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Abstract

Topological combinatorics in rainbow set problems

Jinha Kim

Department of Mathematical Sciences

Seoul National University

Let F = {S1, . . . ,Sm} be a finite family of non-empty subsets on the ground

set V . A rainbow set of F is a non-empty set of the form S = {si1, . . . ,sik} ⊂ V

with 1 ≤ i1 < · · ·< ik ≤ m such that si j ̸= si j′ for every j ̸= j′ and si j ∈ Si j for each

j ∈ [k]. If k = m, namely if all Si is represented, then the rainbow set S is called a

full rainbow set of F .

Originated from the celebrated Hall’s marriage theorem, it has been one of the

most fundamental questions in combinatorics and discrete mathematics to find

sufficient conditions on set-systems to guarantee the existence of certain rainbow

sets. We call problems in this direction the rainbow set problems. In this disserta-

tion, we give an overview on two topological tools on rainbow set problems, Aha-

roni and Haxell’s topological Hall theorem and Kalai and Meshulam’s topological

colorful Helly theorem, and present some results on and rainbow independent sets

and rainbow covers in (hyper)graphs.

Key words: Rainbow set, independence complex, non-cover complex, domina-

tion parameters, independent set

Student Number: 2013-20230
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Chapter 1

Introduction

For a positive integer n, we let [n] denote the set {1, . . . ,n}. Let F = {S1, . . . ,Sm}
be a finite family of non-empty subsets on the ground set V . A rainbow set of F

is a non-empty set of the form S = {si1, . . . ,sik} ⊂ V with 1 ≤ i1 < · · · < ik ≤ m

such that si j ̸= si j′ for every j ̸= j′ and si j ∈ Si j for each j ∈ [k]. If k = m, namely

if all Si is represented, then S is called a full rainbow set for F . One of the most

fundamental questions in combinatorics is to find sufficient conditions on set-

systems to guarantee the existence of rainbow sets satisfying certain properties.

We call problems in this direction the rainbow set problems. Historically, the first

theorem on rainbow sets is the well-known result of Hall [20]: if |
⋃

i∈I Si| ≥ |I| for

every nonempty I ⊂ [m], then there exists a full rainbow set.

In the study of rainbow set problems, topological methods have become an

indispensable tool. There are two fundamental results: one is the topological Hall

theorem by Aharoni and Haxell [7] and the other is the topological colorful Helly

theorem by Kalai and Meshulam [26]. In this dissertation, we give an overview

on the topological methods in rainbow set problems and introduce new results on

rainbow independent sets and rainbow covers in (hyper)graphs.

Throughout this dissertation, we only consider finite, simple and undirected

graphs. For a graph G, we denote the set of all vertices by V (G) and the set of all
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edges by E(G).

1.1 Topological Hall theorem

A hypergraph is a generalization of a graph, and it is defined as a family of non-

empty subsets of the ground set. We denote a hypergraph H by H = (V (H),E(H))

where V (H) is the ground set (or the vertex set) and E(H) is the edge set of H

which consists of non-empty subsets of V (H). In this terminology, graphs can be

viewed as hypergraphs such that all of whose edges have cardinality exactly 2.

The following extension of Hall’s theorem was proved in [7].

Theorem 1.1.1 (Hall’s theorem for hypergraphs). Let A = {H1, . . . ,Hm} be a

family of hypergraphs. If A satisfies the following condition, then there exists a

rainbow matching of size m: for every subfamily B of A there exists a matching

MB in ∪B, which cannot be pinned by fewer than |B| disjoint edges from ∪B.

The original proof of Theorem 1.1.1 by Aharoni and Haxell is based on an

applicaion of Sperner’s lemma to a special triangulation of a simplex. Later, Aha-

roni found that the proof method of [7] can give a more general result, so-called

the “topological Hall theorem”. In general, the topological Hall theorem proves

the existence of “small” rainbow sets when “large” sets are given.

Let X be a finite simplicial complex on V . The topological connectivity η(X)

of X is the maximum integer i such that the j-dimensional reduced homology

group H̃ j(X ;Q) is vanishing for every integer j ≤ i− 2. Here, we assume that

H̃−1(X ;Q) = 0 if and only if X is non-empty. Thus, for example, η(X) ≥ 1 im-

plies X is non-empty and η(X) ≥ 2 further implies that X is connected. In this

dissertation, if there is no confusion, we just use H̃i(X) instead of H̃i(X ;Q) for

convenience.
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Example 1.1.2. Let ∆n be the n-dimensional simplex, i.e. ∆n := {σ : σ ⊂ [n]}.

Note that the reduced homology group H̃i(∂∆n) of boundary of ∆n is vanishing if

and only if i ̸= n−1. This implies that η(∂∆n) = n.

Given a partition V = V1 ∪ ·· · ∪Vm of V , we say σ ∈ X is a colorful simplex

of X (with respect to the partition of V ) if |σ ∩Vi|= 1 for each i ∈ [m]. For every

non-empty subset I ⊂ [m], let us write VI =
⋃

i∈I Vi. The topological Hall theorem

gives a topological condition to guarantee the existence of a colorful simplex.

Its homotopoic version was first proved by Aharoni and Haxell [7], and later its

homological version was given by Meshulam [34].

Theorem 1.1.3 (Topological Hall). Let X be a simplicial complex on V and let

V =V1∪·· ·∪Vm be a partition of V . If η(X [VI])≥ |I| for every non-empty I ⊂ [m],

then there exists a colorful simplex of X.

1.2 Topological colorful Helly theorem

Helly’s theorem is a result about intersection patterns of convex sets in Euclidean

space, which statement is that for every finite family F of convex sets in Rd , if

every d + 1 or fewer members of F have a common point, then all members of

F have a common point. There are many variations of Helly’s theorem which

shows “global intersection properties” from assumptions on “local intersection

properties”, and those results are called Helly type theorems.

Among the significant number of Helly type theorems, we focus on the color-

ful generalization of Helly’s theorem. Suppose we are given d + 1 finite families

F1, . . . ,Fd+1 of convex sets in Rd . The colorful Helly theorem by Bárány [11]

asserts the following: if A1∩ . . .∩Ad+1 ̸= /0 for every choice of Ai ∈ Fi then there

exists some i ∈ [d + 1] such that all members of Fi have a common point. Note

that setting F1 = · · ·= Fd+1 gives us Helly’s theorem.

3



Later, Kalai and Meshulam [26] established topological versions of the col-

orful Helly theorem. A specific case of the “topological colorful Helly theorem”

proves the existence of “large” rainbow sets when “many” of “large” sets are

given.

We recommend [37] for an overview of this field.

1.2.1 Collapsibility and Lerayness of simplicial complexes

Let X be a finite simplicial complex. We say a face f of X is free if there is

a unique maximal face of X containing f . An elementary d-collapse of X is the

operation deleting all faces containing a free face f of X with | f | ≤ d. We say a

simplicial complex X is d-collapsible if we can obtain the void complex from X

by a finite sequence of elementray d-collapses.

The notion of d-collapsibility was introduced by Wegner [38]. In the same

paper, he proved that the “nerve complex” of a finite family of convex sets in Rd is

d-collapsible (see also [19]). Given a family of non-empty sets F = {F1, . . . ,Fn},

the nerve of F is defined as the simplicial complex

N(F ) = {σ ∈ [n] : ∩i∈σ Fi ̸= /0}.

In graph theory, the 1-skeleton1 of N(F ) is called as the intersection graph of F .

Theorem 1.2.1 ([38]). For every finite family C of convex sets in Rd , its nerve

N(C ) is d-collapsible.

The converse of Theorem 1.2.1 is not true in general. That is, a d-collapsible

complex may not be a nerve of some finite family of convex sets in Rd . For d = 1,

it is well-known that a simplicial complex is 1-collapsible if and only if the clique

complex, i.e. complex of all cliques, of chordal graphs2. Thus the existence of a
1The d-skeleton of a simplicial complex X is the subcomplex of all faces in X of dimension at

most d.
2A chordal graph is a graph with no induced cycle of length 4 or greater.
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chordal graph which is not an intersection graph of intervals implies the existence

of 1-collapsible complex which is not the nerve of a finite family of intervals. For

d ≥ 2, let X be the d-skeleton of a (2d +2)-simplex. If we consider X as a family

of sets, then the nerve N(X) is d-collapsible but N(X) is not the nerve of a family

of convex sets in Rd (see [27]).

1.2.2 Nerve theorem and topological Helly theorem

The nerve N(F ) of a family F of non-empty sets appears frequently in discrete

geometry and topological combinatorics, together with “nerve theorems” which

show the relation between the topology of
⋃

A∈F A and that of N(F ). The first

example of nerve theorems is the following.

Theorem 1.2.2 (Homotopy nerve theorem). Let X be a simplicial complex and let

F = {X1, . . . ,Xn} be a family of subcomplexes of X whose union is X. If
⋂

i∈σ Xi

is contractible for every σ ∈ N(F ), then N(F ) is homotopy equivalent to X.

The assertion of Theorem 1.2.2 is valid for every family of topological objects

whose non-empty intersections are all contractible. As an application of Theo-

rem 1.2.2, we can prove that for every good cover3 F = {A1, . . . ,An}, the nerve

N(F ) has vanishing homology in dimension d or greater. Note that the same

topological property holds for any open, connected subset in Rd . This is the key

observation to prove the topological version of Helly’s theorem [22].

Theorem 1.2.3 (Topological Helly theorem). Let F be a good cover in Rd . If

every d+1 or fewer members of F have a common point, then all members of F

have a common point.

A simplicial complex X is called d-Leray if H̃i(L) = 0 for every integer i ≥
d and induced subcomplex L of X . The above argument implies that the nerve

3Here, a good cover in Rd is a family of open and contractible sets in Rd such that non-empty
intersection of any subfamily is open and contractible. For example, a family of open convex sets
in Rd is a good cover in Rd .
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complex of any good cover in Rd is d-Leray. In this sense, Theorem 1.2.3 can be

written in a more general format.

Theorem 1.2.4. Let F be a finite family of non-empty sets whose nerve is d-Leray.

If every d +1 or fewer members of F have a common point, then all members of

F have a common point.

It is important to notice that applying an elementary d-collapse to a simplicial

complex X does not affect to the (non-)vanishing property of homology groups of

X of dimension d or greater, and that the sequence of elementary d-collapses to

X to obtain the void complex can be inherited to any induced subcompelx Y of X .

It follows that every d-collapsible complex is d-Leray (see [38]). The converse is

not true in general, as an example of a d-Leray complex which is not d-collapsible

was found in [36]. (See also [33].)

1.2.3 Topological colorful Helly theorem

In [26], Kalai and Meshulam established the colorful version of the topological

Helly theorem. Indeed, they considered a more general situation. Given a matroid

M on a ground set V , the matroidal complex is a simplicial complex on V such

that σ ⊂V is a face if and only if σ is an independent set in the matroid M.

Theorem 1.2.5. Let X be a d-collapsible complex on V and M be a matroidal

complex on V . If M ⊂ X then there exists a simplex τ ∈ X such that ρ(τ) = rk(M)

and ρ(V − τ)≤ d.

Theorem 1.2.6. Let X be a d-Leray complex on V and M be a matroidal complex

on V . If M ⊂ X then there exists a simplex τ ∈ X such that ρ(V − τ)≤ d.

Here is how the topological colorful Helly theorems are related to the rainbow

set problems. Consider the special case when the matroid M is a partition matroid

with respect to a partition V =V1∪·· ·∪Vm for some integer m ≥ d+1, i.e. A ⊂V

6



is independent in M if and only if A is a rainbow set. If Vi /∈ X for all i ∈ [m], then it

follows that ρ(V −τ)≥ d+1 for any τ ∈X . Hence the converses of Theorem 1.2.5

and Theorem 1.2.6 imply that there is a rainbow set which is not in X . See [8] for

an example of an application of Theorem 1.2.5 to a rainbow set problem.

While the proof of Theorem 1.2.5 is purely combinatorial, the proof of Theo-

rem 1.2.6 requires some topological ideas. It uses Theorem 1.1.3 combined with

the homology version of Theorem 1.2.2 [26] and the combinatorial Alexander

duality theorem [12].

Theorem 1.2.7 (Homology nerve theorem). Let X be a finite simplicial complex,

and F = {X1, . . . ,Xm} be a family of non-empty subcomplexes of X such that

∪i∈[m]Xi = X. Assume that, for all σ ∈ N(F ) with dimσ ≤ d, H̃ j(∩i∈σ Xi) = 0 for

each 0 ≤ j ≤ k−dimσ . Then for all integer 0 ≤ j ≤ k,

H̃ j(X)∼= H̃ j(N(F )).

Moreover, H̃k+1(N(F )) ̸= 0 implies H̃k+1(X) ̸= 0.

Theorem 1.2.8 (Alexander duality). Let X be a finite simplicial complex on V .

The Alexander Dual D(X) of X is the simplicial complex on V such that D(X) =

{σ ⊂V : V \σ /∈ X}. If V /∈ X, then for all −1 ≤ i ≤ |V |−2,

H̃i(D(X))∼= H̃|V |−i−3(X).

1.3 Domination numbers and non-cover complexes

of hypergraphs

Given a hypergraph H on V , a vertex subset W ⊂V is said to be independent if the

induced subhypergraph H[W ] has no edge. For a hypergraph H, the line graph of

7



H, denoted by L(H), is the graph on E(H) where two vertices are adjacent if and

only if they intersect, as edges of H. In this way, a rainbow matching of a system

of hypergraphs can be regarded as a rainbow independent set of system of line

graphs. Thus we can express Theorem 1.1.1 in terms of graphs and independent

sets, where “pinning edges” corresponds to the “domination numbers”.

For every vertex v in G, we denote by N(v) the open neighbor of v i.e. the

set of all vertices which are adjacent to the vertex v. The closed neighbor of v is

defined by N[v] := N(v)∪{v}. The vertices in N[v] are said to be dominated by

the vertex v in G, and we say the vertices in N(v) are said to be strongly dominated

by the vertex v in G. Similarly, for a vertex subset W ⊂V (G), we define N(W ) =⋃
v∈W N(v) and N[W ] =

⋃
v∈W N[v]. A vertex subset A ⊂V is said to be dominated

by W ⊂ V in G if A ⊂ N[W ] and A is said to be strongly dominated by W in G if

A ⊂ N(W ). We define the domination number of A in G by

γ(G,A) := min{|W | : W dominates A in G},

and the strong domination number of A in G by

γ0(G,A) := min{|W | : W strongly dominates A in G}.

Every A⊂V have bounded domination number, but the strong domination number

may be unbounded if the graph G contains an isolated vertex. We write γ0(G,A) =

∞ if the strong domination number of A is unbounded.

Theorem 1.3.1 (Hall’s theorem for hypergraphs, revisited). Let G1, . . . ,Gm be

graphs on V , and let GI =
⋃

i∈I Gi for every /0 ̸= I ⊂ [m]. If γ(GI,A) ≥ |I| for

every /0 ̸= I ⊂ [m] and every independent set A in GI , then there exists a rainbow

independent set of size m.

In the same flavor, by considering various domination parameters of graphs,

Theorem 1.1.3 gives many variants of Theorem 1.3.1. Let us define the indepen-
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dence complex of a graph G on V is as the simplicial complex

I (G) = {W ⊂V : W is an independent set in G}.

