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Abstract

Internet of Things (IoT) has opened a new era with low-power embedded devices.
In industrial IoT networks, numerous sensors and actuators are deployed for system
monitoring and remote control. From smart homes to smart cities, new applications
and network services are emerging such as electricity management, home security,
health care, and smart grid. As IoT applications become diverse, the need for reliable,
energy-efficient, and flexible (i.e., adaptable to diverse and dynamic applications) net-
work protocols is growing up steadily. In this dissertation, to this end, we design three
different duty-cycled protocols for dynamic low-power and lossy networks (LLNS).

Firstly, we focus on mobile LLLNs. With the proliferation of emerging Internet of
Things devices and applications, mobility is becoming an integral part of low-power
and lossy networks (LLNs). However, most LLN protocols have not yet focused on the
support for mobility with an excuse of resource constraints. Some work that do pro-
vide mobility support fail to consider radio duty-cycling, control overhead, or memory
usage, which are critical on resource-limited low-power devices. To tackle theses prob-
lems, we introduce MAPLE, an asymmetric transmit power-based routing architecture
that leverages a single resource-rich LLN border router. It supports mobility in duty-
cycled LLNs using received signal strength indicator (RSSI) gradient field-based rout-
ing. We implement MAPLE on a low-power embedded platform, and evaluate through
experimental measurements on a real multihop LLN testbed consisting of 31 low-
power ZigBee nodes and 1 high-power gateway. We show that MAPLE improves the
performance of mobile devices in LLN by 27.2%/55.7% and 17.9% in terms of both
uplink/downlink reliability and energy efficiency, respectively.

Next, we move our attention to Time Slotted Channel Hopping (TSCH), which is
a promising TDMA-like link layer protocol standardized by the IEEE 802.15.4-2015.

Compared with conventional asynchronous duty-cycled MAC protocols, it provides



both higher reliability and lower energy operation. For this reason, a number of TSCH
scheduling schemes have been proposed recently. However, they lack one thing: flex-
ibility to support a wide variety of applications and services with unpredictable traf-
fic load and routing topology due to “fixed” slotframe sizes. To this end, we propose
TESLA, a traffic-aware elastic slotframe adjustment scheme for TSCH networks which
enables each node to dynamically self-adjust its slotframe size at run time. TESLA aims
to minimize its energy consumption without sacrificing reliable packet delivery by uti-
lizing incoming traffic load to estimate channel contention level experienced by each
neighbor. We extensively evaluate the effectiveness of TESLA on large-scale 110-node
and 79-node testbeds, demonstrating that it achieves up to 70.2% energy saving com-
pared to Orchestra (the de facto TSCH scheduling mechanism) while maintaining 99%
reliability.

Lastly, we point out the limitations of TESLA. In TESLA, a reception (Rx) slot is
shared for multiple transmitters. To prevent their transmissions from being collided,
TESLA inevitably allocates more Rx slots than actually needed. To tackle this ineffi-
cient resources usage, we propose OST, a on-demand TSCH scheduling with traffic-
awareness, which improves TESLA further. OST basically schedules timeslots based
on estimation of average traffic load. Moreover, if there are queued packets due to
instantaneous traffic burst, it additionally allocates timeslots exactly as needed. We
implement OST on ContikiOS, and evaluate OST with state-of-the-arts on large-scale

multi-hop testbed showing the superiority of OST over others.

keywords: Low-power and lossy network (LLN), IEEE 802.15.4, Mobility, Asym-
metric transmit power (ATP), Time-slotted channel hopping (TSCH), Dynamic
scheduling, Wireless network protocol

student number: 2013-20877
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Chapter 1

INTRODUCTION

1.1 Motivation

Low-power and lossy network (LLN), multihop wireless network composed of resource-
constrained embedded devices, has been used for a variety of applications including
smart grid automated metering infrastructure (AMI), environmental monitoring, and
wireless sensor network (WSN). In industrial IoT networks, numerous sensors and ac-
tuators are deployed for system monitoring and remote control. From smart homes to
smart cities [1, 2], new applications and network services are emerging such as elec-
tricity management, home security, and health care [3].

As 10T applications become diverse, the need for network protocols achieving fol-
lowing three requirements is growing up steadily. Firstly, network protocols should be
reliable. In other words, it guarantees high end-to-end packet delivery ratio (e.g., more
99%). Next, they need to be energy-efficient, since most of IoT devices are battery-
powered. Lastly, they are required to be flexible (i.e., adaptable to diverse and dynamic
applications).

With the emergence of Internet of Things (IoT) and cyber-physical systems (CPS),
LLN is now going into a new phase for smart and daily life applications which in-

clude medical care services [4, 5, 6], smart market maintenance [7, 2], networked



robots [8, 9], and more. A key challenge in many of these emerging applications is
that they incorporate not only stationary but also mobile nodes. As an example, a hos-
pital network can be connected with sensing and actuating devices on mobile patients
and patient beds, which enables remote monitoring of medical signals. In smart mar-
ket applications, mobile shopping carts are connected to an LLN, which is used for
real-time advertisement of hot deals, cart location tracking, and virtual fencing. Mar-
ket staffs can also carry low-power portable terminals for reporting status of inven-
tory/stock and market condition. For over a decade, LLN research community has
elaborated network layer protocols [10, 11, 7, 12] for energy efficiency and high re-
liability on resource-constrained devices. Although these protocols have been making
progress gradually under the assumption of stationary network, they cannot be ap-
parently adopted in LLNs with mobility, due to lack of providing any specific opera-
tion for mobility and identifying mobile nodes [13, 14, 15]. As the first work in this
dissertation, we design MAPLE, an asymmetric transmit power-based routing archi-
tecture , which provides flexible connectivity between the LLN border router (LBR,
also referred to as ‘gateway’) and each mobile node in LLN, both reliably and energy
efficiently.

Meanwhile, the IEEE 802.15.4-2015 [16] standardized the time-slotted channel
hopping (TSCH) protocol for low-power and lossy networks (LLNs), a promising
TDMA-like link layer protocol providing both high reliability and low energy oper-
ation. TSCH’s slotframe structure is the basis of TSCH operation, but its size is set
offline as a fixed global constant. On top of significant burden for empirical optimiza-
tion, even if the slotframe size is optimized, it is still problematic since all nodes share
a single slotframe size, disregarding routing topology and traffic intensity for each
node: (1) When the slotframe is too small for the node experiencing low traffic load,
it will waste energy due to idle listening. (2) When the slotframe is too large for the
node under heavy traffic load, it cannot receive/forward many packets due to chan-

nel contention or queue overflow. To address this issue, we introduce TESLA, a novel



traffic-aware elastic slot-frame adjustment scheme as a solution. Furthermore, we also
point out the limitation of TESLA, and propose OST, a on-demand TSCH scheduling

with traffic-awareness.

1.2 Related Work

1.2.1 Representative Standard LLN Protocols

This section presents two representative LLN routing protocols as our benchmark,

RPL (IETF standard) [10] and LOADng (IETF draft) [17], and their related work.

RPL and Mobility Support. RPL [10] is a routing protocol for low-power IPv6 net-
works which enables IPv6 Internet connectivity to embedded devices by providing
reliable routes over lossy wireless links. Several studies [13, 14, 15], however, found
that RPL suffers significant performance degradation when operating with mobile end-
points since it was not designed with mobility in mind. To alleviate this problem, ME-
RPL [18] gives lower priority to mobile parent candidates than static candidates when
choosing a preferred parent. In addition, when parent changes occur frequently, DIS
transmission interval is reduced for prompt neighbor discovery. Ko et al. introduced
MoMoRo [13], which detects route disconnections based on uplink packet losses and
quickly gathers neighbor information by requesting a unicast reply. It can find out
neighbors with a good link based on a fuzzy estimator. In mRPL [19], a mobile node
broadcasts a batch of DIS messages when the RSSI from its parent drops, triggering
replies from its neighbors. The mobile node measures RSSI from the neighbors and
selects the neighbor with a good RSSI as a preferred parent. Gaddour ef al. used posi-
tion information for mobile routing in [20] where corona ID is defined as the minimum
of reachable hop distances from the DAG root.

However, most of these protocols are designed assuming no radio duty-cycling
for more responsiveness, sacrificing low-power operation. If a duty-cycled MAC is

adopted under these protocols, it necessarily delays the update of routing costs, result-



ing in more packet losses and control overhead [19]. Moreover, proposals in [18, 13,
19, 20] require maintaining up-to-date topology information. This incurs a significant
control overhead to keep track of topology changes caused by mobile nodes. Lastly,
evaluations of [18, 21, 20] are performed only on simulators, which cannot show their

feasibility in the unpredictable real world.

LOADnNg LOADng [17] is a simplified version of well known AODV (Ad hoc On-
demand Distance Vector Routing) [22] to support mobile LLNs. Like AODV, LOADng
discovers a route between a source and a destination based on flooding of routing
packets from the source. However, Clausen ef al. showed that LOADng suffers from
flooding overhead, particularly in applications with collection traffic [23]. To resolve
this problem, the authors designed LOADng-CTP, where only the sink (not a source
but a destination) floods routing messages to enable each data source to obtain a path
towards the sink. It outperforms LOADng with respect to delivery ratio, overhead, and
delay. However, both LOADng and LOADng-CTP are evaluated without a duty-cycled

MAC and only with simulations.

1.2.2 TSCH Scheduling

Numerous duty-cycling MACs have been proposed for LLNs. Among those, asyn-
chronous approaches [24, 25, 26, 27, 28, 11] have the advantage of neither requir-
ing strict time-synchronization on resource-constrained devices, nor relying critically
on certain parameter configurations. With technical progress, however, synchronized
communication became a viable option [29], such as TSCH, which opens the schedul-
ing problem. Below we summarize prior work on TSCH scheduling , which is catego-

rized into centralized and decentralized approaches.

Centralized TSCH Scheduling. Centralized scheduling is often employed in indus-
trial scenarios [30, 31, 32] where algorithms are built in and maintained by a central
controller. TASA [33] is a centralized traffic aware scheduling algorithm using graph

theory methods of matching and coloring. TASA builds the schedule based on traffic



load offered by each source node, and allocates timeslots and channel offsets based on
network topology in order to maximize parallel transmissions. In [34, 35], the authors
have also derived fundamental bounds on the minimum number of slots achievable
with TASA for a given topology. Overlooking practical challenges in LLNs, however,
it showed high loss rate or high duty-cycle on a real multihop testbed evaluation [36].

AMUS [37] is a centralized adaptive scheduling scheme which gives more Tx
slots to nodes that are closer to the sink assuming that those nodes have more traffic to
forward. However, it does not consider traffic load, routing topology (other than hop
distance), nor link quality, resulting in inefficient allocation.

In [38], retransmission slots are added and shared according to reliability and delay
constraints. However, it does not handle the side effect: collisions and excessive idle
listening.

For high data rate scenarios, Elsts et al. [39] proposed a hybrid approach where
dedicated and shared slots coexist in the same schedule. However, they assume that
the number of channels used in the network is greater than the number of forwarding
nodes, which is unrealistic in a channel-resource limited network. In addition, all nodes
are forced to wake up at every timeslot, disregarding low-power operation.

In centralized link scheduling (CLS) [40], the sink reserves slots for a newly join-
ing node at every node along the path to that node. When a node changes its preferred
parent, it sends a removal request to the sink, de-allocating the slots in each interme-
diate hop. However, it requires an end-to-end multihop signaling phase, resulting in

massive communication overhead.

Distributed TSCH Scheduling. The goal of distributed schemes is to adapt to dy-
namic topology and traffic load changes efficiently without the signaling overhead
to a central controller. For example, in local lock-based algorithms [41, 42, 43, 44],
each node selects and reserves a timeslot not used by nearby interfering nodes. By an-
nouncing this reservation locally, the timeslot is locked for the node solely. However,

notifying the reservation to the interfering nodes selectively is a complicated task in



practice. Besides, none of these works addressed the reservation overlapping problem.

Vallati et al. [45] improves the 6TiSCH minimal schedule by allocating shared slots
dynamically. However, it still uses shared slots only, like the minimal configuration,
thus suffering severe packet collisions and redundant overhearing.

6TiSCH defines SFO [46], a minimal scheduling function using 6top protocol
(6P) [47]. It estimates the number of slots required between two neighbors, and lets
them know when to add or delete slots. However, it does not define which times-
lots they should reallocate. Based on SFO, LLFS [48] daisy-chains the timeslots in a
multi-hop path to reduce end-to-end latency. However, slot reallocation by SFO occurs
between every neighbor, incurring significant overhead for 6P negotiation such as 6P
Request/Response messages.

DeTAS [49] is a decentralized version of TASA. In DeTAS, a node collects band-
width requests from its children, adds them with its own bandwidth, and then forwards
it to its parent recursively. Then, slot allocation starts from the sink. To reduce end-to-
end delay and queue overflows, DeTAS schedules alternatively Rx/Tx slots along the
path to the sink. However, if a packet is lost due to poor link quality, all the subsequent
slots scheduled are wasted.

Some scheduling proposals [50, 51, 52, 53] allocate timeslots randomly. Then,
using local information, nodes detect schedule collision between two interfering ra-
dio links and re-allocate the colliding slots. These works may handle traffic dynamics
but have only been evaluated on small-scale low-density deployments. Higher density
limits the available slots due to a large number of interfering nodes, and as a result,
communication overhead increases substantially since more negotiation procedures

are needed [32].



1.3 Outline and Contributions

This dissertation is organized as follows. In Chapter 2, we propose ATP-based MAPLE
system for reliable and low-power bidirectional communication in mobile LLNs. It
provides single-hop downlink based on the high-power gateway and multihop uplink
based on an RSSI gradient field based opportunistic routing. We design several mecha-
nisms to support this system architecture: (1) NACK-based local downlink retransmis-
sion improves downlink reliability without topology information. (2) High-resolution
multi-sampling makes RSSI measurement stable enough to be used as a routing met-
ric. (3) RSSI adaptation addresses the local maximum problem of the RSSI-based
gradient field. We implement MAPLE on real embedded devices and experimentally
evaluate its performance against the standard RPL, ORPL, and LOADng on a real 32-
node testbed. Our evaluation shows that MAPLE achieves significantly better packet
delivery performance and route adaptation according to topology change than RPL.

In Chapter 3, we analyze the impact of slotframe size, showing the limitation of
setting it as a fixed global constant, offline. We design TESLA which includes four ele-
ments: (1) traffic information exchange by piggybacking on each frame, (2) contention
level estimation, (3) periodic slotframe adjustment and sharing, and (4) multi-channel
scheduling. We also implement prototype of TESLA and evaluate its performance on
two distinct testbeds with 110 nodes and 79 nodes, showing that TESLA outperforms
the state-of-the-art in terms of reliability and energy-efficiency using distributed dy-
namic scheduling.

