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Abstract

In this thesis, we compare the proximal distance algorithm and the primal dual

hybrid gradient methods for solving convex constrained problems with linear

operators in constraints. Unlike other algorithms containing inner minimiza-

tion subproblem, both algorithms can be applied with simple update rules.

Algorithms are implemented and compared with existing software through

six examples: linear programming, constrained least squares, estimating the

closest kinship matrix, projection onto a second-order cone, low rank matrix

completion, and logistic regression with partially ordered constraints. The so-

lution of the proximal distance algorithm would lose optimality and stability

when parameters are chosen inappropriately, while the output of the primal

dual hybrid gradient methods is robust to the selection of parameters. Nu-

merical results show that the primal dual hybrid gradient methods usually

outperform and the proximal distance algorithm is still competitive with ex-

istent programs.

Keywords: Convex optimization, Proximal distance algorithm, Primal dual

hybrid gradient, Statistical computing

Student Number: 2018-27696
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Chapter 1

Introduction

In this thesis, we focus on algorithms for convex optimization problems that

arise in statistics. Especially, we consider problems in the following form:

min
x∈Rn

f(x) subject to Dx ∈ C, (1.1)

where f : Rn → R is assumed to be convex, closed and proper, C is a convex

set, and D ∈ Rm×n is a linear operator. We further assume that the projection

operator PC(x) = {y ∈ C : ∥x− y∥ = infy∈C ∥x− y∥} can be easily computed.

It is difficult to solve problem (1.1) directly due to existence of D in the

constraint. If D = I and f is differentiable, a well-known method for solving

problem (1.1) is the proximal gradient algorithm [13]. Note that problem (1.1)

with D = I can be viewed as an unconstrained but non-smooth problem:

min
x∈Rn

f(x) + δC(x),

where δC(x) is an indicator function which is 0 if x is on C and ∞ other-

wise. Then, the proximal gradient algorithm reduces to the projected gradient
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method [18]:

xk+1 = argmin
x∈Rn

{
f(xk) +∇f(xk)T (x− xk) +

1

2ρk
∥x− xk∥22 + δC(x)

}
= proxρkδC (xk − ρk∇f(xk)) = PC (xk − ρk∇f(xk)) ,

where proxϕ(x) = argminy∈Rn(ϕ(y)+ 1
2∥y−x∥22) is the proximity operator for

a convex function ϕ.

The alternating direction method of multipliers (ADMM) [6] is one of the

most popular solution method when linear operator D is preesent. ADMM

introduces a new variable y and a constraint y = Dx, thus (1.1) becomes

min
(x,y)∈Rn×Rm

f(x) + δC(y) subject to Dx− y = 0. (1.2)

Forming the augmented Lagrangian of (1.2) and updating variables in alter-

nating directions give the ADMM iteration

xk+1 = argmin
x∈Rn

(
f(x) +

ρ

2
∥Dx− yk + uk∥22

)
(1.3)

yk+1 = argmin
y∈Rm

(
δC(y) +

ρ

2
∥Dxk+1 − y + uk∥22

)
= proxρ−1δC (Dxk+1 + uk) = PC(Dxk+1 + uk)

uk+1 = uk + (Dxk+1 − yk+1).

While ADMM is a versatile tool for optimization problems, the update (1.3)

could be a burden when the x-update are not representable in closed form.

The goal of this thesis is to review two classes of algorithm for solving

(1.1) in the presence of the linear operator D. One is the proximal distance

algorithm proposed by Keys, Zhou, and Lange [22, 26] and the other is the

primal dual hybrid gradient method, which is first suggested by Zhu and Chan

[36] and later studied in many literature [11, 14, 16, 27, 35]. Additionally, we

implemented them to several examples and compared the performance with
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other existent solvers. Since both algorithms only involve a simple proximity

operator of f and the projection map onto C, they take two advantages over

ADMM: First, they avoid inner minimization subproblems. Second, they can

exploit broad research about proximity operators and projection maps. In the

rest of this thesis, we assume that f satisfies one of the following conditions:

(C1) The proximity operator of f can be computed easily,

(C2) f is differentiable and its gradient is Lf -Lipschitz.

If the proximity operator of the objective f is not able to be expressed in

closed form, that is f does not satisfy (C1), both algorithms can be derived

in other simple formulations under (C2).

The outline of this thesis is as follows. In Chapter 2, we describe the prox-

imal distance algorithm and apply it for solving problem (1.1). Convergence

rate of the proximal distance algorithm and its acceleration are also reviewed.

In Chapter 3, we consider three instances of the primal dual hybrid gradi-

ent method in different problem setting, and study their convergence rates

and regions. Chapter 4 covers six examples in the form of (1.1). We provide

and implement solution methods for of each example using the two algorithm

classes and compare the performance with some other benchmarks. We sum-

marize and discuss our results in Chapter 5.
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Chapter 2

Proximal Distance Algorithm

Proximal distance algorithm is an algorithm combining Courant’s penalty

method [3, 15] and the majoraization-minimization (MM) principle [21, 25],

which deals with the generic problem:

min
x∈Rn

f(x) subject to x ∈ C,

where C is a closed set and not necessarily convex.

The classical penalty method attacks (1.1) by minimizing the objective

with a proper penalty function oriented from the constraint, thus it minimizes

unconstrained loss f(x)+ ρq(x) where q(x) is a nonnegative function that is 0

on C and ρ > 0. As ρ increases, the solution goes close to the optimal solution

of (1.1).

At each iteration in minimizing f(x), the MM principle constructs a sur-

rogate function g(x|xk) majorizing f(x) at anchor xk rather than optimiz-

ing f(x) directly. The minimizer of g(x|xk) is selected to the next iteration

xk+1. The surrogate g(x|xk) satisfies two conditions: the tangency condition

4



g(xk|xk) = f(xk) and the domination condition g(x|xk) ≥ f(x) for all feasible

x. For each iteration, the update satisfies the descent property

f(xk+1) ≤ g(xk+1|xk) ≤ g(xk|xk) = f(xk),

guaranteeing convergence. If the problem is the maximization of the objective,

one builds a surrogate g(x|xk) that minorizes f(x) and gets xk+1 maximizing

the g(x|xk).

For detailed derivation of the proximal distance algorithm, suppose that

the constraint set C can be expressed as an intersection of closed sets ∩Ni=1Ci.

To apply penalty method, we consider a convex combination of squared dis-

tance functions

q(x) =
1

2

N∑
i=1

αidist(x,Ci)
2,

where dist(x,C) = inf
y∈C
∥x−y∥2,

∑N
i=1 αi = 1, and 0 ≤ αi ≤ 1 for i = 1, · · · , N .

For given xk, it is easy to majorize distance functions

1

2

N∑
i=1

αidist(x,Ci)
2 ≤ 1

2

N∑
i=1

αi∥x− PCi(xk)∥2,

which gives the surrogate function of f(x) as

g(x|xk) = f(x) +
ρ

2

N∑
i=1

αi∥x− PCi(xk)∥2

= f(x) +
ρ

2

∥∥∥∥∥x−
N∑
i=1

αiPCi(xk)

∥∥∥∥∥
2

+ ck

for a constant ck irrelevant to x. Therefore, the proximal distance algorithm

iteratively updates

xk+1 = argmin
x∈Rn

g(x|xk)

= proxρ−1f

(
N∑
i=1

αiPCi(xk)

)
,

5



under (C1).

Even if we do not assume that the objective function f is neither convex nor

smooth and C is convex, broad theoretical results on proximal maps and pro-

jection operators support this algorithm. Some numerical results are adduced

that the proximal distance algorithm works well on non-convex objectives and

constraints [22].

It is not only the penalties but also the objective that can have the sur-

rogate function, if needed. Some functions like logistic loss function f(x) =

log(1 + exp(−x)) do not have closed form representations of the proximity

operators. Although they are not ’proximable’, we can derive the proximal

distance update under (C2). Considering a quadratic majorization

f(x) ≤ f(xk) +∇f(xk)T (x− xk) +
Lf

2
∥x− xk∥2 (2.1)

for f(x) and combining both majorization of the objective and penalties, the

surrogate becomes

g(x|xk) = f(xk) +∇f(xk)T (x− xk) +
Lf

2
∥x− xk∥2 +

ρ

2

∥∥∥∥∥x−
m∑
i=1

αiPCi(xk)

∥∥∥∥∥
2

.

Therefore, the updated proximal distance iterate is induced from minimizing

g(x|xk):

xk+1 =
1

Lf + ρ

(
−∇f(xk) + Lfxk + ρ

m∑
i=1

αiPCi(xk)

)
.