Note that if G contains an isolated vertex v, then I (G) is contractible since it is a

cone with apex v, implying that η(I (G)) = ∞.

Theorem 1.3.2. Let G1, . . . ,Gm be graphs on V . If η(I (GJ)) ≥ |J| for every

/0 ̸= J ⊂ [m], then there exists a rainbow independent set of size m.

There are some known bounds on η(I (G)) in terms of the domination num-

bers of graphs. Here we introduce two domination numbers. Let G be a graph on

V .

• iγ(G) := max{γ0(G,A) : A ∈ I (G).}, which is called the independence

domination number of G.

• γ̃(G) := γ0(G,V ), which is called the total domination number of G.

Theorem 1.3.3 ([7, 16, 6]). η(I (G))≥ max{iγ(G), γ̃(G)
2 }.

In [6], Aharoni et al. found an additional bound η(I (G))≥ γE(G), where

γE(G) := min{|F | : F ⊂ E(G),V (F) strongly dominates V in G.} 4.

Observe that this bound is stronger than the bound η(I (G))≥ γ̃(G)
2 . Take F ⊂ E

such that V (F) strongly dominates V in G. Then by the minimality of γ̃(G), we

have γ̃(G)≤ |V (F)| ≤ 2|F | which means γ̃(G)≤ 2γE(G).

4Here, V (F) is the set of all endpoints of edges in F .
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1.3.1 Domination numbers of hypergraphs

Let H be a hypergraph defined on V . For convenience, we will regard a hypergraph

H same as its edge set E(H). We say W ⊂V (strongly) dominates5 a vertex v ∈V

if there exists W ′ ⊂ W such that W ′∪{v} is an edge of H. Here we assume that

the empty set dominates the vertex v if H contains {v} as a singleton edge, i.e.

{v} ∈ H. We say W ⊂V dominates A ⊂V if W dominates every vertex in A. The

domination number of A in H is defines as an integer

γ(H,A) := min{W ⊂V : W dominates A}.

In particular, the total domination number γ̃(H) of H is defined as the strong

domination number of V in H, i.e. γ̃(H) := γ(H,V ).

An independent set I ⊂ V in H is said to be strongly independent in H if for

any two vertices u,v∈ A, there is no edge of H containing both u and v. The strong

independence domination number of H is defined as

γsi(H) := max{γ(H,A) : A is a strong independent set in H}.

Finally, we define γE(H) := min{|F | : F ⊂ H,
⋃

f∈F f dominates V (H)}.

1.3.2 Non-cover complexes of hypergraphs

Throughout this dissertation, we consider only non-empty hypergraphs, and we

do not allow an empty set to be an edge of a hypergraph. Let H be a hypergraph

on a vertex set V . An independence complex of H is defined as

I (H) := {W ⊂V : W is an independent set in H}.
5Although we defined domination and strong domination for graphs separately, we will use

only strong dominations for hypergraphs throughout the rest of this dissertation.
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A cover in H is a vertex subset W ⊂V such that V \C is an independent set in H.

W is called a non-cover in H if it is not a cover of H. A non-cover complex of H

is defined as

N C (H) := {W ⊂V : W is a non-cover in H}.

Observe that N C (H) is the Alexander dual of I (H).

Given a simplicial complex K, let us denote by L(K) the Leray number of

K, that is, the minimum integer d such that K is d-Leray. One of the purpose of

this dissertation is to prove some bounds of η(I(H)) and L(N C (H)) in terms of

γ̃(H), γsi(H), and γE(H). The first main result in this topic is the following.

Theorem 1.3.4. For every hypergraph H, we have

H̃i(N C (H)) = 0

for all i ≥ |V (H)|−max{
⌈

γ̃(H)
2

⌉
,γsi(H),γE(H)}−1.

Applying Theorem 1.2.8 to Theorem 1.3.4 gives us a hypergraph analogue of

Theorem 1.3.3. Recall the fact that if H contains an isolatex vertex v, then I(H) is

a cone with apex v, thus η(I(H)) = ∞.

Corollary 1.3.5. η(I(H)) ≥ max{
⌈

γ̃(H)
2

⌉
,γsi(H),γE(H)} for every hypergraph

H.

The second main result in this topic is establishing a stronger version of The-

orem 1.3.4.

Theorem 1.3.6. Let H be a hypergraph with no isolated vertices. Then each of

the following holds:

(a) If |e| ≤ 3 for every e ∈ H, then L(N C (H))≤ |V (H)|−
⌈

γ̃(H)
2

⌉
−1.

(b) If |e| ≤ 2 for every e ∈ H, then L(N C (H))≤ |V (H)|− γsi(H)−1.
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(c) L(N C (H))≤ |V (H)|− γE(H)−1.

The main contribution of this topic is joint work with Andreas Holmsen and

Minki Kim [23]. We also prove a bound for collapsibility numbers6 of the non-

cover complex of graphs in terms of γsi.

Theorem 1.3.7. N C (G) is (|V (G)|− γsi(G)−1)-collapsible for every graph G.

This gives another proof of Theorem 1.3.6 (b). The proof for the collapsibility

number is joint work with Ilkyoo Choi and Boran Park [15].

1.4 Rainbow independent sets in graphs

Given a graph G, let α(G) be the size of a largest independent set in G and let

ν(G) be the size of a largest matching in G. We are interested in the following

type of questions:

Problem 1.4.1. Given a system F = (F1, . . . ,Fm) of independent sets in a graph

G and a number q, what conditions on G, on m and on the size of the sets Fi,

guarantee the existence of an independent rainbow set of size q?

A theorem answering an instance of Problem 1.4.1 was proved by Drisko [17].

In a slightly more general version, proved in [2], it states that every 2n−1 match-

ings of size n in a bipartite graph have a partial rainbow matching of size n. Since

an independent set in L(H) is a matching in H, this can be stated as:

Theorem 1.4.2 (Drisko). Let H be a bipartite graph and let G = L(H). Every

2n− 1 independent sets of size n in G have a partial rainbow independent set of

size n.
6The collapsibility number Coll(K) of a simplicial complex K is the minimum integer d such

that K is d-collapsible.
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The number 2n−1 in Theorem 1.4.2 cannot be improved. See Example 1.4.3.

Example 1.4.3. Take the two matchings of size n in the cycle C2n, each repeated

n− 1 times. These are 2n− 2 matchings of size n in the line graph, having no

rainbow matching of size n.

A generalization of Theorem 1.4.2 to the intersection of two matroids was

given in [30]. Theorem 1.4.2 is the special case in which both matroids are parti-

tion matroids.

Theorem 1.4.4. If M ,N are matroids on the same ground set, then any 2n− 1

sets belonging to M ∩N have a rainbow set of size n belonging to M ∩N .

In [9], a strengthened version of Theorem 1.4.2 was proved:

Theorem 1.4.5. If F = (F1, . . . ,F2n−1) is a family of matchings in a bipartite

graph, and |Fi| ≥ min(i,n) for every i ≤ 2n−1, then F has a rainbow matching.

For a class C of graphs and integers m≤ n, let fC (n,m) be the minimal number

k such that every k independent sets of size n in a graph belonging to C have a

partial rainbow independent set of size m. If there is no such integer k, then we

write fC (n,m) = ∞. If K, H are two graphs, we write H < K if K contains an

induced copy of H. If H ̸< K we say that K is H-free.

We shall consider the following classes of graphs:

1. U : the class of all graphs.

2. B: the class of line graphs of bipartite graphs.

3. G : the class of line graphs of all graphs.

4. X (k): the class of k-colorable graphs.

5. D(k): the class of graphs with degrees at most k.
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6. T : the class of chordal graphs.

7. F (H): the class of H-free graphs, for a given graph H.

8. F (H1, . . . ,Ht) =
⋂

i F (Hi): the class of graphs which are Hi-free for all i ∈ [t].

Here is a small example, for practicing the concepts.

Example 1.4.6. For every k, let G be the complete k-partite graph with all sides

of size n, and let Fi be its respective sides. Then there is no independent rainbow

set of size 2, which shows that fU (n,2) = ∞ for every n.

Clearly, we have the following trivial lower bound, leaving out graphs with no

independent set of size n:

fC (n,m)≥ m (1.4.1)

for any subfamily C of graphs.

For subfamilies C ,D of graphs, if C ⊆ D and m′ ≤ m ≤ n then we have:

fD(n,m)≥ fC (n,m′). (1.4.2)

Theorem 1.4.2 and Example 1.4.3 combined yield fB(n,n) = 2n− 1. In [2],

the authors conjectured that fB(n,n− 1) = n. In fact, we do not know a coun-

terexample to the stronger conjecture that fG (n,n−1) = n. In [13] the following

was proved. Note that when k = 1, we obtain fB(n,n−1)≤ ⌊3
2n⌋−2.

Theorem 1.4.7. fB(n,n− k)≤ ⌊ k+2
k+1n⌋− (k+1).

The main conjecture for general line graphs is that fG (n,n) = 2n, Guided by

examples from [13]. In [3], it was proved that fG (n,n) ≤ 3n− 2. Although the

original conjecture is still open, its fractional version was proved in [8] and a ma-

troidal generalization of the fractional version was proved in [4], based on The-

orem 1.2.5. The result of [8] also gives a new proof of Drisko’s theorem since
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the matching number and the fractional matching number are same in bipartite

graphs.

In this dissertation, we investigate Problem 1.4.1 for more general graphs, not

limited to line graphs. One of our main results is to characterize a graph H where

fF (H)(n,n) < ∞ for every positive integer n. We prove that such property can be

achieved if and only if H =Kr or K−
r , where Kr is the complete graph on r vertices

and K−
r is the graph obtained from Kr by deleting one edge.

Theorem 1.4.8. fF (H)(n,n) < ∞ for every positive integer n if and only if H is

either Kr or K−
r for some r.

Another important result is to find fD(k)(n,n) for graphs of bounded maximum

degree. We pose a conjecture on fD(k)(n,n) with a few evidence on our conjecture.

Theorem 1.4.9. For the class of all graphs with maximum degree at most k,

fD(k)(n,m)≤ (m−1)k+1 for all m ≤ n and fD(k)(n,n) =
⌈k+1

2

⌉
+1 for n ≤ 3.

Some of the results will be given, in addition to purely combinatorial proofs,

also topological proofs, based on Theorem 1.2.5. This is joint work with Ron

Aharoni, Joseph Briggs, and Minki Kim [5].

1.5 Organization

In Chapter 2, we introduce a proof method of [33] which gives an upper bound

on the collapsibility number of simplicial complexes. This technique will be used

to prove Theorem 1.3.7. The relations between domination numbers, indepen-

dence complexes, and non-cover complexes for general hypergraphs, including

the proofs of Theorem 1.3.4 and Theorem 1.3.6, will be discussed in Chapter 3. In

Chapter 4, we present results on rainbow independent sets. In particular, the proof

of Theorem 1.4.8 appears in Section 4.1.4, and Theorem 1.4.9 will be proved in

Section 4.3 and Section 4.4.
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Chapter 2

Collapsibility of non-cover
complexes of graphs

In this chapter, we will prove an upper bound on the collapsibility numbers of

non-cover complexes in terms of the independent domination numbers of graphs.

Theorem 1.3.7. N C (G) is (|V (G)|− γsi(G)−1)-collapsible for every graph G.

To show Theorem 1.3.7, we first introduce a proof technique of [33]. The proof

of Theorem 1.3.7 will be presented in Section 2.2.

2.1 The minimal exclusion sequences

Let X be a finite simplicial complex on vertex set V = {v1, . . . ,vn}. Fix linear

orderings

≺: v1,v2, . . . ,vn and ≺ f : σ1,σ2, . . . ,σm

on the vertices in V and the maximal faces of X , respectively. For a simplex σ ∈X ,

we write

i(σ) := min{ j ∈ [m] : σ ⊂ σ j}.
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If i(σ) = i, the minimal exclusion sequence of σ (with respect to the orderings

≺ and ≺ f ) is a sequence mes(σ) = (w1,w2, . . . ,wi−1) of length i−1 defined as:

(i) If i = 1, then mes(σ) is the empty sequence.

(ii) If i > 1, then for each j ∈ [i−1], we define w j recursively by the following

rules:

• If (σ \ σ j)∩ {w1, . . . ,w j−1} = /0, then w j is the minimal element in

σ \σ j. In this case, we say w j is new at j.

• Otherwise, w j is the minimal element in (σ \σ j)∩{w1, . . . ,w j−1}. In

this case, we say w j is old at j.

Let M(σ) be the set of vertices in the sequence mes(σ) and let

d(X) = max{M(σ) : σ ∈ X}.

Theorem 2.1.1. The simplicial complex X is d(X)-collapsible.

Note that d(X) is dependent to linear orderings ≺,≺ f . Thus, to obtain a nice

upper bound on the collapsibility number of X by Theorem 2.1.1, it is important

to determine linear orderings ≺,≺ f which can minimize d(X).

Theorem 2.1.1 was implicitly used in the proof of a result in [33] to obtain the

upper bound on the collapsibility number of the nerve of a finite family of sets of

bounded cardinalities. It was introduced again in [31] in a more general statement.

For the completeness of this dissertation, we include the proof of Theorem 2.1.1.

Lemma 2.1.2. For σ ∈ X, mes(M(σ)) = mes(σ).

Proof. It is clear that M(σ) is a subset of σ , thus we have M(σ) ∈ X . Suppose

i(σ) = i and i(M(σ)) = i′. Obviously, we have i≥ i′ since M(σ)⊂ σ . We will first

show that i = i′. Let mes(σ) = (w1, . . . ,wi−1) and mes(M(σ)) = (w′
1, . . . ,w

′
i−1).
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Recall that for each j ∈ [i−1], the vertex w j is chosen in σ \σ j. Since w j ∈ M(σ),

it follows that w j ∈ M(σ)\σ j, implying that M(σ)\σ j ̸= /0. Thus i = i′.

Now to show mes(σ) = mes(M(σ)), we will prove w j = w′
j for each j ∈ [i−

1]. We proceed by induction on j. Since w1 is the minimal element in σ \σ1 and

w1 ∈ M(σ)\σ1 ⊂ σ \σ1, we obviously have w′
1 = w1. Now assume wk = w′

k for

k < j−1. Suppose w j is new at j, then it implies that (σ \σ j)∩{w1, . . . ,w j−1}= /0

and so w j is the minimal element in σ \σ j. Since we know M(σ) ⊂ σ and w j ∈
M(σ), it follows that (M(σ) \σ j)∩ {w1, . . . ,w j−1} = /0 and w j is the minimal

element in M(σ) \ σ j, which means w′
j = w j. Otherwise, i.e. if w j is old at j,

then w′
j = w j since (σ \σ j)∩{w1, . . . ,w j−1} and (M(σ) \σ j)∩{w1, . . . ,w j−1}

are same.

Lemma 2.1.3. mes(σ) = mes(σ ′) if and only if M(σ) = M(σ ′) for every two

simplices σ and σ ′ in X.

Proof. If mes(σ) = mes(σ ′), then it is obvious that M(σ) = M(σ ′). For the op-

posite direction, assume M(σ) = M(σ ′). Then by Lemma 2.1.2, we have

mes(σ) = mes(M(σ)) = mes(M(σ ′)) = mes(σ ′),

which completes the proof.