In Chapter 4, we introduce OST, which improves TESLA by dedicating timeslot to
each pair of nodes. In addition, OST allocates timeslots in on-demand manner when
the burst of traffic occurs. We implement and evaluate OST on a large-scale multi-hop
testbed, showing its outstanding performances.

Lastly, we conclude the dissertation in Chapter 5.



Chapter 2

MAPLE: Mobility Support using Asymmetric Trans-

mit Power in Low-power and Lossy Networks

2.1 Introduction

Low-power and lossy network (LLN), multihop wireless network composed of resource-
constrained embedded devices, has been used for a variety of applications includ-
ing smart grid automated metering infrastructure (AMI), environmental monitoring,
and wireless sensor network (WSN). Furthermore, with the emergence of Internet of
Things (IoT) and cyber-physical systems (CPS), LLN is now going into a new phase
for smart and daily life applications which include medical care services [4, 5, 6],
smart market maintenance [7, 2], networked robots [8, 9], and more. A key challenge
in many of these emerging applications is that they incorporate not only stationary but
also mobile nodes. As an example, a hospital network can be connected with sens-
ing and actuating devices on mobile patients and patient beds, which enables remote
monitoring of medical signals. In smart market applications, mobile shopping carts
are connected to an LLN, which is used for real-time advertisement of hot deals, cart
location tracking, and virtual fencing. Market staffs can also carry low-power portable

terminals for reporting status of inventory/stock and market condition.



For over a decade, LLN research community has elaborated network layer pro-
tocols for energy efficiency and high reliability on resource-constrained devices. As
a cornerstone work, 6LoWPAN [54] and IPv6 routing protocol for LLNs (RPL) [10]
were designed and standardized, enabling multihop IoT networks. Numerous network
protocols based on RPL have been devised [11, 7, 12], such as ORPL [11], surpass-
ing performance of RPL in terms of delay, energy-consumption, and reliability. How-
ever, although these protocols have been making progress gradually under the assump-
tion of stationary network, they cannot be apparently adopted in LLNs with mobility,
due to lack of providing any specific operation for mobility and identifying mobile
nodes [13, 14, 15]. Several studies [13, 14, 15] confirm that protocols designed for sta-
tionary network, such as RPL, experience significant performance degradation when
operating with mobile devices.

There have been several work [19, 13, 17, 23, 20, 18], such as LOADng (LLN
On-demand Ad-hoc Distance-vector Routing Protocol - Next Generation) [17], de-
signed to provide seamless connectivity for mobile nodes in LLN. However, each of
these work has at least one of the limitations among the followings. (1) They disre-
gard the protocol operation with radio duty-cycling, which is one of the most critical
characteristics of LLN with battery-powered nodes, (2) up-to-date neighbor or routing
information is required according to topology dynamics caused by mobility, adding a
significant network overhead, and (3) even if they showed performance improvement
in idealistic simulator-based evaluation, the same has not been shown in practice via
real experiments.

This work investigates how to provide bi-directional connectivity between the LLN
border router (LBR, also referred to as ‘gateway’) and each mobile node in LLN, both
reliably and energy efficiently. In contrast to previous approaches, we exploit asymmet-
ric transmit power (ATP) architecture [55] for LLN with mobile endpoints. It has been
more common place that LLN routers are plugged in, especially in indoor environ-

ments which have abundant outlets [7, 5], and only the endpoints are battery-operated.



It is also possible for smart grid applications such as automated metering infrastruc-
ture (AMI) where power is a given [56]. In this context, recent LLN protocols, such
as Thread [57] and BLEmesh [58], even ‘force’ LLN routers to be plugged in. With-
out an energy constraint, these plugged-in routers can utilize much higher transmit
power than battery-powered endpoint devices (e.g., 30 dBm vs. 0 dBm), which allows
asymmetric transmit power to be a viable design choice in this regime.

As an example of ATP-based applications, a smart market [7, 2] uses a high-power
gateway for disseminating price information and advertisements. At the same time, it
collects stock status from portable terminals carried by mobile staffs, or locations of
shopping carts. In a hospital network, low-power sensing and actuating devices report
patient’s condition such as vital signals. The information gathers in a single network
gateway, and it can maintain and process the information. In addition, when an emer-
gency occurs, it can control remote medical devices (attached to patients) immediately
using high-power transmissions.

ATP-LLN provides a single hop downlink (from gateway to endpoints) and mul-
tihop uplink (from endpoints to gateway) architecture. A number of studies have ex-
plored its potential [55, 7, 2], showing improvement in downlink reliability and energy
consumption when all nodes are static. Building on these previous work, we argue that
with a careful design, the ATP architecture is also useful for supporting mobile nodes.
To this end, we design MAPLE, an ATP-based LLN protocol that supports mobile end-
points by providing reliable and energy-efficient bi-directional communication under
dynamic topology variation.

In our MAPLE design, each low-power node expects to receive a downward packet
directly from the high-power gateway (i.e., single hop). To improve reliability, each
node sends a negative acknowledgement packet (NACK) when detecting a missed
downward packet, which triggers local retransmissions from its neighbor nodes. Un-
like the previous approach in [55], MAPLE’s neighbor forwarding works without topol-

0gy information. On the other hand, low-power uplink transmissions require multihop

10



routing. To obtain path diversity in dynamic mobile environments, MAPLE uses op-
portunistic routing [11] where a sender simply broadcasts packets and each receiver
decides whether to relay the packets by considering its and the sender’s uplink routing
metric. For the routing metric, MAPLE uses RSSI of the gateway’s high power trans-
missions given that RSSI (Received Signal Strength Indicator) generally decreases
with distance (i.e., providing indirect geographical information). A single high-power
transmission can update all nodes’ routing metric at once, creating an RSSI gradient
field in the network, and low-power nodes are completely free from a control packet
overhead and routing table size limitation.

In doing so, we address well-known concerns about the RSSI measurements; it
is unstable and time varying [59, 60, 61]. To this end, MAPLE obtains a stable and
interference-free RSSI value from each packet of the gateway by using a high-resolution
multi-sampling technique [62, 63], and updates this value with periodic high-power
beacon transmissions [7]. Furthermore, we also tackle the local maximum problem [64],
a representative problem in geographical routing, through dynamic and distributed
adaptation of the RSSI metric. We implement MAPLE on ContikiOS and extensively
evaluate the performance of MAPLE on a real LLN testbed in both stationary and mo-
bile scenarios. Our results show that MAPLE significantly outperforms representative
LLN protocols, i.e., RPL [10], ORPL [11], and LOADng [17], in terms of reliability
and energy consumption.

The contributions of this work are threefold:

e We propose ATP-based MAPLE system for reliable and low-power bidirectional
communication in mobile LLNs. It provides single-hop downlink based on the high-
power gateway and multihop uplink based on an RSSI gradient field based oppor-

tunistic routing.

e We design several mechanisms to support this system architecture: (1) NACK-
based local downlink retransmission improves downlink reliability without topol-

ogy information. (2) High-resolution multi-sampling makes RSSI measurement sta-
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Figure 2.1: Network model of MAPLE.

ble enough to be used as a routing metric. (3) RSSI adaptation addresses the local

maximum problem of the RSSI-based gradient field.

We implement MAPLE on real embedded devices and experimentally evaluate its

performance against the standard RPL, ORPL, and LOADng on a real 32-node

testbed. Our evaluation shows that MAPLE achieves significantly better packet de-

livery performance and route adaptation according to topology change than RPL.

The remainder of this chapter is organized as follows: In Section 2.2, we present

the design of our proposed scheme, MAPLE, and elaborate on its main functional

blocks. We discuss the implementation details and present the evaluation results in

Section 2.3. We conclude the chapter in Section 2.4.

2.2 MAPLE Design

In this section, we describe MAPLE, Asymmetric Transmit Power-based Mobile LLN

architecture that provides mobility support with low radio duty-cycle. Fig. 2.1 de-
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Figure 2.2: Superframe structure of MAPLE.

picts the system model we consider. There are a large number of low-power nodes
and a single high-power gateway node (G). We assume that each node could be mo-
bile, but is always located within high-power transmission coverage of the gateway.
Thus transmission of gateway reaches all the nodes in a single hop. However, uplink
communication works in a multihop manner due to low transmit power of low-power
nodes.

As shown in Fig. 2.2, MAPLE repeats a superframe every beacon interval, which
is divided into four periods: (1) beacon period (B), (2) downlink period (Down), (3)
uplink period (Up), and (4) sleep period (Sleep). First, the gateway transmits a beacon
in the B period and downward packets in the Down period, both with high transmit
power. During these two periods, the other low-power nodes are not allowed to send
any packet to ensure that the gateway’s transmissions are free from contention and col-
lision [7]. Instead, they continuously listen to the medium to receive packets from the
gateway. In the subsequent Up period, the low-power nodes send and receive upward
packets on top of a duty-cycling MAC protocol for low-power operation'. At the end
of Up period, a low-power node stops duty-cycling and turns off its radio for energy

saving. During this Sleep period, there is no packet communication. After the Sleep

lAny of synchronous [65, 66] or asynchronous duty-cycle MAC protocols [67, 68, 69] could be used
in MAPLE. Without loss of generality, we use the ContikiMAC [67], a representative asynchronous MAC
protocol for LLN.
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period, every low-power node turns its radio on again to receive next beacon at the
right time.

Except for the B period, lengths of the other periods could be controlled by the
gateway according to traffic generation rate and network size. For instance, Sleep du-
ration might be set to zero in order to minimize channel contention in the Up period
when intensity of uplink traffic is high. On the contrary, Sleep period can be made
longer for ultra low-power operation when uplink traffic load is light. The remainder

of this section provides detailed descriptions of B, Down, and Up periods.

2.2.1 Beacon and Beacon Period

In the B period, the gateway transmits beacons using high transmit power so that
all nodes can receive them. The beacon has three major roles. Firstly, it is used for
network-wide time synchronization of all the nodes. Every beacon includes durations
of B, Down, Up, and Sleep periods, and a node willing to join the MAPLE network
must wait and listen for the first beacon reception. Once a node receives a beacon cor-
rectly, it can be synchronized and share the superframe structure illustrated in Fig. 2.2.
Secondly, the beacon includes the destinations of the downward packets which will be
sent in the subsequent Down period. The destination information is used for NACK-
based local retransmission of downward packets (explained in Section 2.2.2). In our
experiments, we have used 5 seconds as the beacon interval.

Lastly, the beacon is used to generate an RSSI-based gradient field throughout
the network. Whenever each low-power node receives a high-power packet from the
gateway, it records the RSSI (RS S1g). Ideally, the closer a node is to the gateway,
the larger RS .S1g it obtains. MAPLE exploits this RS.S1g-gradient field for multihop

opportunistic routing in the Up period, as described in Section 2.2.3.
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2.2.2 Downlink Transmission: Local NACK and Retransmission

In the Down period, the gateway transmits downward packets with a high transmit
power. Low-power nodes are not allowed to transmit any packet during this period
to avoid packet collision [7]. While the single-hop high-power downlink transmission
based on the ATP architecture removes the need for downlink routing, a subtle issue
still remains: how to acknowledge a downward packet for reliable packet delivery. This
is because a low-power destination node is not likely to deliver an acknowledgement
(ACK) to the gateway in a single hop due to its limited transmit power.

An ACK may be forwarded towards the gateway through a multihop route [70,
71], which creates a significant communication overhead. Another approach is for
the destination node to send ACK packets locally to its neighbors [55, 7]. When the
destination’s neighbors overhear a downward packet but do not receive a local ACK
from the destination, they locally retransmit the downward packet on behalf of the
gateway. However, this requires up-to-date neighbor information which is hard and
expensive to get in mobile LLNs since topology changes continuously. Furthermore,
this approach creates large number of (potentially redundant) local ACKs, which may
be an overkill under high-power gateway transmissions where downlink loss rates are
typically low for most endpoints.

For these reasons, our solution is to send a local negative-ACK (NACK) for a down-
ward packet loss. As described in Section 2.2.1, a low-power node knows the destina-
tions of all downward packets that are sent in a Down period by receiving a beacon in
the previous B period. When a low-power node expects to receive a downward packet
for itself in a Down period but misses it, the node sends a local NACK. Given that the
Down period is only for the gateway’s transmission, local NACK is transmitted in the
following Up period with a low transmit power.

At the same time, each low-power node overhears all downward packets in a Down
period and holds them until the end of the subsequent Up period. The gateway also

holds these downward packets. Upon receiving a NACK in the Up period, a low-power
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node (or the gateway) searches the stored downward packets to check if any of them
is destined to the NACK sender. If it has one, it forwards the downward packet to the
NACK sender with a low transmit power. The node can try the local retransmission
several times until receiving an ACK from the destination. This approach improves
downlink reliability without topology information nor redundant ACK transmissions.

When a node fails to receive a beacon in a B period, it can still use the superframe
structure given that the time synchronization is valid for a while. But it does not find out
the destination information of downlink transmissions in the following Down period.
In this case, the node assumes that a downward packet towards itself is lost and trans-
mits a NACK in the following Up period. This triggers local retransmissions from the
neighbors if the downward packet loss really happens, providing reliable downward
packet delivery regardless of a beacon loss.

MAPLE also supports network-wide broadcast service from the gateway. To this
end, the gateway can inform all low-power nodes of the existence of a broadcast packet
by including IPv6 link-local broadcast address in the beacon, instead of a downward
unicast destination. The rest of operation with local NACK and retransmission is the
same as the unicast case.

Lastly, like high-power beacon transmissions, each high-power downlink trans-
mission is also used to update R.SS I for uplink routing, regardless of its destination.
This enables a low-power node to update its RSSI-based routing metric frequently

even if it fails to receive a recent beacon.

2.2.3 Uplink Transmission: RSSI Gradient-based Routing

In the Up period, the gateway mainly listens to the medium, but can transmit ACKs
for uplink traffic or perform local retransmissions for NACKs, both with a low level
of transmit power. Meanwhile, low-power nodes send/receive packets with duty-cycle
for energy saving.

For multihop uplink transmissions, MAPLE borrows opportunistic routing concept
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Figure 2.3: Opportunistic uplink routing using RSSI-gradient field.

in ORW [11] but uses a gradient-field of RS.S I rather than the EDC metric. Specifi-
cally, each packet sender piggybacks its RS S value in an upward packet and simply
broadcasts it. Given that large R.S.S 1 indicates high proximity to the gateway, when
a node receives an upward packet and it has higher RSSIs than the packet sender,
it sends an ACK and forwards the packet. Fig. 2.3 shows an example of the RS.S1g;-
gradient based opportunistic forwarding. The number in each node indicates RSS Iz
value obtained through a previous beacon or downward packet reception (The unit is
dBm). Although there are five neighbors of data source (expressed as Src), only two
nodes among them have higher RS'SI values (-9 dBm and -10 dBm) than RS.S I of
the source (-15 dBm), and thus are valid candidates for data forwarding.

