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Abstract

Machine learning potential is getting much attention as a promising computational

tool that can give the accuracy close to that of quantum mechanical calculations with

much lower cost that scales linearly with the number of atoms. The capability of ma-

chine learning potential was demonstrated through numerous applications to complex

systems. However, a lack of fundamental understanding and the difficulties in con-

structing a training set are hindering a wide application of machine learning poten-

tials. Despite the methodological advances in machine learning potentials, the concep-

tual foundation is still elusive due to the black-box nature of machine learning. The

connection between machine learning potential and density functional theory, which

forms the basis of machine learning potential, is not explicitly discussed. Besides, the

construction of reliable machine learning potential requires a careful selection of a

training set. The training set is usually selected by intuition and experience. Still, un-

expected structures can emerge during the simulation, giving unreliable results or even

catastrophic failures. Thus, a systematic method to construct a robust training set is

desirable.

In this dissertation, we address two main issues hindering a wide application of

machine learning potentials. First, starting from the nearsightedness principles, we

formally derive transferable atomic energy within density functional theory, which is

essential for all machine learning potentials that are based on the concept of locality.

It becomes clear that the objective of machine learning potential is to learn the under-

lying atomic energy function from total energies. Using a classical potential as a ref-

erence, we show that machine learning potential is capable of learning the underlying

atomic energy function when only total energies are informed. Through three simple

examples, we demonstrate that machine learning potential is also prone to ad hoc en-

ergy mapping, where the potential gives an accurate prediction for the training set but
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learns markedly wrong atomic energy function. The implication for multi-component

systems is also discussed. Next, we suggest a novel metadynamics method that can

efficiently sample a wide range of local environments, enabling easier construction of

a robust machine learning potential. We use a descriptor vector, which is an input to a

machine learning model, as a collective variable for each atom. The total bias potential

is a sum of atomic bias potentials. In this way, we can efficiently enhance sampling

over local environment space for each atom rather than the configuration space of

the whole system. We demonstrate three applications of the suggested metadynamics

method. The metadynamics simulation can systematically sample a wide range of local

environments that are energetically relevant. We apply the metadynamics sampling to

develop general-purpose neural network potential for silicon and aluminum. Also, we

show that the metadynamics simulation can be used to assess the stability of machine

learning potentials and that the metadynamics sampling generates a robust training set,

which improves the stability of machine learning potentials.

keywords: machine learning potential, neural network potential, metadynamics
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Chapter 1

Introduction

1.1 Overview of machine learning potential

Machine learning potential (MLP) is getting much attention as a promising compu-

tational tool that can give the accuracy comparable to that of quantum mechanical

calculations with much less computational cost that scales linearly with the system

size. Various forms of MLP were suggested, including popular neural network poten-

tial (NNP)[1] and Gaussian approximation potential (GAP)[2]. The benefits of MLP

were well demonstrated by numerous applications to complex systems. Owing to their

promising future, the field of MLP started to grow explosively with the applications

and methodological advances in the last few years.

Some notable applications include the crystallization behavior of Ge2Sb2Te5[3],

proton transfer at ZnO-water interface[4], a metastable structure search of Pt13 clusters[5],

and an active site search of bimetallic catalyst for CO2 reduction[6].

Methodological advances include feature selection using genetic algorithm[7, 8]

and CUR decomposition[9], advanced machine learning architecture for complex sys-

tems such as stratified neural network[10], implanted neural network[11], mixture

model[12], and weighting scheme to balance an inherent sampling bias[13]. Other

forms of MLP such as spectral neighbor analysis potential (SNAP)[14], moment tensor
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potential (MTP)[15], deep tensor neural network (DTNN)[16], and gradient-domain

machine learning (GDML)[17] were also suggested.

However, MLP is not widespread yet, considering the tremendous potential it has

shown. This is partly because of hurdles to the adoption of MLP. Two major hurdles

are a lack of fundamental understanding and the difficulties in constructing a training

set.

Although the field of MLP is rapidly growing, the conceptual foundation of MLP

is still elusive due to the black-box nature of machine learning. MLP represents the

total energy as a sum of atomic energies, but one trains MLP on total energies of ab

initio calculations (usually density functional theory). It is an unconventional machine

learning problem. However, little attention has been paid to what MLP is actually

learning and the impact of learning from the sum. Also, the connection of MLP to

the density functional theory is not explicitly discussed yet, which is essential for the

realization of MLP.

The second problem of constructing a training set arises from the fragility of MLP.

Machine learning models are good at interpolation, but get completely lost when it

comes to the extrapolation. MLP, which is based on a machine learning model without

any physical base, suffers from the same problem. MLP gives results that are utter non-

sense for the structures it was not trained for. This leads to the problem of simulation

giving unreliable results (or even exhibiting catastrophic failures) as unexpected struc-

tures emerge. The training set should contain all configurations that can appear during

the simulation in order to prevent such problems. The construction of reliable MLP,

therefore, requires a careful selection of a training set (by intuition and experience) and

even some trial and errors. This process is not only difficult but also time-consuming.

Thus, a systematic and easy way to construct a robust training set is highly desirable.

If such hurdles are addressed and lowered, the development process of MLP could

be accelerated, and MLP could be more widely adopted throughout the research com-

munity.
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1.2 Goal of the dissertation

The main purpose of the dissertation is to address main difficulties in developing ma-

chine learning potentials mentioned in the previous section so that the machine learn-

ing potentials can be more widely adopted in the research. The dissertation also pro-

vides a gentle introduction to the machine learning potentials as we give the description

of machine learning potential in-depth, including practical knowledge for the develop-

ment of machine learning potentials.

We first deepen the understanding of machine learning potential by elucidating

what machine learning potential is learning. We lay the foundation by defining atomic

energy formally within density functional theory. It would help understanding riddling

problems that arise during the development of machine learning potential and improv-

ing the quality of machine learning potential.

Next, we propose an improved sampling method that can be used to generate a

training set with relative ease. The suggested method generates a robust training set

such that the common problem of simulation failure could be averted. It would accel-

erate the development process significantly. The method can also be used to develop

general-purpose potential, which is a tremendous work requiring much knowledge and

intuition, by sampling a wide range of configurations automatically. It is also shown

that the suggested sampling method can be used to measure the stability of premade

potentials so that the quality of potentials can be assessed prior to the publication.
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1.3 Organization of the dissertation

The dissertation is organized into five chapters. Chapter 1 is an introduction, which

gives an overview of machine learning potentials as well as the goal of the disserta-

tion. Chapter 2 introduces the basic theoretical backgrounds on the related subjects,

such as density functional theory, machine learning potential, and metadynamics. The

main results are divided into two chapters. Chapter 3 discusses the aspect of machine

learning potentials related to their atomic energy mapping. First, the atomic energy is

defined formally within density functional theory. Then, examples of atomic energy

mapping are given. Additionally, the implication of atomic energy mapping for the

multi-component system is discussed at the end of the chapter. Chapter 4 introduces

sampling methods used for machine learning potentials and suggests a new metady-

namics sampling method. The applications of the suggested metadynamics sampling

are demonstrated and discussed. Finally, we summarize and conclude the dissertation

in Chapter 5.
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Chapter 2

Theoretical background

2.1 Density functional theory

2.1.1 Born-Oppenheimer approximation

Properties of matter are described from the interactions among electrons and nuclei,

based on the theoretical foundation of quantum mechanics. The behavior of interact-

ing electrons and nuclei can be described by Schrödinger equation. The many-body

Hamiltonian for the system of electrons and nuclei is given by:

Ĥ = − ~2

2me

∑
i

∇2
i −

∑
I

~2

2MI
∇2
I +

∑
i,I

ZIe
2

|ri −RI |

+
1

2

∑
i 6=j

e2

|ri − rj |
+

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
,

(2.1)

where rj indicates the position of ith electron and RI indicates the position of Ith

nucleus (with charge ZI and mass MI ). The first and the second terms are the ki-

netic energy of electrons and nuclei, respectively. The next three terms correspond to

electron-nucleus, electron-electron, and nucleus-nucleus interactions, respectively. In

general, the kinetic energy of nuclei can be regarded as small due to the large nuclear

masses MI . If the mass of nuclei is set to infinity, the kinetic energy of nuclei can be

5



ignored, and the nuclei can be considered to have fixed positions, merely exerting ex-

ternal Coulomb potential on electrons. This is Born-Oppenheimer approximation.[18]

Now the Hamiltonian in eqn 2.1 simplifies to:

Ĥ = T̂e + V̂ext + V̂int + EII

= − ~2

2me

∑
i

∇2
i +

∑
i

Vext(ri) +
1

2

∑
i 6=j

e2

|ri − rj |
+

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
,

(2.2)

where T̂e is the kinetic energy of electrons, V̂ext is the external potential acting on elec-

trons, and V̂int is the electron-electron interaction. EII is the classical interaction en-

ergy between nuclei, which contributes to the total energy but irrelevant to the behavior

of electrons (a constant term when the positions of nuclei are fixed). Here, the effect of

nuclei of fixed positions is included in the external potential. Therefore, one can focus

on the Hamiltonian of electrons with the positions of nuclei as parameters, simplifying

the problems of interacting electrons and nuclei to the problem of interacting electrons

in a static potential. Still, solving the equations for many-body Hamiltonian is nearly

impossible for any practical systems of interest.
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2.1.2 Hohenberg-Kohn theorems

The formulation of density functional theory is based on Hohenberg-Kohn theorems[19],

which applies to the system of electrons and fixed nuclei whose Hamiltonian is given

as eqn 2.2. The Hohenberg-Kohn theorems are as follows:

• Theorem I: For any system of interacting particles in an external potential

Vext(r), the potential Vext(r) is uniquely determined by the ground state parti-

cle density.

• Theorem II: A universal functional for the energy E[n] in terms of the particle

density n(r) can be defined, valid for any external potential. For any particu-

lar Vext(r), the exact ground state energy of the system is the global minimum

value of the functional, and the density that minimizes the functional is the exact

ground state density n0(r).

Since the Hamiltonian in eqn 2.2 is fully determined by the ground state density

n0(r), it follows from theorem I that many-body wavefunctions of all states and hence

all properties of the system are completely determined by the ground state density

n0(r) alone. Theorem II indicates that the functional E[n] alone is sufficient to deter-

mine the ground state density n0(r). One can minimize the total energy of the system

with respect to the density to find the exact ground state density. The proofs of the

theorems are gracefully simple, but not given in the dissertation.

The Hohenberg-Kohn theorems provide the basis for density functional theory.

However, they give nothing about the actual form of functionals, and one is still left

with the problems of solving a many-body system of interacting electrons, which is a

formidable task.
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2.1.3 Kohn-Sham ansatz

Kohn-Sham approach[20] replaces the original many-body problem by an auxiliary

problem of non-interacting particles, which can be solved more easily. The Kohn-

Sham ansatz is based on the assumption that the exact ground state density can be

represented by the ground state density of an auxiliary system of non-interacting parti-

cles under certain potential, where the auxiliary system is described with an auxiliary

Hamiltonian (assuming symmetric spin):

ĤKS = − ~2

2me

∑
i

∇2
i +

∑
i

Veff(ri) . (2.3)

The electron density n(r) is given as a sum of densities of individual orbitals:

n(r) =
∑
i

|ψi(r)|2 , (2.4)

and the kinetic energy Ts of independent particles is given as:

Ts = − ~2

2me

∑
i

〈ψi|∇2|ψi〉 . (2.5)

With the definition of Hartree energy, the classical Coulomb interaction energy of

electron density n(r) with itself:

EHartree[n] =
e2

2

∫
drdr′

n(r)n(r′)

|r− r′|
, (2.6)

the Kohn-Sham functional is written as:

EKS = Ts[n] +

∫
drVext(r)n(r) + EHartree[n] + EII + Exc[n] . (2.7)

The terms involving Vext(r), EHartree[n], and EII are well defined, and the kinetic

energy Ts is given as a functional of orbitals. This leads to equations for the sys-

tem of non-interacting particles, which can be solved in a numerical manner, with all
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many-body terms incorporated into exchange-correlation energy Exc. The exchange-

correlation functional Exc[n] is merely the difference of kinetic and internal interac-

tion energy of the true many-body system with the system of non-interacting particles,

where the electron-electron interaction is replaced by Hartree energy.

Applying the variational principle leads to Schrödinger-like Kohn-Sham equation:

(
− ~2

2me
∇2 + Veff(r)

)
ψ(r) = εiψi(r) , (2.8)

with

Veff(r) = Vext(r) + VHartree(r) + Vxc(r) (2.9)

The Kohn-Sham equation is limited only by the approximation in the exchange-

correlation functional. If the exact Exc[n] is known, the exact ground state density

of interacting many-body systems can be found by solving Kohn-Sham equations for

non-interacting particles. The exchange-correlation functional can be reasonably ap-

proximated by a semi-local functionals. The simplest yet powerful and popular form is

linear density approximation (LDA)[20], where the exchange-correlation energy is ap-

proximated to that of homogeneous electron gas. In the linear density approximation,

the exchange-correlation energy depends only on the electron density at the point. So,

the exchange-correlation energy of LDA can be written as:

ELDA
XC =

∫
drn(r)εxc [n(r)] . (2.10)

Another popular form is generalized gradient approximation (GGA)[21, 22], where

not only local density but also the gradient of electron density are accounted. The

exchange-correlation energy of GGA can be written as:

EGGA
XC =

∫
drn(r)εxc [n(r),∇n(r)] . (2.11)
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2.1.4 Nearsightedness principles

The locality or nearsightedness of electronic matter is a well-accepted concept through-

out the physics and chemistry despite of the non-locality of quantum mechanics.[23,

24] It is reasonable to assume that the property at one point can be considered to be

independent to the change at distant points. The concept of chemical bonds and func-

tional groups are also based on the locality.

The nearsightedness is a property of many-body systems. The density of an eigen-

state at any point, strictly speaking, depends on the potential at all other points. How-

ever, in the many-body systems, the influence diminishes by the destructive interfer-

ence between different independent particle eigenstates. It is known that a one-electron

density matrix decays exponentially in an insulator or a metal at finite temperature (it

follows a power law for metal at zero temperature). The one-electron density matrix is

defined as:

ρ̂ =
∑
i

|ψi〉〈ψi| , (2.12)

or

ρ
(
r, r′

)
=
∑
i

ψ∗i (r)ψi(r
′) . (2.13)

The density matrix is localized and vanishes at large separation when T 6= 0 or

T = 0 in an insulator, even if the individual eigenfunctions ψi are extended over the

entire system. Therefore, a static property at one point is only influenced by nearby

nuclei and does not see the change of external potential at distant points (at fixed

chemical potential), hence the name nearsightedness principle.

By utilizing the locality, order-N or O(N) methods are being developed,[25–27]

where the computational cost scales linearly with the number of atoms. The details of

order-N methods are not given here.
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2.2 Machine learning potential

Ab initio calculations such as density functional theory are reliable and accurate. How-

ever, the simulation is limited in time and length scale as the computational cost is high

and scales approximately toN3
atom (althoughO(N) methods are being developed, their

application is still limited). For large scale simulations, classical potentials, or classi-

cal force fields, are favored due to low computational cost and linear scaling. However,

they are limited in accuracy, and the development of potential for systems with com-

plicated bonding nature is a daunting task.

Machine learning potential is a machine learning model that learns the relationship

between structure and energy. There are many forms of machine learning potentials,

varying from descriptors to models. They are appropriate to be used in dynamics sim-

ulation as they give continuous energy against the structure and are differentiable so

that atomic forces can be obtained. If one trains machine learning potentials to the

reference ab initio calculation results, one can obtain the accuracy near ab initio cal-

culations with much lower computational cost that scales linearly to the number of

atoms.

In this section, we give theoretical background for many aspects of machine learn-

ing potentials such as models, descriptors, input preprocessing, and training. The de-

scription is mostly focused on the neural network potential, which is used throughout

the dissertation. However, most parts can be equally applied to other types of machine

learning potential.

2.2.1 Models

High-dimensional neural network potential (HDNNP or NNP in short) suggested by

Behler and Parrinello[1] and Gaussian approximation potential (GAP) suggested by

Bartók and Csányi[2] are the first two models that gained popularity in the early age

of machine learning potential. While other various models have been proposed,[14–
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17, 28–30] HDNNP and GAP are still two most popular models used today.

The machine learning models can be categorized into either the neural-network-

based model and the kernel-based model. HDNNP and GAP are categorized as a

neural-network-based model and a kernel-based model, respectively.

Neural-network-based models utilize neural networks to predict atomic properties.

The neural network is a function that has a large number of parameters (weights) and

hence a very flexible shape. In the training process, one iteratively updates the weights

of neural network such that the network gives accurate prediction of output properties

compared to the reference. It requires a costly training process, and training parameters

can affect the quality of potential. The evaluation cost mostly depends on the number

of input descriptors and independent of the training set.

Alternatively, kernel-based models interpolate atomic properties as a linear com-

bination of kernel function, which is a measure of similarity between the reference

structure and the structure to predict. The coefficients are computed from linear alge-

bra, and no iterative optimization process is required. The downside is that the cost

of evaluation scales with the number of data set. (The evaluation cost can be reduced

almost without the loss of accuracy by a delicate sparsification of the data set)

In this section, we describe in detail the high-dimensional neural network potential,

which is used throughout the dissertation, and give a brief introduction to another

popular model, Gaussian approximation potential.