Let Mi = {M(σ) : σ ∈ X , i(σ) = i} and M = ∪m
i=1Mi, and define a linear order

≺M on the elements of M as follows: First arrange the elements of M so that

x ≺M y whenever x ∈ Ma and y ∈ Mb for some 1 ≤ a < b ≤ m. Then arrange the

elements in Mi for each i ∈ [m] so that x ≺M y if and ony if mes(x) ≺lex mes(y)

where ≺lex is the lexicographic order with repect to the order ≺ of vertices of X .

The well-definedness of ≺M is guaranteed by Lemma 2.1.2 and Lemma 2.1.3.

Lemma 2.1.4. For σ ∈ M, M(σ) = σ .

Proof. Since σ ∈ M, we have σ = M(τ) for some τ ∈ X . By Lemma 2.1.2, we

obtain mes(σ) = mes(M(τ)) = mes(τ) and so M(σ) = M(τ) = σ .
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Lemma 2.1.5. If σ ⊂ σ ′ ∈ X, then M(σ)⪰M M(σ ′).

Proof. Since σ ⊂ σ ′, it is obvious that i(σ) ≤ i(σ ′). If i(σ) < i(σ ′), then we

have M(σ) ≻M M(σ ′) since M(σ) ∈ Mi(σ) and M(σ ′) ∈ Mi(σ ′). Thus we may

assume that i(σ) = i(σ ′). If mes(σ) = mes(σ ′), then we are done. Hence we

may further assume that mes(σ) ̸= mes(σ ′). Let j be the first index where two

sequences are different, and let w j and w′
j be the j-th entries of mes(σ),mes(σ ′),

respectively. Then both w j and w′
j are new at j, which means that w j,w′

j are the

minimal elements in σ \σ j and σ ′ \σ j, respectively. Since we have σ ⊂ σ ′ and

w′
j ≺ w j, it follows that M(σ ′)≺M M(σ).

Now for each η ∈ M, define

T (η) = {v ∈V : mes(η ∪{v}) = mes(η)}.

Note that we always have η ⊂ T (η).

Lemma 2.1.6. For σ ∈ X and η ∈ M, η ⊂ σ ⊂ T (η) if and only if M(σ) = η .

Proof. First assume M(σ) = η . Then we already have η = M(σ)⊂ σ , and hence

it remains to show that σ ⊂ T (η). By Lemma 2.1.2, we have

mes(η) = mes(M(σ)) = mes(σ),

thus it follows that M(η) = M(σ) = η . For each v ∈ σ , since we have η ⊆ η ∪
{v} ⊂ σ , Lemma 2.1.5 gives us

η = M(η)⪰M M(η ∪{v})⪰M M(σ) = η .

Thus we have M(η ∪{v}) = η , implying that v ∈ T (η). Consequently, σ ⊂ T (η).

Now we will show that if η ⊂ σ ⊂ T (η) then M(σ) = η . Suppose η ⊂ σ ⊂
T (η). It is sufficient to show that mes(T (η)) = mes(η), since if it is true then we
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obtain M(T (η)) = M(η) = η by Lemma 2.1.4 and then

η = M(η)⪰M M(σ)⪰M M(T (η)) = η

by Lemma 2.1.5, which implies M(σ) = η . Thus we want to show mes(T (η)) =

mes(η).

Let i(η) = i for some i ∈ [m]. For each v ∈ T (η), we have mes(η ∪{v}) =
mes(η) by definition. Thus i(η ∪{v}) = i(η) = i and then η ∪{v} ⊂ σi+1, which

implies v ∈ σi+1. Therefore T (η) ⊂ σi+1. Then we know T (η) ∈ X , and so we

can consider i(T (η)). Obviously i(T (η)) ≤ i since T (η) ⊂ σi+1. On the other

hand, we have i(T (η))≥ i(η) = i since η ⊂ T (η). Therefore i(T (η)) = i, which

means that mes(η) and mes(T (η)) have same length.

To show by contradiction, assume that mes(T (η)) ̸= mes(η). Let j be the

first index where mes(T (η)) and mes(η) differ. Let w,w′ be the j-th entries of

mes(η),mes(T (η)), respectively. Then w′ /∈ η and w′ ≺ w. Thus the j-th entry

of mes(η ∪ {w}) is also w′, which is a contradiction that w ∈ T (η). Therefore

mes(T (η)) = mes(η).

Lemma 2.1.7. Let η ∈ M and Y = {σ ∈ X : M(σ)⪰M η}. Then

(i) T (η) is the unique maximal face of Y containing η .

(ii) Let Y ′ =Y \{σ ∈Y : η ⊂ σ ⊂ T (η)}. If η is the maximal element of M with

respect to ≺M, then Y ′ = /0. Otherwise,

Y ′ = {σ ∈ X : M(σ)⪰M η
′},

where η ′ ∈ M such that η ′ ≻M η and there is no element between η and η ′

in the ordering ≺M.

Proof. (i) Take σ ∈Y such that η ⊂σ . We want to show σ ⊂T (η). By Lemma 2.1.5,

M(σ)⪯M M(η)=η . Since σ ∈Y , M(σ)=η . Then σ ⊂T (η) by Lemma 2.1.6.
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(ii) By Lemma 2.1.6,

{σ ∈ Y : η ⊂ σ ⊂ T (η)}= {σ ∈ Y : M(σ) = η}= {σ ∈ X : M(σ) = η}.

Thus, if η is the maximal element of M with respect to ≺M, then Y = {σ ∈
X : M(σ) = η} and so Y ′ = /0. Otherwise,

Y ′ = {σ ∈ X : M(σ)⪰M η
′}

where η ′ ∈ M such that η ′ ≻M η and there is no element between η and η ′

in the order ≺M.

2.2 Independent domination numbers and collapsi-

bility numbers of non-cover complexes of graphs

This research was motivated from a question by Aharoni [1]:

Question 2.2.1 ([1]). If G is a graph with no isolated vertices, then is it true that

the non-cover complex of G is (|V (G)|−max{iγ(G), γ̃(G)
2 }−1)-collapsible?

A partial answer for Question 2.2.1 was given in [15]:

Theorem 2.2.2 ([15]). For a graph G without isolated vertices, the non-cover

complex of G is (|V (G)|− iγ(G)−1)-collapsible.

The proof of Theorem 2.2.2 is based on the minimal exclusion sequences

technique. Let G be a graph without isolated vertices. For simplicity, we assume

V (G) = [n] and denote S := [n] \ S for S ⊆ [n]. Let I be a maximal independent

set in G, say |I|= i, such that γ(G; I) = iγ(G). Without loss of generality, we may

assume that I := [n]\ [n− i] = {n− i+1, . . . ,n}.
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Note that every facet of N C (G) is the complement of an edge of G. We define

a linear ordering ≺ of the facets of N C (G) as follows. For two edges a1b1 and

a2b2, where ai < bi for i ∈ [2], we denote a1b1 <L a2b2 if either (i) b1 < b2 or (ii)

b1 = b2 and a1 < a2. For two distinct facets σ and τ of N C (G), we denote σ ≺ τ

if σ <L τ .

Claim 2.2.3. For σ ,σ ′ ∈N C (G), if σ ∩I = σ ′∩I and G[σ ∩I] contains an edge,

then mes(σ) = mes(σ ′).

Proof. Let j be the length of mes≺(σ). Note that since G[σ ∩ I] has an edge, for

the ( j+1)th facet σ j+1, σ j+1 is an edge such that σ j+1 ⊆ I. By the definition of ≺,

it also follows that for every k ∈ [ j+1], the kth facet σk satisfies σk ⊆ I. Clearly,

σ ∩ I = σ ′∩ I. Thus, we have

σk ∩σ = σk ∩σ ∩ I = σk ∩σ
′∩ I = σk ∩σ

′.

Thus the length of mes(σ ′) is also j and for every k ∈ [ j], the kth entry of mes(σ)

is equal to that of mes(σ ′).

Claim 2.2.4. For every S ⊆ I,

|S|− |N(S)∩ I| ≥ iγ(G)−|I|,

where N(S) = {v ∈V (G) : {u,v} ∈ E(G) for some u ∈ S}.

Proof. We take S ⊆ I so that (1) |S|− |N(S)∩ I| is minimum, and (2) |S| is max-

imum subject to (1). By the minimality of |S|− |N(S)∩ I|, every element in I \ S

has at most one neighbor in I \N(S). If some v ∈ I \S has exactly one neighbor w

in I \N(S), then for T = S∪{w} ⊆ I, we know |T |− |N(T )∩ I|= |S|− |N(S)∩ I|
and |T | > |S|, which is a contradiction to the maximality of |S|. Thus, every ele-

ment in I \ S does not have a neighbor in I \N(S). Since G has no isolated ver-

tex, we conclude N(S)∩ I = I. Hence, S dominates I and so |S| ≥ iγ(G). Thus

|S|− |N(S)∩ I| ≥ iγ(G)−|I|.
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By Theorem 2.1.1, it is sufficient to show that

|M(σ)| ≤ |V (G)|− iγ(G)−1 for every σ ∈ N C (G). (2.2.1)

For a face σ ∈ N C (G), by definition, G[σ ] contains an edge of G. Since I is an

independent set, σ ∩ I ̸= /0, and moreover, since I is a maximal independent set,

every vertex in I has a neighbor in I. Thus σ ∩ I has a neighbor in I.

For a face σ ∈N C (G), let β (σ) = |N(σ ∩I)∩σ ∩I|. Suppose that β (σ) = 0.

Then G[σ ∩ I] must have an edge. Consider σ ′ = σ ∪ I. Then σ ∩ I = σ ′∩ I. By

Claim 2.2.3, mes(σ) =mes(σ ′) and therefore, M(σ) =M(σ ′). On the other hand,

we know β (σ ′) ≥ 1 by the definition of σ ′. Thus, it is sufficient check (2.2.1)

under the assumption β (σ)≥ 1.

Note that for v ∈ σ ∩ I, if v ∈ M(σ), then v is a neighbor of some vertex in

σ ∩ I. Thus,

|M(σ)| ≤ |σ ∩ I|+ |N(σ ∩ I)∩ (σ ∩ I)|

= |I|− |σ ∩ I|+ |N(σ ∩ I)∩ I|−β (σ)

≤ |I|− iγ(G)+ |I|−β (σ)

= |V (G)|− iγ(G)−β (σ),

where the last inequality holds by applying Claim 2.2.4 to the set σ ∩ I. As we

assumed that β (σ) ≥ 1, (2.2.1) follows, and this concludes the proof of Theo-

rem 2.2.2.
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Chapter 3

Domination numbers and non-cover
complexes of hypergraphs

In this chapter, we study further relations between domination numbers and topol-

ogy of non-cover complexes of hypergraphs. We recall the main results in this

research. The first result is the following.

Theorem 1.3.4. For every hypergraph H, we have

H̃i(N C (H)) = 0

for all i ≥ |V (H)|−max{
⌈

γ̃(H)
2

⌉
,γsi(H),γE(H)}−1.

An immediate consequence of Theorem 1.3.4 is a lower bound on the topo-

logical connectivity of independence complexes of hypergraphs.

Corollary 1.3.5. η(I(H)) ≥ max{
⌈

γ̃(H)
2

⌉
,γsi(H),γE(H)} for every hypergraph

H.

The second main result is establishing a stronger version of Theorem 1.3.4,

proving upper bounds of the Leray numbers of non-cover complexes of hyper-

graphs.
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Theorem 1.3.6. Let H be a hypergraph with no isolated vertices. Then each of

the following holds:

(a) If |e| ≤ 3 for every e ∈ H, then L(N C (H))≤ |V (H)|−
⌈

γ̃(H)
2

⌉
−1.

(b) If |e| ≤ 2 for every e ∈ H, then L(N C (H))≤ |V (H)|− γsi(H)−1.

(c) L(N C (H))≤ |V (H)|− γE(H)−1.

The proof of Theorem 1.3.4 will be given in Section 3.1. In Section 3.2, we

present the proof of Theorem 1.3.6. In particular, we show by examples that parts

(a) and (b) of Theorem 1.3.6 cannot be improved. (See Example 3.2.3 for (a) and

Example 3.2.5 for (b)) In Section 3.3, we give some applications of our results

(see Section 3.3.3 and Section 3.3.4) and introduce an open problem.

3.1 Proof of Theorem 1.3.4

3.1.1 Edge-annihilation

Given a hypergraph H and an edge e ∈ H, we define an operation which we call

an edge-annihilation of e in H:

H¬ e := { f \ e ̸= /0 : e ̸= f ∈ H}.

See Figure 3.1 for an example. We first show relations between the domination

paramenters of H and those of H¬ e. (i)-(iii) for (2-uniform) graphs of the follow-

ing lemma were shown in the proof of [35, Theorem 1.2].

Lemma 3.1.1. Let H be a hypergraph defined on V which has no isolated vertices.

Then each of the following holds:

(i) γ̃(H¬ e)≥ γ̃(H)−2|e|+2 for every edge e ∈ H with |e| ≥ 2.
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e

H H¬ e

Figure 3.1: H¬ e is obtained from H by annihilate the edge e.

(ii) There exists an edge e ∈ H such that γsi(H¬ e)≥ γsi(H)−|e|+1.

(iii) γE(H¬ e)≥ γE(H)−|e|+1 for every edge e with |e| ≥ 2.

(iv) Let e be an edge in H, and let H ′ be the hypergraph obtained from H − e by

deleting all isolated vertices. Then

γE(H ′)≥ γE(H)− f (e),

where f (e) = 1 if there is an isolated vertex in H−e and f (e) = 0 otherwise.

Proof. (i) Take any edge e∈H with |e| ≥ 2, and let S⊂V (H¬ e) be a minimum

set which dominates V \ e in H¬ e. Then S∪ e dominates V in H, thus we

have

γ̃(H¬ e)+ |e|= |S∪ e| ≥ γ̃(H).

Since |e| ≥ 2, we obtain γ̃(H¬ e)≥ γ̃(H)−|e| ≥ γ̃(H)−2|e|+2.

(ii) Let A be a strong independent set in H such that γsi(H) = γ(H,A). Take

a vertex v ∈ A and an edge e ∈ H which contains the vertex v. Such an
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edge exists since H contains no isolated vertex in H. Let A′ be the set of all

vertices in A which is not dominated by e\{v}. It is clear that A′ is a strong

independent set in H¬ e. Now let S ⊂ V (H¬ e) be a minimum set which

dominates A′ in H¬ e. Then S∪ (e \ {v}) dominates A in H, and hence we

have

γsi(H¬ e)+(|e|−1)≥ |S∪ (e\{v})| ≥ γsi(H).

(iii) Let e be an edge in H with |e| ≥ 2, and let F ′ be a subgraph of H¬ e such

that
⋃

F∈F ′ F dominates V \ e in H¬ e and |F ′| = γE(H¬ e). If F be the

corresponding subgraph in H, then e∪ (
⋃

F∈F F) dominates V in H. Thus

we have

γE(H¬ e)+(|e|−1)≥ γE(H¬ e)+1 ≥ γE(H).

(iv) If there is no isolated vertex in H − e, then H ′ = H − e. Hence it is obvious

that γE(H ′)≥ γE(H). Suppose there is an isolated vertex in H−e, and let F

be a subgraph of H ′ such that
⋃

F∈F F dominates V (H ′) in H ′ and |F | =
γE(H ′). Clearly, e∪ (

⋃
A∈F A) dominates V (H), thus we have γE(H ′)+1 ≥

γE(H).