To solve problem (1.1) by the proximal distance algorithm, we convert it

to an unconstrained penalized problem

f(x) +
ρ

2
dist(Dx,C)2 (2.2)

and its surrogate function becomes

g(x|xk) = f(x) +
ρ

2
∥Dx− PC(Dxk)∥2. (2.3)

6



If one can attain the minimizer of the surrogate function (2.3) easily, it would

be a proximal distance update. Unfortunately, minimizing (2.3) often involves

an inner minimization subproblem much like ADMM. There are at least two

bypasses. One is exploiting a quadratic majoriziation (2.1) of f(x), if possible.

Then, the surrogate becomes

g(x|xk) = f(xk) +∇f(xk)T (x− xk) +
Lf

2
∥x− xk∥2 +

ρ

2
∥Dx− PC(Dxk)∥2,

which results in the update

xk+1 = (ρDTD + LfI)
−1(Lfxk + ρDTPC(Dxk)−∇f(xk)).

Another is the strategy of variable splitting. We introduce y = Dx into prob-

lem (2.2) and solve

min
x∈Rn

f(x) +
ρ

2
dist(y, C)2 subject to y = Dx.

The constrained problem can be solved approximately by minimizing

f(x) +
ρ

2
dist(y, C)2 +

ρ

2
dist(z,M)2,

where M = {z = (x, y) : y = Dx}. Let uk and vk be subvectors of PM (z)

corresponding to xk and yk respectively, then the proximal distance update is

xk+1 = argmin
x∈Rn

f(x) +
ρ

2
∥x− uk∥2

= proxρ−1f (uk)

yk+1 = argmin
y∈Rm

ρ

2
∥y − PC(yk)∥2 +

ρ

2
∥y − vk∥2

=
1

2
(PC(yk) + vk).

There are two ways to get the projection (u, v) = PM (z). Assuming that

D ∈ Rm×n, one solves

p(u) =
1

2
∥u− x∥2 + 1

2
∥Du− y∥2

7



by using the definition of projection operator. Then the solution becomes

u = (DTD + In)
−1(x+DT y) and v = Du.

Otherwise, one can consider the Lagrangian

L(u, v, λ) = 1

2
∥u− x∥2 + 1

2
∥v − y∥2 + λT (Du− v),

which leads the stationary equation

0 = u− x+DTλ

0 = v − y − λ.

Then the projection operator PM (z) can be represented as

u = x−DT (DDT + Im)−1(Dx− y) and v = y + (DDT + Im)−1(Dx− y).

Both result involves matrix inversion, thus one should choose proper solution

depending on the size of D.

Keys, Zhou, and Lange [22] provide some convergence analysis of the

proximal distance algorithm in presence of convexity. Let hρ(x) = f(x) +

ρ
2dist(x,C)2 and x⋆ be the optimal solution of hρ(x). For fixed ρ > 0, the

proximal distance iterates converge to x⋆ with an O(ρk−1) convergence rate.

To achieve faster convergence, a scheme of Nesterov’s acceleration [30] can

be applied. Given our algorithm map M(x), Nesterov’s acceleration yields an

update

zk = xk +
k − 1

k + d− 1
(xk − xk−1)

xk+1 = M(zk),

where d is typically chosen to be 3. It is known that Nesterov’s acceleration

for the general proximal gradient algorithm achieves an O(k−2) [34] and some

8



numerical experiments support that results from acceleration have better ac-

curacy.

Convergence analysis of the proximal distance algorithm is closely related

to that of the classical penalty method [3]. If f is continuous and coercive

and C is a compact set, then the proximal distance iterates xk are bounded

and dist(xk, C)2 converges to 0 as ρk tends to ∞. Similarly, the solutions yk

of minx hρk(x) are bounded and dist(yk, C)2 converges to 0. Recall that the

proximal distance iterates have O(ρk−1) convergence rate for a fixed ρ. There-

fore, one should increase ρk slowly to∞. Summing up the results, we organize

the proximal distance algorithm in Algorithm 1.

9



Algorithm 1: Proximal distance algorithm with Nesterov’s acceler-

ation (Keys, Zhou, and Lange, 2019)

Input : ρinitial, ρinc, ρmax # setting for penalty parameter

Kmax, kρ # setting for the number of iterations

ϵloss, ϵdist # setting for termination

Output: xopt : solution of minx f(x) subject to x ∈ C

1 ρ← ρinitial

2 x0 = x1 = 0

3 q0 = q1 = inf

4 for k = 2, · · · ,Kmax do

5 zk ← xk−1 +
k−1
k+2(xk−1 − xk−2) # Nesterov’s acceleration

6 xk ← proxρ−1f (PC(zk)) # Proximal distance update

7 qk ← f(xk)

8 dk ← dist(xk, C)

9 if |qk − qk−1| < ϵloss and dk < ϵdist then

10 return xopt ← xk

11 else

12 if mod(kρ, k) = 0 then

13 ρ← min(ρmax, ρ× ρinc) # Update penalty constant

14 xk−1 ← xk

15 end

16 end

17 end

10



Chapter 3

Primal Dual Hybrid Gradient
method

In this chapter, we consider the saddle point problem

min
x∈Rn

max
y∈Rm

L(x, y) = min
x∈Rn

max
y∈Rm

yTDx+ f(x)− h⋆(y), (PD)

where f : Rn → [0,∞] and h : Rm → [0,∞] are proper, convex, and closed

functions, h⋆(y) is a convex conjugate of h, and D ∈ Rm×n. Under a mild

regularity condition, there exists a solution (x⋆, y⋆) of (PD). Indeed, x⋆ is a

primal solution of

min
x∈Rn

f(x) + h(Dx) (P)

and y⋆ is a solution of the dual formulation

max
y∈Rm

− f⋆(−DT y)− h⋆(y). (D)

11



We will assume that at least one solution (x⋆, y⋆) of (PD) exists, which there-

fore satisfies the first-order optimality condition

−DT y⋆ ∈ ∂f(x⋆) (3.1)

Dx⋆ ∈ ∂h⋆(y⋆),

where ∂f and ∂h⋆ are the subdifferentials of f and h⋆ respectively. Note that

our problem (1.1) is equivalent to solving

min
x∈Rn

f(x) + δC(Dx).

Chambolle and Pock presented a first-order primal dual algorithm [11] sum-

marized in Algorithm 2.

Algorithm 2 contains calculation of proxτf and proxσh⋆ . In case of h = δC

and C is convex, Moreau’s decomposition entails

proxσh⋆(y) = y − σproxσ−1h(σ
−1y) = y − σPC(σ

−1y). (3.2)

Therefore, Algorithm 2 only involves the proximity operator of f and the

projection map onto C.

If one skips the inertia step x̄k+1 = 2xk+1−xk in line 8 of Algorithm 2, the

proposed algorithm reduces to the classical Arrow-Hurwicz method [1]. Zhu

and Chan applied the method to the Rudin, Osher, and Fatemi (ROF) image

denoising problem [32] in [36] and Esser, Zhang, and Chan generalized it to

solve (PD) in [16]. He and Yuan [20] studied the role of a general inertia step.

For convergence analysis of primal dual hybrid gradient methods, a pre-

duality gap function G(z⋆, z) = L(x⋆, y) − L(x, y⋆), where z = (x, y) and

z⋆ = (x⋆, y⋆), is used in general. It is because that the nonnegativity of the

duality gap G⋆(z⋆) = supz G(z⋆, z) guarantees that z⋆ is a primal dual solution

to (PD) in the presence of bounded domains. That is, the convergence rate

12



Algorithm 2: Primal dual hybrid algorithm 1 (Chambolle and Pock,

2011)

Input : τ, σ # setting for step sizes

Kmax # setting for the number of iterations

ϵloss, ϵvar # setting for termination

Output: (xopt, yopt) : solution of minxmaxy y
TDx+ f(x)− h⋆(y)

1 ρ← ρinitial

2 x0 = x1 = 0

3 y0 = y1 = 0

4 q0 = q1 = inf

5 for k = 2, · · · ,Kmax do

6 yk+1 = proxσh⋆(yk + σDx̄k)

7 xk+1 = proxτf (xk − τDT yk+1)

8 x̄k+1 = 2xk+1 − xk

9 qk ← f(xk)

10 dx ← ∥xk − xk−1∥

11 dy ← ∥yk − yk−1∥

12 if |qk − qk−1| < ϵloss and dx < ϵvar and dy < ϵvar then

13 return xopt ← xk

14 end

15 end

13



of algorithm can be measured by how fast G⋆(z⋆) approaches to zero. The

convergence rate of gap function is often analyzed in terms of an averaged

solution sequence, yielding an ’ergodic rate’ [11, 23, 24, 27]. Chambolle and

Pock showed that a sequence of solutions (xk, yk) of Algorithm 2 is bounded

and achieves O(k−1) ergodic convergence rate when τσ∥D∥2 < 1.

