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ABSTRACT 

 

Chemical profiling of Farfarae Flos sesquiterpenoids 

and the target protein identification of an oplopane 

sesquiterpenoid in breast cancer cells 

 

Kwangho Song 
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College of Pharmacy 

Doctorate Course in the Graduate School 

Seoul National University 

 

Farfarae Flos is the dried buds of Tussilago farfara L., a perennial plant of 

the family Asteraceae, and has been used to treat coughs, bronchitis, and asthmatic 

conditions in traditional herbal medicine. Among its bioactive compounds, 

sesquiterpenoids exhibit various biological activities such as anti-inflammative, anti-

proliferative, and neuroprotective effects. In the present study, preparative separation, 

chemical profiling, and activity-based proteome profiling of sesquiterpenoids from 

Farfarae Flos were performed. 

Firstly, a novel fractionation and purification method of counter-current 

chromatography (CCC), called direct and continuous injection (DCI) mode, was 

developed to fractionate and preparatively separate sesquiterpenoids from Farfarae 

Flos. Since the extraction solution was used as a mobile phase in this method, solvent 
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consumption was greatly reduced. 6.8 g of sesquiterpenoid-enriched (STE) fraction 

was obtained from the crude extract (315.9 g) of Farfarae Flos (1 kg) in a single CCC 

run with a separation time of 8.5 hrs. The sample injection capacity of CCC-DCI 

was greater than 300 grams which could not be handled in conventional CCC 

methods. Moreover, quantification study indicated that the fractionation efficiency 

of CCC-DCI was higher than those of conventional fractionations: solvent 

partitioning and open column chromatography. The developed method demonstrates 

that CCC is a useful technique for enriching target components from natural products. 

Secondly, a liquid chromatography-electrospray ionization tandem mass 

spectrometry (LC-ESI-MS/MS)-based dereplicative method was developed to 

identify and quantify oplopane- and bisabolane-type sesquiterpenoids of Farfarae 

Flos. The MS-based nontargeted metabolomic approach for these chemical 

analogues, sesquiterpene esters, is challenging because of their in-source 

fragmentation and structural diversity. In order to profile these sesquiterpenoids, four 

diagnostic ions (m/z 215.143, 217.158, 229.123, and 231.138) were suggested in the 

positive ion mode and the developed method utilized two sequential MS/MS scan 

modes to characterize common skeletons and investigate the fragmentation patterns 

of their parent molecules. Under the optimized UHPLC-MS/MS method, 74 

sesquiterpenoids were identified from the Farfarae Flos and 11 compounds were 

isolated for the method validation. Furthermore, the diagnostic ions and the MS/MS 

fragment behaviors were applied to accurate quantification of the 8 isolated 

sesquiterpenoids. Consequently, the developed LC-MS/MS-based dereplicative 

method highlighted the chemical composition of the Farfarae Flos and could be 

applied to quality control of the herbal medicine. 
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Finally, target proteins of ECN (7β-(3´-ethyl cis-crotonoyloxy)-1α-(2´-

methyl butyryloxy)-3,14-dehydro-Z-notonipetranone) in human breast cancer cells 

were identified by chemical proteomics methodology. ECN showed potent anti-

proliferation activity in MDA-MB-231 and MCF-7 human breast cancer cells based 

on its α,β-unsaturated carbonyl moiety. Therefore, the potential cellular target 

proteins of ECN were identified using ECN-based clickable probe and quantitative 

MS/MS analysis. Among more than 200 identified proteins, 17 proteins showed 

more than 3 enrichment ratio in both cell lines. Furthermore, recombinant 14-3-3 

protein zeta and peroxiredoxin-1 were further verified by isothermic calorimetry and 

their alkylation sites. Taking the interaction between α,β-unsaturated carbonyl 

moiety of ECN and cysteine residues of proteins into account, peptides containing 

Cys25, Cys94 of 14-3-3 protein zeta and Cys83 of peroxiredoxin-1 were 

significantly reduced by ECN. Although these results could not confirm the role of 

ECN in the breast cancer cells, this suggestion of multiple target proteins contributed 

to understand the ECN-mediated anti-proliferative and anti-inflammatory effects, 

leading to further studies. 

 

 

Keywords: Farfarae Flos, oplopane and bisabolane sesquiterpenoid, Counter-
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chemical profiling, Anti-proliferation, Activity based proteome profiling 

 

Student Number: 2013-23461  



IV 

 

CONTENTS 

 

ABSTRACT ...................................................................................................... I 

CONTENTS ................................................................................................... IV 

LIST OF FIGURES ................................................................................... IX 

LIST OF TABLES ..................................................................................... XII 

 

I. INTRODUCTION .................................................................................... 1 

 1. Farfarae Flos .................................................................................................. 2 

1.1. Constituents and bioactivities ................................................................... 2 

1.2. Oplopane and bisabolane sesquiterpenoids ............................................. 4 

 

 2. Counter-current chromatography (CCC) .............................................. 6 

2.1. Background ................................................................................................. 6 

2.2. Solvent selection and application .............................................................. 9 

 

 3. Chemical profiling ...................................................................................... 12 

3.1. Liquid chromatography and mass spectrometry (LC-MS) .................. 12 

3.2. Scan modes of tandem mass spectrometry (MS/MS) ............................ 14 

3.3. LC-MS/MS-based dereplication methodology ...................................... 17 

 



V 

 

 4. Activity-based proteome profiling .......................................................... 20 

4.1. Background ............................................................................................... 20 

4.2. Click chemistry ......................................................................................... 22 

4.3. Quantitative proteome profiling based on mass spectrometry ............ 24 

 

II. STATE OF THE PROBLEM .......................................................... 26 

 

III. MATERIALS AND METHODS ................................................. 29 

1. Materials ....................................................................................................... 30 

1.1. Farfarae Flos ............................................................................................. 30 

1.2. Chemicals and reagents ........................................................................... 30 

1.3. Apparatus .................................................................................................. 31 

1.4. Cell lines .................................................................................................... 32 

 

2. Methods ......................................................................................................... 33 

2.1. An efficient fractionation method for the preparative separation of 

sesquiterpenoids from Farfarae Flos by CCC ........................................ 33 

2.1.1. Measurement of the partition coefficient (KD) ................................. 33 

2.1.2. Preparation of the extract solution and solvent system ................... 33 

2.1.3. CCC-DCI fractionation ...................................................................... 34 

2.1.4. Solvent partitioning and open column chromatography ................ 35 

2.1.5. Isolation of three major sesquiterpenoids ........................................ 36 

2.1.6. Preparation of sample solution .......................................................... 36 



VI 

 

2.1.7. HPLC analysis and calibration curve ............................................... 37 

2.2. Chemical profiling of sesquiterpenoids from Farfarae Flos based on 

LC-MS/MS analysis .................................................................................. 38 

2.2.1. Sample preparation from Farfarae Flos ........................................... 38 

2.2.2. UHPLC separation ............................................................................. 38 

2.2.3. MS/MS analysis ................................................................................... 39 

2.2.4. Separation of sesquiterpenoids and structural determination ....... 40 

2.2.5. Validation parameters for quantification ......................................... 41 

2.3. Activity based proteome profiling: Identification of target proteins of an 

oplopane sesquiterpenoid in breast cancer cells ..................................... 43 

2.3.1. Fractionation of Farfarae Flos extract ............................................. 43 

2.3.2. Cell viability assay .............................................................................. 43 

2.3.3. Synthesis of ECN-based clickable probe .......................................... 44 

2.3.4. Gel-based proteome profiling ............................................................ 45 

2.3.5. Preparation of probe-labeled proteome for MS-based analysis ..... 46 

2.3.6. LC-MS/MS analysis and data processing ......................................... 48 

2.3.7. Modification sites of identified proteins by ECN ............................. 49 

2.3.8. Isothermal titration calorimeter ........................................................ 50 

 

IV. RESULTS AND DISCUSSION ..................................................... 52 

1. An efficient fractionation method for the preparative separation of 

sesquiterpenoids from Farfarae Flos by CCC ..................................... 53 

1.1. Principle of CCC-DCI fractionation ...................................................... 53 

1.2. Selection of the extraction and elution solvents based on KD values ... 55 



VII 

 

1.3. CCC-DCI fractionation ........................................................................... 59 

1.3.1. Four stages of CCC-DCI .................................................................... 59 

1.3.2. Preparative separation of three major sesquiterpenoids ................ 62 

1.4. Quantification study ................................................................................ 67 

1.4.1. Validation parameters ........................................................................ 68 

1.4.2. Comparison of CCC-DCI with conventional methods .................... 70 

1.5. Discussion .................................................................................................. 73 

 

2. Chemical profiling of sesquiterpenoids from Farfarae Flos based on 

LC-MS/MS analysis .................................................................................... 75 

2.1. Characterization of diagnostic ions ......................................................... 75 

2.1.1. Diagnostic filtering .............................................................................. 78 

2.1.2. Fragmentation patterns of the diagnostic ions ................................. 80 

2.2. Precursor ion scan for the diagnostic ions .............................................. 82 

2.3. Method validation ..................................................................................... 86 

2.3.1. Separation of 11 sesquiterpenoids ...................................................... 86 

2.3.2. Structural elucidation ......................................................................... 88 

2.4. CID-fragmentation behavior of sesquiterpenoids ............................... 105 

2.5. Quantification of sesquiterpenoids by MRMHR ................................... 109 

2.6. Discussion ................................................................................................ 114 

 

 3. Activity-based proteome profiling: Identification of target proteins 

of an oplopane sesquiterpenoid in breast cancer cells ..................... 116 

3.1. Anti-proliferation activities of Farfarae Flos ....................................... 116 



VIII 

 

3.2. Synthesis of ECN-based clickable probe .............................................. 119 

3.3. Gel-based proteome profiling of clickable probe ................................. 125 

3.4. MS-based profiling of target proteins of ECN ..................................... 127 

3.5. Thermodynamics and binding sites of ECN for target proteins ........ 129 

3.6. Discussion ................................................................................................ 133 

 

V. CONCLUSION ..................................................................................... 135 

 

REFERENCES ........................................................................................... 138 

 

ABSTRACT IN KOREAN ................................................................... 157 



IX 

 

LIST OF FIGURES 

 

Fig. 1. Tussilago farfara L. and Farfarae Flos .............................................. 3 

Fig. 2. Chemical structures of reported oplopane and bisabolane type 

sesquiterpenoids from Farfarae Flos ................................................. 5 

Fig. 3. A schematic diagram of CCC system ................................................. 8 

Fig. 4. A schematic diagram of CCC separation based on KD value ..... 10 

Fig. 5. Polarity correlation between HEMWat systems and isolates ..... 11 

Fig. 6. A schematic diagram of LC-MS system .......................................... 13 

Fig. 7. A schematic diagram of MS/MS scan modes ................................. 16 

Fig. 8. A schematic diagram of LC-MS/MS based dereplication ........... 18 

Fig. 9. A schematic diagram of dereplication using MS/MS database ... 19 

Fig. 10. A schematic diagram of activity-based proteome profiling ...... 21 

Fig. 11. Click chemistry reaction ................................................................... 23 

Fig. 12. A schematic diagram of LC-MS based quantitative proteome 

profiling ................................................................................................ 25 

Fig. 13. A schematic diagram of CCC-DCI mode ...................................... 54 

Fig. 14. CCC-DCI chromatogram of Farfarae Flos extract .................... 61 

Fig. 15. Preparative separation of three major sesquiterpenoids .......... 63 

Fig. 16. 1H and 13C spectrum of TG .............................................................. 64 

Fig. 17. 1H and 13C spectrum of AECN ........................................................ 65 

Fig. 18. 1H and 13C spectrum of ECN ........................................................... 66 



X 

 

Fig. 19. HPLC-UV chromatograms of extract and fraction ................... 71 

Fig. 20. In-source fragmentation of sesquiterpenoids ............................... 76 

Fig. 21. Proposed diagnostic ions under LC-ESI-MS analysis ............... 77 

Fig. 22. Ion chromatogram of STE fraction and diagnostic filtering ..... 79 

Fig. 23. Fragmentation patterns of diagnostic ions ................................... 81 

Fig. 24. Total ion chromatograms of precursor ion scan ......................... 83 

Fig. 25. Preparation of 11 sesquiterpenoids from STE fraction ............. 87 

Fig. 26. Precursor ion scans for isolated sesquiterpenoids ...................... 90 

Fig. 27. HSQC spectrum of compound No. 7 ............................................. 91 

Fig. 28. HSQC spectrum of compound No. 11 ............................................ 92 

Fig. 29. HSQC spectrum of compound No. 12 ........................................... 93 

Fig. 30. HSQC spectrum of compound No. 14 ........................................... 94 

Fig. 31. HSQC spectrum of compound No. 23 ........................................... 95 

Fig. 32. HSQC spectrum of compound No. 36 ........................................... 96 

Fig. 33. HSQC spectrum of compound No. 39 ........................................... 97 

Fig. 34. HSQC spectrum of compound No. 45 ........................................... 98 

Fig. 35. HSQC spectrum of compound No. 60 ........................................... 99 

Fig. 36. HSQC spectrum of compound No. 68 ......................................... 100 

Fig. 37. HSQC spectrum of compound No. 72 ......................................... 101 

Fig. 38. NOESY spectrum of compound No. 7 ......................................... 102 

Fig. 39. NOESY spectrum of compound No. 23 ....................................... 103 

Fig. 40. NOESY spectrum of compound No. 45 ....................................... 104 



XI 

 

Fig. 41. Representative MS/MS fragmentation behaviors .................... 107 

Fig. 42. Fragmentation behaviors of mono- and hetero-isotopic ions ... 108 

Fig. 43. Herbal materials for quantification study .................................. 110 

Fig. 44. Dereplication of 8 sesquiterpenoids by UHPLC-MRMHR ...... 111 

Fig. 45. Anti-proliferation activities of fractions from Farfarae Flos .. 117 

Fig. 46. Anti-proliferation activities of compounds from Farfarae Flos 118 

Fig. 47. Synthesis of ECN-based clickable probe and anti-proliferation 

activity ................................................................................................. 120 

Fig. 48. HSQC spectrum of ECN ................................................................. 121 

Fig. 49. HSQC spectrum of ECN-E ............................................................ 122 

Fig. 50. HSQC spectrum of ECN-N3 ........................................................... 123 

Fig. 51. 15N-HMBC spectrum of ECN-N3 .................................................. 124 

Fig. 52. Gel-based profiling of ECN-N3 labeled proteome in situ ........ 126 

Fig. 53. Thermograms and parameters for interaction of ECN with 

identified target proteins ................................................................ 131 

Fig. 54. Alkylation of cysteine residues in 14-3-3 protein zeta by ECN .. 132 

Fig. 55. Alkylation of cysteine residues in peroxiredoxin-1 by ECN ..... 133 

  



XII 

 

LIST OF TABLES 

 

Table 1. The partition coefficients (KD) of three major sesquiterpenoids 

in different solvent composition ..................................................... 57 

Table 2. Comparison of the extraction efficiency of 45% acetonitrile and 

methanol .............................................................................................. 58 

Table 3. The linear range, linearity, LOD, and LOQ of three major 

sesquiterpenoids by UV detection ................................................. 69 

Table 4. The comparison of the fractionation efficiency of CCC-DCI, 

solvent partitioning, and open column chromatography ........ 72 

Table 5. Identified sesquiterpenoids of Farfarae Flos by precursor ion 

scan of UHPLC-QqQ-MS/MS ........................................................ 84 

Table 6. Quantitative parameters for sesquiterpenoids by UHPLC- 

MRMHR .............................................................................................. 112 

Table 7. Intra-day and inter-day precision of UHPLC-MRMHR ......... 112 

Table 8. Extraction yield of herbal materials ........................................... 113 

Table 9. Contents of 8 sesquiterpenoids in Tussilago farfara by UHPLC- 

MRMHR .............................................................................................. 113 

Table 10. Identified target proteins of ECN in breast cancer cells ...... 129 

 

 



1 

 

 

 

 

 

I. INTRODUCTION 

  



2 

 

1. Farfarae Flos 

1.1. Constituents and bioactivities 

Farfarae Flos, buds of Tussilago farfara L. (Fig. 1A), commonly known 

as coltsfoot, is a perennial medicinal plant of the family Asteraceae that is widely 

spread in East Asia, Siberia, North Africa, Europe, and sporadically in the United 

States. The dried flower buds of T. farfara (Farfarae Flos; Fig. 1B) have been used 

to treat respiratory problems, such as cough, bronchitis, and asthmatic conditions in 

traditional medicine [1, 2]. A series of phytochemical studies on T. farfara have 

revealed that the plant contains a diverse number of compounds, including 

polysaccharides, quinic acid derivatives, flavonoids, terpenoids, chromones, and 

pyrrolizidine alkaloids [3-9]. Among those classes of compounds, sesquiterpenoids 

and quinic acid derivatives were reported as the characteristic and major 

components of Farfarae Flos [10]. It was recently reported that sesquiterpenoids 

from the Farfarae Flos exhibit several pharmacological properties, such as anti-

inflammatory, anti-proliferative, anti-oxidative, and neuroprotective effects [11-16].  
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Figure 1. Tussilago farfara L. 

