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Abstract

Data Augmentation of
Sewing Machine Data for
Task Recognition using
Convolutional Neural Network

Sangmin Bang
Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Garment industry is labor—intensive and lowly automated. It leads to
unreliable data and poor data transparency. Production tracking is
important issue in garment industry. Power monitoring system using
current sensor and convolutional neural network (CNN) algorithm
was developed for production tracking. CNN has shown good
performance in image or pattern recognition. However, CNN cannot
show such a performance with limited training sets. Therefore, data
augmentation has been introduced to overcome the lack of data. In
this research, data augmentation methods for CNN which recognizes
the task of sewing machine data are proposed. The data is 1—D time
series data from a real garment factory in Indonesia. Among the
collected data, 7 types of data are used. Proposed methods are based
on the statistical analysis of the data. In the experiment, the
accuracies of classification using real training data sets ranged from
90.0% to 96.0%, and that of augmented data sets ranged from 66.9%
to 83.5%. Additionally, application was performed using proppsed
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methods for real—time working data and the production counting ratio
was 88.4%. This result showed that the accuracies of augmented data
sets in some cases are enough high to apply in industry, but in other
cases the accuracies are low. If further supplementation and
improvements are made to increase accuracy, augmented data could
be used in the early stages when the data lacks. This will help reduce

data collection time and increase productivity in industry fields where

CNN are used.

Keyword : Convolutional neural network, Garment industry, Sewing
machine data, Task recognition

Student Number : 2018—-21213
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Chapter 1. Introduction

1.1.Background

Garment industry is labor—intensive and lowly automated industry.
The design, operation and analysis of production lines are performed
by human resources. It leads to unreliable data and poor data
transparency. Production tracking is important for determining the
current production and optimizing the process line. For exactly and
automatically tracking production, power monitoring system was
developed. The system is using current sensor and convolutional

neural network (CNN) algorithm [1—3].

Sewing
machine Result
data CNN model (Quantity of production)

(Current)

Power monitoring system

Figure 1 Power monitoring system schematic
Machine learning has been used in various fields such as image and
speech recognition, autonomous car, predictive analytics and so on
[4—9]. CNN, one of the machine learning algorithms, has shown good
performance in pattern recognition or image recognition. For example

CNN-based framework proposed by Li Chen ez a/ [10] showed even
3 by
1 -':l"-\._i _-,;__ b

’



better performance than human in certain task. However, in case of
the lack of training datasets, the performance of machine learning
decreases [11]. In Figure 2, accuracies of all algorithms increased
when the amount of training datasets increased, showing that the
amount of training datasets is critical.

In the garment factory, because the production line changes
periodically, there is no enough time to collect sufficient data for
learning. Therefore, in the garment factory, task counting system
using machine learning algorithm, e.g. CNN, has faced challenging
situation. At the initial stage of line change and production, the

algorithm has low accuracy with a few data.
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Figure 2 Learning curves for confusion set disambiguation [11]
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Data augmentation can improve the performance of machine
learning when the available training datasets are not sufficient [12—
17]. Several data augmentation methods such as rotating, translating,
cropping and so on can be used for neural net. When data
augmentation 1s used, it 1s Important to maintain the original
characters of the data, which preserves the label of data. For example,
data such as the electrical current value has x—directional
dependency. Therefore, the current data cannot be transformed

symmetrically, right and left.

1.2. Goal of Research

In this research, when classifying the pattern of current data acquired
from garment factory in Indonesia, it was tried to overcome the lack
of datasets using data augmentation. Collected data were labeled and
divided into two classes — training sets and test sets. Then, statistical
analysis was conducted to comprehend characteristics of the data. On
the basis of this analysis, data augmentation methods for sewing
machine data were proposed and verified by comparing two CNN
models trained with actual and augmented data. Furthermore,
proposed data augmentation methods were applied to a sewing

machine in real production line of factory in Indonesia and task
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counting system for this machine was operated.