As mentioned earlier, there are functions that do not have the proximity

operator in closed form, which means that it is unable to use Algorithm 2.

Under (C2), Loris and Verhoeven [27], Condat [14], and Vũ [35] considered

replacing a proximity operator step with a gradient descent step. In this line of

research, Ko, Yu, andWon proposed an unified class of algorithms solving (PD)

from a perspective of monotone operator theory [24]. By our assumptions, the

first-order optimality condition (3.1) becomes

0 = ∇f(x⋆) +DT y⋆ (3.3)

y⋆ ∈ ∂h(Dx⋆),

which is equivalent to an inclusion problem0

0

 ∈
∇f DT

−D ∂h⋆

x⋆

y⋆

 =: T (z⋆).

The set valued operator T is split into T = F + G, where F is a maximally

monotone operator

F =

 O DT

−D ∂h⋆


and G is a 1/Lf -cocoercive operator

G =

∇f O

O O


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[2]. A preconditioned forward-backward splitting [33] for solving (3.3) is

z̃k+1 = (I +M−1F )−1(I −M−1G)(zk) (3.4)

zk+1 = (1− ρk)zk + ρkz̃k+1,

where zk = (xk, yk), z̃k = (x̃k, ỹk), and the preconditioner M ≻ 0. Let

M =

 1
τ I CT

C τ(CCT −DDT ) + 1
σ I


and choose C such that CDT = DCT , then the unified algorithm class sum-

marized on Algorithm 3 is generated from (3.4).

Ko, Yu, and Won [24] showed that Algorithm 3 converges if

1

τ
>

Lf

2
and

(
1

τ
−

Lf

2

)(
1

σ
−−τ∥D∥22

)
>

τLf

2
∥C∥22. (3.5)

Convergence rate of Algorithm 3 is also provided. Ko, Yu, and Won also proved

that it satisfies O(k−1) ergodic convergence rate of the pre-duality gap and

o(1/
√
k + 1) convergence rate for the unaveraged solution. Moreover, they

proposed the acceleration of Algorithm 3, which entails O(Lfk
−2 + ∥D∥k−1)

convergence rate. However, algorithm without an acceleration may converge

faster in practice due to its computational cost.

For implementation, we consider two special cases of Algorithm 3. Letting

C = O, we can recover the algorithm

x̃k+1 = xk − τ(∇f(xk) +DT yk) (LV)

yk+1 = (1− ρk)yk + ρkproxσh⋆(yk + σDx̃k+1)

xk+1 = (1− ρk)xk + ρk(x̃k+1 − τDT (yk+1 − yk)),

which was formerly studied by Loris and Verhoeven [27]. With C = −D,
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Algorithm 3: Primal dual hybrid method 2 (Ko, Yu, and Won, 2019)

Input : τ, σ, {ρk} # setting for step sizes

C # precondition matrix

Kmax # setting for the number of iterations

ϵloss, ϵvar # setting for termination

Output: (xopt, yopt) : solution of minxmaxy y
TDx+ f(x)− h⋆(y)

1 ρ← ρinitial

2 x0 = x1 = 0

3 y0 = y1 = 0

4 q0 = q1 = inf

5 for k = 2, · · · ,Kmax do

6 ỹk+1 = proxσh⋆(σDxk+τσ(C−D)∇f(xk)+(τσD(C−D)T +I)yk)

7 x̃k+1 = xk − τ(∇f(xk)− CT yk + (C +D)T ỹk+1)

8 xk+1 = (1− ρk)xk + x̃k+1

9 yk+1 = (1− ρk)yk + ỹk+1

10 qk ← f(xk)

11 dx ← ∥xk − xk−1∥

12 dy ← ∥yk − yk−1∥

13 if |qk − qk−1| < ϵloss and dx < ϵvar and dy < ϵvar then

14 return xopt ← xk

15 end

16 end
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Algorithm 3 becomes

x̃k+1 = xk − τ(∇f(xk) +DT yk) (CV)

xk+1 = (1− ρk)xk + ρkx̃k+1

yk+1 = (1− ρk)yk + ρkproxσh⋆(yk + σD(2x̃k+1 − xk)),

which is due to Condat [14] and Vũ [35]. Region of parameters τ and σ for

convergence is directly induced from (3.5) and selected C.

Condat [14] and Vũ [35] studied a generalized primal dual hybrid gradient

method that solves an extension of (PD):

min
x∈Rn

f(x) + g(x) + h(Dx),

where f is a function with assumptions in Algorithm 3, g : Rn → [0,∞], and

h : Rm → [0,∞] are a proper, convex, and closed function with closed form

proximity operator and D ∈ Rm×n. The proposed algorithm is summarized in

Algorithm 4. Since the over-relaxation term 2x̃k+1 − xk imposes asymmetry

of Algorithm 4, one can generate its dual version by switching the role of the

primal variable x and the dual variable y.

It is known that Algorithm 4 converges if (1/τ − σ∥D∥2) ≥ Lf/2. Cham-

bolle and Pock showed that it has O(k−1) ergodic convergence rate [12]. More-

over, Ko and Won proposed a class of accelerated algorithm that achieves

known optimal rate O(Lfk
−2 + ∥D∥2k−1) [23]. Under specific parameter set-

ting, the accelerated algorithm reduces to Algorithm 4. For the reason noted

earlier, we only implemented algorithm without an acceleration in following

experiments.

It is worth noting that Algorithm 4 is a generalization of former algorithms.

If f ≡ 0, it reduces to Algorithm 2 with relaxation steps. Since proxτg(x) = x

when g ≡ 0, Algorithm CV can be interpreted as a special case of Algorithm

4 with g ≡ 0.
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Algorithm 4: Primal dual hybrid gradient method 3 (Condat, 2013)

Input : τ, σ, {ρk} # setting for step sizes

C # precondition matrix

Kmax # setting for the number of iterations

ϵloss, ϵvar # setting for termination

Output: (xopt, yopt) :

solution of minxmaxy y
TDx+ f(x) + g(x)− h⋆(y)

1 ρ← ρinitial

2 x0 = x1 = 0

3 y0 = y1 = 0

4 q0 = q1 = inf

5 for k = 2, · · · ,Kmax do

6 x̃k+1 = proxτg(xk − τ(∇f(xk) +DT yk))

7 ỹk+1 = proxσh⋆(yk + σD(2x̃k+1 − xk))

8 xk+1 = (1− ρk)xk + x̃k+1

9 yk+1 = (1− ρk)yk + ỹk+1

10 qk ← f(xk)

11 dx ← ∥xk − xk−1∥

12 dy ← ∥yk − yk−1∥

13 if |qk − qk−1| < ϵloss and dx < ϵvar and dy < ϵvar then

14 return xopt ← xk

15 end

16 end
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Chapter 4

Numerical Experiments

In this chapter, we compare the performance of the proximal distance algo-

rithm and the primal dual hybrid gradient methods through six numerical

experiments. First four experiments of the proximal distance algorithm is al-

ready conducted in [22], refined to accomplish better accuracy and speed in

this thesis. We provide how we formulate each problem appropriately and how

projection maps and proximity operators are induced. Programming details

like tuning schedules, selected parameters, and declaring convergence vary

with problems are documented on Appendix. All programs were coded in the

Julia programming language v1.2.0. Additionally, we used the R programming

language v3.5.3 to conduct the stratified sampling in Chapter 4.6. For com-

prehensive comparison, we also solved problems by using existing software. If

available, we used Julia modules ’MathProgBase.jl’ and ’Convex.jl’ to interface

with several commercial solvers.

Algorithm parameters need caution. When employing the proximal dis-

tance algorithm, one should choose tuning schedule {ρk} carefully due to the
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instability of the algorithm. If not, the updates would not converge to the

optimal solution nor obtain feasibility. To allay the vulnerability, we started

tests from small ρinitial and grow it by ρinc slowly until the algorithm con-

verges. The choice of parameters τ and σ is rather easy in case of the primal

dual hybrid gradient methods. It is known that the algorithm converges faster

when parameters are selected near the boundary of convergence region [28].

Therefore, it is enough to pick τ first and compute σ from the region. More-

over, the choice of parameters has little effect on optimality or feasibility of

solution.

4.1 Linear Programming

The first example is linear programming (LP), in which the loss and constraints

are all affine. Several problems including ℓ1, ℓ∞, and quantile loss/constrain

combinations can be reformulated as LP. For example, ℓ1, ℓ∞, and quantile

regression and ℓ1-penalized support vector machine can be formulated as LP.