Photographs of (A) buds and (B) flower of Tussilago farfara L. (C) Herbal 

materials of T. farfara from Medical Herb Garden, College of Pharmacy, Seoul 

National University. 
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1.2. Oplopane and bisabolane sesquiterpenoids 

Farfarae Flos contains oplopane and bisabolane type sesquiterpenoids, 

whose skeletons are substituted with diverse ester derivatives and about 30 

sesquiterpene esters have been reported up to date [17–25]. Considering the 

substituents in the R1–R3 positions, the sesquiterpene backbone could be decorated 

with various ester groups and six substituents were reported (Fig. 2). Tussilagone, 

one of the oplopane sesquiterpenoids, is a chemical marker of the herbal medicine. 

Regulation of the Farfarae Flos in the Chinese Pharmacopoeia was implemented in 

2010, which described that the tussilagone content of Farfarae Flos must be greater 

than 0.07% [26]. 
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Figure 2. Chemical structures of reported oplopane and bisabolane type 

sesquiterpenoids from Farfarae Flos 
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2. Counter-current chromatography 

2.1. Background 

Counter-current distribution (CCD) was invented in 1940s as the original 

form of liquid chromatography using two immiscible solvent phases to separate 

natural products [27]. However, the advancement in the separation technique was 

yielded from counter current chromatography (CCC) developed by Ito in the 1970s 

overcoming the vulnerable points of CCD; time and solvent consuming and 

complex instrumental systems [28]. Planetary motion of the CCC instrumental 

systems (Fig. 3) provides two major functions for performing CCC separation: a 

rotary-seal-free elution system so that the mobile phase is continuously eluted 

through the rotating separation column. The second and more important function is 

that it produces a unique hydrodynamic motion of two solvent phases within the 

rotating multilayer coiled column mainly due to the Archimedean screw effect. 

When two immiscible solvent phases are introduced in the multilayer coiled 

column, the rotation separates the two phases completely along the length of the 

tube where the lighter phase occupies one end called the head and the heavier 

phase, the other end called the tail. 

CCC is complementary to high performance liquid chromatography 

(HPLC) in isolation and purification of natural products with several advantages. 

CCC is cost-saving in maintenance of the column system compared to HPLC 

because the multifold tube wound around coils is generally made of 
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polytetrafluoroethylene (PTFE) and it does not critically depends on the optimal 

solvent grade. CCC also provides a wide range in the selection of solvent systems. 

HPLC has limitation in acidity, basicity or extreme polarity of mobile phases 

because they might be detrimental for the solid stationary phase in columns but 

CCC is less sensitive to the solvent properties. Due to the support-free liquid 

stationary phase, the biphasic solvents both can be the mobile phase and the gentle 

interaction between solutes and liquid stationary phase insignificantly affects the 

sample decomposition. In addition, no irreversible adsorption of the analytes to the 

solid stationary phase arises so that the sample can be recovered without loss [27]. 

With the advantages, CCC has been applied to preparative separation of natural 

products as a powerful tool [29, 30].   
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Figure 3. A schematic diagram of CCC system 

The column holder rotates about its own axis and revolves around the centrifuge axis at 

the same angular velocity (ω) in the same direction. This type-J planetary motion of a 

multilayer coil separation column produces elution of both lighter and heavier phases 

through the coiled column where the lighter phase occupies one end called the head and 

the heavier phase, the other end called the tail. Reprinted with permission from [27]. 

Copyright 2005 by Elsevier (license number, 4621441102706). 
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2.2. Solvent selection and application 

CCC solvent system consists of two immiscible phases and the target 

compounds relatively have different affinity or solubility toward the biphasic 

solvent system. Therefore, the analytes might be distributed with different ratio 

between the two phases (Fig. 4). The distribution is evaluated by taking the upper 

phase concentration of the compound and then dividing it by the lower phase one. 

The ratio is a partition coefficient and symbolized by KD [27]. Selecting effective 

solvent systems along with appropriate partition coefficients is most time-

consuming but also most critical for the successful CCC separation. However, a 

little change in the one phase is able to change the other phase due to liquid-liquid 

equilibrium [31] so countless ways to create biphasic liquid systems which might 

confuse the researchers are possibly suggested. Most generally applied solvent 

systems are based on HEMWat (n-hexane / ethyl acetate / methanol / water, Fig. 5) 

[32] and ChMWat (chloroform / methanol / water) composition [33]. These solvent 

variations can be guidelines when selecting the proper solvent systems.  
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Figure 4. A schematic diagram of CCC separation based on KD value 

Target analytes are distributed and sequentially eluted in CCC system with 

different concentration ratio between the two phases (KD). The KD value is 

evaluated by dividing the upper phase concentration of the compound by the lower 

phase one. 
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Figure 5. Polarity correlation between HEMWat systems and isolates 

Reprinted with permission from [32]. Copyright 2014 by Elsevier (license number, 

4621440973364). 
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3. Chemical profiling 

3.1. Liquid chromatography and mass spectrometry (LC-MS) 

Over the past few decades, advances in mass spectrometry (MS) have 

contributed to natural products research by providing qualitative and quantitative 

information [34]. MS can separate organic molecules according to their molecular 

weight and enable its detection with high sensitivity. It is not only regarded as 

having good selectivity, but also a very sensitive instrument. The mass 

spectrometer aim to boost the detection of low amounts of target compounds, while 

also to identify the species corresponding to each chromatographic peak through its 

unique mass spectrum [35]. Furthermore, the combination of liquid 

chromatography and MS (LC-MS) has become one of the powerful tools for the 

screening, identification, and quantification of complicated natural products (Fig. 6) 

[36].  

  



13 

 

 

 

Figure 6. A schematic diagram of LC-MS system 
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3.2. Scan modes of tandem mass spectrometry (MS/MS) 

Tandem mass spectrometry, called as MS/MS or MS2, allows for more 

informative mass analysis using a sequential scans in different regions of the 

instruments. [37]. A triple quadrupole mass spectrometer (QqQ-MS) is a kind of 

tandem mass spectrometer that is consisted of two quadrupole type mass analyzers 

(Q1 and Q3) and collision cell (Q2) between them [38]. The first and third 

quadrupoles can act as mass filters by detecting target ions, while the second 

quadrupole can fragment the precursor ion using collision gas. As shown in Fig. 7, 

the representative MS/MS technique is divided to four scan modes according to 

their experimental purpose: (A) In product ion scan, the first analyzer (Q1) is set to 

a value that selects one specific precursor ion at a time and the selected ion 

undergoes collision induced dissociation (CID) in Q2. The produced fragments are 

analyzed by the second analyzer (Q3). This method usually applied to screen 

known metabolites by matching their MS/MS fragmentation patterns. (B) In 

precursor ion scan, Q3 is set to transmit only one selected fragment ion to the 

detector, and Q1 scans all the precursor ions that generate this fragment. Typically, 

this scan mode is used to detect a subset of target molecules which contain 

common backbone or specific substituent groups. (C) Neutral loss scanning utilizes 

both analyzers in a synchronized manner, so that specific mass difference of ions 

was detected. The neutral loss scan is therefore used to detect those molecules that 

contain specific functional groups. (D) Selected reaction mornitoring (SRM) also 

use both analyzers, but select one precursor ion at Q1 and the other specific 

fragment at Q3, respectively. Therefore, the SRM method is usually used for 
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quantification of specific analytes in complex samples with known fragmentation 

properties. If multiple masses are selected for Q1 and Q3, this configuration is 

called multiple reaction monitoring (MRM) and the simultaneous quantification is 

possible in a single operation [39]. Although other MS/MS techniques such as Q-

TOF MS and Orbitrap MS can utilize the scan modes, QqQ MS has gained their 

popularity for the precursor ion scan [40] and the MRM method [41] due to its fast 

scan speed and robustness, allowing the simultaneous detection of several hundreds 

of target analytes. 
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Figure 7. A schematic diagram of MS/MS scan modes 

(A) Product ion scanning is the most common MS/MS experiment in metabolic 

analysis. The purpose is identification of fragment ion spectra of the target small 

molecules. (B) Precursor ion scanning is used to detect a subset of small molecules 

that contain specific skeletal backbone or substituent group. (C) Neutral loss 

scanning scans both analyzers in a synchronized manner, so that is used to detect 

those small molecules that contain specific substituent group. (D) Multiple reaction 

mornitoring is used for the detection of a specific analyte with known 

fragmentation properties in complex samples. Reprinted with permission from [38]. 

Copyright 2006 by American Association for the Advancement of Science. 
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3.3. LC-MS/MS-based dereplication methodology 

Chemical profiling for secondary metabolites in natural products has been 

a laborious process, but underway for a few decades [42]. The main purpose of the 

profiling is to differentiate the whole constituents including bioactive or novel 

compounds. Extraction and elucidation of the chemical relationships within a given 

dataset are crucial to highlight the total number of detectable metabolites. However, 

deconvolution of each compound is challenging because natural products contain 

structurally diverse derivatives. In this perspective, dereplication strategy using 

LC-MS/MS techniques have gained more importance from both targeted and 

untargeted metabolomics [43]. The dereplication is rapid classification of complex 

mixtures in order to annotate the chemical structures and understand the significant 

variations. Investigation of the MS/MS information such as in-source 

fragmentation [44], accurate mass [45], adduct formation [46], neutral loss [47], 

and diagnostic ion [48] enabled us to dereplicate rapidly the secondary metabolites 

and sensitively quantify the interesting compounds, and the chemical composition 

of crude extracts could be established (Fig. 8). Not only known compounds but 

also unknown and minor metabolites can be unveiled when the high-quality spectra 

are sophisticatedly interpreted. Moreover, MS and MS/MS spectral databases for 

the secondary metabolites have been established over the past few decades and 

offer a powerful tool to figure out complex natural products (Fig. 9) [49].  
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Figure 8. A schematic diagram of LC-MS/MS based dereplication 

Reprinted with permission from [43]. Copyright 2016 by John Wiley and Sons (license 

number, 4621440434576). 
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Figure 9. A schematic diagram of dereplication using MS/MS database 

Molecular network (MN)-based dereplication using the in-silico MS/MS database 

(ISDB). (A) Crude extracts are profiled and untargeted MS/MS data are acquired. 

(B) Parent ions are organized as MN according to their MS/MS data. (C) The 

spectral library search can be made in two different modes. (D) Individual nodes 

are dereplicated against the ISDB using the parent ion mass as prefilter. 

Alternatively, (E) individual nodes can be dereplicated against the ISDB in a 

modification tolerant spectral library search called variable dereplication. Reprinted 

with permission from [49]. Copyright 2016 by American Chemical Society.  



20 

 

4. Activity-based proteome profiling 

4.1. Background 

Natural and traditional medicines, being a great source of drugs and drug 

leads, have regained wide interests due to the limited success of high-throughput 

screening of compound libraries in the past few decades and the recent technology 

advancement [50]. In many cases, bioactive compounds exert their functions 

through interaction with their multiple target proteins, thus target identification has 

an important role in drug discovery and biomedical research fields [51–53]. 

Identification of the specific target proteins not only unravels the mechanism of 

action (MOA) of the compound but also reveals its potential therapeutic 

applications and adverse side effects [54–56]. In this perspective, activity-based 

proteome profiling provides a direct and unbiased platform for comprehensive 

profiling of target proteins of a given bioactive compounds. This methodology is a 

multidisciplinary approach which integrates chemical modification with cell 

biology, resulting the enrichment of target proteins in situ (Fig. 10). Using the 

bioactive compound-based probe as capture tag, reliable target proteins can be 

obtained under the physiological conditions and further identified by gel-based or 

MS-based approaches [57]. 
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Figure 10. A schematic diagram of activity-based proteome profiling 
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4.2. Click chemistry 

Although conventional affinity-based proteomics approaches have made 

great progress in the identification of cellular targets and elucidation of MOAs of 

many bioactive molecules, nonspecific binding remains a major issue which may 

reduce the accuracy of target identification and preclude the drug development 

process [51]. The in vitro target profiling may not accurately reflect the MOAs in 

the in vivo physiological environment. To overcome this limitation, bio-orthogonal 

methodologies have been developed to selectively enrich the target biomolecules in 

living systems (in situ or in vivo) [58–61]. One of these techniques, called click 

chemistry reaction, is copper-catalyzed azide-alkyne cycloaddition and enables the 

enrichment of target proteins in situ (Fig. 11) [62]. For the bio-orthogonal chemical 

reactions, the bioactive molecules must be modified to activity-based probes 

(ABPs) which contain either alkyne or azido group. The ABPs covalently react 

with target proteins through their reactive moieties, and the probe-labeled target 

proteins can be purified and identified by LC-MS/MS systems [63]. 
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Figure 11. Click chemistry reaction 

(A) Copper-catalyzed azide-alkyne cycloaddition to form triazole. (B) Terminal 

alkyne or cyclooctyne undergo cycloaddition with azide under physiological 

condition. Reprinted with permission from [62]. Copyright 2003 by American 

Chemical Society. 
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4.3. Quantitative proteome profiling based on mass spectrometry 

Recently, chemical proteomics approaches have been a powerful tool in 

combination with modern high-resolution MS/MS analysis and bioinformatics for 

subsequent identification of binding proteins [64, 65]. In fact, several quantitative 

proteome profiling studies have been successfully performed using the MS/MS 

technique and characterized target proteins of traditional medicines [66–69]. 

Quantitative proteomics strategies could be divided in two groups, those that use 

some form of stable isotope labeling [66–70] and label-free quantification methods 

[71–73]. Stable isotope labeling-based methods are widely applied because they 

allowed the binary comparison experiments (control vs. treated, healthy vs. disease) 

(Fig. 12) [51]. In this strategy, two or more samples are modified with variants of a 

reagent that differ in their isotopic composition. Because the stable isotopes have 

virtually identical physicochemical properties as the natural isotopes, proteins 

incorporated with the stable isotope are almost identical to their natural 

counterparts [74]. Therefore, the difference in accurate mass of peptide and their 

fragments enables determination of the relative quantities of a peptide in different 

samples.  
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Figure 12. A schematic diagram of LC-MS based quantitative proteome profiling 

Stable isotope labeling-based quantitative mass spectrometry approaches in chemical 

proteomics. (A) Comparison of two independent experiments with active and inactive 

molecules by isobaric labeling of eluted proteins. (B) Determination of specificity and 

affinity by isobaric labeling of obtained peptides. (C) Identification of specific protein 

targets by comparison of labeled eluates between compound-pretreated and -untreated 

group. Reprinted with permission from [51]. Copyright 2008 by Springer Nature (license 

number, 4621430351042).  
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Natural products, one of the key sources of biologically active metabolites, 

are commonly exploited for the development of drugs and dietary supplements [50]. 

However, the chemical analogues in one natural resource have similar structures 

sharing backbones and substituent groups, it is challenging to separate the complex 

mixture chromatographically and interpret the spectrometric information. 