Compared to the state-of-the-art LLLN routing protocols such as RPL [10] and

LOADnNg [17], RSSIz-based opportunistic routing of MAPLE has three primary strengths.

Above all, MAPLE’s opportunistic routing requires each node to maintain only its
RSSIg value without any neighbor information, letting a resource-constrained de-
vice keep low and constant memory footprint regardless of network size or density. In

addition, RS S is updated solely based on the gateway’s high power transmissions,
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which enables a low-power node to maintain a valid routing metric without any control
packet overhead. Lastly, given that one high-power transmission can update RSSIg
of all nodes, the gateway can freely adjust periodicity of RS.S I update depending on
mobility scenarios.

However, an RS SIg-gradient has the local maximum problem which is common
in geographical routing. It is even more so when applying the RS.SI;-gradient in a
real wireless environment since RSSI is highly variable even if all nodes are stationary
due to multipath fading, shadowing, and various interference. When a route with a
non-monotonic RSSIg-gradient is encountered, uplink packets may not be relayed
anymore in the middle of the path, leading to packet losses. MAPLE addresses this
phenomenon by adjusting RSSIg intentionally, but carefully. This is explained in
Section 2.2.4.

2.2.4 Local Maximum Problem and RSSI Adaptation

In a free space where every node has a line-of-sight (LOS) link with the gateway,
RS S 1 can be used to approximately indicate the straight-line distance to the gateway
using free-space RF propagation models. Meanwhile, MAPLE interprets this informa-
tion as the distance along the routing path. If the network density is high enough to
provide sufficient number of forwarding nodes such that linear shaped routing path
can be obtained for any node, as depicted in Fig. 2.4(a), this interpretation is valid.
However, this interpretation might not hold when the path is curved like Fig. 2.4(b),
which is highly probable when the node density is low. Furthermore, it is also invalid
if there are obstacles which block off LOS with the gateway as shown in Fig. 2.4(c). In
an ATP network where LOS and Non-LOS (NLOS) nodes with the gateway coexist,
RS5S¢ field is not generated with a monotonic gradient along the desired path. For
example, in Figs. 2.4(b) and 2.4(c), a packet which is generated by or sent to a node
with local maximum RSSI (denoted as a ‘Hole!” in the figures) cannot be forwarded

any further towards the gateway as if it gets stuck at a dead-end, or in what we call a
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Figure 2.4: Ideal case and local maximum problems in RSSI gradient based routing.

hole. This problem makes the hole node suffer from consecutive packet losses either at
the link since there is no forwarder with better RS S, or at the queue due to memory
overflow as resource-constrained nodes have very small size queues.

To resolve this hole problem, we design a light-weight but effective algorithm for
RS S adaptation at the hole node. Each low-power node maintains the most recent
transmission history list (list;,). As a first-in first-out (FIFO) list, list;, is updated
whenever an anycast transmission is completed. If the transmission is acknowledged,

which means there is at least one neighbor who offers routing progress as the next hop,
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transmission success (.5) is recorded in listy;. On the other hand, when there is no
incoming ACK packet before a timeout (which is, for example, a whole sleep interval
in asynchronous sender-based duty-cycle MAC protocols), transmission failure (F') is
added to the list. If the number of F' (N) exceeds a pre-specified threshold, N},h, the
node recognizes itself as a hole. Then it tries to escape from the hole by lowering its
RS S deliberately. With Ny above N}h, RSS1q is reduced by Ay, every packet
loss in the link. The updated RSSI in the hole, RS.S 1}, is expressed as,

RSSIhore = max (RSSIg — (Np — Ni) - Apote, RSSIinin),

where RS'S 1y, is the minimum RSSI value available in a radio. In our implementa-

tion, N}h and Ape are 2 and 20 dBm, respectively.

2.2.5 Implementing Reliable RSST Capture

Even though MAPLE handles the hole problem, instantaneous RSSI is well known to
be unpredictable in wireless links due to multipath fading, external/internal interfer-
ence and various environmental factors. On the other hand, the primary principle for
uplink routing of MAPLE is to adapt an RSSIg-gradient field to physical topology
changes like node’s mobility, while minimizing the effect of wireless unpredictability.
As one of possible approaches, more R.S.S 1 samples could be collected by increasing
the number of high-power transmissions. Then, the average RSSIg can be used for
an uplink routing metric. However, this inevitably brings about more energy consump-
tion.

We consider an IEEE 802.15.4 compliant radio, i.e., CC2420 [72], as an imple-
mentation example. During a packet reception, a 2-byte frame check sequence (FCS)
follows the last MAC payload byte. FCS is automatically generated and verified by
the hardware when the MODECTRLO . AUTOCRC control bit is set?. Then the first FCS

byte is replaced with the 8-bit RSSI value, which can be read by the upper layer. In

1t is recommended to always have this control bit enabled, except possibly for debug purposes [72].
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CC2420, this RSSI value is measured over the first 8 symbols following the start of
frame delimiter (SFD), and can be obtained from the RSSI .RSSI_VAL register.

In our system, instead of reading only the first byte of FCS for RSSI, we obtain
multiple RSSI values from a single packet in a similar way to [62]. The RSSI value
in RSSI.RSSI_VAL is always averaged over 8 symbol periods (128 microseconds)
and continuously updated for each symbol after RSSI has become valid. We let a low-
power node detect an SFD interrupt for the B and Down periods and then immediately
read and store RSSI .RSSI_VAL register value every 8 symbols. Given that, follow-
ing SFD, a frame length byte and IEEE 802.15.4 MPDU (maximum size of 127 bytes)
come, 32 RSSI samples can be acquired at most from a single packet. In our imple-
mentation, we use the beacon size of 51 bytes and let 10 RSSI samples obtained. We

average these RSSI samples and use the averaged value as RSS 1.

2.3 Performance Evaluation

In this section, we evaluate MAPLE experimentally through a prototype implementa-
tion, and compare it with RPL, ORPL, and LOADng in terms of reliability and energy
efficiency. We evaluate on a network with and without mobility using three scenarios;
1) static network (no mobility) 2) a single mobile device, and 3) three mobile devices.
In addition, we also run Cooja simulations to evaluate and compare the performance

under high level of network mobility.

2.3.1 Methodology and Experiment Setup

Fig. 2.5 presents the topology of our testbed where a total of 32 TelosB clone devices
are deployed with one node acting as the gateway (or root) of the network. For MAPLE,
we use the MTM-CM3300MSP device as the high-power gateway, which is similar to a
TelosB with a 10 dB power amplifier. The other low-power nodes use a transmit power

of -20 dBm while the high-power root uses 10 dBm. For other compared schemes,
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Figure 2.5: Topology map of indoor 32-node LLN testbed with a moving path for node

mobility.

the gateway uses the same transmit power as other nodes. This leads to a maximum
diameter of 5 hops in case of RPL.

We consider a bidirectional traffic scenario. Each node generates an uplink packet
every 75 seconds, while the gateway generates equal rate of downlink packet per node,
resulting in average inter-packet interval of 2.5 seconds in both directions. In our ex-
periments with MAPLE, within the beacon interval of 5 seconds, the duration of Down
period is 20 ms to accommodate two downlink packets. Remaining time is used for
Up period (with no Sleep period). In all experiments, the application payload is 24
bytes, which is carried in UDP datagrams over 6LoWPAN. All our experiments were
done on Zigbee/IEEE 802.15.4 channel 26 (i.e., no WiFi interference) and in a stable
channel environment with minimal external interfering factors, such as uncontrolled
human movement and environment changes. Unless specified, all our results are an
average of three runs of 1-hour experiments from different times of the day.

For comparison with state-of-the-arts, we use RPL [10], ORPL [11], and LOADng [17].
All these protocols including MAPLE are implemented on top of ContikiMAC [67] in

ContikiOS [73]. We use Contiki’s default values for the number of transmission at-
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tempts and duty cycle rate, 5 and 8 Hz, respectively. Note that the gateway does not
duty-cycle in order to handle all network traffic. ContikiMAC has a phase-lock mech-
anism, where a sender records wake-up phase of its neighbors, and uses it for timely
transmission in an energy-efficient manner. Phase-lock can be used for unicast of RPL
or LOADng, neither broadcast nor anycast of ORPL and MAPLE.

With this configuration, we first check the total size of volatile memory for each
protocol. RPL and ORPL consume 8.6 and 8.4 kBytes, respectively, and LOADng uses
9.5 kBytes of RAM. On the other hand, MAPLE spends only 7.3 kBytes of memory
as it does not need to maintain neighbor or routing information. This result verifies

MAPLE outperforms state-of-the-arts with regard to memory footprint.

2.3.2 Static Network

We first evaluate the effect of multiple RSSI sampling in a single packet, which is used
in MAPLE for reliable RSSI capture. To this end, we run MAPLE with beacon interval
of 5 seconds in the testbed shown in Fig. 2.5. Whenever a low-power node receives
a beacon, it records two kinds of RSSI values, RSSI ;s and RSS1ayg. RSSI st
indicates the instantaneous RSSI value read from the first FCS byte of the received
beacon. On the other hand, RSS14,, is the average of 10 RSSI samples stored after

an SFD interrupt based on our approach described in Section 2.2.5. The experiment
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Figure 2.7: PRR, duty-cycle, and number of hops results from a static network.

ran for 4-hours, leading to about 2,900 beacon receptions. We observed that the differ-
ence between the mean values of RSSIj,s and RSSI 4,4 is marginal less than 1%.
However, their deviations over time are quite different. Fig. 2.6 presents the average
absolute deviations over time for each node. For the RS S, measurements, in the
worst case (i.e., node 5), the deviation is close to 3. We stabilized this unpredictable
RSSI by obtaining and averaging multiple RSSI samples, resulting in 40% improve-
ment.

Using our stabilized S5 S1 4,4, now we evaluate the performance of MAPLE against
RPL, ORPL, and LOADng in a static network. Fig. 2.7(a) shows the end-to-end packet
reception ratio (PRR) for uplink and downlink traffic. We observe that LOADng is not
suited for a duty-cycled LLN, showing severe PRR degradation. This result comes
from the way of its reactive route search based on network flooding. A broadcast mes-
sage for route request occupies the medium within a whole sleep interval (i.e., 125

ms in 8 Hz duty-cycle rate). What is worse, it is propagated throughout the network
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Figure 2.8: RSSI adaptation of a hole node (node 27).

hop-by-hop. This significant overhead incurs network congestion extremely, leading
to excessive energy consumption, as illustrated in Fig. 2.7(b) as a metric of duty-cycle,
the portion of radio on-time.

Apart from duty-cycling MAC, in order to see routing performance of LOADng
solely, we also examine LOADng without duty-cycling. Instead of ContikiMAC, we
build LOADng on NullRDC (a simple MAC implementation without duty-cycling,
provided by Contiki), denoted as LOADng-N in Fig. 2.7. Figs. 2.7(a) and 2.7(b) show
that LOADng-N has comparable PRR with RPL and ORPL with the cost of 100%
duty-cycle. RPL shows the lowest duty-cycle with nearly perfect PRR, owing to the
phase-lock mechanism used in ContikiMAC for unicast transmissions. ORPL also
achieves about 100% reliability, but spends more energy than RPL due to anycast-
based transmissions without the phase-lock operation. Fig. 2.7(c) presents the number
of hops for uplink and downlink traffic. In ORPL, uplink hop is shorter than that of
downlink. As the root always listens to the medium without duty-cycling, it is likely
to receive and acknowledge an uplink packet from a neighbor earlier than any other
duty-cycling nodes. In case of downward traffic, on the other hand, it is common that
the packets are relayed by other early wake-up nodes.

MAPLE has over 99% uplink PRR with reasonable energy consumption in the

static network even though MAPLE was devised for mobile network. During the ex-
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periment, we observed local maximum RSSI problem in node 27 (see Fig. 2.5). It was
deployed in a relatively open space. As a result, it receives beacons or downlink pack-
ets from the gateway with higher RSSI than its neighbors, which are located inside
the rooms. Fig. 2.8 depicts how the node stuck in a hole adapts its RSSI. Whenever it
detects itself in a local-maximum point, experiencing transmission failures, it escapes
from the hole by adjusting its routing metric from RSSIg into RSS ... With this
approach, MAPLE tackles the local-maximum problem, guaranteeing high reliability.
However, the hole node shows the highest energy consumption (i.e., 4.15% of duty
cycle) due to transmission failures it experiences during the RSSI adaptation. Never-
theless, MAPLE shows lower energy consumption than ORPL since it benefits from
its ATP architecture which enables single-hop downlink transmission.

Thanks to NACK-based local retransmission, MAPLE’s downlink PRR is also
nearly perfect. We discovered that more than 3% of high-power downlink packets
were lost during the experiments. In particular, the nodes which have low SNR from
the gateway, such as nodes 26 and 27, went through about 20% of downlink packet
loss. Nevertheless, by broadcasting NACK locally, they could receive the downlink
packets successfully from neighbors, reaching 99.94% downlink PRR with average

hop count of 1.035, as shown in the Fig. 2.7.

2.3.3 Network with Mobility

Having the experimental results from a static LLN as a basis, we now move on to our

main evaluation with mobility.

One Mobile Node

In this experiment, we first introduce a single mobile node into the network to examine
its performance under mobility. To keep the number of nodes consistent, we use node
15, which is in a corner of testbed topology, as a mobile node. While carrying the node,

we walked back and forth along the path between points A and B shown in Fig. 2.5. In
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Figure 2.9: PRR and duty-cycle results for the mobile node.
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Figure 2.10: Hops for uplink traffic from the moving node.

each room we enter, we stay 90 seconds while still walking, and then exit. With this
movement, one-way trip time for the whole path is about 5 minutes.

Fig. 2.9(a) presents the PRR achieved for the uplink and downlink traffic from/to
the mobile node. The performance of RPL and ORPL degrades severely. RPL did not
react properly to link disconnections. Fig. 2.10 shows the number of hops that uplink
traffic from the mobile node goes through. In RPL, the mobile node has the root as its
preferred parent most of time. Even if it sometimes detects link failure with the root,
the link becomes valid again by node’s mobility. It makes the link quality remain good
enough for the mobile node to keep the current preferred parent. In addition, the effort
after detecting packet losses could not be a solution to provide seamless connectivity.

The main problem in ORPL is that, to update link quality with neighbors, it relies on
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Figure 2.11: PRR and duty-cycle results from the network with three mobile nodes.

Trickle algorithm [74], thus not reacting topology dynamics promptly. In both RPL
and ORPL, uplink PRR is better than downlink since the root is always-on. From the
view of the always-on root, a train of transmission strobes, which were intended for
duty-cycling receivers, have an effect of multiple retransmissions.