A general LP can be represented as standard form

min
x∈Rn

vTx (4.1)

subject to Ax = b

x ≥ 0,

where A ∈ Rm×n and b ∈ Rm [7]. There are a variety of effective methods

for solving LP. In here, we compare those solvers with the proximal distance

algorithm and the primal-dual hybrid gradient methods.

Using the proximal distance algorithm, LP can be solved in three ways.

First, the affine constraints Ax = b can be folded into the domain of the loss,
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thus the problem becomes

min
x∈Rn

vTx+ λT (Ax− b)

subject to x ≥ 0.

Then, one can generate the surrogate

g(x|xk) = vTx+ λT (Ax− b) +
ρ

2
∥x− (xk)+∥2,

where (xk)+ is the projection of xk onto Rn
+ and its stationary equation

v + ρ(x− (xk)+) +ATλ = 0. (4.2)

Assuming A has full row rank, solving (4.2) with respect to λ leads the update

xk+1 = (I −A−A)

(
(xk)+ −

1

ρ
v

)
+A−b, (4.3)

where A− = AT (AAT )−1 is the pseudo-inverse of A. Secondly, we fold the

nonnegativity constraints into the domain of the loss. Let pk be the projection

of xk onto the affine constraints set, then the surrogate function becomes

g(x|xk) = vTx+
ρ

2
∥x− pk∥2.

The minimizer of g(x|xk) can be computed elementwisely and nonnegativity

constraints impose the update

xk+1,j =

(
pk,j −

vj
ρ
, 0

)
+

(4.4)

for j = 1, · · · , n. Lastly, we can minimize

vTx+
ρ

2
dist(Ax, b)2 +

ρ

2
dist(x,Rn

+)
2,

where Rn
+ = {u ∈ Rn : ui ≥ 0 for i = 1, · · · , n}. The update is directly induced

by minimizing the distance majorized surrogate function:

xk+1 = (I +ATA)−1

(
AT b+ (xk)+ −

1

ρ
v

)
. (4.5)
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To apply the primal dual hybrid gradient method, problem (4.1) can be

rephrased as an unconstrained problem

min
x∈Rn

vTx+ δRn
+
(x) + δb(Ax),

where δC is again the indicator function of C. Using Algorithm 4 and its dual,

we induce two iterates:

xk+1 = proxτg(xk − τ(v +AT yk)) (4.6)

ũk+1 = 2Axk+1 −Axk

yk+1 = proxσh⋆(yk + σũk+1)

and

yk+1 = proxσh⋆(yk + σAxk) (4.7)

ṽk+1 = 2AT yk+1 −AT yk

xk+1 = proxτg(xk − τ(v + ṽk+1)),

where g(x) = δRn
+
(x) and h(Ax) = δ{b}(Ax).

All projection maps and proximity operators have closed form representa-

tion. Projection onto the point b is obvious. Projection x onto the nonnegative

orthant folds all negative components to zero, while the positive elements re-

main intact. One can attack the projection of xk onto affine constraints by

minimizing the Lagrangian

1

2
∥pk − xk∥2 + λT (Apk − b),

which leads to the solution

pk = (I −A−A)xk +A−b.

One can induce the proximity operator of the convex conjugate of an indicator

functions by Moreau’s decomposition (3.2).
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Dimensions Optima

m n PDA1 PDA2 PDA3 PDHG1 PDHG2 Gurobi Mosek

2 4 0.3364 0.3364 0.3364 0.3364 0.3364 0.3364 0.3364

4 8 0.5502 0.5502 0.5502 0.5503 0.5503 0.5502 0.5502

8 16 2.2750 2.2750 2.2750 2.2750 2.2750 2.2750 2.2750

16 32 2.3663 2.3663 2.3663 2.3662 2.3662 2.3663 2.3663

32 64 4.9383 4.9383 4.9383 4.9383 4.9383 4.9383 4.9383

64 128 15.7129 15.7129 15.7129 15.7130 15.7130 15.7129 15.7129

128 256 30.9085 30.9085 30.9085 30.9085 30.9085 30.9085 30.9085

256 512 65.8579 65.8578 65.8579 65.8577 65.8577 65.8576 65.8576

Dimensions CPU Times

m n PDA1 PDA2 PDA3 PDHG1 PDHG2 Gurobi Mosek

2 4 0.0367 0.0338 0.0225 0.0001 0.0001 0.0064 0.0014

4 8 0.0319 0.0195 0.0181 0.0028 0.0027 0.0052 0.0017

8 16 0.0433 0.0379 0.0414 0.0030 0.0027 0.0054 0.0018

16 32 0.0610 0.0578 0.0700 0.0466 0.0364 0.0052 0.0020

32 64 0.1170 0.0991 0.1406 0.0180 0.0191 0.0069 0.0034

64 128 0.3391 0.4196 0.4598 0.1008 0.0800 0.0125 0.0152

128 256 0.4386 0.6243 0.6607 3.0376 3.1415 0.0527 0.0413

256 512 0.9082 1.5350 1.6671 2.1436 1.7653 0.2224 0.2511

Dimensions Feasibility

m n PDA1 PDA2 PDA3 PDHG1 PDHG2 Gurobi Mosek

2 4 0.00000098 0.00000092 0.00000097 0.00000000 0.00000000 0.00000000 0.00000000

4 8 0.00000099 0.00000099 0.00000100 0.00000000 0.00000001 0.00000000 0.00000000

8 16 0.00000100 0.00000100 0.00000099 0.00000001 0.00000001 0.00000000 0.00000000

16 32 0.00000100 0.00000099 0.00000100 0.00000002 0.00000002 0.00000000 0.00000000

32 64 0.00000096 0.00000098 0.00000096 0.00000003 0.00000003 0.00000000 0.00000000

64 128 0.00000097 0.00000098 0.00000097 0.00000008 0.00000007 0.00000000 0.00000000

128 256 0.00000099 0.00000100 0.00000099 0.00000001 0.00000003 0.00000000 0.00000000

256 512 0.00000099 0.00000100 0.00000099 0.00000030 0.00000029 0.00000000 0.00000000

Table 4.1 Optima, CPU times in seconds, and feasibility for linear program-

ming. Here m is the number of constraints and n is the number of variables.

PDA1, PDA2, and PDA3 are results of the update (4.3), (4.4), and (4.5).

PDHG1 and PDHG2 are from (4.6) and (4.7) respectively.
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Table 4.1 compares the performance of proximal distance algorithm, pri-

mal dual hybrid gradient, and two commercial solvers, Gurobi [17] and Mosek

[29]. In lower dimensions, the primal dual hybrid gradient methods outper-

form other methods. As dimensions increase, the performance of Gurobi and

Mosek dominates others, especially primal dual hybrid gradient suffers slow

convergence. For the proximal distance algorithm, folding affine constraints

into domain of the loss seems to be the best tactic. Additionally, optima from

the proximal distance iterates becomes inaccurate in large dimension, which

suggests one needs to slow down the update of penalty parameter ρk as the

size of problem grows for better accuracy.

4.2 Constrained Least Squares

Constrained least squares entails minimizing the linear least squares ∥Ax −

y∥2 subject to x ∈ C. For example, the constraints C given as {u : Du =

c} yields the equality constrained least squares and the constraints that all

elements of x should be nonnegative leads the nonnegative least squares. Under

certain circumstances, reframing a constrained quadratic programming into

constrained least squares programming has benefits [4]. For simulation, we

used the probability-simplex constraint. That is, our problem has form:

min
x∈Rn

1

2
∥y −Ax∥2 (4.8)

subject to x ∈ S,

where A ∈ Rm×n, b ∈ Rm, and S = {x ∈ Rn :
∑n

i=1 xi = 1, 0 ≤ xi ≤ 1 for i =

1, · · · , n}.

Applying distance majorization to penalized objective, we can get the sur-

24



rogate:

g(x|xk) =
1

2
∥y −Ax∥2 + ρ

2
∥x− PS(xk)∥2.

The proximal distance update

xk+1 = (ATA+ ρI)−1(AT y + ρPS(xk)) (4.9)

is induced by minimizing g(x|xk). For large scale and sparse problem, one may

reform the surrogate

g(x|xk) =
1

2

∥∥∥∥∥∥
 y
√
ρPS(xk)

−
 A
√
ρI

x

∥∥∥∥∥∥
2

=:
1

2
∥ỹ − Ãx∥2,

which can be solved by fast stable conjugate gradient solvers.

The primal dual hybrid gradient method provides two algorithms for the

problem. If we convert problem (4.8) into unconstrained problem

min
x∈Rn

1

2
∥y −Ax∥2 + δS(x),

Algorithm LV and CV can be employed. Otherwise, the probability simplex

set can be represented as intersection of

C1 = {u ∈ Rn : 0 ≤ ui ≤ 1 for i = 1, · · · , n} and C2 =

{
u ∈ Rn :

n∑
i=1

ui = 1

}
.