3.1.2 Non-cover complexes for hypergraphs

The proof of Theorem 1.3.4 is based on the Mayer-Vietoris exact sequence. Let X

be a simplicial complex and let A and B be complexes such that X = A∪B. Then

the following sequence is exact:

· · · → Hi(A∩B)→ Hi(A)⊕Hi(B)→ Hi(X)→ Hi−1(A∩B)→ ·· ·

In particular, for any integer i0, if Hi(A) = Hi(B) = Hi−1(A∩B) = 0 for all i ≥ i0
then Hi(X) = 0 for all i ≥ i0.
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Lemma 3.1.2. For every edge e in a hypergraph H, we have

N C (H) = N C (H − e)∪∆ec ,

where ∆X is a simplex on X and ec is the complement of e.

Proof. It is obvious that each of N C (H − e) and ∆ec is contained in N C (H).

For every A ∈N C (H)\N C (H−e), we claim that A ⊂ ec. If not, it must be that

A∩e ̸= /0. Since A ∈ N C (H), there exists an edge f ̸= e such that A ⊂ f c, which

implies that A ∈ N C (H − e). This completes the proof.

Observation 3.1.3. Suppose there are two edges e and f in a hypergraph H such

that f ⊊ e. Since ∆ec ⊂ ∆ f c ⊂ N C (H − e), we can deduce that N C (H) =

N C (H − e) from Lemma 3.1.2.

Lemma 3.1.4. For any inclusion-minimal edge e ∈ H, we have

N C (H − e)∩∆ec = N C (H¬ e).

Proof. It is obvious that N C (H¬ e) ⊂ ∆ec . If σ ∈ N C (H¬ e), then there ex-

ists an edge f ⊈ e in H such that f \ e ∈ H¬ e and f \ e ⊂ V (H¬ e) \σ . Since

V (H¬ e) = V (H) \ e, we observe that f ⊂ V (H) \ σ , which implies that σ ∈
N C (H − e). For the opposite direction, let σ ∈ N C (H − e)∩∆ec . Since σ ∈
N C (H − e), there exists an edge f ⊈ e such that f ⊂ V (H) \σ . Since σ ∈ ∆ec ,

it is clear that f \ e ⊂V (H¬ e)\σ . Then we observe that σ ∈ N C (H¬ e) since

/0 ̸= f \ e ∈ H¬ e.

From Lemma 3.1.2 and Lemma 3.1.4, we obtain the following exact sequence:

· · · → Hi(N C (H − e))→ Hi(N C (H))→ Hi−1(N C (H¬ e)) · · · . (3.1.1)

Theorem 3.1.5. For every hypergraph H ̸= /0, H̃i(N C (H))= 0 for all i≥ |V (H)|−
max{

⌈
γ̃(H)

2

⌉
,γsi(H),γE(H)}−1.
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Proof. We use induction on |V (H)|+ |H|. Let

g(H) = max{
⌈

γ̃(H)

2

⌉
,γsi(H),γE(H)}.

The base cases are when there is exactly one edge in H and when {v} ∈ H for

every vertex v.

Suppose H = {e}. If there are isolated vertices in H, then N C (H) is a simplex

which is contractible. If not, then |V (H)| = |e|, g(H) = |e|−1 and N C (H) is a

void complex. In each case the statement is true. If {v} ∈ H for every vertex v,

then g(H) = 0 and N C (H) is the boundary of the simplex on V (H). It is clear

that Hi(N C (H)) = 0 for all i ≥ |V (H)|−1. Therefore we may assume that there

exist at least two edges in H and that there is a vertex v ∈V (H) with {v} /∈ H.

Suppose v is an isolated vertex in H. Then N C (H) is a cone with apex v,

thus is contractible. Hence we may assume that there is no isolated vertex. In

particular, each vertex in a strong independent set in H is contained in an edge

of size at least 2. Moreover, we may assume that every edge in H is inclusion-

minimal. Suppose H contains an edge e which is not inclusion-minimal. If H − e

has an isolated vertex v, then N C (H − e) is a cone with apex v. Otherwise, we

have g(H)≤ g(H − e)< ∞ and |V (H − e)|= |V (H)|, implying that

|V (H − e)|−g(H − e)−1 ≤ |V (H)|−g(H)−1.

By the induction hypothesis, it follows that Hi(N C (H − e)) = 0 for all i ≥
|V (H)|−g(H)−1. In either case, by Observation 3.1.3, we have Hi(N C (H)) =

Hi(N C (H − e)) = 0 for all i ≥ |V (H)|−g(H)−1.

Now by the exact sequence (3.1.1), it is sufficient to show that for some edge

e ∈ H,

Hi(N C (H − e)) = 0 and Hi−1(N C (H¬ e)) = 0 (3.1.2)
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holds for all i ≥ |V (H)|−g(H)−1. The first part of (3.1.2) was implicitly proved

by the above. It remains to show the second part of (3.1.2).

It is clear that H¬ e has no isolated vertex for any edge e. Thus we have

g(H¬ e)< ∞ from the assumption that g(H)< ∞. Let A be a strong independent

set in H such that γsi(H) = γ(H,A). Take a vertex v ∈ A and an edge e ∈ H which

contains the vertex v. Note that |e| ≥ 2. Then by Lemma 3.1.1, we can find an edge

e which satisfies γ̃(H)−2|e|+2≤ γ̃(H¬ e)<∞, γsi(H)−|e|+1≤ γsi(H¬ e)<∞,

and γE(H)−|e|+1 ≤ γE(H)< ∞. Thus we obtain

V (H¬ e)−g(H¬ e)−1 ≤ (|V (H)|− |e|)− (g(H)−|e|+1)−1

= |V (H)|−g(H)−2

By the induction hypothesis, it follows that Hi−1(N C (H¬ e)) = 0 for all i ≥
|V (H)|−g(H)−1. This completes the proof.

3.2 Lerayness of non-cover complexes

3.2.1 Total domination numbers

If we take a vertex subset W ⊂V (X), then it is clear that the induced subcomplexes

satisfies the equalities X [W ] = A[W ]∪B[W ] and (A∩B)[W ] = A[W ]∩B[W ]. This

implies the following proposition about Leray numbers.

Proposition 3.2.1. Let X = A∪B and n be a positive integer. Then

L(X)≤ max{L(A),L(B),L(A∩B)+1}.

Proof. Let n = max{L(A),L(B),L(A∩B)+1}. For any vertex subset W ⊂V (X),

we know that Hi(A) = Hi(B) = Hi−1(A∩B) = 0 for all i ≥ n. By applying the
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Mayer-Vietoris sequence for X [W ] = A[W ]∪B[W ] and (A∩B)[W ] = A[W ]∩B[W ],

we obtain that Hi(X [W ]) = 0 for all i ≥ n. This shows L(X)≤ n.

The proof of the first part of Theorem 1.3.6 is based on the exact sequence

(3.1.1) and Proposition 3.2.1.

Theorem 3.2.2. Let H be a hypergraph defined on V . Suppose H contains no

isolated vertices and every e ∈ H has size |e| ≤ 3. Then the non-cover complex

N C (H) is (|V |−
⌈

γ̃(H)
2

⌉
−1)-Leray.

Proof. We use induction on |H|+ |V (H)|. If H has no edge, then the statement is

true since N C (H) is a void complex. If {v} ∈ H for every vertex v ∈ H, then the

statement is true since γ̃(H) = 0 and N C (H)[W ] is the boundary of the simplex

on W for every W ⊂V (H). Note that the boundary of the simplex on W is (|W |−
1)-Leray.

Take an edge e with |e| ≥ 2. If e is not inclusion-minimal, then N C (H) =

N C (H − e) by Observation 3.1.3. If e is inclusion-minimal, then we apply the

exact sequence (3.1.1). By Lemma 3.1.1, we have γ̃(H¬ e)≥ γ̃(H)−2|e|+2, thus

N C (H¬ e) is (|V |−
⌈

γ̃(H)
2

⌉
− 2)-Leray by the induction hypothesis. Therefore

it is sufficient to show that N C (H − e) is (|V |−
⌈

γ̃(H)
2

⌉
−1)-Leray.

Assume that H −e has no isolated vertices. Then it is obvious to have γ̃(H)≤
γ̃(H − e) < ∞. By the induction hypothesis, N C (H − e) is (|V | −

⌈
γ̃(H)

2

⌉
− 1)-

Leray. Thus we may assume that deleting the edge e from H produces k isolated

vertices. Let H ′ be the hypergraph obtained from H − e by deleting all isolated

vertices. We claim that if |e| ≤ 3, then γ̃(H ′) + 2k ≥ γ̃(H). Then by induction,

since |V (H ′)|= |V |− k, we obtain that N C (H ′) is (|V |− γ̃(H)−1)-Leray.

Let S ⊂ V (H ′) be the minimum set which dominates V (H ′), i.e. |S| = γ̃(H ′).

If k = 1, let v ∈ e is the only isolated vertex in H −e. Then S∪ (e\{v}) dominates

H, thus γ̃(H ′)+ |e|−1 ≥ γ̃(H). Since |e| ≤ 3, we obtain

γ̃(H ′)+2 ≥ γ̃(H ′)+ |e|−1 ≥ γ̃(H).
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If k ≥ 2, we have γ̃(H ′)+ |e| ≥ γ̃(H) since S∪e dominates H. Since |e| ≤ 3 < 2k,

the claim is true because

γ̃(H ′)+2k > γ̃(H ′)+ |e| ≥ γ̃(H).

This completes the proof.

The following example shows Theorem 3.2.2 is the best possible in the sense

that the condition |e| ≤ 3 for every edge cannot be improved.

Example 3.2.3. For r ≥ 3, consider an r-uniform hypergraph

Hr := {{(i,1), . . . ,(i,r))} : 1 ≤ i ≤ r}∪{{(1, i), . . . ,(r, i)} : 2 ≤ i ≤ r}

defined on {1, . . . ,r}×{1, . . . ,r}. Clearly A = {(i,1) : 1 ≤ i ≤ r} is a strong inde-

pendent set in Hr. Since {(i,1), . . . ,(i,r))} is the only edge in Hr which contains

the vertex (i,1) for each i, the set

{(i, j) : 1 ≤ i ≤ r,2 ≤ j ≤ r}

is the unique set in Hr which dominates A. This shows that γsi(Hr)≥ (r−1)r, and

hence |V (Hr)|− γsi(Hr)−1 ≤ r−1. We will show that N C (Hr) is not (2r−4)-

Leray. Note that r−1 ≤ 2r−4 for every r ≥ 3.

However, the induced subcomplex N C (Hr)[W ] is the boundary of (2r− 3)-

simplex where

W := {(i,1) : 1 ≤ i ≤ r−1}∪{(r, i,) : 2 ≤ i ≤ n},

thus H2r−4(N C (Hr)[W ]) ̸= 0. See Figure 3.2 for an illustration when r = 4.
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A

|V (H4)| = 16, γ(H4, A) = 12 NC(H4)[W ] ' ∂∆5

W

Figure 3.2: |V (H)4|− γsi(H)−1 ≤ 3 but N C (H4) is not 4-Leray.

3.2.2 Independent domination numbers

For a hypergraph H defined on V and for each v ∈V , let

H¬ v := {e\{v} : e ∈ H}.

Note that N C (H¬ v) = N C (H)[V \{v}].

Theorem 3.2.4. Let H be a hypergraph defined on V . Suppose H contains no

isolated vertices and every e ∈ H has size |e| ≤ 2. Then the non-cover complex

N C (H) is (|V |− γsi(H)−1)-Leray.

Proof. We use induction on |V (H)|. It is sufficient to show the inequality γsi(H¬ v)≥
γsi(H)−1 for every v ∈V . Then we have

|V (H¬ v)|− γsi(H¬ v)−1 ≤ |V |− γsi(H)−1,

and it follows from the induction hypothesis that N C (H)[V (H)\{v}] is (|V (H)|−
γsi(H)−1)-Leray.

Let A be a strong independent set in H such that γ(H,A) = γsi(H). We will
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show that for every vertex v there exists a set S in H¬ v such that |S| ≤ γsi(H¬ v)

and |S|+ 1 ≥ γsi(H). If v /∈ A, let A′ be the set of all vertices in A which are not

dominated by v. Let S be the minimum set which dominates A′ in H¬ v. Then

S∪{v} dominates A in H. If v ∈ A, then there must be a vertex u /∈ A such that

{u,v} ∈ H. Let S be the minimum set which dominates A \ {v} in H¬ v. Then

S∪{u} dominates A in H. In either case, we have |S| ≤ γsi(H¬ v) and |S|+ 1 ≥
γsi(H). It follows that γsi(H¬ v)≥ γsi(H)−1 as desired.

The following example shows that the condition |e| ≤ 2 for every edge e ∈ H

in Theorem 3.2.4 cannot be improved.

Example 3.2.5. Let H be a hypergraph defined on V = {v1, . . . ,v9}, whose edges

are

H = {{v1,v2,v3,v4},{v2,v5},{v3,v5},{v4,v5},

{v5,v6},{v5,v7},{v5,v8},{v6,v7,v8,v9}}.

We will show that N C (H) is not (|V (H)|−
⌈

γ̃(H)
2

⌉
−1)-Leray.

We first claim that γ̃(H)≥ 7. Since {v1,v2,v3,v4} is the only edge which con-

tains the vertex v1, we need {v2,v3,v4} to dominate v1 in H. Similarly, we need

{v6,v7,v8} to dominate v9 in H. Therefore every set S ⊂V which dominates V in

H should contain the set T = {v2,v3,v4,v6,v7,v8}. However, S \ T ̸= /0 since T

does not dominate each vi ∈ T in H, and hence |S| ≥ 7. This shows that γ̃(H)≥ 7,

implying that |V |−
⌈

γ̃(H)
2

⌉
−1≤ 4. However, the induced subcomplex N C (H)[T ]

is the boundary of the simplex on T , thus H4(N C (H)[T ]) ̸= 0. See Figure 3.3 for

an illustration.

3.2.3 Edgewise-domination numbers

For γE(H), we can prove the following without any restriction on the size of edges

in H.
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W

|V (H)| = 9, γ̃(H) = 7, NC(H)[W ] ' ∂∆5

Figure 3.3: |V (H)|−
⌈

γ̃(H)
2

⌉
−1 = 4 but N C (H) is not 4-Leray.

Theorem 3.2.6. Let H be a hypergraph with no isolated vertices. Then the non-

cover complex N C (H) is (|V |− γE(H)−1)-Leray.

Proof. Take arbitrary vertex v ∈ V . It is clear that H¬ v has no isolated vertex,

thus it is sufficient to show that γE(H¬ v) ≥ γE(H)−1. Let F ′ be a subgraph of

H¬ v such that
⋃

F∈F ′ F dominates V \{v} in H¬ v and |F ′|= γE(F¬ e). Let F

be the corresponding subgraph of H. For any edge e which contains v, the union

e∪ (
⋃

A∈F A) dominates V in H. It follows that γE(H¬ v)+1 ≥ γE(H).

3.3 Remarks

3.3.1 Independent domination numbers of hypergraphs

In a graph G, the definitions of an independent set and a strong independent set

are equivalent. However, in Theorem 1.3.4 and Corollary 1.3.5, the strong sense
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of the independent domination number is necessary. Let us define

γi(H) := max{γ(H,A) : A is an independent set in H}.

