC TTG ATG CTG GC -3’); CYP17A1 forward (5’- 

GGC ACC AAG ACT ACA GTG ATT G -3’); CYP17A1 reverse (5’- AGA GTC AGC GAA 

GGC GAT AC -3’); CYP19 forward (5’- AGG TGC TAT TGG TCA TCT GCT C -3’); CYP19 

reverse (5’- TGG TGG AAT CGG GTC TTT ATG G -3’); 3β-HSD2 forward (5’-TGC CAG 

TCT TCA TCT ACA CCA G -3’); 3β-HSD2 reverse (5’- TTC CAG AGG CTC TTC TTC 
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GTG -3’); 17β-HSD forward (5- TTC ATG GAG AAG GTG TTG G -3’); 17-HSD reverse (5’-

AAG ACT TGC TTG CTG TGG -3’); β-actin forward (5’- TCC TCA CCC TGA AGT ACC 

CCA T -3’); β-actin reverse (5’- AGC CAC ACG CAG CTC ATT GTA -3’) 

 

7. Western blotting 

After removing media, cells were lysed with lysis buffer containing 10 Mm Tris (Ph 

7.5), 150 mM NaCl, 5 mM ethylene diamine tetra acetic acid (EDTA), 1 % Triton X-

100, 1 mM dithiothreitol (DTT), 0.1 mM phenylmethylsulfonyl fluoride (PMSF), 10 % 

glycerol and protease inhibitor cocktail tablet. The protein concentration was measured 

using a protein assay reagent kits as described by the manufacturer. 60 μg of protein 

lysates were separated electrophoretically using a 10 % SDS-polyacrylamide gel and 

transferred onto an Immobilon P membrane (MERK Millipore). The membrane was 
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blocked in 5 % fat-free milk for 1 h, and then incubated with the specific primary 

antibody at 4 ℃ overnight. Protein bands were visualized using a chemiluminescence 

detection kit (GE healthcare, London, UK) after hybridization with the HRP-

conjugated secondary antibody (Life technologies, Waltham, MA).  

 

8. Cell viability assay 

H295R, MCF-7, and OVCAR-8 cells were cultured in 96 well plates at a density of 

4.0 × 104  cells/well. H295R cells were incubated in DMEM/F-12 supplemented 

with 2.5% Nu-Serum, 1% insulin/transferrin/selenium premix and 0.1% Penicillin-

Streptomycin. MCF-7 and OVCAR-8 cells were incubated in DMEM supplemented 

with 10% FBS and 0.1% Penicillin-Streptomycin. After sample treatment, the cells 

were incubated for 48 h. After addition of 20 μL PMS/MTS solution per 100 μL 
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medium, cells were incubated for 1~4 h. The absorbance at 490 nm was then measured 

using a microplate reader. 

 

9. 3T3-L1 and MCF-7 coculture 

For differentiation, 3T3-L1 preadipocytes were seeded at 3.0 × 104  cells/well 

into 12 well plates. 3T3-L1 preadipocytes were purchased from the American Type 

Culture Collection (ATCC). 3T3-L1 preadipocytes were maintained in DMEM 

medium (Gibco, Grand Island, NY, USA) supplemented with 10% Bovine Calf Serum 

(Gibco, Grand Island, NY, USA), under an atmosphere of 5 % 𝐶𝑂2 at 37 ℃ until 

100% confluence. After post-confluence (day 0), the cells were differentiated for 6 

days in the presence or absence of the test sample. The cells were incubated in DMEM 

supplemented with 10 % Fetal Bovine Serum (VWR, PA, USA) and an adipogenic 
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cocktail (MDI) which was a mixture of 0.5 mM IBMX (Sigma, Missouri, USA), 1 μM 

dexamethasone (DEX; Sigma, Missouri, USA), and 5 μg/𝑚𝐿−1 insulin for 2 days in order 

to induce differentiation. After 2 days, the media was changed to DMEM containing 

10 % FBS and 5 μg/𝑚𝐿−1 insulin. Two days later, the media was switched to DMEM 

containing 10 % FBS which was replaced every two days until the preadipocytes were 

fully differentiated. After 4 days, MCF-7 cells were seeded at 1.5 × 104 cells/well 

into the upper insert of Corning Transwell system (CLS3460). Three days later, cells 

were lysed in radioimmunoprecipitation assay (RIPA) lysis buffer containing protease 

and phosphatase inhibitors (Sigma-Aldrich, USA) 
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10. Statistical analysis 

Statistical analyses were performed with IBM SPSS Statistics ver. 23.0 (IBM, 

Armonk, NY, USA). The data were statistically analyzed by one-way analysis of 

variance (ANOVA) followed by Tukey’s HSD and expressed as mean ± standard 

error of the mean (SEM). Differences between control and sample treated group in 

mono-cultured adipocytes were assessed with unpaired Student’s t-test.    