Then, we can formulate the problem as

min
x∈Rn

1

2
∥y −Ax∥2 + δC1(x) + δ{1}(1

Tx),

where 1 ∈ Rn be a vector that all elements are 1, for which Algorithm 4 can

be applied.

The projection map onto a vector 1 is trivial. To get projection onto C1,

it is enough to truncate all values into [0, 1]. Calculating the projection of y

25



Dimensions Optima

n p PDA LV CV PDHG1 PDHG2 Gurobi

16 8 3.4919 3.4919 3.4919 3.4919 3.4919 3.4919

32 16 17.1458 17.1458 17.1458 17.1458 17.1458 17.1458

64 32 26.2897 26.2897 26.2897 26.2897 26.2897 26.2897

128 64 55.2645 55.2645 55.2645 55.2645 55.2645 55.2645

256 128 112.0550 112.0550 112.0550 112.0550 112.0550 112.0550

512 256 202.4702 202.4703 202.4703 202.4703 202.4703 202.4703

Dimensions CPU Times

n p PDA LV CV PDHG1 PDHG2 Gurobi

16 8 0.0023 0.0002 0.0006 0.0001 0.0001 0.0049

32 16 0.0027 0.0003 0.0009 0.0002 0.0001 0.0052

64 32 0.0061 0.0004 0.0020 0.0058 0.0003 0.0058

128 64 0.0136 0.0012 0.0035 0.0036 0.0009 0.0082

256 128 0.0467 0.0046 0.0102 0.0111 0.0143 0.0206

512 256 0.1280 0.0145 0.0327 0.0362 0.0353 0.1569

Dimensions Feasibility

n p PDA LV CV PDHG1 PDHG2 Gurobi

16 8 0.00000008 0.00000000 0.00000013 0.00000031 0.00000007 0.00000000

32 16 0.00000010 0.00000000 0.00000003 0.00000008 0.00000004 0.00000000

64 32 0.00000008 0.00000000 0.00000002 0.00000001 0.00000000 0.00000000

128 64 0.00000007 0.00000000 0.00000001 0.00000001 0.00000001 0.00000000

256 128 0.00000007 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

512 256 0.00000009 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Table 4.2 Optima, CPU times in seconds, and feasibility for simplex-

constrained least squares. Here A ∈ Rn×p. Result of (4.9) is PDA. LV and

CV are from Algorithm LV and Algorithm CV respectively. PDHG1 is the

result of Algorithm 4 and PDHG2 is that of its dual algorithm.
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onto S is little tricky. Let zi be ith largest element of y. From j = 1 to n, set

λ = 1
j (
∑j

i=1−1). If zj > λ and zj+1 ≤ λ, then (PS(y))i := (yi − λ)+ [25].

Table 4.2 compares the proximal distance algorithm, four primal dual hy-

brid gradient methods, and Gurobi solver. In any cases, Algorithm LV sur-

passes all other methods and the rest of primal dual hybrid gradient methods

follow. Though the proximal distance algorithm is slow, it is still competitive

with the commercial software Gurobi solver.

4.3 Closest Kinship Matrix

Kinship is an important topics in many fields of biology [19]. If two individuals

have the same ancestor, they would share some common genes, so that the

coefficient of kinship can be estimated by the fraction of sharing single nu-

cleotide polymorphisms (SNP). For given pedigree, we can build a symmetric

kinship matrix Z, which should have three properties: First, all entries of Z

are nonnegative. Second, Z should be positive semidefinite. Lastly, diagonal

entries of Z are all 1 unless inbreeding occurs. However, there is no guaran-

tee that the empirical kinship matrix achieves such properties. Dropping the

possibility of inbreeding, we can approximate the qualifying matrix from Z.

In this regard, the problem can be formulated as follows:

min
X∈Sn

1

2
∥X − Z∥2F (4.10)

subject to X ∈ C1 ∩ C2,

where Sn denotes the set of symmetric matrices, C1 = {X ∈ Rn×n : X is

positive semi-definite}, and C2 = {X ∈ Rn×n : X has only nonnegative entries

and diagonal entries of X are 1}.

Similarly to LP, there are two ways to solve problem (4.10) using the

proximal distance algorithm. One is to apply the proximal distance algorithm
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directly, which generates the surrogate

g(X|Xk) =
1

2
∥X − Z∥2F +

ρ

4
∥X − PC1(Xk)∥2F +

ρ

4
∥X − PC2(Xk)∥2F

=
1 + ρ

2

∥∥∥∥X − 1

1 + ρ
Z − ρ

2(1 + ρ)
(PC1(Xk) + PC2(Xk))

∥∥∥∥2
F

+ ck,

where ck is an irrelevant constant. Hence, the update becomes

Xk+1 =
1

1 + ρ
Z +

ρ

2(1 + ρ)
(PC1(Xk) + PC2(Xk)). (4.11)

The other is attacking the problem by folding the positive semidefinite con-

straint into the domain of loss function. That is, the surrogate is

g(X|Xk) =
1

2
∥X − Z∥2F +

ρ

2
∥X − PC2(Xk)∥2F

=
1 + ρ

2

∥∥∥∥X − 1

1 + ρ
Z − ρ

1 + ρ
PC2(Xk)

∥∥∥∥2
F

+ ck

and the update reduces to

Xk+1 = PC1

(
1

1 + ρ
Z +

ρ

1 + ρ
PC2(Xk)

)
. (4.12)

The unconstrained conversion of problem (4.10) is

min
X∈Rn

1

2
∥X − Z∥2F + δC1(X) + δC2(X).

Let g(X) = δC1(X) and h(X) = δC2(X). We can directly apply Algorithm 4:

Xk+1 = proxτg(Xk − τ(Xk − Z + Yk)) (4.13)

= PC1(Xk − τ(Xk − Z + Yk))

uk+1 = 2Xk+1 −Xk

Yk+1 = proxσh⋆(Yk + σuk+1),

= Yk + σ

{
uk+1 − PC2

(
1

σ
Yk + uk+1

)}
.
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Additionally, switching g(X) = δC2(X) and h(X) = δC1(X) gives another

updates.

Let X be a symmetric matrix and its eigenvalue decomposition X =

UDUT =
∑n

i=1 λiuiu
T
i where λi are eigenvalues and ui are corresponding

eigenvectors. It is well known that the projection of X onto the positive

semidefinite cone C1 with respect to the Euclidean or Frobenius norm is

PC1(X) =
∑n

i=1(λi)+uiu
T
i [7]. The projection map onto C2 is much obvious:

Folding negative entries to 0 and setting diagonal elements to 1.

Table 4.3 compares the proximal distance algorithm, the primal dual hy-

brid gradient methods, and Dykstra’s algorithm [8]. Dykstra’s algorithm tracks

a primary sequence Xn and its companion sequence Vn via alternating projec-

tions. As a result, Xn converges to the projection of Z onto C1 ∩ C2 and Vn

converges to the Langrange multiplier [25]. For this problem, Dykstra’s algo-

rithm was the fastest and the primal dual hybrid gradients and the proximal

distance algorithm follow. It is remarkable that the directly proximal distance

algorithm is not only slow but also can be inaccurate. Switching g(X) and

h(X) appears not to affect convergence of primal dual hybrid gradient meth-

ods.

4.4 Projection onto a Second-Order Cone Constraint

A second-order cone programming (SOCP) solves:

min
x∈Rn

fTx (4.14)

subject to ∥Aix+ bi∥2 ≤ cTi x+ di i = 1, · · · ,m

Fx = g,
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Dimensions Optima

n PDA1 PDA2 PDHG1 PDHG2 Dykstra

4 2.8576 2.8576 2.8576 2.8576 2.8576

8 18.7776 18.7776 18.7776 18.7776 18.7776

16 45.1218 45.1217 45.1218 45.1218 45.1218

32 169.7005 169.7005 169.7005 169.7005 169.7005

64 838.4236 838.4234 838.4234 838.4234 838.4234

128 3279.2287 3279.2276 3279.2276 3279.2276 3279.2276

256 14043.4731 14043.4608 14043.4605 14043.4605 14043.4605

Dimensions CPU times

n PDA1 PDA2 PDHG1 PDHG2 Dykstra

4 0.0269 0.0239 0.0018 0.0054 0.0006

8 0.0592 0.0478 0.0021 0.0026 0.0006

16 0.1586 0.1486 0.0161 0.0114 0.0071

32 0.5988 0.5461 0.1641 0.1892 0.0897

64 3.3199 2.8882 1.3750 1.3809 0.7556

128 21.2916 21.0350 8.1270 8.3357 4.0588

256 129.4685 123.3340 76.9175 73.8031 39.0772

Dimensions Feasibility

n PDA1 PDA2 PDHG1 PDHG2 Dykstra

4 0.00000088 0.00000038 0.00000000 0.00000000 0.00000000

8 0.00000043 0.00000043 0.00000000 0.00000000 0.00000000

16 0.00000086 0.00000070 0.00000122 0.00000000 0.00000000

32 0.00000098 0.00000098 0.00000126 0.00000000 0.00000000

64 0.00000077 0.00000065 0.00000127 0.00000000 0.00000000

128 0.00000082 0.00000089 0.00000122 0.00000000 0.00000000

256 0.00000086 0.00000090 0.00000123 0.00000000 0.00000000

Table 4.3 Optima, CPU times in seconds, and feasibility for the closest kinship

matrix problem. Here the kinship matrix is n× n. PDA1 and PDA2 are from

the update (4.11) and (4.12) respectively. The result of (4.13) is PDHG1 and

PDHG2 is the output of algorithm that indicator functions in the problem are

switched.
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where x ∈ Rn, Ai ∈ Rni×n, and F ∈ Rp×n [7]. Problem (4.14) contains second-