High-dimensional neural network potential

A neural network (NN) is a mathematical model, which is inspired by the network of

neurons in the brain. The neural network consists of nodes (neurons) and the directed

weights (connections) between the nodes. A feed-forward neural network, or multi-

layer perceptron, is a specific topology of the network where a number of neurons

compose a layer, and the layers are densely connected in a certain direction, allowing

the information to flow from one end (input layer) to the other end (output layer). The
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value of the node is computed as an activation function applied on the weighted sum

of the previous layer:

xl+1
i = fa

bli +
N l∑
j=1

xlj · wlij

 , (2.14)

where xli is the value of ith node in lth layer, Nl is the number of nodes in lth layer,

wlij is the weight connecting xlj and xl+1
i , and bli is a bias which adjusts the offset. fa

is the activation function, which gives non-linearity to the model. A sigmoid function

fa(x) = 1/(1 + e−x), which is bounded in the range [0, 1], is frequently used as the

activation function. The activation function is not applied for the last layer (output

layer) so that the output value is not bounded.

The power of the neural network lies in its flexibility. Although the functional form

is fixed as eqn 2.14, the shape of the function varies depending on the weights. It is

known that the neural network with a single hidden layer can approximate any contin-

uous function with arbitrary accuracy given the number of nodes are sufficient.[31]

In the early applications of the neural network to fit the potential energy surface, a

single feed-forward neural network is employed with the Cartesian coordinate, or in-

teratomic distances were often used as input.[32–34] However, such approaches have

serious limitations. First, the network cannot be applied to other systems with a dif-

ferent number of atoms. Second, the method is limited to only small systems with a

few atoms. Lastly, the symmetry is not included in the model design, which can re-

sult in different energy for identical structures. For example, the permutation between

two equivalent atoms could result in the change in energy. Several workarounds were

suggested to solve the problems, but still, the application was limited.

In 2007, Behler and Parrinello suggested a high-dimensional neural network po-

tential, which can be applied to the systems with an arbitrary number of atoms and

includes appropriate symmetry invariance.[1] In HDNNP, the total energy is expressed

as a sum of atomic energies:

13



Etot =

Natom∑
i=1

Eat (Gi) , (2.15)

where Gi represents the symmetry function vector of ith atom (see Section 2.2.2).

Each atomic energy is evaluated from an atomic feed-forward neural network. The

input to the atomic NN is a descriptor of the local chemical environment for each

atom, which has a fixed dimension. The structure of high-dimensional neural network

is illustrated in Fig. 2.1. The Cartesian coordinates of atoms are first transformed into

symmetry function vectors, which describe the local environment. Atomic NN gives

atomic energy for each atom as a function of symmetry function vector. Then, the total

energy is a sum of atomic energies. Atoms with the same chemical species share the

same atomic NN.

By utilizing the locality as eqn 2.15, HDNNP can be trained on small systems and

then be applied to a much larger system with the same network. The symmetry invari-

ance is incorporated into the descriptor, and any descriptor that satisfies the invariance

condition can be used with the high-dimensional network structure. In most cases,

atom-centered symmetry function, which was suggested with HDNNP, is used in con-

junction with the high-dimensional network. The atom-centered symmetry function is

described in Section 2.2.2.

The atomic forces are computed by differentiating the total energy with respect to

the position of atoms:

Fi,α = − ∂Etot

∂Ri,α
= −

Natom∑
j=1

NG∑
s=1

∂Eat,j

∂Gj,s

∂Gj,s
∂Ri,α

, (2.16)

where Ri,α is the coordinate of atom i (α = x, y, z), Gj,s is a sth component of

symmetry function of atom j, and NG is the dimension of a symmetry function vector.

The weight of the network needs to be optimized to give an accurate predic-

tion. The training of high-dimensional neural network is similar to the ordinary feed-

forward neural networks but more complicated for two reasons. First, HDNNP is
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Rc

Local environment

Fig. 2.1: Structure of high-dimensional neural network potential. For each atom, the

local environment within cutoff radius Rc is encoded into a symmetry function vector

G from atomic positions. Atomic NN takes the symmetry function as input and gives

the atomic energy of the center atom as output. Finally, the total energy is represented

as a sum of individual atomic energies.
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trained over the sum of individual network outputs. Second, it is trained over not only

energies but also over forces and stresses, which is related to the derivatives of the

output property. The detailed discussion on the training process of the neural network

potential is given in Section 2.2.4.

Gaussian approximation potential

Gaussian approximation potential (GAP) is suggested by Bartók and Csányi[2]. GAP

is based on the Gaussian process regression (GPR). Suppose the atomic energy of an

ith atom is written as a linear combination of basis functions:

Ei =
∑
h

whφh(di) , (2.17)

where di is a descriptor vector of the ith atom, and φh(·) and wh are an hth basis

function and the corresponding coefficient, respectively. The prior distribution of the

coefficients is given as N (0, σ2w). The covariance between atomic energies becomes:

〈EiEj〉 = σ2w
∑
h

φh(di)φh(dj) , (2.18)

where a kernel function can be defined, which is a measure of similarity between two

configurations:

C(di,dj) =
∑
h

φh(di)φh(dj) . (2.19)

Now, the objective is to predict some property y (e.g., atomic energy or total en-

ergy) when observations t are given. The prior probability of observing t is given as:

P (t) ∝ exp

(
−1

2
tTC−1t

)
, (2.20)

where C = 〈ttT 〉. Bayes’ theorem states that the probability distribution of the pre-

diction value y for new configuration under observations t is:
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P (y|t) =
P (t, y)

P (t)
. (2.21)

From eqn 2.20 and eqn 2.21, it can be shown that the mean of the probability

distribution becomes ȳ = 〈yt〉TC−1t.[35] This is the power of Gaussian process re-

gression; one do not need to construct basis functions or obtain their coefficients in

eqn 2.17. Only the kernel function and previous observations are required for the pre-

diction. In addition, the uncertainty in prediction can be evaluated naturally since the

prediction is based on the probability distribution. y can be anything where covariance

can be defined, such as atomic energy, atomic forces, and total energy. For instance,

the covariance between two total energies can be expressed as:

〈EIEJ〉 =
〈∑
i∈I

Ei
∑
j∈J

Ej

〉
= σ2w

∑
i∈I

∑
j∈J

C(di,dj) , (2.22)

where EI is the total energy of an Ith structure.

Gaussian process regression is equivalent to a two-layer neural network with an

infinite number of nodes and a hyperbolic tangent activation function for a specific

kernel function. It is also equivalent to kernel ridge regression (KRR).

Smooth overlap of atomic positions (SOAP) is frequently used as a kernel function,

which is described in Section 2.2.2.
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2.2.2 Descriptors

The total energy of a system is invariant to several symmetry operations — translation

and rotation of the whole system and permutation of the same chemical species. There-

fore, it is desirable to have descriptors that are invariant to such symmetry operations.

In this vein, several descriptors that satisfy the invariance condition are suggested to be

used with machine learning potentials. Atom-centered symmetry function (ACSF) and

smooth-overlap of atomic positions (SOAP) are popular choices for neural network po-

tential and Gaussian approximation potential, respectively. There are also other types

of descriptors, such as bispectrum descriptor and Zernike descriptor. In this section,

we give a detailed description of ACSF and introduce SOAP briefly.

Atom-centered symmetry function

Atom-centered symmetry function (ACSF) was suggested by Behler et al.[36]. It is

one of the most popular choices for neural-network-based models. It is specifically

designed to meet the invariance condition, hence the name symmetry function. Among

five functions suggested in the original paper, three functions are widely adopted: a ra-

dial symmetry function,Gradial, and two variants of angular symmetry function,Gang.n.

and Gang.w.. The radial symmetry function computes the value, based only on the dis-

tances between pairs, describing the radial distribution of neighboring atoms. On the

other hand, the angular symmetry functions use not only distances but also angles

between a triplet, giving the description of both radial and angular distributions.

The radial symmetry function of an atom i is defined as:

Gradial
i =

∑
j

e−η(Rij−Rs)
2

fc (Rij ;Rc) , (2.23)

where Rij is the distance between atom i and atom j, and fc is a cutoff function. η,

Rs, and Rc are parameters that determine the shape of the function. The function is

invariant to global translation and rotation because only distances between atoms are

18



used. It is also permutation invariant because it is calculated by summing the values

over all pairs ij. η controls the decay rate, and Rs sets the center of Gaussian.

The cutoff function fc is a smoothly decaying function, which is defined as:

fc(Rij ;Rc) =


0.5
[
cos
(
πRij
Rc

)
+ 1
]
, if Rij < Rc

0, otherwise
. (2.24)

The main purpose of the cutoff function is to ensure the continuity of function

value and its derivatives at the boundary of the cutoff sphere (when an atom enters or

leaves the boundary). The cutoff function can be thought to additionally describe the

decaying influence of an atom as the distance increases.

The angular symmetry functions are defined similarly to the radial symmetry func-

tion, but with the addition of a term related to the angle θijk between triplet ijk (i on

the center). The angular symmetry functions are defined as:

G
ang.n.
i =21−ζ

∑
j,k 6=i

(1 + λcosθijk)
ζ e−η(R

2
ij+R

2
jk+R

2
ik)

× fc (Rij ;Rc) fc (Rjk;Rc) fc (Rik;Rc) ,

(2.25)

G
ang.w.
i =21−ζ

∑
j,k 6=i

(1 + λcosθijk)
ζ e−η(R

2
ij+R

2
ik)

× fc (Rij ;Rc) fc (Rik;Rc) .

(2.26)

Again, angular symmetry functions are invariant to global translation and rota-

tion because only distances and angles are used. They are also invariant to permuta-

tion as the angular symmetry functions for atom i are calculated by summing over all

triplets ijk. Gang.n. is called narrow angular symmetry function, and Gang.w. is called

wide angular symmetry function. The only difference is that two terms e−ηR
2
jk and

fc (Rjk;Rc) are multiplied to Gang.n. and absent on Gang.w.. The additional terms di-

minish when θijk, and thus Rjk increases. Therefore Gang.n. is limited in describing

wide angles.
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Fig. 2.2: Shape of atom-centered symmetry functions. (a) shows the shape of cutoff

function fc (eqn 2.24) with respect to the cutoff radius Rc. (b) and (c) show the shape

of Gradial (eqn 2.23) against η and Rs, respectively. (d) shows the variation of Gang,w

(eqn 2.26) with respect to ζ and λ. The shape of Gang,n is similar to Gang,w, but it

decays faster due to the decaying terms related to Rjk.
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The parameter λ has the value of either 1 or −1 and controls the peak position

along θijk (0 or π). The parameter ζ gives angular resolution by controlling the sharp-

ness of the peak. η similarly controls decaying rate against the distance, giving addi-

tional radial resolution to angular symmetry functions.

In order to describe the local environment of an atom, multiple symmetry func-

tion values are computed using different combinations of Rc, η, Rs, ζ, and λ values

to obtain sufficient resolution. Then, a set of symmetry function values (a symmetry

function vector) is used as an input to the machine learning models. The method to

select an appropriate parameter set is discussed in the below.

For the system with multiple elements, a symmetry function is computed for a

specific combination of elements. For example, in the A-B system, a radial symmetry

function of A is calculated for either AA or AB pair. Similarly, an angular symmetry

function of A is computed for one of AAA, AAB, and ABB triplet (A on the center).

Although it is not necessary to have the same number of symmetry functions for each

combination, typically, the number of radial symmetry functions scales with Nelement

and the number of angular symmetry functions scales with N2
element. Therefore, the

computational cost of execution (which depends mostly on the number of symmetry

functions) approximately scales with N2
element. Therefore, computational cost can be

quite limiting for the system with a large number of elements. In order to deal with

this quadratic scaling, weighted ACSF (wACSF) was suggested by Gastegger et al.[8]

In addition to the original forms suggested by Behler[36], some other variants,

such as wACSF[8] and ANI-1 version[28], were proposed. But, we do not describe

them in detail here.

Smooth-overlap of atomic positions

Smooth-overlap of atomic positions (SOAP)[37] is widely used in kernel-based mod-

els, including Gaussian approximation potential. For kernel-based methods, the de-

scriptor itself is not essential. Only the kernel function, or similarity measure, con-
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structed from the descriptors is required for the regression (see Section 2.2.1). SOAP

takes an alternative approach where the kernel function is directly constructed, by-

passing the construction of the descriptor. SOAP is designed such that it is invariant to

symmetry operations, have well-defined limits, and changes smoothly with respect to

Cartesian coordinates. First, the atomic neighbor density function is defined as a sum

of Gaussians so that it varies smoothly to the atomic positions:

ρ(r) =
∑
i

exp
(
−α|r− ri|2

)
, (2.27)

where i runs over the neighbors within the cutoff radius, and ri is a vector from the

central atom to its ith neighbor. If one defines a kernel function as the inner product

of two atomic neighbor densities [S(ρ, ρ′) =
∫

drρ(r)ρ(r′)], it becomes invariant

to translation or permutation. In order to make it invariant to rotations, S(ρ, ρ′) is

integrated over all possible rotations R̂:

kn(ρ, ρ′) =

∫
dR̂
∣∣∣ ∫ drρ(r)ρ(R̂r′)

∣∣∣n , (2.28)

where n > 2 since all angular information is lost when n = 1. Finally, SOAP kernel

function is defined as:

C(ρ, ρ′) =

(
kn(ρ, ρ′)√

kn(ρ, ρ)kn(ρ′, ρ′)

)ζ
, (2.29)

where ζ is any positive integer, which controls the sensitivity of kernel to the change

of atomic positions. Although SOAP was constructed from the similarity measure di-

rectly, it is closely related to power spectrum and bispectrum descriptor with Gaussian

atomic neighbor density and a dot product covariance kernel.

Selection of a parameter set

For complete descriptors, one just increases the number of components to improve

resolution systematically. However, for others (including ACSF), a parameter set must

22



be selected somehow. It is important to choose an appropriate parameter set which

can describe the local environment with sufficient resolution. If too few parameters

are chosen, different local environments cannot be distinguished, resulting in high pre-

diction error. However, using too many parameters increases the computational cost

of execution and may hinder the training process. Therefore, it is important to find a

balance between them.

For ACSF, several methods were suggested that can systematically improve the

resolution by increasing the number of symmetry functions.[8, 38] In those methods,

one first chooses the number of symmetry functions. Then, the parameters such as η

and Rs are adjusted to provide a balanced coverage over the whole space. However,

uniform coverage might not be the best representation. The methods describe above

can provide the large pool of parameter set, from which one can choose the best subset.

Several other methods were proposed to find the optimal parameter set.[7, 8, 38] We

briefly discuss the parameter selection methods in the below.

CUR decomposition

CUR decomposition[39] is a feature selection method, which can select a subset of

features that best represents the original matrix. Principal component analysis[40] can

be used to reduce the number of features, but it gives the linear combination of original

features. Therefore, one is still left with the problem of high computational cost as the

number of features that one has to calculate remains the same. On the other hand,

CUR-reduced features requires less computation as they are just a subset of original

features.

CUR decomposition is a low-rank approximation using small number of columns

and rows of the original matrix:

X ≈ X̃ = CUR , (2.30)

where C and R are subsets of columns and rows of the original matrix X.
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For the purpose of parameter selection, X is the data set where each row vector is

the symmetry function vector of an atom. Then, one finds the low-rank approximation,

where only a small subset of columns is used. The selected columns are the parame-

ters that best represent the full symmetry function vectors. (The same method can be

applied on rows to select a subset of the training set)

One selects the columns one by one based on the importance score of each column.

The importance score, or normalized statistical leverage score, is calculated as:

πj =
1

k

k∑
ξ=1

(
νξj

)2
, (2.31)

where νξj is the jth coordinate of the ξth right singular vector and k is the number

of features one selects. There can be different ways of selecting columns based on the

importance score. We use the method described in Ref. [38]. First, one column with the

highest importance score is selected. Then, all remaining columns are orthogonalized

relative to the selected column. The procedure is repeated until the number of columns

exceeds a certain number, or the error of low-rank approximation becomes lower than

a threshold. The approximation error is defined as:

ε =
‖X−CUR‖F
‖X‖F

(2.32)

The downside is that CUR decomposition does not take the regression model into

account, so the actual performance may vary between models and not be optimal for

the model. Still, it is a popular choice for selecting a subset of descriptors or the train-

ing set. We use CUR decomposition to select a parameter set from a large pool of

parameters.

Genetic algorithm

Genetic algorithm, which is inspired by the evolution process, is widely used in var-

ious optimization problems. In the genetic algorithm, each individual has a genome,
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which is a parameter set, and genomes are subject to mutation and crossover opera-

tions. The parent genome for the next generation are chosen according to the fitness

(performance) of each genome. Through the generation, the population evolves toward

the higher fitness, so one can get parameter sets which perform well.