Furthermore, the small molecule usually interact with multiple proteins, and their 

mechanism of action (MOA) and potential side effect are hard to recognize. In this 

perspective, the present study is focused on i) preparative separation, ii) chemical 

profiling, and iii) activity based proteome profiling of sesquiterpenoids from 

Farfarae Flos.  

Firstly, it is essential to develop an efficient method for preparative 

enrichment and isolation of natural components for the structural determination and 

further pharmacological studies. Counter-current chromatography (CCC), one of 

liquid-liquid chromatographic technique, is suitable for the enrichment and 

preparative separation of target components because CCC theoretically generates 

100% sample recovery [28]. However, the sample loading capacity of conventional 

CCC method does not exceed that of solvent partitioning and open column 

chromatography for a given separation column size [75–77]. Furthermore, scale-up 

of the CCC technique has focused on enlarging the size or improving the shape of 

the separation column [78–83]. Therefore, the aim of this study was to develop an 

efficient method for preparative enrichment and separation of target compounds 

from plant extracts using CCC. 



28 

 

The second objective of the present study was to develop LC-MS/MS 

dereplicative method for oplopane and bisabolane sesquiterpenoids from Farfarae 

Flos. The backbones of these compounds are substituted with diverse ester 

derivatives, and about 30 sesquiterpene esters have been reported up to date [17–

25]. Although the sesquiterpenoids are hard to be fully separated and characterized 

because of their structural diversity, LC-MS-based analytical studies have not been 

reported except for tussilagone which is a chemical marker of the medicinal plant 

[84–86]. In addition, metabolomic profiling studies of the Farfarae Flos have 

focused on its phenolic compounds and pyrrolizidine alkaloids [87, 88]. Therefore, 

it is necessary to profile the sesquiterpenoids for quality control of the Farfarae 

Flos. 

Finally, identification of target proteins of an oplopane sesquiterpenoid 

(7β-(3’-ethyl cis-crotonoyloxy)-1α-(2’-methylburyryloxy)-3, 14-dehydro-Z-

notonipetranone, ECN) was conducted in human breast cancer cells. The Farfarae 

Flos have been reported to exhibit anti-proliferation activity in several cancer cell 

lines, and its oplopane type sesquiterpenoids were most potent [89–93]. However, 

the range of investigated molecular pathways were too narrow to specify the 

molecular targets of these compounds. Therefore, it is need to identify the direct 

target proteins of the oplopane sesquiterpenoid in order to understand its 

mechanism of action and potential therapeutic applications. 
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III. MATERIALS AND METHODS 
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1. Materials 

1.1. Farfarae Flos 

Korean Farfarae Flos was collected from Medical Herb Gargen of Seoul 

National University (Ilsan, Korea), and Chinese Farfarae Flos was purchased from 

Omniherb (Yeongchun, Korea).  

 

1.2. Chemicals and reagents 

Industrial grade n-hexane, methylene chloride, ethyl acetate, methanol, 

and acetonitrile (Daejung, Siheung, Korea); analytical grade water (NANO pure 

Diamond, Barnstead, NH, USA); analytical grade acetonitrile (J. T. Baker, NJ, 

USA); macroporous ion-exchange Diaion™ HP-20 resin (Mitsubishi Chemical 

Corporation, Tokyo, Japan); formic acid (Daejung, Siheung, Korea) were used for 

chromatographic and mass spectrometric experiments. 

Dulbecco’s phosphate buffered saline (PBS), dimethyl sulfoxide (DMSO), 

a protease inhibitor cocktail, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium 

bromide (MTT), cerium (III) chloride heptahydrate (CeCl3), tris-3-hydroxypropyl 

triazolyl methyl amine (THPTA), tris(2-carboxyethyl)phosphine hydrochloride 

(TCEP), triethyl ammonium bicarbonate (TEAB), and iodoacetamide (IAA) were 

obtained were purchased from Sigma Aldrich (St. Louis, MO). Penicillin, DMEM 

(high glucose), and fetal bovine serum (FBS) were obtained from GenDepot 

(Barker, TX). Cyanine3-alkyne (Cy3-alkyne) and dialkoxydiphenylsilane (DADPS) 
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biotin alkyne, were purchased form Click Chemistry Tools (Scottsdale, AZ, USA). 

14-3-3 protein zeta and peroxiredoxin-1 were purchased from Fitzgerald (Cat # 

80R-1064 and 80R-1854, respectively). All other chemicals were purchased from 

Sigma-aldrich unless otherwise specified. 

 

1.3. Apparatus 

The CCC instrument was a TBE-1000A (Tauto Biotech., Shanghai, China), 

including a six-port injection valve, a 60 mL sample loop, a Hitachi UV detector L-

7400 (Hitachi, Tokyo, Japan), a Prep UV-10V detector (Yamazen, Osaka, Japan), a 

Waters fraction collector (Waters Corporation, MA, USA), and a Autochro data 

module with Autochro-2000 1.0 software (Younglin Instrument, Angyang, Korea). 

The TBE-1000A had three multilayer coil separation columns connected in series 

(tube I.D.: 3.0 mm, each volume of three coils: 330 mL, total volume: 1000 mL). 

The rotation speed of the apparatus ranged from 0 to 500 rpm. Samples were 

analyzed by high-performance liquid chromatography (HPLC) using a Hitachi L-

6200 HPLC pump (Hitachi), a SIL-9A auto injector (Shimadzu, Kyoto, Japan), and 

a Spectra-100 UV detector (Spectra-Physics, Santa Clara, USA). 

UHPLC separation of Farfarae Flos was performed on a Thermo 

VanquishTM Flex UHPLC system (Thermo Scientific, Waltham, MA, USA) and a 

YMC Triart C18 column (2.0 mm  50 mm, 1.9 μm particle size, YMC Co.). 

Precursor ion scan was performed using a 3200 QTrap system (AB Sciex, Foster 
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City, CA, USA), and product ion scan and high resolution multiple reaction 

monitoring (MRMHR) were conducted using a Triple TOF 5600+ system (AB 

Sciex). The NMR spectra of isolated compounds were recorded by a Bruker 

Avance 500 MHz spectrometer and NMR solvents: DMSO-d6, CDCl3, and 

tetramethylsilane (TMS) were purchased from Cambridge Isotope Laboratories 

(Cambridge, MA). 

Cell viability assessed by MTT assay was measured using a Molecular 

Devices Emax Microplate Reader (Sunnyvale, CA, USA). Mass spectrometric 

peptide analyses were performed using an Easy-nanoLC 1000 (Thermo Fisher 

Scientific, Waltham, MA) coupled to a Q-Exactive Hybrid Quadrupole-Orbitrap 

instrument mass spectrometer (Thermo Scientific). 

 

1.4. Cell lines 

MDA-MB-231 and MCF-7 human breast cancer cells were purchased 

from the Korea Cell Bank (Seoul, Korea). and maintained in DMEM supplemented 

with 10 % FBS and antibiotics (penicillin 100 U/mL and streptomycin 100 μg/mL). 

Cultures were maintained in a humidified atmosphere incubator at 37 °C with 5% 

CO2. 
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2. Methods 

2.1. An efficient fractionation method for the preparative separation of 

sesquiterpenoids from Farfarae Flos by CCC 

2.1.1. Measurement of the partition coefficient (KD) 

The compositions of the extraction solvent and eluting solvent were 

selected based on the partition coefficient (KD) of the three major sesquiterpenoids 

(TG: tussilagone, AECN: 14-acetoxy-7β-(3’-ethyl cis-crotonoyloxy)-1α-(2’-

methylbutyryloxy)-notonipetranone, and ECN: 7β-(3’-ethyl cis-crotonoyloxy)-1α-

(2’-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone). An adequate amount 

(approximately 1 mg) of each compound was weighed into a test tube, to which 1 

mL aliquots of a two-phase solvent were added (0.5 mL of n-hexane as the upper 

phase and aqueous acetonitrile as the lower phase: 35, 45, 55, 65, 75, 85, and 95% 

acetonitrile in a total volume of 0.5 mL). The tube was shaken vigorously to 

thoroughly equilibrate the compound between the two phases. Equal volume of 

each phase were separated and evaporated to dryness under N2 gas. The residue 

was dissolved in methanol and was analyzed by HPLC. The KD value was 

calculated from the peak area of the target compound in the upper phase divided by 

the peak area in the lower phase. 

 

2.1.2 Preparation of the extract solution and solvent system 

Dried Farfarae Flos (1 kg) were pulverized and extracted with 3 L of 45% 

acetonitrile by sonication for 1 h. The extraction process was repeated with 2 L of 
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45% acetonitrile two more times. The extract solution were passed through filter 

paper (Advantec, Tokyo, Japan), and all filtrates were combined. Total extract 

solution (5.4 L) was directly injected for CCC-DCI fractionation. Additional 

Farfarae Flos (1 kg) was extracted using the same method, and the extract solution 

was dried for conventional fractionation methods: solvent partitioning and open 

column chromatography.  

 

2.1.3. CCC-DCI fractionation 

Counter-current chromatography-direct and continuous injection (CCC-

DCI) fractionation was conducted in four stages using the preparative CCC 

instrument (TBE-1000A). n-Hexane, acetonitrile, and water were used as the two-

phase solvent system, and each solvent was prepared separately (only degassing) 

without time-consuming equilibration in a separatory funnel. Stage I: the multi-

layered coiled column was filled with n-hexane to form the stationary phase. The 

apparatus was then rotated at 450 rpm, and the extraction solution of Farfarae Flos 

(5.4 L in total) was directly pumped into the head end of the column at a flow rate 

of 15 mL/min. Stage II: the extraction solution was continuously injected into the 

column. The eluent was continuously monitored by connecting the tail outlet of the 

coiled column to a UV detector. The UV system detection was performed at 235 

nm and 2.5 (maximum) absorbance units. Stage III: after all the extraction solution 

was injected into the CCC instrument, pure 45% acetonitrile (same composition as 

the extraction solvent) was pumped into the head of the column at the same flow 
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rate. Stage IV: as the UV signal decreased, 100% acetonitrile (eluting solvent) was 

pumped into the CCC instrument. The sesquiterpenoid-enriched (STE) fraction was 

collected according to the elution profile and was analyzed by HPLC-UV. 

Stationary phase retention was measured after fractionation by forcing the contents 

through the column with pressurized N2 gas and collecting the contents. 

 

2.1.4. Solvent partitioning and open column chromatography 

Another extract solution of Farfarae Flos (5.4 L) was evaporated with a 

rotary evaporator under reduced pressure, and the dried extract (513.9 g) was 

dissolved in 2.5 L of water and fractionated with 2.5 L of n-hexane (n-Hex) three 

times. The water residue was fractionated with 2.5 L of methylene chloride (MC) 

three times. Each solution (7.5 L, respectively) was evaporated to produce an n-

Hex (5,816 mg) and MC (4,399 mg) fraction, and combined for subsequent open 

column chromatography. The combined fraction (10,215 mg) was dissolved in 1 L 

of 30% methanol (MeOH) and loaded onto a Diaion HP-20 open column (60 cm  

2.4 cm; the volume of the column was 270 mL and it was packed with 200 g of 

resin). Then, the fractions were sequentially eluted with a MeOH gradient 

beginning with 100% water and increasing to 30, 60, 90, and finally 100% MeOH. 

The volume of each elution solvent was 2 L. The STE fractions were eluted by 90% 

MeOH (2,033 mg) and 100% MeOH (4,055 mg). 
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2.1.5. Isolation of three major sesquiterpenoids 

Three major sesquiterpenoids (TG, AECN, and ECN) were isolated from 

the STE fraction by CCC. n-Hexane was filled to the separation column of CCC as 

the stationary phase, and the apparatus was rotated at 450 rpm. Three grams of the 

STE fraction was dissolved in 60 mL of 65% acetonitrile and loaded into sample 

loop. The sample solution was injected through a six-port injection valve, and the 

mobile phase (65% acetonitrile) was directly pumped into the head of the column 

at a flow rate of 5 mL/min. The CCC separation condition was the following: water 

as eluent A; acetonitrile as eluent B; linear gradient: 0–300 min (65–100% B), 300–

400 min (100% B). Then stationary phase retention was measured by forcing the 

contents through the column with pressurized N2 gas and collecting the contents. 

The collected compounds were further refined by preparative HPLC to eliminate 

minor impurities. The purities of the sesquiterpenoids were assessed by HPLC-UV 

at 235 nm, and their chemical structures were determined by 1H and 13C NMR 

spectroscopy. The NMR spectra were recorded by a Bruker Avance 500 MHz 

spectrometer in CDCl3 using TMS as the internal standard. 

 

2.1.6. Preparation of sample solution 

Accurately weighed samples: 10 mg of 45% ACN extract; 3 mg of CCC-

DCI fraction; 5 mg of n-Hex fraction; 5 mg of MC fraction; 90% MeOH fraction (3 

mg); 3 mg of 100%MeOH fraction; 1 mg of TG; 1 mg of AECN; 1 mg of ECN 
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were sonicated with 1 mL of methanol for 10 min and then filtered through a 0.45 

μm syringe filter. The solutions of TG, AECN, and ECN were serially diluted with 

methanol to produce standard solutions at concentrations of 62.5, 125, 250, 500, 

and 1000 μg/mL.  

 

2.1.7. HPLC analysis and calibration curve 

A Phenomenex Luna C18 column (150 mm  4.6 mm, 5 μm particle size) 

was used to analyze the extract, fractions (CCC-DCI, solvent partition, and open 

column chromatography), and three major sesquiterpenoids. The HPLC conditions 

were optimized by altering the elution gradient. The analysis used water as eluent A 

and acetonitrile as eluent B, and the elution program was as follows: 0–3 min (60–

75% B); 3–28 min (75–100% B); 28–33 min (100% B); and equilibration with 60% 

B for 10 min at a flow rate of 0.9 mL/min. The column was at room temperature 

and the UV detection was performed at 235 nm. 5 μL of each sample solution was 

injected into the HPLC and analyzed in triplicate to ensure the reproducibility. 

Three standard solutions at concentrations of 62.5 – 1000 μg/mL were analyzed 

and their regression equations were calculated in the form of y = ax + b, where x 

and y correspond to the compound concentration and peak area of the UV response, 

respectively. The limits of detection (LODs) and limits of quantification (LOQs) 

were defined as the concentrations that produced signal-to-noise ratios of three and 

ten, respectively.  
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2.2. Chemical profiling of sesquiterpenoids from Farfarae Flos based on 

LC-MS/MS analysis 

2.2.1. Sample preparation from Farfarae Flos 

The dried parts (1 g each) of T. farfara were extracted with 10 mL of 

ethanol or n-hexane by sonication for 1h, triplicate. The STE fraction was isolated 

by CCC (TBE-1000A) and semi-preparative HPLC (YMC Triart C18, 10  250 mm, 

5 μm particle size, YMC Co.) to obtain 11 sesquiterpenoids (see Section 2.2.4). All 

the extracts, fractions, and compounds were accurately weighed, dissolved in LC-

MS grade acetonitrile, and filtered through a 0.22 μm syringe filter before UHPLC-

MS/MS analysis. The concentrations of the fraction (200 μg/mL) and the isolated 

compounds (10–20 μg/mL) were used for the qualitative analysis of the 

sesquiterpenoids. The concentrations of the extracts (50 and 500 μg/mL) and the 

compounds (2-5, 2-4, 2-3, 2-2, 2-1, 20, 21, 22, and 23 μg/mL) were used for the 

quantification of the sesquiterpenoids. 

 

2.2.2 UHPLC separation 

A YMC Triart C18 column (2.0 mm  50 mm, 1.9 μm particle size, YMC 

Co.) was used for UHPLC separation. The UHPLC system used 0.1% formic acid 

in water as eluent A and 0.1% formic acid in acetonitrile as eluent B, and the 

optimized elution program was as follows: 0–3 min (45–60% B); 3–15 min (60–80% 

B); 15–16 min (80–100% B); 16–20 min (100% B) and equilibration with 45% B 

for 4 min at a flow rate of 0.4 mL/min. The column was at 30 °C and the auto-
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sampler was maintained at 4 °C. The injection volume of each sample solution was 

2 μL. 