order cone constraints, which can be written in simple form:

x ∈ C := {u ∈ Rn : ∥Au+ b∥2 ≤ cTu+ d},

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R. In here, we consider the

projection of x onto C.

The key idea of the proximal distance solution is the variable splitting. Let

w = Au+b and r = cTu+d. Defining y = (u,w, r), L = {y ∈ Rm+n+1 : ∥w∥ ≤

r}, and M = {y ∈ Rm+n+1 : w = Au + b and r = cTu + d}, the problem can

be formulated as

min
u∈Rn

1

2
∥x− u∥2 (4.15)

subject to y ∈ L ∩M.

It is rather easy to get projection onto the second-order cone constraint set L,

thus folding constraint set M into the domain of loss could be helpful. Letw̃k

r̃k

 = PL

wk

rk

 ,

then the surrogate becomes

g(y|yk) =
1

2
∥x− u∥2 + ρ

2

∥∥∥∥∥∥
wk − w̃k

rk − r̃k

∥∥∥∥∥∥
2

+ λT (Au+ b− w) + θ(cTu+ d− r).

The stationary equation is

u− x+ATλ+ θc = 0

ρ(w − w̃k) = λ

ρ(r − r̃k) = θ
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and thus the update is

uk+1 =

(
ATA+

1

ρ
I + ccT

)−1(
AT (w̃k − b) + (r̃k − d)c+

1

ρ
x

)
(4.16)

wk+1 = Auk+1 + b

rk+1 = cTuk+1 + d.

To solve problem (4.15) by the primal dual hybrid gradient, we combine

w and r as w

r

 =

A

cT

u+

b

d

 =: Ãu+ b̃.

Then, unconstrained formulation of (4.14) is

min
u∈Rn

1

2
∥x− u∥2 + δL(Ãu+ b̃),

which is equivalent to solving

min
u∈Rn

1

2
∥x− u∥2 + δL−b̃(Ãu).

Therefore, Algorithm LV and CV can be applied. Otherwise, one embraces the

variable splitting and reforms (4.15) as

min
x∈Rn

1

2

∥∥∥∥∥∥∥∥∥


I O O

O O O

O O 0

 y −


x

0

0


∥∥∥∥∥∥∥∥∥
2

+ δM (y) + δL



O O O

O I O

O O 1

 y

 ,

so that uses Algorithm 4.

It is easy to check that the projection of (w, r) onto the second-order cone
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L can be expressed as

PL

w

r

 =



w

r

 , if ∥w∥ ≤ r

0

0

 , if∥w∥ ≤ −r

∥w∥+ r

2∥w∥

 w

∥w∥

 , otherwise.

To get the projection map PM (y), we rewrite the constraint M as

M =


u

z̃

 ∈ Rm+n+1 : z̃ = Ãu+ b̃

 ,

where z̃ = (w, r). Getting the projection of (p, q) onto M is equivalent to

solving

PM

p

q

 = argmin
u∈Rn,z̃∈Rm+1

{
1

2
∥p− u∥2 + 1

2
∥q − z̃∥2 + λT (Ãu+ b− z̃)

}
.

The stationary equations are

0 = u− p+ ÃTλ

0 = z̃ − q − λ,

thus the projection is

PM

p

q

 =

p− ÃT (ÃÃT + I)−1(Ãp− q + b̃)

q + (ÃÃT + I)−1(Ãp− q + b̃)

 .

Table 4.4 compares performance of the proximal distance algorithm, pri-

mal dual hybrid gradient methods, and two solvers, SCS [31] and Gurobi. It is
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Dimensions Optima

m n PDA LV CV PDHG SCS Gurobi

2 4 0.4775 0.4775 0.4775 0.4775 0.4775 0.4775

4 8 1.0617 1.0617 1.0617 1.0617 1.0617 1.0617

8 16 0.5399 0.5399 0.5399 0.5399 0.5399 0.5399

16 32 1.8113 1.8113 1.8113 1.8113 1.8113 1.8113

32 64 0.6211 0.6211 0.6211 0.6211 0.6211 0.6211

64 128 2.6805 2.6805 2.6805 2.6805 2.6805 2.6805

128 256 8.7678 8.7678 8.7678 8.7677 8.7678 8.7678

256 512 14.0124 14.0124 14.0124 14.0123 14.0124 14.0124

Dimensions CPU Times

m n PDA LV CV PDHG SCS Gurobi

2 4 0.0188 0.0002 0.0002 0.0074 0.0008 0.0055

4 8 0.0282 0.0006 0.0006 0.0486 0.0010 0.0056

8 16 0.0084 0.0005 0.0005 0.0127 0.0018 0.0058

16 32 0.0105 0.0010 0.0011 0.0072 0.0028 0.0060

32 64 0.0221 0.0023 0.0081 0.0080 0.0171 0.0110

64 128 0.0584 0.0044 0.0156 0.0217 0.1758 0.0215

128 256 0.1397 0.0404 0.0996 0.0682 0.8971 0.0781

256 512 0.3849 0.1992 0.6323 0.1886 12.0251 0.3220

Table 4.4 Optima and CPU times in seconds for the second-order cone pro-

jection. Here m is the number of constraints and n is the number of variables.

PDA is the result of the update (4.16). LV and CV are the output of Algorithm

LV and Algorithm CV respectively. PDHG is from Algorithm 4.
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clear that Algorithm LV and CV outperform in lower dimensions. While Al-

gorithm LV seems to be scalable, Algorithm CV falls behind other algorithms

except SCS. Algorithm 4 (in here denoted by PDHG) follows next in mod-

erate dimensions. In spite of the poor performance in lower dimensions, the

proximal distance algorithm is competitive with Gurobi. SCS solver becomes

worse than any other methods.

4.5 Low Rank Matrix Completion

Let M ∈ Rn1×n2 be a data matrix with missing data. There are various situ-

ations that filling missing entries of M from observed values. For example, in

the well known Netflix problem [5], the data matrix consists of ratings that

users give to movies. Observed values are the actual ratings that users gave

and missing entries represent the ratings expected to be given by users. There-

fore, one can build a recommendation system via filling missing parts of the

data. To impute missing in data, we approach to the problem with a simple

idea: The data is derived from a few factors. In the Netflix problem, users have

a few unknown latent factors of preference and ratings are linear combination

of them. With our principle, we can formulate the problem as follows:

min
X∈Rn1×n2

f(X) = rank(X) (4.17)

subject to Xij = Mij , i, j ∈ Ω(M),

where Ω(M) is a set of observed indices of M . Unfortunately, problem (4.17) is

non-convex and NP-hard [10]. Candés and Recht made a detour of the problem

by relaxing the rank function by the nuclear norm ∥X∥∗ =
∑

σi(X) where

σi(X) denotes ith singular value of X. With the nuclear norm, the problem
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becomes

min
X∈Rn1×n2

f(X) = ∥X∥∗ (4.18)

subject to Xij = Mij , i, j ∈ Ω(M).

Candés and Recht also give a condition that the matrix recovered by problem

(4.18) is formally equivalent to that of (4.17). Therefore, we build solvers

for (4.18) with the proximal distance algorithm and the primal dual hybrid

gradient.

Let C(M) = {Y ∈ Rn1×n2 : Yij = Mij for i, j ∈ Ω(M)}, then constraints

of the problem becomeX ∈ C(M). Since C(M) is a convex set, we can directly

induce the proximal distance iterates:

Xk+1 = proxρ−1f (PC(M)(Xk)) (4.19)

and the primal dual hybrid gradient method from Algorithm 2:

Yk+1 = proxσh⋆(Yk + σX̄k) (4.20)

Xk+1 = proxτf (Xk − τYk+1)

X̄k+1 = 2Xk+1 −Xk,

where h(X) = δC(M)(X).