Fig. 2.10 also shows the mobile node with MAPLE or LOADng-N? adapts its up-
link hops according to change of its location, achieving PRR above 99% in all cases as
shown Fig. 2.9(a). Fig. 2.9(b) illustrates duty-cycle of the mobile node. MAPLE shows
the highest energy efficiency whereas RPL and ORPL suffer from frequent packet

losses and retransmission, incurring more energy consumption.

Three Mobile Nodes

Now we consider three mobile nodes with 29 static nodes. Among three mobile nodes,
two nodes continuously moved back and forth at typical walking speed along the path
shown in Fig. 2.5, but in opposite direction to each other. Their one-way trip time is
3 minutes. The other mobile node moved in the same manner as the previous experi-
ment with a single mobile device. Overall, the performance of each mobile node was
consistent with our previous results. Thus, in this subsection, we focus on how much

the mobile nodes affect the performance of the whole network.

3We exclude LOADng with duty-cycling from mobile experiments since we already identified its

chaotic performance through the previous static experiment.
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Fig. 2.11(a) plots the average PRR for all low-power nodes. For RPL and ORPL,
not only the mobile nodes but also their descendants sequentially are affected by wrong
routing decisions with outdated information. The PRR of LOADng-N remains still
good under mobility. However, it sometimes fails to transmit a packet with more than
1% of loss rate for both downlink and uplink. As an intrinsic drawback of unicast
transmission, it cannot benefit from multi-path diversity.

Meanwhile, there are three reasons why MAPLE shows the highest PRR for uplink
traffic. Firstly, MAPLE is more robust to link failure with spatial diversity using op-
portunistic transmissions. Next, routing information throughout the network (i.e., an
RS S 1 gradient) is newly updated every beacon interval of 5 seconds. Given the net-
work mobility of human walking speed, with this interval, it is enough for the RSS Iz
gradient to be tuned to topology dynamics. Lastly, even though the routing informa-
tion is not perfect, (i.e., with a non-monotonic RS S5 gradient along a path) incurring
some transmission failures, the node tries more and more paths by lowering its RS.S1g
gradually before the packet is dropped. Downlink PRR of MAPLE is more reliable,
by using high-power transmission and introducing local NACK-based retransmission
mechanism.

As presented in Fig. 2.11(b), MAPLE’s energy-efficiency is also good, which is
mainly attributed to the effect of eliminating multihop downlink relay between low-
power nodes. Additionally, with regard to routing overhead, while the compared pro-
tocols use broadcast packets which occupy the medium during a whole sleep interval
and need to be forwarded hop-by-hop, the cost in MAPLE is negligible, a single timely

transmission of the beacon.

2.3.4 Simulation Study under More Mobility

In our testbed experiments, we were unable to increase the number of mobile nodes
to more than 3 due to limitations in human resources. For this reason, we instead used

Contiki-based Cooja simulator to add more mobile nodes and expand our evaluation

29



Metwork a E m

View Zoom
@
@ @
® ® @
® @
@ ©) @)
@ ©)
@ @ @
@ @

Figure 2.12: Network topology for static nodes in Cooja simulation.
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Figure 2.13: PRR and duty-cycle results from 50-node simulation.

to showcase the performance of MAPLE under higher level of network mobility. As
shown in Fig. 2.12, we firstly deployed 19 static nodes to guarantee connectivity be-
tween mobile nodes and the gateway (i.e., node 1). The distance between two adjacent
nodes are 15 m. Then, for network mobility, we added another 31 nodes (total of 50
nodes) which independently move within the range of 45 m from the gateway. Each
node follows Random way-point model [?] with the minimum and maximum speeds
of 0.5 m/s and 2.0 m/s, respectively. For MAPLE, the gateway uses a transmit power of
0 dBm. The other low-power nodes use -10 dBm, having transmission range of about

17 m. All the other experimental settings are identical to those of previous testbed
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experiments.

Fig. 2.13(a) and Fig. 2.13(b) plots the average PRR and duty-cycle of all low-
power nodes, respectively. Compared to the previous experiment results, we found
that RPL and ORPL are impacted severely by increased network mobility, showing
less than 60% PRR with larger duty-cycle. Meanwhile, LOADng-N achieves PRR
near 100% with the expense of 100% of duty-cycle. Most importantly, MAPLE out-
performs the others in terms of both PRR and duty-cycle. Surprisingly, it shows lower
energy consumption than RPL despite RPL works over ContikiMAC which includes
the phase-lock operation to minimize energy consumption for unicasts. Overall, simu-
lation results are in-line with the experiment results, and shows that MAPLE achieves

significantly better reliability as well as energy efficiency under high mobility.

2.4 Conclusion

We presented MAPLE, an asymmetric transmit power-based routing architecture that
supports mobility of resource-constrained devices in LLNs. Using high transmit power
of the gateway, LLN nodes are synchronized for low duty-cycle operation, and RSSI
gradient field based opportunistic routing is designed which eliminates the need for
any neighbor or routing table. This enables scalability, low and constant memory
footprint, and provides responsive routing metric without control overhead. We ob-
tain reliable RSSI measurements via multi-sampling approach, and resolve the local
maximum problem through adaptive and local adjustment of the routing metric. We
implemented MAPLE on a low-power embedded platform, and evaluated through ex-
periments on a real multihop LLN testbed consisting of 31 low-power ZigBee nodes
and 1 high-power gateway. We showed that MAPLE improves the performance of mo-
bile devices in a multi-hop LLN testbed by 27.2%/55.7% and 17.9% in terms of both
uplink/downlink reliability and energy efficiency, respectively. As future work, we plan

to improve MAPLE in terms of latency and energy-consumption, and evaluate MAPLE
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on large-scale testbed such as Indriya and IoT-LAB. We envision that our approach
can be used in many practical indoor IoT applications where mobility is becoming an

integral part of LLNs.
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Chapter 3

TESLA: Traffic-aware Elastic Slotframe Adjustment in
TSCH Networks

3.1 Introduction

Internet of Things (IoT) has opened a new era with low-power embedded devices. In
industrial IoT networks, numerous sensors and actuators are deployed for system mon-
itoring and remote control. From smart homes to smart cities [1, 2], new applications
and network services are emerging such as electricity management, home security,
health care [3], and smart grid. As IoT applications become diverse, the need for reli-
able, energy-efficient, and flexible (i.e., adaptable to diverse and dynamic applications)
network protocols is growing up steadily.

The IEEE 802.15.4-2015 [16] standardized the time-slotted channel hopping (TSCH)
protocol for low-power and lossy networks (LLNs), a promising TDMA-like link layer
protocol providing both high reliability and low energy operation. Compared with
asynchronous duty-cycled MAC protocols [24, 25, 28], time-slot operation of TSCH
saves redundant transmissions or listening for rendezvous time of data exchange. Ad-
ditionally, channel hopping enables low-power communication to be resilient from
narrow-band interference and multipath fading [29]. For the implementation of TSCH

network, timeslot scheduling is required, but how to build and maintain the schedule is
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out of scope of the IEEE 802.15.4-2015 standard. For this reason, a number of TSCH
scheduling schemes have been proposed recently, such as the minimal configuration

schedule [75] of 6TiSCH [76] and Orchestra [12] (Section 3.2.2 and 3.2.3).

Challenge. Any well designed protocol can end up with miserable performance if its
parameters are not set appropriately [77, 78, 79]. Setting proper network parameters
has been one of the most painful tasks in LLNs as well. Since it is hard to predict the
impact of a parameter change on performance, it is exhaustive, empirical, and envi-
ronment specific. In addition, a network parameter is usually set as a global constant
(i.e., all nodes have the same value), which cannot satisfy all nodes having different
environments and roles. This may cause significant inefficiency since each node’s situ-
ation is different and may change at run time, not only due to its physical surroundings
but also routing topology [80], forwarding traffic intensity [81, 82], and application
behaviors [5, 2].

Parameter selection for TSCH is not an exception. TSCH’s slotframe structure is
the basis of TSCH operation, but its size is set offline as a fixed global constant. On top
of significant burden for empirical optimization, even if the slotframe size is optimized,
it is still problematic since all nodes share a single slotframe size, disregarding rout-
ing topology and traffic intensity for each node: (1) When the slotframe is too small
for the node experiencing low traffic load, it will waste energy due to idle listening.
(2) When the slotframe is too large for the node under heavy traffic load, it cannot re-
ceive/forward many packets due to channel contention or queue overflow (Section ??).
To address this issue, each node should use a different slotframe size and adjust it with
traffic-awareness at run time. To align with the basic design paradigm of LLN (simple
and low overhead), this adjustment procedure should be light-weight and operate in a

distributed manner based on local information.

Approach. How can each node self-adjust TSCH slotframe size at run time? We intro-
duce TESLA, a novel traffic-aware elastic slotframe adjustment scheme as a solution

(Section ??). TESLA inherits and extends the Orchestra’s receiver-based scheduler [12]
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where each node has a single reception (Rx) slot per slotframe and sends a packet to
a neighbor in the neighbor’s Rx slot. Beyond Orchestra, in TESLA, each node obtains
the amount of incoming traffic using locally piggybacked information from neighbors.
It periodically self-estimates the contention level of the neighbors based on the traffic
load, and adjusts its slotframe size: (1) When the contention level is high, it decreases
slotframe size to receive more traffic from neighbors. (2) When the contention level
is low, it increases slotframe size to save energy. (3) Otherwise it maintains slotframe
size. Upon slotframe size change, the node informs its one-hop routing neighbors of the
new slotframe size for seamless communication. Furthermore, TESLA also supports
multi-channel operation to fully utilize available channel resources. Although our im-
plementation is based on Orchestra, the state-of-the-art TSCH scheduling mechanism,

the core idea of TESLA is general, applicable to any TSCH scheduling mechanism.
Contributions. The contributions of this work are threefold.

e Analysis on the impact of slotframe size, showing the limitation of setting it as a

fixed global constant, offline.

e Design of TESLA which includes four elements: (1) traffic information exchange by
piggybacking on each frame, (2) contention level estimation, (3) periodic slotframe

adjustment and sharing, and (4) multi-channel scheduling.

e Prototype implementation (the code will be open after acceptance) and extensive
evaluation on two distinct testbeds with 110 nodes and 79 nodes (Section ??), show-
ing that TESLA outperforms the state-of-the-art in terms of reliability and energy-

efficiency using distributed dynamic scheduling.

3.2 Background

In this section, we provide a brief overview of TSCH, and two instances of TSCH

scheduling implementation: 6TiSCH minimal configuration and Orchestra.
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Figure 3.1: An example of TSCH slotframe schedule and timeslot with slotframe size
of 3.
3.2.1 IEEE 802.154 TSCH

TSCH is a time-synchronous MAC specified in the IEEE 802.15.4-2015 standard [16].
Its synchronous operation saves energy by reducing redundant transmissions or idle
listening compared to asynchronous MACs [27, 25, 28], and its channel hopping en-
ables resilient operation over narrow-band interference and multipath fading [29].

TSCH network is globally time-synchronized, and time is divided into timeslots as
in Fig. 3.1. Typical length of a timeslot is 10 ms, long enough for a single frame and
an acknowledgement (ACK) to be exchanged. A slotframe is a collection of timeslots,
continuously repeated in time. The number of timeslots in a slotframe, i.e., slotframe
size, determines the period of each slotframe. Within a slotframe, time offset is defined
as when the timeslot occurs, and channel offset denotes an offset value for channel
selection. The total number of timeslots that has elapsed since the start of a TSCH net-
work is defined as the absolute slot number (ASN). It increases globally every timeslot.
In Fig. 3.1, when ASN is 2, node C can transmit a frame, node D can receive it, and
the others sleep.

For channel hopping, the channel on which a timeslot operates is determined by

the timeslot’s ASN, as

Channel = List.[(ASN + offset yanne) %0 Nrist. ] 3.1
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where List. is a set of channels to be hopped over, offset

-hannel 1S the channel offset,

and Np, is the number of elements in List.. By introducing ASN in channel deter-
mination, each timeslot with a fixed offset,.ne; can exploit different frequencies per
timeslot. The offset,..; €nables different channels to be used in the same timeslot.
Then for each timeslot, a TSCH schedule specifies (1) the activity (i.e., whether to
transmit, receive, or sleep), (2) the channel to be used for the corresponding activity,
and (3) whether the slot is shared or dedicated. However, how to build and maintain the
schedule is out of the scope of the IEEE 802.15.4-2015 standard, and is left as an open
research problem. For this reason, a number of TSCH scheduling schemes have been
proposed recently. We will describe the two representative state-of-the-arts below. A
common characteristic of widely used TSCH scheduling mechanisms is their simple
operation; each node self-allocates its timeslot without any additional control packet
exchange. This is for robust and energy-efficient operation on time-varying routing

topology in wireless environments.

3.2.2 6TiSCH and its Minimal Configuration

In 2013, IETF Working Group 6TiSCH [76] was established for the purpose of de-
signing IPv6 support on top of TSCH. 6TiSCH defines a TSCH minimal configura-
tion [75], which is a simple fixed scheduling scheme designed to enable basic and
necessary functions for TSCH network. It simply consists of a single shared timeslot
per slotframe to run IPv6 traffic on top of low-power TSCH networks with basic inter-
operability. This timeslot is used for both transmission and reception of all nodes in a

TSCH network.

3.2.3 Orchestra

Orchestra [12] provides autonomous TSCH scheduling together with the RPL routing

layer'. For the construction of TSCH and RPL network, Orchestra employs two types

'RPL is the standard IPv6 routing protocol for LLNs. The detailed description and related work for

RPL are in [10, 83], which is out of the scope of this paper.
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of slotframes. The first is the EB (Enhanced Beacon) slotframe which has two active
timeslots in each node, one dedicated for EB transmission and the other for EB re-
ception from the time source. Reliable EB communication is possible since a channel
offset is dedicated for this slotframe and a node’s reception (Rx) slot is synchronized
with the transmission (Tx) slot of its TSCH time source. The second is the RPL shared
slotframe for RPL control packets (DIO, DAO, and DIS), which has another dedicated
channel offset. This slotframe has one active slot, which is used for both Tx and Rx of
all nodes’ RPL control packets.

In addition, Orchestra proposes two approaches for unicast data communication
slotframe, sender-based or receiver-based, where either of them can be selected. Thus,
a total of three slotframes are employed in each Orchestra implementation. A different
channel offset from EB and RPL shared slotframes is used for the unicast slotframe.
In a sender/receiver-based schedule, a node self-allocates a single Tx/Rx slot per slot-

frame based on its MAC address, respectively. The time offset is computed as,
offsetime = (M AC) % Sst (3.2)

where K is a hash function shared in the network, M AC is the hardware address of the
node, and St is the size of the unicast slotframe. As all nodes use the same hash func-
tion, a neighbor’s schedule can be computed directly based on the neighbor’s M AC
address, without any exchange of additional control packets. In conjunction with the
standard RPL network layer, Orchestra updates schedules autonomously as network
topology changes.

