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Abstract 

 

Multiple chemical exposures and its association with obesity and 

metabolic markers among women of reproductive age 

 

 

Inae Lee 

The Graduate School of Public Health 

Seoul National University 

 

Multiple classes of endocrine disrupting chemicals (EDCs) have been suspected as 

metabolism disrupting chemicals (MDCs) which can be defined as a particular class of EDCs 

that affect energy homeostasis. Although cumulative environmental epidemiological studies 

have reported the associations of EDCs with obesity and metabolic markers, information on 

the associations of multiple chemical exposures is limited. In addition, information on the 

associations with adiponectin and leptin, i.e., important adipokines, is also limited. 

 

The current study aims to assess the associations of multiple chemical exposures with 

obesity and metabolic markers. Body mass index (BMI) and percent body fat were used as 

obesity markers. Two adipokines, i.e., adiponectin and leptin, γ-glutamyl transferase (GGT), 

fasting glucose, insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) 

were used as metabolic markers. Women of reproductive age were recruited between 2015 

and 2016. One spot urine, blood, and serum samples were collected within the same 

individuals. Associations of multiple classes of chemicals measured in different biological 

matrices with obesity and metabolic markers were assessed in each chapter. Non-persistent 

chemicals such as phthalate metabolites and environmental phenolics (Chapter 2) were 
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measured in urine samples. Heavy metals (Chapter 3) and persistent organic pollutants (POPs) 

such as polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), brominated 

diphenyl ether (BDEs), and perfluorinated compounds (PFCs) (Chapter 4) were measured in 

whole blood and serum, respectively. Furthermore, overall associations of multi-pollutants 

(Chapter 4) were assessed and confirmed again in the last chapter. 

 

Chapter 2 aims to assess the associations between urinary non-persistent chemicals 

including phthalate metabolites and phenolics (n = 459). Because most of chemicals showed 

significant correlations, I conducted elastic net penalized regression to select the most 

predictive variables to an outcome. Consistent significant associations of the chemicals in 

both single and multi-pollutant models after adjustment are as follows. Higher bisphenol A 

(BPA) levels were consistently associated with obesity markers and leptin. Higher ethyl 

paraben (EtP) and sum of di-(2-ethylhexyl) phthalate metabolites (ΣDEHPm) were associated 

with higher serum adiponectin. For fasting glucose, ΣDEHPm showed a positive association. 

Higher mono-isobutyl phthalate (MiBP) and bisphenol S (BPS) levels were associated with 

higher HOMA-IR. These findings indicate that MiBP, ΣDEHPm, BPA, and BPS may be the 

most predictive variables to obesity, fasting glucose, or insulin resistance in Chapter 2. 

 

Chapter 3 aims to assess the associations between heavy metals, mercury (Hg), cadmium 

(Cd), and lead (Pb) (n = 456). Higher blood Hg was associated with higher BMI, GGT, and 

HOMA-IR, and lower adiponectin. Because Hg showed significant associations with several 

markers, mediation analysis was further conducted. Significant indirect effects of GGT and 

adiponectin were found in the association between blood Hg and HOMA-IR. Increased odds 

ratio of HOMA-IR>75
th

 percentile per quartile increase of blood Pb was found, but the 

association disappeared after adjusting blood Hg which showed significant correlation with 
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blood Pb. The implication of this chapter is that possible mediators of IR induced by Hg 

exposure were suggested by conducting mediation analysis. 

 

Chapter 4 aims to identify exposure patterns including urinary (Chapter 2), blood 

(Chapter 3), and persistent organic pollutants (POPs) such as polychlorinated biphenyl 

(PCBs), organochlorine pesticides (OCPs), and perfluorinated compounds (PFCs) using 

principal component analysis (PCA) and to confirm robustness of statistical analysis (n = 

104). Because PCA can help to identify common exposures, distinct chemical groups such as 

PFCs and phthalates were found in PCA. Similar to Chapter 2, factor 4 characterized by 

phthalate metabolites showed positive significant associations with serum adiponectin and 

fasting glucose, which showed robustness of statistical analysis. Similar chemical classes 

such as PFCs and phthalates share metabolic pathway or common sources. Thus, 

management is needed to reduce these correlated chemical groups as a whole. 

 

This study design is cross-sectional, and therefore, this study cannot provide causal 

inference. However, this study looked at the associations of multiple classes of chemicals 

with obesity and metabolic markers within the same individuals. The series of the studies 

showed that multiple chemicals were related to disruption in metabolism. The consistent 

associations of phthalate metabolites with fasting glucose and adiponectin assessed by 

different statistical methods and subgroups indicate that phthalate metabolites are the most 

predictive variables in this study population. Joint effects of multiple chemicals were not 

understood in this study. Therefore, the effects of multiple combinations of the chemicals are 

needed to confirm in experimental studies. 
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Abbreviation 

BPA, bisphenol A; 

BMI, body mass index; 

BPS, bisphenol S; 

BP1, benzophenone-1; 

BP3, benzophenone-3; 

Cd, Cadmium; 

DEHP, di(2-ethylhexyl) phthalate; 

DM, diabetes mellitus; 

EtP, ethyl paraben; 

GGT, γ-glutamiltransferase; 

HOMA-IR, Homeostasis Model Assessment-Insulin resistance; 

IR, insulin resistance; 

MBP, mono-butyl phthalate; 

MBzP, mono-benzyl phthalate; 

MCMHP, mono(2-carboxymethylhexyl) phthalate; 

MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; 

MEHHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; 

MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; 

MEP, mono-ethyl phthalate; 

MDCs, metabolism disrupting chemicals; 

MeP, methyl paraben; 

MiBP, mono-isobutyl phthalate; 

MMP, mono-methyl phthalate; 
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OLS, ordinary least squares; 

OCPs, organochlorine pesticides; 

Pb, lead; 

PBDEs, polybrominated diphenyl ether; 

PCBs, polychlorinated biphenyl; 

PFCs, perfluorinated compounds; 

PPARγ, peroxisome proliferator-activated receptor γ; 

PrP, propyl paraben; 

TCS, triclosan; 

T2DM, type 2 diabetes mellitus; 

%BF, percent body fat; 
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Chapter 1 Background  

 

1.1 Obesity and metabolic markers 

 

Obesity and metabolic markers 

 

Obesity is accompanied by increased oxidative stress and several comorbidities such as 

type II diabetes mellitus, and dyslipidemia (Fernández-Sánchez et al., 2011; Fingeret et al., 

2018). Thus, obesity and related health effect markers, such as adiponectin and leptin, γ-

glutamyl transferase (GGT), and insulin resistance (IR), measured in this study are closely 

linked with each other (Wu et al., 2011; Yadav et al., 2013). 

The term ‘adipokine’ is used as any substance released by adipose tissue, and adipose 

tissue is now regarded as complex metabolic endocrine organ which releases adipokines such 

as adiponectin and leptin (Fantuzzi, 2005; Yadav et al., 2013). Leptin is a well-known 

adipokine which can modulate energy expenditure by involving satiety in hypothalamus and 

caloric intake reduction, and has been reported to be positively associated with body mass 

index (BMI), a surrogate marker of obesity (Yadav et al., 2013). Contrary to other adipokines, 

adiponectin has an inverse relationship with obesity (Yadav et al., 2013). Adiponectin has a 

regulatory role in reducing IR (Ricci and Bevilacqua, 2012; Yadav et al., 2013). 

Serum γ-GGT has been usually used as a marker of excessive alcohol consumption or 

liver dysfunction in clinical field (Teschke et al., 1977), and it has been also suggested as a 

marker of oxidative stress (Lee et al., 2004). In addition to malondiadehyde (MDA) and 8-

hydroxy-deoxyguanosine (8-OHdG), γ-GGT has been interpreted as a non-specific oxidative 

stress marker in environmental epidemiological studies (Dong et al., 2018). 
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The relationship between the markers measured in this study has been reported (Bastard 

et al., 2006; Stefan, 2002; Thamer et al., 2005; Yamamoto et al., 2004). Based on previous 

literature, some markers can be on the causal pathway to other markers. Low adiponectin 

levels were reported to be related to type 2 diabetes mellitus (T2DM) and IR (Bastard et al., 

2006). It was previously reported that a decline in adiponectin precedes IR (Stefan, 2002; 

Yamamoto et al., 2004). For GGT, non-specific marker of oxidative stress was reported to 

predict reduced insulin sensitivity, which might be related to hepatic IR (Thamer et al., 2005). 

Lastly, obesity has been closely linked with insulin resistance, and the mechanisms including 

via adipokines such as adiponectin have been suggested (Hardy et al., 2012). However, which 

one precedes the other one is unclear. It was previously reported that obesity is accompanied 

by increased oxidative stress (Fernández-Sánchez et al., 2011) and IR (Hardy et al., 2012) 

which commonly precedes T2DM. Although it has been commonly recognized that obesity 

can induce IR, whether obesity precedes IR or vice versa is a matter of debate (Erion and 

Corkey, 2017). Thus, relationship between these markers is needed to interpret findings with 

caution. 
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1.2 Multiple chemical exposures 

 

In the last several decades, most of epidemiological studies on the health effects of 

chemical exposure have focused on evaluating the effect of individual chemicals. However, 

real human populations are exposed to multiple chemical mixtures, and therefore, multiple 

chemical exposures are of increasing concern. Number of detects of chemicals in the present 

study population is suggested in Fig. 1-1. Due to high cost, multiple chemical exposure 

studies have limited feasibility on collecting and measuring exposure markers, in particular in 

different kind of media such as urine and blood, in the same individual. In addition to high 

cost, statistical analysis is another important challenge in environmental epidemiology. Due 

to complexity among chemicals, it is difficult to interpret the findings.  

Multi-pollutant exposure has long been recognized as an important issue in 

environmental epidemiology and toxicology. However, considering the importance, risk 

assessment and bioanalytical tools of evaluating mixtures have been underdeveloped. 

Mixture toxicity of chemicals has been tested in experimental studies, but most of these tests 

are restricted to a low number of combinations or single receptor in in vitro studies 

(Altenburger et al., 2018). However, a number of adverse outcome pathways (AOP) 

describing links as a series of causally connected multiple molecular events 

(http://www.aopwiki.org). In addition, human risk assessment has been generally derived 

from toxicity data of individual chemical from animal models (Persad and Cooper, 2008). 

Epidemiological studies on multi-pollutant exposure with refined approaches may 

complement the toxicology data and be utilized in the risk assessment. 

As concerns on multi-pollutant exposure have increased, in recent years, environmental 

epidemiological studies have considered multiple chemical exposures (Patel et al., 2010; 

Rosofsky et al., 2017; Mustieles et al., 2017). In 2010, associations between 266 exposures 

http://www.aopwiki.org/
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and T2DM were evaluated using NHANES data (Patel et al., 2010). Patel et al. introduced an 

Environmental-Wide Association Study (EWAS) which is interpreted in a manner analogous 

to a Genome Wide Association Study (GWAS). Though the EWAS study corrected multiple 

comparisons, co-exposure were not adjusted. Assessment of effects of multi-pollutant is a 

challenge not only in environmental epidemiology, but also in environmental toxicology. 

Several methods such as dimension reduction, shrinkage, variable selection, and statistical 

learning have been suggested and performed in multiple chemical exposure studies 

(Lazarevic et al., 2019). One efficient approach which considers multi-pollutant exposure is 

adjustment for covariate by co-exposure. Considering the importance of multi-pollutant 

exposure, comparative association studies considering the multi-pollutants in multiple 

biological matrices are warranted. 
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Fig. 1-1. Number of chemical exposure markers detected in each study participant (n = 104). Each bar represents one individual. The 

figure includes only study participants with urine, whole blood, and serum samples. 
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1.3 Effects of chemical exposure on obesity and metabolic markers 

 

In 2006, Grün and Blumberg coined ‘obesogen’ which means a xenobiotic chemical 

that can disrupt the normal developmental and homeostatic controls over adipogenesis and 

energy balance (Grün and Blumberg, 2006). Recently, a more extended term, ‘metabolism 

disrupting chemicals (MDCs)’ has been used (Heindel et al., 2017; Nadal et al., 2017; 

Mimoto et al., 2017), which reflects an increasing interest and concern on the effects of 

chemicals. MDCs have been reported to induce obesity, T2DM, and non-alcoholic fatty liver 

disease (NAFLD) (Heindel et al., 2017). Chemicals which can act as MDCs measured in this 

study were briefly summarized in Table 1-1. Cumulative studies on relationship of chemical 

exposure and metabolic effects have been reported. Multiple classes of chemicals with short 

to long half-lives have been suspected as MDCs. Multiple MDCs can affect different 

receptors and target sites (Heindel et al., 2017; Nadal et al., 2017; Mimoto et al., 2017). For 

example, several phthalates such as di-(2-ethylhexyl) phthalate (DEHP) are known as 

peroxisome proliferator-activated receptor γ (PPARγ) agonists (Zhang et al., 2017), and 

experimental and human studies reported relationship of phthalate exposure with insulin 

resistance or T2DM (Lind et al., 2012; James-Todd et al., 2016; Song et al., 2016; Zhang et 

al., 2017). Heavy metals such as mercury (Hg), cadmium (Cd), and lead (Pb) have been 

reported to induce oxidative stress which plays an important role in insulin resistance 

(Tinkov et al., 2015; Gonzálea-Villava et al., 2016). Perfluorinated compounds (PFCs), one 

of the persistent organic pollutants (POPs), such as perfluorooctane sulfonic acid (PFOS) are 

known as a PPARα agonist (Abbott, 2009), and PFOS was reported to induce glucose 

tolerance and increased insulin levels in an animal study (Lv et al., 2013). Cumulative 

previous studies including experimental and epidemiological studies have reported metabolic 
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effects of chemicals. However, only limited information on relationship of chemical 

exposure with adipokines exists. Moreover, most of previous studies focused on metabolic 

effects of single pollutant chemical exposure, and MDCs have been related to disruption in 

multiple endpoints within same individuals (Heindel et al., 2017). Thus, it is needed to 

evaluate effects of multiple chemical exposure with several metabolic markers 
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Table 1-1. Metabolic effects of chemicals and their half-lives. 

Chemical group Compound Experimental studies Epidemiological studies References 

Phthalates 
DEHP, MEHP, 

MEP, etc. 