 

 

 

 

 

 



19 

 

Ⅲ. RESULTS 

 

1. Yak-Kong seed coat extract has the most estradiol-stimulating effect in H295R 

cells among soybean extracts 

To identify the estradiol-stimulating effect of soybean extracts, H295R cells were 

treated with 0.1 % DMSO as vehicle control, 40 μg/ml of Yak-Kong seed coat extract, 

Yellow soybean seed coat extract, Yak-Kong embryo extract, and Yellow soybean 

embryo extract. Yak-Kong seed coat extract promoted production of 17β-estradiol in 

H295R cells compared to vehicle control and other samples. (Fig. 1A) Cell viability 

data had no significant differences and showed that the concentration in which samples 

were treated was not cytotoxic. (Fig. 1B) Considering the estradiol-simulating effect, 

this research was carried out further with Yak-Kong seed coat extract.  
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Figure 1 
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Figure 1. Effects of four soybean extracts on 17β-estradiol production in H295R 

cells 

All soybean extracts were used at 40 μg/ml. After H295R cells were treated with 

four soybean extracts for 48 h, cell culture media was collected and measured 17β-

estradiol by enzyme-linked immunosorbent assays. A. 17β-estradiol concentration of 

cell culture medium. Data was shown as means ± SEM with n=3. Mean values with 

different letters (a-b) are significantly different from each other at p<0.05. B. Cell 

viability evaluated by MTS assay. Data was shown as means ± SEM with n=4. Mean 

values were found to be non-significant (p>0.05). YS, yellow soybean; YK, Yak-Kong; 

NS, no significance.  
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2. Yak-Kong seed coat extract promotes production of 17β-estradiol in a dose-

dependent manner in H295R cells and mouse antral follicles 

To observe the estradiol-stimulating effect of Yak-Kong seed coat extract in a dose-

dependent manner, H295R cells were used to measure 17β-estradiol production. The 

extract promoted 17β-estradiol production in a dose-dependent manner in H295R cells. Data 

showed significant difference at 10 and 20 μg/ml of Yak-Kong seed coat extract treatment 

(Fig. 2A). Yak-Kong seed coat extract was not cytotoxic up to 20 μg/ml. Cell viability 

data was not supplemented, but it can be deduced from Fig. 1B.  

To determine the estrogen-stimulating effect of Yak-Kong seed coat extract not only 

in extra-gonadal site but also in gonadal site, mouse antral follicles were used to 

measure 17β-estradiol production. Yak-Kong seed coat extract promoted 17β-estradiol 
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production in mouse antral follicles. Data showed significant difference at 10 and 20 

μg/ml of Yak-Kong seed coat extract treatment (Fig. 2B). 
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Figure 2 
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Figure 2. Effects of Yak-Kong seed coat extract on production of 17 β-estradiol in 

H295R cells and mouse antral follicles. 

5, 10 and 20 μg/ml of Yak-Kong seed coat extract were treated. After H295R cells 

were treated for 48 h and mouse antral follicles were treated for 96 h, cell culture media 

was collected and measured 17β-estradiol by enzyme-linked immunosorbent assays. 

A. 17β-estradiol concentration of H295R cell culture medium. B. 17β-estradiol 

concentration of mouse antral follicle culture medium. Data was shown as means ± 

SEM with n=3. Mean values with different letters (a-c) are significantly different from 

each other at p<0.05. YK, Yak-Kong. 
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3. Yak-Kong seed coat extract increases protein and mRNA levels of CYP19A1 

in H295R cells  

The expression of steroidogenic enzymes was studied to determine how Yak-Kong 

seed coat extract increased 17β-estradiol in steroidogenesis pathway. CYP19A1 is the 

enzyme responsible for the conversion of androgens to estrogens. The extract increased 

protein levels of CYP19A1 significantly at 10 and 20 μg/ml (Fig. 3B) and mRNA 

levels of CYP19A1 at 10 and 20 μg/ml (Fig. 3C).  
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Figure 3 

 

 

 

 