Small data
. Statistical
Data augmentation analysis

Real training sets Augmented training sets

CNN CNN
model model

Figure 3 Goal of research



Chapter 2. Sewing Machine Data

2.1.Data Acquisition

Data used in this research were real industrial data, collected from
garment factory in Indonesia. In factory there are thousands of
sewing machines making different parts of clothes and dozens of
sewing machines make up a production line for one kind of clothes.
Flow of the data from factory in Indonesia to laboratory in Korea was
shown in Figure 4. Smart plugs, devices that can measure the
electrical current value and transmit it via WiFi, were installed at
sewing machines. The sampling rate of smart plugs was 3Hz. Amazon
web services (AWS) and MySQL were used for database.

Among the collected data from all different kinds of sewing task,
seven kinds of task were selected. These were selected because the
loss of data was low and the graph of data was clear. Figure 5 shows
images of selected sewing tasks and the current graphs of the same
tasks. The x—axis of the graph is data point meaning time, which 3

points are 1 second because the sampling frequency is 3 Hz.
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Figure 4 Diagram of data acquisition
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2.2.Data Processing

Selected data from seven kinds of sewing tasks were labeled as 1 or
0. When the sewing machine operator pushes the pedal and the
sewing machine runs, the current value rises up instantaneously. The
operator keeps on sewing a certain part of clothes, then the graph
shows some peaks repeatedly, which forms a pattern. If the pattern
of task is in the window, the data was labeled as 1 and if the pattern
is not in the window, the data was labeled as 0. Figure 6 shows data
labeling process. Labeled data were randomly divided into two
datasets, training datasets and test datasets. The ratio of training
datasets and test datasets was 7:3. The number of data between
tasks was different. Table 1 shows the number of total datasets,
training datasets and test datasets labeled as 1. The number of

datasets labeled as O was the same with the label 1 datasets.
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Table 1 The number of data labeled as 1

Total datasets

Training datasets

Test datasets

Task No. (Labell) (Labell) (Labell)
Task1 919 644 275
Task2 1223 857 366
Task3 2064 1445 619
Task4 1703 1193 510
Task5 905 634 271
Task6 803 563 240
Task7? 466 327 139
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2.3. Statistical Analysis

Area distribution of datasets labeled as 1 were investigated. The area
histograms of taskl ~ task7 are shown in the Figure 7 and statistical
values — skewness, kurtosis and standard deviation — are shown in
Table 2. The absolute values of skewness from all each task were
lower than 3 and the absolute values of kurtosis from all each task
were lower than 8. Therefore, area distribution of all tasks could be
regarded to follow a normal distribution [18].

In a graph of the current value, the area means consumed energy.
Because the area distribution followed normal distribution, consumed
energy during a sewing task could be considered constant at a certain
value. It formed a basis for data augmentation method of sewing
machine data.

However, there is variation in actual area values, it also should be
considered for data augmentation. Using z—value of normal
distribution, area ratio defined as (1) was calculated, which was used

for a range of data augmentation.

A+t zXo
ratio= ——— (1)

where A is the area of the current data, zis 0.98 or 0.49 and o is
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standard deviation in Table 2.
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Table 2 Statistical values of area distribution of taskl ~ task?

Task No. Skewness Kurtosis i;i?i?gi
Taskl 0.006 2.1228 1.53
TaskZ2 0.4051 2.1863 2.11
Task3 0.259 0.2338 2.05
Task4 1.0345 1.1258 1.86
Taskb 0.4787 0.7145 0.7
Task6 0.8189 1.7223 6.29
Task7 —-0.0222 0.6183 0.98

Table 3 Ratio of area of task1l ~ task7
z—value
-0.98 -0.49 0 0.49 0.98
Task No.