-In vitro: ∙ PPARγ agonist 

∙ reduced glucose-stimulated insulin 

secretion (GSIS), insulin content 

and increased ROS in β-cells 

-In vivo: insulin resistance, reduced hepatic 

glycogen, and increased reactive 

oxygen stress (ROS) 

 

- T2DM 

· Increased odds ratio (OR) in the highest quartile compared to the 

first quartile: 

νMiBP and MMP; Sweden; aged 70 yr; cross-sectional study 

νMBzP; NHANES 2001-2008; women aged 20-79 yr; cross-

sectional study  

νsum of MBP and MiBP, sum of DEHP metabolites, MBP, and 

MiBP; Nurses' Health Study (NHS); mean age, 65.6 yr; 

prospective investigation  

-IR 

· Positive association  

νMBP, MEHP, and MEP; NHANES 1999-2002; adults; cross 

sectional study  

νMiBP and MMP; Sweden; aged 70 yr; cross-sectional study 

νMiBP; NHANES 2001-2008; women aged 20-79 yr; cross-

sectional study  

Campioli et al., 2014; Lind et al., 

2012; Martinelli et al., 2006; 

James-Todd et al., 2016; Rajesh et 

al., 2013; Rajesh et al., 2014; 

Stahlhut et al., 2007; Sun et al., 

2015; Zhang et al., 2017 

Environmental 

phenols 

(Bisphenols, 

benzophenone, 

antimicrobials, 

and parabens) 

BPA 

-In vitro: ∙ weak estrogen receptor (ER) 

agonist 

∙ reduced GSIS and increased ROS 

in β-cells 

- In vivo: glucose intolerance 

- T2DM  

· Increased odds ratio (OR) in the highest quartile compared to the 

first quartile: 

νBPA; China; median age, 59.0 yr; cross-sectional study  

νBPA; 1.68 (1.23, 2.30); NHANES 2003-2008; mean age, 44.3 

(men) and 45.6 (women) yr; cross-sectional study  

νBPA; 2.08 (1.13, 1.87); NHSII; mean age, 45.6 yr; prospective 

investigation  

-IR 

· Positive association  

νBPA; NHANES; age 18-74 yr; corss-sectional study 

νBPA; BMI<24 kg/m2; China; mean age, 60.8 yr; cross-sectional 

study  

Aloso-Magdalena et al., 2010; 

Batista et al., 2012; Bodin et al., 

2014; Kim and Park, 2013; Moon 

et al., 2015; Indumathi et al., 2013; 

Lang et al., 2008; Ohlstein et al., 

2014; García-Arévalo et al., 2016; 

Ning et al., 2011; Sakurai et al., 

2004; Shankar and Teppala, 2011; 

Song et al., 2012; Sun et al., 2014; 

Valentino et al., 2013; Wang et al., 

2012; Xin et al., 2014; 

Heavy metals 

Hg 

- In vitro: ∙ reduced GSIS, increased ROS, PI3 

kinase and Akt, induced apoptosis 

and necrosis in β-cells 

- T2DM:  

· Increased hazard ratio (HR) in the highest quantile compared to the 

lowest quantile):  

νHg; American young adults aged 20-32 yr; prospective study  

Chen et al., 2006; Chen et al., 

2010; He et al., 2013; Tinkov et 

al., 2015 

Pb - In vitro: oxidative stress 
Chen et al., 2009; Gonzalea-

Villava et al., 2016 
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Cd 

- In vitro: reduced GSIS, increased ROS, 

mitochondrial dysfunction, apoptosis, 

mediated by JNK in β-cells 

- In vivo: insulin resistance, increased insulin 

levels 

Chang et al., 2013; Han et al., 

2003; El Muayed et al., 2012; 

Treviño et al., 2015 

Persistent 

organic 

pollutants (POPs) 

PCBs  

- In vitro: increased insulin secretion and Ca2+ 

signaling in β-cells 

- In vivo: glucose intolerance 

-T2DM 

· Increased incidence density ratio in the highest quartile compared to 

the first quartile:  

νPCBs: significant, positive association in women, but not in men; 

US; adults; cohort study 

νPCBs: no association; USA; mean age, 52.2 yr (DM), 47.9 (no 

DM); cohort study  

Baker et al., 2013; Fischer et al., 

1999; Gray et al., 2013; Turyk et 

al., 2009; Vasiliu et al., 2006 

PFOA, PFOS 
- In vitro: PPARα agonist 

- In vivo: altered lipid metabolism  

Abbott, 2009; Beggs et al., 2016; 

Hines et al., 2009; Wan et al., 

2014; Yan et al., 2015 

This table was revised from Mimoto et al., 2017. 



18 

1.4 Study design and objectives  

 

The aim of this study is to investigate the associations of multiple chemical exposure 

with obesity and metabolic markers, i.e., GGT, adiponectin, leptin, fasting glucose, and 

HOMA-IR, among women of reproductive age. To this end, multiple classes of chemicals 

and health effect markers were measured in the same study population. Because this study is 

cross-sectional study, one spot urine, whole blood, and werum samples were collected. 

This study consists of three parts (Fig. 1-2). In the first chapter (Chapter 2), the 

associations between non-persistent chemicals measured in urine and obesity and its related 

health effect markers were assessed. In Chapter 3, the associations of heavy metals measured 

in whole blood were assessed. In the last chapter (Chapter 4), the associations of multi-

pollutant inclduing urinary (Chpater 2), blood (Chpater 3), and serum chemicals were 

assessesd. The analysed chemicals were listed in Table 1-2. Furthermore, multiple chemicals 

including chemicals used in the last two chapters were again included to comfirom robustness 

of the analysis. 
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Fig. 1-2. Study design to investigate the associations between multipe chemical exposure and 

obesity and its related health effect markers.  
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Table 1-2. Multiple chemicals measured in this study. 

Biological matrix Chemical class Chemical 

Urine Phthalate metabolites Monomethyl phthalate (MMP) 

  
Mono(3-carboxypropyl) phthalate (MCPP) 

  
Monoethyl phthalate (MEP) 

  
Mono-isopropyl phthalate (MiPrP) 

  
Mono(2-ethyl-5-carboxypentyl) phthalate (MECPP) 

  
Mono-[(2-carboxymethyl)hexyl] phthalate (MCMHP) 

  
Mono(2-ethyl-5-hydroxyhexyl)phthalate (MEHHP) 

  
Mono(2-ethyl-5-oxohexyl)phthalate (MEOHP) 

  
Mono-2-isobutyl phthalate (MiBP) 

  
Mono-n-butyl phthalate (MBP) 

  
Monobenzyl phthalate (MBzP) 

  
Monocyclohexyl phthalate (MCHP) 

  
Mono-n-pentyl phthalate (MPeP) 

  
Monohexyl phthalate (MHxP) 

  
Mono(2-ethylhexyl)phthalate (MEHP) 

  
Monooctyl phthalate (MOP) 

  
Mono-isononyl phthalate (MiNP) 

  
Mono-isodecyl phthalate (MiDP) 

 
Bisphenol analogues Bisphenol S (BPS) 

  
Bisphenol F (BPF) 

  
Bisphenol A (BPA) 

  
Bisphenol B (BPB) 

  
Bisphenol AF (BPAF) 

  
Bisphenol AP (BPAP) 

  
Bisphenol Z (BPZ) 

  
Bisphenol P (BPP) 

 
Parabens Methyl paraben (MeP) 

  
Ethyl paraben (EtP) 

  
Propyl paraben (PrP) 

  
Butyl paraben (BuP) 

  
Heptyl paraben (HeP) 

  
Benzyl paraben (BzP) 

  
Methyl protocatechuate (OH-MeP) 

  
Ethyl protocatachuate (OH-EtP) 

  
3,4-dihydroxy benzoic acid (3,4-DHB)

a
 

  
4-hydroxybenzoic acid (4-HB)

a
 

 
Benzophenones Benzophenone-1 (BP-1) 

  
Benzophenon-3 (BP-3) 

  
Benzophenon-8 (BP-8) 

  
4-hydroxybenzophenone (4OH-BP)

a
 

 
Antimicrobials Triclosan (TCS) 

  
Triclocarban (TCC) 

Whole blood Heavy metals Mercury (Hg) 

  
Cadmium (Cd) 

  
Lead (Pb) 



21 

Serum PCB CB 52 

  
CB 118 

  
CB 138 

  
CB 153 

  
CB 180 

  
CB 187 

 
OCP HCB 

  
b-HCH 

  
oxy-CHL 

  
trans-NonaCHL 

  
p,p’-DDE 

  
p,p’-DDT 

 
BDE BDE-28 

  
BDE-47 

  
BDE-99 

  
BDE-100 

  
BDE-153 

  
BDE-154 

  
BDE-183 

 
PFCs Perfluorobutane sulfonic acid (PFBS) 

  
Perfluorohexane sulfonic acid (PFHS) 

  
Perfluorooctane sulfonic acid (PFOS) 

  
Perfluorodecane sulfonic acid (PFDS) 

  
Perfluoropentanoic acid (PFPeA) 

  
Perfluorohexanoic acid (PFHxA) 

  
Perfluoroheptanoic acid (PFHpA) 

  
Perfluorooctanoic acid (PFOA) 

  
Perfluorononanoic acid (PFNA) 

  
Perfluorodecanoic acid (PFDA) 

  
Perfluoroundecanoic acid (PFUnDA) 

  
Perfluorododecanoic acid (PFDoDA) 

  
Perfluorotridecanoic acid (PFTrDA) 

  
Perfluorotetradecanoic acid (PFTeDA) 

  
Perfluorohexadecanoic acid (PFHxDA) 

  
Perfluorooctadecanoic acid (PFOcDA) 

Bold characteristics indicate chemicals with detection frequency (DF) greater than 70%. 

Chemicals with ≥70% DF were included in statistical analysis. 

a
Non-specific metabolites were excluded in statistical analysis. 
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Chapter 2 Associations of urinary non-persistent chemicals with 

obesity and metabolic markers 

 

2.1 Introduction 

 

Diabetes mellitus (DM) has become a major global health challenge. Between 1980 and 

2014, the global age-standardized diabetes prevalence increased from 5.0% to 7.9% in 

females, and from 4.3% to 9.0% in males (NCD Risk Factor Collaboration, 2016). T2DM has 

a multifactorial etiology (Zheng et al., 2018). Genetic predisposition and lifestyle habits such 

as diet, physical activity, and smoking are all important contributors to this disease etiology 

(Zheng et al., 2018). Chemical exposure also has been suggested to be an important 

contributing factor, although the detailed mechanisms underlying the development of T2DM-

related metabolic disturbances are not clearly understood (Heindel et al., 2017; Mimoto et al., 

2017; Song et al., 2016). 

An increasing number of experimental observations suggest the involvement of 

chemicals in the etiology of this disease. In rats, exposure to di-(2-ethylhexyl) phthalate 

(DEHP) induced liver damage, glucose tolerance, and insulin resistance (Zhang et al., 2017). 

One potential mechanism explaining this relationship is that these chemicals produced 

peroxisome proliferator-activated receptor γ (PPARγ)-related metabolic disturbances (Zhang 

et al., 2017), and several phthalates and environmental phenolics can act as PPARγ agonists 

(Hurst and Waxman, 2003; Pereira-Fernandes et al., 2013). Chemicals like DEHP may affect 

the pancreas and alter glucose homeostasis in rats (Lin et al., 2011). Adipokines such as 

adiponectin and leptin play important roles in the etiology of insulin resistance or T2DM 

(Yadav et al., 2013). While serum adiponectin is known to be a marker of PPARγ activation 
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in vivo (Yang et al., 2004), to date, studies that have investigated adipokine levels in relation 

to adverse metabolic effects of DEHP among healthy adults are rare, leaving a significant gap 

in our understanding of metabolic effects. 

Several studies from around the world have suggested that in humans, chemicals such as 

phthalates and environmental phenolics contribute to T2DM-related metabolic disturbances, 

e.g., dysregulated glucose homeostasis and insulin resistance (Heindel et al., 2017; Mimoto et 

al., 2017; Song et al., 2016). In a recent meta-analysis, higher urinary concentrations of 

bisphenol A (BPA) and phthalates were found to be associated with the increased prevalence 

of T2DM and other related metabolic traits (Song et al., 2016). In addition, it is noteworthy 

that most of the association studies that have been conducted in humans have only considered 

a handful of chemicals in terms of their health effects. Since humans are exposed to a myriad 

of pollutants, and many chemicals may be related to the development of T2DM, an 

epidemiological study design that allows for multiple chemicals as determinants for a given 

disease is necessary. Recently, multi-pollutant exposure approaches have been introduced by 

a number of epidemiological studies, and have identified several chemical determinants of 

the given health effects they were examining. For example, multiple environmental factors 

for T2DM were identified from dozens of chemicals that were measured among the general 

population of the US (Patel et al., 2010). In addition, a study by Mustieles et al. used a multi-

pollutant approach using an elastic net penalty to select predictors among persistent organic 

pollutants (POPs) in adipose tissue and identified chemicals that were consistently associated 

with metabolic disorders (Mustieles et al., 2017). 

In the present study, aim of this study is to identify chemicals that are associated with 

metabolic markers including adipokines, glucose, and insulin measured in serum in 

premenopausal adult women. For this purpose, dozens of chemicals measured in the urine of 

healthy adult females in Korea were assessed for associations with metabolic markers using 
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both single- and multi-pollutant models. The results of this study will help identify chemicals 

that may potentially play roles in IR in the general adult female population. This study will 

also generate hypotheses that can be tested in other human populations or experimental 

models in the future. 
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2.2 Materials and methods 

 

2.2.1 Study population and sample collection  

Women of reproductive age (20-48 years old) (n = 516) were recruited from five 

university hospitals located in Seoul, Incheon, Ansan, and Jeju, South Korea between 2015 

and 2016. Spot blood and urine samples were collected from the participating women. 

Participants were fasted for at least nine hours before the visit to hospitals for the blood and 

urine sampling. EDTA-treated fasting blood and urine samples were stored in polypropylene 

cryovials and tubes at -80C and -40C, respectively, until analysis. Participants completed a 

questionnaire at the time of recruitment providing information on their sociodemographic 

characteristics, alcohol consumption, and sources of exposure to environmental chemicals. 

Two participants who had fasting glucose measurements ≥126 mg/dL and 33 participants 

who were pregnant at the time of recruitment were excluded. Participants missing 

information about their age, BMI, urinary nicotine metabolite level, and/or current alcohol 

consumption habits and participants without urine or blood samples were also excluded. The 

final number of subjects included in the study was 459. Informed consent was obtained from 

all participants. This study was approved by the Institutional Review Board of the School of 

Public Health, Seoul National University (IRB No. 1509/001-011). 

 

2.2.2 Measurement in urine and blood samples 

Health effect markers 

Urinary creatinine, serum glucose, and serum insulin were measured by a commercial 

laboratory (Green Cross LabCell, Yongin, Korea). Serum adiponectin and leptin were 

measured using an enzyme-linked immunosorbent assay kit (Duoset, R&D Systems, 

Minneapolis, MN, USA). Insulin resistance status was estimated using the homeostatic model 
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assessment for insulin resistance (HOMA-IR) and was calculated as fasting insulin (μU/mL) 

x fasting glucose (mmol/L)/22.5 (Wallace et al., 2004). 

 

Chemical analyses 

Sample preparation and instrumental analyses 

Target compounds including phthalate metabolites and environmental phenols were 

analyzed from urine samples following methods modified from previous studies 

(Asimakopoulos et al., 2014a; Gao et al., 2016). Urine samples were measured for phthalate 

metabolites including mono-methyl phthalate (MMP), mono-ethyl phthalate (MEP), mono-

isopropyl phthalate (MiPrP), mono-butyl phthalate (MBP), mono-isobutyl phthalate (MiBP), 

mono-n-pentyl phthalate (MPeP), monocyclohexyl phthalate (MCHP), monohexyl phthalate 

(MHxP), mono-benzyl phthalate (MBzP), mono(3-carboxypropyl) phthalate (MCPP), 

monooctyl phthalate (MOP), mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), mono(2-

ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), 

and mono(2-carboxymethylhexyl) phthalate (MCMHP), mono-isononyl phthalate (MiNP), 

mono-isodecyl phthalate (MiDP) and environmental phenols including bisphenol A (BPA), 

bisphenol S (BPS), bisphenol F (BPF), bisphenol B (BPB), methyl paraben (MeP), ethyl 

paraben (EtP), propyl paraben (PrP), butyl paraben (BuP), benzyl paraben (BzP), 

benzophenone-1 (BP1), benzophenone-3 (BP3), triclosan (TCS), and triclocarban (TCC). 

Phthalate metabolites were purchased from AccuStandard (New Haven, CT, USA) and 

Cambridge Isotope Laboratories (Andover, MA, USA). The isotope-labeled internal 

standards for the phthalate metabolites were purchased from Cambridge Isotope Laboratory. 