We make the projection map of X onto C(M) by replacing the elements of

X in Ω(M) by those of M and leaving others intact. The proximity operator

of the convex conjugate of δC(M) is computed by Moreau’s decomposition

(3.2). Let the rank of X be r and the singular value decomposition of X be

X = UΣV T , where U ∈ Rn1×r and V ∈ Rn2×r are orthonormal columns and

Σ ∈ Rr×r is diagonal. Cai, Candés, and Shen defined the soft-thresholding

operator of X for τ > 0 as

Dτ (X) = UDτ (Σ)V
T ,Dτ (Σ) = diag((σ(X)− τ)+)
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No. size (n× n) rank (r) m/dr m/n2

1

500 × 500

10 5 0.20

2 50 3 0.57

3 100 2 0.72

4

1,000 × 1,000

10 6 0.12

5 50 4 0.39

6 100 3 0.57

7

2,000 × 2,000

10 6 0.06

8 50 4 0.20

9 100 3 0.29

Table 4.5 The properties of generated M .

and showed that the soft-thresholding operator is the proximity operator as-

sociated with the nuclear norm [9].

We picked the singular value thresholding algorithm as a competitor. The

singular value thresholding algorithm is a type of Lagrange multiplier algo-

rithm known as Uzawa’s algorithm [9]. Since the singular value thresholding

algorithm contains soft-thresholding operator step and projection onto C(M),

we expect to compare the performance of algorithms in similar conditions.

For the simulation, we generated two n × r matrices ML and MR having

independent and identically distributed Gaussian entries and setM = MLM
T
R ,

so that M becomes n × n matrix with rank r. The set of observed entries Ω

is sampled uniformly at random among all sets of cardinality m. Table 4.5

shows the properties of the generated M . Note that an n × n matrix of rank

r has dr := r(2n− r) degrees of freedom. Then, m/dr is the ratio between the

number of observations and degrees of freedom of M , which can be called the
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PDA PDHG SVT

No. Times Iter. Rel. err. Times Iter. Rel. err. Times Iter. Rel. err.

1 20.9 177 0.00013 10.3 83 0.00016 14.0 135 0.00018

2 17.2 114 0.00012 6.7 47 0.00020 14.2 135 0.00017

3 18.6 91 0.00017 8.6 50 0.00016 28.2 207 0.00022

4 143.1 266 0.00012 48.0 104 0.00013 43.6 121 0.00018

5 145.4 143 0.00012 42.4 58 0.00014 71.4 114 0.00016

6 176.2 133 0.00012 48.0 47 0.00018 99.1 130 0.00017

7 1848.2 498 0.00013 659.8 198 0.00014 333.8 122 0.00017

8 2470.5 412 0.00013 391.3 88 0.00016 407.7 123 0.00017

9 4216.8 384 0.00014 540.4 81 0.00017 815.6 167 0.00021

Table 4.6 CPU times in seconds, the number of iteration, and relative error

for low rank matrix completion. Here No. is the experiment number. PDA and

PDHG are results of the updates (4.19) and (4.20) respectively. SVT is from

the singular value thresholding algorithm.

oversampling ratio. m/n2 is the observed ratio.

Table 4.6 compares the proximal distance algorithm, the primal dual hybrid

gradient, and the singular value thresholding algorithm. We report the running

times, the iterations, and the relative error of the reconstruction

Rel. err. =
∥Xopt −M∥F
∥M∥F

when the algorithms converge. We first remark that the iteration numbers of

the singular value thresholding algorithm are not varying much in spite of

the setup changes. On the other hand, the iteration numbers of the proximal

distance algorithm and the primal dual hybrid gradient increase as the size of

input grows. The primal dual hybrid gradient dominates others except exper-
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iment number 7 and the proximal distance algorithm was worst pick in the

most of experiments.

4.6 Regression with Partially Ordered Coefficients

In regression analysis with categorical variables, one recasts such variables

as dummy variables to see influence of each group. If the effect of groups is

known to be ordered, one may expect that corresponding coefficients have clear

ordered structures. However, several factors such as noise, multicolinearity, and

sampling bias can cause disarrangement in the result. To force coefficients be

ordered, one may give order constraints on them. For example, suppose that

we have a categorical variable with q factors. Then, we can generate q − 1

dummy variables β1, β2, · · · , βq−1. If such variable is known to be positively

correlated with response, the regression problem becomes solving

min
β∈Rp

f(β; y,X)

subject to 0 ≤ β1 ≤ · · · ≤ βq−1

with a proper loss f . Since the order constraints can be represented as

Dpartialβpartial =



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · −1 1





β1

β2

β3
...

βq−2

βq−1


∈ Rq−1,

our algorithms can be applied to solve this problem. For simulation, we used

the ’smbsimdf1’ data from the R package ’smbinning’. The data consist of

2,500 rows and 21 predictors and a response of default. We dropped NAs out
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and recoded predictors to 45 dummies. Logistic regression is commonly used

to predict default, thus our problem can be formulated as follows:

min
β∈Rp

f(β; y,X) =
n∑

i=1

[log(1 + exp(XT
i β))− yiX

T
i β]

subject to Dβ ∈ Rm
+

where D ∈ Rm×p is given order constraints with respect to β.

Unfortunately, given f(β) is not easy to get its proximity operator. Note

that the gradient and upper bound of hessian are given as

∇f(β) =
n∑

i=1

(
1

exp(−XT
i β)− yi

)
Xi (4.21)

and

∇2f(β) =

n∑
i=1

exp(XT
i β)

(1 + exp(XT
i β))

2
XiX

T
i (4.22)

≤ 1

4
XTX =: L

since
x

(1 + x)2
≤ 1

4
for x ∈ R. Our objective becomes

hρ(β) = f(β; y,X) +
ρ

2
dist(Dβ,Rm

+ )2

and our surrogate can be generated as

g(β|βk) = f(βk) +∇f(βk)T (β − βk) +
L

2
∥β − βk∥2 +

ρ

2
∥Dβ − (Dβk)+∥.

Therefore, the proximal distance update is

βk+1 = argmin
β∈Rp

g(β|βk)

= (ρDTD + LI)−1(ρDT (Dβk)+ + Lβk −∇f(βk)). (4.23)
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Since (4.21) and (4.22) exist, the solution induced by Algorithm LV is

β̃k+1 = βk − τ(∇f(β) +DTγk) (4.24)

γk+1 = (1− ρk)γk + ρkproxσh⋆(γk + σDβ̃k+1)

βk+1 = (1− ρk)βk + ρk(β̃k+1 − τDT (γk+1 − γk))

and that generated by Algorithm CV is

β̄k+1 = βk − τ(∇f(βk) +DTγk) (4.25)

β̃k+1 = 2β̄k+1 − βk

βk+1 = (1− ρk)βk + ρkβ̄k+1

γk+1 = (1− ρk)γk + ρkproxσh⋆(γk + σDβ̃k+1),

where h(α) = IRm
+
(α).

Although logistic regression can be represented as a geometric program-

ming (GP), Convex.jl and Mosek do not support GP. In here, we formulated

our problem as an exponential cone programming and used the SCS solver.

Table 4.7 compares the performance of the proximal distance algorithm, Al-

gorithm LV and CV, and the SCS solver. The proximal distance algorithm

dominates others in every six setup. The proximal distance algorithm and the

primal dual hybrid gradient methods are all scalable, while the SCS solver

works poorly as dimension increases.
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Dimensions Optima CPU Times

m n PDA LV CV SCS PDA LV CV SCS

5 912 295.1474 295.1474 295.1474 295.1475 0.8463 1.1550 1.1072 6.8652

9 912 297.7589 297.7589 297.7589 297.7589 0.8862 1.1262 1.1033 8.4962

15 912 298.9476 298.9476 298.9476 298.9476 1.0905 1.0986 1.0798 7.6411

5 1824 613.9417 613.9417 613.9417 613.9418 1.6125 1.8661 1.8304 24.1962

9 1824 614.2980 614.2980 614.2980 614.2981 1.4637 1.6648 1.6743 33.6969

15 1824 615.7252 615.7252 615.7252 615.7252 1.4924 1.7293 1.6909 32.1526

Dimensions Feasibility

m n PDA LV CV SCS

5 912 0.00000001 0.00000000 0.00000000 0.00006151

9 912 0.00000001 0.00000001 0.00000010 0.00000086

15 912 0.00000001 0.00000002 0.00000020 0.00002790

5 1824 0.00000001 0.00000000 0.00000000 0.00001237

9 1824 0.00000001 0.00000001 0.00000012 0.00001840

15 1824 0.00000001 0.00000001 0.00000014 0.00003827

Table 4.7 Optima, CPU times in seconds, and feasibility for regression with

partially ordered coefficients. Here m is the number of constraints and n is the

number of observations. PDA is the output of the update (4.23). LV and CV

are the result of the updates (4.24) and (4.25) respectively.
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Chapter 5

Discussion

Unlike the proximal gradient method and the alternating direction method of

multipliers, both proximal distance algorithm and primal dual hybrid gradient

methods only involve evaluation of the simple proximity operator of f or the

gradient ∇f and the projection map onto constraints set. Despite this similar-

ity, the classes of problems the two algorithms dealing with are different. The

proximal distance algorithm handles a broad range of constraint optimization

problems. The iterate can be derived even if the objective and constraints are

nonconvex. Keys, Zhou, and Lange provide some numerical examples of non-

convex problem solved by the proximal distance algorithm [22]. On the other

hand, the primal dual hybrid gradient methods only consider convex problems.