Then γi(H) = γsi(H) when H is a graph, but if H is a hypergraph, the equality

does not hold in general. The following examples shows that Theorem 1.3.4 and

Corollary 1.3.5 do not hold if we replace γsi(H) with γi(H).

Example 3.3.1. Let H be a hypergraph consists of exactly one edge e of cardi-

nality m ≥ 3. Since every strong indepenent set in H is a single vertex, we have

γsi(H) = m−1. On the other hand, if we take any independent set A of size at least

2, then we need to use all vertices in e to dominate A, hence γi(H) = m.

We will show that η(I(H))< γi(H) and H|V (H)|−γi(H)−1(N C (H)) ̸= 0. Since

any proper subset of e is an independent set while e itself is not, it follows that

I(H) is the boundary of the simplex on e. Hence we have η(I(H)) = m− 1. On

the other hand, N C (H) is a void complex, thus we have H−1(I(H)) ̸= /0, while

|V (H)|− γi(H)−1 =−1.

3.3.2 Independence complexes of hypergraphs

Corollary 1.3.5 can be proved independently, without applying the duality theorem

to Theorem 1.3.4. For this, we use a modified definition of edge-annihilations:

H ⋄ e := { f ⊂V (H)\Γ0(e) : f ̸= /0 and ∃ f ′ ⊂ e s.t. f ∪ f ′ ∈ H},

where Γ0(W ) as the set of all vertices which are strongly dominated by W . The

following lemma allows us to apply the Mayer Vietoris exact sequence to show

that the sequence

· · · → Hi−|e|+1(I(H ⋄ e))→ Hi(I(H))→ Hi(I(H − e))→ ·· · . (3.3.1)
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is exact. Here, K ∗ L is the join of two simplicial complexes K and L which is

defined as

K ∗L = {σ ∪ τ : σ ∈ K,τ ∈ L}.

Lemma 3.3.2. For any inclusion-minimal edge e ∈ H, we have

I(H − e) = I(H)∪ (∆e ∗ I(H ⋄ e)) and I(H)∩ (∆e ∗ I(H ⋄ e)) = ∂∆e ∗ I(H ⋄ e),

where ∆X is a simplex on X and ∂ · is the boundary operation.

The following lemma states an analogue of Lemma 3.1.1. Each can be shown

by the proof of Lemma 3.1.1 with a slight modifications.

Lemma 3.3.3. For every hypergraph H with no isolated vertex, each of the fol-

lowing holds:

1. γ̃(H ⋄ e)≥ γ̃(H)−2|e|+2 for every edge e ∈ H with |e| ≥ 2.

2. There exists an edge e ∈ H such that γsi(H ⋄ e)≥ γsi(H)−|e|+1.

3. γE(H ⋄ e)≥ γE(H)−|e|+1 for every edge e with |e| ≥ 2.

3.3.3 General position complexes

Let P be a set of points in Rd and let G(P) denote the simplicial complex consist-

ing of those subsets of P which are in general position. Furthermore, let ϕ(P) de-

note the largest subset of P in general position, that is, ϕ(P) = dim(G(P))+1 The

following was shown in [24]. Here we give a short proof using Corollary 1.3.5.

Proposition 3.3.4. Let d ≥ 1 and k ≥−1 be integers.For any set of points P ⊂Rd ,

if ϕ(P)≥ d
(2k+2

d

)
, then G(P) is k-connected.
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Proof. To do this, we define a hypergraph

HP := {Q ⊂ P : |Q|= d +1,Q is contained in a (|Q|−2)-flat.}.

Note that G(P) = I(HP). By Corollary 1.3.5, it is sufficient to show that γ̃(HP)>

2k+2. Let A⊂P be a set of points in general position with |A|> d
(2k+2

d

)
. Observe

that if a vertex v ∈ P can be dominated by S with |S| ≤ d, then v must be contained

in a k-flat (k ≤ d) spanned by S. Since any k+2 points on a k-flat is not in general

position, it follows that every d vertices in HP can dominate at most d vertices of

A. As an immediate consequence, any 2k+2 vertices in HP can dominate at most

d
(2k+2

d

)
vertices of A, which shows that γ̃(HP)≥ γ(HP,A)> 2k+2.

Let gd(k) be the minimum integer such that for any P ⊂ Rd , if ϕ(P) ≥ gd(k)

then G(P) is k-connected. The proof of Proposition 3.3.4 yields an upper bound

on gd(k) which is in O(|P|d). Here we give an example which shows that this

bound is asymptotically tight, in other words, we show that the function gd(k) is

in Θ(|P|d).

Example 3.3.5. Let A be a set of n ≥ d points in Rd which are in general position.

Let H be the set of N =
(n

d

)
hyperplanes spanned by the d-tuples of points in A.

Let B be a set of N points in general position in Rd such that |B∩h|= 1 for every

hyperplane h ∈ H. Let P = A∪B. Notice that |P|= N +n and ϕ(P) = N +d −1.

Claim 3.3.6. H̃i(G(P)) = 0 if and only if i ̸= n−1.

Before we prove Claim 3.3.6 we note that G(P) is the independence complex of

the (d+1)-uniform hypergraph F = (P,E) where each edge of E corresponds to a

d-tuple S ⊂ A together with the corresponding point x ∈ B lying in the hyperplane

spanned by S. It is easily seen that γ(F) = 2n−1> 2(n−1), so by Corollary 1.3.5

we get that H̃k(G(P)) = 0 for all k ≤ n−2.
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Proof of Claim 3.3.6. Consider N C (HP), then by Theorem 1.2.8, we have

H̃i(N C (HP))∼= H̃|P|−i−3(G(P)).

We will use the Nerve theorem to determine H̃i(N C (HP)). The inclusion max-

imal simplices of N C (HP) are formed by the complements of the edges of HP

which can be labeled by the d-tuples of A. Let X1, . . . ,XN denote these simplices.

Note that each Xi has dimension N + n− d − 2. Clearly we have N C (HP) =⋃N
i=1 Xi,

⋂
j ̸=i X j ̸= /0, and

⋂N
i=1 Xi = /0. Therefore, by the Nerve theorem K is homo-

topy equivalent to the boundary of the (N−1)-simplex which gives us H̃i(N C (HP))=

0 if and only if i ̸= N −2. Since |P|= N +n, the claim now follows by Alexander

duality.

3.3.4 Rainbow covers of hypergraphs

As an application of Theorem 1.3.6, we can obtain the following result for “rain-

bow” covers. Given m covers X1, . . . ,Xm in a hypergraph H, a rainbow cover is a

cover X = {xi1, . . . ,xil} in H such that xi j ∈ Xi j for each j ∈ {1, . . . , l}.

Corollary 3.3.7. Let H be a hypergraph with no isolated vertices. Then each of

the following holds:

1. Suppose that every edge in H has size at most 3. Then for every |V (H)|−⌈
γ̃(H)

2

⌉
covers in H, there exists a rainbow cover.

2. Suppose that every edge in H has size at most 2. Then for every |V (H)|−
γsi(H) covers in H, there exists a rainbow cover.

3. For every |V (H)|− γE(H) covers in H, there exists a rainbow cover.

Corollary 3.3.7 follows from the topological colorful Helly theorem. Here we

state the specific case of a famous result by Kalai and Meshulam [26].
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Theorem 3.3.8 (Topological colorful Helly theorem). Let X be a d-Leray simpi-

cial complex with a vertex partition V (X) =V1∪·· ·∪Vm with m ≥ d+1. If σ ∈ X

for every σ ⊂ V (X) with |σ ∩Vi| = 1, then there exists I ⊂ {1, . . . ,m} of size at

least m−d such that
⋃

i∈I Vi ∈ X.

The following examples shows the tightness of Corollary 3.3.7.

Example 3.3.9. Let G be a graph on 2n vertices where E(G) consists of n pairwise

disjoint edges, say E(G) = {u1v1, . . .unvn}. It is easy to see that γ̃(G)
2 = γsi(G) =

γE(G) = n. However, if we consider n−1 covers A1 = . . .= An−1 = {u1, . . . ,un},

then there is no rainbow cover: if vi be the vertex which is not represented by any

of A j, then the edge uivi is not covered.

Example 3.3.10. Let H be a 3-uniform sunflower with n petals and the center {v}.

That is, H = {e1, . . .en} such that ei∩e j = {v} for all i ̸= j. Let ei = {v,ui,wi}. For

each i, we need v and wi to dominate ui and we need v and ui to dominate wi. Thus

we should have all vertices to dominate whole hypergraph, i.e. γ̃(G) = 2n+ 1.

Hence

|V (H)|−
⌈

γ̃(H)

2

⌉
= (2n+1)− (n+1) = n.

Now consider n−1 covers A1 = . . .= An−1 = {u1, . . . ,un}. Then there is no rain-

bow cover: if ui is the vertex which is not represented by any of A j, then the edge

{v,ui,wi} is not covered.

3.3.5 Collapsibility of non-cover complexes of hypergraphs

It would be an interesting research problem to establish a generalization of Theo-

rem 2.2.2 for more general hypergraphs. Here we give an explicit statement of the

conjecture for the collapsiblity number of the non-cover complex of a hypergraph.

Conjecture 3.3.11. Let H be a hypergraph with no isolated vertices. Then each

of the following holds:
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(a) If |e| ≤ 3 for every e ∈ H, then C(N C (H))≤ |V (H)|−
⌈

γ̃(H)
2

⌉
−1.

(b) If |e| ≤ 2 for every e ∈ H, then C(N C (H))≤ |V (H)|− γsi(H)−1.

(c) C(N C (H))≤ |V (H)|− γE(H)−1.

As the last remark, we point out that proving Conjecture 3.3.11 can enhance

Corollary 3.3.7. If we replace d-Leray condition with d-collapsible condition in

Theorem 4.4.2, then we have a stronger “rainbow set statement” which follows

from Theorem 1.2.5.

Theorem 3.3.12. Let X be a d-collapsible simpicial complex with a vertex par-

tition V (X) = V1 ∪ ·· · ∪Vm with m ≥ d + 1. If σ ∈ X for every σ ⊂ V (X) with

|σ ∩Vi|= 1, then there exist I ⊂ {1, . . . ,m} of size at least m−d and a set W with

|W |= d and |W ∩Vi|= 1 for each i /∈ I such that W ∪ (
⋃

i∈I Vi) ∈ X.
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Chapter 4

Rainbow independent sets

In this chapter, we study Problem 1.4.1 for some graph classes which are different

from the class of line graphs. Two most important results are the following.

Theorem 1.4.8. fF (H)(n,n) < ∞ for every positive integer n if and only if H is

either Kr or K−
r for some r.

Theorem 1.4.9. For the class of all graphs with maximum degree at most k,

fD(k)(n,m)≤ (m−1)k+1 for all m ≤ n and fD(k)(n,n) =
⌈k+1

2

⌉
+1 for n ≤ 3.

The proof of Theorem 1.4.8 appears in Section 4.1.4, and Theorem 1.4.9 will

be proved in Section 4.3 and Section 4.4.

4.1 Graphs avoiding certain induced subgraphs

In this section, we study some graph classes of the form F (H1, . . . ,Ht).

4.1.1 Claw-free graphs

The graph K1,3 is called a “claw”. Line graphs are claw-free, and some results on

line graphs go over also to claw-free graphs. This turns out not to be the case with
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regard to our problem.

Theorem 4.1.1. Let 2 ≤ m ≤ n. Then:

(a) fF (K1,3)(n,2) = 2 for all n ≥ 3.

(b) fF (K1,3)(n,m) = m for m ≤
⌈n

2

⌉
.

(c) fF (K1,3)(n,m) = ∞ for m > max(
⌈n

2

⌉
,2).

Proof.

(a) By (1.4.1) it suffices to prove fF (K1,3)(n,2) ≤ 2. Let G be claw-free, and let

I1, I2 be independent sets in G. If I1 ∩ I2 ̸= /0, then each of I1, I2 contains a

rainbow independent set of size 2. Hence we may assume that I1 and I2 are

disjoint. Since G is claw-free and n ≥ 3, there must be a pair of non-adjacent

vertices v1 ∈ I1 and v2 ∈ I2. Then {v1,v2} form a rainbow independent set of

size 2.

(b) It suffices to prove fF (K1,3)(n,m)≤ m. We apply induction on n+m. The base

case m = 2 has been proved in (a). Suppose 3 ≤ m ≤
⌈n

2

⌉
. Let G be claw-

free, and let I1, . . . , Im be independent sets in G, where m ≤ ⌈n
2⌉. Pick a vertex

v ∈ Im. For every I j, j < m, either v ∈ I j or v has at most two neighbors in

I j. Delete the vertex v and all its neighbors, and consider I′j = I j \N[v] for

j < m. There are m− 1 independent sets of size at least n− 2, and we note

that m− 1 <
⌈n−2

2

⌉
since m < n

2 . By the induction hypothesis, there exists

a rainbow independent set I of size m− 1. Since I ⊆ V \N[v], I ∪ {v} is a

rainbow independent set of size m.

(c) For every t and n ≥ 5 we construct a claw-free graph G along with t indepen-

dent sets of size n, for which every rainbow independent set has size at most⌈n
2

⌉
. For odd n ≥ 5, let G be the t-partite graph Kt ∪ (n−1

2 )K2,2,...,2 formed by

taking a disjoint union of Kt with n−1
2 copies of K2,2,...,2, and define I1, . . . , It
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to be the t colour classes. Then any rainbow independent set contains at most

one vertex from each component, hence at most n+1
2 vertices in all. For n even,

take G to be n
2 copies of K2,2,...,2.

4.1.2 {C4,C5, . . . ,Cs}-free graphs

In general, fF (C4,C5,...,Cs)(n,n) is not always finite. This can be shown by a gener-

alization of Example 1.4.3.

Example 4.1.2. For integers n, t, let G := Gt,n be obtained from a cycle of length

tn by adding all edges connecting any two vertices of distance < t in the cycle.

There are precisely t independent sets of size n, say I1, . . . , It . As the family of

independent sets, take n− 1 copies of each I j, yielding t(n− 1) colours in total.

(Setting t = 2 gives Example 1.4.3).

Since the only independent sets of size n are the I j’s themselves, and each

repeats only n−1 times, there is no rainbow independent set of size n.

Theorem 4.1.3. fF (C4,C5,...,Cs)(n,n) = ∞ for n ≥ s.

Proof of Theorem 4.1.3. The proof will be complete if we show that if n ≥ i ≥ 4

then Gt,n is Ci-free. This will mean that fF (C4,C5,...,Cn)(n,n)≥ t(n−1)+1 for every

t.

To see the last claim, suppose for contradiction that x1, . . . ,xs are the ver-

tices of a copy of Cs in Gt,n. Then their consecutive distances di := xi+1 − xi ∈
{±1,±2, . . . ,±(t −1)} for every i ∈ Zs as xi and xi+1 are adjacent. Furthermore,

di,di+1 have the same sign, as otherwise |xi+2−xi|= |di+1−di|< t−1 contradicts

the non-adjacency of xi and xi+2. Reversing the order if necessary, we may assume

di > 0 for every i. Then x1 ≡ x2 −d1 ≡ x3 −d2 −d1 · · · ≡ x1 −∑i di (mod nt) im-
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plies that ∑i di is a positive multiple of nt, hence at least nt. But

s

∑
i=1

di ≤
s

∑
i=1

(t −1)≤ s(t −1)< nt,

a contradiction.