The genetic algorithm can be applied to find the best parameter set.[7, 8] The mu-

tation and crossover operations are performed by exchanging parameters with the pool

or by slightly changing the value of the parameter. The downside of the genetic algo-

rithm is that it requires the evaluation of regression performance, thus requiring high

computational cost. Therefore, the performance is usually evaluated with a smaller

network or even linear models to approximate the performance in the computationally

feasible way.
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2.2.3 Input preprocessing

In order to train the machine learning model efficiently, it is recommended to pre-

process inputs prior to the training. We scale symmetry functions and then transform

the symmetry function vector with principal component analysis to improve the per-

formance and convergence. In the following sections, we describe the preprocessing

methods.

Scaling

The symmetry functions all have a different range of values, which depends on the

training set. For instance, one component might have values in the range [0, 10], while

the other might have values in the range [0, 10−3]. Even if two components both de-

scribe local environments in the same degree, machine learning model would have

difficulty learning from the component with the smaller variance since the weight cor-

responding to the component has to be changed by greater amount during the training

process. Therefore, we first scale each symmetry functions so that they all have a sim-

ilar range.

There can be several ways to scale components. One can simply scale components

so that the minimum becomes −1, and the maximum becomes 1. However, such scal-

ing method could be too sensitive to the training set. It can also scale the component

which virtually have zero value for all atoms, and amplify the numerical error. Another

approach is to scale all components such that they all have zero mean and unit vari-

ance. It is less sensitive to the training set, but it is still inappropriate when all values

are close to zero.

The other alternative is to scale with the reference value in the uniform gas.[38]

One can calculate the value of the symmetry function assuming the atom is in the

uniform background like jellium:
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I radial = 4πρj

∫
dRijG

radial (Rij)R
2
ij , (2.33)

Iang. = 8π2ρjρk

∫
dRijdRikdθijkG

ang. (Rij , Rik, θijk)R
2
ijR

2
iksin (θijk) , (2.34)

where ρj is the average atomic density of the element of j (need not be precise).

We then scale the symmetry function by the integral in eqn. 2.33 and eqn. 2.34 so

that the value of each symmetry function is in the reasonable range. In this way, the

scale of symmetry function does not depend on the training set while remaining in the

reasonable range.

Principal component analysis

The symmetry function components suggested by Behler et al.[36] are highly corre-

lated to each other. It is beneficial to decorrelate input features because it is known that

the correlation between input features hinders the training process. Principal compo-

nent analysis (PCA)[40] is a procedure that linearly transforms variables into uncorre-

lated variables called principal components.

Assume the data matrix X (dimension of Natom × NG) is centered column-wise.

The covariance matrix of X can be computed and diagonalized:

Σxx = XTX = WΛWT . (2.35)

Therefore, one can define Z whose covariance matrix is diagonal. The principal

component decomposition is given as:

Z = XW , (2.36)

Σzz = ZTZ = WTWΛWTW = Λ . (2.37)
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The transformation can also be calculated using a singular value decomposition.

In addition, each principal component can be scaled to have the same variance,

which is called whitening. Due to the strong correlation between symmetry function

components, the variances of principal components vary several orders of magnitude.

In order to learn from components with very small variance, some of the weights have

to be very large. Therefore, the input data with such a wide range of variances would

hinder the training process. The whitening process can be done by simply dividing

each principal component by its standard deviation:

zwhiten
(i) =

z(i)√
Var
[
z(i)
] , (2.38)

where zi is ith principal component. The procedure of PCA is illustrated in Fig. 2.3

and the effect of PCA on the training is shown in Fig. 2.4. As can be seen in Fig. 2.4,

applying PCA dramatically improves the convergence speed, and whitening further

improves the speed while reducing RMSE at the same time. We note that it is better to

add a small constant to the variance to suppress components with too small variances

to be scaled up:

zwhiten
(i) =

z(i)√
Var
[
z(i)
]

+ ε
. (2.39)

When we use eqn 2.38, we found that the neural network is much more vulnerable

to overfitting. On the contrary, when we use eqn 2.39 with large ε, the convergence

speed decreases (when ignoring the difference in scale, the ε→∞ limit corresponds to

no whitening at all). There is a trade-off between convergence speed and generalization

error, which can be adjusted through ε (see Fig. 2.5). (eqn 2.38 with regularization

techniques could prevent overfitting, but using eqn 2.39 resulted in the lower RMSE)

What we found is that the principal component with smaller variance shows a

higher tendency to result in high generalization error. It can be explained qualitatively

from a dynamic model of a simple shallow network. According to S. Advani et al.[41],
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Fig. 2.3: Schematic illustration of input preprocessing process. (a) is the raw data dis-

tribution, (b) is scaled data, (c) is PCA-transformed data, and (d) is whitened data.

First, each component in the raw data is scaled to a reasonable range. Then, PCA

transformation is applied to the scaled data. Finally, whitening can be applied to the

decorrelated data to scale each principal components.
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Fig. 2.4: Convergence of validation force RMSE against the training iteration with and

without PCA and whitening. The blue line indicates the results without PCA prepro-

cessing, and the orange line is the results with PCA preprocessing, but no whitening.

The green line shows the results when both PCA and whitening are applied. The hor-

izontal dashed lines indicate the converged RMSE value without PCA and with PCA

and whitening. The training set consists of molecular dynamics trajectories of liquids

and crystals in GeTe system.
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Fig. 2.5: Convergence of validation force RMSE against the training iteration with

varying constant ε in eqn 2.39. ε = 0 corresponds to conventional whitening, and

ε = ∞ indicates PCA without whitening. The RMSEs for the training set are not

shown, but they are in the similar range regardless of the value of ε (0.22–0.23 eV/Å).

The trade-off between convergence speed and generalization error is clearly observed

where both convergence speed and generalization error decreases as ε increases. The

training set consists of molecular dynamics trajectories of liquids and crystals in GeTe

system.
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the learning with gradient descent in the shallow neural network (linear regression) can

be modeled as dynamic equations. Therefore, one can formulate generalization error

Eg as a function of time. (In the shallow neural network, each mode is independent,

but in the deep network, there is a coupling between modes)

Eg (t) =
1

N

∑
i

[(
σ2w +

(
σ0w
)2)

e−
2λit

τ +
σ2ε
λi

(
1− e−

λit

τ

)2]
+ σ2ε , (2.40)

where i is the index of a mode (principal component), λi is the eigenvalue (variance)

of an ith mode, and σε is the error in the output.

Although the eqn 2.40 is derived from a shallow linear network, it can be seen that

the principal component with smaller variance gives more serious generalization error,

which agrees well with our observations. The use of eqn 2.39 would not be the optimal

scaling, but we found that it gives nice results with much faster convergence and lower

generalization error than eqn 2.38 with ε tuned as a hyperparameter.
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2.2.4 Training

Training neural network is a process of minimizing error by updating weights, which

sounds simple enough. However, in practice, there are much more things to be consid-

ered. In this section, we describe some important aspects of training neural network

potentials.

Training set

The training set is a data set to which a machine learning model is trained. It con-

sists of descriptors for each atom and the reference energy (optionally atomic forces

and virial stresses) for selected snapshots. It is a heart of machine learning poten-

tial. The accuracy of a machine learning potential heavily relies on the training set.

Furthermore, the training set determines the reliability and applicability of machine

learning potential. In order to describe a certain system, a training set must cover all

local configurations that can appear in the system because machine learning models

cannot extrapolate well, and they are not based on any physical rule. If the local envi-

ronment is not covered by the training set, machine learning potential can give totally

unreasonable results, leading to a catastrophic failure of a simulation.

The training set is usually constructed from the trajectory of molecular dynam-

ics simulation and some distorted crystal structures. (Other sampling methods are dis-

cussed in Chapter 4) The molecular dynamics simulation is often carried out at a higher

temperature than the target temperature to increase the stability of potentials. High-

temperature molecular dynamics is also beneficial as distinct configurations would be

more connected at the higher temperature (see the discussion in Chapter 3) There is

also a problem of sampling bias inherent to the modeling, which is discussed below.

Molecular dynamics simulations are often performed under the convergence con-

dition that might not be sufficient for the training. The errors in the reference data

would affect the training negatively. Therefore, it is advised to test convergence and

perform oneshot calculations on the selected snapshots to collect more accurate data.
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Optimization

When the training set is given, the error between the reference and the prediction is

a function of weights (and biases) of the network. The loss function, which is mini-

mized during the training process, is defined as the error between the reference and

the prediction. The training process is basically the optimization of loss function with

respect to the weights. Therefore, it is important to set proper functional form for the

loss function. The common functional forms of loss functions for energy, force, and

virial stress are defined as:

ΓE =
1

M

M∑
i=1

(
EDFT
i − ENNP

i

Ni

)2

, (2.41)

Γ′E =
1

M

M∑
i=1

(
EDFT
i − ENNP

i

)2
, (2.42)

ΓF =
1

3
∑M

i=1Ni

M∑
i=1

Ni∑
j=1

∣∣FDFT
ij − FNNP

ij

∣∣2 , (2.43)

Γ′F =
1

M

M∑
i=1

1

3Ni

Ni∑
j=1

∣∣FDFT
ij − FNNP

ij

∣∣2 , (2.44)

ΓS =
1

6M

M∑
i=1

∣∣SDFT
i − SNNP

i

∣∣2 , (2.45)

where M is the total number of structures in the training set, and Ni is the number

of atoms in an ith structure. Ei, Fij , and Si are the energy of the ith structure, the

force of a jth atom in the ith structure, and the virial stress of the ith structure, respec-

tively. There is yet no consensus on the functional form of loss functions. Two differ-

ent equations for energy loss and force loss (and their combinations) are commonly

used throughout the community.[30, 42–47] (some adopt exponential loss functions to

reduce outliers[28]) The 1/M and 1/(3
∑
Ni) terms average the loss function over
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structures and atoms, respectively. It is both accepted for those terms to be included or

omitted.

The difference between eqn. 2.41 and eqn. 2.42 is that eqn. 2.41 divides the energy

error by the number of atoms while eqn. 2.42 does not. When the average energy error

is larger than the variance of error, i.e., there is a constant energy shift, the energy error

is proportional to the number of atoms in the structure (the error would be proportional

to
√
Ni when the average error becomes smaller than the variance). In such a case, one

can treat every energy quantity equivalently by dividing the error by the number of

atoms (eqn. 2.41). On the other hand, the definition in eqn. 2.42 would make the train-

ing biased toward the structure with more atoms. In real applications with the complex

training set, the average energy error does reach zero for each group of structures due

to intrinsic errors from the approximations (see below). Therefore, we use eqn. 2.41

for energy loss. The constant 1/M normalizes the loss function. We include the nor-

malization constant as it is more convenient to have a loss function whose magnitude is

independent of the size of the training set. Otherwise, one has to adjust a learning rate

or a regularization constant according to the size of the training set. Since µ and ν can

balance the magnitudes between loss terms (see below), the normalization constant is

just a matter of convenience.

The difference between eqn. 2.43 and eqn. 2.44 is that eqn. 2.44 averages the

square of force error for each structure. This makes all snapshots contribute equally

regardless of the number of atoms. That means the force in the large structure has a

smaller contribution than the force in the small structure. We expect each force quantity

to contribute equally, so we use eqn. 2.43 for force loss. The normalization constant

1/(3
∑
Ni) is included for convenience. The loss function for virial stress is defined

similarly to the force loss.

With all ingredients, the total loss function is simply defined as a sum of three

losses (energy, force, and stress) with the coefficients µ and ν to balance units and the

magnitude between energy, force, and stress:
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Γ = ΓE + µΓF + νΓS . (2.46)

The coefficients µ and ν can be set to equalize the magnitude of three loss terms so

that three loss components contribute equally to the minimization. For specific training

procedures, one can adjust coefficients to achieve focused training on either energy,

force, or stress.

Before we start the optimization process, the weights are first initialized randomly

to follow a certain distribution, usually (truncated) normal or uniform distribution.

The range of initial weight distribution is important. If weights are initialized either

too large or too small, then the optimization process can be severely hindered. Also,

too large initial weights can result in the model with high generalization error. We used

He initialization[48], which adjusts the range of node values to stay in the reasonable

range, taking the number of nodes in the previous layer into account.

In a simple gradient descent method, each weight is updated by the gradient of loss

function multiplied by a learning rate α:

w → w − α∂Γ

∂w
. (2.47)

The learning rate α is an important hyperparameter. If the learning rate is too large,

then the converged error remains high or even completely fail to optimize. In contrast,

if the learning rate is too low, the convergence becomes too slow. Therefore, one should

find a balanced learning rate. We employed exponentially decaying learning rate to

accelerate the training early and improve the convergence later.

Instead of updating weights once per the entire training set (full-batch), we update

weights per mini-batch of the training set, where mini-batch contains a fixed number of

snapshots (only a small fraction of the entire training set). As one shuffles the training

set and split into mini-batches, it is called stochastic gradient descent (SGD). SGD

requires less memory and more efficient than a standard gradient descent method. SGD

is widely used in machine learning, as it shows some desirable properties. Owing to
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the stochastic nature of SGD, it is also known to help avoiding bad local minima and

reducing generalization error.

A standard gradient descent method gives slow convergence. Therefore, advanced

optimizers such as AdaGrad[49] and Adam[50] were suggested, which adjust the

learning rate for each parameter based on the momentum. Other optimizers such as L-

BFGS[44, 47], global extended Kalman filter[51], and Levenberg-Marquardt algorithm[44]

were also used to train neural network potentials. In this dissertation, we use Adam op-

timizer, as we found it efficient.

Note that unlike conventional machine learning problem, we train our network by

minimizing the error of a sum of outputs (total energy is a sum of atomic energies).

In the conventional ab initio calculations, atomic energy is not provided, so we cannot

train with atomic energies. (We note a study that trained atomic NN directly with

DFT atomic energies[52]) As we are training forces, which is atomic quantity, one

might think we are giving direct information on each atom. However, atomic forces are

also the (weighted) sum of derivatives of atomic energy (Fi = −
∑

j ∂Eat,j/∂Gj ×

∂Gj/∂ri). The implication of training over the sum is discussed in Section 3.

Overfitting

A model can be trained to give accurate results only to the training set and cannot

predict the structures that is similar enough to the training set, but not directly included

in the training set. This means the trained model is specialized toward the training set

and gives high generalization error. This is called overfitting.

Overfitting should be prevented as such overfitted models would be inappropriate

for simulations. Overfitting can be severe when the model capacity (the size of the

network) far exceeds the number of training data. Therefore, it is first advised to either

collect more data or adjust the size of the network so that the network gives sufficiently

small error without overfitting.

One can apply explicit regularization techniques such as weight decay and dropout
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to prevent overfitting. The weight decay, or L2 regularization, is a method that adds

penalty term proportional to the L2 norm of weights to the loss function.

ΓL2 = λ ‖w‖22 . (2.48)

The norm of weights has to be large to have overfitting. Therefore, giving a penalty

to the norm of weights is one simple way to prevent overfitting. However, one should

be careful about the choice of a regularization constant λ as too large λ would result

in high prediction error.

Dropout[53] is a technique that reduces overfitting by preventing nodes from co-

adapting too much. Overfitting occurs when all weights are tuned to work together on

the training set. By randomly turning off some of the nodes (and weights) during each

iteration, one introduces stochasticity (noise) into the parameter update. It is believed

to prevent co-adaptation on the training data and overfitting. It can also be viewed as

an efficient method to perform model averaging.

Implicit regularization includes SGD and early stopping. It is known that SGD also

works as regularization, resulting in the minima with the small norm.[54] In the early

stopping method, one prepares a validation set, which is different from the training set

and the test set. Usually, the whole data set is split into a training set, a validation set,

and a test set. However, if the sampling rate from dynamics trajectory (the time inter-

val between snapshots) is too low, the validation set cannot validate the model as the

errors between sequential snapshots are correlated. In such a case, it is recommended

to generate a validation set from an independent trajectory from the training set. Then,

one monitors the error of the training set and validation set during the training pro-

cess. The validation error increases when the overfitting occurs. We stop training early

just before the validation error increases. It is recommended to always monitor the

validation error to detect any sign of overfitting.
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Noise in data

One might think that the data used in machine learning potential is noiseless since the

data is computed from well-defined equations (e.g., symmetry functions and ab initio

calculation results). However, several factors introduce errors into the data.

First, the most obvious one is the numerical error from ab initio calculations. For

example, plane-wave based density functional theory calculation uses a plane-wave

basis set with certain cutoff energy and k-point grid. By using a finite basis set and

k-points, a numerical error is introduced. Additionally, the electronic step might not

have fully converged.

Second, the high-dimensional local environment (dimension of 3Nneighbor − 6) is

encoded into a symmetry function vector, which has a much lower dimension. This

means that two distinct local environments, which have different atomic energies, can

have similar symmetry function vectors. Therefore, even if ab initio calculation has

no error, it acts as a noise. In other words, hidden dimensions in input effectively

introduces noise in the output.

Finally, an error is introduced from the use of finite cutoff (transferability issue).

This is similar to the second source of error. The transferable range of atomic energy in

ab initio calculations can be larger than the finite cutoff we use (usually 6–7 Å). In that

case, the movement of atoms outside of the cutoff range changes the atomic energy, but

the symmetry function with the finite cutoff cannot see the change. Therefore, hidden

energy contribution becomes equivalent to the noise in output data.

