

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Design of Adaptive Duty-cycled Protocols
in Low-power and Lossy Networks

저전력네트워크를위한적응적듀티사이클프로토콜
설계

BY

JEONG SEUNG-BEOM

AUGUST 2019

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Design of Adaptive Duty-cycled Protocols
in Low-power and Lossy Networks

저전력네트워크를위한적응적듀티사이클프로토콜
설계

BY

JEONG SEUNG-BEOM

AUGUST 2019

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Design of Adaptive Duty-cycled Protocols
in Low-power and Lossy Networks

저전력네트워크를위한적응적듀티사이클프로토콜
설계

지도교수박세웅

이논문을공학박사학위논문으로제출함

2019년 8월

서울대학교대학원

전기컴퓨터공학부

정승범

정승범의공학박사학위논문을인준함

2019년 8월

위 원 장: 김 종 권 (인)
부위원장: 박 세 웅 (인)
위 원: 최 성 현 (인)
위 원: 심 병 효 (인)
위 원: 백 정 엽 (인)

Abstract

Internet of Things (IoT) has opened a new era with low-power embedded devices.

In industrial IoT networks, numerous sensors and actuators are deployed for system

monitoring and remote control. From smart homes to smart cities, new applications

and network services are emerging such as electricity management, home security,

health care, and smart grid. As IoT applications become diverse, the need for reliable,

energy-efficient, and flexible (i.e., adaptable to diverse and dynamic applications) net-

work protocols is growing up steadily. In this dissertation, to this end, we design three

different duty-cycled protocols for dynamic low-power and lossy networks (LLNs).

Firstly, we focus on mobile LLNs. With the proliferation of emerging Internet of

Things devices and applications, mobility is becoming an integral part of low-power

and lossy networks (LLNs). However, most LLN protocols have not yet focused on the

support for mobility with an excuse of resource constraints. Some work that do pro-

vide mobility support fail to consider radio duty-cycling, control overhead, or memory

usage, which are critical on resource-limited low-power devices. To tackle theses prob-

lems, we introduce MAPLE, an asymmetric transmit power-based routing architecture

that leverages a single resource-rich LLN border router. It supports mobility in duty-

cycled LLNs using received signal strength indicator (RSSI) gradient field-based rout-

ing. We implement MAPLE on a low-power embedded platform, and evaluate through

experimental measurements on a real multihop LLN testbed consisting of 31 low-

power ZigBee nodes and 1 high-power gateway. We show that MAPLE improves the

performance of mobile devices in LLN by 27.2%/55.7% and 17.9% in terms of both

uplink/downlink reliability and energy efficiency, respectively.

Next, we move our attention to Time Slotted Channel Hopping (TSCH), which is

a promising TDMA-like link layer protocol standardized by the IEEE 802.15.4-2015.

Compared with conventional asynchronous duty-cycled MAC protocols, it provides

i

both higher reliability and lower energy operation. For this reason, a number of TSCH

scheduling schemes have been proposed recently. However, they lack one thing: flex-

ibility to support a wide variety of applications and services with unpredictable traf-

fic load and routing topology due to “fixed” slotframe sizes. To this end, we propose

TESLA, a traffic-aware elastic slotframe adjustment scheme for TSCH networks which

enables each node to dynamically self-adjust its slotframe size at run time. TESLA aims

to minimize its energy consumption without sacrificing reliable packet delivery by uti-

lizing incoming traffic load to estimate channel contention level experienced by each

neighbor. We extensively evaluate the effectiveness of TESLA on large-scale 110-node

and 79-node testbeds, demonstrating that it achieves up to 70.2% energy saving com-

pared to Orchestra (the de facto TSCH scheduling mechanism) while maintaining 99%

reliability.

Lastly, we point out the limitations of TESLA. In TESLA, a reception (Rx) slot is

shared for multiple transmitters. To prevent their transmissions from being collided,

TESLA inevitably allocates more Rx slots than actually needed. To tackle this ineffi-

cient resources usage, we propose OST , a on-demand TSCH scheduling with traffic-

awareness, which improves TESLA further. OST basically schedules timeslots based

on estimation of average traffic load. Moreover, if there are queued packets due to

instantaneous traffic burst, it additionally allocates timeslots exactly as needed. We

implement OST on ContikiOS, and evaluate OST with state-of-the-arts on large-scale

multi-hop testbed showing the superiority of OST over others.

keywords: Low-power and lossy network (LLN), IEEE 802.15.4, Mobility, Asym-

metric transmit power (ATP), Time-slotted channel hopping (TSCH), Dynamic

scheduling, Wireless network protocol

student number: 2013-20877

ii

Contents

Abstract i

Contents iii

List of Tables vi

List of Figures vii

1 INTRODUCTION 1

1.1 Motivation . 1

1.2 Related Work . 3

1.2.1 Representative Standard LLN Protocols 3

1.2.2 TSCH Scheduling . 4

1.3 Outline and Contributions . 7

2 MAPLE: Mobility Support using Asymmetric Transmit Power in Low-

power and Lossy Networks 8

2.1 Introduction . 8

2.2 MAPLE Design . 12

2.2.1 Beacon and Beacon Period 14

2.2.2 Downlink Transmission: Local NACK and Retransmission . . 15

2.2.3 Uplink Transmission: RSSI Gradient-based Routing 16

2.2.4 Local Maximum Problem and RSSI Adaptation 18

iii

2.2.5 Implementing Reliable RSSI Capture 20

2.3 Performance Evaluation . 21

2.3.1 Methodology and Experiment Setup 21

2.3.2 Static Network . 23

2.3.3 Network with Mobility . 26

2.3.4 Simulation Study under More Mobility 29

2.4 Conclusion . 31

3 TESLA: Traffic-aware Elastic Slotframe Adjustment in TSCH Networks 33

3.1 Introduction . 33

3.2 Background . 35

3.2.1 IEEE 802.15.4 TSCH . 36

3.2.2 6TiSCH and its Minimal Configuration 37

3.2.3 Orchestra . 37

3.3 Preliminary and Motivation . 39

3.3.1 Methodology . 40

3.3.2 Experimental Results . 41

3.3.3 Summary . 44

3.4 TESLA Design . 44

3.4.1 Slotframe Structure . 45

3.4.2 Rx Slotframe Size Adaptation 46

3.4.3 Tx Slotframe Size Adaptation 52

3.4.4 Multi-channel Operation . 54

3.4.5 Collaboration with RPL . 54

3.5 Performance Evaluation . 55

3.5.1 Methodology and Experiment Setup 56

3.5.2 Impact of Traffic Load . 57

3.5.3 Impact of Network Topology 62

3.5.4 Impact of Run-time Traffic Dynamics 66

iv

3.5.5 Impact of TESLA Parameters 67

3.6 Conclusion . 69

4 OST: On-demand TSCH Scheduling with Traffic-awareness 70

4.1 Introduction . 70

4.2 OST Design . 72

4.2.1 Slotframes . 72

4.2.2 Periodic Provision . 73

4.2.3 On-demand Provision . 75

4.3 Evaluation . 76

4.3.1 Methodology and Experiment Setup 76

4.3.2 Experimental Results . 76

4.4 Conclusion . 78

5 CONCLUSION 79

Abstract (In Korean) 93

Acknowlegement 95

v

List of Tables

vi

List of Figures

2.1 Network model of MAPLE. 12

2.2 Superframe structure of MAPLE. 13

2.3 Opportunistic uplink routing using RSSI-gradient field. 17

2.4 Ideal case and local maximum problems in RSSI gradient based routing. 19

2.5 Topology map of indoor 32-node LLN testbed with a moving path for

node mobility. 22

2.6 Average absolute deviation for instantaneous RSSI and average RSSI. 23

2.7 PRR, duty-cycle, and number of hops results from a static network. . . 24

2.8 RSSI adaptation of a hole node (node 27). 25

2.9 PRR and duty-cycle results for the mobile node. 27

2.10 Hops for uplink traffic from the moving node. 27

2.11 PRR and duty-cycle results from the network with three mobile nodes. 28

2.12 Network topology for static nodes in Cooja simulation. 30

2.13 PRR and duty-cycle results from 50-node simulation. 30

3.1 An example of TSCH slotframe schedule and timeslot with slotframe

size of 3. 36

3.2 An example of TSCH scheduling in receiver-based Orchestra. 39

3.3 Various performance metrics in Orchestra and 6TiSCH minimal con-

figuration with different slotframe sizes. 41

3.4 An example of TESLA scheduling. 46

vii

3.5 Topology of node A and its RPL routing neighbors, and an example of

RSF size adaptation. 48

3.6 A snapshot of RPL topology for 110 nodes with -17 dBm of Tx power

on FIT/IoT-LAB testbed in Lille. 55

3.7 PDR, duty-cycle and latency according to different traffic load. 58

3.8 Number of Losses and overhead according to different traffic load. . . 59

3.9 CDF of duty-cycle and Rx slotframe size of TESLA for traffic load of

2 packets/second . 60

3.10 Impact of transmission power. 62

3.11 Impact of root location. 63

3.12 Results on the 79-node IoT-LAB Grenoble testbed. 65

3.13 Time vs. Rx slotframe size. 67

3.14 Slot utilization ratio with different PRR thresholds and upper bound of

slotframe lengths. 68

4.1 Timeslot tree. 74

4.2 PDR, duty-cycle according to different traffic load. 77

viii

Chapter 1

INTRODUCTION

1.1 Motivation

Low-power and lossy network (LLN), multihop wireless network composed of resource-

constrained embedded devices, has been used for a variety of applications including

smart grid automated metering infrastructure (AMI), environmental monitoring, and

wireless sensor network (WSN). In industrial IoT networks, numerous sensors and ac-

tuators are deployed for system monitoring and remote control. From smart homes to

smart cities [1, 2], new applications and network services are emerging such as elec-

tricity management, home security, and health care [3].

As IoT applications become diverse, the need for network protocols achieving fol-

lowing three requirements is growing up steadily. Firstly, network protocols should be

reliable. In other words, it guarantees high end-to-end packet delivery ratio (e.g., more

99%). Next, they need to be energy-efficient, since most of IoT devices are battery-

powered. Lastly, they are required to be flexible (i.e., adaptable to diverse and dynamic

applications).

With the emergence of Internet of Things (IoT) and cyber-physical systems (CPS),

LLN is now going into a new phase for smart and daily life applications which in-

clude medical care services [4, 5, 6], smart market maintenance [7, 2], networked

1

robots [8, 9], and more. A key challenge in many of these emerging applications is

that they incorporate not only stationary but also mobile nodes. As an example, a hos-

pital network can be connected with sensing and actuating devices on mobile patients

and patient beds, which enables remote monitoring of medical signals. In smart mar-

ket applications, mobile shopping carts are connected to an LLN, which is used for

real-time advertisement of hot deals, cart location tracking, and virtual fencing. Mar-

ket staffs can also carry low-power portable terminals for reporting status of inven-

tory/stock and market condition. For over a decade, LLN research community has

elaborated network layer protocols [10, 11, 7, 12] for energy efficiency and high re-

liability on resource-constrained devices. Although these protocols have been making

progress gradually under the assumption of stationary network, they cannot be ap-

parently adopted in LLNs with mobility, due to lack of providing any specific opera-

tion for mobility and identifying mobile nodes [13, 14, 15]. As the first work in this

dissertation, we design MAPLE, an asymmetric transmit power-based routing archi-

tecture , which provides flexible connectivity between the LLN border router (LBR,

also referred to as ‘gateway’) and each mobile node in LLN, both reliably and energy

efficiently.

Meanwhile, the IEEE 802.15.4-2015 [16] standardized the time-slotted channel

hopping (TSCH) protocol for low-power and lossy networks (LLNs), a promising

TDMA-like link layer protocol providing both high reliability and low energy oper-

ation. TSCH’s slotframe structure is the basis of TSCH operation, but its size is set

offline as a fixed global constant. On top of significant burden for empirical optimiza-

tion, even if the slotframe size is optimized, it is still problematic since all nodes share

a single slotframe size, disregarding routing topology and traffic intensity for each

node: (1) When the slotframe is too small for the node experiencing low traffic load,

it will waste energy due to idle listening. (2) When the slotframe is too large for the

node under heavy traffic load, it cannot receive/forward many packets due to chan-

nel contention or queue overflow. To address this issue, we introduce TESLA, a novel

2

traffic-aware elastic slot-frame adjustment scheme as a solution. Furthermore, we also

point out the limitation of TESLA, and propose OST , a on-demand TSCH scheduling

with traffic-awareness.

1.2 Related Work

1.2.1 Representative Standard LLN Protocols

This section presents two representative LLN routing protocols as our benchmark,

RPL (IETF standard) [10] and LOADng (IETF draft) [17], and their related work.

RPL and Mobility Support. RPL [10] is a routing protocol for low-power IPv6 net-

works which enables IPv6 Internet connectivity to embedded devices by providing

reliable routes over lossy wireless links. Several studies [13, 14, 15], however, found

that RPL suffers significant performance degradation when operating with mobile end-

points since it was not designed with mobility in mind. To alleviate this problem, ME-

RPL [18] gives lower priority to mobile parent candidates than static candidates when

choosing a preferred parent. In addition, when parent changes occur frequently, DIS

transmission interval is reduced for prompt neighbor discovery. Ko et al. introduced

MoMoRo [13], which detects route disconnections based on uplink packet losses and

quickly gathers neighbor information by requesting a unicast reply. It can find out

neighbors with a good link based on a fuzzy estimator. In mRPL [19], a mobile node

broadcasts a batch of DIS messages when the RSSI from its parent drops, triggering

replies from its neighbors. The mobile node measures RSSI from the neighbors and

selects the neighbor with a good RSSI as a preferred parent. Gaddour et al. used posi-

tion information for mobile routing in [20] where corona ID is defined as the minimum

of reachable hop distances from the DAG root.

However, most of these protocols are designed assuming no radio duty-cycling

for more responsiveness, sacrificing low-power operation. If a duty-cycled MAC is

adopted under these protocols, it necessarily delays the update of routing costs, result-

3

ing in more packet losses and control overhead [19]. Moreover, proposals in [18, 13,

19, 20] require maintaining up-to-date topology information. This incurs a significant

control overhead to keep track of topology changes caused by mobile nodes. Lastly,

evaluations of [18, 21, 20] are performed only on simulators, which cannot show their

feasibility in the unpredictable real world.

LOADng LOADng [17] is a simplified version of well known AODV (Ad hoc On-

demand Distance Vector Routing) [22] to support mobile LLNs. Like AODV, LOADng

discovers a route between a source and a destination based on flooding of routing

packets from the source. However, Clausen et al. showed that LOADng suffers from

flooding overhead, particularly in applications with collection traffic [23]. To resolve

this problem, the authors designed LOADng-CTP, where only the sink (not a source

but a destination) floods routing messages to enable each data source to obtain a path

towards the sink. It outperforms LOADng with respect to delivery ratio, overhead, and

delay. However, both LOADng and LOADng-CTP are evaluated without a duty-cycled

MAC and only with simulations.

1.2.2 TSCH Scheduling

Numerous duty-cycling MACs have been proposed for LLNs. Among those, asyn-

chronous approaches [24, 25, 26, 27, 28, 11] have the advantage of neither requir-

ing strict time-synchronization on resource-constrained devices, nor relying critically

on certain parameter configurations. With technical progress, however, synchronized

communication became a viable option [29], such as TSCH, which opens the schedul-

ing problem. Below we summarize prior work on TSCH scheduling , which is catego-

rized into centralized and decentralized approaches.

Centralized TSCH Scheduling. Centralized scheduling is often employed in indus-

trial scenarios [30, 31, 32] where algorithms are built in and maintained by a central

controller. TASA [33] is a centralized traffic aware scheduling algorithm using graph

theory methods of matching and coloring. TASA builds the schedule based on traffic

4

load offered by each source node, and allocates timeslots and channel offsets based on

network topology in order to maximize parallel transmissions. In [34, 35], the authors

have also derived fundamental bounds on the minimum number of slots achievable

with TASA for a given topology. Overlooking practical challenges in LLNs, however,

it showed high loss rate or high duty-cycle on a real multihop testbed evaluation [36].

AMUS [37] is a centralized adaptive scheduling scheme which gives more Tx

slots to nodes that are closer to the sink assuming that those nodes have more traffic to

forward. However, it does not consider traffic load, routing topology (other than hop

distance), nor link quality, resulting in inefficient allocation.

In [38], retransmission slots are added and shared according to reliability and delay

constraints. However, it does not handle the side effect: collisions and excessive idle

listening.

For high data rate scenarios, Elsts et al. [39] proposed a hybrid approach where

dedicated and shared slots coexist in the same schedule. However, they assume that

the number of channels used in the network is greater than the number of forwarding

nodes, which is unrealistic in a channel-resource limited network. In addition, all nodes

are forced to wake up at every timeslot, disregarding low-power operation.

In centralized link scheduling (CLS) [40], the sink reserves slots for a newly join-

ing node at every node along the path to that node. When a node changes its preferred

parent, it sends a removal request to the sink, de-allocating the slots in each interme-

diate hop. However, it requires an end-to-end multihop signaling phase, resulting in

massive communication overhead.

Distributed TSCH Scheduling. The goal of distributed schemes is to adapt to dy-

namic topology and traffic load changes efficiently without the signaling overhead

to a central controller. For example, in local lock-based algorithms [41, 42, 43, 44],

each node selects and reserves a timeslot not used by nearby interfering nodes. By an-

nouncing this reservation locally, the timeslot is locked for the node solely. However,

notifying the reservation to the interfering nodes selectively is a complicated task in

5

practice. Besides, none of these works addressed the reservation overlapping problem.

Vallati et al. [45] improves the 6TiSCH minimal schedule by allocating shared slots

dynamically. However, it still uses shared slots only, like the minimal configuration,

thus suffering severe packet collisions and redundant overhearing.

6TiSCH defines SF0 [46], a minimal scheduling function using 6top protocol

(6P) [47]. It estimates the number of slots required between two neighbors, and lets

them know when to add or delete slots. However, it does not define which times-

lots they should reallocate. Based on SF0, LLFS [48] daisy-chains the timeslots in a

multi-hop path to reduce end-to-end latency. However, slot reallocation by SF0 occurs

between every neighbor, incurring significant overhead for 6P negotiation such as 6P

Request/Response messages.

DeTAS [49] is a decentralized version of TASA. In DeTAS, a node collects band-

width requests from its children, adds them with its own bandwidth, and then forwards

it to its parent recursively. Then, slot allocation starts from the sink. To reduce end-to-

end delay and queue overflows, DeTAS schedules alternatively Rx/Tx slots along the

path to the sink. However, if a packet is lost due to poor link quality, all the subsequent

slots scheduled are wasted.

Some scheduling proposals [50, 51, 52, 53] allocate timeslots randomly. Then,

using local information, nodes detect schedule collision between two interfering ra-

dio links and re-allocate the colliding slots. These works may handle traffic dynamics

but have only been evaluated on small-scale low-density deployments. Higher density

limits the available slots due to a large number of interfering nodes, and as a result,

communication overhead increases substantially since more negotiation procedures

are needed [32].

6

1.3 Outline and Contributions

This dissertation is organized as follows. In Chapter 2, we propose ATP-based MAPLE

system for reliable and low-power bidirectional communication in mobile LLNs. It

provides single-hop downlink based on the high-power gateway and multihop uplink

based on an RSSI gradient field based opportunistic routing. We design several mecha-

nisms to support this system architecture: (1) NACK-based local downlink retransmis-

sion improves downlink reliability without topology information. (2) High-resolution

multi-sampling makes RSSI measurement stable enough to be used as a routing met-

ric. (3) RSSI adaptation addresses the local maximum problem of the RSSI-based

gradient field. We implement MAPLE on real embedded devices and experimentally

evaluate its performance against the standard RPL, ORPL, and LOADng on a real 32-

node testbed. Our evaluation shows that MAPLE achieves significantly better packet

delivery performance and route adaptation according to topology change than RPL.