Environmental phenols and their internal standards were also purchased from Cambridge 

Isotope Laboratories.  
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Pretreatment procedures of the urinary phthalate metabolites were conducted as follows. 

200 μL of ammonium acetate buffer (1.0 M, pH = 4.5), including β-glucuronidase (2 μL/mL), 

were added to 500 μL of the urine samples spiked with 
13

C-labeled internal standards. The 

urine samples were incubated at 37 °C for 12 hours. Phthalate metabolites were extracted 

using a solid phase extraction (SPE) setup. The SPE cartridges (ABS ELUT-Nexus, Varian, 

Walnut Creek, CA, USA; 60 mg/3 mL) were conditioned with 1.5 mL of acetonitrile and 1.2 

mL of phosphate buffer (pH = 2). The urine samples were diluted with 1 mL of phosphate 

buffer and loaded into the SPE cartridges. The SPE cartridges were washed with 2.0 mL of 

formic acid (0.1 M) and 1.2 mL of Milli-Q water and dried with nitrogen. Target compounds 

were eluted from the dried cartridges with 1.2 mL of acetonitrile and 1.1 mL of ethyl acetate. 

The extract was nearly dried under a nitrogen stream and was resolved in 0.5 mL of a mixture 

of acetonitrile and Milli-Q water in a 1:9 ratio for instrumental analysis. 

The environmental phenols, including bisphenol analogues, parabens, benzophenones 

and triclosan, in the urine samples were prepared as follows. Internal standards were added to 

500 μL of each urine sample. 250 μL of ammonium acetate (1.0 M, pH = 4.5) with β-

glucuronidase (2 μL/mL) was added to the urine samples, then incubated at 37 °C for 12 

hours. The urine samples were mixed with 3.0 mL ethyl acetate and were mechanically 

shaken for 60 min, then centrifuged at 4000 rpm for 10 min. The supernatant was transferred 

to a new tube. After repeating this step two times, the combined supernatant was washed with 

1 mL of Milli-Q water. The extract was nearly dried under a nitrogen stream and resolved in 

0.5 mL of methanol for the instrumental analyses. 

Phthalate metabolites and environmental phenols were chromatographically separated 

using an Agilent 1260 Series HPLC system (Agilent Technologies, Santa Clara, CA, USA) 

equipped with a Betasil C18 column (Thermo Electron, Bellefonte, PA; 100 mm × 2.1 mm, 5 
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μm). Target compounds in the urine samples were quantified using an API 4000 electrospray 

triple quadrupole mass spectrometer (ESI–MS/MS; AB Sciex, Framingham, MA, USA).  

 

Quality assurance and quality control 

In the sample treatment step, two procedural blank and matrix-spiked samples were 

processed along with the real samples. The midpoint calibration standard was injected every 

10 to 15 samples to monitor instrumental sensitivity. The procedural blank concentrations of 

the target compounds were subtracted from those of the urine samples. The limits of 

quantification (LOQs) of the phthalate metabolites and environmental phenols ranged from 

0.01 to 0.05 ng/mL. Recoveries of phthalate metabolites, bisphenols, benzophenones, 

parabens, and antimicrobials were 83-122%, 97-111%, 69-127%, 107-131%, and 120-147%, 

respectively, in the blanks. The recoveries of phthalate metabolites, bisphenols, 

benzophenones, parabens, and antimicrobials were 62-205%, 89-104%, 63-119%, 83-99%, 

and 112-131% respectively, in the matrix blanks. 

 

2.2.3 Statistical analysis 

Only chemicals that were detected in >70% of the population were considered for the 

statistical comparisons. A proxy value (the LOQ divided by square root of 2) was used to 

replace the nondetectable values (Hornung et al., 1990). Spearman correlation analyses were 

conducted to identify correlations between creatinine-corrected chemical concentrations in 

the urine and the metabolic markers.  

Associations between urinary chemical levels and metabolic markers were investigated 

in two steps. First, for each urinary chemical, ordinary least squares (OLS) regression was 

conducted with appropriate covariates included in the models. Second, to prevent problems 

associated with multicollinearity and overfitting in the model, elastic net penalized 
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regressions with 10-fold cross validations were performed to select relevant predictors of 

certain metabolic markers, among the chemicals measured. Then, with the chemicals selected 

using the elastic net regression, ordinary least squares (OLS) regression models were used to 

obtain unpenalized, mutually adjusted coefficient estimates.  

Before data analyses, creatinine-corrected concentrations of the chemicals were ln-

transformed because they had a right-skewed distribution. For all regression models, the ln-

transformed concentrations were mean-centered, divided by two standard deviations, and 

adjusted for the same covariates, i.e., age (continuous), urinary nicotine metabolite 

(categorical: <LOQ, >LOQ-500, ≥500 ng/ml), and current alcohol consumption habits 

(categorical: drinker or nondrinker). Information on age and current alcohol consumption was 

obtained from questionnaire. Threshold value of smoking (urinary nicotine metabolite ≥500 

ng/ml) was based on a previous study (Apseloff et al., 1994). These covariates were chosen 

based on previous studies (Zheng et al., 2018). These covariates were also selected in one or 

more elastic net regression models in the present study. 

A value of p<0.05 was considered to be significant. All statistical analyses were 

performed using SAS 9.3 (SAS Institute, Cary, NC, USA) except the Spearman correlation 

analyses. The correlation matrix was calculated using R version 3.5.1 and visualized using 

the R package ‘corrplot’. 
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2.3 Results 

 

2.3.1. Study population and urinary levels of measured chemicals 

Study participants were healthy adult females between the ages of 20 and 48 years old. 

The majority (65.7%) showed BMI values within the normal range (Table 2-1). The majority 

(66.5%) was current consumers of alcohol, but about 10% was reported to be passive or 

active smokers. Levels of the measured metabolic markers are summarized by age group, 

BMI category, pregnancy status, level of urinary nicotine metabolite, and current alcohol 

consumption (Table 2-1). 

Urinary concentrations of phthalate metabolites and phenolics that were detected in 

greater than 70% of the study population are shown in Table 2-2. The urinary correlations of 

MeP and PrP (creatinine-corrected) showed relatively high correlation (ρ=0.67); those 

between MiBP, MBP, ΣDEHPm, and MBzP concentrations were moderately correlated (Fig. 

2-1).
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Table 2-1. Characteristics of study population (n = 459). 

  N (%) 

Age (years) 
 

   20-29 125 (27.2) 

   30-39 224 (48.8) 

   40-48 110 (24.0) 

Body mass index (kg/m
2
) 

 
   <18.5 28 (6.1) 

   18.5-22.9 293 (63.8) 

   23.0-24.9 67 (14.6) 

   25.0-29.9 56 (12.2) 

   ≥30.0 15 (3.3) 

Urinary nicotine metabolite (ng/mL) 
 

   <10 410 (89.3) 

   11-499 24 (5.2) 

   ≥500 25 (5.5) 

Current alcohol drinking 
 

   Drinker 322 (70.2) 

   Non-drinker 137 (29.9) 

 Median (25
th

-75
th

) 

Percent body fat (%) (n = 298) 25.6 (29.3-33.5) 

  Adiponectin (µg/mL) 6.6 (5.4-7.8) 

  Leptin (ng/mL) 9.6 (5.8-15.5) 

  GGT (U/L) 12 (10-17) 

  Fasting glucose (mg/dL) 88 (83-93) 

  Fasting insulin (μU/mL) 6.1 (4.0-8.6) 

  HOMA-IR  1.3 (0.9-1.9) 
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Table 2-2. Concentrations of phthalate metabolites and phenolics in urine samples collected from 

participating women (n = 459, unit: ng/mL). 

  Detection 

frequency 

Percentiles 

  
P25 P50 P75 

Phthalate compounds Metabolites 
    

DMP   MMP 98.7 0.82 1.69 3.51 

DEP   MEP 100.0 2.62 5.78 15.53 

DiPrP MiPrP 14.6 - - - 

DBP   MBP 98.9 2.61 4.91 7.66 

DiBP   MiBP 94.6 0.87 2.07 3.69 

DPeP MPeP 6.8 - - - 

DCHP MCHP 2.6 - - - 

DHxP MHxP 33.1 - - 0.08 

BBzP MBzP 97.6 0.23 0.50 0.96 

DOP   MCPP 46.6 - - 0.66 

     MOP 25.9 - - 0.08 

DEHP   MECPP 100.0 5.47 11.33 19.59 

     MEHHP 99.6 1.42 2.53 4.06 

     MEOHP 99.3 0.72 1.27 2.06 

     MCMHP 99.8 2.19 3.91 6.84 

      ΣDEHPm
a
 - 10.76 20.35 32.09 

  DiNP MiNP 44.4 - - 0.08 

  DiDP MiDP 8.9 - - - 

Environmental phenols  
    

  Bipsphenols   BPA 97.6 0.27 0.51 0.92 

   BPS 83.7 0.03 0.08 0.24 

   BPF 3.7 - - - 

   BPB 1.3 - - - 

   BPAP 4.8 - - - 

Parabens   MeP 100.0 13.20 46.10 124.70 

   EtP 98.0 4.00 17.50 48.90 

   PrP 93.7 0.30 2.30 10.10 

   BuP 64.5 - 0.10 0.60 

   BzP 1.3 - - - 

Benzophenones   BP1 98.3 0.64 1.21 2.63 

   BP3 73.2 0.02 0.43 1.65 

   BP8 23.3 - - - 

Antimicrobials   TCS 89.5 0.10 0.30 0.90 

   TCC 3.9 - - - 
aΣDEHPm indicates the sum of the DEHP metabolites including MECPP, MEHHP, MEOHP, and MCMHP.
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Fig. 2-1. Spearman’s correlation coefficients between creatinine-corrected concentrations of 

chemicals in urine samples (n = 459). 
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2.3.2. Associations with obesity and metabolic markers 

In the single and multi-pollutant models, several urinary chemicals were identified as 

significant determinants of obesity and metabolic markers, and are shown in Tables 2-3 and 

2-4, respectively. The β and 95% CI of the predictive chemicals in multi-pollutant models are 

as follows. The urinary concentrations of BPA showed consistent positive associations with 

BMI (β=0.945, 95% CI; 0.373, 1.517), percent body fat (β=2.527, 95% CI; 1.101, 3.954), and 

leptin (β=1.857, 95% CI; 0.399, 3.315). Contrary to BPA, PrP concentrations showed 

consistent inverse associations with BMI (β=-0.588, 95% CI; -1.156, -0.020), percent body 

fat (β=-1.319, 95% CI; -2.632, -0.005), leptin (β=-1.651, 95% CI; -3.109, -0.193), fasting 

glucose (β=-1.752, 95% CI; -3.327, -0.177), ln-fasting insulin (β=-0.263, 95% CI; -0.404, -

0.122), and ln-HOMA-IR (β=-0.271, 95% CI; -0.418, -0.123) in both single and multi-

pollutant models. The urinary ΣDEHPm concentrations showed significant positive 

associations with adiponectin (β=0.429, 95% CI; 0.090, 0.768) and fasting glucose (β=2.969, 

95% CI; 1.158, 4.780). In addition to ΣDEHPm, urinary EtP concentrations also showed a 

significant positive association with adiponectin (β=0.536, 95% CI; 0.201, 0.872). Urinary 

MiBP concentrations showed positive associations with ln-fasting insulin (β=0.224, 95% CI; 

0.065, 0.382) and ln-HOMA-IR (β=0.239, 95% CI; 0.088, 0.390). Urinary BPS 

concentrations also showed a positive association with ln-HOMA-IR (β=0.179, 95% CI; 

0.032, 0.327). No significant associations with GGT were observed. 
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Table 2-3. Association of urinary chemicals with obesity and metabolic markers among the study 

population (n = 459) based on a single-pollutant regression analysis. 

Dependent variable Independent variable β (95% CI) p-Value 

BMI MMP -0.691 (-1.264, -0.118) 0.018 

 
BPA 0.902 (0.331, 1.472) 0.002 

 
EtP -0.597 (-1.170, -0.023) 0.041 

 
PrP -0.647 (-1.221, -0.073) 0.027 

Percent body fat (n = 298) BPA 2.565 (1.167, 3.962) <0.001 

Adiponectin MBP 0.431 (0.088, 0.773) 0.014 

 
MBzP 0.356 (0.017, 0.696) 0.04 

 
ΣDEHPm 0.471 (0.130, 0.812) 0.007 

 
EtP 0.569 (0.233, 0.906) <0.001 

 
PrP 0.343 (0.003, 0.682) 0.048 

Leptin BPA 1.593 (0.134, 3.051) 0.032 

 
PrP -1.717 (-3.176, -0.258) 0.021 

Fasting glucose MBP 2.572 (0.962, 4.182) 0.002 

 
MiBP 2.807 (1.175, 4.440) 0.001 

 
MBzP 2.276 (0.680, 3.873) 0.005 

 
ΣDEHPm 3.775 (2.189, 5.360) <0.001 

Ln-fasting insulin MiBP 0.192 (0.047, 0.338) 0.01 

 
BPA 0.150 (0.008, 0.292) 0.04 

 
PrP -0.236 (-0.377, -0.095) 0.001 

Ln-HOMA-IR MiBP 0.226 (0.072, 0.379) 0.004 

 
BPA 0.156 (0.006, 0.306) 0.041 

 
PrP -0.254 (-0.403, -0.105) 0.001 

Only the urinary chemicals that had significant associations with metabolic markers are shown. 

In single-pollutant models, only one chemical is included, and age, urinary nicotine metabolite, and current alcohol 

consumption were included as covariates. 

Unpenalized regression coefficients (β) represent the change in metabolic markers per two-standard deviation increase in ln-

transformed creatinine-corrected concentrations of the chemicals. 
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Table 2-4. Chemicals that were selected via an elastic net regression and their associations with 

obesity and metabolic markers among the study population (n = 459) based on a multi-pollutant 

regression analysis. 

Dependent variable Independent variable βEN β (95% CI) p-Value 

BMI MMP -0.227 -0.685 (-1.257, -0.113) 0.019 

 
MiBP 0.002 0.351 (-0.237, 0.940) 0.241 

 
BPA 0.467 0.945 (0.373, 1.517) 0.001 

 
EtP -0.113 -0.542 (-1.107, 0.022) 0.060 

 
PrP -0.187 -0.588 (-1.156, -0.020) 0.043 

Percent body fat (n = 298) MMP -0.041 -0.868 (-2.156, 0.419) 0.185 

 
BPA 1.615 2.527 (1.101, 3.954) 0.001 

 
BPS 0.180 1.125 (-0.437, 2.688) 0.158 

 
PrP -0.507 -1.319 (-2.632, -0.005) 0.049 

Adiponectin ΣDEHPm 0.070 0.429 (0.090, 0.768) 0.013 

 
EtP 0.220 0.536 (0.201, 0.872) 0.002 

Leptin MBP -0.050 -1.472 (-2.954, 0.011) 0.052 

 
BPA 0.340 1.857 (0.399, 3.315) 0.013 

 
PrP -0.447 -1.651 (-3.109, -0.193) 0.027 

Fasting glucose MBP 0.249 1.125 (-0.695, 2.944) 0.225 

 
MiBP 0.649 1.079 (-0.778, 2.936) 0.254 

 
ΣDEHPm 2.171 2.969 (1.158, 4.780) 0.001 

 
PrP -0.311 -1.752 (-3.327, -0.177) 0.029 

Ln-fasting insulin MMP 0.036 0.111 (-0.033, 0.255) 0.130 

 
MBP -0.001 -0.125 (-0.284, 0.033) 0.121 

 
MiBP 0.142 0.224 (0.065, 0.382) 0.006 

 
BPA 0.060 0.112 (-0.031, 0.254) 0.125 

 
BPS 0.084 0.138 (-0.002, 0.278) 0.054 

 
PrP -0.195 -0.263 (-0.404, -0.122) <0.001 

 
BP1 0.040 0.089 (-0.053, 0.231) 0.217 

Ln-HOMA-IR MiBP 0.111 0.239 (0.088, 0.390) 0.002 

 
BPS 0.005 0.179 (0.032, 0.327) 0.017 

  PrP -0.093 -0.271 (-0.418, -0.123) <0.001 

Both the penalized (elastic net) and unpenalized models adjusted for age, urinary nicotine metabolite, and current alcohol 

consumption habits. 