Sampling bias

Intrinsic sampling bias is introduced to ab initio data as a whole structure is needed to

model an atom with specific environment. That is, one has to model the specific atom

with other background atoms. For instance, when modeling a defect, one constructs

a large supercell that incorporates one defect and many crystalline atoms. Therefore,

the training set intrinsically includes much more crystalline atoms than the defective
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atoms. This imbalance can steer machine learning potential to be trained specifically

toward crystalline atoms, resulting in much higher error for defective atoms that are of

our interest.

This kind of sampling bias is inherent to ab initio calculation and cannot be solved

by simply adding more data; when one adds more data, one is adding more background

atoms, too. The problem is that those minority atoms, such as defects, are what we are

interested in. It was demonstrated in the Ref. [13] that the higher error of defective

atoms can cause catastrophic failures in the simulation. Therefore, it would not be

ideal to treat all force quantities equally, as eqn 2.43. In such a case, training with

more weight on the sparsely sampled atoms of interest would be helpful. Jeong et al.

proposed a weighting scheme utilizing Gaussian density function (GDF) to deal with

the sampling bias inherent to ab initio data and improve the reliability of machine

learning potential.[13] They weighted atomic forces by the function of the Gaussian

density of each atom. The modified loss function for force is defined as:

ΓF =
1

3
∑M

i=1Ni

M∑
i=1

Ni∑
j=1

Θ
[
ρ (Gij)

−1
] ∣∣FDFT

ij − FNNP
ij

∣∣2 , (2.49)

where Gij is the symmetry function vector of jth atom in ith snapshot, ρ is the Gaus-

sian density function, and Θ is a weighting function. Although atomic force is strictly

not a local quantity that is determined by a symmetry function vector, it was demon-

strated to reduce force error on sparsely sampled atoms, give better description of high

energy barriers, and make the simulation more reliable.
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2.3 Metadynamics

Molecular dynamics (MD) is a standard tool to study the atomistic motion and under-

stand the underlying mechanisms in various fields of science. However, when multiple

energy minima are separated by high free energy barriers or when the system is gov-

erned by a slow diffusion process, it can be nearly impossible to sample all energeti-

cally relevant configurations in a feasible computational time. If one wants to sample

configuration space, the sampling is inefficient as the kinetic bottleneck hinders the

sampling. Also, obtaining sufficient sampling of rare events, in which we are often in-

terested, is extremely difficult. In order to improve the sampling of molecular dynam-

ics, advanced sampling methods, such as metadynamics[55], umbrella sampling[56],

and adaptive force bias[57], have been suggested.

Metadynamics[55] is a powerful simulation technique that enhances sampling,

where history-dependent bias potential acts on collective variables. Collective vari-

ables (CVs) are the function of atomic coordinates that can distinguish all metastable

states of interest. Since the space to explore increases exponentially as the number of

CVs grows, it is also desirable to keep a small set of CVs. By adding bias potential to

the original potential energy, we are adding biasing force so that the system evolves

into less explored states. It can be pictured as filling sand into the minima so that the

system escape the local minima and explore various configurations (see Fig. 2.6). The

bias potential is defined as a Gaussian form:

Ub (s) =
∑
i

hexp

(
−|s− si|2

2σ2

)
, (2.50)

where ~s is the collective variable vector, and the summation is over CV of all visited

configurations that are added in the interval of ∆t during the metadynamics simulation.

h and σ controls the height and the width of the bias potential, respectively.

The additional biasing force due to the bias potential in the real space can be com-

puted as:
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Fig. 2.6: Schematic illustration of the metadynamics method. At first, the system is

trapped in a local minimum. By adding bias potential, the system can escape the local

minimum and explore other minima. The energy surface becomes flat after sufficient

time.
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Fi,α = − ∂Ub
∂Ri,α

= −
NCV∑
j=1

∂Ub
∂sj

∂sj
∂Ri,α

, (2.51)

where sj is jth collective variable.

One of the advantages metadynamics provides is that one can reconstruct the free

energy surface from the bias potential. In order to obtain well converged free energy

surface, well-tempered metadynamics[58], which reduces the Gaussian height h grad-

ually, is used to increase the convergence. However, we do not delve into the details

about the relation between the bias potential and the free energy surface as we do not

use metadynamics to compute the free energy surface.

Many variants of metadynamics were proposed,[58–61] but they are not covered in

the dissertation. In the following section, we describe the adaptive Gaussians method,

which was applied to our simulation.

2.3.1 Adaptive Gaussians

Equation 2.50 is defined with the assumption that collective variables are independent.

Using eqn 2.50 would make exploration difficult or inefficient when collective vari-

ables are highly correlated. Equation 2.50 can be modified to use generic multivariate

Gaussian function as:

Ub (s) =

Nsample∑
i=1

h exp

−1

2

NCV∑
j=1

NCV∑
k=1

(
sj − s(i)j

)
σ
−2,(i)
jk

(
sk − s

(i)
k

) , (2.52)

where s(i)j is jth collective variable of ith visited sample and σjk determines the shape

of Gaussian potential.

The determination of σ is not simple as it is not a fixed value, but depends on

the value of s. Branduardi et al. suggested adaptive Gaussians, which determine the

optimal shape of Gaussian potential on-the-fly during the simulation.[62] σ2ij is pro-

portional to the covariance between two collective variables si and sj .
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σ2ij ∝ 〈∆si∆sj〉 (2.53)

Branduardi suggested two methods of estimating the covariance matrix between

the collective variables. One is time-dependent covariance, and the other is position-

dependent (or geometry-dependent) covariance.

The time-dependent covariance estimation is named dynamically-adapted Gaus-

sians. Simply put, the covariance and the center are estimated as a time average from

the last part of the simulation trajectory. They introduced an exponential weighting

function with decay time τD so that the center and covariance at time t are given by:

s̄i(t) =
1

τD

∫ t

0
dt′si

(
t′
)
e−(t−t

′)/τD , (2.54)

σ2ij(t) =
1

τD

∫ t

0
dt′
[
si
(
t′
)
− s̄i

(
t′
)] [

sj
(
t′
)
− s̄j

(
t′
)]
e−(t−t

′)/τD . (2.55)

Then s̄i and σ2ij are evolved during the simulation using the derivatives of eqn 2.54

and eqn 2.55. The downside of the dynamically adapted Gaussian is that it requires

averaging over a certain period of time to get a reliable estimation. Therefore, it might

be inappropriate to be applied to a fast-evolving system. Furthermore, since we carry

out metadynamics simulations with DFT calculations, such time averaging is too time-

consuming.

The position-dependent covariance does not rely on time average but imposes ad-

ditional assumptions to evaluate the covariance. First, it is assumed that the change of

CV can be linearly approximated as:

∆si ≈
∑
α

∂si
∂qα

∆qα , (2.56)

where qα is αth microscopic coordinate. We assume that qα is an independent variable

from the distribution N (0, σ2G) so that 〈qαqβ〉 = δαβσ
2
G. Then:
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σ2ij(q) = 〈∆si∆sj〉 ≈ σ2G
∑
α

∂si
∂qα

∂sj
∂qα

. (2.57)

Equation 2.57 depends only on the microscopic variable q. We adopted geometry-

adapted Gaussians in our simulation as it can be evaluated instantaneously without a

time average. The Ref. [62] also covers the free energy estimation from modified bias

potential, but we do not cover free energy aspects in this dissertation.

From a computation point of view, the use of the full covariance matrix requires

NG(NG + 3)/2 floating points per sample (cf. NG floating points for isotropic covari-

ance). The computational cost increases as the simulation continues. It can be quickly

prohibiting. However, we found that the cost of DFT calculation is much higher than

the cost of bias evaluation with full covariance, so it is not a problem in our applica-

tions.

If one finds the cost of bias evaluation becoming prohibiting, one can maintain

the cost of barrier evaluation by approximating bias potential with a smaller num-

ber of Gaussian functions. Many approximation methods were suggested: VKL[63],

hierarchical EM (HEM)[64], L2U[65], density-preserving hierarchical EM algorithm

(DPHEM)[66].

We note that the inverse of the covariance matrix can be numerically unstable when

the correlation between collective variables is too high. We regularize the covariance

matrix so that the condition number remains at the certain value. In that case, the

sampling might not be enhanced along with the principal components with very small

variance.
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Chapter 3

Atomic energy mapping

3.1 Introduction

Most machine learning potentials, including high-dimensional neural network poten-

tial, are based on the assumption that the total energy of a system is a sum of trans-

ferable atomic energies. Transferable atomic energy means that the atomic energy is

determined by only atomic arrangement within a certain cutoff distance so that atomic

energy is identical, given the local environment within the cutoff radius is identical.

Machine learning potentials learn atomic energies from the total energy of density

functional theory (DFT) calculations. Due to this unconventional machine learning

structure, two issues arise. First, transferable atomic energy must be defined within

the DFT level for machine learning potential to be established. Second, the accurate

total energies for the training set does not necessarily guarantee the accuracy in atomic

energy, which is essential for transferability. However, to our knowledge, such issues

have never been discussed explicitly.

In this chapter, we first show that transferable atomic energy is defined within DFT,

especially paying attention to the transferable range. Then through some examples, we

show that NNP is capable of learning atomic energies from total energy but also prone

to learning incorrect atomic energy function.
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3.2 Transferable atomic energy within DFT

Machine learning potentials are based on the representability of DFT total energy as

a sum of transferable atomic energies that depend on the atomic arrangement within a

cutoff radius Rc:

EDFT
tot =

∑
i

Eat (Ri;Rc) , (3.1)

where i is atom index and Ri is the relative position vectors within Rc. The concept

of locality in a matter is widely accepted throughout the various fields such as physics,

chemistry, and materials science.[24] It is also the basis of classical potentials. If trans-

ferable atomic energy cannot be defined in a DFT level, it would be impossible to train

a transferable machine learning potential based on eqn 3.1 with DFT total energies. It

is well known that the atomic energy can be defined by integrating DFT energy den-

sity on atomic volumes.[67, 68] However, the existence of atomic energy in DFT level

does not guarantee that it is transferable to similar environments, which is essential

to machine learning potentials. To our knowledge, it is not rigorously discussed else-

where whether the transferable atomic energy can be defined within DFT or not. In this

section, we first check whether eqn 3.1 is justified by explicitly deriving the definition

of transferable atomic energy within DFT. We start with locality or nearsightedness of

electronic structure[23, 24] and pay attention to the transferable range. In the following

discussions, we assume a unary system that is large enough such that cutoff spheres

do not self-overlap under the periodic boundary conditions, and wave functions are

effectively real-valued for the simplicity.

Within the semilocal density approximation, EDFT
tot can be expressed in terms of

electron density ρ(r) and one-electron density matrix ρ(r, r′) (eqn 2.13) as a sum of

kinetic energy, exchange correlation energy, and Coulomb energy:
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EDFT
tot = Ekin + EXC + ECoul

= −1

2

∫
∇2

rρ(r, r′)|r=r′dr
′ +

∫
ρ(r)εXC(ρ(r),∇ρ(r))dr

+
1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ −

∑
i

∫
qiρ(r)

|r− ri|
dr +

∑
i>j

qiqj
|ri − rj |

,

(3.2)

where qi and ri are the charge and position of the ith ion. Under the assumption that

O(N) methods[26, 27] work well for given systems, we explicitly show that each

energy term can be split into atomic contributions that are defined by local atomic

arrangement within a certain cutoff radius, and therefore transferable atomic energy

can be defined within DFT.

We start by partitioning the volume into non-overlapping atomic volumes such as

Voronoi cell. Let Vi be the volume containing ith atom. We define a charge density

inside atomic volume: ρi(r) = ρ(r)[r ∈ Vi], where the squared bracket is the Iverson

bracket whose value is 1 when the logical proposition inside is true, and 0 otherwise.

The atomic exchange correlation energy can be simply defined by substituting ρi(r) to

ρ(r) in the integrand of EXC:

EXC,i =

∫
ρi(r)εXC(ρi(r),∇ρi(r))dr (3.3)

It is obvious that EXC =
∑

iEXC,i as ρ(r) =
∑

i ρi(r). The nearsightedness prin-

ciples states that the perturbation of potential at a certain point does not affect the

charge density at the other point if two points are far enough, given the local chemi-

cal potential of electrons is fixed.[23, 24] This means that ρi(r), and hence EXC,i, is

determined by the atomic arrangements within a certain cutoff radius (R1
c ) from ri.

Next, we define the total charge density in the volume Vi: ρtot,i(r) = qiδ(r− ri)−

ρi(r). Then, we can define atomic Coulomb energy, ECoul,i, whose sum equals ECoul:
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ECoul,i =
1

2

∑
j 6=i

∫
ρtot,i(r)ρtot,j(r

′)

|r− r′|
drdr′

+
1

2

∫
ρi(r)ρi(r

′)

|r− r′|
drdr′ −

∫
qiρi(r)

|r− ri|
dr ,

(3.4)

where the first term is the energy between electrons in Vi and Vj , the second term

is electron-electron interaction energy within Vi, and the last term is the interaction

energy between ith ion and electrons within Vi. The second and the third term is locally

defined within Vi. However, the first term is long-ranged and cannot be described with

the finite cutoff. Here, we assume the system where the electrostatic interaction is

negligible beyond a certain cutoff radius (R2
c ) due to cancellation. It is a reasonable

assumption for condensed systems with weak ionic characters. The success of short-

ranged NNP for many condensed systems, such as SiO2[47] and GeTe[69], supports

the assumption. For the systems where long-range interaction becomes important, the

long-range Coulomb interaction can be described separately with atomic point charges,

which are predicted through separate atomic neural networks.[70, 71] Therefore, we

neglect the Coulomb interaction between ρtot,i and ρtot,j if |rj − ri| > R2
c . Then, eqn

3.4 is locally defined by the atoms within R1
c +R2

c because ρi(r) is determined by the

atoms within R1
c (neglecting the size of Vi).

As the last step, we define local atomic kinetic energy. Since ρ(r, r′) decays ex-

ponentially as |r − r′| increases in metals at finite temperature or insulators,[24, 25]

ρ(r, r′) can be neglected if |r− r′| is larger than some threshold (R3
c ) as utilized in the

divide-and-conquer method[27]. Therefore, ρ(r, r′) at r is determined by the atomic

arrangement within R4
c , which is larger than R3

c . We define projected density matrix

ρij(r, r
′) = ρ(r, r′)[r ∈ Vi][r

′ ∈ Vj ]. Then, the atomic density matrix ρat,i(r, r
′) is

defined as follows:

ρat,i(r, r
′) = ρii(r, r

′) +
1

2

|rj−ri|<R3
c∑

j 6=i
ρij(r, r

′) . (3.5)
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The atomic density matrix satisfies ρ(r, r′) =
∑

i ρat,i(r, r
′) and depends on the

atoms within R4
c from ith atom (again, neglecting the size of Vi). The atomic kinetic

energy is then defined as the following:

Ekin,i = −1

2

∫
∇2

rρat,i(r, r
′)|r=r′dr

′ . (3.6)

The sum of the atomic kinetic energy equals the total kinetic energy as the kinetic

energy operator is linear.

Combining individual atomic energy terms we defined above, the atomic energy

of ith atom can be defined within DFT calculations:

Eat,i = Ekin,i + EXC,i + ECoul,i , (3.7)

where EDFT
tot =

∑
iEat,i and Eat,i is determined by the atomic arrangement within the

cutoff distance of Rc = max(R1
c +R2

c , R
4
c ). Note that the atomic energy defined here

is not unique because it depends on the way to define the atomic volume.

The existence of transferable atomic energy in DFT implies that the objective of the

machine learning potential is to identify the underlying atomic energy function when

only their sums (total energies) are informed. This view is different from conventional

views that NNP is an interpolation of total energies.[45, 72]

In order to obtain the atomic energy function in a computationally feasible way,

two approximations are made. First, the cutoff distance is reduced from Rc, which

should be fairly large for high accuracy, to a much smaller value of rc, typically around

6–7 Å. This is a reasonable value for many systems as the chemical influence typically

diminished rapidly. Second, the dimension of the local environmentR is significantly

reduced as we encode R to a descriptor vector. For neural network potentials with

symmetry function vector G, the approximation is written as:

EDFT
tot =

∑
i

EDFT
at (Ri;Rc) '

∑
i

ENN
at (Gi; rc) . (3.8)
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The quality of NNP depends on how well ENN
at captures EDFT

at . During the training

process, the quality of NNP is usually assessed by root-mean-squared-error (RMSE)

of total energy and forces. However, since we train NNP to the total energies, rather

than directly to atomic energies, NNP can give accurate total energies for the training

set, but the atomic energy function can deviate significantly from the reference DFT

atomic energy function. We call it ad hoc energy mapping. (We note a recent effort to

train NNP using atomic energies from DFT. [73]) In the following sections, we demon-

strate that NNP is vulnerable to such ad hoc energy mapping, which undermines the

transferability by giving wrong total energies for the structures outside of the training

set. This can also leads to stability issues, which is discussed in Section 3.4. One thing

to note is that the atomic force is given as a weighted sum of the atomic energy func-

tion (Fi,α = −
∑

j ∂Eat,j/∂Gi,s ·∂Gi,s/∂Ri,α). Therefore, although atomic forces are

atomic properties, fitting atomic forces does not solve the problem of ad hoc energy

mapping.
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3.3 Examples of atomic energy mapping

Assessing the quality of atomic energy mapping is difficult as a direct comparison

between ENN
at and EDFT

at cannot be made because EDFT
at is gauge-dependent. However,

there are some gauge-invariant quantities we can compare. For instance, the atomic

energy of diamond silicon is simply the total energy divided by the number of atoms

because all atoms are equivalent. Another example is the surface energy. If we sum

atomic energies over the surface region, it becomes well defined as gauge-dependent

terms cancel out.[74] These invariant quantities allow us to examine the quality of the

atomic energy mapping of NNPs.