In Chapter 3, we analyze the impact of slotframe size, showing the limitation of

setting it as a fixed global constant, offline. We design TESLA which includes four ele-

ments: (1) traffic information exchange by piggybacking on each frame, (2) contention

level estimation, (3) periodic slotframe adjustment and sharing, and (4) multi-channel

scheduling. We also implement prototype of TESLA and evaluate its performance on

two distinct testbeds with 110 nodes and 79 nodes, showing that TESLA outperforms

the state-of-the-art in terms of reliability and energy-efficiency using distributed dy-

namic scheduling.

In Chapter 4, we introduce OST , which improves TESLA by dedicating timeslot to

each pair of nodes. In addition, OST allocates timeslots in on-demand manner when

the burst of traffic occurs. We implement and evaluate OST on a large-scale multi-hop

testbed, showing its outstanding performances.

Lastly, we conclude the dissertation in Chapter 5.

7

Chapter 2

MAPLE: Mobility Support using Asymmetric Trans-

mit Power in Low-power and Lossy Networks

2.1 Introduction

Low-power and lossy network (LLN), multihop wireless network composed of resource-

constrained embedded devices, has been used for a variety of applications includ-

ing smart grid automated metering infrastructure (AMI), environmental monitoring,

and wireless sensor network (WSN). Furthermore, with the emergence of Internet of

Things (IoT) and cyber-physical systems (CPS), LLN is now going into a new phase

for smart and daily life applications which include medical care services [4, 5, 6],

smart market maintenance [7, 2], networked robots [8, 9], and more. A key challenge

in many of these emerging applications is that they incorporate not only stationary but

also mobile nodes. As an example, a hospital network can be connected with sens-

ing and actuating devices on mobile patients and patient beds, which enables remote

monitoring of medical signals. In smart market applications, mobile shopping carts

are connected to an LLN, which is used for real-time advertisement of hot deals, cart

location tracking, and virtual fencing. Market staffs can also carry low-power portable

terminals for reporting status of inventory/stock and market condition.

8

For over a decade, LLN research community has elaborated network layer pro-

tocols for energy efficiency and high reliability on resource-constrained devices. As

a cornerstone work, 6LoWPAN [54] and IPv6 routing protocol for LLNs (RPL) [10]

were designed and standardized, enabling multihop IoT networks. Numerous network

protocols based on RPL have been devised [11, 7, 12], such as ORPL [11], surpass-

ing performance of RPL in terms of delay, energy-consumption, and reliability. How-

ever, although these protocols have been making progress gradually under the assump-

tion of stationary network, they cannot be apparently adopted in LLNs with mobility,

due to lack of providing any specific operation for mobility and identifying mobile

nodes [13, 14, 15]. Several studies [13, 14, 15] confirm that protocols designed for sta-

tionary network, such as RPL, experience significant performance degradation when

operating with mobile devices.

There have been several work [19, 13, 17, 23, 20, 18], such as LOADng (LLN

On-demand Ad-hoc Distance-vector Routing Protocol - Next Generation) [17], de-

signed to provide seamless connectivity for mobile nodes in LLN. However, each of

these work has at least one of the limitations among the followings. (1) They disre-

gard the protocol operation with radio duty-cycling, which is one of the most critical

characteristics of LLN with battery-powered nodes, (2) up-to-date neighbor or routing

information is required according to topology dynamics caused by mobility, adding a

significant network overhead, and (3) even if they showed performance improvement

in idealistic simulator-based evaluation, the same has not been shown in practice via

real experiments.

This work investigates how to provide bi-directional connectivity between the LLN

border router (LBR, also referred to as ‘gateway’) and each mobile node in LLN, both

reliably and energy efficiently. In contrast to previous approaches, we exploit asymmet-

ric transmit power (ATP) architecture [55] for LLN with mobile endpoints. It has been

more common place that LLN routers are plugged in, especially in indoor environ-

ments which have abundant outlets [7, 5], and only the endpoints are battery-operated.

9

It is also possible for smart grid applications such as automated metering infrastruc-

ture (AMI) where power is a given [56]. In this context, recent LLN protocols, such

as Thread [57] and BLEmesh [58], even ‘force’ LLN routers to be plugged in. With-

out an energy constraint, these plugged-in routers can utilize much higher transmit

power than battery-powered endpoint devices (e.g., 30 dBm vs. 0 dBm), which allows

asymmetric transmit power to be a viable design choice in this regime.

As an example of ATP-based applications, a smart market [7, 2] uses a high-power

gateway for disseminating price information and advertisements. At the same time, it

collects stock status from portable terminals carried by mobile staffs, or locations of

shopping carts. In a hospital network, low-power sensing and actuating devices report

patient’s condition such as vital signals. The information gathers in a single network

gateway, and it can maintain and process the information. In addition, when an emer-

gency occurs, it can control remote medical devices (attached to patients) immediately

using high-power transmissions.

ATP-LLN provides a single hop downlink (from gateway to endpoints) and mul-

tihop uplink (from endpoints to gateway) architecture. A number of studies have ex-

plored its potential [55, 7, 2], showing improvement in downlink reliability and energy

consumption when all nodes are static. Building on these previous work, we argue that

with a careful design, the ATP architecture is also useful for supporting mobile nodes.

To this end, we design MAPLE, an ATP-based LLN protocol that supports mobile end-

points by providing reliable and energy-efficient bi-directional communication under

dynamic topology variation.

In our MAPLE design, each low-power node expects to receive a downward packet

directly from the high-power gateway (i.e., single hop). To improve reliability, each

node sends a negative acknowledgement packet (NACK) when detecting a missed

downward packet, which triggers local retransmissions from its neighbor nodes. Un-

like the previous approach in [55], MAPLE’s neighbor forwarding works without topol-

ogy information. On the other hand, low-power uplink transmissions require multihop

10

routing. To obtain path diversity in dynamic mobile environments, MAPLE uses op-

portunistic routing [11] where a sender simply broadcasts packets and each receiver

decides whether to relay the packets by considering its and the sender’s uplink routing

metric. For the routing metric, MAPLE uses RSSI of the gateway’s high power trans-

missions given that RSSI (Received Signal Strength Indicator) generally decreases

with distance (i.e., providing indirect geographical information). A single high-power

transmission can update all nodes’ routing metric at once, creating an RSSI gradient

field in the network, and low-power nodes are completely free from a control packet

overhead and routing table size limitation.

In doing so, we address well-known concerns about the RSSI measurements; it

is unstable and time varying [59, 60, 61]. To this end, MAPLE obtains a stable and

interference-free RSSI value from each packet of the gateway by using a high-resolution

multi-sampling technique [62, 63], and updates this value with periodic high-power

beacon transmissions [7]. Furthermore, we also tackle the local maximum problem [64],

a representative problem in geographical routing, through dynamic and distributed

adaptation of the RSSI metric. We implement MAPLE on ContikiOS and extensively

evaluate the performance of MAPLE on a real LLN testbed in both stationary and mo-

bile scenarios. Our results show that MAPLE significantly outperforms representative

LLN protocols, i.e., RPL [10], ORPL [11], and LOADng [17], in terms of reliability

and energy consumption.

The contributions of this work are threefold:

• We propose ATP-based MAPLE system for reliable and low-power bidirectional

communication in mobile LLNs. It provides single-hop downlink based on the high-

power gateway and multihop uplink based on an RSSI gradient field based oppor-

tunistic routing.

• We design several mechanisms to support this system architecture: (1) NACK-

based local downlink retransmission improves downlink reliability without topol-

ogy information. (2) High-resolution multi-sampling makes RSSI measurement sta-

11

G

Figure 2.1: Network model of MAPLE.

ble enough to be used as a routing metric. (3) RSSI adaptation addresses the local

maximum problem of the RSSI-based gradient field.

• We implement MAPLE on real embedded devices and experimentally evaluate its

performance against the standard RPL, ORPL, and LOADng on a real 32-node

testbed. Our evaluation shows that MAPLE achieves significantly better packet de-

livery performance and route adaptation according to topology change than RPL.

The remainder of this chapter is organized as follows: In Section 2.2, we present

the design of our proposed scheme, MAPLE, and elaborate on its main functional

blocks. We discuss the implementation details and present the evaluation results in

Section 2.3. We conclude the chapter in Section 2.4.

2.2 MAPLE Design

In this section, we describe MAPLE, Asymmetric Transmit Power-based Mobile LLN

architecture that provides mobility support with low radio duty-cycle. Fig. 2.1 de-

12

Figure 2.2: Superframe structure of MAPLE.

picts the system model we consider. There are a large number of low-power nodes

and a single high-power gateway node (G). We assume that each node could be mo-

bile, but is always located within high-power transmission coverage of the gateway.

Thus transmission of gateway reaches all the nodes in a single hop. However, uplink

communication works in a multihop manner due to low transmit power of low-power

nodes.

As shown in Fig. 2.2, MAPLE repeats a superframe every beacon interval, which

is divided into four periods: (1) beacon period (B), (2) downlink period (Down), (3)

uplink period (Up), and (4) sleep period (Sleep). First, the gateway transmits a beacon

in the B period and downward packets in the Down period, both with high transmit

power. During these two periods, the other low-power nodes are not allowed to send

any packet to ensure that the gateway’s transmissions are free from contention and col-

lision [7]. Instead, they continuously listen to the medium to receive packets from the

gateway. In the subsequent Up period, the low-power nodes send and receive upward

packets on top of a duty-cycling MAC protocol for low-power operation1. At the end

of Up period, a low-power node stops duty-cycling and turns off its radio for energy

saving. During this Sleep period, there is no packet communication. After the Sleep

1Any of synchronous [65, 66] or asynchronous duty-cycle MAC protocols [67, 68, 69] could be used

in MAPLE. Without loss of generality, we use the ContikiMAC [67], a representative asynchronous MAC

protocol for LLN.

13

period, every low-power node turns its radio on again to receive next beacon at the

right time.

Except for the B period, lengths of the other periods could be controlled by the

gateway according to traffic generation rate and network size. For instance, Sleep du-

ration might be set to zero in order to minimize channel contention in the Up period

when intensity of uplink traffic is high. On the contrary, Sleep period can be made

longer for ultra low-power operation when uplink traffic load is light. The remainder

of this section provides detailed descriptions of B, Down, and Up periods.

2.2.1 Beacon and Beacon Period

In the B period, the gateway transmits beacons using high transmit power so that

all nodes can receive them. The beacon has three major roles. Firstly, it is used for

network-wide time synchronization of all the nodes. Every beacon includes durations

of B, Down, Up, and Sleep periods, and a node willing to join the MAPLE network

must wait and listen for the first beacon reception. Once a node receives a beacon cor-

rectly, it can be synchronized and share the superframe structure illustrated in Fig. 2.2.

Secondly, the beacon includes the destinations of the downward packets which will be

sent in the subsequent Down period. The destination information is used for NACK-

based local retransmission of downward packets (explained in Section 2.2.2). In our

experiments, we have used 5 seconds as the beacon interval.

Lastly, the beacon is used to generate an RSSI-based gradient field throughout

the network. Whenever each low-power node receives a high-power packet from the

gateway, it records the RSSI (RSSIG). Ideally, the closer a node is to the gateway,

the larger RSSIG it obtains. MAPLE exploits this RSSIG-gradient field for multihop

opportunistic routing in the Up period, as described in Section 2.2.3.

14

2.2.2 Downlink Transmission: Local NACK and Retransmission

In the Down period, the gateway transmits downward packets with a high transmit

power. Low-power nodes are not allowed to transmit any packet during this period

to avoid packet collision [7]. While the single-hop high-power downlink transmission

based on the ATP architecture removes the need for downlink routing, a subtle issue

still remains: how to acknowledge a downward packet for reliable packet delivery. This

is because a low-power destination node is not likely to deliver an acknowledgement

(ACK) to the gateway in a single hop due to its limited transmit power.

An ACK may be forwarded towards the gateway through a multihop route [70,

71], which creates a significant communication overhead. Another approach is for

the destination node to send ACK packets locally to its neighbors [55, 7]. When the

destination’s neighbors overhear a downward packet but do not receive a local ACK

from the destination, they locally retransmit the downward packet on behalf of the

gateway. However, this requires up-to-date neighbor information which is hard and

expensive to get in mobile LLNs since topology changes continuously. Furthermore,

this approach creates large number of (potentially redundant) local ACKs, which may

be an overkill under high-power gateway transmissions where downlink loss rates are

typically low for most endpoints.

For these reasons, our solution is to send a local negative-ACK (NACK) for a down-

ward packet loss. As described in Section 2.2.1, a low-power node knows the destina-

tions of all downward packets that are sent in a Down period by receiving a beacon in

the previous B period. When a low-power node expects to receive a downward packet

for itself in a Down period but misses it, the node sends a local NACK. Given that the

Down period is only for the gateway’s transmission, local NACK is transmitted in the

following Up period with a low transmit power.

At the same time, each low-power node overhears all downward packets in a Down

period and holds them until the end of the subsequent Up period. The gateway also

holds these downward packets. Upon receiving a NACK in the Up period, a low-power

15

node (or the gateway) searches the stored downward packets to check if any of them

is destined to the NACK sender. If it has one, it forwards the downward packet to the

NACK sender with a low transmit power. The node can try the local retransmission

several times until receiving an ACK from the destination. This approach improves

downlink reliability without topology information nor redundant ACK transmissions.

When a node fails to receive a beacon in a B period, it can still use the superframe

structure given that the time synchronization is valid for a while. But it does not find out

the destination information of downlink transmissions in the following Down period.

In this case, the node assumes that a downward packet towards itself is lost and trans-

mits a NACK in the following Up period. This triggers local retransmissions from the

neighbors if the downward packet loss really happens, providing reliable downward

packet delivery regardless of a beacon loss.

MAPLE also supports network-wide broadcast service from the gateway. To this

end, the gateway can inform all low-power nodes of the existence of a broadcast packet

by including IPv6 link-local broadcast address in the beacon, instead of a downward

unicast destination. The rest of operation with local NACK and retransmission is the

same as the unicast case.

Lastly, like high-power beacon transmissions, each high-power downlink trans-

mission is also used to update RSSIG for uplink routing, regardless of its destination.

This enables a low-power node to update its RSSI-based routing metric frequently

even if it fails to receive a recent beacon.

2.2.3 Uplink Transmission: RSSI Gradient-based Routing

In the Up period, the gateway mainly listens to the medium, but can transmit ACKs

for uplink traffic or perform local retransmissions for NACKs, both with a low level

of transmit power. Meanwhile, low-power nodes send/receive packets with duty-cycle

for energy saving.

For multihop uplink transmissions, MAPLE borrows opportunistic routing concept

16

Figure 2.3: Opportunistic uplink routing using RSSI-gradient field.

in ORW [11] but uses a gradient-field of RSSIG rather than the EDC metric. Specifi-

cally, each packet sender piggybacks its RSSIG value in an upward packet and simply

broadcasts it. Given that large RSSIG indicates high proximity to the gateway, when

a node receives an upward packet and it has higher RSSIG than the packet sender,

it sends an ACK and forwards the packet. Fig. 2.3 shows an example of the RSSIG-

gradient based opportunistic forwarding. The number in each node indicates RSSIG

value obtained through a previous beacon or downward packet reception (The unit is

dBm). Although there are five neighbors of data source (expressed as Src), only two

nodes among them have higher RSSIG values (-9 dBm and -10 dBm) than RSSIG of

the source (-15 dBm), and thus are valid candidates for data forwarding.

Compared to the state-of-the-art LLN routing protocols such as RPL [10] and

LOADng [17], RSSIG-based opportunistic routing of MAPLE has three primary strengths.

Above all, MAPLE’s opportunistic routing requires each node to maintain only its

RSSIG value without any neighbor information, letting a resource-constrained de-

vice keep low and constant memory footprint regardless of network size or density. In

addition, RSSIG is updated solely based on the gateway’s high power transmissions,

17

which enables a low-power node to maintain a valid routing metric without any control

packet overhead. Lastly, given that one high-power transmission can update RSSIG

of all nodes, the gateway can freely adjust periodicity of RSSIG update depending on

mobility scenarios.

However, an RSSIG-gradient has the local maximum problem which is common

in geographical routing. It is even more so when applying the RSSIG-gradient in a

real wireless environment since RSSI is highly variable even if all nodes are stationary

due to multipath fading, shadowing, and various interference. When a route with a

non-monotonic RSSIG-gradient is encountered, uplink packets may not be relayed

anymore in the middle of the path, leading to packet losses. MAPLE addresses this

phenomenon by adjusting RSSIG intentionally, but carefully. This is explained in

Section 2.2.4.

2.2.4 Local Maximum Problem and RSSI Adaptation

In a free space where every node has a line-of-sight (LOS) link with the gateway,

RSSIG can be used to approximately indicate the straight-line distance to the gateway

using free-space RF propagation models. Meanwhile, MAPLE interprets this informa-

tion as the distance along the routing path. If the network density is high enough to

provide sufficient number of forwarding nodes such that linear shaped routing path

can be obtained for any node, as depicted in Fig. 2.4(a), this interpretation is valid.

However, this interpretation might not hold when the path is curved like Fig. 2.4(b),

which is highly probable when the node density is low. Furthermore, it is also invalid

if there are obstacles which block off LOS with the gateway as shown in Fig. 2.4(c). In

an ATP network where LOS and Non-LOS (NLOS) nodes with the gateway coexist,

RSSIG field is not generated with a monotonic gradient along the desired path. For

example, in Figs. 2.4(b) and 2.4(c), a packet which is generated by or sent to a node

with local maximum RSSI (denoted as a ‘Hole!’ in the figures) cannot be forwarded

any further towards the gateway as if it gets stuck at a dead-end, or in what we call a

18

(a) Ideal RSSI gradient

(b) Local maximum problem 1

(c) Local maximum problem 2

Figure 2.4: Ideal case and local maximum problems in RSSI gradient based routing.

hole. This problem makes the hole node suffer from consecutive packet losses either at

the link since there is no forwarder with better RSSIG, or at the queue due to memory

overflow as resource-constrained nodes have very small size queues.

To resolve this hole problem, we design a light-weight but effective algorithm for

RSSIG adaptation at the hole node. Each low-power node maintains the most recent

transmission history list (listtx). As a first-in first-out (FIFO) list, listtx is updated

whenever an anycast transmission is completed. If the transmission is acknowledged,

which means there is at least one neighbor who offers routing progress as the next hop,

19

transmission success (S) is recorded in listtx. On the other hand, when there is no

incoming ACK packet before a timeout (which is, for example, a whole sleep interval

in asynchronous sender-based duty-cycle MAC protocols), transmission failure (F) is

added to the list. If the number of F (NF) exceeds a pre-specified threshold, N th
F , the

node recognizes itself as a hole. Then it tries to escape from the hole by lowering its

RSSIG deliberately. With NF above N th
F , RSSIG is reduced by ∆hole every packet

loss in the link. The updated RSSI in the hole, RSSIhole, is expressed as,

RSSIhole = max
(
RSSIG − (NF −N th

F) ·∆hole, RSSImin

)
,

where RSSImin is the minimum RSSI value available in a radio. In our implementa-

tion, N th
F and ∆hole are 2 and 20 dBm, respectively.

2.2.5 Implementing Reliable RSSI Capture

Even though MAPLE handles the hole problem, instantaneous RSSI is well known to

be unpredictable in wireless links due to multipath fading, external/internal interfer-

ence and various environmental factors. On the other hand, the primary principle for

uplink routing of MAPLE is to adapt an RSSIG-gradient field to physical topology

changes like node’s mobility, while minimizing the effect of wireless unpredictability.