All chemicals suggested in Table 2-4 were included in both the penalized (elastic net) models. 

Chemicals selected via elastic net regression were included in the OLS models. 

Elastic net regression coefficients (βEN) with 10-fold cross validations represent the change in metabolic markers per two-

standard deviation increase in ln-transformed creatinine-corrected concentrations of chemicals. 

Unpenalized regression coefficients (β) represent the change in metabolic markers per two standard deviation increase in ln-

transformed creatinine-corrected concentrations of chemicals. 

p-Values were calculated from the results of unpenalized regression. 
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Bold numbers indicate statistical significance (p<0.05). 

Characteristics of independent variables shown in bold font represent statistical significance at the p<0.05 level. 
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2.4 Discussion 

 

In the current study, significant positive associations of several phthalate metabolites 

with fasting glucose and HOMA-IR were found in both single- and multi-pollutant models. 

Though adiponectin has been reported to have important roles in mediating T2DM and 

insulin resistance, only limited studies exist on the associations between chemicals and 

T2DM-related markers. Thus, our findings on significant positive associations of ΣDEHPm 

and EtP with serum adiponectin are important, and mechanisms of involvement of 

adiponectin of developing insulin resistance need to be explored. 

Significant positive associations of ΣDEHPm and EtP with serum adiponectin level were 

consistently observed in both single- and multi-pollutant models. The positive association of 

urinary EtP with adiponectin was observed for the first time in human population. The 

associations between phthalates and adiponectin have been assessed in a few epidemiological 

studies, and most studies were focused on human infants and the associations were 

inconsistent. A Canadian birth cohort study reported no significant associations of prenatal 

exposure to phthalate metabolites including MEP, MBP, MBzP, MCPP, ΣDEHPm with 

adiponectin in infants (n = 1,080), while
 
among male infants (n = 578), the third quartile of 

MCPP showed significantly reduced odds of low adiponectin (Ashley-Martin
  

et al., 2014). 

Another Japanese birth cohort study (n = 365) also reported no significant associations of 

maternal serum phthalate metabolite levels with cord blood adiponectin levels (Minatoya et 

al., 2018). In contrast, in a Chinese case-only study of patients with diabetes (n = 329, aged 

29 to 93 years), positive associations were observed between adiponectin and phthalate 

metabolites including secondary DEHP metabolites, MBzP, MCPP, MBP, and MiBP (Duan et 

al., 2017), which are similar with the present study. In the present study, significant positive 

associations of MBP and MBzP with serum adiponectin level were observed in single-
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pollutant model (Table 2-3). The reason for inconsistent associations of phthalate metabolites 

with adiponectin from other birth cohort studies might be due to difference of age among the 

population. Similar observation reported from the Chinese case-only study (Duan et al., 2017) 

supports the importance of age: the positive associations of several phthalate metabolites with 

adiponectin among adult populations, not in infants. Meanwhile, no previous epidemiological 

study has reported an association between EtP and serum adipokines, and therefore, I could 

not directly compare our observations with those of different study populations. Because 

there were relatively higher levels of urinary EtP in the Korean population compared to the 

levels of other countries (Asimakopoulos et al., 2014b; de Renzy-Martin et al., 2014; Kang et 

al., 2016; Larsson et al., 2014), further studies are needed to confirm this observation in other 

populations. One possible explanation of the positive associations of several phthalate 

metabolites and EtP with adiponectin level is that chemicals act as PPARγ agonists. PPARγ 

agonistic activities of several phthalates and parabens have been reported previously (Zhang 

et al., 2017; Pereira-Fernandes et al., 2013), and serum adiponectin is considered to be a 

marker of PPARγ activation (Yang et al., 2004; Kusminski et al., 2009). However, because 

present study is cross-sectional, the associations and underlying mechanisms need to be 

further investigated and confirmed in other experimental and epidemiological studies. 

The positive associations between several phthalates with fasting glucose and HOMA-IR 

observed in the present study population (Tables 2-3 and 2-4) are in line with by several 

epidemiological observations based on national biomonitoring programs. For example, Song 

et al. reported an association between higher urinary concentrations of phthalates and BPA 

and elevated T2DM risk in a meta-analysis (Song et al., 2016). In the Canadian Health 

Measures Study (CHMS, n = 2,119), higher urinary DEHP metabolites were associated with 

increased fasting glucose (Dales et al., 2018). In NHANES participants without diabetes (n = 

3,083, age = 12-80 years), urinary MBP, MiBP, MCPP and ΣDEHPm levels were positively 
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associated with increased fasting glucose and HOMA-IR (Huang et al., 2014). Similarly, 

among the adolescents from the NHANES 2009-2012 survey (n = 356, age = 12-18 years), 

the sum of the DEHP metabolites in the urine showed positive associations with HOMA-IR 

(Attina and Trasande, 2015). However, contrasting evidence has also been reported by many 

other studies (James-Todd et al., 2016; Shapiro et al., 2015). In a pregnancy cohort, the 

highest quartile of the sum of the DEHP metabolites in the urine showed significantly 

reduced odds of having impaired glucose tolerance in the 2
nd

 trimester, and higher 2
nd

 

trimester MEP concentrations were associated with a higher risk of impaired glucose 

tolerance (James-Toddet al., 2016). Similarly, among a reasonably sized population of 

pregnant Canadian women (n = 1,274), no significant associations were observed between 

impaired glucose tolerance and some phthalates and BPA measured in the first trimester 

(Shapiro et al., 2015). Inconsistent observations between these studies may be due to 

differences in the population characteristics of each study such as age, sex, race, ethnicity, 

BMI, and pregnancy status. It may be due to the cross-sectional study design that could often 

lead to chance observations. Thus, these inconsistencies should be examined in longitudinal 

studies that incorporate these various characteristics in their study participants. 

Significant associations that were consistently detected between ΣDEHPm and fasting 

glucose in both the single- and multi-pollutant models (Tables 2-3 and 2-4) can be partly 

explained by experimental evidence. Several mechanisms, which support the positive 

associations of DEHP with fasting glucose, have been suggested through experimental 

studies. In rat, exposure to DEHP induced liver damage, glucose tolerance, and insulin 

tolerance along with reduced expression of the insulin receptor and glucose transporter 4 

(GLUT4) proteins, which are responsible for glucose transport (Zhang et al., 2017). In the 

same study, authors observe that DEHP could lead to the activation of PPARγ and induce 

oxidative stress in L02 cells, a human hepatocyte line (Zhang et al., 2017). These 
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observations in the L02 cells and the rat models suggest that DEHP may cause PPARγ-

mediated hepatotoxicity and could be linked to glucose tolerance and insulin resistance. 

Moreover, in a rat skeletal muscle cell model of cultured L6 myoblast cells, MEHP exposure 

was shown to have effects on insulin signaling and GLUT4 translocation (Viswanathan et al., 

2017). In addition, another evidence supports that DEHP can impair pancreatic β-cell 

function and whole body glucose homeostasis in rats (Lin et al., 2011). 

The significant negative association between PrP and fasting glucose and HOMA-IR is 

interesting, but there is not an easy, clear explanation for this observation. Considering the 

cross-sectional nature of the present study, studies should be conducted to further validate 

these observations in other populations and confirm the underlying mechanism, if any, in 

experimental studies. 

It should be noted that the urinary chemicals that were measured from the one-spot urine 

samples in the present study have short half-lives in the body (Abbas et al., 2010; Koch et al., 

2006; Thayer et al., 2015), and therefore this study could not provide reliable inference for 

the long-term exposure to them. However, the present study is unique in that it considered 

multiple urinary chemicals, i.e., phthalate metabolites, bisphenols, parabens, TCS, and 

benzophenones, in relation to metabolic markers among premenopausal adult females. In 

addition, I chose the chemicals via elastic net regression and conducted multi-pollutant 

models to identify possible chemical determinants of the given outcome. Moreover, this 

observation was tested again with secondary analysis with the chemicals that were found to 

be significantly correlated to each other. 

The results of the present study emphasize the importance of phthalate exposure on 

T2DM-related markers, as well as the possible involvement of serum adipokines. In addition, 

the association between EtP exposure and serum adiponectin levels observed in this 
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population of adult females suggests the potential involvement of EtP in lipid metabolism and 

outlines the importance of follow-up epidemiological and experimental studies. 
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Chapter 3 Association of blood heavy metals with obesity and 

metabolic markers 

 

3.1 Introduction 

 

Heavy metals exist ubiquitously and are persistent in the environment (Duruibe et al., 

2007; Järup, 2003; Pacyna et al., 2007). The anthropogenic sources of heavy metals include 

releases from usage of heavy metals impurities, such as coal-fired power and heat production, 

intentional extraction and use of heavy metals, such as heavy metal mining and releases from 

waste incineration (Duruibe et al., 2007; Järup, 2003; Pacyna et al., 2007). Humans are 

exposed to heavy metals owing to their ubiquitous existence. Exposure to heavy metals 

occurs through the environment, including drinking water, food, air, soil, and dust (Järup, 

2003; Pacyna et al., 2007).  

Heavy metals such mercury (Hg), cadmium (Cd), and lead (Pb) have been considered as 

endocrine disrupting chemicals due to their reproductive and neurodevelopmental toxicity 

(Gorini et al., 2014; Wirth and Mijal, 2010). Many studies have reported associations of 

heavy metals, such as Hg, Cd, and Pb, with obesity, but evidence is inconsistent (Cho et al., 

2014; Fan et al., 2017; Gambelunghe et al., 2016; Lee et al., 2016; Noor et al., 2018; Rhee et 

al., 2013; Riederer et al., 2013; Rothenberg et al., 2015; Rotter et al., 2015; Shin et al., 2018; 

Skalnaya et al., 2014; Son et al., 2015). Heavy metals are also reported to disrupt metabolic 

markers such as fasting glucose and insulin (Chen et al., 2009; González-Villava et al., 2016; 

Tinkov et al., 2015; Tinkov et al., 2017). Associations with insulin resistance (IR) or diabetes 

mellitus (DM) reported in epidemiological studies have also been supported by experimental 

studies (Chen et al., 2009; González-Villava et al., 2016; Tinkov et al., 2015; Tinkov et al., 
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2017). Several in vivo studies have reported that exposure to heavy metals can induce 

hyperglycemia or IR (Ibrahim et al., 2012; Novakova et al., 2015). Oxidative stress has been 

suggested as a possible mechanism for heavy metal induced IR and DM (Chen et al., 2009; 

González-Villava et al., 2016; Tinkov et al., 2015; Tinkov et al., 2017). 

Despite experimental evidences, the associations of heavy metals with IR or DM are not 

consistent in epidemiological studies (Borné et al., 2014; Chang et al., 2011; He et al., 2013; 

Jeppesen et al., 2015; Nie et al., 2016; Swaddiwudhipong et al., 2012). These inconsistent 

associations may be attributed to differences in characteristics of study populations, outcome 

variables, and statistical analyses. The fact that several metabolic markers are closely 

associated with one another may, in part, explain these inconsistent observations (Wu et al., 

2011). A marker can be on a causal pathway between chemical exposure and other markers, 

and therefore the relationship between the markers should be well understood. However, only 

a few studies have considered such relationship for association studies between chemical 

exposure and metabolic markers. Significant indirect effects of oxidative stress markers such 

as malondialdehyde (MDA) and γ-glutamiltransferase (GGT) have been reported in the 

association between phthalate exposure and type 2 diabetes mellitus (T2DM) or IR related 

markers based on mediation analysis (Dong et al., 2018; Li et al., 2019). Similar approach 

was rarely been made on association studies between metal exposure and IR-related markers 

such as adipokines.  

In the present study, I determined the blood concentrations of the heavy metals, i.e., Hg, 

Pb, and Cd, in women of reproductive age, were determined and associated with serum 

adiponectin, leptin, GGT, fasting glucose, and homeostasis model assessment-insulin 

resistance (HOMA-IR). Mediation analysis was subsequently performed to understand how 

certain markers could influence the association between heavy metal exposure and IR. The 

results of this study will help better understand the effects of heavy metal exposure on 
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metabolic markers among adult women of reproductive age, and to identify potential 

mediators of such association. 
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3.2 Materials and methods 

 

3.2.1 Study population, questionnaire, and sample collection 

The participating women (n = 516) between 20 and 48 years of age were recruited from 

five university hospitals or public health center, located in Seoul, Incheon, Ansan, and Jeju in 

Korea, between 2015 and 2016. The spot blood and urine samples were collected from the 

participants after at least eight hours of fast\. Serum was separated from whole blood by 

centrifugation for 15 min at 3000 rpm in serum separator tube (SST). The separated serum 

and EDTA-treated blood samples were stored in cryovials at -80C before analysis. The urine 

samples were stored in tubes at -40C before analysis. Participants had completed a 

questionnaire at the time of recruitment. 

Among the women initially recruited, pregnant women (n=33) and participants with 

fasting glucose ≥126 mg/dL (n=2) were excluded from the study. In addition, participants 

with insufficient amount of blood samples, and with missing demographic and behavioral 

information were also excluded. The final number of subjects in the study was 456. This 

study was approved by the Institutional Review Boards of School of Public Health, Seoul 

National University, and all participating university hospitals (IRB No. 1509/001-011). 

Informed consent was obtained from the participants. 
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3.2.2 Measurement of in blood and urine samples 

Urinary nicotine metabolite, along with serum glucose, insulin, and GGT were 

estimated by a commercial laboratory (Green Cross LabCell, Yongin, Korea). Adiponectin 

and leptin in serum were measured using an enzyme-linked immunosorbent assay (ELISA) 

kit (Duoset, R&D Systems, Minneapolis, MN, USA). IR status was estimated using the 

HOMA-IR as follows: fasting insulin (μU/mL) × fasting glucose (mmol/L)/22.5 (Matthews 

et al., 1985). 

Blood samples were mixed thoroughly in a roll-mixer for 1 hour before analysis and 

did not require any pretreatment. Total Hg levels in blood samples were measured 

following US EPA method 7473 (2007) using an automatic Hg analyzer (SP-3D, Nippon 

Instruments Co., Japan), which incorporated heat vaporization, gold amalgamation, and 

cold vapor atomic absorption technique. Pb and Cd in blood samples were analyzed using 

atomic absorption spectrophotometer (AAS; GFAAS; Z-5700, Hitachi, Japan) with 

graphite furnace (A-type graphite cuvette, Hitachi, Japan) at the wavelength of 283.3 nm 

and 228.8 nm, respectively. For Pb and Cd analysis, 100 µL sample of blood was diluted 

with 1 % Triton X-100 and 1% ammonium dihydrogen phosphate (NH4H2PO4) as a 

modifier. The limits of detection (LODs) for blood Hg, Pb, and Cd were 0.2 µg/L, 0.16 

µg/dL, and 0.22 µg/L, respectively. The precision and accuracy of the analysis were tested 

using Certified Reference Materials (CRM), and external quality control was achieved 

according to standard reference material 56 of German External Quality Assessment 

Scheme (G-EQUAS). 
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3.2.3 Statistical analysis 

Proxy value (LOD divided by square root of 2) was used to replace the non-detects. 