However, for any s≥ 4, observe that fF (C4,C5,...,Cs)(2,2)= 2. In a similar spirit,

and in sharp contrast to Theorem 4.1.3, the forbidding of Cn+1 among a collection

of independent sets of size n can make a large difference:

Theorem 4.1.4. If s > n ≥ 3 then fF (C4,C5,...,Cs)(n,n)< ∞.

A sunflower is a collection of sets S1, . . . ,Sk with the property that, for some

set Y , Si∩S j =Y for every pair i ̸= j. The set Y is called the core of the sunflower

and the sets Si \Y are called petals. In particular, a collection of pairwise disjoint

sets is a sunflower with Y = /0.

Lemma 4.1.5 (Erdős-Rado Sunflower Lemma, [18]). Any collection of n!(k−1)n

sets of cardinality n contains a sunflower with k petals.

We use the sunflower lemma to reduce Theorem 4.1.4 to the case where all

independent sets are disjoint:

Theorem 4.1.6. For all numbers n ≥ 3 there is some large Nn, increasing with n,

satisfying the following property. Suppose s > n and G ∈ F (C4, . . . ,Cs) has Nn

disjoint independent sets of size n. Then G contains a rainbow independent set of

size n.

Proof of Theorem 4.1.4. We claim that fF (C4,...,Cs)(n,n) ≤ n!(Nn − 1)n. Indeed,

if a graph G has this many independent sets of size n, then by the Sunflower

Lemma, some Nn of them form a sunflower S1, . . . ,SNn with core Y . If ℓ ≤ n < s

is the size of the resulting petals Si \Y , then these Nn ≥ Nℓ sets form disjoint

independent sets of size ℓ in G. So applying Theorem 4.1.6 to the induced graph
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G[⊔i(Si \Y )] gives a rainbow independent set I of size ℓ among these petals Si \Y .

But extending I to I ∪Y also produces an independent set, now of size n, as the

core Y is nonadjacent to all vertices in the sunflower. The additional n−ℓ vertices

in Y can all be assigned distinct new colours not used in I, merely needing Nn ≥ n,

as Y is contained in every Si. So I ∪Y is rainbow, as desired.

Definition 4.1.1. Let A and B be finite ordered sets with |B| = b. Let G be a b-

partite graph on A×B whose parts are columns A×{ j}. We say G is repeating if

the following holds:

For every i1, i2 in A (not necessarily distinct) and two pairs j1 < j2 and j′1 < j′2,

the vertices (i1, j1) and (i2, j2) are adjacent if and only if the vertices (i1, j′1) and

(i2, j′2) are adjacent. That is, all bipartite graphs of the form G[A×{ j, j′}] with

j ̸= j′ (induced by two parts of G) are isomorphic a bipartite graph Γ in a fashion

consistent between parts. In particular, if G[A×{ j, j′}] is isomorphic to a bipartite

graph Γ for all j ̸= j′, we say G is Γ-repeating.

Note that every row {i}×B is either a clique or an independent set in any re-

peating graph H on A×B, and that the subgraphs H[A′×B′] obtained by inducing

H on the subgrid A′×B′ of A×B is also repeating.

We next appeal to a Ramsey-type result. Recall that R(r1, . . . ,rt) denotes the

smallest number of vertices in a complete graph for which any t-edge-colouring

contains in some colour i a monochromatic Kri , and that Ramsey’s Theorem guar-

antees the existence of such a number.

Lemma 4.1.7. For each n ∈ N, there is some R with the following property. Sup-

pose G is an R-partite graph on [n]× [R], whose parts are the R columns. Then

there is some B ⊂ [R] with |B|= n+1 for which the induced subgraph G[[n]×B]

is repeating.

Proof. This is a direct consequence of Ramsey’s Theorem, with

R := R(

2n2︷ ︸︸ ︷
n+1, . . . ,n+1).
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This immediately reduces Theorem 4.1.6 to repeating graphs:

Theorem 4.1.8. Let s and n be integers with s> n≥ 3. Suppose G∈F (C4, . . . ,Cs)

is a Γ-repeating graph on vertex set [n]× [n+1]. Then G contains an independent

set of size n which is rainbow with respect to the columns.

Proving this will need two graph-theoretic lemmas as follows.

Definition 4.1.2. For a path or cycle H and a matching M in a bipartite graph Γ,

we say H is M-alternating if E(H)\M is a matching.

Lemma 4.1.9. Let Γ be a bipartite graph containing a perfect matching M. Sup-

pose that Γ has minimum degree ≥ 2. Then Γ contains an induced M-alternating

cycle C.

Proof. First we see that Γ contains some M-alternating cycle, not necessarily in-

duced. Indeed, let P = v1v2 . . .vs−1vs be any maximal M-alternating path. If the

last edge vs−1vs ̸∈ M, then vs is matched to some vertex v by M. Otherwise the

last edge vs−1vs ∈ M, so as d(vs)≥ 2, vs is adjacent to another vertex v. In either

case, by maximality of P, v is a previous vertex vi from the path. Then the cycle

vivi+1 . . .vs−1vsvi is M-alternating.

Now, let C be any inclusion-minimal M-alternating cycle in Γ. We wish to

show C is in fact induced, so suppose not. Then we may write C = u1u2 . . .u2t−1u2tu1,

where the odd edges u2i−1u2i are in M, in such a way that the offending chord is

u1u2i for some i strictly between 1 and t. But now u1u2 . . .u2i−1u2iu1 is a strictly

smaller M-alternating cycle.

Lemma 4.1.10. Let G be a Γ-repeating graph where every row is a clique. Let M

be the matching in Γ given by these rows. Suppose, for some k, Γ has an induced

M-alternating cycle of length 2k, and G has at least k+ 1 columns. Then G has

an induced cycle of length k+1.

47



Proof. Reordering the rows and columns if necessary, we may assume that the in-

duced cycle of Γ is (1,1),(1,2),(2,1), . . . ,(k,1),(k,2),(1,1). Then one such de-

sired cycle in G is (k,1),(k−1,2),(k−2,3), . . . ,(2,k−1),(1,k),(k,k+1),(k,1).

See Figure 4.1 for an illustration when k = 3.

C2k ⊂ Γ

v

dotted cycle : Ck+1 ⊂ G

v′

Figure 4.1: Example for Lemma 4.1.10 when k = 3

Proof of Theorem 4.1.8. We proceed by induction on n.

Every row of G is necessarily a rainbow set of size n+1 > n, so if any row is

independent, we are already done. So as G is repeating we may assume that every

row is a clique. Write M for the matching of size n in Γ induced by these rows.

Suppose for contradiction Γ has minimum degree at least 2. Then Lemma 4.1.9

yields an induced M-alternating cycle in Γ of some even length 2k. @@Crudely,

2k ≤ |V (Γ)|= 2n, so if k ≥ 3 then Lemma 4.1.10 produces an induced cycle C of

some length between 4 and n+ 1 in G, contradicting G ∈ F (C4, . . . ,Cs). Mean-
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while, if k = 2, then C was an induced C2k = C4 in Γ, hence in G, contradicting

our choice of G without even needing Lemma 4.1.10.

Thus, in fact, Γ contains a vertex v of degree 1. That is, v only has its M-edge

in Γ. If v = (i,1) for some i, namely v is in the first column of Γ and G, then let

v′ := v. If v was in the second column of Γ, namely v = (i,2) for some i, then

replace v = (i,2) by v′ := (i,n+ 1)-the last vertex in row i (see Figure 4.1). In

either case, v′ is only adjacent to vertices in row j as G is Γ-repeating.

Note that both G[([n] \ {i})× ([n+ 1] \ {1})] and G[([n] \ {i})× [n]] are also

repeating. Thus, by the induction hypothesis, we may find a rainbow independent

(n− 1)-set I in the remaining columns obtained by deleting the row and column

containing v′. To obtain the desired rainbow independent n-set we simply add v′

to I.

Remark 4.1.11. By the observation (1.4.2), Theorem 4.1.4 can be extended as

follows: if s > m ≥ 3 and n ≥ m then fF (C4,C5,...,Cs)(n,m)< ∞.

4.1.3 Chordal graphs

A graph is called chordal if it does not contain an induced cycle of length larger

than 3. Recall that the class of chordal graphs is denoted by T . By Theorem 4.1.4

(applying monotonicity), fT (n,n)≤ fC4,...,Cn+1(n,n)<∞ for every positive integer

n. In fact, in this case the exact value of fT (n,m) is known:

Theorem 4.1.12. If m ≤ n then fT (n,m) = m.

A useful property of chordal graphs was given in [14, Theorem 8.11]:

Theorem 4.1.13. Any chordal graph contains a simplicial vertex, namely a vertex

whose neighbors form a clique.

Proof of Theorem 4.1.12. By (1.4.1) it suffices to show that fT (n,m) ≤ m. The

proof is by induction on m. For m = 0 there is nothing to prove. Assume that the
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result is valid for m−1. Let G be a chordal graph and let I1, . . . , Im be independent

sets in G of size n. We may assume that V (G) = I1 ∪·· ·∪ Im.

Let v be a simplicial vertex. Without loss of generality, v ∈ Im. Consider the

induced subgraph G′ = G[V \N[v]] and the m−1 independent sets I′j = I j \N[v],

1 ≤ j ≤ m−1, in G′. Since N[v] is a clique, any independent set in G contains at

most one vertex from N[v], hence each I′j has cardinality at least n− 1. Since G′

is also chordal, by induction we may assume that there is a rainbow independent

set {v1, . . . ,vm−1} in G′, where v j ∈ I j for each i ≤ j ≤ m−1. Since the vertex v

is not adjacent to any v j, the set {v1, . . . ,vm−1,v} is a rainbow independent set in

G.

4.1.4 Kr-free graphs and K−
r -free graphs

Recall that K−
r denotes Kr minus an edge. In particular, the graph K−

4 is called

“diamond”. It is known [10] that a graph is claw-free and diamond-free if and

only if it is the line graph of a triangle-free graph, and that if in addition it does

not contain an induced odd cycle then it is the line graph of a bipartite graph [21].

To establish upper bounds on fF (K−
r )(n,m), we shall use a Ramsey-type result

on multipartite graphs. As usual, we denote by R(a,b) the smallest number q such

that if the edges of Kq are coloured red and blue, there necessarily exist a red Ka

or a blue Kb.

Lemma 4.1.14. For every integers n,r ∈N with r ≥ 2, there exists M = M(n,r) ∈
N for which the following holds. Let G be an M−partite graph with classes

V1, . . . ,VM such that |Vi| = n for every i. If G does not contain an induced copy

of K−
r , then it contains a rainbow independent set of size n.

Proof. We proceed by induction on n. For n = 1, we clearly have M(1,r) = 1. We

claim that for n ≥ 2, it is sufficient to set

M = M(n,r) = R(
2n2︷ ︸︸ ︷

t, . . . , t),
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where t = max{r − 1,M(n − 1,r)}. This can be proved by the proof of Theo-

rem 4.1.8 with a slight modification.

Let G be an M−partite graph where each part has size n ≥ 2. By Ramsey’s

theorem, G contains a Γ-repeating subgraph H, say on vertex set [n]× [t]. Since

every row of H is a rainbow set of size t > n, we have a rainbow independent set

of size n if any row is independent. Since H is repeating, we may assume that

every row is clique.

Assume that every vertex in Γ has degree at least 2. Then the vertex (1,2) is

adjacent to (1,1) and ( j,1) for some j ∈ [n] \ {1}. Since H is Γ-repeating, every

vertex (1, i) is adjacent to both (1,1) and ( j,1). Since (1,1) and ( j,1) are not

adjacent, then the vertex set

{(1, i) : 1 ≤ i ≤ r−1}∪{(1, j)}

induces K−
r in H, which is a contradiction. Hence there must be a vertex in Γ

which has degree 1. Since t ≥ M(n−1,r), applying the last paragraph of the proof

of Theorem 4.1.8 gives us a rainbow independent set of size n.

Corollary 4.1.15. For every integer r, if n ≥ m then

fF (K−
r )(n,m)< ∞ and fF (Kr)(n,m)< ∞.

Proof. We show fF (K−
r )(n,n) ≤ N for some large enough N = N(n,r). The re-

sult for Kr−1 and for m < n follows by the monotonicity relation (1.4.2), since

F (K−
r )⊆ F (Kr−1).

Suppose a graph G is equipped with N independent sets of size n (colour

classes). By Lemma 4.1.5, if N ≥ n!Mn+1 for some M, then there are some classes

I1, . . . , IM which form a sunflower in V (G). That is, some S ⊆V has Ii ∩ I j = S for

every distinct i, j ∈ [M]. Now, if S ̸= /0, then we may inductively find a rainbow

independent set of size n− |S| among
(
∪M

j=1I j

)
\ S, provided that M ≥ Nn−|S|.
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Together with S this will generate a rainbow set of size n. So we may assume

S = /0, namely that the sets I j are disjoint.

By Lemma 4.1.14, if M is large enough, then we either find an independent

n-transversal among the I j’s or an induced K−
r .

In fact, when m = n, the graphs Kr and K−
r are the only (nonempty) graphs for

which Corollary 4.1.15 holds. We prove this in a series of lemmas.

Lemma 4.1.16. Let H,K be graphs. If H is an induced subgraph of K and fF (H)(n,n)=

∞, then fF (K)(n,n) = ∞.

This follows from the transitivity of the “subgraph” relation.

Let K−−
3 be the graph on three vertices with exactly one edge.

Lemma 4.1.17. If H does not contain K−−
3 as an induced subgraph, then H is a

complete r-partite graph Ks1,s2,...,sr for some r.

Proof. The condition implies that the relation of “not being connected in the

graph” on the vertex set of the graph is an equivalence relation, which is just

the conclusion of the lemma.

Lemma 4.1.18. If fF (H)(n,n)< ∞ for every n, then:

(a) H is claw-free,

(b) H is C4-free.

(c) H is K̄n+1-free, and

(d) H is K−−
3 -free.

Proof. (a) and (b) follow from Lemma 4.1.16 combined with Theorem 4.1.1 and

Theorem 4.1.3. For (c) and (d), consider the complete t-partite graph G = Kn,...,n.

It is obvious that G does not contain K̄n+1 and K−−
3 as induced subgraphs. On the

other hand, since Kn,t has t pairwise disjoint independent sets of size n, and there
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is no rainbow independent set of size n (or even of size 2) where t is arbitrarily

large. This proves that fF (K̄n+1)
(n,n) = ∞ and that fF (K−−

3 )(n,n) = ∞ for every

n ≥ 2. Hence (c) and (d) follow from Lemma 4.1.16.

Part (d) and Lemma 4.1.17 imply:

Lemma 4.1.19. If fF (H)(n,n)< ∞, then H is complete multipartite.

We can now prove the main result of this section:

Theorem 4.1.20. fF (H)(n,n) < ∞ for every positive integer n if and only if H is

either Kr or K−
r for some r.