Even in convex cases, convergence analysis of the proximal distance algo-

rithm is still an open problem. Existing theories only guarantee the algorithm

achieves an optimal solution when a penalty constant ρk is fixed and the limit

point of iterates gains feasibility as ρk increases. In practice, applying the

framework of Nesterov’s acceleration improves the rate of convergence and
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even the quality of the solution. Therefore, convergence analysis with flexible

penalty constants and acceleration should be studied to enhance the algorithm.

Instability of the solution depending on tuning schedule would be alleviated

with further research. Meanwhile, many literature investigated that of primal

dual hybrid gradient methods and their accelerations. The optimality and fea-

sibility of solution generated from the primal dual hybrid gradient method are

attained in most cases. Hence, tuning parameters of the primal dual hybrid

gradient is rather easier than that of the proximal distance algorithm.

The proximal distance algorithm provides various solutions depending on

given problems. If the problem contains more than one constraint, the algo-

rithm may exploit weighted average of squared distance penalties of constraint

sets. Our numerical experiments imply that combining constraints improves

the rate of convergence, which coincides with the result in [22]. Folding con-

straints into domain of the loss is highly recommended if allowed. Similarly,

using Algorithm 3 performs slightly better than Algorithm 4 in our examples.

When comparing Algorithm LV with Algorithm CV, in general close in terms

of speed, but most often Algorithm LV was better. That the region of con-

vergence of Algorithm LV contains that of Algorithm CV may buttress the

results [24]. Additionally, there is no difference between the performance of

Algorithm 4 and its dual.

Except LP, the primal dual hybrid gradient methods usually outperform

the proximal distance algorithm, even the commercial solvers in some cases.

The proximal distance algorithm works well in LP and regression with par-

tially ordered coefficient problem and is comparable to competitors in others.

However, when the variable is a matrix, the proximal distance algorithm often

have trouble with scalability while the primal dual hybrid gradient shows great

performance even in large dimensions.
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Appendix A

Programming details

In here, we provide the details of our implementation such as tuning schedules,

selected parameters, and declaring convergence of algorithm. For the proximal

distance algorithm, we need tuning schedule of penalty parameter: ρinitial,

ρinc, ρmax, and kρ. We halt the iterate when the loss varies less than ϵloss

and distance between the update and the constraints is less than ϵdist. For

the primal dual hybrid gradient, one should determine the step sizes τ and

σ. If not specified, the inertia parameter ρk is typically chosen to be 1. The

algorithm is stopped if change of the objective is less than ϵloss and that of

the variables is less than ϵvar.
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A.1 Linear Programming

• PDA1, PDA2 and PDA3

Dimensions Parameters

m n ρinitial ρinc ρmax kρ ϵloss ϵdist

All 1.0 1.1 1030 100 10−6 10−6

• PDHG1 and PDHG2

Dimensions Parameters

m n τ σ ϵloss ϵvar

All
√

n
m∥A∥2

√
m

n∥A∥2
10−5 10−5

A.2 Constrained Least Squares

• PDA

Dimensions Parameters

n p ρinitial ρinc ρmax kρ ϵloss ϵdist

All 1.0 1.5 1030 20 10−7 10−7

• LV

Dimensions Parameters

n p τ σ ρ ϵloss ϵvar

All 1.8
∥A∥2

2

∥A∥2
2

2 0.99 10−6 10−6
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• CV

Dimensions Parameters

n p τ σ ρ ϵloss ϵvar

All 1.8
∥A∥2

2

∥A∥2
2

18 0.9 10−6 10−6

• PDHG1 and PDHG2

Dimensions Parameters

m n τ σ ϵloss ϵvar

All 4
∥A∥2

2

∥A∥2
2

8n 10−6 10−6

A.3 Closest Kinship Matrix

• PDA1 and PDA2

Dimensions Parameters

n ρinitial ρinc ρmax kρ ϵloss ϵdist

All 1.0 3.0 1030 100 10−7 10−6

• PDHG1 and PDHG2

Dimensions Parameters

n τ σ ϵloss ϵvar

All 1 0.5 10−6 10−6
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A.4 Projection onto a Second-Order Cone Constraint

• PDA

Dimensions Parameters

m n ρinitial ρinc ρmax kρ ϵloss ϵdist

All 1.0 1.5 1030 20 10−6 10−5

• LV

Dimensions Parameters

m n τ σ ϵloss ϵvar

All 0.2 99
20∥Ã∥2

2

10−8 10−4

• CV

Dimensions Parameters

m n τ σ ϵloss ϵvar

All 0.2 81
20∥Ã∥2

2

10−8 10−4

• PDHG

Dimensions Parameters

m n τ σ ϵloss ϵvar

All 1.98 0.005 10−8 10−4

A.5 Low Rank Matrix Completion

• PDA
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Parameters

No. ρinitial ρinc ρmax kρ ϵloss ϵdist

1 0.1 1.5 ∞ 10 10−4 10−4

2 0.1 1.7 ∞ 10 10−4 10−4

3 0.1 2.0 ∞ 10 10−4 10−4

4 0.1 1.3 ∞ 10 10−4 10−4

5 0.1 1.5 ∞ 10 10−4 10−4

6 0.1 1.5 ∞ 10 10−4 10−4

7 0.1 1.15 ∞ 10 10−4 10−4

8 0.1 1.15 ∞ 10 10−4 10−4

9 0.1 1.15 ∞ 10 10−4 10−4

• PDHG

Parameters

No. τ σ ϵloss ϵvar

1 50 2
101 10−4 10−4

2 50 2
101 10−4 10−4

3 50 2
101 10−4 10−4

4 100 1
101 10−4 10−4

5 100 1
101 10−4 10−4

6 100 1
101 10−4 10−4

7 100 1
101 10−4 10−4

8 200 1
202 10−4 10−4

9 200 1
202 10−4 10−4

A.6 Regression with Partially Ordered Coefficients

• PDA
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Dimension Parameters

m n ρinitial ρinc ρmax kρ ϵloss ϵdist

All 0.1 1.05 ∞ 20 10−10 10−8

• LV

Dimension Parameters

m n τ σ ρ ϵloss ϵvar

All 36
5∥A∥2

2

11∥A∥2
2

80∥C∥2
2

0.99 10−6 10−6

• CV

Dimension Parameters

m n τ σ ρ ϵloss ϵvar

All 36
5∥A∥2

2

11∥A∥2
2

800∥C∥2
2

0.99 10−6 10−6
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국문초록

본 논문에서는 제약조건에 선형연산자가 포함된 볼록 최적화 문제에 대한 근위

거리 알고리즘과 원시-쌍대 복합 경사법을 비교한다. 타 알고리즘들이 제약조건

의 선형연산자로 인한 계산상의 어려움을 겪는데 비해, 두 알고리즘은 간단한

업데이트 식으로 문제를 쉽게 해결할 수 있다. 본 논문에서는 근위 거리 알고리

즘과 원시-쌍대 복합 경사법을 소개하고, 이들을 여러 통계적 문제들에 적용한

해답을 제시하고, 결과값을 비교하였다. 이 때, 원시-쌍대 복합 경사법의 최적해

는 파라미터의 선택의 영향을 적게 받는 반면 근위 거리 알고리즘의 최적해는

파라미터가 부적절하게 선택될 경우 최적성이나 안정성을 잃을 수 있다. 마지막

으로,결과값을통하여원시-쌍대복합경사법이뛰어난성능을보이며근위거리

알고리즘 또한 현존하는 알고리즘에 뒤지지 않음을 확인하였다.

주요어: 볼록 최적화, 근위 거리 알고리즘, 원시-쌍대 복합 경사법, 통계계산

학번: 2018-27696
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