Spearman’s correlations were performed to determine associations between exposure to 

each metal and metabolic markers. Linear regression analyses were performed for 

associations between metals and adiponectin, leptin, and GGT. Due to right skewness, GGT, 

insulin, and HOMA-IR were ln-transformed. In crude model, no covariates were adjusted. 

In adjusted models, covariates were chosen based on a previous study, which reported 

possible risk factors for T2DM (Zheng et al., 2018). In the adjusted models of both linear 

and logistic regression, age (categorical: 20-29, 30-39, 40-48 years), urinary nicotine 

metabolite (categorical: <10, 11-499, ≥500 ng/mL), and alcohol consumption at the time of 

study (categorical: drinker and non-drinker) were included as covariates. Further, alcohol 

consumption is known to influence GGT, so we confirmed whether the associations 

between blood metal and serum GGT were independent of alcohol consumption at the time 

of study by either adding in or removing from the adjusted model. Independent variables, 

i.e., blood heavy metal concentrations, were divided into quartiles. 

Logistic regression was also performed to look for effects of outcome variables with cut-

off criteria. Logistic regression models were used to calculate adjusted odds ratios (aORs). 

Criteria of cut-off points were based on previous studies. Overweight and obesity was defined 

based on the WHO’s risk cut points for Asian population, i.e., BMI above 23 kg/m
2
, (World 

Health Organization, 2000). Impaired fasting glucose (IFG) was defined as glucose ≥100 

mg/dL (American Diabetes Association, 2015). Because cut-off point of HOMA-IR ≥75
th

 is 

associated with metabolic syndrome-related markers (Tang et al., 2015), we chose 75
th

 as the 

cut-off point for HOMA-IR. Heavy metal concentrations, along with the covariates, were also 

divided into quartiles in the logistic regression analysis.  
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Mediation analysis was performed using bootstrapping; and model 4 for one mediator 

and model 6 for serial two-mediators were performed with macro PROCESS (V3.3) (Hayes 

et al., 2017) using same covariates as used in linear and logistic regression analysis. A value 

of p<0.05 was considered as statistically significant. All statistical analyses were performed 

using SAS 9.4 (SAS Institute Inc., Cary, NC, USA). 
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3.3 Results 

 

3.3.1 Characteristics of study population 

Participating women were aged between 20 and 48 years, with about a half of the 

women (48.2%) in their thirties (Table 3-1). Most participants (63.6%) showed normal 

range of BMI (18.5-22.9 kg/m
2
), and 6.4% and 3.3% of the participants were underweight 

(<18.5 kg/m
2
) and moderately obese (≥30 kg/m

2
), respectively. 
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Table 3-1. Characteristics of the study population (n = 456). 

    N (%) 

Age (years) 
  

   20-29 
 

126 (27.6) 

   30-39 
 

220 (48.2) 

   40-48 
 

110 (24.1) 

Body mass index (kg/m
2
) 

 

   <18.5 
 

29 (6.4) 

   18.5-22.9 
 

290 (63.6) 

   23.0-24.9 
 

66 (14.5) 

   25.0-29.9 
 

56 (12.3) 

   ≥30.0 
 

15 (3.3) 

Urinary nicotine metabolite (ng/mL) 
 

   <10 
 

406 (89.0) 

   11-499 
 

24 (5.3) 

   ≥500 
 

26 (5.7) 

Current alcohol drinking 
  

   Non-drinker 
 

136 (29.8) 

   Drinker 
 

320 (70.2) 

 median (25
th

-75
th

) 

  Adiponectin (µg/mL) 
 

6.6 (5.4, 7.8) 

  Leptin (ng/mL) 
 

9.7 (5.9, 15.5) 

  GGT (U/L)  12.0 (10.0, 17.0) 

  Fasting glucose (mg/dL) 
 

88.0 (83.0, 93.0) 

  Fasting insulin (μU/mL) 
 

6.1 (4.0, 8.6) 

  HOMA-IR    1.3 (0.9, 1.9) 
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3.3.2 Blood metal concentrations, parameters, and their correlations 

Detection frequencies and concentrations of heavy metals in blood samples are shown 

in Table 3-2. The median concentrations of blood Hg, Cd, and Pb with interquartile range 

were 2.6 (1.8, 3.7) μg/L, 1.0 (0.7, 1.4) μg/L, and 1.2 (0.9, 1.6) μg/dL, respectively. Blood 

Pb showed weak correlation with Hg (ρ = 0.156, p = 0.001) and Cd (ρ = 0183, p < 0.001), 

but Hg and Cd did not show significant correlation with each other (Fig. 3-1). Parameters 

related to obesity and IR showed weak to high correlations (Fig. 3-1). BMI, a surrogate 

marker of obesity, particularly, showed significant correlation with other metabolic markers 

measured in this study.  
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Table 3-2. Detection frequency and levels of heavy metals in the blood of participating women (n = 

456). 

  Detection frequency (%) Mean ± SD Median (25
th

-75
th

) 

Hg (μg/L) 100 3.0±1.9 2.6 (1.8-3.7) 

Cd (μg/L) 99.1 1.1±0.6 1.0 (0.7-1.4) 

Pb (μg/dL) 99.6 1.3±0.8 1.2 (0.9-1.6) 
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Fig. 3-1. Results of Spearman’s correlations (n = 456; except for percent body fat (n = 294). All 

categorical variables (urinary nicotine metabolite and current alcohol consumption) were coded as 

increasing numbers as frequency or value increase. 
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3.3.3 Associations of heavy metals with BMI, adipokines, GGT, fasting glucose, and 

HOMA-IR 

Higher blood mercury concentrations were associated with higher BMI (≥23 kg/m
2
) (Fig. 

3-2). The increased adjusted odds ratio (aOR) for BMI ≥23 kg/m
2 

was found in the third and 

fourth quartiles of blood Hg concentrations. The aOR for BMI ≥23 kg/m
2
 per quartile 

increase of blood Hg was 1.396 (95% CI: 1.156, 1.686). The increased aOR for BMI ≥23 

kg/m
2
 was found only in the second quartile of blood Cd concentrations, and aOR per quartile 

of blood Cd was 1.093 (95% CI: 0.909, 1.315). Blood Pb concentrations did not show 

associations with BMI (95% CI included one). In secondary analysis, percent body fat was 

used as an obesity marker instead of BMI, a surrogate marker of obesity. Though, due to 

small sample size of percent body fat, BMI was used in main statistical analyses, association 

of blood heavy metal concentrations with obesity using percent body fat was also found. In 

accordance with BMI, blood Hg and Cd concentrations showed significant positive 

associations with percent body fat (Table 3-3). 
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Fig. 3-2. Association of heavy metals with BMI (≥23 kg/m
2
) as the outcome (n = 456). The Model 

was adjusted for age, urinary nicotine metabolite, and current alcohol drinking.
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Table 3-3. Association of heavy metals with percent body fat as the outcome (n = 294). 

  Crude
a
 

  
Adjusted

b
   

  β (95% CI) p-Value   β (95% CI) p-Value 

Percent body fat 
     

  Hg 
     

     Q1 Ref 
  

Ref 
 

     Q2 0.595 (-1.456, 2.645) 0.568 
 

0.753 (-1.314, 2.821) 0.474 

     Q3 2.452 (0.547, 4.356) 0.012 
 

2.396 (0.483, 4.309) 0.014 

     Q4 2.764 (0.803, 4.726) 0.006 
 

2.807 (0.831, 4.782) 0.006 

   Per quartile increase 1.016 (0.396, 1.635) 0.001 
 

1.006 (0.382, 1.631) 0.002 

  Cd 
     

     Q1 Ref 
  

Ref 
 

     Q2 1.510 (-0.227, 3.246) 0.088 
 

1.506 (-0.246, 3.258) 0.092 

     Q3 1.790 (-0.172, 3.753) 0.074 
 

1.984 (-0.060, 4.028) 0.057 

     Q4 2.187 (0.042, 4.333) 0.046 
 

2.039 (-0.190, 4.267) 0.073 

   Per quartile increase 0.743 (0.087, 1.399) 0.027 
 

0.730 (0.040, 1.420) 0.038 

  Pb 
     

     Q1 Ref 
  

Ref 
 

     Q2 0.014 (-1.988, 2.017) 0.989 
 

-0.149 (-2.169, 1.872) 0.885 

     Q3 0.422 (-1.580, 2.425) 0.678 
 

0.234 (-1.832, 2.301) 0.824 

     Q4 0.944 (-1.065, 2.953) 0.356 
 

0.562 (-1.509, 2.634) 0.594 

   Per quartile increase 0.326 (-0.305, 0.958) 0.310   0.212 (-0.443, 0.867) 0.525 

Bold number indicates statistical significance (p<0.05). 

a
Crude model : no covariates were adjusted. 

b
Adjusted model : adjusted for age, urinary nicotine metabolite, and current alcohol drinking. 
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Table 3-4 shows associations of blood metal concentrations with adiponectin and leptin. 

Higher blood Hg concentrations were significantly associated with lower serum adiponectin 

levels in both crude (β = -0.201 per quartile increase of Hg; 95% CI: -0.356, -0.046) and 

adjusted (β = -0.179 per quartile increase of Hg; 95% CI: -0.333, -0.024) models. Serum 

adiponectin was marginally significantly (p<0.1) reduced in the third and fourth quartiles of 

blood Hg in both crude and adjusted models. In contrast, higher blood Cd concentrations 

were associated with higher serum adiponectin in both crude (β = 0.202 per quartile increase 

of Cd; 95% CI: 0.048, 0.356) and adjusted (β = 0.206 per quartile increase of Cd; 95% CI: 

0.052, 0.360) models. Serum adiponectin was significantly reduced in the fourth quartile of 

blood Cd in both crude and adjusted models. Serum leptin did not show any statistically 

significant association with blood heavy metal concentrations. 
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Table 3-4. Association of heavy metals with adipokines as the outcome (n = 456). 

 
Crude

a
 

  
Adjusted

b
 

 

 
β (95% CI) p-Value 

 
β (95% CI) p-Value 

Adiponectin 
     

Hg 
     

Q1 Ref 
  

Ref 
 

Q2 0.076 (-0.418, 0.569) 0.764 
 

0.025 (-0.464, 0.514) 0.920 

Q3 -0.484 (-0.969, 0.001) 0.051 
 

-0.417 (-0.899, 0.065) 0.090 

Q4 -0.480 (-0.970, 0.010) 0.055 
 

-0.449 (-0.936, 0.038) 0.071 

Per quartile increase -0.201 (-0.356, -0.046) 0.011 
 

-0.179 (-0.333, -0.024) 0.023 

Cd 
     

Q1 Ref 
  

Ref 
 

Q2 -0.158 (-0.651, 0.336) 0.530 
 

-0.077 (-0.566, 0.411) 0.756 

Q3 0.279 (-0.203, 0.762) 0.256 
 

0.387 (-0.093, 0.868) 0.114 

Q4 0.531 (0.043, 1.018) 0.033 
 

0.535 (0.047, 1.023) 0.032 

Per quartile increase 0.202 (0.048, 0.356) 0.011 
 

0.206 (0.052, 0.360) 0.009 

Pb 
     

Q1 Ref 
  

Ref 
 

Q2 -0.058 (-0.551, 0.436) 0.818 
 

0.029 (-0.461, 0.520) 0.907 

Q3 -0.484 (-0.975, 0.008) 0.054 
 

-0.287 (-0.785, 0.210) 0.257 

Q4 -0.111 (-0.605, 0.384) 0.660 
 

0.028 (-0.470, 0.526) 0.912 

Per quartile increase -0.076 (-0.232, 0.080) 0.340 
 

-0.021 (-0.179, 0.137) 0.793 

Leptin 
     

Hg 
     

Q1 Ref 
  

Ref 
 

Q2 1.184 (-0.915, 3.282) 0.268 
 

1.180 (-0.938, 3.297) 0.274 

Q3 1.167 (-0.896, 3.230) 0.267 
 

1.131 (-0.955, 3.217) 0.287 

Q4 0.783 (-1.301, 2.868) 0.461 
 

0.748 (-1.362, 2.858) 0.486 

Per quartile increase 0.234 (-0.424, 0.892) 0.486 
 

0.220 (-0.447, 0.888) 0.517 

Cd 
     

Q1 Ref 
  

Ref 
 

Q2 0.542 (-1.560, 2.643) 0.613 
 

0.537 (-1.585, 2.659) 0.619 

Q3 0.796 (-1.260, 2.852) 0.447 
 

0.738 (-1.349, 2.825) 0.488 

Q4 0.308 (-1.770, 2.385) 0.771 
 

0.195 (-1.924, 2.313) 0.857 

Per quartile increase 0.120 (-0.536, 0.776) 0.719 
 

0.083 (-0.586, 0.752) 0.808 

Pb 
     

Q1 Ref 
  

Ref 
 

Q2 0.169 (-1.924, 2.261) 0.874 
 

0.190 (-1.927, 2.307) 0.860 

Q3 0.595 (-1.488, 2.679) 0.575 
 

0.595 (-1.552, 2.743) 0.586 

Q4 0.021 (-2.076, 2.118) 0.985 
 

0.053 (-2.096, 2.202) 0.961 

Per quartile increase 0.049 (-0.612, 0.709) 0.885   0.052 (-0.629, 0.733) 0.881 

Bold number indicates statistical significance (p<0.05). 
a
Crude model: no covariates were adjusted. 

b
Adjusted model: adjusted for age, urinary nicotine metabolite, and current alcohol drinking.
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Blood Hg levels showed significant association with ln-GGT (Table 3-5). Higher blood 

Hg concentrations were significantly associated with increased ln-GGT in both crude (β = 

0.078 per quartile increase of Hg; 95% CI: 0.036, 0.121), and adjusted models (β = 0.070 per 

quartile increase of Hg; 95% CI: 0.029, 0.112). GGT is known to be a marker of excessive 

alcohol consumption (Teschke et al., 1997). The association between blood Hg and GGT 

shown in the present population was independent of alcohol consumption at the time of study 

(data not shown). 
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Table 3-5. Association of heavy metals with GGT as the outcome (n = 456). 