Proof. The “if” part is proved by Corollary 4.1.15. For the “only if” part, we have

shown that if fF (H)(n,n) < ∞ then H is multipartite, avoiding C4’s or claws as

induced subgraphs. The absence of induced C4’s implies that at most one class in

the partition of the graph is of size 2 or more, and the absence of induced K1,3’s

implies that if there is a class of size larger than 1 it is of size 2. If there is no such

class, H is complete. If there is a single class of size 2, then H is K−
r .

To complete this section, we use the Ramsey numbers R(s, t) to find a nontriv-

ial lower bound on fF (Kr) and fF (K−
r+1)

.

Theorem 4.1.21. For any numbers r and m ≤ n:

R(r,m)−1 ≤ fF (Kr)(n,m)≤ fF (K−
r+1)

(n,m).

Proof. We exhibit a graph G showing fF (Kr)(n,m)≥N :=R(r,m)−1. The second

inequality is due to monotonicity (1.4.2) as Kr ⊆K−
r+1 implies F (Kr)⊆F (K−

r+1).

Take a Kr-free graph H with no independent set of size m on N vertices, as

guaranteed by the definition of R(r,m).

Let G be the graph blowup H(n). That is, replace each v ∈V (H) with an inde-

pendent set of size n, and replace each edge in H with the corresponding complete
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bipartite graph in G (specifically a copy of Kn,n). Then G is Kr-free since H was.

Now defining the colour classes to be the N blown up vertices yields no rain-

bow independent set of size m in G (since the classes are disjoint, and H had no

independent set of size m).

We close this section with a remark that well-known bounds on R(3, t) (for

example [28]) tell us that f is superlinear for the class of diamond-free graphs:

Corollary 4.1.22.

Ω

(
m2

logm

)
≤ R(3,m)−1 ≤ fF (K−

4 )(n,m)< ∞.

4.2 k-colourable graphs

Recall that the class of k-colourable graphs is denoted by X (k).

Theorem 4.2.1. If m ≤ n then fX (k)(n,m) = (m−1)k+1.

Proof. To show that fX (k)(n,m)> k(m−1), let G be the complete k-partite graph

with all sides of size n, and take a family of k(m− 1) independent sets, consist-

ing of each side of the graph repeated m−1 times. A rainbow set of size m must

include vertices from two different sides of the graph, and hence cannot be inde-

pendent. To bound fX (k)(n,m) from above, let G be a k-colourable graph and let

I1, . . . , Ik(m−1)+1 be independent sets in G of size n. colour G by colours Vi (i ≤ k),

so V1, . . . ,Vk are independent sets covering V (G).

Let M be an inclusion-maximal rainbow set. If M represents all sets I j, then

|M| = k(m−1)+1, and by the pigeonhole principle M contains m vertices from

the same set Vj. Since Vj is independent this means that M contains a rainbow set

of size m, as required.

Thus we may assume that I j is not represented in M for some j. By the max-

imality of M, this implies that M ⊇ I j, implying in turn that I j is a rainbow inde-

pendent set of size n ≥ m.
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Theorem 4.2.1 can be strengthened, in the spirit of Theorem 1.4.5: a family

of independent sets Fi, i ≤ k(m − 1) + 1 in a k-chromatic graph, where |Fi| ≥
min(i,n), has a rainbow independent set of size m. To prove this, follow the same

proof as above, choosing the elements of M greedily from the sets F1, . . . ,Fn.

4.3 Graphs with bounded degrees

Recall that D(k) is the class of graphs having vertex degrees no larger than k.

Theorem 4.2.1, together with Brooks’ theorem (stating that the chromatic number

does not exceed the maximal degree, unless the graph is complete or an odd cycle),

imply fD(k)(n,n)≤ k(n−1)+1. This is probably not best possible.

Conjecture 4.3.1. fD(k)(n,n) =
⌈k+1

2

⌉
(n−1)+1.

One inequality, fD(k)(n,n) ≥
⌈k+1

2

⌉
(n− 1)+ 1, is shown by Example 4.1.2.

As noted, in the graph Gt,n constructed in that example, there is no rainbow in-

dependent set of size n. To establish the desired bound, note every v ∈ Gt,n has

degree 2t −2 ≤ k if we choose t :=
⌈k+1

2

⌉
.

Theorem 4.3.2. Conjecture 4.3.1 is true for k ≤ 2.

Proof. Consider first the case k ≤ 1, n general. Let G be a graph with ∆(G) ≤ 1,

namely a matching. Then I (G) is a partition matroid whose parts are the edges

of the matching. Greedy choice shows that in a matroid every n independent sets

of size n have a rainbow independent set of size n.

Next consider the case k= 2. We have to show that if ∆(G)≤ 2 and I1, . . . , I2n−1 ∈
I (G) are of size n, then there is a rainbow independent set of size n. Take an

inclusion-maximal rainbow set M that induces a bipartite graph in G. If |M| =
2n−1, then M contains a subset of size n in one of the sides of the bipartite graph,

which is independent in G. Thus we may assume that |M| < 2n−1. Then one of

the sets I j, say I1, is not represented by M.
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Since M is inclusion-maximal rainbow bipartite, each vertex v ∈ I1 \M is con-

tained in an odd cycle Cv of odd length, say of length 2t(v)+1, that is a connected

component of G, such that V (Cv)\{v} ⊆ M. For each such v replace in I1 the set

I1 ∩V (Cv) (which is of size at most t(v), since I1 is independent) by any indepen-

dent set Jv of size t(v) not containing v (note that Jv ⊆ M). The result of these

replacements is an independent set of size n, contained in M, yielding the desired

rainbow set.

4.3.1 The case m < n

Here is a generalization of Conjecture 4.3.1:

Conjecture 4.3.3. If m ≤ n then fD(k)(n,m) =
⌈ k+1

n−m+2

⌉
(m−1)+1.

The bound in the conjecture cannot be improved. The examples showing this

follow the pattern of Example , with some modifications.

Let r = n−m+2, and write k = r(t−1)+α for α ∈ [0,r). Then t = k−α

r +1=⌊k
r +1

⌋
=
⌈k+1

r

⌉
=
⌈ k+1

n−m+2

⌉
.

Let G be the graph obtained from a cycle of length nt by adding edges between

any two vertices whose distance from each other is not a multiple of t and is not

larger than ⌊ rt−1
2 ⌋.

We then have:

∆(G) = 2(
⌊rt

2
−⟨ r

2
⟩
⌋
−
⌊ r

2

⌋
) (4.3.1)

(Here ⟨x⟩= x−⌊x⌋.)

We divide into two cases:

Case I. r(t − 1) is even. In this case, (4.3.1) yields ∆(G) ≤ r(t − 1) ≤ k (to see

this, check separately the subcases “r is even” and “t is odd”). So, G ∈ D(k).

Observe that the modulo t residue classes Ztn/Zn := {a+tZn : a= 0,1, . . . ,(t−
1)} are independent sets of size n in G, as no two vertices at a distance some
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multiple of t are adjacent. We claim that any independent set I ⊆ G of size m

is fully contained in one residue class. This will entail the desired lower bound

fD(k)(n,m)≥ t(m−1)+1 =
⌈ k+1

n−m+2

⌉
(m−1)+1, by taking m−1 copies of each

independent set of size m in G.

To prove the claim, suppose that I ⊆V (G) has size m, and write d1, . . . ,dm for

the consecutive distances in I.

Then ∑di = |V (G)|= nt.

Assume for contradiction that there exists an independent set I of size m that

is not contained in some residue class (mod t). Then:

• di ≥ t for every i, by independence, and

• for some distinct pair j, j′; both d j,d j′ >
rt
2 .

Indeed, if the {xi} are not all in the same residue class, then there is some consec-

utive pair x j ̸≡ x j+1 (mod t). We may further find one other such index j′ with

x j′ ̸≡ x j′+1 (mod t) for otherwise x j+1 ≡ x j+2 ≡ ·· · ≡ x j−1 ≡ x j (mod t). Then,

by nonadjacency, d j,d j′ >
⌊ rt−1

2

⌋
and hence (as r is even or t is odd) d j,d j′ >

rt
2 .

Putting these two facts together, we obtain

m

∑
i=1

di ≥ (m−2)t +d j +d j′ > (m−2)t + rt = (m−2)t +(n−m+2)t = nt,

a contradiction.

Case II. r(t −1) is odd. In this case, (4.3.1) yields ∆(G)≤ k−1. This means

that we can add a matching to the graph, without violating the condition ∆(G)≤ k,

which enables solving the problem, that it is possible for two nonadjacent vertices

of different (mod t) classes to be at a distance exactly rt
2 . Form a graph G′ by

adding an edge from x to x+ r t
2 whenever x ∈ {0,1, . . . , t

2 − 1}+ tZn, or equiva-

lently from y to y− r t
2 whenever y ∈ { t

2 , . . . , t −1}+ tZn.
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Again, we show that if I ⊆ G′ is an independent m-set, then it is contained in a

(mod t) class. Assume that this is not the case, and let the consecutive distances

in I be d1, . . . ,dm. As above, ∑di = nt, di ≥ t for every i, and d j,d j′ ≥ rt
2 for some

pair j, j′. Without loss of generality we may assume j′ = m. As above, equality

must hold everywhere, so that I = x1+{0, t,2t, . . . ,( j−1)t,− t
2 +( j+ r−1

2 )t,− t
2 +

( j + r+1
2 )t, . . . ,− t

2 −
r−1

2 t}, for some x1 ∈ Znt . In both cases a contradiction is

reached. If x1 ∈ {0,1, . . . , t
2 − 1}+ tZn, then the two elements x1 +( j − 1)t and

x1− t
2 +( j+ r−1

2 )t are adjacent. If x1 ∈ { t
2 , . . . , t−1}+Zn, then x1− t

2 −
r−1

2 t and

x1 are adjacent vertices in I.

123

456

123456

123

456

123

456 123

456

fD(3)(5,4)> (m−1)t = 6: 6 independent sets of size 5 in a graph of max degree

3 do not guarantee a rainbow independent 4-set.

Theorem 4.3.4. fD(k)(n,2) =
⌈k+1

n

⌉
+1.

Proof. Let G be a graph with maximum degree k and let I1, . . . , I⌈ k+1
n ⌉+1 be the

independent sets of size n in G. We first note that
⌈k+1

n

⌉
+1 ≥ 2. If Ii ∩ I j ̸= /0 for

some i ̸= j, then both Ii and I j contain at least one rainbow independent set of size

2. Thus we may assume that the sets I1, . . . , I⌈ k+1
n ⌉+1 are mutually disjoint.
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Now take u ∈ I1. Note that there are
⌈k+1

n

⌉
× n ≥ k + 1 vertices in

⋃
j>1 I j.

Since the degree of u in G is at most k, there must be a vertex v ∈ I j for some

j ̸= 1 which is not adjacent to u. Then {u,v} form a rainbow independent set of

size 2 in G.

Theorem 4.3.5. fD(k)(n,3) = 2×
⌈ k+1

n−1

⌉
+1.

The proof is similar to that in the proof of Theorem ??, needing just a little

more case analysis. We give a sketch of the proof, starting with the following:

Observation 4.3.6. Let I1, I2, I3 be independent sets of size n ≥ 3 in a graph G. If

I1 ∩ I2 ̸= /0, then we have the following.

1. If |I1 ∩ I2| ≥ 2 and I1 ∩ I3 ̸= /0, then there is a subset of I1 which forms a

rainbow independent set of size 3.

2. If |I1∩ I2|= 1, say I1∩ I2 = {x}, and I3 meets I1 at a vertex y ̸= x, then there

is a subset of I1 which forms a rainbow independent set of size 3.

3. If I1 ∩ I2 = I2 ∩ I3 = I1 ∩ I3 = {u} and there is a vertex v ∈ Ii and w ∈ I j for

some i ̸= j which are non-adjacent, then {u,v,w} forms a rainbow indepen-

dent set.

4. If I3 is disjoint from I1 ∪ I2 and there is a vertex u ∈ I3 such that there exist

(a) a vertex v ∈ I1 ∩ I2 which is not adjacent to u, and

(b) a vertex w ̸= v in I1 ∪ I2 which is not adjacent to u,

then {u,v,w} forms a rainbow independent set.

Proof of Theorem 4.3.5. We use induction on k and n. Let n> 3 and denote
⌈ k+1

n−1

⌉
by q. Let G be a graph with maximum degree k and let I1, . . . , I2q+1 be the inde-

pendent sets of size n in G. Assume, for contradiction, that there is no rainbow

independent set of size 3.
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Let t = max{|Ii ∩ I j : i ̸= j} and suppose t > 0. Without loss of generality, we

may assume that |I1 ∩ I2|= t. Let

A = {v ∈
⋃
j≥3

I j : I1 ∩ I2 ⊆ N(v)} and B =

(⋃
j≥3

I j

)
\A.

Claim 4.3.7. t < 3 for every i ̸= j.

Proof. By Observation 4.3.6(1), the union
⋃

j≥3 I j is disjoint form I1 ∪ I2. By Ob-

servation 4.3.6(4), every vertex in B is adjacent to 2n− t −1 vertices in I1 ∪ I2: all

vertices in (I1 ∪ I2)\ (I1 ∩ I2) and t −1 vertices in I1 ∩ I2.

By a double counting on the degree sum of the vertices in I1 ∩ I2, we obtain

the inequality

t|A|+(t −1)|B| ≤ ∑
u∈I1∩I2

degG(u)≤ tk. (4.3.2)

On the other hand, one can see the lower bound∣∣∣∣∣⋃
j≥3

I j

∣∣∣∣∣≥ (2n− t)
2q−2

2
+n ≥ (2n− t)

k+1
n−1

−n+ t, (4.3.3)

where the equality holds when |I2s−1 ∩ I2s| = t for each 2 ≤ s ≤ q and I2q+1 is

disjoint from all others. Here we may assume that t < n because if not, then we

have

n(k+1)≤ (n−1)(|A|+ |B|)≤ n|A|+(n−1)|B| ≤ nk,

which is a contradiction.

Now since (t − 1)
∣∣⋃

j≥3 I j
∣∣ ≤ t|A|+ (t − 1)|B|, combining the inequalities

(4.3.2) and (4.3.3) gives us

(t −1)
(
(2n− t)

k+1
n−1

−n+ t
)
≤ tk,
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which is equivalent to the inequality

(n− t)(t −2)k ≤ (t −1)((2−n)t +n(n−3)).

Since (2−n)t +n(n−3)< (n− t)(n−2) and t < n, we obtain

(t −2)k < (t −1)(n−2). (4.3.4)

Next we claim that k ≥ 2n− t − 1 by showing B ̸= /0. Note that every vertex

in B has 2n− t −1 neighbors in I1 ∪ I2. Applying this to the inequality (4.3.4), we

obtain

(2n− t −1)(t −2)< (t −1)(n−2) ⇐⇒ (n− t)(t −3)< 0.

Since n > t, it must be that t < 3.

Suppose |B|= 0. Then we have

(2n− t)
k+1
n−1

−n+ t ≤

∣∣∣∣∣⋃
j≥3

I j

∣∣∣∣∣= |A| ≤ k,

which implies (n − t + 1)k ≤ n(n − 3)− (n − 2)t. Since 0 < n − t < n − t + 1

and n(n− 3)− (n− 2)t < (n− t)(n− 2), we obtain k < n− 2. However, since∣∣⋃
j≥3 I j

∣∣≥ n, we have an inequality n ≤ k < n−2, which is a contradiction. This

completes the proof.