 

2.2.3 MS/MS analysis 

The precursor ion scan was performed using a 3200 Q-Trap system (AB 

Sciex, Foster City, CA, USA). The product ion scan and high resolution multiple 

reaction monitoring (MRMHR) were conducted using a Triple TOF 5600+ system 

(AB Sciex). Both systems were equipped with an electro spray ionization (ESI) 

source and operated in the positive ESI mode for detection. The MS/MS conditions 

were as follows: ion spray voltage, 5.5 kV; spray temperature, 500 °C; declustering 

potential (DP), 30 V; collision energy (CE) of QqQ MS/MS, 5, 15, 25 eV; CE of Q-

TOF MS/MS, ramping from 5 to 25 eV for fragmentation pattern of diagnostic ions, 

5, 15, 25 eV for fragmentation pattern of precursor ions, 15 eV for MRMHR 

quantification; nitrogen gas for nebulizer gas, 50 L/min; heater gas, 50 L/min; 

curtain gas, 25 L/min. The scan range was set to m/z 250–550 with 2.0 s cycle time 

for the precursor ion scan, and m/z 50–550 with 1.4 s cycle time and 0.1 s 

accumulation time for the product ion scan. The MS/MS data for qualitative 

analysis were processed using Peakview and MasterView software (AB Sciex) to 

screen the probable metabolites based on accurate mass and isotope distribution. 

MultiQuant software (AB Sciex) was used to monitor the selected ions for the 

quantification study. 
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2.2.4. Separation of sesquiterpenoids and structural determination 

Eleven sesquiterpenoids (No. 7, 11, 12, 14, 23, 36, 39, 45, 60, 68, and 72 

in Table 5) were isolated from the STE fraction by CCC and semi-preparative 

HPLC. The CCC separation used n-hexane as the stationary phase and aqueous 

acetonitrile as the mobile phase. The multilayered coiled column was filled with 1 

L of n-hexane and the apparatus was rotated at 450 rpm. The mobile phase was 

pumped into the head of the column at a flow rate of 6 mL/min and a linear 

gradient separation was performed: 0–250 min (55–95% aqueous acetonitrile) and 

250–350 min (100% acetonitrile). In a single operation, three grams of the STE 

fraction were dissolved in 20 mL of acetonitrile and injected through a six-port 

injection valve. In addition, compounds 12 and 68 were further hydrolyzed to 

obtain 23, 36, and 7. One gram of 12 was dissolved in 100 mL of 70% aqueous 

acetonitrile and sodium hydroxide (NaOH) was added to 100 mM NaOH solution. 

The reaction mixture was stirred at 25 ℃ for 1 h, followed by solvent extraction 

with chloroform and water to obtain 23 and 36. Likewise, compound 68 was 

hydrolyzed (500 mM NaOH, 25 ℃, 2 h) to obtain 7. Each chloroform layer was 

evaporated and further separated by semi-preparative HPLC. The HPLC system 

used water as eluent A and acetonitrile as eluent B, and the optimized elution 

program was as follows: 0–25 min (75–100% B) for 23 and 36; 0–20 min (60–80% 

B) for 7 at a flow rate of 4 mL/min. All the separated compounds were structurally 

determined by 1H, 13C, and HSQC NMR spectroscopy. Compound 7, 23, and 45 

were further analyzed using nuclear Overhauser effect spectroscopy (NOESY). The 

NMR spectra were recorded by a Bruker Avance 500 MHz spectrometer in DMSO-
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d6 using TMS as the internal standard. 

 

2.2.5. Validation parameters for quantification 

The sensitivity and repeatability of the UHPLC-MS/MS method was 

assessed by determining the selectivity, linearity, limit of detection (LOD), limit of 

quantification (LOQ), and precision. The selectivity of each sesquiterpenoid was 

established depending on the UHPLC-MS/MS parameters to distinguish 

unambiguous analytes of interest from the complex mixture: retention time, m/z of 

precursor ion, and m/z of diagnostic ion. The calibration curve of each isolated 

sesquiterpenoid was assessed using a serial dilution of the mixed stock solution (8 

sesquiterpenoids at 200 μg/mL, respectively). Each peak area was measured by 

analyzing the solutions at 9 concentration (2-5, 2-4, 2-3, 2-2, 2-1, 20, 21, 22, and 23 

μg/mL) three times. Regression equations were calculated in the form of y = ax + b, 

where x and y correspond to the compound concentration (ng/mL) and peak area of 

the MS response, respectively. The LODs and LOQs for the 8 sesquiterpenoids 

were determined by analyzing the mixed standard solutions at the lowest 

concentrations (2-7, 2-6, and 2-5 μg/mL) and measuring their signal-to-noise ratio 

(S/N) of three and ten, respectively. The S/N was determined by comparing the 

heights of the analyte peaks in the standard solutions with background noise of 

blank sample (the regions equivalent to 20 times the width of the analyte peaks at 

the half-height). The intra-day and inter-day precision were evaluated by measuring 

the peak area repeatability of three standard solution (2-3, 20, and 23 μg/mL) five 
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times within one day and three different days, respectively. The precision was 

measured by calculating the relative standard deviation (RSD) of variations in the 

retention time and peak area.  
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2.3. Activity based proteome profiling: Identification of target proteins 

of an oplopane sesquiterpenoid in breast cancer cells  

2.3.1. Fractionation of Farfarae Flos extract 

Korean and Chinese Farfarae Flos (10 g) were extracted with ethanol (10 

mL) by sonication for 1h, triplicate. Each ethanol extract was concentrated using a 

rotary vacuum evaporator, and further isolated by semi-preparative HPLC (YMC 

Triart C18, 10  250 mm, 5 μm particle size, YMC Co.) to obtain 11 fractions. The 

HPLC system used water as eluent A and acetonitrile as eluent B, and the 

optimized elution program was as follows: 0–35 min (20–100% B) at a flow rate of 

4 mL/min. Fractions were collected according to the elution profile of UV detector 

(220 nm). Each fraction was concentrated, accurately weighed, and dissolved in 

DMSO for further anti-proliferation test. 

 

2.3.2. Cell viability assay 

The anti-proliferation activities of test samples on MDA-MB-231 and 

MCF-7 human breast cancer cells were evaluated by MTT assay. Cells were seeded 

at a density of 1 × 105 and 1 × 104 cells per well into 24-well and 96-well plates, 

respectively, and incubated at 37 ºC for 24 h. The cells were treated with vehicle 

(medium with 0.1% DMSO) or increasing concentrations of test samples for 24 h. 

The 500 μL of MTT solution (0.5 mg/mL) was added to each well, followed by 

incubation for 3 h. The MTT formazan crystals were dissolved in DMSO and the 
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absorbance at a wavelength of 540 nm was measured by using a microplate reader. 

The above experiments were conducted in biological triplicated for each sample 

and cell line (n = 3). IC50 values and 95% confidence intervals (CI) were estimated 

using GraphPad Prism 6.01 (GraphPad Software). 

 

2.3.3. Synthesis of ECN-based clickable probe  

ECN (861.0 mg, 2.0 mmol) and m-CPBA (1035.3 mg, 3.0 mmol) were 

dissolved in CH2Cl2 (10 mL), respectively. The solution was mixed and stirred at  

4 ℃ for 12 h. The reaction mixture was filtered through 0.45 µm filter paper 

(Advantec.) and dried with a rotary evaporator under reduced pressure. The sample 

was then dissolved in 10 mL of methanol, and separated by CCC. The CCC 

condition as follows: n-hexane as stationary phase; water (eluent A) and 

acetonitrile (eluent B) as mobile phase; linear gradient, 0–100 min (75–95% B) and 

100–150 min (95% B) at a flow rate of 8 mL/min. Eluate from 110–125 min was 

collected and dried (187.6 mg), followed by structural determination. ECN-E 

(178.6 mg, 0.4 mmol) was dissolved in 10 mL of water/acetonitrile (2:8, v/v) and 

NaN3 (78.0 mg, 1.2 mmol) and CeCl3∙7H2O (74.4 mg, 0.2 mmol) was added, 

followed by incubated (50 ºC, agitation at 200 rpm, 24 h). The reaction mixture 

was filtered and diluted with 10 mL of H2O and CH2Cl2, respectively. The organic 

phase was collected and evaporated. The sample dissolved in acetonitrile and 

separated by semi-preparative HPLC to obtain ECN-N3 (26.1 mg, 0.052 mmol,  

2.6% yield in total).  
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2.3.4. Gel-based ABPP of MDA-MB-231 and MCF-7 cell lines in situ 

MDA-MB-231 and MCF-7 cells were grown in 25 cm2 cell culture plate 

(SPL) until 90% confluence. The medium was removed and replenished with 2.0 

mL of fresh media containing DMSO (negative control), ECN-N3 (1.0, 3.0, 9.0, 

and 27.0 µM), ECN-N3 (27.0 µM) with excess ECN (54.0 and 90.0 µM). 

Following incubation at 37.5 °C for 3 h, cells were washed with cold PBS twice 

and harvested. After centrifugation (14,000 × g, 3 min, 4 ºC), cell pellet was lysed 

with 100 µL of cold lysis buffer (20 mM HEPES of pH 7.9, 20% glycerol, 350 mM 

NaCl, 1.0 mM MgCl2, 0.5 mM EDTA, 0.1 mM EGTA, 1% NP-40, 0.1 mM DTT, 

0.1 mM PMSF, and protease inhibitor cocktail) for 30 min on ice. The cell lysate 

was centrifuged (14,000 × g, 10 min, 4ºC) and the supernatant was collected as 

whole cellular proteome sample. The protein concentration was determined by 

Bradford reagent according to the manufacturer’s protocol (Bio-Rad). The 

proteomes from cell lysis were diluted to 2.0 mg/mL (cold lysis buffer and 1% final 

SDS concentration) and either directly processed or stored at –80 ºC until use. 

Click reaction was performed as below: 20 µL of proteome samples were added 

with freshly prepared Cy3-alkyne (1 µL of 2.0 mM stock in DMSO), CuSO4 (1 µL 

of 30 mM stock in water), THPTA (1 µL of 10 mM stock in water) and sodium 

ascorbate (1 µL of 30 mM stock in water). The mixture were incubated in dark to 

click reaction (25 ºC, agitation at 200 rpm, 1 h). For gel-based experiment, 12 µL 

of the click labeled proteome was added with 6 µL of 3X SDS loading buffer and 

applied to SDS-PAGE (20 µg total protein loaded per gel lane) and imaged by 

Biomolecular imager FLA7000IP (GE Healthcare).  
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2.3.5. Preparation of probe-labeled proteome for MS-based analysis 

MDA-MB-231 and MCF-7 cells were grown in 75 cm2 cell culture plate 

(SPL) until 90% confluence. The medium was removed and replenished with 6.0 

mL of fresh media containing DMSO (negative control) and ECN-N3 (10.0 µM). 

Following incubation at 37 °C for 3 h, cells were washed with cold PBS twice and 

harvested. After centrifugation (14,000 × g, 3 min, 4 ºC), cell pellet was lysed with 

300 µL of the cold lysis buffer (see Section 2.3.4) for 30 min on ice. The cell lysate 

was centrifuged (14,000 × g, 10 min, 4 ºC) and the supernatant was collected as 

whole cellular proteome sample. The protein concentration was determined by 

Bradford reagent according to the manufacturer’s protocol (Bio-Rad). The 

proteome sample was diluted to 2.0 mg/mL (cold lysis buffer and 1% final SDS 

concentration) and either directly processed or stored at –80 ºC until use. Each 100 

µL of proteome sample was transferred to a new 2 mL tube and added with 20 µL 

of PBS containing DADPS biotin-alkyne (0.5 mM), CuSO4 (7.5 mM), THPTA (2.5 

mM), and sodium ascorbate (7.5 mM) to click reaction (25 ºC, agitation at 200 rpm, 

1 h). The reaction mixture was added with cold methanol (600 µL), chloroform 

(150 µL), and water (530 µL) sequentially and briefly vortexed. The cloudy sample 

was centrifuged (1,500 × g, 10 min, 4 ºC), and upper and lower solvent layer were 

removed without disturbing protein disk. After resuspension with 1.0 mL of cold 

methanol and centrifugation (14,000 × g, 10 min, 4 ºC), the supernatant was 

removed carefully. The each protein pellet was dissolved in 160 µL of urea buffer 

(6 M urea and 0.2% SDS in PBS) by sonication. The proteins were reduced by 

adding 20 µL of PBS containing TCEP (200 mM) and TEAB (200 mM) and the 
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reaction mixture was incubated (50 ºC, 1 h). After cooling the sample to room 

temperature, the reduced protein was alkylated by adding 20 µL of freshly prepared 

IAA solution (400 mM IAA and 100 mM TEAB in PBS) and incubated (25 ºC, in 

dark, 30 min). To each sample, 50 µL of SDS solution (10% w/v in PBS) and 100 

µL of 50% aqueous slurry containing streptavidin agarose resin was sequentially 

added, followed by incubation (25 ºC, agitation at 200 rpm, 1 h). The reaction 

mixture was transferred to 15 mL tube and the streptavidin beads were sequentially 

washed a total of nine times: 0.2% SDS in PBS (3 × 5 mL), 6 M urea in PBS (3 × 5 

mL), and PBS (3 × 5 mL). Each wash was performed by agitation (25 ºC, 200 rpm, 

15 min), followed by centrifugation (2,500 × g, 3 min, 25 ºC) and supernatant 

suction. The beads were resuspended with 200 µL of PBS (2 M urea, 1 mM CaCl2, 

and 10% formic acid), agitated (25 ºC, 200 rpm, 15 min), centrifuged (2,500 × g, 3 

min, 25 ºC), and the supernatant was collected. This procedure was repeated in 

triplicate and all the supernatant were combined. The proteins were then digested 

with 1.0 µg of sequencing grade modified trypsin (Promega), (37 ºC, agitation at 

300 rpm, 16 h). The peptides were labeled with TMT-duplexTM isobaric label 

reagent kit (Thermo Scientific) according to the manufacturer’s protocol. The 

labeled peptides were desalted by PierceTM spin column (Thermo Scientific) and 

collected to 1.5 mL protein low-binding tube (Thermo Scientific). The solvent was 

evaporated in a Speed-Vac and the dried peptides were dissolved in 50 µL of LC-

MS grade solvent consisted of water/acetonitrile (98:2, v/v) with 0.1% formic acid. 

The above experiment was performed in biological duplicates. 
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2.3.6. LC-MS/MS analysis and data processing 

The fractionated peptide samples were analyzed by LC-MS/MS system. 

Peptides were separated on the 2-column setup with a Acclaim PepMap 100 trap 

column (100 μm x 2 cm, nanoViper C18, 5 μm, 100 Å, Thermo Scientific) and an 

Acclaim PepMap 100 capillary column (75 μm x 50 cm, nanoViper C18, 2μm, 

spherical fully porous ultrapure, Thermo Scientific). Solvent A consisted of water 

with 0.1% formic acid and solvent B consisted of acetonitrile with 0.1% formic 

acid were used to establish the 180 minutes gradient from 10% to 40% solvent B at 

a flow rate of 300 nL/min. The spray voltage was 2.2 kV in positive ion mode, and 

the temperature of the heated capillary was set to 300 ℃. Mass spectra were 

acquired in a data-dependent manner using a top 10 method on a Q-Exactive. The 

Orbitrap analyzer scanned precursor ions with a mass range of 350-1800 m/z with 

70,000 resolution at m/z 200. The automatic gain control (AGC) target value for 

MS/MS was 3 x 106 and the isolation window for MS/MS was 2.0 m/z. HCD scans 

were acquired at a resolution of 17,500 and 27 normalized collision energy (NCE). 

The maximum ion injection time for survey scan and MS/MS scan was 100 ms. 