  Crude
a
     Adjusted 1

b
   

 
Adjusted 2

c
   

  β (95% CI) p-Value   β (95% CI) p-Value 
 

β (95% CI) p-Value 

Ln-GGT
d
 

        
  Hg 

        
     Q1 Ref 

  
Ref 

  
Ref 

 
     Q2 0.117 (-0.018, 0.251) 0.088 

 
0.120 (-0.014, 0.254) 0.080 

 
0.119 (-0.014, 0.251) 0.079 

     Q3 0.160 (0.028, 0.292) 0.018 
 

0.139 (0.006, 0.271) 0.040 
 

0.138 (0.007, 0.269) 0.039 

     Q4 0.247 (0.114, 0.381) <0.001 
 

0.229 (0.095, 0.363) 0.001 
 

0.228 (0.096, 0.360) 0.001 

   Per quartile increase 0.078 (0.036, 0.121) <0.001 
 

0.071 (0.028, 0.113) 0.001 
 

0.070 (0.029, 0.112) 0.001 

  Cd 
        

     Q1 Ref 
  

Ref 
  

Ref 
 

     Q2 0.093 (-0.043, 0.229) 0.180 
 

0.079 (-0.057, 0.215) 0.254 
 

0.079 (-0.055, 0.214) 0.247 

     Q3 0.047 (-0.087, 0.180) 0.493 
 

0.018 (-0.115, 0.152) 0.788 
 

0.030 (-0.102, 0.163) 0.651 

     Q4 0.057 (-0.078, 0.191) 0.410 
 

0.041 (-0.094, 0.177) 0.551 
 

0.036 (-0.098, 0.170) 0.600 

   Per quartile increase 0.012 (-0.030, 0.055) 0.564 
 

0.007 (-0.036, 0.049) 0.766 
 

0.006 (-0.036, 0.049) 0.775 

  Pb 
        

     Q1 Ref 
  

Ref 
  

Ref 
 

     Q2 0.052 (-0.084, 0.187) 0.454 
 

0.045 (-0.091, 0.180) 0.516 
 

0.046 (-0.088, 0.180) 0.497 

     Q3 0.048 (-0.087, 0.182) 0.488 
 

0.008 (-0.130, 0.145) 0.914 
 

0.003 (-0.133, 0.139) 0.964 

     Q4 0.127 (-0.009, 0.262) 0.067 
 

0.102 (-0.035, 0.238) 0.146 
 

0.084 (-0.052, 0.220) 0.223 

   Per quartile increase 0.038 (-0.005, 0.080) 0.085   0.027 (-0.016, 0.071) 0.220   0.021 (-0.022, 0.064) 0.333 

Bold number indicates statistical significance (p<0.05). 
a
Crude model: no covariates were adjusted. 

b
Adjusted model: adjusted for age, and urinary nicotine metabolite. 

c
Adjusted model: adjusted for age, current alcohol consumption, and urinary nicotine metabolite. 
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Heavy metals did not show significant association with fasting glucose levels (Fig. 3-3A). 

The aOR for HOMA-IR ≥75
th 

per quartile increase of blood Hg concentrations was 1.341 (95% 

CI: 1.100, 1.634) (Fig. 3-3B). Significant increase of aOR for HOMA-IR ≥75
th

 in the fourth 

quartile of blood Hg, in the second quartile of blood Cd, and in the third and fourth quartiles 

of blood Pb was found.
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Fig. 3-3. Association of heavy metals with (A) fasting glucose (≥100 mg/dL) and (B) HOMA-IR (≥75

th
 percentile) as the outcome (n = 456). The models 

were adjusted for age, urinary nicotine metabolite, and current alcohol drinking. 
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3.3.4. Mediation of adiponectin, and GGT in the relationship between heavy metals and 

HOMA-IR 

Higher blood Hg level was associated with higher BMI and GGT, and lower adiponectin 

(Fig. 3-1 and Tables 3-4 and 3-5). According to the mediation analysis, adiponectin, GGT, 

and BMI were found to be significant mediators of the association between Hg and HOMA-

IR, with an estimated mediation range of 18-34% in the adjusted model (Table 3-6). 
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Table 3-6. Indirect, total indirect, and direct effects of Hg on HOMA-IR (n = 456). 

  Crude
a
       Adjusted

b
     

 
Direct effect (95% CI) Indirect effect (95% CI) 

Estimated percent 

mediated (%)  
Direct effect (95% CI) Indirect effect (95% CI) 

Estimated percent 

mediated (%) 

  Adiponectin 0.257 (0.055, 0.459) 0.066 (0.015, 0.135) 20 
 

0.263 (0.060, 0.466) 0.059 (0.007, 0.125) 18 

  Ln-GGT 0.215 (0.009, 0.421) 0.107 (0.048, 0.191) 33 
 

0.220 (0.013, 0.427) 0.103 (0.044, 0.189) 32 

X (Hg) is an ordinal (categorical) variable consisted of four quartiles. 

Y (HOMA-IR≥75th percentile) is a dichotomous variable. 

All mediators (adiponectin, ln-GGT, and BMI) are continuous variables. 

a
No covariates were adjusted. 

b
Age, urinary nicotine metabolite, and current alcohol drinking were used as covariates. 
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3.4 Discussion 

 

3.4.1. Association of heavy metals with and obesity and insulin resistance 

Significant positive association of blood Hg level with a surrogate marker of obesity 

(BMI) (Fig. 3-2) is comparable to the observations from Korean National Health and 

Nutrition Examination (Cho et al., 2014; Lee et al., 2016; Shin et al., 2018) with large sample 

size (n=1567 - 9228). Similarly, higher hair Hg levels were associated with BMI in young 

adults of Russia (35 years old or younger, Skalnaya et al., 2014). However, inconsistent 

results have been reported in the US populations. Inverse associations with BMI was reported 

in the US adults from the National Health and Nutrition Examination Survey (NHANES) (n 

= 962) (Rothenberg et al., 2015), and no associations were found in children and adolescents 

(n = 5404) from NHANES (Fan et al., 2017). The difference in blood Hg levels among 

countries may partly explain the observed inconsistency. Median blood Hg concentration 

among Korean population is 3.7 µg/L (Lee et al., 2016), which is 2.5 folds higher than those 

reported in the US population (1.5 µg/L) (Rothenberg et al., 2015). However, other 

demographic and/or lifestyle characteristics may influence the occurrence of obesity, 

independent of Hg. 

Inverse or no associations between Cd and/or Pb exposure and obesity have been 

reported. The current study also presents similar results. At the current levels of exposure, Cd 

or Pb may not be associated with increased risk of obesity among Korean women. In Chinese 

healthy women aged between 16 and 35 years (n = 4400), BMI has been shown to be 

inversely associated with both blood Cd and Pb concentrations (Liu et al., 2013). Similarly, 

no significant associations between hair Cd and Pb content, and BMI have been observed in 

adults aged between 22 and 60 years (n = 1229) (Skalnaya et al., 2014). Similar observations 
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have also been reported in other cross-sectional studies (Noor et al., 2018; Rhee et al., 2013; 

Son et al., 2015).  

Overall, increased ORs of high HOMA-IR were found in Hg, Cd, and Pb (Fig. 3-3). 

Positive associations of blood Hg and Pb with IR in the present female population (Fig. 3-3) 

are similar to several previous epidemiological studies, which have reported positive 

associations with IR-related markers or DM. Hg exposure measured in toenail was positively 

associated with incidence of DM in a cohort study of an 18-year follow-up of the US young 

adults aged between 20 and 32 years at enrollment (n = 3875) (He et al., 2013). The positive 

association has also been observed in Korean population (Kim et al., 2015). During Korea 

NHANES (KNHANES) study, from 2008 to 2010, blood Hg levels showed a significant 

positive association with HOMA-IR in non-diabetic Korean population of both sexes (Kim et 

al., 2015). High risk of DM incidence of the highest Cd exposure category compared to the 

lowest category has been reported in a meta-analysis (Tinkov et al., 2017). Blood Pb levels 

and fasting glucose levels are higher among industrial workers than among their non-

industrial counterparts in the United Arab Emirates (Bener et al., 2001). However, 

contradictory reports also exist in literature (Forte et al., 2013; Lee and Kim, 2013; Moon, 

2014). The discrepancies might be due to different characteristics of study population, and 

outcome variables. The population in the current study was healthy without DM, which could 

not show relationship with DM. 

Although the underlying mechanism of exposure to heavy metals and IR has not yet been 

completely understood, oxidative stress process is a possible mechanism (Chen et al., 2009; 

Gonzalez-Villalva et al., 2016; Houstis et al., 2006; Tangvarasittichai, 2015; Tinkov et al., 

2015;).  

 

3.4.2. Association of heavy metals with adipokines and GGT 
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Significant associations between blood Hg or Cd and serum adiponectin observed in the 

present population (Table 3-4) deserve attention, as reduction of adiponectin has been 

reported to be associated with insulin resistance (Yadav et al., 2013). Inverse association of 

blood Hg with serum adiponectin, which was observed together with the positive association 

between blood Hg and HOMA-IR, should be interpreted that insulin resistance by Hg 

exposure could be to in part explained by the changes in adiponectin. Adipokines have a 

regulatory role in the mechanism of insulin resistance. Reduction of adiponectin has been 

reported to be associated with IR, and the net action of leptin has been reported to inhibit 

appetite and decrease glucose (Yadav et al., 2013). However, only limited epidemiological 

information is available on the relationship between metal exposure and changes in 

adiponectin. The association between metal exposure and adipokines appears to vary by types 

of metal and adipokines along with demographic factors such as age and sex. In a Mexican 

birth cohort, higher total metals were associated with higher adiponectin in Bayesian Kernel 

Machine Regression model (Kupsko et al., 2018). In 64-year old women in Sweden (n = 590), 

serum adiponectin did not show significant correlations with blood and urinary cadmium 

(Barregard et al., 2013). In a Canadian cohort of mother-infant pairs (n = 1188), maternal 

exposure to Hg, Cd, Pb, and As was not significantly associated with adiponectin measured in 

fetal umbilical cord blood. In contrast, increased OR of high leptin (≥90%) was found in the 

highest quartile of maternal blood Cd only among males (n = 639) (Ashley-Martin et al., 

2015). 

Significant positive association between blood Hg and serum GGT, which was 

independent of current alcohol consumption (Table 3-5), supports in part the link between Hg 

exposure and IR. Serum GGT has been suggested as an independent risk factor of T2DM or 

cardiovascular disease, regardless of alcohol consumption, as well as a marker of oxidative 

stress (Lee et al., 2004). The positive association between Hg exposure and serum GGT 
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observed in the present study is in line with observations of previous studies (Seo et al., 2014; 

Dierickx, 1980). In Korean adults from KNHANES 2010 data (n = 1959), a significant 

positive association between blood Hg and serum GGT was reported in both sexes (Seo et al., 

2014). Experimental study also supports the relationship. Increased urinary GGT activity was 

observed in male Sprague-Dawley rats, in Hg treated group, but not in Pb and Cd treated 

groups (Dierickx, 1980). 

  

3.4.3. Mediation effects of adiponectin and GGT 

It was found that the association between Hg and IR was mediated by serum adiponectin 

and GGT among the women of reproductive age. In the subjects of the current study, several 

markers such as adiponectin, obesity, GGT, and IR are closely linked with each other (Fig. 3-

1), and because one outcome can be on a causal pathway to another outcome, mediation 

analysis was conducted. A couple of studies reported mediation effects of oxidative stress 

markers in the association between phthalate exposure and IR or DM (Dong et al., 2018; Li et 

al., 2019), but no studies have been done for heavy metals. To our knowledge, this is the first 

study, which reports significant indirect effects of adiponectin and GGT in the association 

between blood Hg and IR. Our finding implies one of possible mechanisms of IR induced by 

Hg exposure. 

I considered the relationship between variables to build a directed acyclic graph (DAG). 

We checked if one metabolic marker could precede others. There are several reports in 

literature that support mediation effects of adiponectin and GGT on the association between 

chemical exposure and IR. Serum adiponectin is inversely associated with IR (Yadav et al., 

2013). A decline in adiponectin precedes IR (Stefan, 2002; Yamamoto et al., 2004). GGT, a 

non-specific marker of oxidative stress (Lee et al., 2004), predicts reduced insulin sensitivity, 

which might be related to hepatic IR (Thamer et al., 2005). In addition, GGT has also been 
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reported to be a significant mediator of the association between phthalate exposure and IR 

(Dong et al., 2019). Although central obesity is an important risk factor for metabolic 

syndrome and IR (Hardy et al., 2012), whether obesity precedes IR or vice versa is a matter 

of debate (Erion and Corkey, 2017), and therefore we did not include obesity markers as 

mediators in the association. Obesity, IR, and related health parameters are closely associated 

with other. Therefore, further cohort or experimental studies are needed to identify etiology of 

these health outcomes. 

 

3.4.4. Strengths and limitations 

Among women of reproductive age, blood Hg at its current level of exposure was 

associated with higher BMI and higher IR, and decreased adiponectin was identified as a 

potential mediator of IR induced by Hg exposure. As a cross-sectional study, causal inference 

cannot be made based on this study. Moreover, because our study population included only 

adult women aged between 20s and 40s recruited from medical institutes, it may not 

represent the adult Korean population. However, `our observation provides reliable 

information for adult women before menopause, on possible effects of major metals on 

metabolic markers, considering that age and sex are important factors related to obesity and 

IR. 
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Chapter 4 Complex chemical exposure profile among adult 

women before menopause and its association with obesity and 

metabolic markers 

 

4.1 Introduction 

 

Humans are exposed to a myriad of chemicals in daily life. These multiple chemicals, as 

a whole or in parts, may influence development of diseases. Traditional approach of 

environmental epidemiology studies on chemicals had focused on exposure to single or a 

limited number of chemicals. Recently, there is a growing consensus that such approach may 

result in false conclusions, and models that incorporate multiple chemicals relevant to a given 

exposure scenario is warranted (Kalloo et al., 2018; Lee et al., 2017; Robinson et al., 2015). 

For example, the concept of exposome which comprises a totality of exposure that an 

individual experiences throughout life courses (Wild, 2005; Wild, 2012) echoes realization of 

such limitation. 

Several analytical approaches have been applied to incorporate multiple chemicals in the 

association studies. One such example is the principal component analysis (PCA) (Kalloo et 

al., 2018; Lee et al., 2017; Robinson et al., 2015). PCA is dimension reduction method that 

converts data into linearly uncorrelated principal components, while retaining most of the 

variation of the data (Hatcher, 1994). Recently, several other approaches such as elastic net 

regression, weighted quantile sum regression (WQSR) and Bayesian kernel machine 

regression (BKMR) have been proposed to include multiple pollutants in the models (Bobb et 

al., 2015; Carrico et al., 2015; Czarnota et al., 2015; Lenters et al., 2015). Elastic net 

regression is a penalized regression model to select variables after controlling for 
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multicollinearity among variables (Zou and Hastie, 2005). WQSR is a method to derive a 

weighted index that estimates the mixed effect of multiple predictor variables on a given 

outcome, and was reported to have improved accuracy in models compared to traditional 

regression or shrinkage methods (Carrico et al., 2015). BKMR is proposed as a useful method 

to estimate joint effects of multiple pollutants and allows nonlinear relationship (Bobb et al., 

2015). While each of these methods has advantages, these methods have shown rooms to 

improve. Elastic net regression was less efficient to select chemicals related to outcomes 

compared to WQSR (Czamota et al., 2015). WQSR provides weights with nonzero, and 

therefore, a choice of threshold is needed to select variables, but this choice can be 

challenging (Carrico et al., 2015). In case of lack of co-exposure patterns, the BKMR 

estimates have to rely on extrapolation (Cocker et al., 2018). 

In previous chapters, it was demonstrated that several environmental chemicals are 

associated with metabolic markers in adult women before menopause. In the present chapter, 

the aim is to show that chemical exposure profile among the women is highly complex. In 

addition, I intend to demonstrate that the association model that incorporate multiple 

chemicals that are measured in urine (Chapter 2), blood (Chapter 3), and serum can be 

developed to identify potential chemical determinants of obesity or metabolic markers.  
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4.2 Materials and methods 

 

4.2.1 Study population  

Initial population comprises of the women of reproductive age (20-48 years old) (n = 516) 

recruited from five university hospitals located in Seoul, Incheon, Ansan, and Jeju, South 

Korea between 2015 and 2016. Details about the participating women were descripted in 

Chapters 2 and 3.  