In this section, we investigate the atomic energy mapping of NNP with four ex-

amples. First, we show that NNP is capable of inferring underlying atomic energy

function by training NNP with the total energies of embedded atom method (EAM)

where atomic energy is well defined so that atomic energies can be directly compared.

The other examples, on the other hand, show that NNP is also vulnerable to ad hoc

energy mapping by utilizing the invariant quantities. Specifically, the second and third

examples are simple silicon crystal and slab model, respectively. They show different

types of ad hoc energy mapping that arise from the limitations in the training set. The

last example on silicon nanocluster is about the more practical situation, where moni-

toring the quality of NNP with only RMSE of total energies and forces does not reveal

the quality of atomic energy mapping, possibly leading to NNP with the low quality

of atomic energy mapping.
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3.3.1 Classical potential

First, we examine whether NNP has the capability of identifying the underlying atomic

energy function when only total energies are provided. We train NNP with the total

energies of EAM potential[75], whose atomic energy is well defined as:

Ei = F

(∑
j 6=i

ρ(rij)

)
+

1

2

∑
j 6=i

φ(rij) , (3.9)

where F (·) is the embedding function, ρ is a sum of pairwise electron densities, and

φ is a pairwise potential. The atomic energy of EAM is virtually unique as it consists

of only pairwise terms, making EAM a good candidate to compare atomic energies

directly.

The training set consists of MD snapshots of Ni85 nanocluster at 500 K. The struc-

ture of the nanocluster is shown in Fig. 3.1(a). After the training, RMSE is 0.3 meV/atom

and 0.01 eV/Å for total energy and atomic forces, respectively.

Fig. 3.1(b) shows the correlation of atomic energies between EAM and NNP. A

good correlation is found with atomic energy RMSE of 25 meV. NNP successfully

resolved different configurations such as corner, edge, surface, and bulk atoms. This

example demonstrates the capability of NNP to identify the underlying atomic energy

functions from total energies.
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Fig. 3.1: (a) Structure of the relaxed Ni85 octahedron that consists of 6 corner, 36 edge,

24 surface, and 19 bulk atoms. (b) Two dimensional histogram plot that shows the

correlation of atomic energy between EAM and NNP. The color indicates the density

of point in each bin.
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3.3.2 Si crystal example

In the following three examples, we train NNP to the total energies and forces of DFT

calculations. The training and validation set consists of 350 and 150 MD snapshots of

64-atom silicon diamond crystal at 1000 K, respectively. The MD is performed under

NVT ensemble. After the training, RMSE is 1 meV/atom and 0.10 eV/Å for total

energies and atomic forces, respectively. RMSEs for training and validation set are

almost identical.

In this example, we investigate the atomic energy mapping by comparing the

atomic energies along an equation of state (EOS), where atomic energies are uniquely

defined. Due to the atomic vibration during MD, some atoms have a similar local envi-

ronment to that of crystal under isotropic strain, which is a part of EOS. To show this

clearly, we define dNN(G) as the Euclidean distance in the symmetry function space to

the nearest point in the training set (excluding self). Fig. 3.2(a) shows the distribution

of dNN for the training set and Fig. 3.2(b) shows the distribution of training points on

the first two principal component axis (from PCA). The black solid circle shows the

points which correspond to the structures of EOS. Fig. 3.2(c) shows dNN for the same

points in Fig. 3.2(b). As can be seen in Fig. 3.2(a), dNN is less than 0.2 for most of

the training set. The RMSE for the validation set, which is randomly selected from the

training set, is almost identical to the training set. Therefore, we can regard a point to

be included in the training set and therefore can be predicted well if dNN < 0.2. In Fig.

3.2(b) and (c), the square bracket indicates the range where dNN is as low as the that of

the training set (lower than 0.2), implying that EOS inside the square bracket could be

learned although they do not belong to the training set. Therefore, if atomic energies

are properly mapped, NNP should be able to predict the part of EOS inside the square

bracket.

Fig. 3.2(d) shows the reference EOS (black dots) with the EOS predicted by NNP

(blue line). The shade indicates the uncertainty by one standard deviation of predic-

tions of five different NNPs. Interestingly, NNP predicts the energy at the equilibrium
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Fig. 3.2: (a) The distribution of dNN for the training set. (b) The distribution of G in the

training set (blue dots) and the equation of state (EOS) (black solid circles), projected

onto principal component (PC) axes. (c) The dNN for each point in EOS. In (b), (c),

and (d), the square bracket indicates the same range for EOS where the dNN < 0.2. (d)

The EOS of silicon diamond crystal for DFT and NNP. The blue and red solid lines are

the average EOS over five NNPs that are trained with NVT and NPT MD snapshots,

respectively. The shades are one standard deviation from the average, indicating the

prediction uncertainty.
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volume of DFT accurately but fails to predict the slope and other points near the equi-

librium despite low RMSE for total energy. That is to say, NNP predicts the total

energy accurately, but the atomic energies are markedly wrong, which corresponds to

the ad hoc energy mapping.

The ad hoc energy mapping in this example happens because the training set con-

sists of structures of a fixed volume. Locally, there is a volume expansion and com-

pression. However, the expansion and compression occur at the same time, so they

cancel out (although not exact). Consequently, any energy term in atomic energy that

varies linearly to the volume does not change the total energy. Therefore, the slope

of EOS at the equilibrium point becomes an arbitrary number. The ad hoc mapping

can be removed by including structures with different volumes in the training set, or

by including virial stress in the loss function. The red line in Fig. 3.2(d) shows EOS

predicted with NNPs whose training set is constructed from MD snapshots under NPT

ensemble. As the fluctuation of cell volume averts the cancellation of local volume

changes, NNP can predict the slope and curvature of EOS reasonably.
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3.3.3 Si slab example

In the third example of a silicon slab model, the training set consists of MD snap-

shots of Si(100)-(2×2) slab with 128 atoms at a certain temperature between 100 and

1000 K. The structure is shown in Fig. 3.3(a). Unlike the previous example of sili-

con crystal, we cannot directly compare individual atomic energies as they are not

uniquely defined. Nevertheless, silicon atoms inside the bulk region have almost the

same local environment to crystalline atoms (dashed circle indicate the cutoff sphere).

Therefore, atomic energy in this region should be the same as that of crystalline atoms

[EDFT
at (bulk)]. Since EDFT

tot is given, the average EDFT
at for the surface region (red

atoms) can be obtained as [EDFT
tot − Nb · EDFT

at (bulk)]/Ns, where Nb and Ns are the

number of atoms in the bulk and surface regions, respectively. By summing over the

surface region, the value becomes independent of the atomic energy mapping.

Since the training set structures include the local environments of bulk and surface

atoms, one would expect NNP to predict atomic energy well for both regions. Figure

3.3(b) shows the average atomic energy error ∆Ēat(bulk) and ∆Ēat(surface) for NNPs

trained over MD snapshots of different temperatures. At the low temperature of 100 K,

while the RMSE of total energy is 0.3 meV/atom, the average atomic energy error is

−108 and 76 meV/atom for bulk and surface regions, respectively. This is another

example of ad hoc energy mapping. NNP predicts total energies in the training set

accurately, but the atomic energy mapping is wrong. The errors in bulk and surface

regions cancel out since all snapshots in the training set consist of the same number

of atoms in each region. In Fig. 3.3(b), it is noted that the atomic energy mapping

error decreases gradually as the temperature of the training set increases. At the high

temperature of 1000 K, the magnitude of atomic energy error becomes comparable to

RMSE of total energy (3 meV/atom).

To understand the temperature dependence of atomic energy mapping error, we

examined the distribution of training points in the symmetry function space. Figure

3.3(c) shows the distribution of training points of 100 and 1000 K, projected onto
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Fig. 3.3: (a) The structure of the relaxed Si(100)-(2×2) slab model. The atoms in

bulk and surface regions are colored blue and red, respectively. rc is the cutoff radius

of symmetry functions. (b) The average atomic energy difference between DFT and

NNPs for bulk and surface groups against the MD temperature of the training set. (c)

Scatter plot of G in the training set, projected onto principal components (PC). (d)

Schematic illustration of ad hoc energy mapping due to well-separated configurations.
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the first two principal components. At 100 K, the training points of bulk and surface

regions are well separated. In contrast, training points at 1000 K have much broader

distribution due to vibrations such that bulk and surface regions are more connected.

As schematically drawn in Fig. 3.3(d), if two configurations are well-separated as in

100 K, the offset between two configurations cannot be determined as any offset gives

almost the same total energy. On the other hand, if two configurations are connected as

in 1000 K, the information on the intermediate configurations help to adjust the energy

offset between basins. Therefore, the energy offset (surface energy in this example)

becomes more accurate as the temperature of the training set increases.

Following the above example, the intermediate regions between basins should be

sampled to avoid ad hoc energy mapping. Alternatively, adding structures that have

a different number of atoms in each basin can lift the ad hoc energy mapping. For

instance, if the slab model is trained with the bulk crystal structures, or slab structures

with different thickness, ad hoc energy mapping would have disappeared. However,

such deliberate choice of the training set would be difficult when the system becomes

more complicated.

For a systematic analysis, we develop a metric that measures the connectivity of

training points in the symmetry function space. We carry out a single-linkage cluster-

ing of training points. The single-linkage clustering is a kind of hierarchical clustering

method used in the statistical analysis. At the start, every training points are a clus-

ter of size one. At each step, two clusters with the shortest distance merge into one.

The distance between two clusters is set to the minimum Euclidean distance between

two points from each cluster. We define rg as the distance between the last two large

clusters, whose size is larger than a threshold value. The threshold is set to half of

the number of structures in the training set, but the result is largely insensitive to the

threshold. As rg gives the maximum distance among the groups of clusters, r−1g can

be regarded as the connectivity between clusters.

Figure 3.4(a) shows r−1g against the temperature of training sets for the slab model.
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error of the bulk versus r−1g for the silicon slab model.
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r−1g increases almost linearly with the temperature, supporting that the training set is

more connected at a higher temperature. Figure 3.4(b) shows the relationship between

∆Ēat(bulk) and r−1g . It is seen that the atomic energy mapping error decreases and

converges to a sufficiently low value as r−1g increases. While the numbers would vary

case by case, rg can serve as a tool to examine the connectivity of the training set

quantitatively. Thus, rg can be used as a guide when constructing the training set.
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3.3.4 Si nanocluster example

Albeit simple, the two examples in the previous sections demonstrate the ad hoc energy

mapping that originates from the limitations in the training set. In practice, a training

set usually includes various structures such as crystalline bulk, slab, and distorted crys-

tals. Therefore, the ad hoc energy mapping demonstrated in the above examples can be

avoided. Nevertheless, the error canceling between energy offsets of distinct configu-

rations exists in almost any structures, and it might be unnoticed if the training process

is monitored by only RMSE of total energy or atomic forces.

We demonstrate such a case in this example. The training set consists of MD snap-

shots of a 239-atom silicon nanocluster at 1000–1700 K. The structure of silicon clus-

ter relaxed at 0 K is shown in Fig. 3.5(a). The training and validation set consist of 832

and 208 snapshots, respectively. The analysis of rg confirms that the training points

are well connected.

Figure 3.5(b) shows RMSE for the total energy and force with respect to the train-

ing epoch. It also shows ∆Ēat(bulk) and ∆Ēat(surface) as defined in Section 3.3.3.

The analysis that is similar to the one in Section 3.3.2 indicates that the G points in

the slab model are close enough to the training set such that they can be learned. There-

fore, NNP is expected to predict the bulk and surface energies well. In Fig. 3.5(b), it is

seen that RMSE for total energy and atomic forces converges rapidly and remains al-

most constant after about 100 epochs, while ∆Ēat(bulk) and ∆Ēat(surface) converge

much slower. This shows the risk of terminating the training process by the conver-

gence of RMSE for total energy and atomic forces, as people usually do. Therefore,

it is recommended to monitor invariant quantities during the training process to as-

sess the quality of atomic energy mapping. Obviously, if we include the crystalline

and slab structures in the training set, ∆Ēat(bulk) and ∆Ēat(surface) would converge

much faster, but that does not guarantee the overall quality of atomic energy mapping.

After sufficient training epochs, the surface energies for (100)-(2×2), (110)-(2×1),

and (111)-(2×1) are in good agreement with DFT within 8 % (structures are relaxed
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Fig. 3.5: (a) Structure of Si239 nanocluster relaxed at 0K. (b) Convergence of RMSE

for total energy and atomic forces, and atomic energy mapping errors for surface and
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with NNP and DFT independently), whereas the errors are within 20 % at 200 epoch.

This implies that NNPs with proper atomic energy mapping are more transferable than

those with ad hoc energy mapping.
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3.4 Implication for multi-component system

In multi-component systems, the sum of Eat over the high-symmetry motif is uniquely

defined in DFT such that it can be used as reference values to test the atomic energy

mapping of NNP. For instance, Eat(Mg) + Eat(O) in fcc MgO is uniquely defined.

However, the relative offsets among different chemical species can be arbitrary values.

Nevertheless, the (ensemble average) atomic energy relative to its unary phase has

physical meaning (related to the energy of mixing), and it should be in a reasonable

range.

If the training set consists of only structures with single stoichiometry, the energy

offset becomes completely arbitrary. For example, Eat(Ge) + ∆ and Eat(Te) − ∆ in

GeTe produce exactly the same total energies and atomic forces even for unreasonable

values of ∆ (where Eat is defined relative to the unary phase). This corresponds to

the ad hoc energy mapping along with the composition in multi-component systems,

which can undermine the stability of simulations. For instance, we found that MD sim-

ulations of liquid GeTe are often plagued by unphysical phase separation. The phase

separation occurs when the training set consists of only 1:1 composition, or several

compositions near 1:1 but without unary phases. The problem can be overcome by

including structures with various compositions from 0:1 to 1:0. The atomic energy is

well defined at the end compositions, and the intermediate compositions connects the

atomic energies among different compositions.

This is analogous to the ad hoc energy mapping in Section 3.3.2, but the ad hoc

energy mapping is along with the local composition rather than the local density. There

is local fluctuation in the composition, but they cancel out in the training set with a

single composition. Note that this does not mean that atomic energies are uniquely

defined at mixed compositions (only the average atomic energy is uniquely defined).

The effect of continuous sampling over composition space is demonstrated in Fig.

3.6 for GeTe system. When the training set consists of only compositions near 1:1,
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ad hoc energy mapping occurs, and unphysical phase separation occurs [Fig. 3.6(b)].

However, when the whole composition range is sampled with the trajectory of interface

reaction, ad hoc energy mapping disappears, and the liquid phase is well described

without the phase separation issue.

Due to the additional degree of freedom in the composition, ad hoc energy map-

ping is more prevalent in multi-component systems, which can lead to stability issues.

Therefore, more care needs to be taken for such systems.
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Fig. 3.6: (a) Average atomic energies of Ge and Te in the liquids of various composi-

tions. Filled circles are results when the training set includes Ge, Ge3Te, GeTe, GeTe3,

and Te. The empty squares are results when the training set includes only compositions
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shots. (b) The snapshot with unphysical phase separation, which occurs when NNP is

trained over only compositions near 1:1.
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3.5 Summary

To summarize, we investigated the atomic energy mapping of neural network poten-

tials. We first showed that the transferable atomic energy can be defined within DFT.

The existence of transferable atomic energy in DFT implies that the objective of NNP

is to learn the underlying atomic energy function defined at the DFT level when only

total energies are informed. The transferability of NNP lies in the accuracy of atomic

energy mapping. The examples consistently support that NNP is capable of learning

underlying atomic energy function from total energies. On the other hand, it was also

observed that NNP is vulnerable to ad hoc energy mapping, where NNP predicts the

total energy accurately for the given training set, but gives markedly wrong atomic

energy function. The examples show simple cases where the constraints on the molec-

ular dynamics simulations, such as fixed volume, fixed composition, or a fixed number

of atoms in each configuration, leads to ad hoc energy mapping. The atomic energy

mapping can be improved by choosing the training set carefully (removing constraints

or improving connectivity) and monitoring the atomic energy mapping with some in-

variant quantities during the training process. The implication for multi-component

systems is also discussed. Although we have focused our discussion on NNP, the con-

clusion is generally applicable to other machine learning potentials that are based on

the locality (eqn 3.1).
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Chapter 4

Metadynamics sampling

4.1 Introduction

One of the most frequent obstacles to the development of neural network potential

is that it is prone to failures during the molecular dynamics simulation. The failure

indicate the situation where atoms visit untrained (undersampled) area in the symmetry

function vector space, and then the system evolves to the states with unphysically high

energy. The failure happens because NNP cannot extrapolate well, given no physical

background.