Dynamic exclusion was enabled with an exclusion period of 15 s. Mass data are 

acquired automatically using Xcaliber software version 3.1 and converted to mzml 

format. Protein identification and TMT quantification were performed using 

Maxquant 1.6 software. All spectra were searched against protein database 

(Uniprot) using a target false discovery rate (FDR) of 1%. The precursor mass 

tolerance was set to 10 ppm and fragment ion mass tolerance to 0.02 Da. One 

missed cleavage site of trypsin was allowed. Carbamidomethyl (C) and TMT-
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duplex (K and N-terminal) were used as a fixed modification. Oxidation (M) was 

used as variable modifications. The proteins identified in positive group (ECN-

treated samples) were additionally filtered by at least two spectral counts and one 

unique peptides in each experimental replicate. Protein ratios from were calculated 

as the median of two high-score peptides belonging to a protein. 

 

2.3.7. Modification sites of identified proteins by ECN 

The modification of recombinant proteins (14-3-3 protein zeta and 

peroxiredoxin-1) by ECN was carried out at different molar ratios as follow. The 

recombinant proteins were dissolved in 100 μL of Tris buffer (25 mM, pH 7.8) at a 

concentration of 2 μM, and incubated with ECN at molar ratios [ECN]/ [protein] = 

0, 1, and 5 (25 ºC, agitation at 200 rpm, 2 h). The proteins were reduced by adding 

2 µL of PBS containing TCEP (200 mM) and TEAB (200 mM) and the reaction 

mixture was incubated (50 ºC, 1 h). After cooling the sample to room temperature, 

the reduced protein was alkylated by adding 2 µL of freshly prepared IAA solution 

(400 mM IAA and 100 mM TEAB in PBS) and incubated (25 ºC, in dark, 30 min). 

Next, 1 mL of acetone was added to precipitate proteins (–20 ºC and 4 h), followed 

by centrifugation (14,000 × g, 5 min, 4 ºC) and supernatant suction. The protein 

pellet was resuspended with 200 µL of TEAB (200 mM) and digested with 0.1 µg 

of sequencing grade modified trypsin (37 ºC, agitation at 300 rpm, 16 h). The 

tryptic peptides were desalted by PierceTM spin column and collected to protein 

low-binding tube. Solvent was evaporated in a Speed-Vac and the dried peptides 
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were reconstituted in 50 µL of LC-MS grade solvent consisted of water/acetonitrile 

(98:2, v/v) with 0.1% formic acid, and were analyzed by LC-MS/MS system. 

Solvent A consisted of 2% aqueous acetonitrile with 0.1% formic acid and solvent 

B consisted of 98% aqueous acetonitrile with 0.1% formic acid were used. Peptides 

were first trapped on a Acclaim PepMap 100 trap column (100 μm × 2 cm, 

nanoViper C18, 5 μm, 100Å, Thermo Scientific) and washed for 6 min with 98% 

solvent A at a flow rate of 4 μL/min, and then separated on a Acclaim PepMap 100 

capillary column (75 μm × 15 cm, nanoViper C18, 3 μm, 100Å, Thermo Scientific) 

at a flow rate of 300 nL/min. The LC gradient was run at 2% to 35% solvent B over 

30 min, then from 35% to 90% over 10 min, followed by 90% solvent B for 5 min. 

The Orbitrap analyzer scanned precursor ions with a mass range of 350-1800 m/z 

with 70,000 resolution at m/z 200. The mass data are acquired automatically by 

Xcaliber software version 3.1 and converted to mzml format for further data 

processing.  

 

2.3.8. Isothermal titration calorimeter 

Isothermal titration calorimeter (ITC) analysis was conducted on an 

MicroCal iTC200 (Malvern, Northampton, MA, USA). For ITC analysis, solutions 

of 0.3 mM ECN and 0.03 mM 14-3-3 protein zeta were dissolved in 25 mM Tris 

buffer at pH 7.8 containg 5% DMSO. ECN solution was loaded into the syringe 

and titrated into the sample cell, which contained the protein solution in a sequence 

of 20 x 1.5 μL injections. The titration was conducted at 25 ℃. Data analysis was 
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conducted using MicroCal analysis software (Malvern). The stoichiometry (n), 

enthalpy (ΔH) and association constant (Ka) for ECN was estimated by fitting each 

data set to a single sites binding model provided. Control injections of ECN sample 

and blank buffer into sample cell showed negligible ΔH. Errors shown are based on 

the accuracy of the curve fit to the data. 
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IV. RESULTS AND DISCUSSION 
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1. An efficient fractionation method for the preparative 

separation of sesquiterpenoids from Farfarae Flos by 

CCC 

1.1. Principle of CCC-DCI fractionation 

The crucial point for the successful fractionation by CCC-DCI is what the 

target components should not be eluted with the extraction solvent until all the 

polar components are completely removed, and eventually, the target components 

should be easily eluted with the elution solvent. That is to say, the target 

compounds are retained in the stationary phase when the extraction solution is used 

as the mobile phase, and then they migrate to the lower phase when the elution 

solvent is used as the mobile phase. As shown in Fig. 13, the CCC-DCI 

fractionation is composed of four stages. Stage I (direct injection): the extraction 

solution was directly injected into the CCC instrument without achieving two-

phase solvent equilibrium. Stage II (continuous injection): the extraction solution 

was continuously injected into the CCC column, and the target components and 

less polar components were concentrated in the stationary phase, whereas the polar 

impurities were passing through the column. Stage III (washing polar components): 

the polar impurities were completely washed from the column with pure extraction 

solvent. Stage IV (eluting target components): the target components were eluted 

with the elution solvent. 
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Figure 13. A schematic diagram of CCC-DCI mode 

Direct and continuous injection mode of countercurrent chromatography (CCC-DCI) was developed to enrich target components from 

natural extract: An n-hexane-acetonitrile-water solvent system was pumped through the column, and the extraction solution was directly and 

continuously injected into the CCC column. (B) The sesquiterpenoid-enriched (STE) fraction was obtained from the (A) extract solution. 
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1.2. Selection of the extraction and elution solvents based on KD values 

Successful fractionation by CCC-DCI is dependent on the selection of 

suitable extraction and elution solvents that provide an optimum range of KD values 

for the target components. As sesquiterpenoids in T. farfara are hydrophobic, they 

are difficult to be dissolved in water but can be easily solubilized in acetonitrile. 

Therefore, a solvent system composed of n-hexane-acetonitrile-water (HAcW) was 

selected for its range of polarities; this solvent system is commonly applied to 

enrich and isolate terpenoids from plant extracts [29–32]. In this study, the KD 

values of the three major sesquiterpenoids in seven compositions of HAcW at 

volume ratios of 10:3.5:6.5, 10:4.5:5.5, 10:5.5:4.5, 10:6.5:3.5, 10:7.5:2.5, 

10:8.5:1.5, and 10:9.5:0.5 were analyzed by HPLC-UV, and the results are shown 

in Table 1. Considering the KD values of TG (most polar target compound), I could 

determine the maximum volume of the extraction solvent, calculated based on the 

equation [95]: 

VR = VM + KDVS 

where VM and VS are the volumes of the mobile and stationary phases, respectively, 

and VR is the retention volume of the target compound. KD is the partition 

coefficient of the target compound. 

The KD value of TG in solvent system 3 was 2.77 and the HAcW solvent 

systems showed 60-70% of stationary phase retention (operated by TBE-1000A at 

a flow rate 15 mL/min). Therefore, the maximum volume of extraction was less 
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than 2 L. However, large amount of raw material (1 kg of Farfarae Flos in this 

study) could not be dipped in the volume of extraction solvent. On the other hand, 

extraction volume of solvent system 2 was up to 6 L, calculated by the above 

equation. Although solvent systems 1 and 2 possessed suitable KD values, solvent 

system 2 was selected to extract the target sesquiterpenoids due to its better polarity. 

The contents of the three major sesquiterpenoids in the 45% acetonitrile 

extract were not greatly different from those of the methanol extract. Woo et al. 

reported the optimum extraction conditions of Farfarae Flos, and methanol showed 

better extraction efficiency than those of other solvents [10]. As shown in Table 2, 

the total contents of TG, AECN, and ECN were 119.8, 250.7, and 60.2 mg in the 

45% acetonitrile extract (33,087 mg), and the contents in the methanol extract 

(15,717 mg) were 118.3, 226.8, and 74.5 mg, respectively. Thus, 45% acetonitrile 

was selected as both the mobile phase and extraction solvent for CCC-DCI. 
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Table 1. The partition coefficients (KD) of three major sesquiterpenoids in 

different solvent composition 
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Table 2. Comparison of the extraction efficiency of 45% acetonitrile and 

methanol 
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1.3. CCC-DCI fractionation 

1.3.1. Four stages of CCC-DCI 

Stage I (direct injection): the extraction solution was directly injected into 

the CCC instrument without achieving two-phase solvent equilibrium. This method 

eliminated several laborious steps, including evaporation of the extraction solution, 

preparation of the solvent system, and dissolution of the sample in the solvent 

system. Thus, the process time and the solvent consumption were greatly reduced 

by using the extraction solution as the mobile phase. The flow rate and composition 

of the extraction solvent were selected based on the KD values of the three major 

sesquiterpenoids (especially the most polar compound, TG). When two-phase 

equilibrium was reached, a dark brown solution was eluted from the separation 

column. As shown in Fig. 14, CCC chromatogram showed a broad rectangular 

peak during stage I and II, which indicated that the polar components were being 

washed out. Stage II (continuous injection): the extraction solution was 

continuously injected into the CCC column, and the target components and less 

polar components were concentrated in the stationary phase, whereas the polar 

impurities were passing through the column. During this stage, no bleeding of the 

stationary phase was observed. Because the amount of polar components in the 

extraction solution was much greater than the amounts of the target components 

and less polar components, the inflow and outflow of total components was almost 

identical. Therefore, the equilibrium of the two-phase system was maintained while 

concentrating the target components. Stage I and II took approximately 360 min to 
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inject all the extraction solution. Stage III (washing polar components): the polar 

impurities were completely washed from the column with pure extraction solvent 

(45% acetonitrile). The UV signal started to decrease, and dilute solution was 

eluted 40 min after the pumping of the pure solvent was initiated. Because the 

calculated retention volumes of TG, AECN, and ECN were more than 6.4 L based 

on the KD value, target compounds were not eluted during stage III. In fact, the 

target compounds were not detected from the eluted solution of Stage III (data not 

shown). Stage IV (eluting target components): the target components were eluted 

with the eluting solvent. The composition of the eluting solvent was selected based 

on the KD values of the three major sesquiterpenoids (especially the least polar 

compound, ECN). Finally, sesquiterpenoid-enriched (STE) fraction was obtained 

(collected during 430-490 min) from 315.9 g of the extract. The total CCC-DCI 

operation time was approximately 500 minutes, and the CCC-DCI fractionation of 

Farfarae Flos was performed in triplicate to ensure reproducibility of the method. 
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Figure 14. CCC-DCI chromatogram of Farfarae Flos extract 

The n-hexane-acetonitrile-water solvent system was separately pumped into the 

CCC column; stationary phase: n-hexane; mobile phase: water and acetonitrile. The 

flow rate was 15 mL/min, the rotation speed was 450 rpm, and the UV detection 

wavelength was 235 nm. The retention of the stationary phase was 63%, and no 

bleeding of the stationary phase was observed. (B) The sesquiterpenoid-enriched 

(STE) fraction was obtained (collected during 430-490 min) from 315.9 g of (A)  

45% acetonitrile extract. 
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1.3.2. Preparative separation of three major sesquiterpenoids 

Three grams of the STE fraction was successfully isolated by CCC (Fig. 

15A). Three major sesquiterpenoids: TG (collected during 110-130 min, 320 mg); 

AECN (collected during 150-175 min, 1350 mg); ECN (collected during 330-350 

min, 290 mg) were obtained from the STE fraction from a single purification. The 

retention of the stationary phase (Sf) was 80%, and no bleeding of the stationary 

phase was observed. The collected sesquiterpenoids were further refined by 

preparative HPLC to eliminate minor impurities. The purity of all isolated 

sesquiterpenoids was greater than 97%, as assessed by HPLC-UV (Fig. 15B–D). 

The chemical structure of the compounds was determined by 1H and 13C NMR 

analysis (Fig. 16–18) and comparison with reported data [17, 19]. 
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Figure 15. Preparative separation of three major sesquiterpenoids 

(A) CCC chromatogram of the sesquiterpenoid-enriched fraction. (B) TG 

(collected during 110-120 min, 320 mg); (C) AECN (collected during 150-170 min, 

1350 mg); (D) ECN (collected during 330-350 min, 290 mg). 
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Figure 16. (A) 1H and (B) 13C spectrum of TG 

(in CDCl3, 500 and 125 MHz, respectively) 
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Figure 17. (A) 1H and (B) 13C spectrum of AECN 

(in CDCl3, 500 and 125 MHz, respectively) 
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Figure 18. (A) 1H and (B) 13C spectrum of ECN 

(in CDCl3, 500 and 125 MHz, respectively) 
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1.4. Quantification study 

Using CCC-DCI fractionation, the entire extract of T. farfara (315.9 g/5.4 

L) was injected in a single CCC operation, and 6.8 g of the STE fraction was 

obtained from the crude extract within 8.5 hrs. For evaluating the fractionation 

efficiency of CCC-DCI, another extraction solution was dried and enriched by 

conventional multi-step fractionation in series, including solvent partitioning and 

open column chromatography. To compare these samples, quantification of the 

three major sesquiterpenoids (TG, AECN, and ECN) in each extract and fraction 

sample was conducted by HPLC-UV analysis. 
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1.4.1. Validation parameters 

As shown in Table 3, calibration curves of TG, AECN, and ECN were 

calculated and all the least squares coefficients of correlation (R2) were higher than 

0.999 with broad linear range (62.5–1000 μg/mL), suggesting a strong linear 

relation between the compound concentrations and the UV peak area. In addition, 

the limits of detection (LODs) and the limits of quantitation (LOQs) were 

determined. The LODs and LOQs were defined at signal-to-noise (S/N) ratios of 3 

and 10, respectively. The LOQs were experimentally verified by analyzing three 

sesquiterpenoids at each concentration (data not shown), and were sufficiently low 

to detect trace amount in the samples. 

 

  



69 

 

Table 3. The linear range, linearity, LOD, and LOQ of the three major 

sesquiterpenoids 
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1.4.2. Comparison of CCC-DCI with conventional methods 

The quantification of the TG, AECN, and ECN in each sample was 

conducted by HPLC-UV based on the corresponding calibration curves (Fig. 19). 

As shown in Table 4, the average contents of TG (155.3 mg/g), AECN (333.1 

mg/g), and ECN (70.9 mg/g) in CCC-DCI fraction were much higher than other 

fraction samples. The average recoveries TG, AECN, and ECN were 96.1%, 

96.9%, and 94.6% by CCC-DCI; 87.6%, 87.0%, and 94.6% by solvent partitioning 

(sum of n-Hex and MC fraction); 77.7%, 66.5%, and 58.4% by open column 

chromatography (sum of 90% and 100% MeOH fraction). These data indicate that 

solvent partitioning cannot completely eliminate all the polar impurities, and 

considerable amount of the target components was adsorbed onto the solid support. 

Furthermore, CCC-DCI method utilized the extraction solution as both the sample 

and mobile phase, greatly reducing the solvent consumption. Only 4.1 L of water, 

4.6 L of acetonitrile, and 1.2 L of n-hexane were required to enrich 315 g of extract, 

and the solvent consumption of CCC-DCI was less than half of other fractionation 

methods. Therefore, the developed CCC-DCI fractionation is a powerful and 

applicable method with high time- and cost-efficiency. 
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Figure 19. HPLC-UV chromatograms of extract and fraction 

(A) Extract of Farfarae Flos with 45% acetonitrile; Fractions obtained from (B) CCC-DCI; solvent partitioning with (C) n-hexane and (D) 

methylene chloride; Diaion HP-20 open column chromatography with (E) 90% methanol and (F) 100% methanol. 
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Table 4. The comparison of the fractionation efficiency of CCC-DCI, solvent partitioning, and open column chromatography 
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1.5. Discussion 

This study was designed to develop an efficient fractionation and 

separation method to enrich target compounds from plant extract. Taking Farfarae 

Flos as a case study, CCC-DCI mode was established and validated. There are 

several advantages of this method: 

i) For CCC-DCI, the n-hexane–acetonitrile–water solvent system 

(HAcWat) was prepared and pumped separately, as in the HPLC solvent system. 