Among the initially recruited women, two participants who had fasting glucose 

measurements ≥126 mg/dL, and 33 participants who were pregnant at the time of recruitment 

were excluded. Participants with missing information on age, BMI, urinary nicotine 

metabolite level, and/or current alcohol consumption habits were also excluded. Lastly, 

participants who were measured for urinary phthalate metabolites and environmental phenols, 

blood heavy metals, and serum persistent organic pollutants (POPs) were chosen, and the 

final number of subjects of overall multi-pollutants was 104. Informed consent was obtained 

from all participants. This study was approved by the Institutional Review Board of the 

School of Public Health, Seoul National University (IRB No. 1509/001-011). 

 

4.2.2 Measurement in urine and blood samples 

Health effect markers 

Urinary creatinine, serum glucose, and serum insulin were measured by a commercial 

laboratory (Green Cross LabCell, Yongin, Korea). Serum adiponectin and leptin were 

measured using an enzyme-linked immunosorbent assay kit (Duoset, R&D Systems, 

Minneapolis, MN, USA). Insulin resistance status was estimated using the homeostatic model 

assessment for insulin resistance (HOMA-IR) and was calculated as fasting insulin (μU/mL) 

x fasting glucose (mmol/L)/22.5 (Wallace et al., 2004). 
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4.2.3 Statistical analysis 

Linear regression analyses were conducted to analyze associations of serum POPs 

concentrations with adiponectin, leptin, and γ-glutamiltransferase (GGT). Due to right 

skewness, GGT, insulin, HOMA-IR, and chemical concentrations were ln-transformed before 

conducting linear regression. In the crude model, no covariates were adjusted. In the adjusted 

model, covariates were chosen based on a previous study which reported possible risk factor 

of T2DM (Zheng et al., 2018), and were included in the linear regression model. These 

covariates included age (categorical: 25-29, 30-39, 40-48 years), urinary nicotine metabolite 

(categorical: <10, 11-499, ≥500 ng/mL), and current alcohol drinking (categorical: drinker 

and non-drinker). 

Linear regression analyses were conducted to evaluate the associations of multi-

pollutants measured in urine, blood, and serum, with obesity and metabolic markers. To 

evaluate overall multiple chemical exposures simultaneously, principal component analysis 

(PCA) with varimax rotation was conducted. For urinary chemicals, creatinine-corrected 

values were used to adjust urine dilution. Creatinine-corrected molar concentrations of 

urinary chemicals and molar concentrations of blood and serum chemicals were ln-

transformed. Firstly, PCA was conducted with no constraints on the total number of principal 

components. By examining Scree plots and selecting a number of principal components that 

explained ≥50% of the variance in the data, total six principal components were restricted. 

Models that included all six factors separately and simultaneously were conducted.  

A value of p<0.05 was considered to be significant. All statistical analyses were 

performed using SAS 9.3 (SAS Institute, Cary, NC, USA) except the Spearman correlation 

analyses. The correlation matrix was calculated using R version 3.5.1 and visualized using 

the R package ‘corrplot’. 
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4.3 Results 

 

4.3.1 Characteristics of study population 

Participating women were aged between 25 and 48 years, with a majority in thirties 

(61.5%) (Table 4-1). Most participants (43.3%) showed normal range of BMI (18.5-22.9 

kg/m
2
), with 2.9% and 5.8% of the participants in underweight (<18.5 kg/m

2
) and moderate 

obese (≥30 kg/m
2
), respectively. 
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Table 4-1. Characteristics of study population (n = 104). 

  N (%) 

Age  

25-29 11 (10.6) 

30-39 64 (61.5) 

40-48 29 (27.9) 

BMI (kg/m
2
) 

 
<18.5 3 (2.9) 

18.5-22.9 45 (43.3) 

23-24.9 23 (22.1) 

25-29.9 27 (26.0) 

≥30 6 (5.8) 

Urinary nicotine metabolite (ng/mL) 
 

<11 92 (88.5) 

11-500 6 (5.8) 

≥500 6 (5.8) 

Current alcohol consumption 
 

Drinker 70 (67.3) 

Non-drinker 34 (32.7) 

 Median (25
th

-75
th

) 

Health effect markers  

 Adiponectin (µg/mL) 6.3 (5.1-7.4) 

 Leptin (ng/mL) 10.9 (6.3-17.7) 

 GGT (U/L) 12 (10-18) 

 Fasting glucose (mg/dL) 89 (86-95) 

 Fasting insulin (μU/mL) 7.1 (5.0-10.2) 

 HOMA-IR  1.5 (1.1-2.2) 
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4.3.2 Profiles of chemical mixture exposure among women of reproductive age 

The analytical results on urine, whole blood, and serum samples showed that the 

chemical exposure profile among the participating women is complex (Fig. 4-1). Urinary 

concentrations of parabens occupied the greatest proportion among the measured chemicals: 

In pie graphs drawn with either 50
th

 or 95
th

 percentile exposures (total molar sum of a given 

chemical group), parabens showed > 60% of the total. Without parabens, the molar sums of 

phthalate metabolites and heavy metals from the population from whom such data are 

available (Chapters 2 and 3, n = 455) were 63% and 28%, respectively, when the 50
th

 

percentiles of chemicals were considered. When only those with all chemical 

measurements are available (n=104), similarly, percentages of molar sum of phthalates and 

heavy were 60% and 32%, respectively. 

The sum of quartiles of molar sum of each chemical group shows complexity of 

chemical exposure profile of the participating women (Fig. 4-2). This is a simplified 

presentation of the exposure profile because chemical measurements were converted to 

values between one and four according to quartiles of molar sum of each chemical group. 

No PBDEs showed detection frequency greater than 50%, and therefore, zero to 2 was 

assigned. Total sum of quartiles varied between 15 and 37, out of the theoretical range of 

variation between 9 and 39. 

The percentage relative standard deviation (%) for each chemical ranged from 35.6% 

for Pb to 812.8% for TCS (Fig. 4-3). 

Correlations between molar concentrations of chemicals were explored (Fig. 4-4). 

Creatinine-corrected molar concentrations of urinary chemicals, i.e., phthalates, parabens, 

benzophenones, and bisphenols, showed low to moderate levels of correlation. For POPs, 

PCB153, PCB180, and HCB showed high positive correlation, and PFCs also showed high 
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positive correlation. Meanwhile, PCB52 showed moderate negative correlations with 

PCB153, PCB180, and HCB.
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Fig. 4-1. Comparison of chemical composition used in chapters 2 and 3 (n = 455) and chapter 4 (n = 104). 50
th

 and 95
th

 percentiles of molar 

sum of chemical groups including and excluding parabens were suggested.



80 

 

Fig. 4-2. Sum of quartiles of molar sum of each chemical group (n = 104). X axis indicates individual participants.
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Fig. 4-3. Relative standard deviation for molar concentration of chemicals (n = 104).
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Fig. 4-4. Spearman’s correlation of molar concentrations of chemicals (n = 104). Molar 

concentrations of urinary chemicals were creatinine-corrected. 
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4.3.3 PCA components results of multiple chemicals 

Following a PCA on all measured chemical concentrations, six principal components 

were identified which accounted for 17.3%, 11.5%, 7.8%, 7.0%, 6.1% and 5.3% of the total 

variance (Table 4-2). Factor 1 was characterized by high loading of all PFCs, i.e., serum 

PFHS, PFOS, PFOA, PFNA, PFDA, PFUnDA, and PFTrDA. This factor was referred to as 

the PFC factor. Factor 2 exhibited high loading of PCB153, PCB180, HCB, and p,p’-DDT, 

and was referred to as PCB and OCP factor. Factor 3 had high loading of MeP, PrP, BP1, 

and BP3. This factor was referred to as environmental phenols factor excluding bisphenols. 

Factor 4, phthalate metabolite factor, had high loading of MBP, ΣDEHPm, and MBzP. 

Factor 5 had positive loading of BPA and BPS and negative loading of PFHS. Factor 6 was 

characterized with high loading of PCB52 and p,p’-DDE, which did not show high loading 

in Factor 2. 
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Table 4-2. Summary of the rotated factor pattern (n = 104). 

  Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 

MMP 0.094 0.161 -0.009 0.420 0.164 0.329 

MEP 0.031 -0.086 0.041 0.177 -0.078 0.313 

MBP -0.004 -0.045 0.139 0.780 -0.265 0.020 

MiBP -0.120 0.301 0.186 0.319 -0.126 -0.119 

ΣDEHPm -0.042 0.308 -0.056 0.646 0.180 0.224 

MBzP -0.063 0.162 0.202 0.607 0.148 0.106 

BPA 0.101 0.115 0.283 0.277 0.592 0.035 

BPS -0.142 0.030 0.098 0.025 0.590 0.206 

MeP -0.105 -0.023 0.784 0.083 -0.113 0.047 

EtP 0.361 -0.166 0.222 0.106 0.085 0.136 

PrP -0.142 -0.008 0.719 0.224 -0.033 -0.045 

TCS -0.162 0.223 0.287 0.120 0.087 -0.094 

BP1 0.099 0.323 0.519 -0.358 0.191 0.063 

BP3 -0.039 -0.070 0.668 -0.038 0.095 0.030 

Hg 0.441 -0.106 -0.160 -0.091 0.333 -0.228 

Cd -0.018 -0.025 -0.145 0.431 0.240 -0.271 

Pb -0.003 -0.166 -0.332 0.075 0.420 -0.106 

PCB52 -0.003 -0.103 -0.049 -0.031 0.074 0.814 

PCB153 0.232 0.860 0.117 0.023 0.017 -0.144 

PCB180 0.167 0.785 -0.120 0.086 -0.143 0.184 

HCB 0.127 0.751 0.215 0.086 0.035 -0.185 

p,p'-DDE 0.053 0.104 0.016 -0.005 0.046 0.635 

p,p'-DDT -0.063 0.593 -0.288 0.186 0.002 0.224 

PFHS 0.509 0.159 0.074 0.188 -0.581 0.151 

PFOS 0.870 0.206 -0.042 0.004 -0.153 0.047 

PFOA 0.836 0.210 -0.054 -0.132 -0.193 0.098 

PFNA 0.898 0.182 -0.063 -0.054 -0.169 0.124 

PFDA 0.598 -0.230 -0.193 0.394 0.204 -0.195 

PFUnDA 0.834 0.139 -0.115 -0.164 -0.139 0.102 

PFTrDA 0.777 -0.049 -0.122 0.029 0.238 -0.146 

Eigenvalues 5.18 3.45 2.34 2.08 1.81 1.60 

Variance explained (%) 17.3 11.5 7.8 7.0 6.1 5.3 

Cumulative variance (%) 17.3 28.8 36.6 43.5 49.6 54.9 

Bold numbers indicate factor loading >|0.5| (Hair et al., 1998). 

All molar concentrations were ln-transformed. 

Molar concentrations of chemicals measured in urine were creatinine-corrected. 
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4.3.4 Associations with obesity and metabolic markers 

In the single factor model, Factor 4 (R
2

partial = 0.077), characterized by phthalate 

metabolites, was significantly positively associated with adiponectin (Table 4-3). Factor 4 

(R
2

partial = 0.051) also showed significant positive association with fasting glucose. These 

observations are similar to the significant positive associations of several phthalate 

metabolites with serum adiponectin or fasting glucose which were observed in Chapter 2. 

Factor 1 (R
2

partial = 0.049) characterized by PFCs showed marginally significant (p<0.1) 

association with percent body fat. 

Multi-factor model which was developed with six factors together showed similar 

results (Table 4-3). Factor 4 (R
2

partial = 0.077) showed significant positive associations with 

adiponectin. Factor 4 (R
2

partial = 0.053) showed significant positive association with fasting 

glucose.  
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Table 4-3. Associations of chemical exposure factors with obesity and metabolic markers (n = 104). 

  Single factor   Multi-factor 

  β (95%CI) p-Value R2
partial   β (95%CI) p-Value R2

partial 

BMI 
       

Factor1 0.092 (-0.666, 0.850) 0.810 0.001 
 

0.086 (-0.688, 0.860) 0.826 0.001 

Factor2 -0.060 (-0.789, 0.669) 0.871 0.000 
 

-0.047 (-0.792, 0.698) 0.901 0.000 

Factor3 0.007 (-0.710, 0.725) 0.984 0.000 
 

0.007 (-0.725, 0.738) 0.986 0.000 

Factor4 0.107 (-0.624, 0.838) 0.772 0.001 
 

0.110 (-0.637, 0.857) 0.771 0.001 

Factor5 -0.092 (-0.803, 0.620) 0.799 0.001 
 

-0.094 (-0.818, 0.631) 0.798 0.001 

Factor6 0.433 (-0.270, 1.136) 0.224 0.015 
 

0.433 (-0.288, 1.154) 0.236 0.015 

Percent body fat (n = 69) 
       

Factor1 1.756 (-0.169, 3.682) 0.073 0.049 
 

1.557 (-0.525, 3.638) 0.140 0.037 

Factor2 -1.153 (-2.805, 0.500) 0.168 0.029 
 

-0.686 (-2.434, 1.061) 0.435 0.010 

Factor3 -0.758 (-2.375, 0.859) 0.353 0.014 
 

-0.870 (-2.474, 0.734) 0.282 0.020 

Factor4 0.871 (-0.613, 2.355) 0.245 0.021 
 

0.794 (-0.674, 2.263) 0.283 0.019 

Factor5 -0.057 (-1.494, 1.381) 0.938 0.000 
 

-0.102 (-1.517, 1.313) 0.886 0.000 

Factor6 1.324 (-0.260, 2.909) 0.100 0.042 
 

1.206 (-0.372, 2.785) 0.132 0.038 

Ln-GGT 
       

Factor1 -0.002 (-0.121, 0.117) 0.970 0.000 
 

0.003 (-0.117, 0.123) 0.963 0.000 

Factor2 0.065 (-0.049, 0.178) 0.260 0.013 
 

0.067 (-0.049, 0.182) 0.255 0.014 

Factor3 -0.025 (-0.138, 0.087) 0.657 0.002 
 

-0.025 (-0.138, 0.089) 0.666 0.002 

Factor4 0.030 (-0.084, 0.145) 0.598 0.003 
 

0.035 (-0.082, 0.151) 0.557 0.004 

Factor5 0.026 (-0.085, 0.138) 0.641 0.002 
 

0.025 (-0.088, 0.137) 0.666 0.002 

Factor6 0.062 (-0.048, 0.172) 0.267 0.012 
 

0.062 (-0.050, 0.174) 0.274 0.013 

Adiponectin 
       

Factor1 0.029 (-0.352, 0.410) 0.882 0.000 
 

0.056 (-0.317, 0.430) 0.765 0.001 

Factor2 -0.030 (-0.396, 0.336) 0.871 0.000 
 

0.004 (-0.356, 0.364) 0.983 0.000 

Factor3 -0.044 (-0.405, 0.316) 0.808 0.001 
 

-0.042 (-0.395, 0.311) 0.813 0.001 

Factor4 0.510 (0.157, 0.863) 0.005 0.077 
 

0.510 (0.149, 0.871) 0.006 0.077 

Factor5 0.081 (-0.276, 0.438) 0.653 0.002 
 

0.075 (-0.275, 0.425) 0.670 0.002 

Factor6 -0.204 (-0.557, 0.149) 0.255 0.013 
 

-0.204 (-0.552, 0.144) 0.247 0.014 

Leptin 
       

Factor1 -1.020 (-2.794, 0.753) 0.256 0.013 
 

-1.075 (-2.882, 0.732) 0.241 0.015 

Factor2 0.197 (-1.519, 1.913) 0.820 0.001 
 

0.084 (-1.654, 1.822) 0.924 0.000 

Factor3 0.297 (-1.392, 1.986) 0.728 0.001 
 

0.325 (-1.382, 2.031) 0.707 0.002 

Factor4 -0.949 (-2.661, 0.763) 0.274 0.012 
 

-0.986 (-2.729, 0.758) 0.265 0.013 

Factor5 0.258 (-1.417, 1.932) 0.761 0.001 
 

0.251 (-1.441, 1.942) 0.769 0.001 

Factor6 0.611 (-1.051, 2.274) 0.467 0.005 
 

0.623 (-1.060, 2.305) 0.464 0.006 

Fasting glucose 
       

Factor1 0.005 (-1.607, 1.616) 0.996 0.000 
 

0.108 (-1.477, 1.693) 0.893 0.000 
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Factor2 0.012 (-1.537, 1.561) 0.988 0.000 
 