For the conventional applications, one needs to construct a training set that should

contain all possible local environments that can appear during the simulations. How-

ever, knowing what structure would emerge during the simulation a priori is difficult

even with intuition, experience, and the knowledge about the target system. The usual

procedure of developing NNP has been a tedious trial and error process. First, one con-

structs the initial training set and train neural network potential. Second, one performs

simulations and observes failures. Third, one reconstructs the training set so that it

includes the new local environment that emerged during the last simulation. This pro-

cess can be repeated many times. This iterative procedure takes a huge amount of time

and effort. Furthermore, those failures might be rare events or slow process so it might
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take a long time before one observe failures in the simulation. More importantly, it can

silently fail without any noticeable indications. Therefore, much study has focused on

the uncertainty estimation and the detection of failures during the simulation.[42, 76–

79]

Gaussian approximation potential tries to detect this problem by predicting the

confidence interval, which is available as a part of the Gaussian process regression

model. NNP has no such built-in confidence interval, so other workarounds were sug-

gested. The ensemble of NNP is one way to measure the prediction uncertainty of

NNP.[42, 76, 77] In the method of ensemble, several independent NNPs (preferably

with different network structures) are trained. The independent NNPs would give sim-

ilar results for the training set, but their prediction would diverge when they are giving

a prediction for the untrained region. Then, the standard deviation of the prediction

value of NNPs is proportional to the prediction uncertainty. However, the method of

ensemble needs several NNPs to be trained, requiring a much higher computational

cost.

Another popular approach to the problem of constructing a training set is to never

stop the training. Active learning, or so-called on-the-fly method, trains models itera-

tively while updating the training set during the simulation. Active learning is widely

adopted throughout the studies.[76, 78–80] It utilizes the method of uncertainty esti-

mation described above to check if ab initio calculation is needed or not. If machine

learning potential is accurate enough, the simulation is proceeded with machine learn-

ing potential. Otherwise, ab initio calculation is performed, and the results are added

to the training set. As the simulation goes on, a machine learning potential is progres-

sively improved, and less and less ab initio calculations would be required.

However, active learning has some limitations. First, the simulation is limited to

small size because one might have to perform ab initio calculation. This severely limits

the full potential of machine learning potentials. Also, the employment is much diffi-

cult, because then ab initio code and MD code have to be coupled, and system running
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MD also need the capability to run ab initio calculation, where the suitable system

architecture for MD and ab initio calculation may differ. Moreover, active learning is

not a solution to the problems of sampling methods, rather a complementary method

to them; Active learning must be performed with other sampling methods and suffers

the same problems.

A systematic and efficient sampling method that can generate a robust training set

can greatly cut the development time and make machine learning potential easily ac-

cessible. In this vein, a few sampling methods were suggested,[28, 81, 82] but still, the

problem of sampling remains the main challenge. In the following section, we briefly

review some of the sampling methods proposed and suggest a novel metadynamics

sampling scheme.
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4.2 Sampling methods

Molecular dynamics

Molecular dynamics (MD) is the most common method to generate a training set.

Multiple snapshots of a certain interval are collected and used as a training set. If one

generates a training set from MD at the target application temperature, resulting in ma-

chine learning potential becoming too fragile as the high energy configurations (which

occurs due to thermal fluctuations) are rarely sampled. Therefore, it is common to

perform MD at high temperatures to capture high-energy configurations and increase

stability. The advantage of using MD sampling is that it is simple and readily available

in various codes.

However, MD sampling has a few disadvantages. First, the sampling is biased to-

ward the low-energy region, so high energy states are undersampled. This also means

that sampling configurations that are separated by high energy barriers or rare events

are very challenging or even impractical. Second, the high-temperature strategy may

not be feasible for soft materials such as organic molecules because they can break

apart at high temperatures. Lastly, the training set generated by MD sampling is highly

redundant. In many cases, most snapshots have the same distribution of local environ-

ments or the same characteristics, which gives little information. Despite these disad-

vantages, it is still a popular method for its simplicity. In many cases, MD simulation

itself is also our target application. Therefore, MD is often combined with on-the-fly

method.

Typically, the prediction performance of a machine learning model increases and

converges at some point as the number of data increases. However, increasing the

number of data by reducing sampling interval would not increase the prediction per-

formance much at some point, because the sequential snapshots are very similar and

not much new information is contained in the new snapshots. Due to the redundancy

of molecular dynamics sampling, the prediction performance converges with a smaller
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number of snapshots than other sampling methods.

Normal mode sampling

Normal mode sampling (NMS) was proposed by J. S. Smith et al. in the paper develop-

ing neural network potential for organic molecules.[28] NMS was suggested to obtain

physically relevant structures in an accelerated way without long redundant molecular

dynamics simulations. First, all structures are relaxed. Next, Nf normal mode coor-

dinates and corresponding force constants are calculated for relaxed structures. Then,

Nf uniformly-distributed pseudo-random numbers ci are generated such that
∑Nf

i ci

is in the interval [0, 1]. Then, we set the harmonic potential due to displacement for ith

normal mode, Ri, is equal to the average energy at temperature T scaled by ci:

1

2
KiR

2
i =

3

2
ciNatomkT , (4.1)

whereKi is the force constant corresponding to ith normal mode. Solving forRi gives:

Ri = ±
√

3ciNatomkbT

Ki
. (4.2)

The sign of Ri is determined randomly. Now, we can generate distorted high-

energy structures by the superposition of Ri. NMS generates samples uniformly along

the energy scale, increasing the stability of machine-learning potential. It is suitable

for systems where the local vibration within a well-defined structure dominates the

dynamics such as crystals and some molecules.

There are downsides to the method. First, NMS requires expensive normal mode

calculations, which can be prohibitive with large systems. Second, it might not be

suitable for systems that are not well represented by a few minima (e.g., liquid and

amorphous). Also, as pointed out in Ref. [82], it is based on the harmonic approxima-

tion, so it might not be suitable for large distortions that show strong anharmonicity.

Another important weak point is that NMS cannot be used to explore and sample other

metastable configurations or barriers.
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Random structure search

Random structure search (RSS) was originally suggested as a method to perform struc-

ture searching (finding stable structures for a system with unknown structures).[83]

The basic idea of RSS is simple. We first generate random (but sensible) structures.

Then, each random structure is minimized to find the most stable structure in each

basin. The sensible structures are generated by imposing some constraints such as

symmetry, bond lengths, chemical senses to bias searches toward low energy minima.

Ref. [83] used ab initio calculation to minimize structures, so it was named as ab initio

random structure search (AIRSS).

The idea of the random structure search was later adopted in the application of

developing machine learning potential.[81, 84] In their approach named GAP driven

random structure search (GAP-RSS), they first generate a machine learning potential

(GAP) from random structures. Then, a large set of random structures are relaxed with

the machine learning potential. The relevant minima are selected considering energy

and diversity. Again, the representative structures are selected from the minimization

trajectory leading to those pre-selected structures. The next generation of machine

learning potential is generated, and the whole process is repeated until a certain number

of structures are collected.

The advantages of GAP-RSS are as follows: first, it can explore a wide range of

local minima. Second, by imposing energy criteria in the structure selection, energeti-

cally relevant structures are collected. Third, it is efficient as we only perform a min-

imal amount of ab initio calculations as we perform minimization with the machine

learning potential.

The downsides are as follows: first, it requires an iterative refinement of ma-

chine learning potential like active learning methods, which can be costly, especially

for neural-network-based potentials. Second, the minimization trajectory is generated

from the potential energy surface of machine learning potential, which could be less

relevant to the potential energy surface of DFT. Lastly, although RSS is great for
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searching bulk crystalline structures, it might not be optimal for learning dynamics

of atoms and sampling disordered or non-periodic systems.

Metadynamics sampling

Metadynamics[55] is a powerful technique that enhances the sampling of molecular

dynamics simulations. A detailed description of metadynamics is given in Section 2.3.

In this section, we describe the applications of metadynamics to the generation of data

set for machine learning potentials. We first introduce the previous related study and

then propose our novel metadynamics sampling scheme.

The first application of metadynamics for machine learning potential was sug-

gested by J. E. Herr et al. [82] They assessed the effectiveness of MD, NMS, and meta-

dynamics sampling for a nicotine molecule and a ten-water-molecule cluster. They

used high-dimensional neural network potential with the ANI-1 modified symmetry

functions[28], and a distance matrix (Dij = 1/Rij) is used as a collective variable.

Thus, the bias potential is defined as:

Ub =

Nsample∑
i=1

h exp

(
−|D−Di|2

2σ2

)
, (4.3)

where Nsample is the number of all visited structures. They found that MD sampling is

unacceptably poor, while NMS and metadynamics sampling gives comparable results.

However, the method using a distance matrix as a collective variable suffers from

problems. First, it is difficult to apply the method to the periodic or large system be-

cause a distance matrix is not well defined in the periodic system and the size scales

to N2
atom. Second, all distances are equally treated while they are not equally impor-

tant. This can cause redundant sampling. Lastly, the sampling can be inefficient as CV

components can be degenerate. For example, If two water molecules are far away, the

distances between the two hydrogens are degenerate. Even if the H-H distance is well

sampled in one water molecule, it is not reflected on the H-H distance in the other

molecule. Therefore, one is double sampling the equivalent collective variables.
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In this dissertation, we propose a novel metadynamics method, which directly use

a descriptor vector, which is fed into the machine learning model, as a collective vari-

able. Here, we abbreviate the descriptor vector as G. For instance, if a descriptor vector

is 30-D, CV is 30-D, too. Unlike conventional metadynamics, where CV describes the

state of the whole system, CV describes the local environment of each atom in the sug-

gested method. The bias potential is constructed in the descriptor space, and all atoms

of the same chemical species share the bias potential. The bias potential added to the

system is a sum of atomic bias potential in resemblance to eqn 2.15:

Ub,tot =

Natom∑
i=1

Ub (Gi) . (4.4)

By using a local descriptor as a collective variable and then defining total bias

potential as a sum of local contributions, we can explore the local environment space

for each atom rather than the configuration space of the whole system.

Since we use a local descriptor, the application to periodic or large system is trivial

(the dimension of CV is constant regardless of the system size). Also, by sharing bias

potential between equivalent atoms (of the same chemical species), the problem of

degeneracy vanishes. As pointed out in Chapter 3, machine learning potential learns

transferable atomic energy as a function of the local environment (local descriptor).

Therefore, enhancing sampling directly on the descriptor space would improve the

training without the problem of redundancy.

The similar form of sharing bias potential was suggested recently.[61] They pointed

out the problem of inefficient sampling of degenerate CVs. Therefore, they grouped

multiple identical CVs into a family, inside which the same bias potential is shared.

The method is based on the parallel bias metadynamics, so it is named parallel bias

metadynamics with partitioned families (PBMetaDPF). Our method can be regarded

as a kind of partitioned family method (but not parallel bias metadynamics). The whole

system can be considered to be described by NGNatom collective variables, but all

atoms of the same chemical species are indistinguishable, so their CVs are degenerate.
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Therefore, all collective variables that correspond to the same symmetry function are

grouped into a family, where they share the same bias potential.

Using geometry-adapted Gaussians [62] (see Section 2.3.1 for details), the bias

potential of an atom is defined as:

Ub (G) =

Nsample∑
i=1

h exp

−1

2

NG∑
j=1

NG∑
k=1

(
Gj −G(i)

j

)
σ
−2,(i)
jk

(
Gk −G

(i)
k

) , (4.5)

where Nsample is the number of all sampled G’s and NG is the dimension of the de-

scriptor vector, and G(i)
j is jth component of the descriptor vector of ith sample. σ2jk

is the covariance between jth and kth descriptor components. It depends on the value

of G and computed as:

σ2jk(G) = σ2G

Natom∑
i=1

∑
α=x,y,z

∂Gj
∂Ri,α

∂Gk
∂Ri,α

, (4.6)

where α indicates three axes of Cartesian coordinates, and σG is a hyperparameter

that controls the width of Gaussian potential. The biasing force acting on each atom is

computed as:

Fi,α = −
∂Ub,tot

∂Ri,α
= −

Natom∑
j=1

NG∑
s=1

∂Ub,i
∂Gj,s

∂Gj,s
∂Ri,α

. (4.7)

The geometry-adapted Gaussians are adopted because the components of a de-

scriptor vector are often highly correlated. Especially, atom-centered symmetry func-

tions are highly correlated to each other. Use of isotropic Gaussians (eqn 2.50) results

in inefficient sampling in such a case. If one uses a small σ, then it takes too much

time to fill and explore the energy surface. Whereas, directions with small variance are

effectively ignored if one uses a large σ. Moreover, the volume swept by the same de-

gree of perturbation to atomic coordinates is position-dependent. This leads to biased

sampling toward the region where the volume is larger. For instance, a radial symmetry

function (assumingRs = 0) has a larger value at higher atom density. This means that,
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given random displacements to nearby atoms, the change in the symmetry function

value is also larger at higher atom density. Therefore, the sampling is biased toward

high-density configurations, because it takes more time to fill the region with higher

density. For such reasons, it is recommended to use adaptive Gaussians for correlated

descriptors, despite of increased computational cost and complexity.

We also suggest a variation named partial bias metadynamics. In the partial bias

metadynamics, only a set of a few selected atoms contribute to the total bias potential:

Ub,tot =

N<Natom∑
i=1

Ub (Gi) . (4.8)

The partial bias metadynamics is suggested to enhance the sampling of defective

structures embedded in the crystalline bulk. Since every atom contributes to the bias

potential in the original scheme, the biasing force drives all atoms out of crystalline

structure simultaneously. Therefore, it can be difficult to sample defects where other

surroundings are still in the crystalline phase. The partial bias metadynamics tries to

address such a problem by applying atomic bias potential only to a few selected atoms

(which are spatially separated) so that the selected atoms search new configurations

while the majority remains in the crystalline state. The downside is that the sampling

is more biased toward the crystalline phase like molecular dynamics sampling, which

could be handled with GDF weighting[13] (see Section 2.2.4).

One might be concerned about the high dimensionality of a descriptor vector. Since

the time to sample N -dimensional space would increase exponentially (for instance,

sampling a grid of five points along ten dimensions already requires 510 ≈ 107 points),

it is often advised to keep a small set of CV. However, only a tiny fraction of the entire

volume of the descriptor space is mathematically possible (not all G have the cor-

responding local environment), and the small fraction of that tiny volume is energeti-

cally accessible. Furthermore, the regularization on a covariance matrix σ2jk effectively

limits the dimension one explores; the exploration is mainly focused on the first few

principal components, and the lesser components are effectively ignored. Therefore,
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the sampling of G-space is feasible despite its high dimensionality.

There are three hyperparameters in the method: h, σG, and ∆t. h and σG con-

trol the height and the width of the Gaussian potential, respectively. Combined, they

determine the strength of biasing force. σG determines a similarity measure between

structures. When one uses too small σG, it would take too much time to fill the en-

ergy surface. In contrast, too large σG value would reduce the overall effectiveness

of metadynamics. If an empirical potential is available for the target system, σG can

be determined with preliminary tests using the empirical potential. The value of h is

determined so that the magnitude of the biasing force is in a reasonable range. If it

is too small, the biasing force has no effect. If it is too large, the biasing force is so

large that the simulation becomes unstable. ∆t is the interval of adding samples. If

∆t is too small, not only the computational cost is prohibitive, but also the dynamics

are severely affected. A sensible choice of ∆t is the interval of sampling data set from

the trajectory. The choice of hyperparameters are mostly transferable to other systems.

One can adjust h and σG according to the cohesive energy or atomic density of a new

target system.

There is a resemblance between eqn 2.15 and eqn 4.4, and between eqn 2.16 and

eqn 4.7. The only difference is whether evaluate atomic energy Eat,i or atomic bias

potential Ub,i. Therefore, the metadynamics method can be implemented in a straight-

forward manner by swapping neural network to a bias evaluation part. We imple-

mented a pair style that computes the bias potential to LAMMPS molecular dynamics

package[85]. One can interface LAMMPS with other ab initio simulation packages

such as VASP to perform ab initio metadynamics simulation. The interfacing can be

done through either calling VASP and LAMMPS in ASE[86] or LAMMPS client call-

ing VASP server (LAMMPS support server-client model).

For the remaining part of this chapter, we demonstrate the applications of new

metadynamics method with the neural network potentials, using an atom-centered

symmetry function vector as a collective variable.
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4.3 Computational details

Generation of training set

Metadynamics simulations are performed with LAMMPS[85], which is coupled with

an ab initio calculation code (VASP) using a server/client model. The parameters for

metadynamics simulations are chosen with preliminary tests using classical potentials.