As one of possible approaches, more RSSIG samples could be collected by increasing

the number of high-power transmissions. Then, the average RSSIG can be used for

an uplink routing metric. However, this inevitably brings about more energy consump-

tion.

We consider an IEEE 802.15.4 compliant radio, i.e., CC2420 [72], as an imple-

mentation example. During a packet reception, a 2-byte frame check sequence (FCS)

follows the last MAC payload byte. FCS is automatically generated and verified by

the hardware when the MODECTRL0.AUTOCRC control bit is set2. Then the first FCS

byte is replaced with the 8-bit RSSI value, which can be read by the upper layer. In
2It is recommended to always have this control bit enabled, except possibly for debug purposes [72].

20

CC2420, this RSSI value is measured over the first 8 symbols following the start of

frame delimiter (SFD), and can be obtained from the RSSI.RSSI VAL register.

In our system, instead of reading only the first byte of FCS for RSSI, we obtain

multiple RSSI values from a single packet in a similar way to [62]. The RSSI value

in RSSI.RSSI VAL is always averaged over 8 symbol periods (128 microseconds)

and continuously updated for each symbol after RSSI has become valid. We let a low-

power node detect an SFD interrupt for the B and Down periods and then immediately

read and store RSSI.RSSI VAL register value every 8 symbols. Given that, follow-

ing SFD, a frame length byte and IEEE 802.15.4 MPDU (maximum size of 127 bytes)

come, 32 RSSI samples can be acquired at most from a single packet. In our imple-

mentation, we use the beacon size of 51 bytes and let 10 RSSI samples obtained. We

average these RSSI samples and use the averaged value as RSSIG.

2.3 Performance Evaluation

In this section, we evaluate MAPLE experimentally through a prototype implementa-

tion, and compare it with RPL, ORPL, and LOADng in terms of reliability and energy

efficiency. We evaluate on a network with and without mobility using three scenarios;

1) static network (no mobility) 2) a single mobile device, and 3) three mobile devices.

In addition, we also run Cooja simulations to evaluate and compare the performance

under high level of network mobility.

2.3.1 Methodology and Experiment Setup

Fig. 2.5 presents the topology of our testbed where a total of 32 TelosB clone devices

are deployed with one node acting as the gateway (or root) of the network. For MAPLE,

we use the MTM-CM3300MSP device as the high-power gateway, which is similar to a

TelosB with a 10 dB power amplifier. The other low-power nodes use a transmit power

of -20 dBm while the high-power root uses 10 dBm. For other compared schemes,

21

Figure 2.5: Topology map of indoor 32-node LLN testbed with a moving path for node

mobility.

the gateway uses the same transmit power as other nodes. This leads to a maximum

diameter of 5 hops in case of RPL.

We consider a bidirectional traffic scenario. Each node generates an uplink packet

every 75 seconds, while the gateway generates equal rate of downlink packet per node,

resulting in average inter-packet interval of 2.5 seconds in both directions. In our ex-

periments with MAPLE, within the beacon interval of 5 seconds, the duration of Down

period is 20 ms to accommodate two downlink packets. Remaining time is used for

Up period (with no Sleep period). In all experiments, the application payload is 24

bytes, which is carried in UDP datagrams over 6LoWPAN. All our experiments were

done on Zigbee/IEEE 802.15.4 channel 26 (i.e., no WiFi interference) and in a stable

channel environment with minimal external interfering factors, such as uncontrolled

human movement and environment changes. Unless specified, all our results are an

average of three runs of 1-hour experiments from different times of the day.

For comparison with state-of-the-arts, we use RPL [10], ORPL [11], and LOADng [17].

All these protocols including MAPLE are implemented on top of ContikiMAC [67] in

ContikiOS [73]. We use Contiki’s default values for the number of transmission at-

22

5 10 15 20 25 30

Node ID

0

0.5

1

1.5

2

2.5

3

A
v
e

ra
g

e
 A

b
s
o

lu
te

 D
e

v
ia

ti
o

n

RSSI
Inst

RSSI
Avg

Figure 2.6: Average absolute deviation for instantaneous RSSI and average RSSI.

tempts and duty cycle rate, 5 and 8 Hz, respectively. Note that the gateway does not

duty-cycle in order to handle all network traffic. ContikiMAC has a phase-lock mech-

anism, where a sender records wake-up phase of its neighbors, and uses it for timely

transmission in an energy-efficient manner. Phase-lock can be used for unicast of RPL

or LOADng, neither broadcast nor anycast of ORPL and MAPLE.

With this configuration, we first check the total size of volatile memory for each

protocol. RPL and ORPL consume 8.6 and 8.4 kBytes, respectively, and LOADng uses

9.5 kBytes of RAM. On the other hand, MAPLE spends only 7.3 kBytes of memory

as it does not need to maintain neighbor or routing information. This result verifies

MAPLE outperforms state-of-the-arts with regard to memory footprint.

2.3.2 Static Network

We first evaluate the effect of multiple RSSI sampling in a single packet, which is used

in MAPLE for reliable RSSI capture. To this end, we run MAPLE with beacon interval

of 5 seconds in the testbed shown in Fig. 2.5. Whenever a low-power node receives

a beacon, it records two kinds of RSSI values, RSSIInst and RSSIAvg. RSSIInst

indicates the instantaneous RSSI value read from the first FCS byte of the received

beacon. On the other hand, RSSIAvg is the average of 10 RSSI samples stored after

an SFD interrupt based on our approach described in Section 2.2.5. The experiment

23

RPL ORPL LOADngLOADng-N MAPLE
0

20

40

60

80

100

120

P
a

c
k
e

t
R

e
c
e

p
ti
o

n
 R

a
ti
o

 (
%

)

Uplink Downlink

(a) PRR

1.3 2.9 40.9 100.0 2.2

RPL ORPL LOADngLOADng-N MAPLE
0

1

2

3

4

5

D
u

ty
 C

y
c
le

 (
%

)

(b) Duty cycle

RPL ORPL LOADngLOADng-N MAPLE
0

1

2

3

4

H
o

p
s

Uplink Downlink

(c) Hops

Figure 2.7: PRR, duty-cycle, and number of hops results from a static network.

ran for 4-hours, leading to about 2,900 beacon receptions. We observed that the differ-

ence between the mean values of RSSIInst and RSSIAvg is marginal less than 1%.

However, their deviations over time are quite different. Fig. 2.6 presents the average

absolute deviations over time for each node. For the RSSIInst measurements, in the

worst case (i.e., node 5), the deviation is close to 3. We stabilized this unpredictable

RSSI by obtaining and averaging multiple RSSI samples, resulting in 40% improve-

ment.

Using our stabilized RSSIAvg, now we evaluate the performance of MAPLE against

RPL, ORPL, and LOADng in a static network. Fig. 2.7(a) shows the end-to-end packet

reception ratio (PRR) for uplink and downlink traffic. We observe that LOADng is not

suited for a duty-cycled LLN, showing severe PRR degradation. This result comes

from the way of its reactive route search based on network flooding. A broadcast mes-

sage for route request occupies the medium within a whole sleep interval (i.e., 125

ms in 8 Hz duty-cycle rate). What is worse, it is propagated throughout the network

24

0 500 1000 1500 2000 2500 3000 3500

Time (seconds)

-100

-80

-60

-40

R
S

S
I
(d

B
m

)

RSSI
G

RSSI
hole

Figure 2.8: RSSI adaptation of a hole node (node 27).

hop-by-hop. This significant overhead incurs network congestion extremely, leading

to excessive energy consumption, as illustrated in Fig. 2.7(b) as a metric of duty-cycle,

the portion of radio on-time.

Apart from duty-cycling MAC, in order to see routing performance of LOADng

solely, we also examine LOADng without duty-cycling. Instead of ContikiMAC, we

build LOADng on NullRDC (a simple MAC implementation without duty-cycling,

provided by Contiki), denoted as LOADng-N in Fig. 2.7. Figs. 2.7(a) and 2.7(b) show

that LOADng-N has comparable PRR with RPL and ORPL with the cost of 100%

duty-cycle. RPL shows the lowest duty-cycle with nearly perfect PRR, owing to the

phase-lock mechanism used in ContikiMAC for unicast transmissions. ORPL also

achieves about 100% reliability, but spends more energy than RPL due to anycast-

based transmissions without the phase-lock operation. Fig. 2.7(c) presents the number

of hops for uplink and downlink traffic. In ORPL, uplink hop is shorter than that of

downlink. As the root always listens to the medium without duty-cycling, it is likely

to receive and acknowledge an uplink packet from a neighbor earlier than any other

duty-cycling nodes. In case of downward traffic, on the other hand, it is common that

the packets are relayed by other early wake-up nodes.

MAPLE has over 99% uplink PRR with reasonable energy consumption in the

static network even though MAPLE was devised for mobile network. During the ex-

25

periment, we observed local maximum RSSI problem in node 27 (see Fig. 2.5). It was

deployed in a relatively open space. As a result, it receives beacons or downlink pack-

ets from the gateway with higher RSSI than its neighbors, which are located inside

the rooms. Fig. 2.8 depicts how the node stuck in a hole adapts its RSSI. Whenever it

detects itself in a local-maximum point, experiencing transmission failures, it escapes

from the hole by adjusting its routing metric from RSSIG into RSSIhole. With this

approach, MAPLE tackles the local-maximum problem, guaranteeing high reliability.

However, the hole node shows the highest energy consumption (i.e., 4.15% of duty

cycle) due to transmission failures it experiences during the RSSI adaptation. Never-

theless, MAPLE shows lower energy consumption than ORPL since it benefits from

its ATP architecture which enables single-hop downlink transmission.

Thanks to NACK-based local retransmission, MAPLE’s downlink PRR is also

nearly perfect. We discovered that more than 3% of high-power downlink packets

were lost during the experiments. In particular, the nodes which have low SNR from

the gateway, such as nodes 26 and 27, went through about 20% of downlink packet

loss. Nevertheless, by broadcasting NACK locally, they could receive the downlink

packets successfully from neighbors, reaching 99.94% downlink PRR with average

hop count of 1.035, as shown in the Fig. 2.7.

2.3.3 Network with Mobility

Having the experimental results from a static LLN as a basis, we now move on to our

main evaluation with mobility.

One Mobile Node

In this experiment, we first introduce a single mobile node into the network to examine

its performance under mobility. To keep the number of nodes consistent, we use node

15, which is in a corner of testbed topology, as a mobile node. While carrying the node,

we walked back and forth along the path between points A and B shown in Fig. 2.5. In

26

RPL ORPL LOADng-N MAPLE
50

60

70

80

90

100

P
a

c
k
e

t
R

e
c
e

p
ti
o

n
 R

a
ti
o

 (
%

)

Uplink

Downlink

(a) PRR

2.1 4.5 100.0 1.7

RPL ORPL LOADng-N MAPLE
0

1

2

3

4

5

D
u

ty
 C

y
c
le

 (
%

)

(b) Duty cycle

Figure 2.9: PRR and duty-cycle results for the mobile node.

0 500 1000 1500 2000 2500 3000 3500

Time (seconds)

1

2

3

4

5

6

7

H
o
p
s

RPL ORPL LOADng-N MAPLE

Figure 2.10: Hops for uplink traffic from the moving node.

each room we enter, we stay 90 seconds while still walking, and then exit. With this

movement, one-way trip time for the whole path is about 5 minutes.

Fig. 2.9(a) presents the PRR achieved for the uplink and downlink traffic from/to

the mobile node. The performance of RPL and ORPL degrades severely. RPL did not

react properly to link disconnections. Fig. 2.10 shows the number of hops that uplink

traffic from the mobile node goes through. In RPL, the mobile node has the root as its

preferred parent most of time. Even if it sometimes detects link failure with the root,

the link becomes valid again by node’s mobility. It makes the link quality remain good

enough for the mobile node to keep the current preferred parent. In addition, the effort

after detecting packet losses could not be a solution to provide seamless connectivity.

The main problem in ORPL is that, to update link quality with neighbors, it relies on

27

RPL ORPL LOADng-N MAPLE
90

92

94

96

98

100

P
a

c
k
e

t
R

e
c
e

p
ti
o

n
 R

a
ti
o

 (
%

)

Uplink

Downlink

(a) PRR

1.6 3.0 100.0 2.1

RPL ORPL LOADng-N MAPLE
0

1

2

3

4

5

D
u

ty
 C

y
c
le

 (
%

)

(b) Duty cycle

Figure 2.11: PRR and duty-cycle results from the network with three mobile nodes.

Trickle algorithm [74], thus not reacting topology dynamics promptly. In both RPL

and ORPL, uplink PRR is better than downlink since the root is always-on. From the

view of the always-on root, a train of transmission strobes, which were intended for

duty-cycling receivers, have an effect of multiple retransmissions.

Fig. 2.10 also shows the mobile node with MAPLE or LOADng-N3 adapts its up-

link hops according to change of its location, achieving PRR above 99% in all cases as

shown Fig. 2.9(a). Fig. 2.9(b) illustrates duty-cycle of the mobile node. MAPLE shows

the highest energy efficiency whereas RPL and ORPL suffer from frequent packet

losses and retransmission, incurring more energy consumption.

Three Mobile Nodes

Now we consider three mobile nodes with 29 static nodes. Among three mobile nodes,

two nodes continuously moved back and forth at typical walking speed along the path

shown in Fig. 2.5, but in opposite direction to each other. Their one-way trip time is

3 minutes. The other mobile node moved in the same manner as the previous experi-

ment with a single mobile device. Overall, the performance of each mobile node was

consistent with our previous results. Thus, in this subsection, we focus on how much

the mobile nodes affect the performance of the whole network.
3We exclude LOADng with duty-cycling from mobile experiments since we already identified its

chaotic performance through the previous static experiment.

28

Fig. 2.11(a) plots the average PRR for all low-power nodes. For RPL and ORPL,

not only the mobile nodes but also their descendants sequentially are affected by wrong

routing decisions with outdated information. The PRR of LOADng-N remains still

good under mobility. However, it sometimes fails to transmit a packet with more than

1% of loss rate for both downlink and uplink. As an intrinsic drawback of unicast

transmission, it cannot benefit from multi-path diversity.

Meanwhile, there are three reasons why MAPLE shows the highest PRR for uplink

traffic. Firstly, MAPLE is more robust to link failure with spatial diversity using op-

portunistic transmissions. Next, routing information throughout the network (i.e., an

RSSIG gradient) is newly updated every beacon interval of 5 seconds. Given the net-

work mobility of human walking speed, with this interval, it is enough for the RSSIG

gradient to be tuned to topology dynamics. Lastly, even though the routing informa-

tion is not perfect, (i.e., with a non-monotonic RSSIG gradient along a path) incurring

some transmission failures, the node tries more and more paths by lowering its RSSIG

gradually before the packet is dropped. Downlink PRR of MAPLE is more reliable,

by using high-power transmission and introducing local NACK-based retransmission

mechanism.

As presented in Fig. 2.11(b), MAPLE’s energy-efficiency is also good, which is

mainly attributed to the effect of eliminating multihop downlink relay between low-

power nodes. Additionally, with regard to routing overhead, while the compared pro-

tocols use broadcast packets which occupy the medium during a whole sleep interval

and need to be forwarded hop-by-hop, the cost in MAPLE is negligible, a single timely

transmission of the beacon.

2.3.4 Simulation Study under More Mobility

In our testbed experiments, we were unable to increase the number of mobile nodes

to more than 3 due to limitations in human resources. For this reason, we instead used

Contiki-based Cooja simulator to add more mobile nodes and expand our evaluation

29

Figure 2.12: Network topology for static nodes in Cooja simulation.

RPL ORPL LOADng-NMAPLE
0

20

40

60

80

100

P
a

c
k
e

t
R

e
c
e

p
ti
o

n
 R

a
ti
o

 (
%

)

Uplink

Downlink

(a) PRR

3.3 7.6 100.0 1.9

RPL ORPL LOADng-N MAPLE
0

2

4

6

8

D
u

ty
 C

y
c
le

 (
%

)

(b) Duty cycle

Figure 2.13: PRR and duty-cycle results from 50-node simulation.

to showcase the performance of MAPLE under higher level of network mobility. As

shown in Fig. 2.12, we firstly deployed 19 static nodes to guarantee connectivity be-

tween mobile nodes and the gateway (i.e., node 1). The distance between two adjacent

nodes are 15 m. Then, for network mobility, we added another 31 nodes (total of 50

nodes) which independently move within the range of 45 m from the gateway. Each

node follows Random way-point model [?] with the minimum and maximum speeds

of 0.5 m/s and 2.0 m/s, respectively. For MAPLE, the gateway uses a transmit power of

0 dBm. The other low-power nodes use -10 dBm, having transmission range of about

17 m. All the other experimental settings are identical to those of previous testbed

30

experiments.

Fig. 2.13(a) and Fig. 2.13(b) plots the average PRR and duty-cycle of all low-

power nodes, respectively. Compared to the previous experiment results, we found

that RPL and ORPL are impacted severely by increased network mobility, showing

less than 60% PRR with larger duty-cycle. Meanwhile, LOADng-N achieves PRR

near 100% with the expense of 100% of duty-cycle. Most importantly, MAPLE out-

performs the others in terms of both PRR and duty-cycle. Surprisingly, it shows lower

energy consumption than RPL despite RPL works over ContikiMAC which includes

the phase-lock operation to minimize energy consumption for unicasts. Overall, simu-

lation results are in-line with the experiment results, and shows that MAPLE achieves

significantly better reliability as well as energy efficiency under high mobility.

2.4 Conclusion

We presented MAPLE, an asymmetric transmit power-based routing architecture that

supports mobility of resource-constrained devices in LLNs. Using high transmit power

of the gateway, LLN nodes are synchronized for low duty-cycle operation, and RSSI

gradient field based opportunistic routing is designed which eliminates the need for

any neighbor or routing table. This enables scalability, low and constant memory

footprint, and provides responsive routing metric without control overhead. We ob-

tain reliable RSSI measurements via multi-sampling approach, and resolve the local

maximum problem through adaptive and local adjustment of the routing metric. We

implemented MAPLE on a low-power embedded platform, and evaluated through ex-

periments on a real multihop LLN testbed consisting of 31 low-power ZigBee nodes

and 1 high-power gateway. We showed that MAPLE improves the performance of mo-

bile devices in a multi-hop LLN testbed by 27.2%/55.7% and 17.9% in terms of both

uplink/downlink reliability and energy efficiency, respectively. As future work, we plan

to improve MAPLE in terms of latency and energy-consumption, and evaluate MAPLE

31

on large-scale testbed such as Indriya and IoT-LAB. We envision that our approach

can be used in many practical indoor IoT applications where mobility is becoming an

integral part of LLNs.

32

Chapter 3

TESLA: Traffic-aware Elastic Slotframe Adjustment in

TSCH Networks

3.1 Introduction

Internet of Things (IoT) has opened a new era with low-power embedded devices. In

industrial IoT networks, numerous sensors and actuators are deployed for system mon-

itoring and remote control. From smart homes to smart cities [1, 2], new applications

and network services are emerging such as electricity management, home security,

health care [3], and smart grid. As IoT applications become diverse, the need for reli-

able, energy-efficient, and flexible (i.e., adaptable to diverse and dynamic applications)

network protocols is growing up steadily.