- 5 10 20

0

1

2

3

Extracts

(g/ml)
YK seed coat

a

ab

b b

C
Y

P
1
9
A

1
 p

ro
te

in
 l
e
v
e
l

(f
o

ld
 o

f 
c
o

n
tr

o
l)

- 5 10 20

0.0

0.5

1.0

1.5

2.0

Extracts

(g/ml)
YK seed coat

a

ab
b

b

C
Y

P
1
9
A

1
m

R
N

A

(f
o

ld
 o

f 
c
o

n
tr

o
l)

 

A 

B 

C 



28 

 

Figure 3. Effects of Yak-Kong seed coat extract on protein and mRNA levels of 

CYP19A1 in H295R cells 

5, 10 and 20 μg/ml of Yak-Kong seed coat extract were treated. After H295R cells 

were treated with different concentrations for 24 h, cells were lysed and protein was 

extracted. The protein expression was measured by western blotting assay. A. 

CYP19A1 in steroidogenesis pathway. B. Protein levels of CYP19A1. The loading 

control is glyceraldehyde 3-phosphate dehydrogenase (GAPDH). After H295R cells 

were treated with different concentrations for 12 h, RNA extraction was performed and 

mRNA level was measured by real-time quantitative PCR. C. mRNA levels of 

CYP19A1. Data was shown as means ± SEM with n=3. Mean values with different 

letters (a-b) are significantly different from each other at p<0.05. YK, Yak-Kong. 
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4. Yak-Kong seed coat extract increases protein and mRNA levels of 3β-HSD in 

H295R cells 

3β-HSD is the enzyme responsible for producing androgens that are direct 

precursors of estrogens. Yak-Kong seed coat extract increased protein levels of 3β-

HSD significantly at 20 μg/ml (Fig. 4B) and mRNA levels of 3β-HSD at 10 and 20 

μg/ml (Fig. 4C). 
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Figure 4 
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Figure 4. Effects of Yak-Kong seed coat extract on protein and mRNA levels of 

3β-HSD in H295R cells 

A. 3β-HSD in steroidogenesis pathway. B. Protein levels of 3β-HSD. The loading 

control is glyceraldehyde 3-phosphate dehydrogenase (GAPDH). C. mRNA levels of 

3β-HSD. Data was shown as means ± SEM with n=3. Mean values with different 

letters (a-c) are significantly different from each other at p<0.05. YK, Yak-Kong. 

 

 

 

 

 

 



32 

 

5. Yak-Kong seed coat extract does not increase protein levels of CYP11A1, 

CYP17A1, or 17β-HSD in H295R cells 

To determine which steroidogenic enzymes were stimulated to synthesize 17β-

estradiol in steroidogenesis pathway, an effect of Yak-Kong seed coat extract on the 

expression of other steroidogenic enzymes except CYP19A1 and 3β-HSD was studied. 

Yak-Kong seed coat extract did not increase protein levels of CYP11A1, CYP17A1 or 

17β-HSD in steroidogenesis pathway.  
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Figure 5 

 

    

Figure 5. Effects of Yak-Kong seed coat extract on protein levels of CYP11A1, 

CYP17A1, or 17β-HSD in H295R cells 

A. Protein levels of CYP11A1, CYP17A1, or 17β-HSD. The loading control is 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). B. CYP11A1, CYP17A1, and 

17β-HSD in steroidogenesis pathway. YK, Yak-Kong. 
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6. Yak-Kong seed coat extract decreases viability of human breast and ovarian 

cancer cells 

To identify the anti-estrogen dependent cancer effect of Yak-Kong seed coat extract, 

MCF-7 and OVCAR-8 cells were used to assess cell viability. Yak-Kong seed coat 

extract decreased viability of human breast cancer cells significantly at 40 μg/ml (Fig. 

6A) and human ovarian cancer cells significantly at 5, 10, 20 and 40 μg/ml (Fig. 6B).  
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Figure 6 
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Figure 6. Effects of Yak-Kong seed coat extract on viability of MCF-7 and 

OVCAR-8 cells 

5-40 μg/ml of Yak-Kong seed coat extract were treated. After MCF-7 and OVCAR-

8 cells were treated with different concentrations for 48 h, cell viability was evaluated 

by MTS assays. A. Cell viability of MCF-7 cells. B. Cell viability of OVCAR-8 cells. 