(We note that metadynamics simulation is rather insensitive to the choice of symmetry

function parameters) Multiple metadynamics simulations are carried out with different

settings, such as starting structure, metadynamics parameters, and pressure, to cover a

much wider range of configurations efficiently and obtain a data set of sufficient size.

Initial structures are taken from a few well-known stable crystalline structures and sta-

ble slab structures. The training set contains a few 20–40 ps metadynamics trajectories

with the timestep of 2 fs. For silicon, we added thirty distorted diamond structures and

an isolated atom. We include distorted crystals to give a better description of elastic

properties because elastic constants show high error when trained only with dynamics

trajectories. Detailed information on the metadynamics data set is given by Table 4.1

for silicon and Table 4.2 for aluminum. The data set is split randomly into a training

set and a validation set with 95:5 ratio. Using a larger σG, one can sample a wide

range of configurations more quickly, whereas a small σG is used to sample more of

relevant configurations. The high-pressure simulation is included for silicon to cover

high-pressure phases. Partial bias simulations and the simulations starting from defec-

tive crystals are included specifically to enhance to sampling of defective structures.

All density functional theory calculations were performed with plane-wave based

Vienna ab initio simulation package (VASP)[87–89] using projector-augmented-wave

pseudopotentials[90]. Generalized gradient approximation with Perdew-Burke-Ernzerhof

(PBE) functional[91] is used for the description of exchange-correlation energy of

electrons. We perform one-shot calculations on the sampled trajectories at higher cal-

culation settings. The calculation settings such as cutoff energy for plane-wave basis
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and the number of k-point are determined by convergence tests. The Monkhorst-Pack

grid is used to sample k-points with the spacing between k-points in the reciprocal

space specified. The settings were set such that the total energy RMSE converges

within 10 meV/atom, and the force RMSE converges within 0.03 eV/Å for randomly

sampled snapshots. For silicon, we used a cutoff energy of 350 eV and k-point spac-

ing of 0.157 Å
−1

. For aluminum, the cutoff energy of 250 eV and k-point spacing of

0.2 Å
−1

were used for one-shot calculations. Snapshots with low convergence (too

many electronic steps) or too large forces (> 6 eV/Å) are discarded to improve the

quality of the final data set.
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Training of neural network potential

Symmetry function parameters are selected using CUR method[9, 39] (see Section

2.2.2) from a large initial pool of 233 parameters that are systematically constructed.

In the process of CUR, each symmetry function is weighted by the estimated eval-

uation cost, which depends on the cutoff radius and whether it is a radial or an an-

gular function so that the most cost-effective set of parameters is selected. CUR is

performed on the diverse data set generated from a silicon metadynamics trajectory

with Stillinger-Weber potential. The CUR selection is terminated when the error drops

below 0.2 %, resulting 47 parameters. The same parameter set is used for both silicon

and aluminum as we note that a good parameter set for one system is mostly trans-

ferable to other systems. The final parameter set used in the following applications is

listed in Table 4.3.

The structure of the atomic neural network is set to two hidden layers with 120 (90)

hidden nodes each, i.e., 47-120-120-1 (47-90-90-1) network, for silicon (aluminum).

The number of hidden nodes per layer is optimized to reduce the error without over-

fitting. The training is performed with momentum-based Adam optimizer[50] with

minibatch (batch size of 20 snapshots), which gives good performance under reason-

able computational cost. An exponentially decaying learning rate is used to improve

the convergence. We found it is efficient to employ a multi-step procedure, where a

large force coefficient is used in the first step, and a small or zero force coefficient

(with a lower learning rate) is used in the second step. In the first step, force error is

gradually reduced, but energy error fluctuates widely. In the second step, energy er-

ror converges quickly while the force error increases by a small amount. The force

and stress coefficient µ and ν (defined in eqn 2.46) used in the first step is 0.1 Å
2

and

0.0005–0.001 eV2/kbar2.

Five percent of the entire data set is randomly collected as a validation set. The

overfitting, where the error for the validation set increases, is monitored during the

training process, and the early-stopping method is used in the case of overfitting.
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Table 4.3: Symmetry function parameters

Type Rc (Å) η (Å
−2

) ζ λ

radial 6.5 0.000

radial 6.5 0.059

radial 6.5 0.131

radial 5.0 0.000

radial 5.0 0.131

radial 5.0 0.253

radial 3.5 0.000

radial 3.5 0.090

radial 3.5 0.253

radial 3.5 0.464

radial 3.5 0.623

ang.n. 6.5 0.000 1 −1

ang.n. 6.5 0.000 4 −1

ang.n. 6.5 0.035 4 −1

ang.n. 6.5 0.000 8 −1

ang.n. 6.5 0.035 1 1

ang.n. 6.5 0.000 2 1

ang.n. 6.5 0.000 8 1

ang.n. 6.5 0.000 16 1

ang.n. 6.5 0.035 16 1

ang.n. 5.0 0.035 1 −1

ang.n. 5.0 0.000 2 −1

ang.n. 5.0 0.090 2 −1

Type Rc (Å) η (Å
−2

) ζ λ

ang.n. 5.0 0.000 4 −1

ang.n. 5.0 0.000 8 −1

ang.n. 5.0 0.000 4 1

ang.n. 5.0 0.090 4 1

ang.n. 5.0 0.000 16 1

ang.n. 5.0 0.184 16 1

ang.w. 5.0 0.000 1 −1

ang.w. 5.0 0.090 1 −1

ang.w. 5.0 0.000 2 1

ang.w. 5.0 0.184 4 1

ang.w. 5.0 0.000 8 1

ang.w. 5.0 0.090 8 1

ang.w. 5.0 0.000 16 1

ang.w. 5.0 0.090 16 1

ang.w. 3.5 0.344 1 −1

ang.w. 3.5 0.000 2 −1

ang.w. 3.5 0.184 2 −1

ang.w. 3.5 0.000 1 1

ang.w. 3.5 0.184 2 1

ang.w. 3.5 0.000 4 1

ang.w. 3.5 0.344 4 1

ang.w. 3.5 0.000 8 1

ang.w. 3.5 0.184 8 1

ang.w. 3.5 0.000 16 1
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4.4 Applications

There can be many applications of metadynamics for the development of machine

learning potentials. We suggest three main applications here.

First, metadynamics can be performed to catch unexpected failures of premade

machine learning potentials. Since machine learning potentials cannot give reliable

predictions to an unexplored region, it is possible that an unexplored high-energy re-

gion is predicted to have low energy, leading to a hole in the potential energy surface.

This can lead to the emergence of high energy structural motifs, high energy phases, or

even catastrophic failures.[13] Usual process to determine if premade machine learn-

ing potential is stable or problematic, one performs time-consuming molecular dynam-

ics simulation for a few nanoseconds to check if any failure happens. However, since a

failure can be a rare event, even if no failure is detected in the test run, the problem can

be there in the production run. By doing metadynamics with premade machine learn-

ing potentials, we can catch those possible failures efficiently. As the metadynamics

simulation proceeds, the barrier is accumulated, and the energy of the system increases

until it finds a hole in the potential energy surface. Eventually, NNP would slip into an

unexplored, low-energy region (failure). Additionally, the barrier height at the failure

can give a measure of the stability of NNP.

The second one is to sample wide range of G-space systematically to develop

general-purpose potential. In order to develop general-purpose potential, one must

construct a huge data set which contains a vast range of local environment. This is

a formidable task and requires deep knowledge about the target system. Unlike clas-

sical potentials, most of the machine learning potentials developed so far have been

mostly like develop once, use once. Since machine learning potential can only de-

scribe the structures that are included in the training set, and it is difficult to construct

a huge training set that covers a wide range of local configurations, machine learning

potentials have been developed aiming very specific applications. Therefore, they can-
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not be used in other applications. There have been attempts to make general-purpose

potentials, which can be distributed and used in most applications, with a carefully

selected assortment of data set.[92, 93] We show that metadynamics sampling can

sample a wide range of local environments automatically so that it can be used to

develop general-purpose potentials.

The third application is to improve the stability of machine learning potential. It

is closely related to the first application. The construction of a training set is a bottle-

neck for developing machine learning potential because when we train our model and

perform simulations, it is very common that simulation fails with the appearance of un-

expected configurations. If one can easily construct a robust training set, which results

in stable potential, the development time can be cut significantly, and machine learning

potential can be more easily accessible and widely adopted. The failure happens be-

cause conventional molecular dynamics sampling is biased toward low energy region,

and high energy barriers and configurations are not sampled enough.[13] Metadynam-

ics sampling can sample high energy structures by filling potential energy surface from

the bottom, eliminating holes in the low energy region of the potential energy surface.

J. E. Herr et al.[82] demonstrated the improvement of stability with his method of

using a distance matrix.

In the following sections, we demonstrate three applications of metadynamics for

developing machine learning potentials using neural network potentials.
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4.4.1 Catching unexpected failures

The first application is a little bit different than other two applications. While the other

two use metadynamics to generate a training set, the first application uses metadynam-

ics to assess the quality of machine learning potentials. When we develop machine

learning potential for a certain system, it is quite common that simulation fails as un-

expected local environments emerge. It is one of the major bottlenecks hindering the

development process. Prior to the application, we need to know whether the potential

is appropriate for the simulation or not. If it gives configurations that have high en-

ergy in DFT due to inaccurate potential energy surface, the potential need refinement

before it can be used in the simulation. Therefore, we first check the stability of ma-

chine learning potential we made by performing time-consuming molecular dynamics

simulation for a few nanoseconds to find out if any failure occurs. However, a failure

can be a rare event, which means that even if the potential passed the test, it could still

give unreliable results during the actual application runs. Since metadynamics fills the

potential energy surface from the low energy region, it can find any hole in the poten-

tial energy surface efficiently, driving the simulation to possible failures in a very short

time.

During the development of neural network potential for GeTe liquid system (the

details are not given here as it would be out of scope of the dissertation), we made

several versions of potentials and found that some potential leads to unphysical short

bonds or phase separation issues, while others do not. We performed metadynamics

simulations with those potentials to catch any possible problems and compare the sta-

bility between potentials. The results are summarized in Fig. 4.1.

By performing metadynamics simulation with premade potentials, we found pos-

sible issues such as phase separation or unphysical short bond formation efficiently

in a very short time compared to conventional molecular dynamics simulation. The

blue line shows the potential that was plagued by the phase separation problem. As

can be seen, it gives lower energy for phase-separated configurations, driving simu-
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Fig. 4.1: Evolution of potential energy of premade neural network potentials (NNP)

during metadynamics simulation. Different colors indicate different versions of NNP.

Insets show the final configurations. The blue line shows phase separation and the

orange line shows short bond formation (∼1.6 Å) as well as phase separation.

90



lations to phase separation. The orange line in Fig. 4.1 shows the energy during the

metadynamics simulation for the potential that showed no noticeable problem during

molecular dynamics simulations. However, it was found to give lower energy for short

bonds (bond length of about 1.6 Å) and phase separation. The barrier was higher than

the blue one, so it would be a much rare failure. Thus, the failure was not detected in

the test simulation. Nevertheless, it is likely for simulations to fail by the formation of

short bonds at a higher temperature. Without metadynamics simulations, this kind of

failure with high energy barriers (rare events) would be difficult to detect in advance.

We can also compare stability between potentials by looking at where those po-

tentials fail; the one fails later at higher energy is more stable than the one fails earlier

at lower energy. Green and red lines in Fig. 4.1 show no noticeable failures during the

same period, indicating that they have higher stability than other two potentials.

For the case of short bond formation, the failure is obvious. However, sometimes

the failure is more subtle and difficult to notice by just looking at it. We can check

whether the simulation failed or not by calculating a few DFT energy along the trajec-

tory and see if the gap between NNP energy and DFT energy suddenly increases or

lose the correlation (see Section 4.4.3).
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4.4.2 Developing a general-purpose neural network potential

Developing general-purpose machine learning potential is a formidable task. It in-

volves the construction of a huge data set that contains a wide range of local config-

urations that can appear during the simulations, which requires human intuition and

deep knowledge about the system and maybe several iterations of refinement. Re-

cently, Botu et al.[92] developed a general-purpose NNP for aluminum, and Bartók

et al.[93] developed a general-purpose GAP for silicon with a carefully selected data

set, encompassing crystals, surfaces, defects, liquids, etc. They performed extensive

tests on various properties. Still, it is difficult to guarantee if the data set contains all

relevant configurations. Thus, they rely on uncertainty estimation to ensure that the

test configuration is covered. When the target system becomes more complex systems,

where its physics is not well known, or multiple elements are concerned, it becomes

nearly impossible to manually construct a huge data set encompassing all relevant local

configurations.

We suggested a metadynamics sampling method where the dynamics is altered

such that it searches local environment space for each atom. The search is performed

from low energy to higher energy configurations so that only energetically relevant

configurations are sampled. Therefore, one can systematically sample a wide range

of energetically relevant local configurations using metadynamics sampling without

much human intuition or deep knowledge about the target system. The generated train-

ing set can be used to develop general-purpose potentials more easily.

In this section, we first demonstrate general-purpose neural network potential us-

ing Stillinger-Weber potential for silicon as a reference to show the possibility of con-

structing general-purpose potential with metadynamics sampling. Classical potential

is used as a testbed because it has a clearly defined transfer range of atomic energy and

simpler potential energy surface. Then, we demonstrate and validate general-purpose

NNPs for silicon and aluminum, which are typical covalent and metallic systems, using

DFT as a reference.
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Stillinger-Weber potential

First, we develop general-purpose potential for silicon but using Stillinger-Weber po-

tential [94] as a reference. Stillinger-Weber potential is a classical potential where the

energy is defined as:

E =
∑
i

∑
j>i

φ2(rij) +
∑
i

∑
j 6=i

∑
k>j

φ3(rij , rik, θijk) , (4.9)

φ2(rij) = Aijεij

[
Bij

(
σij
rij

)pij
−
(
σij
rij

)qij]
exp

(
σij

rij − aijσij

)
,

(4.10)

φ3(rij , rik, θijk) = λijkεijk [cos θijk − cos θ0,ijk]
2

× exp

(
γijσij

rij − aijσij

)
exp

(
γikσik

rik − aikσik

)
, (4.11)

where rij is the distance between ith atom and jth atom, θijk is the angle ∠jik, φ2 is

a two-body term, and φ3 is a three-body term. The cutoff distance is given by a · σ,

which is 3.77 Å for the silicon potential we used.

We first demonstrate a general-purpose potential using a classical potential as a

reference for several reasons. First, the classical potential is cheap in terms of compu-

tational cost. We can quickly test and iterate through to check the potential of metady-

namics sampling. It is appropriate for a preliminary test before we apply metadynam-

ics to DFT calculations. Second, it does not suffer from transferability issues since the

classical potential has a clearly defined transfer range. That is, atomic energy is pre-

cisely determined by the atomic arrangement within the specified cutoff radius. If the

transfer range is not clearly defined, the error from using a finite cutoff radius can un-

dermine the transferability of the neural network potential. Third, the potential energy

surface of the classical potential is less complex than that of DFT. It would be easier

for neural network potential to predict the potential energy surface of the classical po-

tential. If the potential energy surface becomes too complex, the performance of the

model can be limited by its representability.
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The metadynamics simulation is performed with a few different settings, all start-

ing from the diamond crystal structure. A metadynamics simulation with small σG

samples the vicinity of crystalline structures, while a metadynamics simulation with

large σG samples more various configurations such as amorphous, surfaces, and cor-

ner atoms of clusters. We also included a metadynamics simulation with high pressure

so that high-pressure polymorphs could be sampled, and partial bias simulation to en-

hance sampling over defective structures.

To demonstrate that the metadynamics indeed samples a wide range of local con-

figurations, we plot the sampling density of metadynamics sampling and high-temperature

molecular dynamics sampling (1500–3000 K) in Fig. 4.2. The sampling density is eval-

uated over the two principal components of G (two combinations of principal axes are

shown to give a more clear picture). It can be clearly seen that metadynamics sam-

pling covered a much wider range in G-space. To be specific, metadynamics covered

dense configurations and the configurations that are similar to surfaces and corners of

nanoclusters, which could not be sampled with high-temperature molecular dynamics.

The neural network potential trained with metadynamics training set is validated

by comparing a number of static properties such as elastic properties, surface energies,

and defect formation energies to the reference using a modified version of the testing

code (silicon-testing-framework) from Ref. [93]. The results are listed in Table 4.4.

Additionally, the equation of states for polymorphs, energy-strain curves, the energy

along stacking fault, and the energy along the vacancy migration path are plotted in

Fig. 4.3. The results are rather striking. Trained with only a few metadynamics simu-

lation, the neural network potential gives almost perfect results (within 3 % error) for

all properties that are tested, although those properties are not explicitly included in

the training set.

One thing to note is that atomic energy is not uniquely defined in Stillinger-Weber

potential. Although all properties were in great match, the individual atomic energy of

neural network potential and Stillinger-Weber potential do not have a good correlation
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Fig. 4.2: Sampling density of high-temperature molecular dynamics (1500–3000 K;

orange) and metadynamics sampling (blue) for Stillinger-Weber potential. The density
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principal components. Additionally, the density projected onto one axis is plotted over

the axis. All simulations start from the diamond crystal structure.