Taskl 0.81 0.91 1 1.10 1.19

Task?2 0.8 0.90 1 1.10 1.2

Task3 0.72 0.86 1 1.14 1.28

Task4 0.77 0.89 1 1.12 1.23

Taskb 0.84 0.92 1 1.08 1.16

Task6 0.81 0.91 1 1.10 1.19

Task7 0.81 0.91 1 1.10 1.19

Average 0.79 0.90 1 1.10 1.21
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Chapter 3. Data Augmentation

3.1.Data Augmentation Methods

Data augmentation methods for sewing machine data labeled as 1
were proposed. Three methods were proposed and these were based
on the result of 2.3. Statistical Analysis. Figure 8 shows three data
augmentation methods and Table 4 shows the number of samples
used for data augmentation, the number how many data augmentation
method increased the data and the number of real datasets.

First method was to make area variations. In 2.3. Statistical
Analysis, area distributions followed normal distributions. It means
that areas of the current graph during real sewing task are distributed
in some ranges. There are two available methods in making area
variations. One is to change the width of the graph while maintaining
height and the other is vice versa. In this research, the second
method was used because changing height is simpler and has less
data loss. The x—axis of the graph is time, so maintaining the width
means that the time required for sewing task 1s assumed as
consistent. Range of area variation was from Table 3. The last row,

average, was used for data augmentation. It was 0.79, 0.90, 1, 1.10

16 -":I'-\._E "%;: -]



and 1.21.

Second method was to make width and height variations. In 2.3.
Statistical Analysis, area distributions followed normal distribution.
Therefore, the assumption that area is constant at a certain value
during the same sewing task was made. Therefore, width and height
were changed simultaneously in order to maintain the area. Range of
variation was calculated from the analysis of height distribution. The
calculated figure was rounded up from the second decimal place for
the limit of the number of data points. It was 0.8, 1 and 1.2.

Third method was to translate parallel. If the pattern of a task is
in the window regardless of whether it is left side, right side or in the
middle, the label is 1, which means it is a task. Translations was done
for the number of augmented data to be similar to the number of real
data. It was because the effect of the amount of data should be

minimized.

17 A L) ¢
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Table 4 The number of samples for data augmentation, the number how
many each method increased the data and the number of data labeled as 1
of data augmentation case and real case.

—
— — — — — — — o
o)) o)) o)) o)) o o o %)
w w w w w w w ~
~ ~ ~ ~ ~ ~ ~ Z
~ o &) B~ w [\ — -
wn
o))
Ol Ul o)) ~J © ol © g
o
w
@
—+
ol =
o
Q.
—
)
o
w =y
o
Al
D
@
— = —
) ~J EN| = = - ol g
A,
w
o))
=&
-
w o o)) = = 0 o)) NEU
— I o O
ﬂ 0o o o1 oo 0o N o =2 &
ol ol o h n ol ol ~ o 8
=+
="
O
5
—
— — -
w Ol o)) - - oo » o
[\ o) w o = al I o ®
N w >~ o & ~ ~ C
—
N—

20



3.2.CNN Architecture

CNN architecture used in this research is shown in Figure 9. It was
consisted of seven convolution and pooling layers. From the first
layer to the last layer, each layer had 32—64—128—-128—-256—256—
512 filters. Activation function was rectified linear unit (ReLU) and

padding was same padding for all layer.
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Figure 9 CNN architecture
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3.3.Results

Proposed data augmentation methods were applied to seven kinds of
tasks. Data augmentation was applied to only data labeled as 1 and
the same data labeled as O with real case were used for data
augmentation case. From each task, samples for data augmentation
were selected randomly as the number determined in Table 4. Test
datasets were the same in real case and data augmentation case.
Figure 10 shows the graphs of the entire data labeled as 1 made
by data augmentation, from task 1 to task 7. Two CNN models trained
with real datasets and augmented datasets respectively were
compared. Test accuracies in real case ranged from 90.0% ~ 96%
and test accuracies in data augmentation case ranged from 66.9% ~

83.5%. These results are shown in Table 5.
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Figure 10 Graphs of augmented entire data labeled as 1 of taskl ~ task7