Data was shown as means ± SEM with n=5. Mean values with different letters (a-c) 

are significantly different from each other at p<0.05. YK, Yak-Kong. 
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7. Yak-Kong seed coat extract does not stimulate CYP19A1 expression in 3T3-L1 

adipocytes, both mono- and co-cultured with MCF-7 cells 

To observe the tissue-specific aromatase expression of Yak-Kong seed coat extract, 

3T3-L1 cells were used in the presence or absence of breast cancer cells. Mono-

cultured 3T3-L1 cells were treated with 20 μg/ml of Yak-Kong seed coat extract. 3T3-

L1 cells co-cultured with MCF-7 cells were treated with different concentrations of 

Yak-Kong seed coat extract; 5, 10 and 20 μg/ml. Yak-Kong seed coat extract did not 

have any effect on protein levels of CYP19A1 both in mono-cultured adipocytes (Fig. 

7B) and in adipocytes co-cultured with breast cancer cells (Fig. 7C). 
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Figure 7. Effects of Yak-Kong seed coat extract on protein levels of CYP19A1 in 

3T3-L1 adipocytes in the presence or absence of MCF-7 cells 

5-20 μg/ml of Yak-Kong seed coat extract were treated. After differentiation, 3T3-

L1 adipocytes were co-cultured with MCF-7 cells for 3 days. Adipocytes were lysed 

and protein was extracted. The protein expression was measured by western blotting 

assay. A. Schematic illustration of adipocyte differentiation and co-culture experiment. 

B. Protein levels of CYP19A1 in mono-cultured adipocytes. C. Protein levels of 

CYP19A1 in adipocytes co-cultured with breast cancer cells. The loading control is β-

actin. Data was shown as means ± SEM with n=3. Mean values were found to be non-

significant (P>0.05) YK, Yak-Kong; NS, no significance.  
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Ⅳ. DISCUSSION 

 

Soybeans are well-known as foods containing phytoestrogens [33], but the effect on 

estrogen biosynthesis has not been discovered. To identify estrogen stimulating effect 

of soybean extracts, H295R cells were cultured with four indicator extracts of soybean; 

yellow soybean seed coat extract, Yak-Kong seed coat extract, yellow soybean embryo 

extract, and Yak-Kong embryo extract. Yak-Kong seed coat extract had the most 

estradiol-stimulating effect in H295R cells among soybean extracts (Fig. 1). Thus, Yak-

Kong seed coat extract was chosen as the study material for this project. The extract 

promoted production of 17β-estradiol in a dose dependent manner in H295R cells and 

mouse antral follicles (Fig. 2). It not only showed estradiol-stimulating effect of Yak-
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Kong seed coat extract in a concentration dependent manner, but also suggested that 

the extract increases 17β-estradiol in ovary, the primary site of estrogen synthesis.  

In steroidogenesis pathway, many steroidogenic enzymes are involved in estrogen 

production [23]. To determine which steroidogenic enzymes are induced by Yak-Kong 

seed coat extract, the protein and gene expression levels of steroidogenic enzymes were 

measured. Yak-Kong seed coat extract increased the expression of CYP19A1 (Fig. 3) 

and 3β-HSD (Fig. 4) in H295R cells. It means the extract promotes estrogen 

production by increasing the expression of CYP19A1, which converts more androgens 

into estrogens, and the expression of 3β-HSD, which increases the production of 

androgens as direct precursors of estrogens; androstenedione and testosterone. Yak-

Kong seed coat extract did not have any effect on the rest of enzymes in steroidogenesis 
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pathway. (Fig. 5) It means the extract increases only the expression of CYP19A1 and 

3β-HSD. 

The stimulating effects of aromatase expression and estrogen production of Yak-

Kong seed coat extract had to be further studied in aspect of estrogen-dependent cancer. 

In menopausal women, aromatase expression and estrogen production should be 

induced in sites with the symptoms of estrogen deprivation and inhibited in sites with 

risk of developing estrogen-dependent cancer. Although the stimulating effect of Yak-

Kong seed coat extract to estrogen biosynthesis was demonstrated, it had to be 

confirmed that the extract did not develop estrogen-dependent cancer and stimulate 

aromatase expression at the local sites associated with estrogen-dependent cancer. To 

identify the anti-estrogen dependent cancer effect of Yak-Kong seed coat extract, 

viability of MCF-7 and OVCAR-8 cells treated the extract was evaluated. The local 
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estrogen stimulation promotes cell proliferation in breast epithelial cancer cell and 

ovarian epithelial cancer cell [20, 34]. However, even though Yak-Kong seed coat 

extract promoted estrogen biosynthesis and did not affect cell viability in other cells 

(Fig. 1 and 2), viability of estrogen-dependent cancer cells with the extract was 

decreased (Fig. 6). It suggests that bioactivity of Yak-Kong seed coat extract are tissue-

specific [35]. 