Fig. 3.2 depicts an example of receiver-based scheduling in Orchestra. R denotes
a timeslot allocated for unicast packet reception. In this example, each node computes
offsety; . of R using its ID as output of h(M AC') where Sy is 5. For example, node 1
or 7 has the offset,;,. of 1 or 2, respectively. When any node has a packet to transmit
towards node 1, it transmits on the first timeslot within a slotframe. In receiver-based
scheduling, while a node’s Rx slot is single and fixed within a slotframe, its Tx slots

can be multiple; each Tx slot corresponds to Rx slot of each neighbor node. On the
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Figure 3.2: An example of TSCH scheduling in receiver-based Orchestra.

other hand, in sender-based scheduling, a node has a fixed Tx slot and multiple Rx

slots.

3.3 Preliminary and Motivation

While the contributions of the state-of-the-art techniques are substantial in enabling
TSCH to operate on embedded devices in real wireless environments, they have one
possible drawback: static scheduling with globally identical slotframe size, which is
pre-defined at compile time. Nodes in a network usually neither transmit nor receive
the same amount of traffic. Depending on routing topology and traffic generation pat-
tern, each node observes a different volume of traffic. Consequently, a uniform and
constant schedule may bring about three kinds of undesired situations: (1) A node re-
sponsible for forwarding packets more often than its Tx or Rx timeslots suffers from
severe packet losses. (2) A node who experiences little traffic wastes energy due to idle
listening in timeslots allocated unnecessarily. (3) When routing topology or traffic pat-
tern changes, there is no mechanism to adjust its slotframe size according to network
dynamics.

To confirm this hypothesis and motivate our TESLA, we present a preliminary

study on the performance of three representative state-of-the-arts: 6TiSCH minimal
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configuration [75], sender-based and receiver-based Orchestra [12], implemented on

ContikiOS [84].
3.3.1 Methodology

We evaluate the three schemes on FIT/IoT-LAB testbed [85] with 110 M3 nodes hav-
ing bidirectional traffic. The root node generates a downward packet every 0.5 sec-
ond while altering destinations in a round-robin fashion. Each of 109 non-root nodes
generates an upward packet with the period of 54.5 (=0.5x109) seconds to equal the
bidirectional traffic load. Detailed explanations of the experimental settings will be
provided in Section 3.5.1.

For Orchestra, to focus on the impact of unicast slotframe size, we first optimize
the size of RPL shared slotframe on this testbed. Small RPL shared slotframe size al-
lows successful and stable RPL network formation at the cost of high energy consump-
tion. On the other hand, large RPL shared slotframe size is unable to accommodate
RPL control messages during network bootstrap and when preferred-parent changes
occur, resulting in excessive collisions. In the worst case, this causes a TSCH node to
fail to exchange packets with its time source (i.e., RPL preferred parent in Orchestra)
before a certain keep-alive timeout, and eventually lose time-synchronization.

Interestingly, we found that the optimal size is different in two types of Orchestra
because they deliver DAOs in different ways when a node changes its preferred parent.
In receiver-based Orchestra, the node is able to self-calculate the new parent’s Rx slot
based on the parent’s ID, and send a DAO to the parent. In sender-based Orchestra,
however, if the child node sends a DAO to the new parent through the child’s Tx slot,
the DAO is likely to be lost. This is because the parent is yet unaware of the new
child, thus not listening to the new child’s Tx slot. To this end, the child node utilizes
the RPL shared slotframe for DAO delivery until its new parent knows its Tx slot
schedule. Consequently, sender-based Orchestra requires more resources for the RPL

shared slotframe than receiver-based Orchestra. After a series of experiments on this
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Figure 3.3: Various performance metrics in Orchestra and 6TiSCH minimal configu-

ration with different slotframe sizes.

testbed (figures are omitted for brevity), we set the sizes of RPL shared slotframes for

receiver-based and sender-based Orchestra to 23 and 11, respectively.

3.3.2 Experimental Results

Fig. 3.3 summarizes our results where M, SB, and RB denote the 6TiSCH minimal
configuration, sender-based Orchestra, and receiver-based Orchestra, respectively. The
number shown after each label indicates the (unicast) slotframe size. Fig. 3.3(a) plots

end-to-end packet delivery ratio (PDR) for both upward and downward traffic. The

Ralks L
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minimal configuration never achieves perfect PDR even with the shortest slotframe
(i.e., 2) since every slot is shared by all nodes in the entire network resulting in fre-
quent collisions. Its performance becomes even worse as the slotframe size increases.
On the other hand, Orchestra provides significantly better PDR by dispersing active
slots in time using a hash function in Eq. (3.2). SB and RB achieve PDR of more
than 99% when they employ slotframe size less than 17 and 13, respectively. As the
slotframe size increases, however, Orchestra also suffers from lack of communication
opportunities.

To analyze the causes of PDR degradation more closely, Fig. 3.3(b) plots the num-
ber of three types of packet losses: queue loss, link loss, and routing loss. Fig. 3.3(b)
shows that most of the packet losses are due to queue overflow and link failure, and
we observed that most of these losses occur at a few bottleneck nodes due to the load
imbalance problem in RPL [80]. For example, when RB employed a slotframe size of
31, 85% of lost packets disappeared at just two bottleneck nodes.

However, Fig. 3.3(b) also shows that detailed loss patterns at these bottleneck
nodes are different depending on TSCH scheduling. Note that each node in RB has
one Rx slot and multiple Tx slots within a unicast slotframe while each node in SB
has one Tx slot and multiple Rx slots. This means that RB and SB provide fewer Rx
and Tx opportunities, respectively. Accordingly in RB, neighbors of a bottleneck node
contend for a single Rx slot of the bottleneck, which first leads to many link losses
and then queue losses when the contention becomes more severe (due to redundant
CSMA backoff). On the other hand, SB mainly suffers from queue losses due to lack
of Tx opportunities. As an exception, SB43 also experiences significant link losses,
but most of these losses (i.e., 98.9%) occur in not the unicast slotframe but the RPL
shared slotframe due to a large number of RPL control packets attempting to fix un-
stable routing topology. The minimal configuration shows numerous link losses since
all nodes contend in one same slot to send packets regardless of receiver identity.

Figures 3.3(c) and 3.3(d) plot network stability and control overhead in terms of
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the number of parent changes and the numbers of DIOs, DAOs, and EBs, respectively.
As PDR is degraded in all the scheduling schemes, the RPL-TSCH network becomes
unstable and generates more control packets. Despite its effort, however, their perfor-
mance is not restored since the problem is attributed to how TSCH slots are scheduled.
Figures 3.3(b) and 3.3(c) show that network stability is closely correlated to link loss.
When packets are lost at links due to collision, RPL misunderstands it as bad link
quality and triggers meaningless parent changes [78].

Fig. 3.3(e) represents average radio duty-cycle of each scheme. As the slotframe
size increases, duty-cycle typically decreases due to low resource allocation. However,
when the slotframe size becomes too long, duty-cycle rises again due to more Tx/Rx
overhead coming from low PDR. The minimal configuration provides the lowest PDR
among the three schemes, resulting in the highest energy consumption. SB consumes
more energy than RB due to the two reasons. Given that, within a slotframe, RB allo-
cates one Rx slot but SB allocates Rx slots as many as the number of RPL neighbors,
i.e., the preferred parent and children, SB uses more energy for listening. In addition,
SB employs a smaller size of RPL shared slotframe than RB, as discussed in Section
3.3.1, consuming more energy.

Next, we define the slot utilization ratio (SUR) as the ratio of Rx slots used for
successful packet reception over total Rx slots, and plot its CDF among nodes in
Fig. 3.3(f). A higher SUR indicates more efficient use of resources and less redundant
energy consumption. In the cases where PDR is nearly perfect, such as SB5, SB13,
RBS5, and RB13, they utilize slots very inefficiently. For example, more than 80% of
nodes experience <1% SUR. This is because, compared to the given slotframe size,
only a few bottleneck nodes receive a reasonable amount of traffic but most nodes ex-
perience too sparse traffic. If a larger slotframe is used as in RB31, SUR becomes better
but PDR becomes miserable (~20%) as shown in Fig. 3.3(a). The minimal configura-

tion cases exhibit low PDR with low SUR, an undesirable performance characteristic.

43



3.3.3 Summary

Overall, experimental results strongly support our hypothesis: under static globally-
uniform scheduling methods, while bottleneck nodes suffer from packet losses due
to insufficient opportunities for Tx/Rx, most of other nodes waste energy due to over-
allocated timeslots. The conventional techniques will suffer even more when each node
generates data with a different rate and/or a node changes its traffic pattern at run time.
For example, in a smart building application, a temperature or humidity sensor gener-
ates light periodic traffic but an anemometer generates heavy continuous traffic [81].
A node’s application traffic can change at run time due to emergency detection [5, 86],
device control [87, 88], and firmware update. Even with a fixed application traffic
pattern, “network” traffic can still vary at run time according to a reporting strategy,
e.g., sending each data immediately or aggregating data for a while and sending as a
batch [82]. This motivates TESLA, a technique for dynamic and local adjustment of

slotframe size according to traffic load.

3.4 TESLA Design

In this section, we present our TESLA design. TESLA operates in conjunction with RPL
and receiver-based Orchestra (i.e., node ID-based Rx slot allocation). Each TESLA
node monitors its incoming traffic load without any additional control overhead. Based
on the traffic load information, each node periodically adapts its Rx slot schedules.
Specifically, when a node detects overwhelming packets coming through its current Rx
slots, it reduces its slotframe size to alleviate contention between neighboring nodes
for reliable packet delivery. For energy efficiency, on the other hand, when a node
notices many idle Rx slots, it increases its slotframe size in order to save energy by
avoiding idle listening. In addition, TESLA attempts to allocate different channel off-
sets to nodes, if possible, leading to network capacity increase.

There is a price to pay for this dynamic slot scheduling. As each node’s Rx sched-
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ule varies, its change should be timely propagated to the RPL neighbors (i.e., preferred
parent and one-hop children) for their Tx schedules. This local exchange of Rx sched-
ules slightly increases control overhead. Nevertheless, our intuition is that the gain
from slotframe adjustment is more than enough to compensate the modest increase in

control overhead.

3.4.1 Slotframe Structure

In TESLA, each node has four types of slotframes:

o EB slotframe is for TSCH enhanced beacons (EBs) with a constant periodicity and

a dedicated channel offset.

e RPL shared slotframe is for RPL control packets, also with a constant periodicity

and a dedicated channel offset.
¢ Rx slotframe (RSF) is for unicast reception with an elastic periodicity.

e Tx slotframe (TSF) is for unicast transmission, per neighbor, with an elastic peri-

odicity.

The first two slotframes are for control messages similar to Orchestra [12]. In addition,
each TESLA node maintains a single slotframe only for unicast packet reception, called
Rx slotframe (RSF). There is one Rx slot in each RSF. In contrast to Orchestra, TESLA
enables each node to adjust its own RSF size dynamically according to incoming traffic
load. Fig. 3.4 shows an example of TESLA scheduling for the same routing topology
as Fig. 3.2. When a large amount of traffic converges to node 1, it reduces the RSF size
for more Rx opportunities. On the contrary, if node 6 receives few packets, it enlarges
its RSF size to reduce energy consumption. In this way, each node may end up using a
different RSF size.

In addition, a node maintains a Tx slotframe (TSF) for each of its routing neigh-

bors (i.e., preferred parent and one-hop children). Each TSF has one Tx slot, which
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Figure 3.4: An example of TESLA scheduling.

matches the Rx slot in the RSF of the corresponding routing neighbor. A node can
have a different TSF size for each neighbor node since each neighbor adjusts its RSF
size independently. Overall, each TESLA node has an EB slotframe, a RPL shared slot-
frame, an RSF, and multiple independent TSFs as many as the number of its routing

neighbors.
Inheriting Eq. (3.2) from Orchestra, the time offset for a TESLA node’s Rx slot is
computed as

offsetime (t) = hiy(MAC) % Sist(t). (3.3)

Differently from Orchestra, the RSF size (Sy) changes over time (¢) and so does
offset; .- Note that a node should know not only a neighbor’s ID but also its up-fo-date

RSF size to calculate the neighbor’s Rx schedule and maintain a correct TSF for the

neighbor.

3.4.2 Rx Slotframe Size Adaptation

This section presents how a TESLA node monitors its incoming traffic load and self-

adapts its RSF size accordingly.
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Traffic Load Reporting

TESLA lets each node (i) inform each of its one-hop routing neighbors (A) of traffic
load from node i to node A, namely L(i, A). Specifically, when node i sends a unicast
packet to the one-hop neighbor A, it piggybacks the traffic load information L(i, A)
in the packet by using Information Element (IE) field in the IEEE 802.15.4 frame; the
traffic reporting process happens locally and requires no additional control overhead.

Given that the current TSCH scheduling techniques suffer both link loss and queue
loss as discussed in Section 3.3, node 7 calculates the traffic load L(i, A) by adding
two elements, as

L(i, A) = M(i, A) + Q(i, A). (3.4)

Specifically, assuming typdaic(A) as the time elapsed from the last RSF size update of
node A, M (i, A) indicates the number of node i’s Tx attempts towards node A during
tupdate (A). Node i initializes M (i, A) to 0 upon detecting neighbor node A changing its
RSF size, and increases M (i, A) in every MAC layer transmission destined for node A
regardless of whether it is acknowledged or not. On the other hand, Q(i, A) is simply
the number of currently queued packets for node A waiting to be transmitted, which

signifies the current congestion level experienced by node ¢ towards node A.

Two Traffic Load Metrics

Based on the traffic load information reported from all routing neighbors, each node
(A) calculates two complementary metrics for its periodic RSF adaptation (every Tagapt):
(1) normalized total incoming traffic load, and (2) contention level.

To this end, we define Ly (i, A) as the L(, A) at the last RSF adaptation of node
A (i.e., before Tigap)- L(i, A) has been accumulated since node A’s last RSF size
change (i.e., during last ypqate (A), longer than or equal to Tadap: because the adaptation

procedure may not always change the RSF size). Thus, the traffic load from node 7 to
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Figure 3.5: Topology of node A and its RPL routing neighbors, and an example of RSF

size adaptation.

node A during recent Tyqap;, namely La (i, A), is
La(i, A) = L(i, A) — Liasi (3, A). (3.5)

Defining N(A) as the routing neighbor set of node A and W as the number of node A’s
Rx slots in last T}qapt, the normalized total incoming traffic load at node A, Lan(A),

is computed as

La(i, A
Laa(A) = Y Lol 4) (3.6)
iEN(A)

Finally, node A uses the metric L Am(A) for its RSF size adaptation.