Therefore, CCC-DCI avoided the time-consuming solvent equilibrium for liquid-

liquid chromatography. In addition, this solvent system showed high stationary 

phase retention and enabled a high mobile phase flow rate (63% Sf at a flow rate of 

15 mL/min) even at 450 rpm. Although a higher revolution speed shows a better 

stationary phase retention and separation profile, 450 rpm (not 500 rpm) was 

selected not to stress the device. 

ii) CCC-DCI utilized extract solution as both sample and mobile phase, 

greatly reducing the solvent consumption. Only 4.1 L of water, 4.6 L of acetonitrile, 

and 1.2 L of n-hexane were required to enrich 315 g of extract. The solvent 

consumption of CCC-DCI was less than half of the consumption of other 

fractionation methods (Table 4). Futhermore, direct and continuous injection of 

extract solution enables industrial-scale fractionation, avoiding the solubility 

problems that arise with large sample quantities. The sample injection capacity of 

CCC-DCI is greater than 300 grams, which is difficult to be injected in 

conventional CCC. For the TBE-1000A used in this study, it is impossible to 
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dissolve and inject more than 300 grams of extract through a 60 mL sample loop. 

In fact, 10 grams of 45% acetonitrile extract of T. farfara was difficult to be re-

dissolved in 60 mL of the solvent, and equilibrium of the HAcWat system was not 

achieved even at a mobile phase flow rate of 5 mL/min. 

iii) CCC-DCI efficiently enriched target components by eliminating polar 

and non-polar impurities compared to conventional multi-step fractionation 

methods, solvent partitioning and open column chromatography. The STE fraction 

from CCC-DCI was easily dissolved in methanol, and it made the sample analysis 

and further purification more efficient. It also showed high contents and recoveries 

of the target components because CCC, as a liquid-only technique, avoids 

adsorptive loss of the sample onto the solid stationary phase. The contents of the 

three major sesquiterpenoids (TG, AECN, and ECN) in CCC-DCI fraction were 

the highest among the fractionated samples in this study, and their recoveries were 

greater than 94% (Table 4). Considering its lab-scale CCC instrument, solvent 

consumption, and processing time, CCC-DCI enables powerful product recovery 

with high-quality enrichment of target components. 
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2. Chemical profiling of sesquiterpenoids from Farfarae Flos 

based on LC-MS/MS analysis 

2.1. Characterization of diagnostic ions 

When the STE fraction and isolated compounds (TG, AECN, and ECN) 

were analyzed by LC-ESI-MS system, these sesquiterpenoids could be easily in-

source fragmented and detection of the parent molecular ions was disturbed. In 

addition, the in-source fragmentation of their multiple labile ester linkages makes 

the identification of the similar derivatives more difficult. As shown in Fig. 20, full 

MS scan (ESI positive, m/z 50–1000) of the STE fraction showed consistent in-

source fragmentations regardless of the ionization energy (DP: 10, 30, 50, 70, and 

90 V), and several characteristic fragment ions were commonly observed over the 

chromatographic retention time. Taking their ester linkage into account, I supposed 

that the oplopane and bisabolane sesquiterpenoids would be fragmented to four 

diagnostic ions under the LC-ESI-MS condition (Fig. 21). 
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Figure 20. In-source fragmentation of sesquiterpenoids 

(A) Total ion chromatogram of STE fraction under DP 10, 30, 50, 70, and 90 V 

(overlapped). Full MS scan at Rt 10.6 min under (B) DP 10 V and (C) DP 90 V. 
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Figure 21. Proposed diagnostic ions under LC-ESI-MS analysis 

Four diagnostic ions were proposed based on chemical structures of the oplopane 

and bisabolane sesquiterpenoids and their ester cleavage. 
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2.1.1. Diagnostic filtering 

The diagnostic cations with m/z 215.143 and 217.158 were of oplopane 

sesquiterpenoids, and m/z 229.123 and 231.138 were those of bisabolane 

sesquiterpenoids. The difference in the two cations (m/z 215.143 versus 217.158 or 

m/z 229.123 versus 231.138) is the number of the ester linkages. Because the 

cleavage of ester linkage dominantly undergoes a double bond reduction [47], the 

cations of m/z 217.158 (oplopane) and 231.138 (bisabolane) were caused from two 

cleavages of ester bond and the cations of m/z 215.143 (oplopane) and 229.123 

(bisabolane) were derived from three cleavages. As shown in Fig. 22, the extracted 

ion chromatogram with the diagnostic ions provided a more concise 

chromatographic profile rather than the total ion chromatogram and the overlapped 

peaks could be easily distinguishable by the diagnostic filtering.   
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Figure 22. Ion chromatogram of STE fraction and diagnostic filtering 

(A) Total ion chromatogram of STE fraction in ESI(+) mode using UHPLC-QTOF-

MS. (B) Extracted ion chromatogram with four diagnostic ions (blue line for m/z 

215.143; pink line for m/z 217.158; orange line for m/z 229.123; green line for m/z 

231.138). 
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2.1.2. Fragmentation patterns of the diagnostic ions 

Product ion scans for the proposed diagnostic ions at m/z 215.143, 

217.158, 229.123, and 231.138 were performed and their fragmentation behaviors 

were investigated. As shown in Fig. 23, their MS/MS spectra (sum of the retention 

time from 1 to 17 min) showed characteristic fragmentation behavior indicating the 

same chemical structure, respectively. Moreover, the cations with m/z 215.143 and 

217.158 (also 229.123 and 231.138) were fragmented by maintaining the m/z 

difference of 2 Da. 
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Figure 23. Fragmentation patterns of diagnostic ions 

Fragmentation pattern of each diagnostic ion was investigated by UHPLC-QTOF-MS/MS. The MS/MS spectra (sum of the retention time 

range 1–17 min) of [M+H]+ at m/z (B) 215, blue; (C) 217, pink; (D) 229, orange; (E) 231, green.
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2.2. Precursor ion scan for the diagnostic ions 

As shown in Fig. 2, about 30 sesquiterpenoids of Farfarae Flos have been 

reported [17–25] and these compounds can be divided into four types according to 

the proposed diagnostic ions, oplopane (m/z 215.143 and 217.158) and bisabolane 

(m/z 229.123 and 231.138) sesquiterpenoid. To characterize more diverse oplopane 

and bisabolane sesquiterpenoids, especially their parent molecular ions, precursor 

ion scans (m/z 250–550) for the diagnostic ions were performed using a QqQ-

MS/MS system (Fig. 24). The DP was fixed at 30 V and three CEs (5, 15, 25 eV) 

were selected to screen all the intermediate and parent molecular ions. The total ion 

chromatograms of the precursor ion scans showed similar profiles to those of the 

extracted ion chromatograms for each diagnostic ion (Fig. 22B), and the parent 

molecular ions were identified based on the MS/MS spectra over the retention time. 

Although several intermediate molecular ions were also detected because of the in-

source fragmentation under the ESI ionization, this information also provided the 

structural annotation in terms of their ester cleavage. As a result, 74 

sesquiterpenoids were identified and thier retention times, diagnostic ions, relative 

peak area (%), observed intermediate and parent molecular ions, formulas, and 

annotated substituent groups are given in Table 5. 
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Figure 24. Total ion chromatograms of precursor ion scan 

Peaks are numbered to indicate dereplicated sesquiterpenoids based on retention time and 

diagnostic ions of m/z (A) 215, (B) 217, (C) 229, (D) 231. Three collision energies shown 

in blue for 5 eV, pink for 15 eV, and orange for 25 eV were selected to investigate all the 

intermediate and parent molecular ions.  
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Table 5. Identified sesquiterpenoids of Farfarae Flos by precursor ion scan of 

UHPLC-QqQ-MS/MS 

No. 
Rt 

(min) 

Diagnostic 

m/z 

Relative 

Area (%) 
Precursor m/z M.W. Formula 

R 

group* 
Ref. 

1 4.11 215 0.22 317, 335, 352 334 C20H30O4 c, f [25] 

2 4.57 217 3.48 277, 317, 377, 394 376 C22H32O5 a, b [17] 

3 4.73 217 2.46 277, 317, 377, 394 376 C22H32O5 a, b [17] 

4 4.87 217 1.99 277, 319, 379, 396 378 C22H34O5 a, c [20] 

5 4.90 231 0.33 291, 396 378 C21H30O6 a, i  

6 5.07 215 0.09 317, 377, 394 376 C22H32O5 a, c  

7 5.11 215 0.13 311, 329, 347, 364 346 C21H30O4 e, f [23] 

8 5.17 229 0.19 289, 349, 377, 437, 454 438 C23H32O8 a, a, i  

9 5.25 231 0.24 331, 431, 448 430 C25H34O6 b, b  

10 5.35 231 0.12 291, 331, 391, 408 390 C22H30O6 a, b  

11 5.60 231 3.97 291, 331, 391, 408 390 C22H30O6 a, b  

12 5.70 217 17.87 277, 331, 391, 408 390 C23H34O5 a, e [17] 

13 5.88 231 0.22 345, 445, 462 444 C26H36O6 b, e [23] 

14 5.93 229 3.85 289, 349, 449, 466 448 C24H32O8 a, a, b [18] 

15 6.02 217 0.35 333, 393, 410 392 C23H36O5 a, d  

16 6.08 231 0.60 291, 393, 410 392 C22H32O6 a, c  

17 6.34 229 0.60 289, 349, 451, 468 450 C24H34O8 a, a, c  

18 6.63 215 0.87 317, 335, 419, 437, 454 436 C26H44O5 c, c, f  

19 6.78 231 0.24 331, 431, 448 430 C25H34O6 b, b  

20 7.36 215 0.08 275, 317, 377, 394 376 C22H32O5 a, c  

21 7.41 215 0.23 303, 363, 403, 463, 480 462 C27H42O6 a, b, i  

22 7.49 229 0.23 329, 347, 447, 464 446 C24H30O8 b, b, f  

23 7.60 217 1.39 331, 348 330 C21H30O3 e [19] 

24 7.76 231 0.19 333, 393, 507, 524 506 C28H42O8 a, c, e  

25 8.03 231 0.08 291, 333, 345, 493, 510 492 C27H40O8 a, b, c  

26 8.26 231 0.52 319, 331, 419, 436 418 C24H34O6 b, i  

27 8.34 229 0.12 289, 349, 449, 466 448 C24H32O8 a, a, b [18] 

28 8.60 231 0.81 319, 331, 419, 436 418 C24H34O6 b, i  

29 8.61 215 0.56 275, 389, 406 388 C23H32O5 a, e  

30 8.80 231 0.24 333, 393, 507, 524 506 C28H42O8 a, c, e  

31 8.83 215 0.34 303, 363, 417, 477, 494 478 C27H40O7 a, e, i  

32 9.02 231 0.10 331, 333, 433, 450 432 C25H36O6 b, c  

33 9.04 215 1.35 317, 377, 417, 477, 494 478 C27H40O7 a, b, c  

34 9.10 229 0.26 289, 317, 377, 477, 494 478 C26H36O8 a, b, i  

35 9.16 215 1.19 317, 445, 462 444 C27H40O5 c, j  

36 9.27 217 2.62 331, 348 330 C21H30O3 e [21] 

37 9.29 231 3.26 331, 431, 448 430 C25H34O6 b, b [23] 

38 9.38 215 0.71 317, 377, 419, 479, 496 478 C27H42O7 a, c, c  

39 9.56 231 6.16 331, 431, 448 430 C25H34O6 b, b [23] 

40 9.89 215 0.23 315, 375, 429, 489, 506 488 C28H40O7 a, b, e  
 

* R groups, a: O-Ac, b: O-Ang or O-Sen, c: O-Mebu or O-iVal, d: O-Meval, e: O-Mesen, f: OH, g: OMe, h: 

OEt, i: unknown (88 Da), j: unknown (128 Da) 

(Data continued) 
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(Data continued) 

No. 
Rt 

(min) 

Diagnostic 

m/z 

Relative 

Area (%) 
Precursor m/z M.W. Formula 

R 

group* 
Ref. 

41 9.89 229 1.01 289, 329, 389, 489, 506 488 C27H36O8 a, b, b  

42 10.00 231 0.60 333, 433, 450 432 C25H36O6 b, c  

43 10.14 231 1.79 345, 445, 462 444 C26H36O6 b, e [23] 

44 10.36 231 0.56 331, 433, 450 432 C25H36O6 b, c  

45 10.60 215 5.96 317, 377, 431, 491, 508 490 C28H42O7 a, c, e [17] 

46 10.76 231 0.25 333, 345, 447, 464 446 C26H38O6 c, e  

47 10.89 231 0.11 333, 435, 452 434 C25H38O6 c, c  

48 11.03 215 0.28 317, 377, 433, 493, 510 492 C28H44O7 a, c, d  

49 11.08 215 0.10 303, 317, 405, 422 404 C24H36O5 c, i  

50 11.08 231 0.28 345, 447, 464 446 C26H38O6 c, e  

51 11.24 215 0.08 317, 417, 434 416 C25H36O5 b, c  

52 11.37 215 0.46 329, 389, 443, 503, 520 502 C29H42O7 a, e, e  

53 11.45 229 0.16 289, 331, 391, 493, 510 492 C27H40O8 a, c, c  

54 11.47 215 0.06 317, 419, 436 418 C25H38O5 c, c  

55 11.56 231 0.17 347, 447, 464 446 C26H38O6 b, e  

56 11.68 215 0.18 317, 419, 436 418 C25H38O5 c, c  

57 11.76 231 0.35 347, 447, 464 446 C26H38O6 b, d  

58 11.83 215 0.58 317, 377, 491, 508 490 C28H42O7 a, c, e  

59 12.15 231 0.10 347, 449, 466 448 C26H40O6 c, d  

60 12.45 215 0.71 331, 391, 445, 505, 522 504 C29H44O7 a, d, e  

61 12.47 215 4.25 317, 417, 434 416 C25H36O5 b, c  

62 12.70 231 0.26 347, 449, 466 448 C26H40O6 c, d  

63 12.86 215 2.10 317, 419, 436 418 C25H38O5 c, c  

64 13.14 215 0.71 317, 431, 448 430 C26H38O5 c, e [22] 

65 13.16 215 1.03 261, 317, 363, 477, 494 476 C28H44O6 c, e, h [22] 

66 13.62 215 0.95 315, 429, 446 428 C26H36O5 b, e [19] 

67 13.76 215 0.24 247, 291, 317, 349, 463, 480 462 C27H42O6 c, e, g [24] 

68 14.30 215 15.49 317, 431, 448 430 C26H38O5 c, e [19] 

69 14.67 215 0.64 317, 331, 433, 450 432 C26H40O5 c, d  

70 14.90 217 0.32 319, 433, 450 432 C26H40O5 c, e  

71 15.11 215 0.46 329, 443, 460 442 C27H38O5 e, e [19] 

72 15.91 215 0.04 331, 445, 462 444 C27H40O5 d, e  

73 15.94 215 0.99 261, 317, 363, 477, 494 476 C28H44O6 c, e, h  

74 16.25 215 0.26 317, 329, 419, 431, 533, 550 532 C31H48O7 c, c, e  
 

* R groups, a: O-Ac, b: O-Ang or O-Sen, c: O-Mebu or O-iVal, d: O-Meval, e: O-Mesen, f: OH, g: OMe, h: 

OEt, i: unknown (88 Da), j: unknown (128 Da) 

 

  



86 

 

2.3. Method validation 

2.3.1. Separation of 11 sesquiterpenoids 

In order to validate the dereplicative method, 11 sesquiterpenoids were 

isolated from the STE fraction. As shown in Fig. 25, compounds 14, 11, 12, 39, 45, 

60, 68, and 72 were sequentially eluted by the CCC separation and further refined 

by preparative HPLC. Compounds 11, 12, and 14 were easily separated by CCC 

rather than C18 reverse-phase column chromatography. In addition, compounds 23 

and 36, low-abundant and highly overlapped compounds, were obtained by NaOH 

hydrolysis of 12. The aldol intermediate (a C14-hydroxyl derivative) was rapidly 

dehydrated to form an α, β-unsaturated carbonyl group in this condition. Likewise, 

compound 68 was hydrolyzed by NaOH to obtain 7 (a C1-hydroxyl derivative). 