95



Ta
bl

e
4.

4:
C

om
pa

ri
so

n
of

va
ri

ou
s

st
at

ic
pr

op
er

tie
s

be
tw

ee
n

th
e

re
fe

re
nc

e
St

ill
in

ge
r-

W
eb

er
po

te
nt

ia
l(

SW
)

an
d

th
e

ne
ur

al
ne

tw
or

k

po
te

nt
ia

l(
N

N
P)

fo
r

si
lic

on
.E

la
st

ic
co

ns
ta

nt
s

ar
e

co
m

pu
te

d
fo

r
di

am
on

d
st

ru
ct

ur
e.

Su
rf

ac
e

en
er

gi
es

ar
e

ca
lc

ul
at

ed
fo

r
(1

00
)

(2
×

2)

re
co

ns
tr

uc
tio

n,
(1

10
)(

1×
1)

re
co

ns
tr

uc
tio

n,
an

d
(1

11
)(

3×
3)

di
m

er
-a

da
to

m
-s

ta
ck

in
g-

fa
ul

t(
D

A
S)

re
co

ns
tr

uc
tio

n.
T

he
ab

br
ev

ia
tio

ns

va
c.

,h
ex

.,
te

tr
a.

,d
b.

,a
nd

ff
cd

.s
ta

nd
fo

r
va

ca
nc

y,
he

xa
go

na
l

in
te

rs
tit

ia
l,

te
tr

ag
on

al
in

te
rs

tit
ia

l,
du

m
bb

el
l

in
te

rs
tit

ia
l,

an
d

fo
ur

fo
ld

co
or

di
na

te
d

de
fe

ct
,r

es
pe

ct
iv

el
y.

G
B

in
di

ca
te

s
(1

12
)Σ

3
gr

ai
n

bo
un

da
ry

.γ
(s
)

us
an

d
γ
(g
)

us
ar

e
un

st
ab

le
st

ac
ki

ng
-f

au
lt

en
er

gi
es

on
sh

uf
fle

pl
an

e
an

d
gl

id
e

pl
an

e
of

di
am

on
d

(1
11

)p
la

ne
s.

E
la

st
ic

co
ns

ta
nt

(G
P

a
)

Su
rf

.e
ne

rg
y

(J
/m

2
)

D
ef

ec
tf

or
m

at
io

n
en

er
gy

(e
V

)
Pl

an
ar

de
f.

(J
/
m

2
)

D
i-

in
te

rs
tit

ia
l(

eV
)

M
od

el
a
0

(Å
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Fig. 4.3: Comparison of various static properties between the reference Stillinger-
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polymorphs. (b) Energy curve for the uniaxial and shear strain of diamond crystal. (c)

Stacking fault energy along the shuffle and glide plane. (d) Vacancy migration energy
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(not shown). Therefore, learning Stillinger-Weber potential would be far from trivial.

The example of Stillinger-Weber potential shows that the metadynamics sampling

has great potential of sampling a wide range of configurations from a few metady-

namics simulations such that it can be used for the development of general-purpose

potentials.
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Density functional theory

Next, we develop general-purpose potential using DFT calculation as a reference. The

target systems are chosen to be silicon and aluminum, typical systems with covalent

bonding and metallic bonding, respectively. They are often used as benchmark systems

for developing machine learning potentials.

The sampling density of metadynamics and high-temperature molecular dynamics

for both silicon (1000–2000 K) and aluminum (300–1500 K) are shown in Fig. 4.4 for

silicon and Fig. 4.5 for aluminum. The sampling density is projected onto two principal

component axes of G, and it is plotted for two combinations of principal components.

It is clearly seen that metadynamics sampling covered a much wider range of G-space

for both silicon and aluminum.

For silicon, the same static properties are calculated using the modified version of

code from Ref. [93] and listed in Table 4.5. The equation of states for polymorphs,

energy-strain curves, energy along stacking fault, and energy along the vacancy mi-

gration path is shown in Fig. 4.6. Some properties such as vacancy formation energy,

stacking fault energies, vacancy migration barrier, and equation of state for st12, bc8,

and hcp′ have relatively high error, but most properties are within ∼10 % error range.

The error level is higher compared to the work by Bartók[93], where the data set was

constructed carefully by human intuition. This is the expected result since they in-

cluded most of the properties in the data set. The neural network potential developed

in this work also describes the fourfold defect well, which the GAP developed in Ref.

[93] failed to describe. Considering that none of these properties other than elastic

constants are explicitly included in the training set, and the training set is generated

from just a few metadynamics simulations, it is quite remarkable performance.

The error level is also higher than the classical potential results in Section 4.4.2.

It is also expected result for several reasons. First, DFT would have more complex

potential energy surface than Stillinger-Weber potential. Therefore, the descriptor vec-

tor of higher-resolution or more flexible neural network architecture might be needed.
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Fig. 4.6: Comparison of various static properties between the reference density func-

tional theory (DFT) and neural network potential (NNP) for silicon. Solid lines and
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Due to the complex potential energy surface, NNP can have problems generalizing the

structure-energy relationship with the descriptor of low resolution. However, such an

increase in the fidelity of the model should be accompanied by the increase of the train-

ing set size to avoid overfitting. Second, the error comes from the higher transfer range

of DFT. As described in Section 3.2, transferable atomic energy can be defined within

DFT, but the transfer range of DFT atomic energy would be much larger than the cut-

off distance we use (6.5 Å) for high accuracy. Those errors act as a noise in the data,

leading to lower prediction performance of the model. However, increasing the cutoff

distance further is prohibiting as the computational cost of neural network potential

scales to approximately r6c . In order to describe the local environment within a larger

cutoff radius, the number of symmetry functions has to be increased too. Therefore,

the cost of evaluation would increase more rapidly.

The high error for equation of states of st12 and hcp′ structure is expected as the

analysis on the distribution of training points shows that those structures are not well

covered by the training set. But other properties such as vacancy formation energy

appear to be covered by the training set. Therefore, those errors are likely from the

reasons described above and not from the lack of sampling.

As another validation, we performed dynamics simulations with NNP and cal-

culated DFT energy on the snapshots along the trajectory. The results are shown in

Fig. 4.7 for silicon and Fig. 4.8 for aluminum. Four trajectories encompassing various

structures are generated with silicon NNP; a melt-quench trajectory, a heating (melt-

ing) trajectory of a nanocluster, a metadynamics trajectory, and a heating trajectory

of silicene. Similarly, four trajectories are generated for aluminum; a melt-quench tra-

jectory, a heating (melting) trajectory of a nanocluster, and two metadynamics trajec-

tories. For the trajectories encompassing various structures, NNP showed outstanding

energy correlation with DFT, besides shifts for some trajectories. The shift in energy is

observed for systems with surfaces and high energy structures generated with metady-

namics. The error in surface energy or the energy of corner atoms can result a constant
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shift in energy. They affect the formation energy of the system, but the dynamics of

the system would not be affected. Also, during the metadynamics simulation, voids are

formed inside the bulk. Therefore, the energy shift grows during the simulation as the

void grows. Other than the energy shift, NNPs trained with metadynamics training set

show outstanding energy correlation to the reference without any failures. The results

show that the NNPs can describe such various systems well. On the other hand, the

same test on NNPs that are trained with high-temperature MD results in failures, and

the energy correlation is lost, indicating that the metadynamics sampling is superior to

molecular dynamics sampling.
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4.4.3 Improving stability of potentials

The last application is to generate a robust training set, which improves the stability of

machine learning potentials. This is closely related to the first application of catching

unexpected failures. Since metadynamics sampling searches local configuration space

from the low energy to higher energy, it can sample higher energy states and barriers

so that machine learning potential does not have a hole in potential energy surface up

to a certain energy level.

We demonstrate that metadynamics sampling results in more robust potentials by

comparing neural network potentials trained in Section 4.4.2. In this section, we denote

the neural network potential trained with metadynamics training set by NNP-MetaD

and the one trained with conventional high-temperature molecular dynamics training

set by NNP-MD. Although molecular dynamics training set includes high-temperature

configurations and thus high energy states, one could find possible failures of NNP-

MD easily by performing metadynamics simulation (see the first application). The

results are shown in Fig. 4.9.

For silicon potential, the energy of NNP-MD remained at the almost same level

during the formation of short triangles [which is made of bonds shorter than 2 Å; see

Fig. 4.9(b)]. The number of short triangles are plotted as a green line in Fig. 4.9(a).

DFT energy on NNP-MD trajectory confirms that it is actually high energy structure,

and NNP-MD failed. NNP-MetaD energy on the same trajectory similarly gives high

energy, implying the higher stability of NNP-MetaD. The same metadynamics pro-

tocol was applied for NNP-MetaD, and the results are shown in Fig. 4.10(a). Other

than slowly increasing energy shift, NNP-MetaD energy and DFT energy shows good

correlation without a sudden increase in the gap. The energy shift is due to the under-

estimation of surface energy, and the shift increases as the voids form and grow. The

results in Fig. 4.10 confirms the higher stability of NNP-MetaD than NNP-MD.

The same story applies to the aluminum potential. The energy of NNP-MD de-

creases during the formation of short bonds [bond length of 1.8–2.3 Å; see Fig. 4.9(d)],
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whose number is plotted in the figure as a green line in Fig. 4.9(c). However, when

we calculate DFT energy along those trajectories, we can clearly see that NNP-MD

is in fact going to high energy configurations, indicating a failure. The blue circles

show the energy calculated with NNP-MetaD on the same trajectory. It can be seen

that NNP-MetaD gives a good description of the high energy region. This implies that

NNP-MetaD would not fail in the same circumstances. Hence NNP-MetaD has higher

stability than NNP-MD. For a fair comparison, we again did a metadynamics simula-

tion with NNP-MetaD with the same protocol. The results are shown in Fig. 4.10(b).

NNP-MetaD did not show any sign of failure during the same simulation protocol,

which confirms the higher stability of NNP-MetaD.

Although not demonstrated here, metadynamics sampling is expected to improve

stability for multi-component systems too. For example, the phase separation problem

of GeTe potential would be solved as metadynamics automatically searches over the

composition space.
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Fig. 4.9: Stability test results with NNP-MD. (a) The potential energy of DFT, NNP-
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(c) The potential energy of DFT, NNP-MetaD, and NNP-MD along the metadynam-

ics trajectory of NNP-MD for aluminum. The number of short bonds (1.8–2.3 Å) is

plotted in the right axis. The high-energy structure is shown in (d) with short bonds

highlighted in orange.
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4.5 Summary

In summary, we suggested a novel metadynamics scheme, where the input descriptor

is directly used as a collective variable, and the total bias potential is given as a sum

of atomic bias potentials. In the suggested scheme, the simulation is biased to search

local environment space of each atom simultaneously. Three applications of suggested

metadynamics for the development of machine learning potentials are demonstrated.

First, it can be used to catch possible failures of premade machine learning poten-

tials efficiently. Second, diverse configurations can be generated from metadynamics

simulations so that they can be used to develop general-purpose potentials. Lastly,

it was shown that the training set generated with the metadynamics results in more

robust potentials. These applications represent major bottlenecks to the development

of robust machine learning potentials. Therefore, the proposed metadynamics scheme

would contribute to the community by greatly easing and accelerating the development

process of machine learning potentials.
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Chapter 5

Conclusion

We addressed two issues that are major hurdles to the development of machine learn-

ing potentials. First, we rigorously defined the expression for transferable atomic en-

ergy within DFT, paying attention to its transfer range. The existence of transferable

atomic energy implies that the objective of machine learning potential is to infer the

underlying atomic energy function when only total energies are informed. We showed

that machine learning potentials have the capability to infer the underlying atomic en-

ergy function from total energies. On the other hand, it was also shown that machine

learning potentials can give accurate total energy predictions for the training set but

give markedly wrong atomic energy due to the unconventional structure of learning

problem. This ad hoc energy mapping occurs due to the limitation in the training set,

such as fixed volume, fixed composition, and a fixed number of atoms in each dis-

tinct configuration. Care must be taken as the ad hoc energy mapping undermines the

transferability of machine learning potentials, and it becomes difficult to prevent ad

hoc energy mapping by a deliberate choice of a training set when it comes to com-

plex systems. Moreover, ad hoc energy mapping can be unnoticed by the conventional

monitoring process because a machine learning potential gives accurate total energies

and atomic forces for the training set regardless of ad hoc energy mapping. By elu-

cidating the learning problem of machine learning potential, the present work would
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contribute to the development of transferable machine learning potential. Next, we

suggested a new form of metadynamics where the local environment descriptor vector

is used as a collective variable, and the bias potential is a sum of atomic bias po-

tentials. The method directly enhances sampling over local environment space such

that a general-purpose potential can be easily developed. The general-purpose poten-

tial for silicon and aluminum were developed by using metadynamics sampling for

demonstration. Another important aspect is that metadynamics gives a robust training

set, which improves the stability of a machine learning potential. It was shown that

the metadynamics sampling results in the potential with higher stability compared to

high-temperature molecular dynamics sampling. Furthermore, it can be used to mea-

sure the stability of premade potentials such that the stability issues can be detected

earlier. By allowing easier construction of a robust training set covering a wide range

of configurations, the metadynamics sampling method suggested in the dissertation

would accelerate the development process of machine learning potentials, and thus

contribute to the wider applications of machine learning potentials. As a final remark,

we mention the current challenges of machine learning potentials briefly. Although

machine learning potentials are being successfully employed to complicated systems,

opening new possibilities, developing high-quality machine learning potential is still a

challenging task. We need to deepen the fundamental understanding of machine learn-

ing potential to navigate through the problems that arise during development. Also, it

is always of question that the simulation results are reliable or not due to the black-box

nature of machine learning. Therefore, reliable uncertainty quantification methods are

essential for machine learning potential to be widely adopted and become a standard

tool for atomistic simulations.
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초록

기계 학습 퍼텐셜은 제일원리 계산에 근접하는 정확도를 훨씬 적은 계산 비용

으로 계산하는 방법으로 주목받고 있다. 특히 계산 비용이 원자 수에 비례하여 증

가하기 때문에 높은 정확도로 대규모 계산을 수행하기에 적합한 방법이다. 복잡한

계에 대한 기존 응용 연구들이 성공적으로 수행되어 기계 학습 퍼텐셜의 가능성

을 보여주었다. 하지만 기계 학습 퍼텐셜에 대한 기초적인 이해가 부족하고 학습

세트를선정하는것이어렵기때문에아직널리사용되지못하고있다.기계학습퍼

텐셜과 관련된 방법론은 빠르게 발전하고 있지만, 기계 학습 모델이 블랙박스처럼

사용되어 여전히 기초적인 이해가 부족한 실정이다. 또한 밀도 범함수 이론 결과

를학습하는기계학습퍼텐셜이성립하려면기계학습모델과밀도범함수이론의

관계가중요한데이에관한내용은아직논의되지않았다.다른한편으로는높은신

뢰도를 가진 기계 학습 퍼텐셜을 개발하려면 신중하게 학습 세트를 선정하는 것이

중요하다.학습세트는보통직관과경험,그리고시행착오를통해구성하는데여전

히시뮬레이션도중에예상치못한구조가발생하며시뮬레이션이실패하는경우가

흔히발생한다.따라서쉽고체계적으로학습세트를구축하는방법이요구된다.

이연구에서는기계학습퍼텐셜이널리사용되는데방해가되는두가지문제

점에대해논의한다.먼저,전자구조의국지성원리로부터시작하여밀도범함수이

론에서양도가능한원자에너지를정의하였다.이는국지성에기반을둔모든기계

학습 퍼텐셜에 있어서 필수적으로 정의되어야 한다. 이로부터 기계 학습 퍼텐셜은

전체에너지로부터기저에있는원자에너지함수를배우는것임을알수있다.고전

퍼텐셜을 이용한 예시를 통해 기계 학습 퍼텐셜이 실제로 전체 에너지만이 주어졌

을때기저에있는원자에너지함수를배울수있음을보였다.또한,세가지예시를

통해기계학습퍼텐셜이전체에너지는정확히맞추지만잘못된원자에너지를배

울수있음을보였다.잘못된원자에너지가다성분계에미치는영향도논의하였다.

다음으로넓은원자환경을샘플링하여학습세트를쉽게구축할수있는새로운메

타동역학샘플링기법을제안하였다.제안된방법에서집합변수(collective variable)
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로는기계학습에사용되는디스크립터벡터를사용하고전체바이어스퍼텐셜은개

별원자의바이어스퍼텐셜들의합으로주어진다.이렇게함으로써전체계의구조

공간을탐색하기보다는개별원자의주변환경공간을효율적으로탐색할수있다.

이연구에서는제안된메타동역학방법의세가지응용예시를보였다.먼저,메타동

역학샘플링기법을활용하여실리콘과알루미늄에대해광범위하게사용될수있는

다목적퍼텐셜을개발하였다.또한,메타동역학방법이이미만들어진퍼텐셜의안

정성을평가하는데사용될수있음을보이고,메타동역학샘플링기법이퍼텐셜의

안정성을향상하는것을보였다.

주요어:기계학습퍼텐셜,인공신경망퍼텐셜,메타동역학

학번: 2015-20848
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