The IEEE 802.15.4-2015 [16] standardized the time-slotted channel hopping (TSCH)

protocol for low-power and lossy networks (LLNs), a promising TDMA-like link layer

protocol providing both high reliability and low energy operation. Compared with

asynchronous duty-cycled MAC protocols [24, 25, 28], time-slot operation of TSCH

saves redundant transmissions or listening for rendezvous time of data exchange. Ad-

ditionally, channel hopping enables low-power communication to be resilient from

narrow-band interference and multipath fading [29]. For the implementation of TSCH

network, timeslot scheduling is required, but how to build and maintain the schedule is

33

out of scope of the IEEE 802.15.4-2015 standard. For this reason, a number of TSCH

scheduling schemes have been proposed recently, such as the minimal configuration

schedule [75] of 6TiSCH [76] and Orchestra [12] (Section 3.2.2 and 3.2.3).

Challenge. Any well designed protocol can end up with miserable performance if its

parameters are not set appropriately [77, 78, 79]. Setting proper network parameters

has been one of the most painful tasks in LLNs as well. Since it is hard to predict the

impact of a parameter change on performance, it is exhaustive, empirical, and envi-

ronment specific. In addition, a network parameter is usually set as a global constant

(i.e., all nodes have the same value), which cannot satisfy all nodes having different

environments and roles. This may cause significant inefficiency since each node’s situ-

ation is different and may change at run time, not only due to its physical surroundings

but also routing topology [80], forwarding traffic intensity [81, 82], and application

behaviors [5, 2].

Parameter selection for TSCH is not an exception. TSCH’s slotframe structure is

the basis of TSCH operation, but its size is set offline as a fixed global constant. On top

of significant burden for empirical optimization, even if the slotframe size is optimized,

it is still problematic since all nodes share a single slotframe size, disregarding rout-

ing topology and traffic intensity for each node: (1) When the slotframe is too small

for the node experiencing low traffic load, it will waste energy due to idle listening.

(2) When the slotframe is too large for the node under heavy traffic load, it cannot re-

ceive/forward many packets due to channel contention or queue overflow (Section ??).

To address this issue, each node should use a different slotframe size and adjust it with

traffic-awareness at run time. To align with the basic design paradigm of LLN (simple

and low overhead), this adjustment procedure should be light-weight and operate in a

distributed manner based on local information.

Approach. How can each node self-adjust TSCH slotframe size at run time? We intro-

duce TESLA, a novel traffic-aware elastic slotframe adjustment scheme as a solution

(Section ??). TESLA inherits and extends the Orchestra’s receiver-based scheduler [12]

34

where each node has a single reception (Rx) slot per slotframe and sends a packet to

a neighbor in the neighbor’s Rx slot. Beyond Orchestra, in TESLA, each node obtains

the amount of incoming traffic using locally piggybacked information from neighbors.

It periodically self-estimates the contention level of the neighbors based on the traffic

load, and adjusts its slotframe size: (1) When the contention level is high, it decreases

slotframe size to receive more traffic from neighbors. (2) When the contention level

is low, it increases slotframe size to save energy. (3) Otherwise it maintains slotframe

size. Upon slotframe size change, the node informs its one-hop routing neighbors of the

new slotframe size for seamless communication. Furthermore, TESLA also supports

multi-channel operation to fully utilize available channel resources. Although our im-

plementation is based on Orchestra, the state-of-the-art TSCH scheduling mechanism,

the core idea of TESLA is general, applicable to any TSCH scheduling mechanism.

Contributions. The contributions of this work are threefold.

• Analysis on the impact of slotframe size, showing the limitation of setting it as a

fixed global constant, offline.

• Design of TESLA which includes four elements: (1) traffic information exchange by

piggybacking on each frame, (2) contention level estimation, (3) periodic slotframe

adjustment and sharing, and (4) multi-channel scheduling.

• Prototype implementation (the code will be open after acceptance) and extensive

evaluation on two distinct testbeds with 110 nodes and 79 nodes (Section ??), show-

ing that TESLA outperforms the state-of-the-art in terms of reliability and energy-

efficiency using distributed dynamic scheduling.

3.2 Background

In this section, we provide a brief overview of TSCH, and two instances of TSCH

scheduling implementation: 6TiSCH minimal configuration and Orchestra.

35

Slotframe

ASN

Channel

offset

B -> C

C -> D

0 1 3 4 5

Tx

Rx

Frame

ACKFrame

ACK

G

G

2

Timeslot

C

D -> ED -> E

A -> BA -> B

C -> D

B -> C

Figure 3.1: An example of TSCH slotframe schedule and timeslot with slotframe size

of 3.

3.2.1 IEEE 802.15.4 TSCH

TSCH is a time-synchronous MAC specified in the IEEE 802.15.4-2015 standard [16].

Its synchronous operation saves energy by reducing redundant transmissions or idle

listening compared to asynchronous MACs [27, 25, 28], and its channel hopping en-

ables resilient operation over narrow-band interference and multipath fading [29].

TSCH network is globally time-synchronized, and time is divided into timeslots as

in Fig. 3.1. Typical length of a timeslot is 10 ms, long enough for a single frame and

an acknowledgement (ACK) to be exchanged. A slotframe is a collection of timeslots,

continuously repeated in time. The number of timeslots in a slotframe, i.e., slotframe

size, determines the period of each slotframe. Within a slotframe, time offset is defined

as when the timeslot occurs, and channel offset denotes an offset value for channel

selection. The total number of timeslots that has elapsed since the start of a TSCH net-

work is defined as the absolute slot number (ASN). It increases globally every timeslot.

In Fig. 3.1, when ASN is 2, node C can transmit a frame, node D can receive it, and

the others sleep.

For channel hopping, the channel on which a timeslot operates is determined by

the timeslot’s ASN, as

Channel = Listc[(ASN + offsetchannel) % NListc] (3.1)

36

where Listc is a set of channels to be hopped over, offsetchannel is the channel offset,

and NListc is the number of elements in Listc. By introducing ASN in channel deter-

mination, each timeslot with a fixed offsetchannel can exploit different frequencies per

timeslot. The offsetchannel enables different channels to be used in the same timeslot.

Then for each timeslot, a TSCH schedule specifies (1) the activity (i.e., whether to

transmit, receive, or sleep), (2) the channel to be used for the corresponding activity,

and (3) whether the slot is shared or dedicated. However, how to build and maintain the

schedule is out of the scope of the IEEE 802.15.4-2015 standard, and is left as an open

research problem. For this reason, a number of TSCH scheduling schemes have been

proposed recently. We will describe the two representative state-of-the-arts below. A

common characteristic of widely used TSCH scheduling mechanisms is their simple

operation; each node self-allocates its timeslot without any additional control packet

exchange. This is for robust and energy-efficient operation on time-varying routing

topology in wireless environments.

3.2.2 6TiSCH and its Minimal Configuration

In 2013, IETF Working Group 6TiSCH [76] was established for the purpose of de-

signing IPv6 support on top of TSCH. 6TiSCH defines a TSCH minimal configura-

tion [75], which is a simple fixed scheduling scheme designed to enable basic and

necessary functions for TSCH network. It simply consists of a single shared timeslot

per slotframe to run IPv6 traffic on top of low-power TSCH networks with basic inter-

operability. This timeslot is used for both transmission and reception of all nodes in a

TSCH network.

3.2.3 Orchestra

Orchestra [12] provides autonomous TSCH scheduling together with the RPL routing

layer1. For the construction of TSCH and RPL network, Orchestra employs two types
1RPL is the standard IPv6 routing protocol for LLNs. The detailed description and related work for

RPL are in [10, 83], which is out of the scope of this paper.

37

of slotframes. The first is the EB (Enhanced Beacon) slotframe which has two active

timeslots in each node, one dedicated for EB transmission and the other for EB re-

ception from the time source. Reliable EB communication is possible since a channel

offset is dedicated for this slotframe and a node’s reception (Rx) slot is synchronized

with the transmission (Tx) slot of its TSCH time source. The second is the RPL shared

slotframe for RPL control packets (DIO, DAO, and DIS), which has another dedicated

channel offset. This slotframe has one active slot, which is used for both Tx and Rx of

all nodes’ RPL control packets.

In addition, Orchestra proposes two approaches for unicast data communication

slotframe, sender-based or receiver-based, where either of them can be selected. Thus,

a total of three slotframes are employed in each Orchestra implementation. A different

channel offset from EB and RPL shared slotframes is used for the unicast slotframe.

In a sender/receiver-based schedule, a node self-allocates a single Tx/Rx slot per slot-

frame based on its MAC address, respectively. The time offset is computed as,

offsettime = h(MAC) % Ssf (3.2)

where h is a hash function shared in the network, MAC is the hardware address of the

node, and Ssf is the size of the unicast slotframe. As all nodes use the same hash func-

tion, a neighbor’s schedule can be computed directly based on the neighbor’s MAC

address, without any exchange of additional control packets. In conjunction with the

standard RPL network layer, Orchestra updates schedules autonomously as network

topology changes.

Fig. 3.2 depicts an example of receiver-based scheduling in Orchestra. R denotes

a timeslot allocated for unicast packet reception. In this example, each node computes

offsettime of R using its ID as output of h(MAC) where Ssf is 5. For example, node 1

or 7 has the offsettime of 1 or 2, respectively. When any node has a packet to transmit

towards node 1, it transmits on the first timeslot within a slotframe. In receiver-based

scheduling, while a node’s Rx slot is single and fixed within a slotframe, its Tx slots

can be multiple; each Tx slot corresponds to Rx slot of each neighbor node. On the

38

1

2 3

4 5 6 7

Figure 3.2: An example of TSCH scheduling in receiver-based Orchestra.

other hand, in sender-based scheduling, a node has a fixed Tx slot and multiple Rx

slots.

3.3 Preliminary and Motivation

While the contributions of the state-of-the-art techniques are substantial in enabling

TSCH to operate on embedded devices in real wireless environments, they have one

possible drawback: static scheduling with globally identical slotframe size, which is

pre-defined at compile time. Nodes in a network usually neither transmit nor receive

the same amount of traffic. Depending on routing topology and traffic generation pat-

tern, each node observes a different volume of traffic. Consequently, a uniform and

constant schedule may bring about three kinds of undesired situations: (1) A node re-

sponsible for forwarding packets more often than its Tx or Rx timeslots suffers from

severe packet losses. (2) A node who experiences little traffic wastes energy due to idle

listening in timeslots allocated unnecessarily. (3) When routing topology or traffic pat-

tern changes, there is no mechanism to adjust its slotframe size according to network

dynamics.

To confirm this hypothesis and motivate our TESLA, we present a preliminary

study on the performance of three representative state-of-the-arts: 6TiSCH minimal

39

configuration [75], sender-based and receiver-based Orchestra [12], implemented on

ContikiOS [84].

3.3.1 Methodology

We evaluate the three schemes on FIT/IoT-LAB testbed [85] with 110 M3 nodes hav-

ing bidirectional traffic. The root node generates a downward packet every 0.5 sec-

ond while altering destinations in a round-robin fashion. Each of 109 non-root nodes

generates an upward packet with the period of 54.5 (=0.5×109) seconds to equal the

bidirectional traffic load. Detailed explanations of the experimental settings will be

provided in Section 3.5.1.

For Orchestra, to focus on the impact of unicast slotframe size, we first optimize

the size of RPL shared slotframe on this testbed. Small RPL shared slotframe size al-

lows successful and stable RPL network formation at the cost of high energy consump-

tion. On the other hand, large RPL shared slotframe size is unable to accommodate

RPL control messages during network bootstrap and when preferred-parent changes

occur, resulting in excessive collisions. In the worst case, this causes a TSCH node to

fail to exchange packets with its time source (i.e., RPL preferred parent in Orchestra)

before a certain keep-alive timeout, and eventually lose time-synchronization.

Interestingly, we found that the optimal size is different in two types of Orchestra

because they deliver DAOs in different ways when a node changes its preferred parent.

In receiver-based Orchestra, the node is able to self-calculate the new parent’s Rx slot

based on the parent’s ID, and send a DAO to the parent. In sender-based Orchestra,

however, if the child node sends a DAO to the new parent through the child’s Tx slot,

the DAO is likely to be lost. This is because the parent is yet unaware of the new

child, thus not listening to the new child’s Tx slot. To this end, the child node utilizes

the RPL shared slotframe for DAO delivery until its new parent knows its Tx slot

schedule. Consequently, sender-based Orchestra requires more resources for the RPL

shared slotframe than receiver-based Orchestra. After a series of experiments on this

40

(a) End-to-end packet delivery ratio (PDR) (b) Number of packet losses during 1-hour ex-

periment

(c) Number of parent changes during 1-hour ex-

periment

(d) Number of control packets during 1-hour ex-

periment

(e) Radio duty-cycle (on time) (f) CDF of slot utilization ratio (SUR)

Figure 3.3: Various performance metrics in Orchestra and 6TiSCH minimal configu-

ration with different slotframe sizes.

testbed (figures are omitted for brevity), we set the sizes of RPL shared slotframes for

receiver-based and sender-based Orchestra to 23 and 11, respectively.

3.3.2 Experimental Results

Fig. 3.3 summarizes our results where M, SB, and RB denote the 6TiSCH minimal

configuration, sender-based Orchestra, and receiver-based Orchestra, respectively. The

number shown after each label indicates the (unicast) slotframe size. Fig. 3.3(a) plots

end-to-end packet delivery ratio (PDR) for both upward and downward traffic. The

41

minimal configuration never achieves perfect PDR even with the shortest slotframe

(i.e., 2) since every slot is shared by all nodes in the entire network resulting in fre-

quent collisions. Its performance becomes even worse as the slotframe size increases.

On the other hand, Orchestra provides significantly better PDR by dispersing active

slots in time using a hash function in Eq. (3.2). SB and RB achieve PDR of more

than 99% when they employ slotframe size less than 17 and 13, respectively. As the

slotframe size increases, however, Orchestra also suffers from lack of communication

opportunities.

To analyze the causes of PDR degradation more closely, Fig. 3.3(b) plots the num-

ber of three types of packet losses: queue loss, link loss, and routing loss. Fig. 3.3(b)

shows that most of the packet losses are due to queue overflow and link failure, and

we observed that most of these losses occur at a few bottleneck nodes due to the load

imbalance problem in RPL [80]. For example, when RB employed a slotframe size of

31, 85% of lost packets disappeared at just two bottleneck nodes.

However, Fig. 3.3(b) also shows that detailed loss patterns at these bottleneck

nodes are different depending on TSCH scheduling. Note that each node in RB has

one Rx slot and multiple Tx slots within a unicast slotframe while each node in SB

has one Tx slot and multiple Rx slots. This means that RB and SB provide fewer Rx

and Tx opportunities, respectively. Accordingly in RB, neighbors of a bottleneck node

contend for a single Rx slot of the bottleneck, which first leads to many link losses

and then queue losses when the contention becomes more severe (due to redundant

CSMA backoff). On the other hand, SB mainly suffers from queue losses due to lack

of Tx opportunities. As an exception, SB43 also experiences significant link losses,

but most of these losses (i.e., 98.9%) occur in not the unicast slotframe but the RPL

shared slotframe due to a large number of RPL control packets attempting to fix un-

stable routing topology. The minimal configuration shows numerous link losses since

all nodes contend in one same slot to send packets regardless of receiver identity.

Figures 3.3(c) and 3.3(d) plot network stability and control overhead in terms of

42

the number of parent changes and the numbers of DIOs, DAOs, and EBs, respectively.

As PDR is degraded in all the scheduling schemes, the RPL-TSCH network becomes

unstable and generates more control packets. Despite its effort, however, their perfor-

mance is not restored since the problem is attributed to how TSCH slots are scheduled.

Figures 3.3(b) and 3.3(c) show that network stability is closely correlated to link loss.

When packets are lost at links due to collision, RPL misunderstands it as bad link

quality and triggers meaningless parent changes [78].

Fig. 3.3(e) represents average radio duty-cycle of each scheme. As the slotframe

size increases, duty-cycle typically decreases due to low resource allocation. However,

when the slotframe size becomes too long, duty-cycle rises again due to more Tx/Rx

overhead coming from low PDR. The minimal configuration provides the lowest PDR

among the three schemes, resulting in the highest energy consumption. SB consumes

more energy than RB due to the two reasons. Given that, within a slotframe, RB allo-

cates one Rx slot but SB allocates Rx slots as many as the number of RPL neighbors,

i.e., the preferred parent and children, SB uses more energy for listening. In addition,

SB employs a smaller size of RPL shared slotframe than RB, as discussed in Section

3.3.1, consuming more energy.

Next, we define the slot utilization ratio (SUR) as the ratio of Rx slots used for

successful packet reception over total Rx slots, and plot its CDF among nodes in

Fig. 3.3(f). A higher SUR indicates more efficient use of resources and less redundant

energy consumption. In the cases where PDR is nearly perfect, such as SB5, SB13,

RB5, and RB13, they utilize slots very inefficiently. For example, more than 80% of

nodes experience <1% SUR. This is because, compared to the given slotframe size,

only a few bottleneck nodes receive a reasonable amount of traffic but most nodes ex-

perience too sparse traffic. If a larger slotframe is used as in RB31, SUR becomes better

but PDR becomes miserable (∼20%) as shown in Fig. 3.3(a). The minimal configura-

tion cases exhibit low PDR with low SUR, an undesirable performance characteristic.

43

3.3.3 Summary

Overall, experimental results strongly support our hypothesis: under static globally-

uniform scheduling methods, while bottleneck nodes suffer from packet losses due

to insufficient opportunities for Tx/Rx, most of other nodes waste energy due to over-

allocated timeslots. The conventional techniques will suffer even more when each node

generates data with a different rate and/or a node changes its traffic pattern at run time.

For example, in a smart building application, a temperature or humidity sensor gener-

ates light periodic traffic but an anemometer generates heavy continuous traffic [81].

A node’s application traffic can change at run time due to emergency detection [5, 86],

device control [87, 88], and firmware update. Even with a fixed application traffic

pattern, “network” traffic can still vary at run time according to a reporting strategy,

e.g., sending each data immediately or aggregating data for a while and sending as a

batch [82]. This motivates TESLA, a technique for dynamic and local adjustment of

slotframe size according to traffic load.

3.4 TESLA Design

In this section, we present our TESLA design. TESLA operates in conjunction with RPL

and receiver-based Orchestra (i.e., node ID-based Rx slot allocation). Each TESLA

node monitors its incoming traffic load without any additional control overhead. Based

on the traffic load information, each node periodically adapts its Rx slot schedules.

Specifically, when a node detects overwhelming packets coming through its current Rx

slots, it reduces its slotframe size to alleviate contention between neighboring nodes

for reliable packet delivery. For energy efficiency, on the other hand, when a node

notices many idle Rx slots, it increases its slotframe size in order to save energy by

avoiding idle listening. In addition, TESLA attempts to allocate different channel off-

sets to nodes, if possible, leading to network capacity increase.

There is a price to pay for this dynamic slot scheduling. As each node’s Rx sched-

44

ule varies, its change should be timely propagated to the RPL neighbors (i.e., preferred

parent and one-hop children) for their Tx schedules. This local exchange of Rx sched-

ules slightly increases control overhead. Nevertheless, our intuition is that the gain

from slotframe adjustment is more than enough to compensate the modest increase in

control overhead.

3.4.1 Slotframe Structure

In TESLA, each node has four types of slotframes:

• EB slotframe is for TSCH enhanced beacons (EBs) with a constant periodicity and

a dedicated channel offset.

• RPL shared slotframe is for RPL control packets, also with a constant periodicity

and a dedicated channel offset.

• Rx slotframe (RSF) is for unicast reception with an elastic periodicity.

• Tx slotframe (TSF) is for unicast transmission, per neighbor, with an elastic peri-

odicity.