To observe the tissue-specific aromatase stimulation of Yak-Kong seed coat extract, 

3T3-L1 adipocytes were used in the presence or absence of breast cancer cells. In 

mono-cultured 3T3-L1 cells, Yak-Kong seed coat extract did not have any effect on 

aromatase expression (Fig. 7B). Adipose tissue adjacent to malignant breast epithelial 

cells accounts for most of the aromatase expression of breast tumors. Thus, it means 

Yak-Kong seed coat extract does not stimulate aromatase expression of adipose tissue 
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proximal to malignant cells. In 3T3-L1 cells co-cultured with MCF-7 cells, Yak-Kong 

seed coat extract also did not have any effect on aromatase expression (Fig. 7C). It 

suggests that the extract does not stimulate aromatase overexpression of adipose tissue 

in breast cancer microenvironment [36]. As a result, the effect of aromatase expression 

of Yak-Kong seed coat extract on 3T3-L1 cells was different from that of H295R cells.  

In summary, Yak-Kong seed coat extract was discovered that can stimulate 

estrogen biosynthesis, suppress proliferation of estrogen-dependent cancer cells, and 

regulate aromatase expression tissue-specifically. These observations suggest that Yak-

Kong seed coat extract could be used as an estradiol stimulating natural medicine 

candidate via tissue-specific regulation of aromatase expression in menopausal women.  
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For further study, Yak-Kong seed coat extract should be observed the stimulation 

of tissue-specific aromatase expression in aspect of distinct promoter regulation and 

tissue-specific estrogen biosynthesis. 
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국문초록 

 

에스트로겐은 여성의 생식과 성적 발달에 중요한 역할을 하는 

스테로이드 호르몬이다. 여성은 노화가 진행됨에 따라 난소의 기능이 

저하되고 에스트로겐의 분비가 감소하므로, 정상적인 에스트로겐 수준을 

유지하는 것이 여성 건강에 중요하다. 아로마타제는 에스트로겐 합성에 

필수적 효소이며, 조직 특이적으로 발현한다. 선택적 아로마타제 조절제 

(selective aromatase modulator; SAM)는 에스트로겐 합성을 필요로 하는 

부위에서 아로마타제를 발현할 수 있고, 에스트로겐 의존성 암 조직에서 

아로마타제 과발현을 억제할 수 있다.  

따라서 본 연구의 목적은 갱년기 및 폐경기 여성의 에스트로겐 저하 

증상을 개선하기 위해 체내에서 에스트로겐을 근본적으로 생성하고, 
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에스트로겐 생성이 필수적인 조직에서 아로마타제의 발현을 증가시키는 

천연물을 발견하는 것이다. 더불어 아로마타제 발현을 조직 특이적으로 

조절하는 선택적 아로마타제 조절제로서의 작용을 확인하고자 한다. 

본 연구를 통해, 약콩껍질추출물이 사람의 부신 피질 암세포주인 NCI-

H295R 세포와 쥐의 난소에서 유래한 난포에서 17 베타-에스트라디올 

생합성을 증가시키는 것을 관찰하였다. 약콩껍질추출물은 스테로이드 

호르몬 생합성 경로에서 스테로이드 호르몬 생성 효소인 3β-HSD 와 

CYP19A1 의 발현을 증가시킴으로써 17 베타-에스트라디올 생합성을 

촉진하였다. 약콩껍질추출물은 부신 및 난소에서는 에스트로겐을 생합성 

하였지만, 에스트로겐 의존성 암세포로 알려진 유방암 및 

난소암세포에서는 세포 증식을 억제하였다. 더불어 H295R 세포에서 

CYP19A1 의 발현을 증가시켰지만 단일 배양된 지방세포 및 
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유방암세포와 공동 배양된 지방세포에서 CYP19A1 의 발현에 영향을 

주지 않았다.  

결론적으로, 본 연구는 약콩껍질추출물이 조직 특이적으로 에스트로겐 

생합성 및 아로마타제 발현을 촉진하는 에스트로겐 저하 증상 개선용 

천연물 의약품 기능성 소재로 사용될 수 있음을 시사한다. 
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