Fig. 3.5 exemplifies RSF size adaptation, where node A executes RSF adaptation
at time 4 - Tyqap to decide the RSF size for the next period [4 - Tydapt, 5 - Tadapt]- Note
that 2 - Tigape is Wwhen node A’s most recent RSF size change happened. Then, W is
the number of Rx slots in [3 - Thdapt, 4 - Tadapt]l, L(7, A) is the traffic load from node 4
during typdate (A) (i-e., [2 - Tadapt> 4 - Tadapt])s Liast (7, A) is the traffic load in [2 - Thdapt,
3 - Tadaptl, and L (1, A) indicates the traffic load during recent Tadapts i-€., [3 - Tadapts
4 - Tadapt]-

Next, node A estimates the contention level on its Rx slots. Specifically, node A

interprets L (i, A) as the number of its Rx slots required to receive node i’s traffic for
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last Tydape. Given that node A has W Rx slots for last Tyqapt, the probability of node
i to access an Rx slot of node A is #. Node A estimates packet reception ratio
(PRR) from node ¢ without any collision with the other routing neighbors, as

 La(k,A)

) (3.7)

PRR.(i,A)= [ «
k(#1)EN(A)

Then, node A uses PRR. min(A), the minimum of PRR.(i, A) among all ¢ in N(A)
(i.e., PRR.(i, A) for the worst-case node), for its RSF adaption, as the indicator of its
contention level.

Note that the two metrics, La n(A) and PRR. min(A), are mutually complemen-
tary. For example, when traffic is heavy but comes from the only one neighbor node,
PRR. min(A) is always good (i.e., 1) since there is no contention but node A may not
receive all traffic successfully due to lack of Rx slots. In this case, La (A) helps node
A to detect the problem. On the other hand, when traffic comes equally from many
neighbor nodes, node A may lose many packets due to collision even though La ,(A)
is relatively low. In this case, PRR. min(A) helps to detect the problem. Overall, by
combining the two metrics, each node detects not only the total incoming traffic load

but also how it is distributed to the routing neighbors.

Prime Numbers for Rx Slotframe Size

When a TESLA node adapts its RSF size, it selects one from prime numbers excluding
the pre-installed sizes for EB and RPL shared slotframes. There are two reasons for
using prime numbers.

First, according to Eq. (3.1), Rx slots in consecutive RSFs (e.g., with ASN = k
and ASN = k + Si) can use different channels when the RSF size (Syf) is a prime
number, which increases frequency diversity. As an example, in Fig. 3.1, there are four
available channels (e.g., IEEE 802.15.4 channels 15, 20, 25, and 26) and the slotframe
size is 3. Based on Eq. (3.1), the timeslot (A->B) with channel offset 0 will select

channel numbers 15, 26, 25, and 20 when ASNs are 0, 3, 6, and 9, respectively. Next,
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as explained in Section 3.4.1, a TESLA network has many slotframes with different
sizes: an EB slotframe, an RPL shared slotframe, and many RSFs (and corresponding
TSFs). If all slotframes have lengths of different prime numbers, they are mutually
prime, ensuring that the active slots overlap each other rarely and evenly. It prevents
unintended synchronization effect. To this end, each node has an ordered list of prime

numbers, P, where the elements are in ascending order from 2, 3, 5, and so on.

Traffic-Aware Rx Slotframe Size Adaptation

Based on the aforementioned design, each node executes the following adaptation pro-

cedures every Tygapt:
o Attempt to decrease RSF size, if required (Algorithm 1).
e Otherwise, attempt to increase the size (Algorithm 2).

In Algorithm 1, node A first initializes index as that of the element in the prime
number list P, which is equal to the current RSF size (Sif). For example, index = 1
when S = 2 and index = 3 when Si¢ = 5. Next, Whey is defined as the expected
number of Rx slots during next Tqape With a new RSF size, and initialized to W, the
number of Rx slots with the current RSF size in last T,dap. Then in the loop on line
3, the two traffic load metrics, PRR min(A) and L n(A), are calculated using Whew
instead of W.

At the beginning of the loop, node A checks if it is suffering high incoming traffic

by using the two traffic load metrics as follows:
1. PRR. min(A) is worse than a lower bound (PR R jow)-
2. Lan(A) exceeds a threshold (L).

Condition (1) is satisfied if any neighbor in N(A) is expected to suffer from channel
contention, and condition (2) is used as a precaution for sudden traffic increment due

to change of network topology or traffic generation pattern. If at least one of these two
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conditions is satisfied, the RSF size needs to be reduced to give more transmission
opportunities for the neighbors. Therefore, a new RSF size St new becomes a one-step
smaller prime number than S (line 4). In the following T},qapc With the new RSF size,
node A is expected to wake up %‘Sﬂ‘cw times more. Thus, Wyey goes up accordingly
(line 5), which increases PRR, min(A) and decreases L (A). It iterates until neither
of the two conditions is satisfied, which means none of N(A) is expected to suffer from
low PRR due to contention, and the number of Rx slots is enough to cope with traffic

variation.

Algorithm 1: How to decrease Rx slotframe (RSF) size

1 index < FindIndex (S, IP);
2 Whew < W;
3 while (PRRQmin(A) < PRR[hJOW) e (LAJI(A) > L[h) do

4 Srstnew < P[--index];
W'Srsf .

S| rsfnew

5 Whew <

6 Srsf — Srsf,new;

Algorithm 2: How to increase Rx slotframe (RSF) size

1 index < FindIndex (S, P);
2 Whew < W;
while (PRR:min(A) > PRRuup) && (Lan(A) < L) do

w

4 Srsf,new < P[+ + inde:n];

5| Whew ¢ 22300

rsf,new ’
: Srsf new
6 if =0 > ¢ then
TS|

7 L break;

®

S, rsf < S, rsf,new >

Algorithm 2 is executed when the RSF size is not decreased by Algorithm 1. The
two algorithms are similar in structure, but their conditions for the RSF size update are

different. In Algorithm 2, an RSF size increases if both of the following conditions are
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satisfied.
1. PRRcmin(A) is better than an upper bound (PR R up).
2. Lan(A) is less than the threshold (L).

In other words, if PRR.(i, A) for all i in N(A) are high enough and the number of
Rx slots is sufficient to accommodate all traffic from the neighbors, node A increases
the RSF size to reduce idle Rx slots. Note that Algorithm 2 uses another threshold
P R Ry up, higher than PR Ry, jow used in Algorithm 1. Having double thresholds im-
proves stability by preventing the ping-pong effect (repetition of increasing/decreasing
the RSF size too frequently).

To prioritize high reliability over energy saving, we design TESLA to increase RSF
size conservatively by introducing a bounding factor . Specifically, if the ratio of
Srstnew 10 Sist €xceeds ¢, it breaks the loop and stops increasing the RSF size (lines 6

and 7).

3.4.3 Tx Slotframe Size Adaptation

If a node ends up changing its RSF size through the periodic RSF adaptation, it an-
nounces the new RSF size to its routing neighbors, then each of which modifies its

TSF size for the node.

Local Update of the Rx Slotframe Size

Reliable delivery of an updated RSF size to routing neighbors is critical to TESLA’s
robust operation; if a neighbor is unaware of the RSF size change, it may continuously
fail to deliver packets to the node due to schedule mismatch. To this end, node A deliv-
ers the new RSF size and its version number? through DAO, DIO, EB, and Enhanced
ACK (EACK)? packets using reserved fields of DAO and DIO, and IEEE 802.15.4
header IE for EB and EACK. Neighbor nodes are informed of node A’s up-to-date

The version number increases by one whenever the RSF size changes.
3In TSCH, IEEE 802.15.4 EACK is used normally with timing information embedded.
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RSF size whenever receiving these packets. DAO updates the preferred parent, DIO
and EB update all neighbors of node A simultaneously, and EACK updates any node
which transmits a unicast packet to node A.

Announcing the RSF size relying solely on existing traffic incurs no additional
control overhead but may not provide timely update. For immediate RSF size update,
node A transmits an additional DAO (for the preferred parent) and an EB (for the one-
hop children) right after changing its RSF size, if they are not already scheduled. This
greatly improves robustness with slightly more control overhead.

However, both of these messages may be lost, especially the EB which is broad-
casted without ARQ. To address this problem, TESLA has two backup mechanisms.
(1) After node A changes its RSF size, it does not eliminate the previous RSF but
temporarily maintains it together with the new RSF. When an outdated neighbor suc-
cessfully sends a packet in node A’s temporary RSF, it is updated by receiving an
EACK from node A. (2) If a neighbor node fails to receive the new RSF size even until
the temporary double RSF schedule ends, it will continuously fail to transmit unicast
packets to node A. In this case, the neighbor suspects schedule mismatch, sends pack-
ets destined for node A through the RPL shared slotframe, and is updated by receiving
an EACK from node A.

Tx Slotframe Update

When a node notices an update of a neighbor’s RSF size by comparing the versions,
it changes the periodicity and time offset of corresponding TSF. Sometimes, Tx slots
of two TSFs, each of which is allocated for a different neighbor, may overlap unfortu-
nately. In this case, TESLA compares the lengths of Tx queues for the two neighbors,

and prioritizes the transmission for the neighbor with more queued packets.

53



3.4.4 Multi-channel Operation

Although TESLA is designed to avoid schedule overlap between neighbors by using
prime numbers for RSF size, overlaps may occur inevitably, especially under ex-
tremely heavy traffic. This is because bottleneck nodes end up using very small RSF
sizes, increasing probability of timeslot overlap. For example, assume that a bottleneck
node (B) reduces its RSF size to the minimum prime number (i.e., 2). Then, any trans-
mission in the vicinity of node B, not destined to node B, can collide with a packet
towards B with a probability of up to 50%.

To enlarge network capacity, TESLA utilizes multiple channels for unicast slot-

frames. Specifically, the channel offset of a node’s RSF is computed as,
Oﬁsetchannel = hC(MAC) % (NLiSIC — 2) (38)

Note that offset,nner Us€s @ modulo operator with Ni;y, — 2, instead of Nz, , since
we dedicate two channel offsets for the EB and RPL shared slotframes not to hinder
the basic TSCH and RPL operations. For example, when there are 16 channels avail-
able (max. number of channels in IEEE 802.15.4), TESLA can allocate 14 channels for
unicast communications. Since each node is likely to use a different Rx channel, col-
lision between packets for different receivers occurs rarely and temporarily in TESLA,
only when traffic load is very high and both timeslot and channel offset schedules are

overlapped.

3.4.5 Collaboration with RPL

A practical embedded network is typically designed as a vertical silo where multiple
layers intimately collaborate [83, 12]. To this end, we discuss how TESLA jointly op-
erates with RPL when routing topology changes. TESLA maintains the RSF size infor-
mation of only current routing neighbors. When a node switches its preferred parent, it
does not have the new parent’s RSF information and neither does the parent. The new

child and new parent should know each other’s RSF size for unicast communication.
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Figure 3.6: A snapshot of RPL topology for 110 nodes with -17 dBm of Tx power on
FIT/IoT-LAB testbed in Lille.

In this case, the node’s RPL layer schedules a DAO for the new parent, and its
TESLA layer sends the DAO (including its RSF size) on the RPL shared slotframe
and finds out the parent’s RSF information by receiving an EACK. Meanwhile, the
new parent detects the addition of a new child by receiving the DAO. Its RPL layer
establishes a new downward route for the child and its TESLA layer installs a TSF for
the child using the RSF information included in the DAO. On the other hand, the old
parent removes both the route and TSF for the previous child after receiving a No-path
DAO from the child (scheduled by RPL) or the expiration of the route.

When RPL’s routing topology is unstable or being repaired, e.g., when the network
bootstraps or wireless environments change significantly, many nodes change their par-
ents simultaneously and it is difficult to exchange RSF sizes through DAO and EACK.
In this case, however, since each node’s RPL layer generates many DIO packets due
to Trickle re-initialization [89], most nodes are able to know routing neighbors’ RSF
sizes quickly by receiving their DIOs. When a node receives a DIO from its new parent
quickly, it sends a DAO on the parent’s RSF instead of the RPL shared slotframe. This
synergistic joint operation enables TESLA to maintain modest contention on the RPL

shared slotframe.

3.5 Performance Evaluation

In this section, we evaluate TESLA on real world testbeds with various topologies.
We compare TESLA against state-of-the-art TSCH schedules. We also examine the

adaptability of TESLA to dynamics of network traffic. Lastly, the impact of parameter
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setting is discussed.

3.5.1 Methodology and Experiment Setup

We implement TESLA on ContikiOS and compare it against 6TiSCH minimal schedul-
ing (M), sender-based Orchestra (SB), and receiver-based Orchestra (RB), using 110
and 79 nodes on the FIT/IoT-LAB testbeds [85] in Lille and Grenoble, France, respec-
tively. Each node features a 32-bit ARM Cortex-M3 microcontroller (STM32F103REY)
and an AT86RF231 IEEE 802.15.4 radio chip. This node is representative of today’s
state-of-the art IoT devices [85]. We use Contiki-RPL implementation on top of the
TSCH scheduling schemes. For Orchestra and TESLA, the length of EB slotframe is
397. As discussed in Section 3.3, the size of RPL shared slotframe for sender-based
Orchestra is 11, and that for receiver-based Orchestra is 23. The size of RPL shared
slotframe for TESLA is also 23, since TESLA exchanges most of DAOs in unicast slot-
frame as explained in Section 3.4.5.

All protocols use a maximum of 8 retransmissions per hop, and queue size of 16
packets. TSCH hops over four best channels: 15, 20, 25, and 26. Each instance of an
experiment lasts for 1 hour, and results are averaged over 3~5 runs of experiments
for each case. An error bar represents 95% confidence interval. In all experiments,
the application payload is 59 bytes carried in UDP/IPv6 datagrams over 6LoWPAN,
reaching 109 bytes of the data frame size.

For TESLA, we use RSF adaptation period Tjgap of 15 seconds, and limitation
factor € is set to 1.5 to increase RSF size conservatively. In other words, RSF size
cannot increase by more than 50% every Taqap. The load threshold Ly, is 50%, and
PRR jow and PRRy, up are 80% and 90%, respectively. The prime numbers for RSF
size adaptation range from 2 to 97, allowing a node to wake up at least once in 1
second. To distinguish the effect of multi-channel operation in TESLA, we create two
versions of TESLA: T'_S uses a single channel offset for RSF/TSF, and T'_M uses two

channel offsets (excluding two offsets dedicated for EB and RPL shared slotframes).
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3.5.2 Impact of Traffic Load

We first investigate the performance of the state-of-the-art TSCH schedules and TESLA
with various traffic intensities on Lille testbed consisting of 110 nodes. We use slot-
frame size of 2 for the minimal configuration which had the highest PDR in Sec-
tion 3.3. Both receiver/sender-based Orchestra use a unicast slotframe size of 13. Each
node uses transmission power of -17 dBm. Fig. 3.6 shows a snapshot of the RPL rout-
ing topology during experiments where average depth of the network is 4.7 hops, and
its maximum reaches 7 hops. In each experiment, the root node (i.e., node 1) generates
downward packets with a fixed rate while altering destinations. For upward packets,
an equal aggregate rate is used for 109 sensor nodes. For instance, when the root gen-
erates 2 downward packets per second, each of 109 non-root nodes generates upward

packets with 0.018 (=2/109) packets per second.