The first two slotframes are for control messages similar to Orchestra [12]. In addition,

each TESLA node maintains a single slotframe only for unicast packet reception, called

Rx slotframe (RSF). There is one Rx slot in each RSF. In contrast to Orchestra, TESLA

enables each node to adjust its own RSF size dynamically according to incoming traffic

load. Fig. 3.4 shows an example of TESLA scheduling for the same routing topology

as Fig. 3.2. When a large amount of traffic converges to node 1, it reduces the RSF size

for more Rx opportunities. On the contrary, if node 6 receives few packets, it enlarges

its RSF size to reduce energy consumption. In this way, each node may end up using a

different RSF size.

In addition, a node maintains a Tx slotframe (TSF) for each of its routing neigh-

bors (i.e., preferred parent and one-hop children). Each TSF has one Tx slot, which

45

Figure 3.4: An example of TESLA scheduling.

matches the Rx slot in the RSF of the corresponding routing neighbor. A node can

have a different TSF size for each neighbor node since each neighbor adjusts its RSF

size independently. Overall, each TESLA node has an EB slotframe, a RPL shared slot-

frame, an RSF, and multiple independent TSFs as many as the number of its routing

neighbors.

Inheriting Eq. (3.2) from Orchestra, the time offset for a TESLA node’s Rx slot is

computed as

offsettime(t) = ht(MAC) % Srsf(t). (3.3)

Differently from Orchestra, the RSF size (Srsf) changes over time (t) and so does

offsettime. Note that a node should know not only a neighbor’s ID but also its up-to-date

RSF size to calculate the neighbor’s Rx schedule and maintain a correct TSF for the

neighbor.

3.4.2 Rx Slotframe Size Adaptation

This section presents how a TESLA node monitors its incoming traffic load and self-

adapts its RSF size accordingly.

46

Traffic Load Reporting

TESLA lets each node (i) inform each of its one-hop routing neighbors (A) of traffic

load from node i to node A, namely L(i, A). Specifically, when node i sends a unicast

packet to the one-hop neighbor A, it piggybacks the traffic load information L(i, A)

in the packet by using Information Element (IE) field in the IEEE 802.15.4 frame; the

traffic reporting process happens locally and requires no additional control overhead.

Given that the current TSCH scheduling techniques suffer both link loss and queue

loss as discussed in Section 3.3, node i calculates the traffic load L(i, A) by adding

two elements, as

L(i, A) = M(i, A) + Q(i, A). (3.4)

Specifically, assuming tupdate(A) as the time elapsed from the last RSF size update of

node A, M(i, A) indicates the number of node i’s Tx attempts towards node A during

tupdate(A). Node i initializes M(i, A) to 0 upon detecting neighbor node A changing its

RSF size, and increases M(i, A) in every MAC layer transmission destined for node A

regardless of whether it is acknowledged or not. On the other hand, Q(i, A) is simply

the number of currently queued packets for node A waiting to be transmitted, which

signifies the current congestion level experienced by node i towards node A.

Two Traffic Load Metrics

Based on the traffic load information reported from all routing neighbors, each node

(A) calculates two complementary metrics for its periodic RSF adaptation (every Tadapt):

(1) normalized total incoming traffic load, and (2) contention level.

To this end, we define Llast(i, A) as the L(i, A) at the last RSF adaptation of node

A (i.e., before Tadapt). L(i, A) has been accumulated since node A’s last RSF size

change (i.e., during last tupdate(A), longer than or equal to Tadapt because the adaptation

procedure may not always change the RSF size). Thus, the traffic load from node i to

47

Figure 3.5: Topology of node A and its RPL routing neighbors, and an example of RSF

size adaptation.

node A during recent Tadapt, namely L∆(i, A), is

L∆(i, A) = L(i, A)− Llast(i, A). (3.5)

Defining N(A) as the routing neighbor set of node A and W as the number of node A’s

Rx slots in last Tadapt, the normalized total incoming traffic load at node A, L∆,n(A),

is computed as

L∆,n(A) =
∑

i∈N(A)

L∆(i, A)

W
. (3.6)

Finally, node A uses the metric L∆,n(A) for its RSF size adaptation.

Fig. 3.5 exemplifies RSF size adaptation, where node A executes RSF adaptation

at time 4 · Tadapt to decide the RSF size for the next period [4 · Tadapt, 5 · Tadapt]. Note

that 2 · Tadapt is when node A’s most recent RSF size change happened. Then, W is

the number of Rx slots in [3 · Tadapt, 4 · Tadapt], L(i, A) is the traffic load from node i

during tupdate(A) (i.e., [2 · Tadapt, 4 · Tadapt]), Llast(i, A) is the traffic load in [2 · Tadapt,

3 · Tadapt], and L∆(i, A) indicates the traffic load during recent Tadapt, i.e., [3 · Tadapt,

4 · Tadapt].

Next, node A estimates the contention level on its Rx slots. Specifically, node A

interprets L∆(i, A) as the number of its Rx slots required to receive node i’s traffic for

48

last Tadapt. Given that node A has W Rx slots for last Tadapt, the probability of node

i to access an Rx slot of node A is L∆(i,A)
W . Node A estimates packet reception ratio

(PRR) from node i without any collision with the other routing neighbors, as

PRRc(i, A) =
∏

k(6=i)∈N(A)

(1− L∆(k,A)

W
). (3.7)

Then, node A uses PRRc,min(A), the minimum of PRRc(i, A) among all i in N(A)

(i.e., PRRc(i, A) for the worst-case node), for its RSF adaption, as the indicator of its

contention level.

Note that the two metrics, L∆,n(A) and PRRc,min(A), are mutually complemen-

tary. For example, when traffic is heavy but comes from the only one neighbor node,

PRRc,min(A) is always good (i.e., 1) since there is no contention but node A may not

receive all traffic successfully due to lack of Rx slots. In this case, L∆,n(A) helps node

A to detect the problem. On the other hand, when traffic comes equally from many

neighbor nodes, node A may lose many packets due to collision even though L∆,n(A)

is relatively low. In this case, PRRc,min(A) helps to detect the problem. Overall, by

combining the two metrics, each node detects not only the total incoming traffic load

but also how it is distributed to the routing neighbors.

Prime Numbers for Rx Slotframe Size

When a TESLA node adapts its RSF size, it selects one from prime numbers excluding

the pre-installed sizes for EB and RPL shared slotframes. There are two reasons for

using prime numbers.

First, according to Eq. (3.1), Rx slots in consecutive RSFs (e.g., with ASN = k

and ASN = k + Srsf) can use different channels when the RSF size (Srsf) is a prime

number, which increases frequency diversity. As an example, in Fig. 3.1, there are four

available channels (e.g., IEEE 802.15.4 channels 15, 20, 25, and 26) and the slotframe

size is 3. Based on Eq. (3.1), the timeslot (A->B) with channel offset 0 will select

channel numbers 15, 26, 25, and 20 when ASNs are 0, 3, 6, and 9, respectively. Next,

49

as explained in Section 3.4.1, a TESLA network has many slotframes with different

sizes: an EB slotframe, an RPL shared slotframe, and many RSFs (and corresponding

TSFs). If all slotframes have lengths of different prime numbers, they are mutually

prime, ensuring that the active slots overlap each other rarely and evenly. It prevents

unintended synchronization effect. To this end, each node has an ordered list of prime

numbers, P, where the elements are in ascending order from 2, 3, 5, and so on.

Traffic-Aware Rx Slotframe Size Adaptation

Based on the aforementioned design, each node executes the following adaptation pro-

cedures every Tadapt:

• Attempt to decrease RSF size, if required (Algorithm 1).

• Otherwise, attempt to increase the size (Algorithm 2).

In Algorithm 1, node A first initializes index as that of the element in the prime

number list P, which is equal to the current RSF size (Srsf). For example, index = 1

when Srsf = 2 and index = 3 when Srsf = 5. Next, Wnew is defined as the expected

number of Rx slots during next Tadapt with a new RSF size, and initialized to W , the

number of Rx slots with the current RSF size in last Tadapt. Then in the loop on line

3, the two traffic load metrics, PRRc,min(A) and L∆,n(A), are calculated using Wnew

instead of W .

At the beginning of the loop, node A checks if it is suffering high incoming traffic

by using the two traffic load metrics as follows:

1. PRRc,min(A) is worse than a lower bound (PRRth,low).

2. L∆,n(A) exceeds a threshold (Lth).

Condition (1) is satisfied if any neighbor in N(A) is expected to suffer from channel

contention, and condition (2) is used as a precaution for sudden traffic increment due

to change of network topology or traffic generation pattern. If at least one of these two

50

conditions is satisfied, the RSF size needs to be reduced to give more transmission

opportunities for the neighbors. Therefore, a new RSF size Srsf,new becomes a one-step

smaller prime number than Srsf (line 4). In the following Tadapt with the new RSF size,

node A is expected to wake up Srsf
Srsf,new

times more. Thus, Wnew goes up accordingly

(line 5), which increases PRRc,min(A) and decreases L∆,n(A). It iterates until neither

of the two conditions is satisfied, which means none of N(A) is expected to suffer from

low PRR due to contention, and the number of Rx slots is enough to cope with traffic

variation.
Algorithm 1: How to decrease Rx slotframe (RSF) size

1 index← FindIndex(Srsf, P);

2 Wnew ←W ;

3 while (PRRc,min(A) < PRRth,low) —— (L∆,n(A) > Lth) do

4 Srsf,new ← P[- -index];

5 Wnew ← W ·Srsf
Srsf,new

;

6 Srsf ← Srsf,new;

Algorithm 2: How to increase Rx slotframe (RSF) size

1 index← FindIndex(Srsf, P);

2 Wnew ←W ;

3 while (PRRc,min(A) > PRRth,up) && (L∆,n(A) < Lth) do

4 Srsf,new ← P[+ + index];

5 Wnew ← W ·Srsf
Srsf,new

;

6 if Srsf,new
Srsf

> ε then

7 break;

8 Srsf ← Srsf,new;

Algorithm 2 is executed when the RSF size is not decreased by Algorithm 1. The

two algorithms are similar in structure, but their conditions for the RSF size update are

different. In Algorithm 2, an RSF size increases if both of the following conditions are

51

satisfied.

1. PRRc,min(A) is better than an upper bound (PRRth,up).

2. L∆,n(A) is less than the threshold (Lth).

In other words, if PRRc(i, A) for all i in N(A) are high enough and the number of

Rx slots is sufficient to accommodate all traffic from the neighbors, node A increases

the RSF size to reduce idle Rx slots. Note that Algorithm 2 uses another threshold

PRRth,up, higher than PRRth,low used in Algorithm 1. Having double thresholds im-

proves stability by preventing the ping-pong effect (repetition of increasing/decreasing

the RSF size too frequently).

To prioritize high reliability over energy saving, we design TESLA to increase RSF

size conservatively by introducing a bounding factor ε. Specifically, if the ratio of

Srsf,new to Srsf exceeds ε, it breaks the loop and stops increasing the RSF size (lines 6

and 7).

3.4.3 Tx Slotframe Size Adaptation

If a node ends up changing its RSF size through the periodic RSF adaptation, it an-

nounces the new RSF size to its routing neighbors, then each of which modifies its

TSF size for the node.

Local Update of the Rx Slotframe Size

Reliable delivery of an updated RSF size to routing neighbors is critical to TESLA’s

robust operation; if a neighbor is unaware of the RSF size change, it may continuously

fail to deliver packets to the node due to schedule mismatch. To this end, node A deliv-

ers the new RSF size and its version number2 through DAO, DIO, EB, and Enhanced

ACK (EACK)3 packets using reserved fields of DAO and DIO, and IEEE 802.15.4

header IE for EB and EACK. Neighbor nodes are informed of node A’s up-to-date
2The version number increases by one whenever the RSF size changes.
3In TSCH, IEEE 802.15.4 EACK is used normally with timing information embedded.

52

RSF size whenever receiving these packets. DAO updates the preferred parent, DIO

and EB update all neighbors of node A simultaneously, and EACK updates any node

which transmits a unicast packet to node A.

Announcing the RSF size relying solely on existing traffic incurs no additional

control overhead but may not provide timely update. For immediate RSF size update,

node A transmits an additional DAO (for the preferred parent) and an EB (for the one-

hop children) right after changing its RSF size, if they are not already scheduled. This

greatly improves robustness with slightly more control overhead.

However, both of these messages may be lost, especially the EB which is broad-

casted without ARQ. To address this problem, TESLA has two backup mechanisms.

(1) After node A changes its RSF size, it does not eliminate the previous RSF but

temporarily maintains it together with the new RSF. When an outdated neighbor suc-

cessfully sends a packet in node A’s temporary RSF, it is updated by receiving an

EACK from node A. (2) If a neighbor node fails to receive the new RSF size even until

the temporary double RSF schedule ends, it will continuously fail to transmit unicast

packets to node A. In this case, the neighbor suspects schedule mismatch, sends pack-

ets destined for node A through the RPL shared slotframe, and is updated by receiving

an EACK from node A.

Tx Slotframe Update

When a node notices an update of a neighbor’s RSF size by comparing the versions,

it changes the periodicity and time offset of corresponding TSF. Sometimes, Tx slots

of two TSFs, each of which is allocated for a different neighbor, may overlap unfortu-

nately. In this case, TESLA compares the lengths of Tx queues for the two neighbors,

and prioritizes the transmission for the neighbor with more queued packets.

53

3.4.4 Multi-channel Operation

Although TESLA is designed to avoid schedule overlap between neighbors by using

prime numbers for RSF size, overlaps may occur inevitably, especially under ex-

tremely heavy traffic. This is because bottleneck nodes end up using very small RSF

sizes, increasing probability of timeslot overlap. For example, assume that a bottleneck

node (B) reduces its RSF size to the minimum prime number (i.e., 2). Then, any trans-

mission in the vicinity of node B, not destined to node B, can collide with a packet

towards B with a probability of up to 50%.

To enlarge network capacity, TESLA utilizes multiple channels for unicast slot-

frames. Specifically, the channel offset of a node’s RSF is computed as,

offsetchannel = hc(MAC) % (NListc − 2). (3.8)

Note that offsetchannel uses a modulo operator with NListc − 2, instead of NListc , since

we dedicate two channel offsets for the EB and RPL shared slotframes not to hinder

the basic TSCH and RPL operations. For example, when there are 16 channels avail-

able (max. number of channels in IEEE 802.15.4), TESLA can allocate 14 channels for

unicast communications. Since each node is likely to use a different Rx channel, col-

lision between packets for different receivers occurs rarely and temporarily in TESLA,

only when traffic load is very high and both timeslot and channel offset schedules are

overlapped.

3.4.5 Collaboration with RPL

A practical embedded network is typically designed as a vertical silo where multiple

layers intimately collaborate [83, 12]. To this end, we discuss how TESLA jointly op-

erates with RPL when routing topology changes. TESLA maintains the RSF size infor-

mation of only current routing neighbors. When a node switches its preferred parent, it

does not have the new parent’s RSF information and neither does the parent. The new

child and new parent should know each other’s RSF size for unicast communication.

54

1

2 3 4 5 6

7 9

8 10 11 12 32 35

13 14

15 16 17 19 22 18

21 20

23 24

2526

50

27 28 29 30 31

41

38 39 45 46 33 34

42

36 37 40 104

43

53

44 52

4748 49

51

54 55

56

57

5859 60

61

66 62

63 64 65 67 68

69

70 71

72

73

74

75 76 77

78 7980

81

88 90

82 83 84 85 86 87 89 91 92 93 94 95 96 97 98 99 100 101

102

103 105 106 107 108 109 110

Figure 3.6: A snapshot of RPL topology for 110 nodes with -17 dBm of Tx power on

FIT/IoT-LAB testbed in Lille.

In this case, the node’s RPL layer schedules a DAO for the new parent, and its

TESLA layer sends the DAO (including its RSF size) on the RPL shared slotframe

and finds out the parent’s RSF information by receiving an EACK. Meanwhile, the

new parent detects the addition of a new child by receiving the DAO. Its RPL layer

establishes a new downward route for the child and its TESLA layer installs a TSF for

the child using the RSF information included in the DAO. On the other hand, the old

parent removes both the route and TSF for the previous child after receiving a No-path

DAO from the child (scheduled by RPL) or the expiration of the route.

When RPL’s routing topology is unstable or being repaired, e.g., when the network

bootstraps or wireless environments change significantly, many nodes change their par-

ents simultaneously and it is difficult to exchange RSF sizes through DAO and EACK.

In this case, however, since each node’s RPL layer generates many DIO packets due

to Trickle re-initialization [89], most nodes are able to know routing neighbors’ RSF

sizes quickly by receiving their DIOs. When a node receives a DIO from its new parent

quickly, it sends a DAO on the parent’s RSF instead of the RPL shared slotframe. This

synergistic joint operation enables TESLA to maintain modest contention on the RPL

shared slotframe.

3.5 Performance Evaluation

In this section, we evaluate TESLA on real world testbeds with various topologies.

We compare TESLA against state-of-the-art TSCH schedules. We also examine the

adaptability of TESLA to dynamics of network traffic. Lastly, the impact of parameter

55

setting is discussed.

3.5.1 Methodology and Experiment Setup

We implement TESLA on ContikiOS and compare it against 6TiSCH minimal schedul-

ing (M), sender-based Orchestra (SB), and receiver-based Orchestra (RB), using 110

and 79 nodes on the FIT/IoT-LAB testbeds [85] in Lille and Grenoble, France, respec-

tively. Each node features a 32-bit ARM Cortex-M3 microcontroller (STM32F103REY)

and an AT86RF231 IEEE 802.15.4 radio chip. This node is representative of today’s

state-of-the art IoT devices [85]. We use Contiki-RPL implementation on top of the

TSCH scheduling schemes. For Orchestra and TESLA, the length of EB slotframe is

397. As discussed in Section 3.3, the size of RPL shared slotframe for sender-based

Orchestra is 11, and that for receiver-based Orchestra is 23. The size of RPL shared

slotframe for TESLA is also 23, since TESLA exchanges most of DAOs in unicast slot-

frame as explained in Section 3.4.5.

All protocols use a maximum of 8 retransmissions per hop, and queue size of 16

packets. TSCH hops over four best channels: 15, 20, 25, and 26. Each instance of an

experiment lasts for 1 hour, and results are averaged over 3∼5 runs of experiments

for each case. An error bar represents 95% confidence interval. In all experiments,

the application payload is 59 bytes carried in UDP/IPv6 datagrams over 6LoWPAN,

reaching 109 bytes of the data frame size.

For TESLA, we use RSF adaptation period Tadapt of 15 seconds, and limitation

factor ε is set to 1.5 to increase RSF size conservatively. In other words, RSF size

cannot increase by more than 50% every Tadapt. The load threshold Lth is 50%, and

PRRth,low and PRRth,up are 80% and 90%, respectively. The prime numbers for RSF

size adaptation range from 2 to 97, allowing a node to wake up at least once in 1

second. To distinguish the effect of multi-channel operation in TESLA, we create two

versions of TESLA: T S uses a single channel offset for RSF/TSF, and T M uses two

channel offsets (excluding two offsets dedicated for EB and RPL shared slotframes).

56

3.5.2 Impact of Traffic Load

We first investigate the performance of the state-of-the-art TSCH schedules and TESLA

with various traffic intensities on Lille testbed consisting of 110 nodes. We use slot-

frame size of 2 for the minimal configuration which had the highest PDR in Sec-

tion 3.3. Both receiver/sender-based Orchestra use a unicast slotframe size of 13. Each

node uses transmission power of -17 dBm. Fig. 3.6 shows a snapshot of the RPL rout-

ing topology during experiments where average depth of the network is 4.7 hops, and

its maximum reaches 7 hops. In each experiment, the root node (i.e., node 1) generates

downward packets with a fixed rate while altering destinations. For upward packets,

an equal aggregate rate is used for 109 sensor nodes. For instance, when the root gen-

erates 2 downward packets per second, each of 109 non-root nodes generates upward

packets with 0.018 (=2/109) packets per second.