 

  



87 

 

 

Figure 25. Preparation of 11 sesquiterpenoids from STE fraction 

Eight sesquiterpenoids (11, 12, 14, 39, 45, 60, 68, and 72) were separated from the 

STE fraction by CCC separation, and three sesquiterpenoids (7, 23, 36) were 

obtained from NaOH hydrolysis of 12 and 68. 
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2.3.2. Structural elucidation 

All the isolated compounds were analyzed by precursor ion scan (Fig. 26) 

and structurally elucidated by NMR spectroscopy (Fig. 27–40). Among these 

compounds, 11, 60, and 72 were newly isolated from Farfarae Flos. Compound 11, 

altaicalarin C, was first reported from Ligularia altaica [95], but compounds 60 

and 72 have not been reported previously. As shown in Fig. 26I and Fig. 26K, both 

compounds showed the loss of 116 Da (m/z 215 → 331) indicating an unreported 

substituent and the comparison of the NMR spectrum between 45 and 60 (likewise 

68 and 72) represented that the C1 positions of 60 and 72 were substituted with 3-

methylvaleric acid by an ester linkage. In addition, the peak at m/z 329 was rarely 

observed in the MS/MS spectra of 45, 60, 68, and 72, indicating that the ester 

linkage at the C1 position of the oplopane sesquiterpenoids was hard to be 

dissociated in the ESI-MS/MS condition rather than those at positions C7 and C14. 

Compounds 23 and 36 were isomeric forms (Δ3(14)-E and -Z) and the C14-proton 

of the E isomer was downfield relative to the proton of the Z isomer [19, 21]. 

Furthermore, the C14-proton (δH 6.35) of the E isomer did not interact with the C4-

proton (δH 2.26) in the NOESY correlations (Fig. 39). Comparing the retention 

time of 23 with 36, the E isomer was eluted earlier than the Z isomer in the UHPLC 

separation. Therefore, compounds 51, 56, and 64 were annotated to the E isomers 

of 61, 63, and 68 (the Z isomeric counterparts), respectively. To determine the 

stereochemistry of the hydroxyl group of 7, NOESY correlations were investigated 

(Fig. 38). The hydroxyl proton interacted with the protons of C1 (δH 3.95), C4 (δH 

2.64), and C10 (δH 5.19) position. Considering the reported stereochemistry of the 
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oplopane backbone (4S and 9R) from the Farfarae Flos [17–25], the hydroxyl 

group was α-oriented (1S) because the NOESY correlation with the axial proton 

(δH 2.32) of the C9 position was not detected. Furthermore, the NOESY 

correlations of compounds 7, 23, and 45 showed the stereochemistries 1S, 4S, 5S, 

7R, 9R (Fig. 38–40).  
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Figure 26. Precursor ion scans for isolated sesquiterpenoids 

Precursor ion scans for oplopane and bisabolane sesquiterpenoids isolated from 

Farfarae Flos: (A) 7, (B) 11, (C) 12 (D) 14, (E) 23, (F) 36, (G) 39, (H) 45, (I) 60, (J) 

68, (K) 72. Three collision energies (blue line for 5 eV; pink line for 15 eV; orange 

line for 25 eV) were selected in all the QqQ-MS/MS analysis to investigate all the 

intermediate and parent molecular ions. 
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Figure 27. HSQC spectrum of compound No. 7 

(in DMSO-d6, 500 MHz)  
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Figure 28. HSQC spectrum of compound No. 11 

(in DMSO-d6, 500 MHz) 
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Figure 29. HSQC spectrum of compound No. 12 

(in DMSO-d6, 500 MHz) 
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Figure 30. HSQC spectrum of compound No. 14 

(in DMSO-d6, 500 MHz)  
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Figure 31. HSQC spectrum of compound No. 23 

(in DMSO-d6, 500 MHz) 
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Figure 32. HSQC spectrum of compound No. 36 

(in DMSO-d6, 500 MHz)  
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Figure 33. HSQC spectrum of compound No. 39 

(in DMSO-d6, 500 MHz) 
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Figure 34. HSQC spectrum of compound No. 45 

(in DMSO-d6, 500 MHz) 
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Figure 35. HSQC spectrum of compound No. 60 

(in DMSO-d6, 500 MHz)  



100 

 

 

Figure 36. HSQC spectrum of compound No. 68 

(in DMSO-d6, 500 MHz) 
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Figure 37. HSQC spectrum of compound No. 72 

(in DMSO-d6, 500 MHz) 
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Figure 38. NOESY spectrum of compound No. 7 

(in DMSO-d6, 500 MHz)  
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Figure 39. NOESY spectrum of compound No. 23 

(in DMSO-d6, 500 MHz)  
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Figure 40. NOESY spectrum of compound No. 45 

(in DMSO-d6, 500 MHz)  
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2.4. CID-fragmentation behavior of sesquiterpenoids 

CID trends of oplopane and bisabolane sesquiterpenoids by tandem mass 

spectrometry were investigated based on the product ion scan. Under the collision-

induced dissociation (CID) in positive ion mode, the diagnostic ions were mainly 

produced by ester cleavages and double bond reduction corresponding to the loss 

of 60 Da for HOAc (acetic acid), 100 Da for HOAng (angelic acid) or HOSen (3-

methylcrotonic acid), 102 Da for HOMebu (2-methylbutyric acid), and 114 Da for 

HOMesen (3-ethyl-cis-crotonic acid).  

Taking compounds 45, 12, 14, and 11 as examples of the four diagnostic 

ions, Fig. 41 represented their fragmentation patterns in terms of the ester 

cleavages. Compound 45 generated the protonated ion [M+H]+ at m/z 491.2989, 

and the product ions at m/z 431.2789, 377.2320, 317.2110, 233.1534, and 215.1429 

corresponded to specific fragment ions of [M+H–C2H4O2]+, [M+H–C6H10O2]+, 

[M+H–C2H4O2–C6H10O2]+, [M+H–C2H4O2–C6H10O2–C5H10O2+H2O]+, and [M+H–

C2H4O2–C6H10O2–C5H10O2]+, respectively (Fig. 41A). Compound 12 generated the 

protonated ion [M+H]+ at m/z 391.2472, and the product ions at m/z 331.2265, 

277.1794, 235.1689, and 217.1587 corresponded to specific fragment ions of 

[M+H–C2H4O2]+, [M+H–C6H10O2]+, [M+H–C2H4O2–C6H10O2–C5H10O2+H2O]+, 

and [M+H–C2H4O2–C6H10O2–C5H10O2]+, respectively (Fig. 41B). The difference of 

45 and 12 was the number of ester linkages and they were fragmented to m/z 

215.1429 and 217.1587, respectively. Compound 14 generated the ammonium ion 

[M+NH4]+ at m/z 466.2433, and the product ions at m/z 449.2174, 349.1644, 
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289.1436, 247.1335, and 229.1225 corresponded to specific fragment ions of 

[M+H]+, [M+H–C5H8O2]+, [M+H–C5H8O2–C2H4O2]+, [M+H–C5H8O2–C2H4O2–

C2H4O2]+, and [M+H–C5H8O2–C2H4O2–C2H4O2+H2O]+, respectively (Fig. 41C). 

Compound 11 generated the protonated ion [M+ NH4]+ at m/z 408.2380, and the 

product ions at m/z 391.2113, 291.1598, 249.1490, and 231.1384 corresponded to 

specific fragment ions of [M+H]+, [M+H–C5H8O2]+, [M+H–C5H8O2–

C2H4O2+H2O]+, [M+H–C5H8O2–C2H4O2]+, respectively (Fig. 41D). Likewise, 14 

and 11 were fragmented to m/z 229.1225 and 231.1384, respectively.  

In the case of compound 45, a highly abundant sesquiterpenoid of the 

Farfarae Flos, its heteroisotopic molecular ion ([(M+2)+H]+ at m/z 493) containing 

two deuteriums was more abundant than the monoisotopic molecular ion of 48 

([M+H]+ at m/z 493). As shown in Fig. 42, the fragmentation pattern of the 

heteroisotopic species showed unusual isotopic ratios and these MS/MS data 

should be filtered for accurate identification. 
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Figure 41. Representative MS/MS fragmentation behaviors 

Representative MS/MS fragmentations behavior of oplopane and bisabolane 

sesquiterpenoids by product ion scan of Q-TOF MS/MS (collision energy 15 eV): 

(A) MS/MS of No. 45 for selected [M+H]+ at m/z 491; (B) MS/MS of No. 12 for 

selected [M+H]+ at m/z 391; (C) MS/MS of No. 14 for selected [M+NH4]+ at m/z 

466; (D) MS/MS of No. 11 for selected [M+NH4]+ at m/z 408.  
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Figure 42. Fragmentation behaviors of mono- and hetero-isotopic ions 
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2.5. Quantification of sesquiterpenoids by MRMHR 

The diagnostic and precursor ions investigated in the present study were 

applied to the absolute quantification of the sesquiterpenoids in Farfarae Flos (Fig. 

43). A total of 8 isolated compounds 11, 12, 14, 23, 36, 39, 45, and 68 were 

absolutely quantified based on their selectivity, linearity, LOD, LOQ, and precision 

by UHPLC-MRMHR, and the validation parameters were described in Table 6 and 

Table 7. As shown in Fig. 44, deconvolution of each target peak was performed 

based on the selection of precursor ions and the corresponding diagnostic ions of 

the sesquiterpenoids. Especially, the selection of m/z 408, 231.138 for compound 

11 and m/z 391, 217.158 for compound 12 distinguished the highly overlapped 

compounds. Likewise, compound 36 (selected m/z 331, 217.158) was deconvoluted 

from compounds 35 (selected m/z 445, 215.143), 37 (selected m/z 431, 231.138), 

and 38 (selected m/z 479, 215.143) and absolutely quantified by the UHPLC-

MRMHR method. Under the optimized conditions, several kinds of T. farfara 

extracts were quantified. The yield of extraction and contents of 8 sesquiterpenoids 

were described in Table 8 and Table 9. All the sesquiterpenoids were more 

abundant in buds than stems, and n-hexane was a preferable solvent to extract these 

classes of compounds compared to ethanol. The present study is the first report on 

the quantitative composition of oplopane and bisabolane sesquiterpenoids in T. 

farfara by UHPLC-MS/MS. 
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Figure 43. Herbal materials for quantification study 

The dried buds (A, B), stems (C, E), and flowers (D) of Tussilago farfara L. 

Korean one was obtained from herbary of Seoul National University (A, C, and D), 

and Chinese one was purchased from domestic market (Omniherb, B and E). 
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Figure 44. Dereplication of 8 sesquiterpenoids by UHPLC-MRMHR 

Diagnostic ions and the corresponding precursor ions were selected for the absolute 

quantification of (A) oplopane and (B) bisabolane sesquiterpenoids in Farfarae Flos. 
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Table 6. Quantitative parameters for sesquiterpenoids by UHPLC-MRMHR 

 

 

 

 

Table 7. Intra-day and inter-day precision of UHPLC-MRMHR 
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Table 8. Extraction yield of herbal materials 

 

 

 

 

Table 9. Contents of 8 sesquiterpenoids in Tussilago farfara by UHPLC-

MRMHR 
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2.6. Discussion 

This study was designed to develop LC-MS/MS dereplicative method for 

oplopane and bisabolane sesquiterpenoids in Farfarae Flos. In order to characterize 

the structurally diverse derivatives, i) four diagnostic ions were suggested and ii) 

precursor ion scanning was applied to investigate parent molecular ions and their 

MS/MS fragmentation behaviors. 

Although the QTOF-MS/MS system has been applied to the non-targeted 

profiling of plant secondary metabolites [43], deconvolution of the 

sesquiterpenoids was difficult because the in-source fragmentation of these 

compounds disturbed the determination of the parent molecular ions. For example, 

as shown in Table 1, the precursor ion spectra of 17 compounds (No. 9, 10, 11, 12, 

19, 23, 26, 28, 32, 36, 37, 39, 44, 53, 60, 69, and 72) shared peak at m/z 331. While 

those of 23 and 36 indicated the value of parent molecular ions, the others were of 

the intermediate ions. Therefore, the combination of diagnostic filtering and 

precursor ion scan selectively identify these compounds, even though they were 

highly overlapped (No. 36 and 37). Furthermore, the QTOF-MS/MS system could 

also perform the precursor ion scan with highly resolved diagnostic m/z, the scan 

period for m/z 250–550 was too long (30 s cycle time for 0.1 s accumulation time) 

to collect reliable MS/MS data.  

Therefore, Precursor ion scans (m/z 250–550) for the diagnostic ions were 

conducted using a QqQ-MS/MS system. The ionization energy (DP) was fixed at 

30 V and three collision energies (5, 15, 25 eV) were selected to screen all the 
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intermediate and parent molecular ions. While the diagnostic and intermediate 

molecular ions were mainly protonated ions [M+H]+, the parent molecular ions 

were both [M+H]+ and [M+NH4]+ adducts. Although the source of the ammonia is 

hard to know, it is a common additive for LC-MS systems [47] and this ionization 

tendency made the parent ion annotation easier in the precursor ion scan. 

Tussilagone (No. 12) has been a chemical marker of the Farfarae Flos and 

the Chinese Pharmacopoeia set the regulation for the compound, which described 

that the tussilagone content in the Farfarae Flos must be greater than 0.07% (w/w) 

[26]. Although, HPLC-PDA quantification of the oplopane sesquiterpenoids 

(compounds 12 and 36) was studied [10], as shown in Fig. 44 and Table 5, the 

compounds 11 and 14 were overlapped with tussilagone even by the UHPLC 

separation. Likewise, compound 36 was highly overlapped with compounds 35, 37, 

and 38. These chemical complexities and chromatographic behaviors made it 

difficult and unreliable to quantify the sesquiterpenoids using UV detection. 

Furthermore, MS1-based quantification would not be suitable for the 

sesquiterpenoids because the compounds were in-source fragmented and shared the 

same m/z values. Therefore, the MRMHR method based on the diagnostic and 

precursor ions could eliminate untargeted metabolites allowing high sensitivity and 

low detection limits. 
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3. Activity based proteome profiling: Identification of target 

proteins of an oplopane sesquiterpenoid in breast cancer 

cells 

3.1. Anti-proliferation activities of Farfarae Flos 

Anti-proliferation activities of various samples from Chinese and Korean 

Farfarae Flos were investigated on MDA-MB-231 and MCF-7 breast cancer cells. 

Although some nonpolar fractions obtained from both herbal materials exhibit anti-

proliferation activities, fraction 9 and 11 obtained from Chinese Farfarae Flos 

showed more potent acitivities (Fig. 45). Considering the result of MS/MS 

chemical profiling of Farfarae Flos, these results indicate that oplopane 

sesquiterpenoids seemed to exhibit potent anti-proliferation activities because these 

compounds were not detected in Korean Farfarae Flos (Table 9). Indeed, the 

nonpolar oplopane sesquiterpenoids 45 and 68 showed higher activities rather than 

bisabolane sesquiterpenoid (Fig. 46A). Furthermore, the C-14-methoxy analogue 

of compound 7 and 68 showed substantially reduced anti-proliferation activities 

(Fig. 46B). This result demonstrated that the α,β-unsaturated carbonyl moiety at 

five-membered ring of the oplopane sesquiterpenoid exerts as its pharmacophore. 