Table 5 Accuracies of CNN trained with real data and augmented data

Accuracy (%)
Task No.
Real Data augmentation
Taskl1 96.0 78.5
Task2 90.7 72.4
Task3 92.7 73.7
Task4 93.7 67.8
Taskd 90.0 74.7
Task6 91.0 66.9
Task7 92.1 83.5
27 8 A=t gt



Chapter 4. Application

4.1. Task Counting

Task counting using the CNN model trained in 3.3. Results was
conducted. Data used for task counting was the same sewing task
data with experimental datasets, but the date was different. It was
collected from 08:00 to 20:30 on April 23, 2019 in local time. The
result of task counting is shown in Table 6. The exact number of the
production on this day was 250. The ratio was calculated as the
number of counting divided by the number of the production. The
ratio of real case ranged from 73.2% ~ 108.0% and the ratio of data
augmentation case ranged from 43.6% ~ 91.6%. Taskl could not be

counted because of the data loss.
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Table 6 Task counting of real case and data augmentation case

Real Data augmentation
Task No.
Number | Ratio (%) | Number | Ratio (%)

Taskl
Task?2 238 95.2 186 74.4
Task3 240 96.0 207 82.8
Task4 270 108.0 229 91.6
Taskb 261 104.4 216 86.4
Task6 183 73.2 109 43.6
Task7 226 90.4 219 87.6
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4.2. Task Counting System

Task counting system for a sewing machine was developed and
operated. The system consisted of downloader and analyzer.
Algorithm of this system is shown in Figure 11. Downloader
downloads the previous 30 minutes of real—time data from the
factory in Indonesia every 30 minutes. If the download finishes, the
analyzer automatically begins the analysis and the result is recorded
in a digital file. The analyzer used the CNN model and data
augmentation was applied. Without data augmentation method, it
takes whole day to collect sufficient data for training. However, with
the proposed data augmentation method, the initial data of 30 minutes
of a day were used for training. Seven patterns were extracted and
data augmentation was applied to these patterns. CNN models were
trained with these augmented datasets. Using this CNN model, the
system was operated in a whole day and the result is shown in Table
7. Total number of counted productions was 221 and real production

was 250, so the ratio was 88.4%.
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Figure 11 Algorithm of task counting system
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Table 7 The result of operating task counting system

Time Task
07:30 ~ 08:00 7
08:00 ~ 08:30 20
08:30 ~ 09:00 14
09:00 ~ 09:30 13
09:30 ~ 10:00 13
10:00 ~ 10:30 17
10:30 ~ 11:00 19
11:00 ~ 11:30 18
11:30 ~ 12:00 12
12:00 ~ 12:30 18
12:30 ~ 13:00 0
13:00 ~ 13:30 3
13:30 ~ 14:00 38
14:00 ~ 14:30 0
14:30 ~ 15:00 8
15:00 ~ 15:30 8
15:30 ~ 16:00 29
16:00 ~ 16:30 14

Total 21
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Chapter 5. Conclusion

Sewing machine data of real industrial factory in Indonesia were
collected using smart plug. These data were analyzed statistically and
based on this analysis data augmentation methods were proposed.
Proposed methods were applied to seven kinds of data among the
collected data, CNN models were trained with two datasets, real
datasets and augmented datasets respectively. Accuracies of these
model were 90.0% ~ 96% in real case and 66.9% ~ 83.5% in data
augmentation case. Using these models, task counting for another day
were conducted. Also, task counting system with data augmentation
method was developed and operated for one day.

The accuracy of the CNN model trained with augmented datasets
was lower than that of real datasets. However, accuracy of some
tasks was higher than 80%, which means that if data augmentation
method is modified, there is a possibility to increase the accuracy.

Furthermore, although test accuracies were lower, the ratios of task

counting in Chapter 4. Application were higher a little than accuracies.

It means that task counting in real field can show better performance.
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Abstract in Korean
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