Reliability. Fig. 3.7(a) shows the average bidirectional end-to-end PDR under different

traffic load. Under light traffic, all the protocols perform well with PDR over 99%.

However, when the traffic load from/to the root is 2 or 3.3 packets/second, M, RB, and

SB start to show performance degradation. On the other hand, TESLA is still capable of

accommodating traffic by reducing slotframe sizes adaptively. For example, Fig. 3.9(b)

presents a snapshot of RSF size of each node when traffic rate is 2 packets/second. It

shows that bottleneck nodes marked with yellow color in Fig. 3.6 use much smaller

RSF sizes than the other nodes to resolve contention. Fig. 3.7(a) also shows that T M

improves PDR of T S by up to 30.1%

As presented in Fig. 3.8(a), M and RB experience considerable link losses since

multiple nodes contend for an active slot, which is aggravated more in the vicinity of

bottlenecks. Meanwhile, bottlenecks in SB suffer from frequent queue overflows due

to its fewer Tx slots than Rx slots. In TESLA, however, bottlenecks can reduce its Rx

slotframe size to the minimum (i.e., 2), resulting in much less packet losses. When the

traffic increases more, TESLA also encounters channel contention and packet losses,

which is still less than those in other schemes. The results confirm that TESLA suc-

57

(a) End-to-end packet delivery ratio

(b) Radio duty-cycle (on time)

(c) End-to-end latency

Figure 3.7: PDR, duty-cycle and latency according to different traffic load.

cessfully does its role at the link layer: rescuing bottleneck nodes from the contention

hell, as much as possible.

Energy consumption. Fig. 3.7(b) shows the duty-cycle for each protocol. Obviously,

when the traffic load increases, more energy is used to transmit and receive packets.

M2 consumes the largest energy due to its short periodicity of slotframe and severe

contention. Orchestra has duty-cycles from 1.3% to 7.0%. Under low traffic load, SB

spends more energy than RB by allocating multiple Rx slots within a slotframe. How-

ever, RB with one Rx slot within a slotframe experiences more contention than SB,

58

(a) Number of packet losses during 1-hour experiment

(b) Number of overhead during 1-hour experiment

Figure 3.8: Number of Losses and overhead according to different traffic load.

bringing about higher duty-cycles than SB as traffic intensifies. TESLA significantly

improves upon M, RB, and SB, maintaining duty-cycle from 0.8% to 1.6%. T M

has slightly lower duty-cycle than T S since it reduces channel contention thanks

through channel diversity. Compared to SB which showed the best PDR except TESLA

in Fig. 3.7(a), T M reduces duty-cycle by 67.1% on average.

Fig. 3.9(a) plots the distribution of duty-cycles among all 110 nodes for traffic load

of 2 packets/second. At this traffic rate, RB13 outperforms M2 and SB13 as illustrated

in Fig. 3.7(b), but TESLA performs even better, enabling more than 90% of nodes

to save their energy by 50% compared to RB13. It is important to note that TESLA

achieves energy saving without loss of reliability by increasing the RSF sizes only for

the nodes with over-allocated slots. Fig. 3.9(b) confirms this: while most nodes utilize

the maximum RSF size (i.e., 97) for energy saving, a few bottleneck nodes use very

small RSF sizes. In Fig. 3.9(a), TESLA does increase the duty-cycles of ¡5% bottleneck

59

(a) CDF of duty-cycle for traffic load of 2 pack-

ets/second

(b) Rx slotframe size of TESLA for traffic load of 2 packets/second

Figure 3.9: CDF of duty-cycle and Rx slotframe size of TESLA for traffic load of 2

packets/second

nodes compared to RB13, because they select RSF sizes shorter than 13 as shown in

Fig. 3.9(b).

Interestingly, RB13 also achieved perfect reliability under the same traffic load,

which means that RSF size of 13 is sufficient to handle the traffic even for bottle-

necks. The reason why TESLA causes the bottleneck nodes to use RSF sizes less than

13 is its sensitive reaction to the contention: decreasing RSF size promptly when a

burst of traffic is temporarily observed. Even if each node generates traffic with a fixed

rate, the incoming traffic load of each node, especially bottleneck nodes, fluctuates

due to randomness in the network such as channel quality and topology changes. As

TESLA prioritizes reliability over energy efficiency, a few bottleneck nodes sacrifice

their energy by using RSF sizes slightly shorter than actually needed, aiming for re-

liable packet delivery under network dynamics. We argue that this design choice is

reasonable because sacrificing reliability can ruin the whole network.

60

End-to-end latency. Fig. 3.7(c) presents the average end-to-end latency for upward

and downward traffic. When the traffic load is low, TESLA exhibits the longest delay,

since most nodes use the maximum RSF size. Note that TESLA is designed for reliabil-

ity and energy efficiency, rather than short latency. Interestingly, however, as the traffic

load increases to 3.3 packets/second, the latency of TESLA decreases because RSF

size is reduced throughout the network, while those of the other schemes increase due

to channel contention. Eventually, beyond traffic load of 3.3 packets/second, TESLA

provides the shortest delay with the best reliability and energy-efficiency. As an ex-

ceptional case, under the highest traffic load, it seems that the minimal configuration

shows shorter delay than TESLA, but this is because only nodes with 1 or 2 hops away

from the root can successfully deliver packets (i.e., ∼30% PDR). Overall, although

TESLA is not explicitly designed for latency improvement, its contention alleviation

ends up with better latency.

Network overhead. When a TESLA node changes its RSF size, it can generate addi-

tional DAO and EB packets in order to fast notify the new RSF size to the preferred

parent and 1-hop children, as described in Section 3.4.3. Fig. 3.8(b) presents DIO,

DAO, and EB overhead. In the lowest traffic load case, T M makes 27.2% and 16.1%

increments of DAO and EB packets, compared to RB13. Nevertheless, it does not im-

pede TESLA’s reliability as shown in Fig. 3.7(a). In addition, this control overhead

increase is more than compensated by TESLA’s substantial energy saving via reducing

idle listening, which leads to significant duty-cycle improvement shown in Fig. 3.7(b).

Fig. 3.8(b) also reveals that as the traffic increases, Orchestra and the minimal schedule

incur more network overhead than TESLA to restore the network that has become un-

stable due to lack of reliable packet delivery. This also confirms why TESLA’s design

choice, prioritizing reliability over energy efficiency, makes sense.

61

(a) End-to-end packet delivery ratio

(b) Radio duty-cycle (on time)

(c) Hop distance

Figure 3.10: Impact of transmission power.

3.5.3 Impact of Network Topology

Now, we run experiments extensively with various network topologies. We first change

Tx power of each node to investigate the impact of node density. Then, we change the

location of the root to give drastic variation in the topology. Lastly, we run experiments

in an entirely different environment, 79 nodes on Grenoble testbed.

Different Tx power. In this experiment, we vary Tx power from the minimum (-

17 dBm) to the maximum (3 dBm) value. We set traffic load to 6.7 packets/second,

the highest load used in Section 3.5.2 anticipating that higher Tx power will result in

62

(a) End-to-end packet delivery ratio

(b) Radio duty-cycle (on time)

(c) Hop distance

Figure 3.11: Impact of root location.

better performance, and compare TESLA with M2, RB7, RB13, SB13, and SB23.

Fig. 3.10 plots end-to-end PDR, duty-cycle of radio, and average hop distance of

RPL topology. As Tx power increases, Fig. 3.10(a) shows that all the schemes except

RB13 provide better PDR and Fig. 3.10(b) shows that all the schemes provide lower

radio duty-cycle. There are two reasons for this result. Firstly, a higher Tx power de-

creases average hop distance as shown in Fig. 3.10(c), which reduces network traffic

since a packet can be delivered to its destination with fewer transmissions. This al-

leviates the level of contention. Secondly, a higher Tx power increases node density

63

and provides more parent candidates for each node. Thus, each node can have a better

chance to avoid choosing a bottleneck node as the preferred parent.

On the other hand, RB13’s PDR performance shows a trade-off regarding Tx

power increase: although lower network traffic can reduce contention, higher node

density can cause more contention due to more nearby contenders. In RB13, the latter

effect becomes stronger than the former when Tx power is higher than -4 dBm, re-

sulting in PDR degradation. Note that RB7 escapes from the negative effect by using

a shorter slotframe size, showing monotonic PDR increase with Tx power but more

duty-cycle than RB13. SB usually experiences less contention than RB, providing bet-

ter PDR than RB. Meanwhile, SB13 always provides better PDR but worse duty-cycle

than SB23 due to its shorter slotframe size. Lastly, regardless of Tx power, TESLA

outperforms the others considerably in terms of both reliability and energy efficiency.

Different positions of the root. Here, we change the root location to create a totally

different topology. In addition to the default root location of all the previous experi-

ments, we also used a node at corner/center of the testbed as the root. We set Tx power

to -17 dBm and aggregate traffic rate from/to the root to 1.4 packets/second, a rate

at which M2 maintained more than 99% PDR in Section 3.5.2. In this experiment,

TESLA is compared with M2, RB7, RB13, SB7, and SB13, and the results are shown

in Figures 3.11(a) through 3.11(c).

When we use the center and default as the root positions, all the schemes achieve

more than 99% PDR, but TESLA improves energy efficiency remarkably. For the case

of corner root, as hop distance becomes longer and network traffic increases, PDR

and duty-cycle performance drops in the minimal schedule and Orchestra. However,

TESLA still maintains perfect reliability with the lowest energy consumption through

slotframe size adaptation.

Different testbeds. We now compare TESLA with M2, RB7, RB13, RB31, SB7, SB13,

and SB31 in a different environment: 79 nodes on the Grenoble testbed, which are

deployed uniformly in a long linear topology with two lines. We use total traffic load

64

1

2 3 4 5 6 7 8 9 11 13 15

10 12 22 24 26 28 30 34 14 16 17 18 19 20 32 23

21 25 3627 33 35 29 31 37 38 40 41 42 43 44 48 39

51 56 45 46 47 49 50 52 54

61 53 6055 57 58 59 62 64 66 69

6365 71 73 68 67 70 72 74 75 77

76 78 79

(a) A snapshot of RPL topology for 79 nodes on Grenoble testbed

(b) End-to-end packet delivery ratio (c) Radio duty-cycle (on time)

(d) Rx slotframe size of TESLA

Figure 3.12: Results on the 79-node IoT-LAB Grenoble testbed.

65

of 2 packets/second for each of bidirectional traffic, and Tx power of -17 dBm.

The experiment results are summarized in Fig. 3.12. Compared to Fig. 3.6, the

routing topology of Grenoble testbed illustrated in Fig. 3.12(a) is evenly spread out

due to its linear deployment. However, there are still bottlenecks depicted as yellow-

colored nodes. As two main performance metrics, Fig. 3.12(b) plots upward and down-

ward PDR, and Fig. 3.12(c) plots radio duty-cycle. By adaptively controlling RSF

sizes as illustrated in Fig. 3.12(d), TESLA shows the best performance in both aspects.

Specifically, Fig. 3.12(d) and Fig. 3.9(b) show that TESLA uses more diverse RSF sizes

on the Grenoble testbed than the Lille testbed. This confirms that TESLA does reflect

the different routing topology on the Grenoble testbed, more balanced than that on the

Lille testbed.

In Sections 3.5.2 and 3.5.3 so far, we have extensively evaluated the performance

of TESLA against the state-of-the-arts with various slotframe sizes. We found that the

optimal slotframe size for each of compared schemes differs according to the traffic

load and network topology. It is notable, however, that we have never adjusted any

of TESLA’s default parameters (explained in Section 3.5.1), but TESLA has always

presented the best performances nevertheless.

3.5.4 Impact of Run-time Traffic Dynamics

To closely understand TESLA’s adaptability to traffic dynamics of the network at the

link level, we run another experiment with a single-hop topology having five senders

and a common receiver. In this experiment, each sender generates packets with two dif-

ferent traffic loads, 0.2 and 1 packet/second. The experiment comprises four 20-minute

periods, and each sender uses the two traffic rates alternately within each period. The

intervals for traffic load alternation in the four periods are 5 minutes, 1 minute, 15 sec-

onds, and 5 seconds. This load change is shown explicitly in Fig. 3.13.

Fig. 3.13 also plots how TESLA adjusts the receiver’s RSF size under the traffic

load dynamics. Recall that we used the RSF adaptation period, Tadapt, of 15 seconds.

66

Figure 3.13: Time vs. Rx slotframe size.

The first two periods have larger intervals (i.e., 5 min. and 1 min.) of traffic alternation

than Tadapt, sufficient to adapt RSF size according to the changed traffic load. While

the RSF size gradually reaches 17 when the traffic load is low, it is reduced down to 3

immediately when the traffic load becomes high. During the third and fourth periods,

however, the traffic load changes faster than the RSF adaptation rate. Therefore, the

estimated traffic load is always averaged through the two different traffic loads, and

thus the range of RSF size variation declines. For example, it fluctuates only between

5 and 7 in the fourth period.

Nevertheless, PDR of each period is maintained above 99.9% with reasonable ex-

pected transmission counts (ETX) as indicated in Fig. 3.13. This proves that even when

traffic load varies fast, TESLA does its best to adjust RSF size according to the aver-

age traffic load, maintaining reliability. Prioritizing reliability over energy efficiency is

important at this point again.

3.5.5 Impact of TESLA Parameters

Lastly, we evaluate slot utilization ratio (SUR) of TESLA with the traffic load of 2

packets/second from/to the root, while changing the TESLA parameters. We com-

pare that with Orchestra and the minimal configuration. From Fig. 3.3(a) which used

the same traffic load, we chose a common slotframe size ‘13’ for sender-based and

receiver-based Orchestra, which achieves more than 99% reliability for both, and a

slotframe size ‘2’ for the minimal schedule, which provides the highest PDR. We eval-

67

Figure 3.14: Slot utilization ratio with different PRR thresholds and upper bound of

slotframe lengths.

uate TESLA with different pairs of (PRRth,low, PRRth,up) and different RSF size up-

per bounds. For instance, T-(80%,90%)-200 indicates TESLA with 80% of PRRth,low,

90% of PRRth,up, and the upper bound of 200.

Fig. 3.14 plots the SUR distribution of M2, RB13, SB13. In Orchestra and the

minimal schedule, 80% of nodes show ¡1% SUR, most of which are leaf nodes wasting

energy excessively in unnecessary Rx slots. On the contrary, TESLA improves their

SURs, more when a larger RSF size upper bound is used. When the upper bound is

400, TESLA provides SUR from 5% to 12% for the 80% nodes. This result reveals that

using a large maximum RSF size improves the group of nodes with low SUR (i.e., leaf

nodes). However, nodes with an excessively large RSF size cannot react to network

dynamics promptly due to few wake-ups, degrading reliability. For example, upward

and downward PDRs of T-(80%,90%)-400 are 93.0% and 95.9%, respectively, while

T-(80%,90%)-100 achieves more than 99% for both. In addition, energy saving by

using a large maximum RSF size is marginal since the RPL shared slotframe accounts

for most of energy consumption in nodes with large RSF sizes.

On the other hand, PRRth,low and PRRth,up affect the bottleneck nodes with high

SUR. With lower PRR thresholds, TESLA is reluctant to reduce RSF size under heavy

traffic, resulting in higher SUR. However, we found TESLA with low PRRth,low and

PRRth,up underperforms in terms of reliability, since it does not resolve poor link-layer

PRR. Based on the results, we have used T-(80%,90%)-100 as our default configura-

68

tion for all the previous experiments.

3.6 Conclusion

We introduced TESLA, a dynamic scheduling solution for TSCH. In TESLA, each node

adapts its Rx schedule with traffic awareness to improve energy efficiency while guar-

anteeing reliability. TESLA also aims to increase network capacity by using multiple

channels. We implemented TESLA on a low-power embedded platform using Con-

tikiOS, and evaluated it through extensive experiments on two large-scale multihop

testbeds consisting of 110 and 79 low-power IEEE 802.15.4 devices. Consequently,

we have shown that TESLA improves the state-of-the-arts with respect to both relia-

bility and energy efficiency in any experimental environment and topology. We also

demonstrated TESLA’s adaptability to traffic dynamics. As future work, we plan to de-

sign a dynamic TSCH scheduling for broadcast packets as well, which, collaborated

with TESLA, can complete fully adaptive scheduling for all types of traffic.

69

Chapter 4

OST: On-demand TSCH Scheduling with Traffic-awareness

4.1 Introduction

As the Internet of Things (IoT) is growing up consistently, a number of applications

are used and emerging. It is common that wearable devices are attached to people.

In smart homes, IoT devices are connected each other for various purposes such as

security and device control. The network gets bigger in smart buildings and smart

cities. Industrial IoT (IIoT) networks are composed of numerous sensors and actuators,

and they monitor and manage the automation of system.

To support such applications, Time-slotted channgel hopping (TSCH) was stan-

dardized by IEEE 802.15.4-2015 [16] for low-power and lossy networks (LLNs). A

TSCH network is synchronized tightly and operated with in a timeslot manner. In a

single timeslot, a data frame and an acknowledgement (ACK) can be exchanged. In

each timeslot, a node choose a single its operation (transmit (Tx), receive (Rx), or

sleep). For TSCH implementation, it is necessary to determine who (which node),

when (which timeslot), and where (which channel) to act. It is called TSCH schedul-

ing, which is not specified in the standard, and thus a open problem. The detailed

explanation of TSCH is described in Section 3.2.1.

In Chapter 3, we designed a new TSCH scheduling, TESLA, which adapts Rx slot-

70

frame size according to incoming traffic load. However, there are a few of limitations

of TESLA. Firstly, a Rx slot in TESLA is shared by multiple transmitters. As a result,

collision happens between them. TESLA addresses this problem in two ways, by 1)

exploiting exponential backoff for link-layer retransmissions and 2) allocating more

Rx slots than actually required. This makes a lot of Rx slots unused, wasting energy

with idle listening. Secondly, a TESLA node changes its Rx slotframe size by estimat-

ing incoming traffic from neighbors. However, receiver-side traffic estimation is not

accurate, since it cannot include the packets lost due to collisions or bad link qual-

ity. Lastly, TESLA generates additional packet overhead to inform neighbors of a new

schedule whenever an Rx slotframe size is updated.

By tackling these problems in TESLA, we introduce OST , a novel on-demand

TSCH scheduling with traffic-awareness. OST inherits principle of traffic-aware sched-

ule adaptation from TESLA. However, it dedicates each of Rx slots to a single sender,

instead of using shared Rx slots. To adapt schedules to traffic load, sender-side traffic

estimation is executed. After the estimation, a new dedicated schedule is exchanged

between a pair of nodes (i.e., a sender and receiver) without incurring any additional

overhead. Furthermore, OST can handle a burst of traffic, by allocating additional ded-

icated slots in a on-demand way. We implement OST with ContikiOS on low-power

embedded devices and evaluate OST with state-of-the-arts (including TESLA) in real

multi-hop testbed with 72 nodes, showing that OST outperforms the others in terms of

reliability and energy-efficiency.

The remainder of this chapter is organized as follows: In Section 4.2, we propose

the design of OST , and elaborate on its main functional blocks. We discuss the imple-

mentation details and present the evaluation results in Section 4.3. We conclude the

chapter in Section 4.4.