Reliability. Fig. 3.7(a) shows the average bidirectional end-to-end PDR under different
traffic load. Under light traffic, all the protocols perform well with PDR over 99%.
However, when the traffic load from/to the root is 2 or 3.3 packets/second, M, RB, and
SB start to show performance degradation. On the other hand, TESLA is still capable of
accommodating traffic by reducing slotframe sizes adaptively. For example, Fig. 3.9(b)
presents a snapshot of RSF size of each node when traffic rate is 2 packets/second. It
shows that bottleneck nodes marked with yellow color in Fig. 3.6 use much smaller
RSF sizes than the other nodes to resolve contention. Fig. 3.7(a) also shows that T'_M
improves PDR of 7'_S by up to 30.1%

As presented in Fig. 3.8(a), M and RB experience considerable link losses since
multiple nodes contend for an active slot, which is aggravated more in the vicinity of
bottlenecks. Meanwhile, bottlenecks in SB suffer from frequent queue overflows due
to its fewer Tx slots than Rx slots. In TESLA, however, bottlenecks can reduce its Rx
slotframe size to the minimum (i.e., 2), resulting in much less packet losses. When the
traffic increases more, TESLA also encounters channel contention and packet losses,

which is still less than those in other schemes. The results confirm that TESLA suc-
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Figure 3.7: PDR, duty-cycle and latency according to different traffic load.

cessfully does its role at the link layer: rescuing bottleneck nodes from the contention

hell, as much as possible.

Energy consumption. Fig. 3.7(b) shows the duty-cycle for each protocol. Obviously,
when the traffic load increases, more energy is used to transmit and receive packets.
M2 consumes the largest energy due to its short periodicity of slotframe and severe
contention. Orchestra has duty-cycles from 1.3% to 7.0%. Under low traffic load, SB
spends more energy than RB by allocating multiple Rx slots within a slotframe. How-
ever, RB with one Rx slot within a slotframe experiences more contention than SB,
,{1 R ] {:1 TU
58



X104
Routing
4 mLink
W Queue

Number of Losses

M2 I
RB13 I
SB13

T_S I

TMI

T_M

RB13 I—

o1 SB13

T_S

o
3

Traffic Load from/to the Root (packets/second)

=)

(a) Number of packet losses during 1-hour experiment

A,
2 x10"4
EB

2 16 WDAO

Q

< mDIO

g 12

>

(o]

S g

9]

£

= I II I

- i 1

O-I-lll.-.- == lm n A B | | |
N M ™ N M ™M N M ™M N M m N M m N M ™
g3 2222302832028332383222384 23
o F xao" F o lF ok o F xa "
1 2 5

o
Y

.3
packets/second)

Ing
>
= w

Traffic Load from/to the Root

(b) Number of overhead during 1-hour experiment
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bringing about higher duty-cycles than SB as traffic intensifies. TESLA significantly
improves upon M, RB, and SB, maintaining duty-cycle from 0.8% to 1.6%. T"_M
has slightly lower duty-cycle than 7T'_S' since it reduces channel contention thanks
through channel diversity. Compared to SB which showed the best PDR except TESLA
in Fig. 3.7(a), T'_M reduces duty-cycle by 67.1% on average.

Fig. 3.9(a) plots the distribution of duty-cycles among all 110 nodes for traffic load
of 2 packets/second. At this traffic rate, RB13 outperforms M2 and SB13 as illustrated
in Fig. 3.7(b), but TESLA performs even better, enabling more than 90% of nodes
to save their energy by 50% compared to RB13. It is important to note that TESLA
achieves energy saving without loss of reliability by increasing the RSF sizes only for
the nodes with over-allocated slots. Fig. 3.9(b) confirms this: while most nodes utilize
the maximum RSF size (i.e., 97) for energy saving, a few bottleneck nodes use very

small RSF sizes. In Fig. 3.9(a), TESLA does increase the duty-cycles of ;5% bottleneck
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nodes compared to RB13, because they select RSF sizes shorter than 13 as shown in
Fig. 3.9(b).

Interestingly, RB13 also achieved perfect reliability under the same traffic load,
which means that RSF size of 13 is sufficient to handle the traffic even for bottle-
necks. The reason why TESLA causes the bottleneck nodes to use RSF sizes less than
13 is its sensitive reaction to the contention: decreasing RSF size promptly when a
burst of traffic is temporarily observed. Even if each node generates traffic with a fixed
rate, the incoming traffic load of each node, especially bottleneck nodes, fluctuates
due to randomness in the network such as channel quality and topology changes. As
TESLA prioritizes reliability over energy efficiency, a few bottleneck nodes sacrifice
their energy by using RSF sizes slightly shorter than actually needed, aiming for re-
liable packet delivery under network dynamics. We argue that this design choice is

reasonable because sacrificing reliability can ruin the whole network.
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End-to-end latency. Fig. 3.7(c) presents the average end-to-end latency for upward
and downward traffic. When the traffic load is low, TESLA exhibits the longest delay,
since most nodes use the maximum RSF size. Note that TESLA is designed for reliabil-
ity and energy efficiency, rather than short latency. Interestingly, however, as the traffic
load increases to 3.3 packets/second, the latency of TESLA decreases because RSF
size is reduced throughout the network, while those of the other schemes increase due
to channel contention. Eventually, beyond traffic load of 3.3 packets/second, TESLA
provides the shortest delay with the best reliability and energy-efficiency. As an ex-
ceptional case, under the highest traffic load, it seems that the minimal configuration
shows shorter delay than TESLA, but this is because only nodes with 1 or 2 hops away
from the root can successfully deliver packets (i.e., ~30% PDR). Overall, although
TESLA is not explicitly designed for latency improvement, its contention alleviation

ends up with better latency.

Network overhead. When a TESLA node changes its RSF size, it can generate addi-
tional DAO and EB packets in order to fast notify the new RSF size to the preferred
parent and 1-hop children, as described in Section 3.4.3. Fig. 3.8(b) presents DIO,
DAO, and EB overhead. In the lowest traffic load case, T'_M makes 27.2% and 16.1%
increments of DAO and EB packets, compared to RB13. Nevertheless, it does not im-
pede TESLA’s reliability as shown in Fig. 3.7(a). In addition, this control overhead
increase is more than compensated by TESLA’s substantial energy saving via reducing
idle listening, which leads to significant duty-cycle improvement shown in Fig. 3.7(b).
Fig. 3.8(b) also reveals that as the traffic increases, Orchestra and the minimal schedule
incur more network overhead than TESLA to restore the network that has become un-
stable due to lack of reliable packet delivery. This also confirms why TESLA’s design

choice, prioritizing reliability over energy efficiency, makes sense.
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Figure 3.10: Impact of transmission power.

3.5.3 Impact of Network Topology

Now, we run experiments extensively with various network topologies. We first change
Tx power of each node to investigate the impact of node density. Then, we change the
location of the root to give drastic variation in the topology. Lastly, we run experiments

in an entirely different environment, 79 nodes on Grenoble testbed.

Different Tx power. In this experiment, we vary Tx power from the minimum (-
17 dBm) to the maximum (3 dBm) value. We set traffic load to 6.7 packets/second,

the highest load used in Section 3.5.2 anticipating that higher Tx power will result in
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Figure 3.11: Impact of root location.

better performance, and compare TESLA with M2, RB7, RB13, SB13, and SB23.

Fig. 3.10 plots end-to-end PDR, duty-cycle of radio, and average hop distance of
RPL topology. As Tx power increases, Fig. 3.10(a) shows that all the schemes except
RB13 provide better PDR and Fig. 3.10(b) shows that all the schemes provide lower
radio duty-cycle. There are two reasons for this result. Firstly, a higher Tx power de-
creases average hop distance as shown in Fig. 3.10(c), which reduces network traffic
since a packet can be delivered to its destination with fewer transmissions. This al-

leviates the level of contention. Secondly, a higher Tx power increases node density

63



and provides more parent candidates for each node. Thus, each node can have a better
chance to avoid choosing a bottleneck node as the preferred parent.

On the other hand, RB13’s PDR performance shows a trade-off regarding Tx
power increase: although lower network traffic can reduce contention, higher node
density can cause more contention due to more nearby contenders. In RB13, the latter
effect becomes stronger than the former when Tx power is higher than -4 dBm, re-
sulting in PDR degradation. Note that RB7 escapes from the negative effect by using
a shorter slotframe size, showing monotonic PDR increase with Tx power but more
duty-cycle than RB13. SB usually experiences less contention than RB, providing bet-
ter PDR than RB. Meanwhile, SB13 always provides better PDR but worse duty-cycle
than SB23 due to its shorter slotframe size. Lastly, regardless of Tx power, TESLA

outperforms the others considerably in terms of both reliability and energy efficiency.

Different positions of the root. Here, we change the root location to create a totally
different topology. In addition to the default root location of all the previous experi-
ments, we also used a node at corner/center of the testbed as the root. We set Tx power
to -17 dBm and aggregate traffic rate from/to the root to 1.4 packets/second, a rate
at which M2 maintained more than 99% PDR in Section 3.5.2. In this experiment,
TESLA is compared with M2, RB7, RB13, SB7, and SB13, and the results are shown
in Figures 3.11(a) through 3.11(c).

When we use the center and default as the root positions, all the schemes achieve
more than 99% PDR, but TESLA improves energy efficiency remarkably. For the case
of corner root, as hop distance becomes longer and network traffic increases, PDR
and duty-cycle performance drops in the minimal schedule and Orchestra. However,
TESLA still maintains perfect reliability with the lowest energy consumption through

slotframe size adaptation.

Different testbeds. We now compare TESLA with M2, RB7, RB13, RB31, SB7,SB13,
and SB31 in a different environment: 79 nodes on the Grenoble testbed, which are

deployed uniformly in a long linear topology with two lines. We use total traffic load
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of 2 packets/second for each of bidirectional traffic, and Tx power of -17 dBm.

The experiment results are summarized in Fig. 3.12. Compared to Fig. 3.6, the
routing topology of Grenoble testbed illustrated in Fig. 3.12(a) is evenly spread out
due to its linear deployment. However, there are still bottlenecks depicted as yellow-
colored nodes. As two main performance metrics, Fig. 3.12(b) plots upward and down-
ward PDR, and Fig. 3.12(c) plots radio duty-cycle. By adaptively controlling RSF
sizes as illustrated in Fig. 3.12(d), TESLA shows the best performance in both aspects.
Specifically, Fig. 3.12(d) and Fig. 3.9(b) show that TESLA uses more diverse RSF sizes
on the Grenoble testbed than the Lille testbed. This confirms that TESLA does reflect
the different routing topology on the Grenoble testbed, more balanced than that on the
Lille testbed.

In Sections 3.5.2 and 3.5.3 so far, we have extensively evaluated the performance
of TESLA against the state-of-the-arts with various slotframe sizes. We found that the
optimal slotframe size for each of compared schemes differs according to the traffic
load and network topology. It is notable, however, that we have never adjusted any
of TESLA’s default parameters (explained in Section 3.5.1), but TESLA has always

presented the best performances nevertheless.

3.5.4 Impact of Run-time Traffic Dynamics

To closely understand TESLA’s adaptability to traffic dynamics of the network at the
link level, we run another experiment with a single-hop topology having five senders
and a common receiver. In this experiment, each sender generates packets with two dif-
ferent traffic loads, 0.2 and 1 packet/second. The experiment comprises four 20-minute
periods, and each sender uses the two traffic rates alternately within each period. The
intervals for traffic load alternation in the four periods are 5 minutes, 1 minute, 15 sec-
onds, and 5 seconds. This load change is shown explicitly in Fig. 3.13.

Fig. 3.13 also plots how TESLA adjusts the receiver’s RSF size under the traffic

load dynamics. Recall that we used the RSF adaptation period, Tygapt, of 15 seconds.
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Figure 3.13: Time vs. Rx slotframe size.

The first two periods have larger intervals (i.e., 5 min. and 1 min.) of traffic alternation
than T}qap, sufficient to adapt RSF size according to the changed traffic load. While
the RSF size gradually reaches 17 when the traffic load is low, it is reduced down to 3
immediately when the traffic load becomes high. During the third and fourth periods,
however, the traffic load changes faster than the RSF adaptation rate. Therefore, the
estimated traffic load is always averaged through the two different traffic loads, and
thus the range of RSF size variation declines. For example, it fluctuates only between
5 and 7 in the fourth period.

Nevertheless, PDR of each period is maintained above 99.9% with reasonable ex-
pected transmission counts (ETX) as indicated in Fig. 3.13. This proves that even when
traffic load varies fast, TESLA does its best to adjust RSF size according to the aver-
age traffic load, maintaining reliability. Prioritizing reliability over energy efficiency is

important at this point again.

3.5.5 Impact of TESLA Parameters

Lastly, we evaluate slot utilization ratio (SUR) of TESLA with the traffic load of 2
packets/second from/to the root, while changing the TESLA parameters. We com-
pare that with Orchestra and the minimal configuration. From Fig. 3.3(a) which used
the same traffic load, we chose a common slotframe size ‘13’ for sender-based and
receiver-based Orchestra, which achieves more than 99% reliability for both, and a

slotframe size ‘2’ for the minimal schedule, which provides the highest PDR. We eval-
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slotframe lengths.

uate TESLA with different pairs of (PR Ry jow, PR Rnup) and different RSF size up-
per bounds. For instance, T-(80%,90%)-200 indicates TESLA with 80% of PR R jow,
90% of P R Ry up, and the upper bound of 200.

Fig. 3.14 plots the SUR distribution of M2, RB13, SB13. In Orchestra and the
minimal schedule, 80% of nodes show ;1% SUR, most of which are leaf nodes wasting
energy excessively in unnecessary Rx slots. On the contrary, TESLA improves their
SURs, more when a larger RSF size upper bound is used. When the upper bound is
400, TESLA provides SUR from 5% to 12% for the 80% nodes. This result reveals that
using a large maximum RSF size improves the group of nodes with low SUR (i.e., leaf
nodes). However, nodes with an excessively large RSF size cannot react to network
dynamics promptly due to few wake-ups, degrading reliability. For example, upward
and downward PDRs of T-(80%,90%)-400 are 93.0% and 95.9%, respectively, while
T-(80%,90%)-100 achieves more than 99% for both. In addition, energy saving by
using a large maximum RSF size is marginal since the RPL shared slotframe accounts
for most of energy consumption in nodes with large RSF sizes.