Therefore, the most cytotoxic compound 68 (ECN) was selected to further probe 

synthesis for activity-based proteome profiling. 
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Figure 45. Anti-proliferation activities of fractions from Farfarae Flos 

Anti-proliferation activities of fraction from (A) Chinese and (B) Korean Farfarae Flos was measured by an MTT assay (n=3). 
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Figure 46. Anti-proliferation activities of compounds from Farfarae Flos 

Anti-proliferation activities of (A) compounds from Chinese Farfarae Flos and   

(B) their modified analogues was measured by an MTT assay (n=3). 

  



119 

 

3.2. Synthesis of ECN-based clickable probe 

ECN-based clickable probe was synthesized for visualization and 

identification of ECN-binding proteins. ECN was designed to contain clickable 

azido group at the C10 position through two step reactions (Fig. 47A): (1) 

epoxification of double bond at C8–C10 position by m-chloroperoxybenzoic acid 

(m-CPBA), and (2) necleophilic addition of azide to the epoxide group via CeCl3-

catalyzed reaction [96]. The two steps could be run on gram scales without loss of 

the α,β-unsaturated carbonyl moiety. The structural modification of probe was 

determined by comparing HSQC spectra of ECN, ECN-E, and ECN-N3 (Fig. 48–

50) and 15N-HMBC spectrum of ECN-N3 (Fig. 51). In addition, anti-proliferation 

activities of the synthetic products were evaluated in MDA-MB-231 and MCF-7 

cells to investigate whether the chemical derivative would influence the anti-

proliferative potency of ECN (Fig. 47B). Upon 24-hour treatment of 8 

concentrations, ECN-N3 showed similar growth inhibitory effect with ECN, 

suggesting the retention of the biological activity.  
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Figure 47. Synthesis of ECN-based clickable probe and anti-proliferation activity 

(A) Schematic diagram of two step synthesis of ECN based clickable probe, ECN-N3. 

(B) Dose-dependent inhibition of MDA-MB-231 and MCF-7 cell proliferation by 

ECN, ECN-E, and ECN-N3.  
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Figure 48. HSQC spectrum of ECN 

(in DMSO-d6, 500 MHz) 
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Figure 49. HSQC spectrum of ECN-E 

(in DMSO-d6, 500 MHz) 
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Figure 50. HSQC spectrum of ECN-N3 

(in DMSO-d6, 500 MHz) 
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Figure 51. 15N-HMBC spectrum of ECN-N3 

(in DMSO-d6, 500 MHz) 
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3.3. Gel-based proteome profiling of clickable probe 

Protein-interaction profile of the ECN-based probe by gel-based analysis 

were assessed in situ (Fig. 52). The human breast cancer cell lines MDA-MB-231 

and MCF-7 were treated with ECN-N3 followed by cell lysis, coupling to 

cyanine3-alkyne via click reaction, SDS-PAGE, and visualization of probe-

captured proteins by in-gel fluorescence scanning. The ECN-N3 showed substantial 

concentration-dependent labeling of proteins in both cells, and treatment of excess 

ECN as competitive inhibitor blocked the labeling of target proteins in a 

concentration-dependent manner. These results indicated that the ECN-N3 is 

suitable for quantitative MS-based proteomic experiments. 
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Figure 52. Gel-based profiling of ECN-N3 labeled proteome in situ 

Gel-based profiling of ECN-N3 labeled proteomes of MDA-MB-231 (left) and 

MCF-7 (right) cell lines in situ (living cells): fluorescence scanning (Cyanine 3, 

left) and coomassie blue staining (right), respectively. 
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3.4. MS-based profiling of target proteins of ECN 

Potential cellular target proteins of ECN were identified using quantitative 

mass spectrometry (MS)-based analysis. Following the click reaction, biotin pull-

down, TMT isobaric tagging, and LC-MS/MS procedures, more than 200 proteins 

were identified and quantified by the ECN-based probe in both MDA-MB-231 and 

MCF-7 cell line. A total of 26 and 32 identified proteins represented more than 3 

enrichment ratio in MDA-MB-231 and MCF-7, respectively, and 17 proteins were 

shared across the two cell lines (Table 10). Among those proteins, 14-3-3 protein 

zeta and peroxiredoxin-1 which showed highest positive/negative enrichment ratios 

were selected for the further verification studies. 
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Table 10. Identified target proteins of ECN in breast cancer cells 

 

Identified target proteins which is shared across in MDA-MB-231 and MCF-7 cells. 

The identification parameters (% coverage and number of identified peptides) and 

enrichment ratio were described those of MCF-7 cell line. 
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3.5. Thermodynamics and binding sites of ECN for target proteins 

Among the identified target proteins, recombinant 14-3-3 protein zeta and 

peroxiredoxin-1 were further verified by isothermic calorimetry and their 

alkylation sites. The binding isotherms were analysed by fitting the data to a 

binding model to yield the binding constant (Ka), and the binding parameters, (n 

and ΔH). The results of the data are shown in Fig. 53. Furthermore, LC-MS/MS 

analyse of ECN-treated recombinant 14-3-3 protein zeta and peroxiredoxin-1 were 

conducted to determine the modification sites of ECN. Taking the interaction 

between α,β-unsaturated carbonyl moiety of ECN and cysteine residues of proteins 

into account, peptides containing Cys25, Cys94 of 14-3-3 protein zeta (Fig. 54) 

and Cys83 of peroxiredoxin-1 (Fig. 55) were significantly reduced by ECN in a 

concentration-dependent manner. 
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Figure 53. Thermograms and parameters for interaction of ECN with 

identified target proteins 

Thermodynamics for the interaction of ECN with (A) 14-3-3 protein zeta and (B) 

peroxiredoxin-1 were investigated by isothermal titration calorimeter. 
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Figure 54. Alkylation of cysteine residues in 14-3-3 protein zeta by ECN 

Identification of ECN binding sites in recombinant 14-3-3 protein zeta by LC-MS/MS. 

Extracted ion chromatogram at m/z 552.712 [M+2H]2+, 709.863 [M+2H]2+, 649.334 [M+H]+, 

which correspond to the amino acid sequence of 14-3-3 protein zeta.  
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Figure 55. Alkylation of cysteine residues in peroxiredoxin-1 by ECN 

Identification of ECN binding sites in recombinant peroxiredoxin-1 by LC-MS/MS. 

Extracted ion chromatogram at m/z 686.308 [M+H]+, 678.804 [M+2H]2+, 1049.534 [M+H]+, 

which correspond to the amino acid sequence of peroxiredoxin-1.  
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3.6. Discussion 

The present study was designed to identify target proteins of ECN, which 

showed anti-proliferation activity in human breast cancer cells, using a 

combination of activity-based profiling and isobaric labelling (TMT)-based 

quantitative mass spectrometry. One of the structural characteristics of ECN is 

presence of the α,β-unsaturated carbonyl moiety, which can act as a Michael 

reaction acceptor, modifying the cysteine thiols of protein [97, 98]. Indeed, the C-

14-methoxy analogue of ECN showed reduced anti-proliferation activity (Fig. 46). 

It has been suggested that the modification of cysteine thiols can largely affect the 

dimensional structure of many redox sensitive proteins and their functions [99–

102].  

In order to investigate the molecular interactions of ECN that might 

contribute to the anti-proliferation activity, ECN-based clickable probe containing 

azido groups was synthesized. Although the moderate potency (μM level) of ECN 

was not powerful in the pharmacological perspective, it emphasized an advantage 

of the chemical proteomic methods employing activity-based clickable probe 

which can capture even lower affinity interaction of small molecule−protein 

binding events in situ. Under the optimized click reaction and quantitative MS-

based proteome profiling, more than 200 proteins were identified and quantified by 

the ECN-based probe in both MDA-MB-231 and MCF-7 cell lines. Among those 

identified target proteins, 14-3-3 protein zeta and peroxiredoxin-1 which showed 

highest positive/negative enrichment ratios were verified by isothermic calorimetry 
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and cysteine modification sites using their recombinant proteins. Many previous 

studies have established a strong relationship between 14-3-3 proteins and various 

cancer types [103–110], but cysteine modification-related functions were elusive. 

Peroxiredoxin-1 also plays an important role in cancer development and 

inflammation [111–114]. It is a dual functional protein which acts as both an 

antioxidant enzyme and a molecular chaperone. [115–116] Peroxiredoxin-1 have 

been reported to interact with essential siganlling molecules such as p53 [117], NF-

kB [118], and TLR4 [119]. Recently, triptolide was reported as a possible inhibitor 

chaperone activity of peroxiredoxin-1 by binding to Cys83 and Cys173 residue 

[120–122]. Therefore, the interaction of ECN with Cys83 could be applied in the 

same manner. 

Although these results could not confirm the role of ECN in breast cancer 

cells, it is possible that functional perturbation of multiple target proteins 

contributes to ECN-mediated anti-proliferation activity. Furthermore, the 

interaction with 14-3-3 protein zeta and peroxiredoxin-1 could suggest the 

molecular mechanism of ECN in anti-proliferative and anti-inflammatory effects, 

leading to further studies aimed at determining how these ECN-protein interactions 

may contribute to understand the biological activities. One of possible approaches 

is genetic knockout of individual proteins in various ECN-sensitive cell types to 

evaluate the role of the proteins in the biological activities of ECN. 
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IV. CONCLUSION 
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In the present study, preparative separation, chemical profiling, and 

activity-based proteome profiling of sesquiterpenoids from Farfarae Flos were 

performed. 

Firstly, a novel fractionation and purification method of counter-current 

chromatography (CCC), called direct and continuous injection (DCI) mode, was 

developed to fractionate and preparatively separate sesquiterpenoids from Farfarae 

Flos. Since the extraction solution was used as a mobile phase in this method, 

solvent consumption could be greatly reduced. Moreover, the fractionation 

efficiency of CCC-DCI was much higher than those of conventional fractionations: 

solvent partitioning and open column chromatography. The developed method 

demonstrates that CCC is a useful technique for enriching target components from 

natural products. 

Secondly, a liquid chromatography-electrospray ionization tandem mass 

spectrometry (LC-ESI-MS/MS)-based dereplicative method was developed to 

identify and quantify oplopane- and bisabolane-type sesquiterpenoids of the 

Farfarae Flos. Proposed diagnostic ions and two sequential MS/MS scan modes 

were successfully applied to characterize common skeletons, parent molecular ions, 

and their fragmentation patterns. Under the optimized UHPLC-MS/MS method, a 

total of 74 sesquiterpenoids were identified and relatively quantified. Consequently, 

the developed LC-MS/MS-based dereplicative method highlighted the chemical 

composition of the Farfarae Flos and could be applied to quality control of the 

herbal medicine. 
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Finally, target proteins of ECN in human breast cancer cells were 

identified by chemical proteomics methodology. ECN showed potent anti-

proliferation activity in MDA-MB-231 and MCF-7 human breast cancer cells. The 

ECN-based clickable probe successfully capture the potential cellular target 

proteins, and a total of 17 proteins were proposed as direct target proteins of ECN. 

Furthermore, ECN interact with Cys25, Cys94 of 14-3-3 protein zeta and Cys83 of 

peroxiredoxin-1 based on its α,β-unsaturated carbonyl moiety. Although these 

results could not confirm the role of ECN in the breast cancer cells, the suggestion 

of multiple target proteins could contribute to understand the ECN-mediated anti-

proliferative and anti-inflammatory effects. 
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ABSTRACT IN KOREAN 

관동(Tussilago farfara L.)은 국화과의 다년생 약초로서 관동

의 말린 꽃봉오리(관동화, Farfarae Flos)는 전통 의학에서 기침, 기관

지염 및 천식과 같은 호흡기 질환을 치료하기 위해 사용되었다. 주요 생

리활성성분으로는 플라보노이드, 테르페노이드, 퀸산유도체 등이 보고되

었으며, 특히 세스퀴테르펜 화합물군이 항염증, 세포증식억제, 뇌신경보

호 등에서 높은 효능을 나타내었다. 따라서 본 연구에서는 관동화 유래 

세스퀴테르펜 화합물에 대한 1) 대량 분리법, 2) LC-MS 기반의 성분

프로파일링, 3) 유방암 세포주에서의 표적단백질 규명을 수행하였다. 

항류크로마토그래피를 이용하여 관동화 유래 세스퀴테르펜 화합

물의 대량분획법(직접연속주입법, Direct and Continuous Injection 

mode)을 고안하였다. 추출액 자체를 이동상으로 사용함으로써 유기용

매의 사용량을 크게 줄였으며, 관동화 1 kg의 추출물 315.9 g으로부터 

6.8 g의 세스퀴테르펜 강화분획을 한 번에 획득하였다. 기존의 항류크

로마토그래피 분리방법은 1~5 g의 추출물을 주입하기 때문에 직접연속

주입법을 통해 분리 시간과 비용을 절감할 수 있었다. 또한, 주요 세스

퀴테르펜 단일화합물의 정량분석을 수행하였고 용매분획법이나 컬럼크로

마토그래피를 이용해 얻어진 분획물에 비해 높은 함량을 확인하였다.   

UPLC-MS/MS 기법을 이용하여 관동화의 oplopane 및 
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bisabolane 계열의 세스퀴테르펜에 대한 성분프로파일을 제시하였다. 

해당 화합물군은 질량분석기의 ESI 이온화과정에서 쉽게 In-source 

fragmentation (IS-CID) 되는 화합물로서 모분자 질량값을 얻기 위

해 QqQ-MS의 Precursor ion scan을 적용하였다. 구조적 특성을 기

반으로 네 가지의 특이적 이온(diagnostic ions, [M+H]+ 215, 217, 

229, 231)을 선정하여 총 74종의 화합물에 대한 모분자 질량값을 확인

하였고, Q-TOF MS의 Product ion scan을 이용하여 각 모분자 이온

의 특징적인 쪼개짐 양상(fragmentation pattern)을 고분해능 수준에

서 확인하였다. 또한 11종의 화합물을 분리 및 구조동정하여 고안된 동

시분석법을 검증하였고, MRMHR 분석법을 이용하여 관동화 추출물에 함

유된 주요 세스퀴테르펜 화합물의 함량을 확인하였다. 

유방암 세포주 MDA-MB-231과 MCF-7에 대한 ECN (7β-

(3´-ethyl cis-crotonoyloxy)-1α-(2´-methyl butyryloxy)-

3,14-dehydro-Z-notonipetranone)의 높은 세포증식억제능을 확인

하였고, Chemical Proteomics 기법을 이용하여 표적단백질을 제시하

였다. In vitro 스크리닝 결과, 관동화 유래 세스퀴테르펜 화합물군은 

항염증효능 뿐만 아니라 세포증식억제능을 보였으며 그 중 ECN이 가장 

높은 효능을 나타냈다. ECN 기반의 clickable probe를 합성하여 세포 

내에서의 click 반응으로 표적 단백질을 분획하였고, 가수분해된 펩타

이드 혼합물의 TMT isobaric label 및 Orbitrap MS/MS 분석을 통
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하여 음성대조군 대비 3배 이상의 선택성을 갖는 17종의 표적단백질을 

규명하였다. 또한, 높은 선택성을 갖는 두 종의 표적단백질 14-3-3 

protein zeta, peroxiredoxin-1에 대한 ECN의 작용 위치(binding 

site)와 결합친화도(ITC)를 확인하였다. 

본 연구 결과들을 종합하여 볼 때, 관동화 유래 세스퀴테르펜 

화합물군에 대한 LC-MS/MS 성분프로파일은 관동화를 포함하는 생약

제제의 품질관리에 적용될 수 있으며, oplopane 골격의 세스퀴테르펜

에 대한 표적단백질을 규명함으로써 세포증식억제능에 한하여 유효성분

과 약효의 상관관계를 확인하는데 기초가 되는 연구로 사료된다.  
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질량분석기반 성분프로파일, 세포증식억제, 생리활성기반 표적단백체 
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