71

4.2 OST Design

In this section, we present OST design. Collaborated with RPL, OST adapts the sched-

ules to updated routing neighbors (i.e., the preferred parent and 1-hop children). Each

OST node monitors traffic load from itself to each routing neighbor. Using average

traffic load for each routing neighbor, the node updates its Tx periodicity, i.e., Tx slot-

frame size, and negotiates with the corresponding neighbor for a available time offset

(toffset) to both. Although OST dedicates such periodic schedule for the pair of nodes

based on average traffic load, more traffic than expected may come. This makes the

packets queued, and in the worst case, queue is overflowed and packets are lost. To

address this problem, OST additionally allocates on-demand timeslots promptly when

packets are queued.

4.2.1 Slotframes

In OST , each node has five types of slotframes:

• EB slotframe is for TSCH enhanced beacons (EBs) with a constant periodicity and

a dedicated channel offset.

• Autonomous unicast slotframe (AUS) is for autonomous unicast with a constant

periodicity a dedicated channel offset.

• Autonomous broadcast slotframe (ABS) is for autonomous broadcast, also with a

constant periodicity.

• Periodic-provision Tx slotframe (PTS) is for unicast transmission, per neighbor,

with an elastic periodicity.

• Periodic-provision Rx slotframe (PRS) is for unicast reception, per neighbor, with

an elastic periodicity.

The first three slotframes are same the ones with receiver-based Orchestra. They

are used for TSCH/RPL control packets. PTS/PRS are made after negotiation between

72

a pair of nodes, but AUS/ABS are ”autonomous”. In other words, a node can always

exploit AUS/ABS for its transmission without negotiation, since the node knows which

toffset the receiver(s) listens on. We distinguish AUS from ABS to alleviate collision of

unicast packets. Thus, when a node changes its preferred parent, it transmits DAO to a

new preferred-parent using AUS.

In addition, a OST node maintains PTS for a routing neighbor, while the neighbor

has PRS for the node. Thus, a node ends up with having multiple PTSs and PRSs

as many as the number of its routing neighbors. PTS and PRS have a single Tx and

Rx slot, respectively. OST enables each node to adjust its own PTS size dynamically

according to its Tx rate. This update is informed the neighbor who has corresponding

PRS, and the neighbor changes its PRS size as such.

4.2.2 Periodic Provision

This section present how a pair of two neighboring nodes schedule PTS and PRS.

Selection of N

A OST node measures average traffic rate towards each of routing neighbors to select

the size of PTS and PRS. Whenever a node (A) enqueues a unicast packet for Tx to a

routing neighbor (i), A increases L(A, i) by one, which indicates traffic load from A

to i. For all i, L(A, i) is initialized to 0 with the period of tupdate. Before initializing

L(A, i), A calculates average traffic rate during last tupdate, R(A, i) for all i, as

R(A, i) = L(A, i)/(tupdate · nslot). (4.1)

nslot is a constant indicating the number of TSCH timeslots during time unit. Thus,

tupdate ·nslot is the number of timeslots in tupdate, and R(A, i) means the average number

of Tx towards i per a timeslot. Then, node A determines the size of its PTS for i as

2N(A,i), where N(A, i) is chosen as k satisfying 1/2k+1 < R(A, i) ≤ 1/2k.

73

Figure 4.1: Timeslot tree.

N(A, i) is updated every tupdate before initializing L(A, i). Node A piggybacks

N(A, i) on unicast packets destined to i, in order for i to update its PRS size for A.

Selection of toffset

Each OST node maintains a resources tree as shown Fig. 4.1, where a circle with (n, t)

represents periodic timeslot resources with N=n and toffset=t. The resources (n, t) can

be divided into (n+1, t) and (n+1, t+2n). For instance, (2,1) indicates the resources

with the slotframe size of 22 and toffset of 1. This resources can be divided into (3,1)

and (3,5) whose slotframe size is 23 and toffset are 1 and 5, respectively, as exemplified

in Fig. 4.1.

74

When node i detects a new N(A, i) in a unicast packet from A, it selects toffset(N, i)

newly for its PRS update. However, a new PRS schedule should not overlap with other

PTS or PRS schedules. Thus, node i searches for the resource tree to find the resource

with n=N(A, i), which is not used for other PTSs and PRSs. If there are multiple re-

sources available, node i select one randomly. Then, t in the selected resource becomes

toffset(N, i), and node i allocates a PRS which has the periodicity of 2N(A,i) a Rx slot

with toffset(N, i).

Meanwhile, node i piggybacks toffset(N, i) on the acknowledgement (ACK) packet

to node A. Then, A also schedules a PTS with N(A, i) and toffset(N, i), which corre-

sponds to the new PRS of node i.

4.2.3 On-demand Provision

Although a OST node allocates PRS/PTS based on average traffic rate, traffic pattern

is usually irregular according to network topology and randomness of wireless links.

If a node occasionally observes a burst of traffic, it may not be handled only with

PRS/PTS, leading to queue overflow. To tackle this problem, OST enables a node to

schedule more timeslots when there are queued packets.

Specifically, when a OST node A sends a unicast packet p1 on a timeslot (ASN=t1)

towards a neighbor i, it checks whether there is another packet p2 in Tx queue for i.

If so, A makes a subsequent timeslot schedule (STS) by looking into all slotframe

schedules. STS consists of sizeSTS bits, where k-th bit indicates whether A has the

schedule in the timeslot with ASN=t1+k. If the timeslot is schedules, k-th bit is set to

1. Otherwise, it is set to 0.

Then, STS is included in the p1 with the frame pending bit set. When a node i

receives the p1 in ASN=t1, it finds out the frame pending bit is set, and compares

STS of A (piggybacked on p1) with its own STS. If m-th bits are 0 in both STSs, m

is a matching bit, and it means neither A nor i has a schedule in ASN=t1+m. Then,

i replies the matching bit to A on the ACK for p1, and schedules a single Rx slot

75

in ASN=t1+m. When there are multiple matching bits, the earliest bit is selected. On

receiving the ACK in ASN=t1, node A allocates a Tx slot in ASN=t1+m. Accordingly,

node A is allowed to transmit p2 in ASN=t1+m. Note that this on-demand provision

occurs recursively. In other words, when node A has more packets other than p2, it

updates its STS, and delivers it on p2 again using the matching slot with ASN=t1+m.

4.3 Evaluation

4.3.1 Methodology and Experiment Setup

We implement OST on ContikiOS and compare it with receiver-based Orchestra (RB),

sender-based Orchestra(SB) and TESLA. To this end, we evaluate them using 72 low-

power nodes on FIT/IoT-lab in Grenoble. Each node features a 32-bit ARM Cortex-

M3 microcontroller (STM32F103REY) and an AT86RF231 IEEE 802.15.4 radio chip.

This node is representative of today’s state-of-the art IoT devices [85]. We use Contiki-

RPL implementation on top of the TSCH scheduling schemes.

In this experiment, we use the size of EB slotframe as 397 in all protocols. In RB

and SB, the sizes of RPL shared slotframes are 57 and 41, respectively, and the sizes of

unicast slotframes are 13 in common. Meanwhile, TESLA uses 41 for the length of RPL

shared slotframe. OST uses AUS and ABS with the sizes of 47 and 57, respectively.

All schemes uses Tx queue size of 16 for each of routing neighbor, and link-layer

maximum retransmissions is 8. In all experiments, the application payload is 59 bytes

carried in UDP/IPv6 datagrams over 6LoWPAN, reaching 109 bytes of the data frame

size. TSCH hops over four best channels: 15, 20, 25, and 26.

4.3.2 Experimental Results

We evaluate the protocols according to various traffic rate. There are bidirectional

traffic (i.e., upwards and downwards), aggregated traffic load is same. Aggregate traffic

rate for each direction is from 2 to 10 packets/second. The results are shown in Fig. 4.2.

76

(a) End-to-end packet delivery ratio

(b) Radio duty-cycle (on time)

Figure 4.2: PDR, duty-cycle according to different traffic load.

Fig. 4.2(a) presents average end-to-end packet reception ratio (PRR). Generally,

as traffic rate increases, PRR decreases due to insufficient resources. SB shows bet-

ter PDR with the cost of high energy consumption, which is shown in Fig. 4.2(b) as

radio duty-cycle. TESLA improves Orchestra in terms of both reliability and energy-

efficiency as discussed in Section 3.5. However, OST outperforms even TESLA in both

aspects, since it dedicates the resources and allocates more in real time whenever re-

quired.

77

4.4 Conclusion

In this chapter, we introduce OST , a novel on-demand TSCH scheduling with traffic-

awareness. It adapts the slotframe sizes for periodic provision according average traffic

rate. Moreover, it allocates more timeslots promptly when there are packets queued. It

addresses the problem of unpredictable traffic. We implemented OST on a low-power

embedded platform using ContikiOS, and evaluated it through extensive experiments

on large-scale testbed consisting of 72 low-power IEEE 802.15.4 devices. We com-

paredOST’s performance with state-of-the-arts, showing outstanding improvement in

both reliability and energy-efficiency in various traffic load.

78

Chapter 5

CONCLUSION

In this dissertation, we focused on the adaptability in low-power and lossy networks.

As a adaptable protocol to mobile devices, we first proposed MAPLE, an asymmetric

transmit power-based routing architecture that supports mobility of resource-constrained

devices in LLNs. By using high transmit power of the gateway in MAPLE, LLN nodes

are synchronized for low duty-cycle operation, and RSSI gradient field based oppor-

tunistic routing is designed which eliminates the need for any neighbor or routing table.

This enables scalability, low and constant memory footprint, and provides responsive

routing metric without control overhead. Next, we designed two TSCH scheduling

methods, which are adaptable to traffic load. In TESLA, we introduced a dynamic

scheduling solution for TSCH with traffic-awareness. Each TESLA node adapts its

Rx schedule with traffic awareness to improve energy efficiency while guaranteeing

reliability. Then, we proposed OST , a novel on-demand TSCH scheduling with traffic-

awareness. OST adapts the slotframe sizes for periodic provision according average

traffic rate. Moreover, it allocates more timeslots promptly when there are packets

queued. It addresses the problem of unpredictable traffic. For performance evaluation

of MAPLE, TESLA, and OST , we implemented them on resource-constrained low-

power embedded devices, and conducted extensive experiments on large-scale multi-

hop testbeds. Compared with state-of-the-arts, we showed their superiority in terms of

79

packet delivery ratio and duty-cycle.

80

Bibliography

[1] J. Adkins, B. Ghena, N. Jackson, P. Pannuto, S. Rohrer, B. Campbell, and

P. Dutta, “The signpost platform for city-scale sensing,” in Proceedings of the

17th ACM/IEEE International Conference on Information Processing in Sensor

Networks. IEEE Press, 2018, pp. 188–199.

[2] H.-S. Kim, J. Ko, and S. Bahk, “Smarter markets for smarter life: applica-

tions, challenges, and deployment experiences,” IEEE Communications Maga-

zine, vol. 55, no. 5, pp. 34–41, 2017.

[3] J. Ko, C. Lu, M. B. Srivastava, J. A. Stankovic, A. Terzis, and M. Welsh, “Wire-

less sensor networks for healthcare,” Proceedings of the IEEE, vol. 98, no. 11,

pp. 1947–1960, 2010.

[4] J. Park, W. Nam, T. Kim, J. Choi, S. Lee, D. Yoon, J. Paek, and J. Ko, “Glasses

for the third eye: Improving clinical data analysis with motion sensor-based filter-

ing,” in The 15th ACM International Conference on Embedded Networked Sensor

Systems (SenSys’17), Nov. 2017, pp. 99–112.

[5] J. Ko, J. H. Lim, Y. Chen, R. Musvaloiu-E, A. Terzis, G. M. Masson, T. Gao,

W. Destler, L. Selavo, and R. P. Dutton, “Medisn: Medical emergency detec-

tion in sensor networks,” ACM Transactions on Embedded Computing Systems

(TECS), vol. 10, no. 1, p. 11, 2010.

81

[6] M. S. Shahamabadi, B. B. M. Ali, P. Varahram, and A. J. Jara, “A network mo-

bility solution based on 6LoWPAN hospital wireless sensor network (NEMO-

HWSN),” in International Conference on Innovative Mobile and Internet Ser-

vices in Ubiquitous Computing (IMIS), 2013, pp. 433–438.

[7] H.-S. Kim, H. Cho, M.-S. Lee, J. Paek, J. Ko, and S. Bahk, “MarketNet: An

asymmetric transmission power-based wireless system for managing e-price tags

in markets,” in ACM Conference on Embedded Networked Sensor Systems (Sen-

Sys), 2015, pp. 281–294.

[8] S. Berman, V. Kumar, and R. Nagpal, “Design of control policies for spatially

inhomogeneous robot swarms with application to commercial pollination,” in

IEEE International Conference on Robotics and Automation (ICRA), 2011, pp.

378–385.

[9] P. Tokekar, D. Bhadauria, A. Studenski, and V. Isler, “A robotic system for mon-

itoring carp in Minnesota lakes,” Journal of Field Robotics, vol. 27, no. 6, pp.

779–789, 2010.

[10] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik,

J.-P. Vasseur, and R. Alexander, “RPL: IPv6 routing protocol for low-power and

lossy networks,” RFC 6550, 2012.

[11] S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the tree bloom: Scalable op-

portunistic routing with ORPL,” in ACM Conference on Embedded Networked

Sensor Systems (SenSys), 2013.

[12] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra: Robust

mesh networks through autonomously scheduled TSCH,” in ACM conference on

embedded networked sensor systems (SenSys), 2015, pp. 337–350.

[13] J. Ko and M. Chang, “Momoro: Providing mobility support for low-power wire-

less applications,” IEEE Systems Journal, vol. 9, no. 2, pp. 585–594, 2015.

82

[14] H.-S. Kim, J. Ko, D. E. Culler, and J. Paek, “Challenging the IPv6 routing proto-

col for low-power and lossy networks (RPL): A survey,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 4, pp. 2502–2525, 2017.

[15] A. Oliveira and T. Vazão, “Low-power and lossy networks under mobility: A

survey,” Computer Networks, vol. 107, pp. 339–352, 2016.

[16] “IEEE standard for low-rate wireless networks,” IEEE Std 802.15.4-2015 (Revi-

sion of IEEE Std 802.15.4-2011), pp. 1–709, April 2016.

[17] T. Clausen, A. C. de Verdiere, J. Yi, A. Niktash, Y. Igarashi, H. Satoh, U. Herberg,

C. Lavenu, T. Lys, C. Perkins et al., “The lightweight on-demand ad hoc distance-

vector routing protocol-next generation (LOADng),” draft-clausen-lln-loadng-

09, 2013.

[18] I. El Korbi, M. B. Brahim, C. Adjih, and L. A. Saidane, “Mobility enhanced RPL

for wireless sensor networks,” in IEEE International Conference on the Network

of the Future (NOF), 2012, pp. 1–8.

[19] H. Fotouhi, D. Moreira, and M. Alves, “mRPL: Boosting mobility in the Internet

of Things,” Ad Hoc Networks, vol. 26, pp. 17–35, 2015.

[20] O. Gaddour, A. Koubâa, R. Rangarajan, O. Cheikhrouhou, E. Tovar, and M. Abid,

“Co-RPL: RPL routing for mobile low power wireless sensor networks using

Corona mechanism,” in IEEE International Symposium on Industrial Embedded

Systems (SIES), 2014, pp. 200–209.

[21] C. Cobarzan, J. Montavont, and T. Noel, “Analysis and performance evaluation

of RPL under mobility,” in IEEE Symposium on Computers and Communication

(ISCC), 2014, pp. 1–6.

[22] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance vector

(AODV) routing,” RFC 3561, 2003.

83

[23] T. Clausen, J. Yi, and U. Herberg, “Lightweight On-demand Ad hoc Distance-

vector Routing-Next Generation (LOADng): Protocol, extension, and applicabil-

ity,” Computer Networks, vol. 126, pp. 125–140, 2017.

[24] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless

sensor networks,” in ACM International Conference on Embedded Networked

Sensor Systems (SenSys), 2004.

[25] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: A short preamble

MAC protocol for duty-cycled wireless sensor networks,” in ACM International

Conference on Embedded Networked Sensor Systems (SenSys), 2006.

[26] D. Moss and P. Levis, “BoX-MACs: Exploiting physical and link layer bound-

aries in low-power networking,” Computer Systems Laboratory Stanford Univer-

sity, vol. 64, no. 66, p. 120, 2008.

[27] A. Dunkels, “The contikimac radio duty cycling protocol,” 2011.

[28] Y. Sun, O. Gurewitz, and D. B. Johnson, “RI-MAC: a receiver-initiated asyn-

chronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor

networks,” in ACM conference on Embedded network sensor systems (SenSys),

2008.

[29] T. Watteyne, A. Mehta, and K. Pister, “Reliability through frequency diversity:

why channel hopping makes sense,” in Proceedings of the 6th ACM symposium

on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks.

ACM, 2009, pp. 116–123.

[30] J. Lee, T. Kwon, and J. Song, “Group connectivity model for industrial wireless

sensor networks,” IEEE Transactions on Industrial Electronics, vol. 57, no. 5,

pp. 1835–1844, 2010.

84

[31] M. Nobre, I. Silva, and L. A. Guedes, “Routing and scheduling algorithms for

WirelessHART Networks: a survey,” Sensors, vol. 15, no. 5, pp. 9703–9740,

2015.

[32] R. T. Hermeto, A. Gallais, and F. Theoleyre, “Scheduling for IEEE802.15.4-

TSCH and slow channel hopping MAC in low power industrial wireless net-

works: A survey,” Computer Communications, 2017.

[33] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia, “Traffic

aware scheduling algorithm for reliable low-power multi-hop IEEE 802.15.4e

networks,” in IEEE International Symposium on Personal Indoor and Mobile

Radio Communications (PIMRC), 2012.

[34] ——, “Traffic-aware time-critical scheduling in heavily duty-cycled IEEE

802.15.4e for an industrial IoT,” Proc. of IEEE Sensors 2012, pp. 1–4, 2012.

[35] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler, and T. Engel,

“On optimal scheduling in duty-cycled industrial IoT applications using IEEE

802.15.4e TSCH,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3655–3666, 2013.

[36] V. Sempere-Payá, J. Silvestre-Blanes, D. Todolı́, M. Valls, and S. Santonja,

“Evaluation of TSCH scheduling implementations for real WSN applications,”

in IEEE International Conference on Emerging Technologies and Factory Au-

tomation (ETFA), 2016, pp. 1–4.

[37] Y. Jin, P. Kulkarni, J. Wilcox, and M. Sooriyabandara, “A centralized schedul-

ing algorithm for IEEE 802.15.4e TSCH based industrial low power wire-

less networks,” in IEEE Wireless Communications and Networking Conference

(WCNC), 2016, pp. 1–6.

[38] M. Hashimoto, N. Wakamiya, M. Murata, Y. Kawamoto, and K. Fukui, “End-

to-end reliability-and delay-aware scheduling with slot sharing for wireless sen-

85

sor networks,” in International Conference on Communication Systems and Net-

works (COMSNETS), 2016.

[39] A. Elsts, X. Fafoutis, J. Pope, G. Oikonomou, R. Piechocki, and I. Craddock,

“Scheduling high-rate unpredictable traffic in IEEE 802.15. 4 TSCH networks,”

in IEEE International Conference on Distributed Computing in Sensor Systems

(DCOSS), 2017.

[40] K.-H. Choi and S.-H. Chung, “A new centralized link scheduling for 6TiSCH

wireless industrial networks,” in Internet of Things, Smart Spaces, and Next Gen-

eration Networks and Systems. Springer, 2016, pp. 360–371.

[41] I. Rhee, A. Warrier, J. Min, and L. Xu, “DRAND: Distributed randomized

TDMA scheduling for wireless ad hoc networks,” IEEE Transactions on Mobile

Computing, vol. 8, no. 10, pp. 1384–1396, 2009.