On the other hand, PR Ry, jow and PR Ry, p affect the bottleneck nodes with high
SUR. With lower PRR thresholds, TESLA is reluctant to reduce RSF size under heavy
traffic, resulting in higher SUR. However, we found TESLA with low PR Ry 0w and
P R Ry yp underperforms in terms of reliability, since it does not resolve poor link-layer

PRR. Based on the results, we have used T-(80%,90%)-100 as our default configura-
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tion for all the previous experiments.

3.6 Conclusion

We introduced TESLA, a dynamic scheduling solution for TSCH. In TESLA, each node
adapts its Rx schedule with traffic awareness to improve energy efficiency while guar-
anteeing reliability. TESLA also aims to increase network capacity by using multiple
channels. We implemented TESLA on a low-power embedded platform using Con-
tikiOS, and evaluated it through extensive experiments on two large-scale multihop
testbeds consisting of 110 and 79 low-power IEEE 802.15.4 devices. Consequently,
we have shown that TESLA improves the state-of-the-arts with respect to both relia-
bility and energy efficiency in any experimental environment and topology. We also
demonstrated TESLA’s adaptability to traffic dynamics. As future work, we plan to de-
sign a dynamic TSCH scheduling for broadcast packets as well, which, collaborated

with TESLA, can complete fully adaptive scheduling for all types of traffic.
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Chapter 4

OST: On-demand TSCH Scheduling with Traffic-awareness

4.1 Introduction

As the Internet of Things (IoT) is growing up consistently, a number of applications
are used and emerging. It is common that wearable devices are attached to people.
In smart homes, IoT devices are connected each other for various purposes such as
security and device control. The network gets bigger in smart buildings and smart
cities. Industrial IoT (IloT) networks are composed of numerous sensors and actuators,
and they monitor and manage the automation of system.

To support such applications, Time-slotted channgel hopping (TSCH) was stan-
dardized by IEEE 802.15.4-2015 [16] for low-power and lossy networks (LLNs). A
TSCH network is synchronized tightly and operated with in a timeslot manner. In a
single timeslot, a data frame and an acknowledgement (ACK) can be exchanged. In
each timeslot, a node choose a single its operation (transmit (Tx), receive (Rx), or
sleep). For TSCH implementation, it is necessary to determine who (which node),
when (which timeslot), and where (which channel) to act. It is called TSCH schedul-
ing, which is not specified in the standard, and thus a open problem. The detailed
explanation of TSCH is described in Section 3.2.1.

In Chapter 3, we designed a new TSCH scheduling, TESLA, which adapts Rx slot-
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frame size according to incoming traffic load. However, there are a few of limitations
of TESLA. Firstly, a Rx slot in TESLA is shared by multiple transmitters. As a result,
collision happens between them. TESLA addresses this problem in two ways, by 1)
exploiting exponential backoff for link-layer retransmissions and 2) allocating more
Rx slots than actually required. This makes a lot of Rx slots unused, wasting energy
with idle listening. Secondly, a TESLA node changes its Rx slotframe size by estimat-
ing incoming traffic from neighbors. However, receiver-side traffic estimation is not
accurate, since it cannot include the packets lost due to collisions or bad link qual-
ity. Lastly, TESLA generates additional packet overhead to inform neighbors of a new
schedule whenever an Rx slotframe size is updated.

By tackling these problems in TESLA, we introduce OST, a novel on-demand
TSCH scheduling with traffic-awareness. OST inherits principle of traffic-aware sched-
ule adaptation from TESLA. However, it dedicates each of Rx slots to a single sender,
instead of using shared Rx slots. To adapt schedules to traffic load, sender-side traffic
estimation is executed. After the estimation, a new dedicated schedule is exchanged
between a pair of nodes (i.e., a sender and receiver) without incurring any additional
overhead. Furthermore, OST can handle a burst of traffic, by allocating additional ded-
icated slots in a on-demand way. We implement OST with ContikiOS on low-power
embedded devices and evaluate OST with state-of-the-arts (including TESLA) in real
multi-hop testbed with 72 nodes, showing that OST outperforms the others in terms of
reliability and energy-efficiency.

The remainder of this chapter is organized as follows: In Section 4.2, we propose
the design of OST, and elaborate on its main functional blocks. We discuss the imple-
mentation details and present the evaluation results in Section 4.3. We conclude the

chapter in Section 4.4.
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4.2 OST Design

In this section, we present OST design. Collaborated with RPL, OST adapts the sched-
ules to updated routing neighbors (i.e., the preferred parent and 1-hop children). Each
OST node monitors traffic load from itself to each routing neighbor. Using average
traffic load for each routing neighbor, the node updates its Tx periodicity, i.e., Tx slot-
frame size, and negotiates with the corresponding neighbor for a available time offset
(tofrser) to both. Although OST dedicates such periodic schedule for the pair of nodes
based on average traffic load, more traffic than expected may come. This makes the
packets queued, and in the worst case, queue is overflowed and packets are lost. To
address this problem, OST additionally allocates on-demand timeslots promptly when

packets are queued.

4.2.1 Slotframes

In OST, each node has five types of slotframes:

e EB slotframe is for TSCH enhanced beacons (EBs) with a constant periodicity and

a dedicated channel offset.

e Autonomous unicast slotframe (AUS) is for autonomous unicast with a constant

periodicity a dedicated channel offset.

e Autonomous broadcast slotframe (ABS) is for autonomous broadcast, also with a

constant periodicity.

e Periodic-provision Tx slotframe (PTS) is for unicast transmission, per neighbor,

with an elastic periodicity.

e Periodic-provision Rx slotframe (PRS) is for unicast reception, per neighbor, with

an elastic periodicity.

The first three slotframes are same the ones with receiver-based Orchestra. They

are used for TSCH/RPL control packets. PTS/PRS are made after negotiation between
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a pair of nodes, but AUS/ABS are “autonomous”. In other words, a node can always
exploit AUS/ABS for its transmission without negotiation, since the node knows which
toffset the receiver(s) listens on. We distinguish AUS from ABS to alleviate collision of
unicast packets. Thus, when a node changes its preferred parent, it transmits DAO to a
new preferred-parent using AUS.

In addition, a OST node maintains PTS for a routing neighbor, while the neighbor
has PRS for the node. Thus, a node ends up with having multiple PTSs and PRSs
as many as the number of its routing neighbors. PTS and PRS have a single Tx and
Rx slot, respectively. OST enables each node to adjust its own PTS size dynamically
according to its Tx rate. This update is informed the neighbor who has corresponding

PRS, and the neighbor changes its PRS size as such.

4.2.2 Periodic Provision

This section present how a pair of two neighboring nodes schedule PTS and PRS.

Selection of NV

A OST node measures average traffic rate towards each of routing neighbors to select
the size of PTS and PRS. Whenever a node (A) enqueues a unicast packet for Tx to a
routing neighbor (i), A increases L(A, i) by one, which indicates traffic load from A
to 4. For all 4, L(A, ) is initialized to 0 with the period of t,pdae. Before initializing

L(A, i), A calculates average traffic rate during last ¢ypdate, R(A, @) for all 4, as
R<A7 Z) = L(A, Z.)/(tupdate : nslot)- (4-1)

Nglot 18 @ constant indicating the number of TSCH timeslots during time unit. Thus,
Lupdate *Mslot 1S the number of timeslots in Zypdate, and R(A, i) means the average number
of Tx towards ¢ per a timeslot. Then, node A determines the size of its PTS for ¢ as

2N(49) 'where N (A, 1) is chosen as k satisfying 1/2Ft1 < R(A,4) < 1/2F.
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Figure 4.1: Timeslot tree.

N(A, i) is updated every typdae before initializing L(A, ). Node A piggybacks

N (A, 1) on unicast packets destined to , in order for i to update its PRS size for A.

Selection of ¢ yffset

Each OST node maintains a resources tree as shown Fig. 4.1, where a circle with (n, t)
represents periodic timeslot resources with N=n and t=t. The resources (n, t) can
be divided into (n+1, t) and (n+1, t+2"). For instance, (2,1) indicates the resources
with the slotframe size of 22 and tofsee; Of 1. This resources can be divided into (3,1)
and (3,5) whose slotframe size is 23 and ¢ are 1 and 3, respectively, as exemplified

in Fig. 4.1.
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When node i detects a new N (A, 7) in a unicast packet from A, it selects togtset (N, 7)
newly for its PRS update. However, a new PRS schedule should not overlap with other
PTS or PRS schedules. Thus, node 7 searches for the resource tree to find the resource
with n=N (A, i), which is not used for other PTSs and PRSs. If there are multiple re-
sources available, node 7 select one randomly. Then, ¢ in the selected resource becomes
toftset (N, 7), and node ¢ allocates a PRS which has the periodicity of oN(A4) 3 Rx slot
with toggset (N, 7).

Meanwhile, node 7 piggybacks tofset (N, 7) on the acknowledgement (ACK) packet
to node A. Then, A also schedules a PTS with N (A, ) and tofse (N, ), which corre-

sponds to the new PRS of node i.

4.2.3 On-demand Provision

Although a OST node allocates PRS/PTS based on average traffic rate, traffic pattern
is usually irregular according to network topology and randomness of wireless links.
If a node occasionally observes a burst of traffic, it may not be handled only with
PRS/PTS, leading to queue overflow. To tackle this problem, OST enables a node to
schedule more timeslots when there are queued packets.

Specifically, when a OST node A sends a unicast packet p; on a timeslot (ASN=t;)
towards a neighbor ¢, it checks whether there is another packet po in Tx queue for .
If so, A makes a subsequent timeslot schedule (STS) by looking into all slotframe
schedules. STS consists of sizegrg bits, where k-th bit indicates whether A has the
schedule in the timeslot with ASN=t;+k. If the timeslot is schedules, k-th bit is set to
1. Otherwise, it is set to 0.

Then, STS is included in the p; with the frame pending bit set. When a node ¢
receives the p; in ASN=t;, it finds out the frame pending bit is set, and compares
STS of A (piggybacked on p;) with its own STS. If m-th bits are 0 in both STSs, m
is a matching bit, and it means neither A nor ¢ has a schedule in ASN=t;+m. Then,

i replies the matching bit to A on the ACK for p;, and schedules a single Rx slot
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in ASN=¢;+m. When there are multiple matching bits, the earliest bit is selected. On
receiving the ACK in ASN=¢1, node A allocates a Tx slot in ASN=¢t;+m. Accordingly,
node A is allowed to transmit po in ASN=t;+m. Note that this on-demand provision
occurs recursively. In other words, when node A has more packets other than po, it

updates its STS, and delivers it on py again using the matching slot with ASN=t;+m.

4.3 Evaluation

4.3.1 Methodology and Experiment Setup

We implement OST on ContikiOS and compare it with receiver-based Orchestra (RB),
sender-based Orchestra(SB) and TESLA. To this end, we evaluate them using 72 low-
power nodes on FIT/IoT-lab in Grenoble. Each node features a 32-bit ARM Cortex-
M3 microcontroller (STM32F103REY) and an AT86RF231 IEEE 802.15.4 radio chip.
This node is representative of today’s state-of-the art IoT devices [85]. We use Contiki-
RPL implementation on top of the TSCH scheduling schemes.

In this experiment, we use the size of EB slotframe as 397 in all protocols. In RB
and SB, the sizes of RPL shared slotframes are 57 and 41, respectively, and the sizes of
unicast slotframes are 13 in common. Meanwhile, TESLA uses 41 for the length of RPL
shared slotframe. OST uses AUS and ABS with the sizes of 47 and 57, respectively.

All schemes uses Tx queue size of 16 for each of routing neighbor, and link-layer
maximum retransmissions is 8. In all experiments, the application payload is 59 bytes
carried in UDP/IPv6 datagrams over 6LoWPAN, reaching 109 bytes of the data frame
size. TSCH hops over four best channels: 15, 20, 25, and 26.

4.3.2 Experimental Results

We evaluate the protocols according to various traffic rate. There are bidirectional
traffic (i.e., upwards and downwards), aggregated traffic load is same. Aggregate traffic

rate for each direction is from 2 to 10 packets/second. The results are shown in Fig. 4.2.
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Figure 4.2: PDR, duty-cycle according to different traffic load.

Fig. 4.2(a) presents average end-to-end packet reception ratio (PRR). Generally,

as traffic rate increases, PRR decreases due to insufficient resources. SB shows bet-

ter PDR with the cost of high energy consumption, which is shown in Fig. 4.2(b) as

radio duty-cycle. TESLA improves Orchestra in terms of both reliability and energy-

efficiency as discussed in Section 3.5. However, OST outperforms even TESLA in both

aspects, since it dedicates the resources and allocates more in real time whenever re-

quired.
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4.4 Conclusion

In this chapter, we introduce OST, a novel on-demand TSCH scheduling with traffic-
awareness. It adapts the slotframe sizes for periodic provision according average traffic
rate. Moreover, it allocates more timeslots promptly when there are packets queued. It
addresses the problem of unpredictable traffic. We implemented OST on a low-power
embedded platform using ContikiOS, and evaluated it through extensive experiments
on large-scale testbed consisting of 72 low-power IEEE 802.15.4 devices. We com-
paredOST’s performance with state-of-the-arts, showing outstanding improvement in

both reliability and energy-efficiency in various traffic load.
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Chapter 5

CONCLUSION

In this dissertation, we focused on the adaptability in low-power and lossy networks.
As a adaptable protocol to mobile devices, we first proposed MAPLE, an asymmetric
transmit power-based routing architecture that supports mobility of resource-constrained
devices in LLNs. By using high transmit power of the gateway in MAPLE, LLN nodes
are synchronized for low duty-cycle operation, and RSSI gradient field based oppor-
tunistic routing is designed which eliminates the need for any neighbor or routing table.
This enables scalability, low and constant memory footprint, and provides responsive
routing metric without control overhead. Next, we designed two TSCH scheduling
methods, which are adaptable to traffic load. In TESLA, we introduced a dynamic
scheduling solution for TSCH with traffic-awareness. Each TESLA node adapts its
Rx schedule with traffic awareness to improve energy efficiency while guaranteeing
reliability. Then, we proposed OST, a novel on-demand TSCH scheduling with traffic-
awareness. OST adapts the slotframe sizes for periodic provision according average
traffic rate. Moreover, it allocates more timeslots promptly when there are packets
queued. It addresses the problem of unpredictable traffic. For performance evaluation
of MAPLE, TESLA, and OST, we implemented them on resource-constrained low-
power embedded devices, and conducted extensive experiments on large-scale multi-

hop testbeds. Compared with state-of-the-arts, we showed their superiority in terms of
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packet delivery ratio and duty-cycle.
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