0.127 (-1.397, 1.651) 0.869 0.000 

Factor3 -0.920 (-2.434, 0.594) 0.231 0.014 
 

-0.905 (-2.402, 0.592) 0.233 0.015 

Factor4 1.766 (0.252, 3.280) 0.023 0.051 
 

1.768 (0.239, 3.298) 0.024 0.053 

Factor5 0.314 (-1.197, 1.825) 0.681 0.002 
 

0.284 (-1.200, 1.767) 0.705 0.002 

Factor6 1.089 (-0.400, 2.578) 0.150 0.021 
 

1.089 (-0.387, 2.564) 0.146 0.022 

Ln-insulin 
       

Factor1 0.008 (-0.118, 0.135) 0.895 0.000 
 

0.007 (-0.120, 0.135) 0.908 0.000 

Factor2 -0.053 (-0.174, 0.068) 0.386 0.008 
 

-0.055 (-0.178, 0.068) 0.375 0.008 

Factor3 -0.043 (-0.162, 0.077) 0.479 0.005 
 

-0.043 (-0.164, 0.077) 0.476 0.005 

Factor4 -0.011 (-0.133, 0.111) 0.858 0.000 
 

-0.016 (-0.139, 0.107) 0.798 0.001 

Factor5 0.079 (-0.039, 0.196) 0.188 0.017 
 

0.080 (-0.040, 0.199) 0.190 0.018 

Factor6 0.048 (-0.070, 0.165) 0.424 0.006 
 

0.047 (-0.072, 0.166) 0.435 0.006 

Ln-HOMA-IR 
       

Factor1 0.007 (-0.128, 0.143) 0.914 0.000 
 

0.008 (-0.129, 0.144) 0.913 0.000 

Factor2 -0.053 (-0.183, 0.077) 0.418 0.007 
 

-0.054 (-0.185, 0.077) 0.417 0.007 

Factor3 -0.053 (-0.181, 0.074) 0.410 0.007 
 

-0.054 (-0.183, 0.075) 0.410 0.007 

Factor4 0.008 (-0.123, 0.139) 0.904 0.000 
 

0.003 (-0.129, 0.135) 0.965 0.000 

Factor5 0.082 (-0.044, 0.208) 0.202 0.016 
 

0.082 (-0.046, 0.210) 0.204 0.017 

Factor6 0.059 (-0.067, 0.185) 0.357 0.009   0.058 (-0.069, 0.185) 0.368 0.009 

In all models, age, urinary nicotine metabolite, and current alcohol consumption were adjusted. 

Bold numbers indicate statistically significance (p<0.05).  
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4.4 Discussion 

 

Complex chemical profile observed in the present women population outlines that 

multiple chemicals should be considered when developing association models with health 

outcomes related to chemical exposure. The results of PCA (Table 4-2) show that complex 

chemical exposure profile developed from measurement of diverse biological media could be 

grouped into several groups of chemicals or factors. Interestingly, each factor is highly loaded 

with similar group of chemicals. Two major factors dominated variance were highly loaded 

with POPs, Factor 1 with PFCs, and Factor 2 with PCB153, PCB180, HCB, and p,p’-DDE. 

Factors 3 and 4 were highly loaded with urinary environmental phenols and phthalates, 

respectively, and Factor 5 were positively loaded with bisphenols and negatively loaded with 

PFHS. These observations suggest that these groups of chemicals are likely to be independent 

at least in terms of exposure sources or pathways.  

One observation that is noteworthy is that PCB52 is loaded in Factor 6, but other higher 

chlorinated PCBs, e.g., PCB153 and PCB180, loaded in Factor 2. This observation might be 

due to difference in major exposure sources of this group of chemicals. In general, higher 

levels of PCB153 and PCB180 are detected in food (Bernard et al., 1999; Schecter et al., 

2010). Because lower chlorinated PCBs such as PCB52 were relatively mobile and used in 

sealant material, higher levels are detected in the air compared to higher chlorinated PCBs 

(Bogdal et al., 2013; Schettgen et al., 2012). 

Urinary chemicals such as phthalates and benzophenones showed low to moderate 

correlations (Fig. 4-4). Several serum organochlorine pesticides (OCPs), polychlorinated 

biphenyls (PCBs), and perfluorinated compounds (PFCs) showed moderate to high 

correlations within the same chemical classes. In particular, PFOS, PFOA, PFNA, and 

PFUnDA are highly correlated with rho greater than 0.8, which was similar to a previous 
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study (Haug et al., 2009). High correlations observed among certain chemicals in the present 

population may reflect that these chemicals share common exposure sources such as food, 

drinking water, and air (Jian et al., 2017). 

It is noteworthy that the significant associations detected between factors and target 

health markers using PCA were comparable to those identified in Chapters 2 and 3. Similar to 

Chapter 2, Factor 4 (phthalate factor) was significantly positively associated with adiponectin 

and fasting glucose. Metal factors were not found according to factor loading greater than 0.5 

(Hair et al., 1998). However, when factor loading greater than 0.4 was employed, blood Hg, 

Cd, and Pb were relatively highly loaded in Factors 1, 4, and 5, respectively. Though some 

statistical significance of blood metals observed in Chapter 3 disappeared in its subpopulation 

observed in Chapter 4, blood Hg and Cd were still significantly positively associated with 

obesity markers and adiponectin, respectively. Considering positive association of Factor 1 

with obesity marker, and positive association of Factor 4 with adiponectin, these two metals 

might influence the associations.  

PCA is a dimension reduction approach that reduces the number of correlated variables 

into a smaller number of constructs (factors) which are uncorrelated with each other (Hatcher, 

1994). Because chemicals which have common sources are likely to be correlated, PCA can 

reflect exposure patterns due to common sources. Principal components are constructed based 

on the correlation among the predictors regardless of the outcomes. Therefore, the significant 

associations observed with a couple of factors which are comparable to those observed in 

previous chapters provide additional line of evidence that supports the association of these 

chemicals with obesity or metabolic markers.  

In the current study employing dozens of chemicals, it was found that factors identified 

from PCA based on molar concentrations are highly loaded with chemicals that belong to 

specific groups. More interestingly, it was found that some phthalates are positively 
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associated with adiponectin and fasting glucose, consistently by using both elastic net 

regression and PCA. Further validation of this observation in other populations is warranted. 
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Chapter 5 Summary and conclusions 

 

The associations between multiple classes of chemicals and obesity and its related health 

effects among women of reproductive age were evaluated in a series of three studies. Humans 

are exposed to multiple chemicals simultaneously. Thus, chemicals with short to long half-

lives in different biological matrix were measured and evaluated multi-pollutant models by 

adjusting chemical markers. 

In Chapter 2, the associations between urinary non-persistent chemicals including 

phthalate metabolites and phenolics were assessed (n = 459). The same classes of chemicals 

showed moderate to high correlations. To select the most predictive variables to an outcome, 

elastic net penalized regression was conducted. MiBP, ΣDEHPm, BPA, and BPS may be the 

most predictive variables to obesity, fasting glucose, or insulin resistance in Chapter 2. 

In Chapter 3, the associations between heavy metals, Hg, Cd, and Pb were assessed (n = 

456). Higher blood Hg was associated with higher BMI, GGT, and HOMA-IR, and lower 

adiponectin. Significant indirect effects of GGT and adiponectin were found in the 

association between blood Hg and HOMA-IR. Increased odds ratio of HOMA-IR>75
th

 

percentile per quartile increase of blood Pb was found, but the association disappeared after 

adjusting blood Hg which showed significant correlation with blood Pb. Because Hg showed 

significant associations with several markers, mediation analysis was conducted. Significant 

mediation effects of adiponectin and GGT in the association between Hg exposure and 

HOMA-IR were found. The implication of this chapter is that possible mediators of IR 

induced by Hg exposure were suggested by conducting mediation analysis. 

In the last chapter, all chemicals used in Chapter 2, 3, and 4 were included, and 

confirmed the robustness of analysis by performing principal component analysis (PCA). 
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Although PCA cannot identify factors related to an outcome, PCA can identify correlated 

exposures, i.e., common exposure sources or metabolic processes. Similar to Chapter 2, 

factor 4 characterized by phthalate metabolites showed positive significant associations with 

serum adiponectin and fasting glucose. 

This study design is cross-sectional, and therefore, this study could not provide causal 

inference. Small sample size of POPs concentrations can be another limitation. However, 

information on exposure patterns including multiple chemicals is still limited, and therefore, 

this study implies that the associations of multiple chemicals with obesity and metabolic 

markers were assessed in women of reproductive age. Because similar chemical classes such 

as PFCs and phthalates share metabolic pathway or common sources, management is needed 

to reduce these correlated chemical groups as a whole.  
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국문 초록(Abstract in Korean) 

 

가임기 여성의 화학물질 복합노출과  

대사 관련 지표와의 상관성 

 

 

여러 내분비교란물질(endocrine disrupting chemicals, EDCs)은 비만, 당뇨 

등 대사질환에 영향을 미치는 것으로 알려져 있다. 환경 역학에서는 

내분비교란물질과 비만, 대사 지표와의 상관성에 관한 연구가 활발히 보고되고 

있으나, 이는 비용 등의 문제로 인해 주로 한 매체에서 측정된 물질군으로 

한정되어 있다. 또한 중요한 대사 관련 지표 중 하나인 아디포카인과의 상관성에 

관한 연구는 부족한 실정이다. 

 

본 연구에서는 여러 매체에서 측정된 내분비교란물질과 비만, 대사 지표와의 

상관성을 보았다. Body mass index (BMI)와 체지방률을 비만의 지표로, 두 

아디포카인, 즉 아디포넥틴과 렙틴, γ-glutamyl transferase (GGT), 공복 혈당, 

인슐린, homeostatic model assessment for insulin resistance (HOMA-IR)을 

대사질환 지표로 활용하였다. 대상인구 집단인 가임기 여성은 2015 년도와 

2016 년도에 516 명 모집되었다. 소변, 전혈, 혈청 시료는 한 번씩 수거되었으며, 

장(chapter) 별로 동일한 시료에서 측정된 물질과 건강영향 지표와의 상관성을 

살펴보았다. 두 번째 장에서는 소변에서 측정된 프탈레이트 대사체와 환경성 

페놀류의 비잔류성 화학물질을, 세 번째 장에서는 전혈에서 측정된 중금속을, 네 

번째 장에서는 혈청에서 측정된 폴리염화 바이페닐(polychlorinated biphenyls, 
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PCBs), 유기염소계 살충제(organochlorine pesticides, OCPs), 폴리브롬화 

다이페닐에테르(polybrominated diphenyl ether, PBDEs), 

과불화화합물(perfluorinated compounds, PFCs)의 잔류성 유기오염물질을 

살펴보았다. 또한 네 번째 장에서는 잔류성 유기오염물질뿐 아니라, 소변, 전혈, 

혈청 중 분석된 물질군의 정보를 모두 가지고 있는 참여자에 한해, 다중 노출을 

고려한 다중회귀선형분석을 수행하였다.  

 

두 번째 장에서는 소변 중 비잔류성 화학물질인 프탈레이트 대사체와 환경성 

페놀류와 비만, 대사 지표와의 상관성을 살펴보았다. 대부분의 물질들이 유의한 

상관성을 보여, 건강 지표에 관한 가장 설명력 있는 변수를 선택하기 위해 

elastic net penalized regression 을 수행하였다. 단일 노출과 다중 노출 

모델에서 일관성 있게 유의한 상관성을 보인 물질들은 다음과 같다. Bisphenol S 

(BPS)와 비만, 렙틴은 유의한 양의 상관성을 나타냈으며, ethyl paraben 

(EtP)와 di(2-ethylhexyl) phthalate 대사체 합(ΣDEHPm)은 아디포넥틴과 

유의한 양의 상관성을 나타냈다. 공복혈당의 경우, ΣDEHPm 와 유의한 양의 

상관성을 나타냈으며, mono-isobutyl phthalate (MiBP)와 BPS 는 HOMA-

IR 과 유의한 양의 상관성을 나타냈다. 이를 통해 MiBP, ΣDEHPm, BPA, 

BPS 는 비만, 공복 혈당, 혹은 인슐린 저항성에 대한 설명력이 높은 물질이라는 

것을 확인할 수 있었다. 

 

세 번째 장에서는 전혈에서 측정된 중금속, 즉 수은, 카드뮴, 납과 비만, 대사 

지표와의 상관성을 살펴보았다. 수은은 BMI, GGT, HOMA-IR 과는 양의 
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상관성을 나타냈으며, 아디포넥틴과는 음의 상관성을 나타냈다. 수은이 여러 

건강영향 지표와의 유의한 상관성을 나타내어, 이 관계를 이해하기 위해 

매개효과 분석(mediation analysis)을 수행하였다. 수은과 HOMA-IR 사이의 

관계에서 GGT 와 아디포넥틴의 유의한 간접 효과를 확인할 수 있었다. 납과 

HOMA-IR 은 유의한 상관성을 나타냈다. 중금속과 비만, 대사 지표와의 

상관성에 관한 연구는 여러 인구집단에서 보고된 바 있으나, 본 연구는 수은과 

인슐린 저항성과의 관계에서 GGT, 아디포넥틴을 매개변인으로 제안하였다는 

점에서 의의가 있다. 

 

네 번째 장에서는 앞선 두 장에서 분석된 물질과 잔류성 유기오염물질을 

모두 포함하여 주성분 분석(principal component analysis, PCA)을 수행하여 

노출 형태를 살펴보고, 선택된 주성분과 대사 지표와의 상관성을 살펴보았다(n = 

104). 주성분 분석법은 공통된 노출원별로 물질군을 살펴보는데 유용한 통계적 

기법으로, 과불화합물과 프탈레이트 등 특징적인 주성분을 확인할 수 있었다. 두 

번째 장 결과와 유사하게, 프탈레이트로 특징되는 factor 4 는 아디포넥틴, 

공복혈당과 유의한 양의 상관성을 나타내었다. 비슷한 물질군들은 상관성이 높아, 

개별적인 물질로 상관성을 분석하는 데는 제한점이 있으므로, 물질군을 함께 

관리할 필요성이 있다. 

 

본 연구에서는 여러 물질군과 비만, 대사 지표와의 상관성을 동일한 집단에서 

살펴보았다는 이점이 있다. 본 연구를 통해 여러 물질군과 대사 지표와의 

상관성을 확인할 수 있었으며, 특히 프탈레이트 대사체는 공복혈당, 아디포넥틴과 
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일관성 있는 유의한 양의 상관성을 가지는 것을 확인할 수 있었다. 본 연구에서 

관찰된 물질들의 복합노출은 물질을 보정하는데 초점을 두었으며, 물질 간의 

상호작용 등에 관한 영향은 여러 물질군 조합의 실험연구를 통해 확인할 

필요성이 있다. 

 

표제어: 복합 노출; 비만; 아디포넥틴; 렙틴; 공복 혈당; 인슐린 저항성; 

프탈레이트; 페놀; 중금속; 잔류성 유기오염물질  
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