Claim 4.3.8. t < 2 for every pair i ̸= j.

Proof. Suppose not, say |I1 ∩ I2|= 2. As in the previous claim, we have2|A|+ |B| ≤ 2k

|A|+ |B|=
∣∣⋃

j≥3 I j
∣∣≥ (2n−2)2q−2

2 +n ≥ 2k−n+4.
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Combining the two inequalities, we obtain

|A| ≤ n−4 and |B| ≥ 2k−2n+8.

If B = /0, then n ≤
∣∣⋃

j≥3 I j
∣∣ = |A| ≤ n− 4, contradiction. If B ̸= /0, then we

have |B| ≤ k since every vertex in (I1 ∪ I2)\ (I1 ∩ I2) is adjacent to every vertex in

B. This implies that 2k−2n+8 ≤ k, i.e. k ≤ 2n−8. On the other hand, we have

k ≥ 2n−3 since every vertex in B has at least 2n−3 neighbors in I1∪ I2, which is

contradiction. This completes the proof.

Claim 4.3.9. If |Ii1 ∩·· ·∩ Iip|= 1, then p ≤ 2.

Proof. Without loss of generality, let us assume that I1, . . . , Ip is the maximal col-

lection such that |I1 ∩ ·· · ∩ Ip| = 1, say I1 ∩ ·· · ∩ Ip = {u}. Suppose p ≥ 3. By

Observation 4.3.6(3), we can further assume that
(⋃

1≤ j≤p I j
)
\{u} induces a com-

plete p-partite graph, whose parts are I j \{u}, 1 ≤ j ≤ p. Let

C = {v ∈
⋃

j≥p+1

I j : u ∈ N(v)} and D =

( ⋃
j≥p+1

I j

)
\C.

We observe that |C| ≤ k since u has at most k neighbors and that |D| ≤ k−(n−
1)(p−1) since every vertex in

(⋃
1≤ j≤p I j

)
\{u} has at most k neighbors. Hence

we obtain ∣∣∣∣∣ ⋃
j≥p+1

I j

∣∣∣∣∣= |C|+ |D| ≤ 2k− (n−1)(p−1).

On the other hand, we have the lower bound∣∣∣∣∣ ⋃
p+1≤ j≤2q+1

I j

∣∣∣∣∣> (n−1)(2q+1− p)≥ 2k+2− (n−1)(p−1)

which is a contradiction. Therefore, it must be that p ≤ 2.
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Now let v be a vertex in
⋃

j I j such that

M(v) := max
∣∣N(v)∩ (Ii1 ∪·· ·∪ Iiq)

∣∣
is maximum among all choices of v and Ii j’s. Without loss of generality, we may

assume that v ∈ I1 and M(v) = |N(v)∩ (I2 ∪·· ·∪ Iq+1)|= l ≤ k. Since we have

|I2 ∪·· ·∪ Iq+1| ≥ (2n−2)
q
2
+1 ≥ k+2,

there exists a vertex v′ ∈ (I2 ∪·· ·∪ Iq+1)\{v} which is not adjacent to v.

Now suppose

|N(v)∩ (I2 ∪·· ·∪ Iq+1)∩ (Iq+2 ∪·· ·∪ I2q+1)|= s

for some s ≥ 0. Then it is clear that

|N(v)∩ (Iq+2 ∪·· ·∪ I2q+1)| ≤ k− l + s.

If we let

s′ = |(I2 ∪·· ·∪ Iq+1)∩ (Iq+2 ∪·· ·∪ I2q+1)|,

then we notice that s′ ≥ s if v′ /∈ Iq+2 ∪ ·· ·∪ I2q+1, and s′ ≥ s+1 otherwise since

v′ /∈ N(v).

By Claim 4.3.9 and Observation 4.3.6, it must be that Iq+2, . . . , I2q+1 contains

s′ pairwise disjoint sets that are disjoint from all others. This gives us

|Iq+2 ∪·· ·∪ I2q+1| ≥ (n−1)q+ s′+
⌈

q− s′

2

⌉
≥ k+1+ s′+

⌈
q− s′

2

⌉
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If s < q, then we have |Iq+2 ∪·· ·∪ I2q+1| ≥ k+ s′+2. Since we have

|N(v)∩ (Iq+2 ∪·· ·∪ I2q+1)| ≤ k− l + s and |N(v′)∩ (Iq+2 ∪·· ·∪ I2q+1)| ≤ l,

there exists a vertex v′′ ∈ (Iq+2 ∪ ·· ·∪ I2q+1)\{v,v′} which is not adjacent to any

of v and v′, providing a rainbow independent set {v,v′,v′′} of size 3. Note that

k+ s′+2 ≥

k+ s+3 > k+ s+2 if v′ ∈ Iq+2 ∪·· ·∪ I2q+1

k+ s+2 > k+ s+1 otherwise.

If s = q, the only possible case is when Iq+2, . . . , I2q+1 are pairwise disjoint

and v,v′ /∈ Iq+2 ∪ ·· · ∪ I2q+1. In this case, there is a vertex v′′ ∈ Iq+2 ∪ ·· · ∪ I2q+1

which is not adjacent to any of v and v′ since

|Iq+2 ∪·· ·∪ I2q+1|= nq ≥ k+1+q > k+q.

This completes the proof.

Remark 4.3.10. If the independent sets are pairwise disjoint, then we need only

2×
⌈k+1

n

⌉
+1 < 2×

⌈ k+1
n−1

⌉
+1 independent sets of size n to have a rainbow inde-

pendent set of size 3.

4.4 A topological approach

In this section we give alternative proofs for some of the above results, using a

topological tool developed by Kalai and Meshulam [26].

Theorem 4.4.1 (Kalai-Meshulam). If X is d-Leray, then every d + 1 sets in Xc

have a rainbow set belonging to Xc.

Theorem 4.4.2. If X is d-collapsible, then every d +1 sets in Xc have a rainbow

set belonging to Xc.
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For a graph G and a positive integer n, we write α(G) =max{|A| : A∈I (G)},

and let

In(G) := {W ⊂V (G) : α(G[W ])< n}.

By Theorem 4.4.2, to prove fC (n,n)≤ t for a class C and an integer n, it suffices

to prove that In(G) is (t−1)-Leray (or even stronger, (t−1)-collapsible) for every

graph G ∈ C . Thus Theorem 4.1.12 will follow from:

Theorem 4.4.3. If G is chordal, then the complex In(G) is (n−1)-collapsible.

An example showing tightness of Theorem 4.4.3 is the graph consisting of n

isolated vertices. Here In(G) is the boundary of a simplex on n vertices, so it is

n−1 -collapsible, but not even n−2-Leray.

For the proof we shall need to recall the following definition:

Definition 4.4.1. The star stX(v) of a vertex v in a complex X is {σ ∈ X : v ∈ σ}.

Lemma 4.4.4. Let v be a simplicial vertex in a graph G, i.e. N[v] is a clique. For

any integers n ≥ 2 and d ≥ 0, if In(G− v) is (d + 1)-collapsible and In−1(G[V \
N[v]]) is d-collapsible, then In(G) is (d +1)-collapsible.

Proof. Suppose In(G−v) is (d+1)-collapsible and In−1(G[V \N[v]]) is d-collapsible.

Note that In(G) = stIn(G)(v)∪ In(G− v). Since the vertex v is simplicial, a subset

W of V not containing v belongs to stIn(G)(v) if and only if α(G[W \N[v]])< n−1,

namely W \N[v] ∈ In−1(G). Hence we have

stIn(G)(v) = ∆N[v] ∗ In−1(G[V \N[v]]). (4.4.1)

Consider a sequence {[σi,τi]}i of elementary d-collapses that reduces In−1(G[V \
N[v]]) to { /0}. We claim that {[{v}∪σi,N[v]∪ τi]}i is a sequence of elementary

(d +1)-collapses that reduces In(G) to In(G− v). Then it is obvious that In(G) is

(d +1)-collapsible since In(G− v) is (d +1)-collapsible.
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It is clear that |{v}∪σi| ≤ d +1 and that {v}∪σi ∈ stIn(G)(v)⊂ In(G) is con-

tained in N[v]∪τi ∈ stIn(G)(v)⊂ In(G). For i > 1, let Ii−1
n (G) = In(G)\∪i−1

j=1[{v}∪
σ j,N[v]∪ τ j]. If i = 0, let I0

n (G) = In(G). First, we will show that N[v]∪ τi ∈
Ii−1
n (G). If i = 1, then it is trivial. Thus assume i > 1. Suppose N[v]∪τi /∈ Ii−1

n (G),

then N[v]∪τi ∈ [{v}∪σ j,N[v]∪τ j] for some 1 ≤ j ≤ i−1. Since σ j,τ j ⊂V \N[v],

we obtain τi ∈ [σ j,τ j], which is a contradiction. Thus N[v]∪ τi ∈ Ii−1
n (G).

To show the N[v]∪τi is a unique maximal face of Ii−1
n (G) containing {v}∪σi,

we will prove that for every vertex w /∈ N[v]∪ τi in G, {v,w}∪σi is not a face

in In(G). Since w /∈ N[v], it must be that w ∈ In−1(G[V \N[v]]. Since w /∈ τi, by

the uniqueness of τi, it must be that {w}∪σi is not a face in In−1(G[V \N[v]]). In

other words, α(G[{w}∪σi])≥ n−1. Since ({w}∪σi)∩N[v] = /0, it follows that

α(G[{v,w}∪σi])≥ n, and therefore {v,w}∪σi /∈ In(G).

Proof of Theorem 4.4.3. This can be done by induction on n+ |V (G)|. The the-

orem is obvious when n = 1 or |V (G)| = 1. Suppose n > 1 and |V (G)| > 1. By

Theorem 4.1.13, there exists a simplicial vertex v in G. By the induction hypothe-

sis, In(G−v) is (n−1)-collapsible and In−1(G[V \N[v]]) is (n−2)-collapsible. An

immediate consequence of Lemma 4.4.4 is that In(G) is (n−1)-collapsible.

Theorem 4.4.5. For every graph G∈X (k), the complex In(G) is k(n−1)-collapsible.

Proof. We regard the graph G as a k-partite graph with partition V (G) =V1∪·· ·∪
Vk. If W ∈ In(G), then |W ∩Vi| ≤ n−1 for each i∈ [k]. In particular, |W | ≤ k(n−1).

Thus In(G) is k(n−1)-collapsible.

In the following theorem, q =
⌈k+1

2

⌉
, as above.

Theorem 4.4.6. For every graph G ∈ D(k), the complex I2(G) is q-collapsible.

Proof. Take a vertex v ∈ V (G). We will first collapse I2(G) to I2(G − v) us-

ing elementary q-collapses. Note that the link of v in I2(G) is I2(G[N(v)]). If

∆(G[N(v)]) < ∆(G)− 1, then I2(G[N(v)]) is (q−1)-collapsible. For a sequence
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{[σk,τk]}k of elementary (q−1)-collapses of I2(G[N(v)]), we consider {[σk ∪
{v},τk ∪ {v}]}k of elementary q-collapses of I2(G[N[v]]). By adding [{v},{v}]
at the end, we removed all faces containing the vertex v, so we are done.

If ∆(G[N(v)]) = ∆(G)−1, then there is a vertex w ∈ N(v) which is connected

to all other vertices in N(v). In particular, N[v] = N[w] and ∆(G[N(v) \ {w}]) <
∆(G)− 1. Then we are done by the above argument, because v and w can be

regarded as a duplicate.

4.5 Concluding remark

A topological version of Conjecture 4.3.1 can be given as the following.

Conjecture 4.5.1. For every G∈D(k) and n≥ 2, In(G)
(⌈k+1

2

⌉
(n−1)

)
-collapsible.

The case n = 2 of Conjecture 4.5.1 was shown in Theorem 4.4.6, and a partial

solution for the case n = 3 when k is even was given by Kim and Lew [29]. Here

we also suggest a conjecture on the topology of In(G) when G ∈ G , i.e. G is a line

graph.

Conjecture 4.5.2. For every line graph G, In(G) (3n−3)-collapsible.

Note that, by Theorem 4.4.1, proving Conjecture 4.5.2 provides an alternative

proof of a result in [3] that fG (n,n) ≤ 3n− 2. However, this kind of topological

approach cannot prove the conjecture fG (G) = 2n since the number 3n − 3 in

Conjecture 4.5.2 cannot be improved: in [32], it was shown that

H̃3n−4(L(Km)) ̸= 0 for sufficiently large m,

while H̃i(L(Km)) = 0 for every m and i ≥ 3n−3.

It is also an interesting question to ask whether the number 3n−3 can be im-

proved in a subclass of G . For example, if G is a line graph of a bipartite graph,
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then In(G) is (2n−2)-collapsible [8]. Here we conlcude this section with a ques-

tions in this direction.

Question 4.5.3. Is there a function f : N → N with f (n) < 3n− 3 such that the

following holds? Let G be a line graph of a graph with no K3 as a subgraph. Then

In(G) f (n)-collapsible.
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국문초록

F = {S1, . . . ,Sm}를 V의공집합이아닌부분집합들의모임이라할때, F의무

지개 집합이란 공집합이 아니며 S = {si1, . . . ,sik} ⊂ V와 같은 형태로 주어지는

것으로다음조건을만족하는것을말한다. 1 ≤ i1 < · · ·< ik ≤ m이고 j ̸= j이면

si j ̸= si′j
를만족하며각 j ∈ [m]에대해 si j ∈ Si j이다.특히 k = m인경우,즉모든

Si들이표현되면,무지개집합 S를F의완전무지개집합이라고한다.

주어진 집합계가 특정 조건을 만족하는 무지개 집합을 가지기 위한 충분

조건을찾는문제는홀의결혼정리에서시작되어최근까지도조합수학에서가

장대표적문제중하나로여겨져왔다.이러한방향으로의문제를무지개집합

문제라고 부른다. 본 학위논문에서는 무지개 집합 문제와 관련하여 위상수학

적홀의정리와위상수학적다색헬리정리를소개하고, (하이퍼)그래프에서의

무지개덮개와무지개독립집합에관한결과들을다루고자한다.

주요어휘: 무지개 집합, 독립 복합체, 비(非)덮개 복합체, 지배 매개변수, 독립

집합

학번: 2013-20230
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40:141–152, 1982.

[12] A. Björner, L. Butler and A. Matveev. Note on a combinatorial Application

of Alexander duality. J. Comb. Th., Ser. A, 80(1):163–165, 1997.
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[22] E. Helly. Über Systeme von abgeshlossenen Mengen mit gemeinschaftlichen

Punkten. Monatsh. Math. Phys. 37:281–302, 1930.

[23] A. Holmsen, J. Kim and M. Kim. Domination numbers and noncover com-

plexes of hypergraphs. in preparation.

[24] A. Holmsen, L. Martı́nez-Sandoval and L. Montejano. A geometric Hall-tyle

theorem. Proc. Amer. Math. Soc., 144(2):503–511, 2016.

[25] G. Kalai. Intersection patterns of convex sets. Israel Journal of Mathemetics,

48:161–174, 1984.

[26] G. Kalai and R. Meshulam. A topological colorful Helly theorem. Advances

in Mathematics, 191(2):305—311, 2005.

[27] V. Kampen. R.E.:Komplexe in euklidischen Räumen. Abh. Math. Sem. Ham-
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