[42] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-MAC: a hybrid MAC

for wireless sensor networks,” IEEE/ACM Transactions on Networking (TON),

vol. 16, no. 3, pp. 511–524, 2008.

[43] R. Soua, P. Minet, and E. Livolant, “DiSCA: A distributed scheduling for con-

vergecast in multichannel wireless sensor networks,” in 14th IFIP/IEEE Sympo-

sium on Integrated Network and Service Management (IEEE IM), 2015.

[44] A. Aijaz and U. Raza, “Deamon: a decentralized adaptive multi-hop scheduling

protocol for 6TiSCH wireless networks,” IEEE Sensors Journal, vol. 17, no. 20,

pp. 6825–6836, 2017.

[45] C. Vallati, S. Brienza, G. Anastasi, and S. K. Das, “Improving network formation

in 6TiSCH networks,” IEEE Transactions on Mobile Computing, 2018.

86

[46] D. Dujovne, L. A. Grieco, M. R. Palattella, and N. Accettura, “6TiSCH 6top

scheduling function zero (SF0),” Internet Engineering Task Force, Tech. Rep.

draft-ietf-6tisch-6top-sf0-01 [work in progress], vol. 8, 2016.

[47] Q. Wang, X. Vilajosana, and T. Watteyne, “6top protocol (6p),” Internet Engi-

neering Task Force, Internet-Draft draft-ietf-6tisch-6top-protocol-02, 2016.

[48] T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, “LLSF: Low latency

scheduling function for 6TiSCH networks,” in IEEE International Conference

on Distributed Computing in Sensor Systems (DCOSS), 2016.

[49] N. Accettura, E. Vogli, M. R. Palattella, L. A. Grieco, G. Boggia, and M. Dohler,

“Decentralized traffic aware scheduling in 6TiSCH networks: Design and exper-

imental evaluation,” IEEE Internet of Things Journal, 2015.

[50] K.-H. Phung, B. Lemmens, M. Goossens, A. Nowe, L. Tran, and K. Steenhaut,

“Schedule-based multi-channel communication in wireless sensor networks: A

complete design and performance evaluation,” Ad Hoc Networks, vol. 26, pp.

88–102, 2015.

[51] M. R. Palattella, T. Watteyne, Q. Wang, K. Muraoka, N. Accettura, D. Dujovne,

L. A. Grieco, and T. Engel, “On-the-fly bandwidth reservation for 6TiSCH wire-

less industrial networks,” IEEE Sensors Journal, vol. 16, no. 2, pp. 550–560,

2016.

[52] T. P. Duy, T. Dinh, and Y. Kim, “Distributed cell selection for scheduling function

in 6TiSCH networks,” Computer Standards & Interfaces, vol. 53, pp. 80–88,

2017.

[53] F. Theoleyre and G. Z. Papadopoulos, “Experimental validation of a distributed

self-configured 6TiSCH with traffic isolation in low power lossy networks,” in

Proceedings of the 19th ACM International Conference on Modeling, Analysis

and Simulation of Wireless and Mobile Systems. ACM, 2016, pp. 102–110.

87

[54] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6

Packets over IEEE 802.15.4 Networks,” RFC 4944, Sep. 2007.

[55] H.-S. Kim, M.-S. Lee, Y.-J. Choi, J. Ko, and S. Bahk, “Reliable and energy-

efficient downward packet delivery in asymmetric transmission power-based net-

works,” ACM Transactions on Sensor Networks, vol. 12, no. 4, pp. 34–1, 2016.

[56] Cisco, “Connected grid networks for smart grid - Field area network,”

http://www.cisco.com/web/strategy/energy/field area network.html. [Online].

Available: http://www.cisco.com/web/strategy/energy/field area network.html

[57] T. Group, “Thread Stack Fundamentals,” http://threadgroup.org/, Jul. 2015.

[58] M. W. Group, “Mesh profile,” Bluetooth Specification, Jul. 2017.

[59] D. Lymberopoulos, Q. Lindsey, and A. Savvides, “An empirical characteriza-

tion of radio signal strength variability in 3-D IEEE 802.15. 4 networks using

monopole antennas,” in EWSN. Springer.

[60] M. Lindhé, K. H. Johansson, and A. Bicchi, “An experimental study of exploit-

ing multipath fading for robot communications,” in International Conference on

Robotics Science and Systems (RSS), June 2007, pp. 289–296.

[61] M. Malajner, K. Benkic, P. Planinsic, and Z. Cucej, “The accuracy of propagation

models for distance measurement between WSN nodes,” in IEEE International

Conference on Systems, Signals and Image Processing (IWSSIP), 2009, pp. 1–4.

[62] F. Hermans, O. Rensfelt, T. Voigt, E. Ngai, L.-Å. Norden, and P. Gunningberg,

“SoNIC: classifying interference in 802.15. 4 sensor networks,” in ACM/IEEE

IPSN, 2013.

[63] W. Dong, J. Yu, and X. Liu, “CARE: Corruption-aware retransmission with adap-

tive coding for the low-power wireless,” in IEEE International Conference on

Network Protocols (ICNP), 2015, pp. 235–244.

88

[64] F. Cadger, K. Curran, J. Santos, and S. Moffett, “A survey of geographical rout-

ing in wireless ad-hoc networks,” IEEE Communications Surveys & Tutorials,

vol. 15, no. 2, pp. 621–653, 2013.

[65] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network flooding

and time synchronization with glossy,” in IEEE IPSN, 2011, pp. 73–84.

[66] S. Duquennoy, A. Elsts, B. Nahas, and G. Oikonomou, “TSCH and 6TiSCH for

Contiki: Challenges, design and evaluation,” IEEE DCOSS, 2017.

[67] A. Dunkels, “The contikimac radio duty cycling protocol,” SICS Technical Re-

port, 2011.

[68] X. Ji, Y. He, J. Wang, W. Dong, X. Wu, and Y. Liu, “Walking down the stairs:

Efficient collision resolution for wireless sensor networks,” in IEEE INFOCOM,

2014, pp. 961–969.

[69] S. Jeong, H.-S. Kim, S.-G. Yoon, and S. Bahk, “Q-BT: Queue-based burst trans-

mission over an asynchronous duty-cycle MAC protocol,” IEEE Communica-

tions Letters, vol. 20, no. 4, pp. 812–815, 2016.

[70] V. Shah and S. Krishnamurthy, “Handling asymmetry in power heterogeneous

ad hoc networks: A cross layer approach,” in IEEE International Conference on

Distributed Computing Systems (ICDCS), 2005.

[71] X. Du, D. Wu, W. Liu, and Y. Fang, “Multiclass routing and medium access con-

trol for heterogeneous mobile ad hoc networks,” IEEE Transactions on Vehicular

Technology, vol. 55, no. 1, pp. 270–277, 2006.

[72] T. Instruments, “CC2420: 2.4 GHz IEEE 802.15. 4/ZigBee-ready RF

transceiver,” Available at http://www.ti.com/lit/gpn/cc2420, vol. 53, 2006.

89

[73] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and flexible oper-

ating system for tiny networked sensors,” in IEEE International Conference on

Local Computer Networks, 2004, pp. 455–462.

[74] P. Levis and T. H. Clausen, “The trickle algorithm,” RFC 6206, 2011.

[75] X. Vilajosana, K. Pister, and T. Watteyne, “Minimal 6TiSCH configuration -

draft-ietf-6tisch-minimal-21,” IETF Draft, 2017.

[76] P. Thubert, T. Watteyne, R. Struik, and M. Richardson, “An architecture for IPv6

over the TSCH mode of IEEE 802.15. 4. draft-ietf-6tisch-architecture-10,” IETF

Draft, June, 2016.

[77] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele, “pTunes: Runtime

parameter adaptation for low-power MAC protocols,” in Proceedings of the 11th

international conference on Information Processing in Sensor Networks. ACM,

2012, pp. 173–184.

[78] H.-S. Kim, J. Paek, D. E. Culler, and S. Bahk, “Do not lose bandwidth: Adaptive

transmission power and multihop topology control,” in 2017 13th International

Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE, 2017,

pp. 99–108.

[79] T. Lee, J. Han, M.-S. Lee, H.-S. Kim, and S. Bahk, “CABLE: connection in-

terval adaptation for BLE in dynamic wireless environments,” in 2017 14th An-

nual IEEE International Conference on Sensing, Communication, and Network-

ing (SECON). IEEE, 2017, pp. 1–9.

[80] H.-S. Kim, H. Kim, J. Paek, and S. Bahk, “Load balancing under heavy traffic in

RPL routing protocol for low power and lossy networks,” IEEE Transactions on

Mobile Computing, vol. 16, no. 4, pp. 964–979, 2017.

90

[81] S. Kumar, M. P. Andersen, H.-S. Kim, and D. E. Culler, “TCPlp: System de-

sign and analysis of full-scale TCP in low-power networks,” arXiv preprint

arXiv:1811.02721, 2018.

[82] S. Boubiche, D. E. Boubiche, A. Bilami, and H. Toral-Cruz, “Big data challenges

and data aggregation strategies in wireless sensor networks,” IEEE Access, vol. 6,

pp. 20 558–20 571, 2018.

[83] H.-S. Kim, J. Ko, D. E. Culler, and J. Paek, “Challenging the IPv6 routing proto-

col for low-power and lossy networks (RPL): A survey,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 4, pp. 2502–2525, 2017.

[84] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and flexible oper-

ating system for tiny networked sensors,” in IEEE International Conference on

Local Computer Networks, 2004, pp. 455–462.

[85] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-

Gibollet, F. Saint-Marcel, G. Schreiner, and J. Vandaele, “FIT IoT-LAB: A large

scale open experimental IoT testbed,” in IEEE World Forum on Internet of Things

(WF-IoT), 2015, pp. 459–464.

[86] D. Reina, M. Askalani, S. Toral, F. Barrero, E. Asimakopoulou, and N. Bessis,

“A survey on multihop ad hoc networks for disaster response scenarios,” Interna-

tional Journal of Distributed Sensor Networks, vol. 11, no. 10, p. 647037, 2015.

[87] M. Erdelj, M. Król, and E. Natalizio, “Wireless sensor networks and multi-UAV

systems for natural disaster management,” Computer Networks, vol. 124, pp. 72–

86, 2017.

[88] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu, L. Nie,

and Y. Chen, “Real-time wireless sensor-actuator networks for industrial cyber-

physical systems,” Proceedings of the IEEE, vol. 104, no. 5, pp. 1013–1024,

2016.

91

[89] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “The trickle algorithm,” Tech.

Rep., 2011.

92

초록

IoT (Internet of Things)는저전력임베디드기기들로구성되는새로운네트워크

시대를개척하였다.산업 IoT네트워크에서는수많은센서와구동기가배치되어시

스템을모니터링하고원격제어한다.스마트홈에서부터스마트시티까지,전기관리,

보안,건강관리,스마트그리드등과같은다양한어플리케이션들이등장하고있다.

이렇게 IoT어플리케이션이다양해짐에따라,이러한네트워크를제어/관리하기위

해신뢰성높고,에너지소모가적고,유연한동작을할수있는네트워크프로토콜에

대한수요가급증하고있다.이를위해본논문에서는저전력네트워크를위한 3가지

각기다른적응적프로토콜을제안한다.

먼저 우리는 이동성 저전력 네트워크에 초점을 맞춘다. 최근 등장하는 IoT 어

플리케이션에서는 이동성이 매우 중요한 부분을 차지하고 있다. 하지만 그동안 대

부분의저전력프로토콜은저전력디바이스의하드웨어적한계를이유로이동성에

초점을맞추지않았다.몇몇연구에서는네트워크의이동성지원을위한프로토콜을

제안하였지만,그들은듀티사이클링,제어오버헤드,메모리사용등과같은저전력

디바이스에서필수적인요소를반영하지못하였다.이러한문제를해결하고자우리

는 MAPLE 을 설계한다. MAPLE 은 고전력 전송 전력을 사용할 수 있는 보더 라우

터를 사용하여 비대칭 전력 네트워크를 구성한다. 이를 통해 저전력 네트워크에서

듀티사이클링을통해에너지소비를절감함과동시에네트워크의이동성을지원할

수있게된다.우리는 MAPLE 을실제저전력임베디드플랫폼에구현을하고 31개

의 저전력 ZigBee 노드를 사용하여 구축한 테스트베드에서 성능을 검증한다. 이를

통해 결과적으로 MAPLE 은 기존 기법 대비 27.2%/55.7%만큼 상향링크/하향링크

93

패킷수신율을 개선하였고, 그와 더불어 17.9%의 에너지 절감을 보여주었다. 다음

으로 우리는 최근 IEEE 802.15.4-2015에서 표준화된 TSCH (Time Slotted Channel

Hopping)프로토콜에주목한다.기존비동기방식의MAC프로토콜에비해, TSCH

는더욱높은신뢰도와저전력동작을보장한다.이러한연유로최근다양한 TSCH

스케줄링기법이제안되었다.하지만그들은 ”고정된”슬랏프레임길이를사용함으

로써,예측할수없는트래픽과라우팅토폴로지를가진다양한어플리케이션과서

비스를지원하기위한유연한동작을보장하지못한다.따라서이를해결하기위한

TSCH스케줄링프로토콜로서 TESLA를제안한다. TESLA는트래픽양을측정하여

실시간으로 슬랏프레임을 적응적으로 조절할 수 있다. 이를 통해 높은 패킷수신율

을보장함과동시에에너지소모를최소화할수있다.우리는 110개/77개의노드로

구성된 대규모 테스트베드에서 TESLA 의 성능을 검증한다. 그 결과 기존 기법 대

비 99%의신뢰성을유지하면서동시어 70.2%의라디오에너지사용을감축한다는

사실을확인하였다.

마지막 연구는 우리가 발견한 TESLA 의 한계점에서 시작한다. TESLA 에서 하

나의수신슬랏은여러명의송신노드에의해공유가된다.그들간의충돌을막기

위해 TESLA는어쩔수없이실제필요한수신슬랏의갯수보다많은양을할당하게

된다.이러한자원의낭비를줄이고자우리는 OST 라는온디맨드방식의 TSCH스

케줄링기법을제안한다. TESLA와마찬가지로 OST 는트래픽로드에맞춰적응적

동작을 하지만, 이를 더욱 개선하여 각 스케줄링은 여러 명의 송신 노드에게 공유

되지않고단하나의노드에게만할당된다.더욱이, OST 는순간적인트래픽버스트

에도 대처하기 위한 온디맨드 방식의 추가적인 자원할당을 포함한다. 우리는 OST

를 ContikiOS를통해구현하고 72개의노드로구성된다중홉테스트베드에서성능

검증을진행함으로써 OST 의우수성을보여준다.

주요어: 저전력 네트워크, IEEE 802.15.4, 이동성, 비대칭 전력 네트워크, TSCH,

동적스케줄링,무선네트워크기법

학번: 2013-20877

94

	1 INTRODUCTION
	1.1 Motivation
	1.2 Related Work
	1.2.1 Representative Standard LLN Protocols
	1.2.2 TSCH Scheduling

	1.3 Outline and Contributions

	2 MAPLE: Mobility Support using Asymmetric Transmit Power in Low-power and Lossy Networks
	2.1 Introduction
	2.2 MAPLE Design
	2.2.1 Beacon and Beacon Period
	2.2.2 Downlink Transmission: Local NACK and Retransmission
	2.2.3 Uplink Transmission: RSSI Gradient-based Routing
	2.2.4 Local Maximum Problem and RSSI Adaptation
	2.2.5 Implementing Reliable RSSI Capture

	2.3 Performance Evaluation
	2.3.1 Methodology and Experiment Setup
	2.3.2 Static Network
	2.3.3 Network with Mobility
	2.3.4 Simulation Study under More Mobility

	2.4 Conclusion

	3 TESLA: Traffic-aware Elastic Slotframe Adjustment in TSCH Networks
	3.1 Introduction
	3.2 Background
	3.2.1 IEEE 802.15.4 TSCH
	3.2.2 6TiSCH and its Minimal Configuration
	3.2.3 Orchestra

	3.3 Preliminary and Motivation
	3.3.1 Methodology
	3.3.2 Experimental Results
	3.3.3 Summary

	3.4 TESLA Design
	3.4.1 Slotframe Structure
	3.4.2 Rx Slotframe Size Adaptation
	3.4.3 Tx Slotframe Size Adaptation
	3.4.4 Multi-channel Operation
	3.4.5 Collaboration with RPL

	3.5 Performance Evaluation
	3.5.1 Methodology and Experiment Setup
	3.5.2 Impact of Traffic Load
	3.5.3 Impact of Network Topology
	3.5.4 Impact of Run-time Traffic Dynamics
	3.5.5 Impact of TESLA Parameters

	3.6 Conclusion

	4 OST: On-demand TSCH Scheduling with Traffic-awareness
	4.1 Introduction
	4.2 OST Design
	4.2.1 Slotframes
	4.2.2 Periodic Provision
	4.2.3 On-demand Provision

	4.3 Evaluation
	4.3.1 Methodology and Experiment Setup
	4.3.2 Experimental Results

	4.4 Conclusion

	5 CONCLUSION
	Abstract (In Korean)
	Acknowlegement

<startpage>13
1 INTRODUCTION 1
 1.1 Motivation 1
 1.2 Related Work 3
 1.2.1 Representative Standard LLN Protocols 3
 1.2.2 TSCH Scheduling 4
 1.3 Outline and Contributions 7
2 MAPLE: Mobility Support using Asymmetric Transmit Power in Low-power and Lossy Networks 8
 2.1 Introduction 8
 2.2 MAPLE Design 12
 2.2.1 Beacon and Beacon Period 14
 2.2.2 Downlink Transmission: Local NACK and Retransmission 15
 2.2.3 Uplink Transmission: RSSI Gradient-based Routing 16
 2.2.4 Local Maximum Problem and RSSI Adaptation 18
 2.2.5 Implementing Reliable RSSI Capture 20
 2.3 Performance Evaluation 21
 2.3.1 Methodology and Experiment Setup 21
 2.3.2 Static Network 23
 2.3.3 Network with Mobility 26
 2.3.4 Simulation Study under More Mobility 29
 2.4 Conclusion 31
3 TESLA: Traffic-aware Elastic Slotframe Adjustment in TSCH Networks 33
 3.1 Introduction 33
 3.2 Background 35
 3.2.1 IEEE 802.15.4 TSCH 36
 3.2.2 6TiSCH and its Minimal Configuration 37
 3.2.3 Orchestra 37
 3.3 Preliminary and Motivation 39
 3.3.1 Methodology 40
 3.3.2 Experimental Results 41
 3.3.3 Summary 44
 3.4 TESLA Design 44
 3.4.1 Slotframe Structure 45
 3.4.2 Rx Slotframe Size Adaptation 46
 3.4.3 Tx Slotframe Size Adaptation 52
 3.4.4 Multi-channel Operation 54
 3.4.5 Collaboration with RPL 54
 3.5 Performance Evaluation 55
 3.5.1 Methodology and Experiment Setup 56
 3.5.2 Impact of Traffic Load 57
 3.5.3 Impact of Network Topology 62
 3.5.4 Impact of Run-time Traffic Dynamics 66
 3.5.5 Impact of TESLA Parameters 67
 3.6 Conclusion 69
4 OST: On-demand TSCH Scheduling with Traffic-awareness 70
 4.1 Introduction 70
 4.2 OST Design 72
 4.2.1 Slotframes 72
 4.2.2 Periodic Provision 73
 4.2.3 On-demand Provision 75
 4.3 Evaluation 76
 4.3.1 Methodology and Experiment Setup 76
 4.3.2 Experimental Results 76
 4.4 Conclusion 78
5 CONCLUSION 79
Abstract (In Korean) 93
Acknowlegement 95
</body>

