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Abstract

Optimality Enhancement in
Move-blocked Model Predictive
Control and Offset-free Model

Predictive Control

Sang Hwan Son

School of Chemical and Biological Engineering

The Graduate School

Seoul National University

Model predictive control (MPC) is a receding horizon control

which derives finite-horizon optimal solution for current state on-

line by solving an optimal control problem. MPC has had a tremen-

dous impact on both industrial and control research areas. There are

several outstanding issues in MPC. MPC has to solve the optimiza-

tion problem within a sampling period so that the reduction of on-

line computational complexity is a one of the main research subject

in MPC. Another major issue is model-plant mismatch due to the

model based predictive approach so that offset-free tracking schemes

by compensating model-plant mismatch or unmeasured disturbance

has been developed. In this thesis, we focused on the optimality per-

formance of move blocking which fixes the decision variables over
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arbitrary time intervals to reduce computational load for on-line op-

timization in MPC and disturbance estimator approach based offset-

free MPC which is the most standardly used method to accomplish

offset-free tracking in MPC. We improve the optimality performance

of move blocked MPC in two ways. The first scheme provides a su-

perior base sequence by linearly interpolating complementary base

sequences, and the second scheme provides a proper time-varying

blocking structure with semi-explicit approach. Moreover, we im-

prove the optimality performance of offset-free MPC by exploiting

learned model-plant mismatch compensating signal from estimated

disturbance data. With the proposed schemes, we efficiently improve

the optimality performance while guaranteeing the recursive feasibil-

ity and closed-loop stability.

Keywords: Model predictive control, input parameterization, move-

blocking, model-plant mismatch, offset-free tracking

Student Number: 2016-30232
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Chapter 1

Introduction

Model predictive control (MPC) is a receding horizon control

which dervies finite-horizon optimal solution for current state on-line

by solving an optimal control problem [1]. MPC has become a stan-

dard method for decision making in various fields [2, 3, 4, 5, 6, 7].

The popularity of MPC is based on the fact that the resulting operat-

ing strategy respects all the details of system and problem, including

constraints and interactions [8].

One of the most outstanding issues in MPC is the online com-

putational load required to solve the optimization problem within a

sampling period. Move blocking is an input parameterization scheme

which fixes the decision variables over arbitrary time intervals, com-

monly referred as blocks, and it is widely implemented to model

predictive control (MPC) to reduce computational load for on-line

optimization. However, existing move blocking schemes have lim-

itations in construction of base sequence and selection of blocking

structure. First, move blocking strategies parameterize either the in-

put sequence or offset from the base sequence of input, but exist-

ing move blocking schemes use a fixed base sequence only and do

not fully exploit the valuable properties from various base sequences.

Second, though selection of blocking structure has a significant effect

1



on the optimality of moved blocked MPC because the blocking posi-

tion act as the search direction in input sequence space, but existing

move blocked MPC schemes apply arbitrary time-invariant blocking

structures without consideration of the optimality of blocking struc-

ture due to the difficulty of deriving proper time-varying blocking

structure on-line.

Thus, we propose the interpolated solution based move blocking

strategy which parameterizes the offset from the convex combina-

tion of two complementary base sequences — infinite-horizon linear

quadratic regulator solution and shifted previous solution — and op-

timises the interpolation parameter as an additional decision variable

in the optimal control problem to overcome the above-mentioned first

limitation. This allows the controller to exploit the valuable properties

from both solutions by choosing the optimal interpolation parameter

and blocked offset according to the current state on-line while guar-

anteeing the recursive feasibility and closed-loop stability. Then, we

propose the semi-explicit approach for move blocked MPC which

combines the explicit approach for blocking position with simpli-

fied on-line optimization for blocked offset from the base sequence

to overcome the above-mentioned second limitation. This allows the

controller to apply the proper time-varying blocking structure accord-

ing to the current state on-line. By this, we could efficiently improve

the optimality of move blocked MPC with only a little additional

computation cost for critical region search while guaranteeing the re-

cursive feasibility and closed-loop stability.

Since model and data based approaches are complementary to

each other, combination of MPC and machine learning (ML) is an

emerging area of research. However, the existing studies only con-
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sider the combination of nominal MPC with ML method, though re-

searches for model-plant mismatch compensation have already been

studied actively in offset-free MPC field to overcome the limitation of

model based approach. Therefore, we propose model-plant mismatch

learning offset-free model predictive control (MPC) which learns and

exploits the intrinsic model-plant mismatch, and effectively combines

the advantages of model and data based approaches and overcome the

limitations of them. The model-plant mismatch is approximated by

general regression neural network (GRNN) with supervised learning

from the estimated steady-state disturbance for each set-point. An im-

proved disturbance estimator is designed to exploit both the learned

model-plant mismatch and stabilizing property of the nominal distur-

bance estimator. We also apply the learned model-plant mismatch to

the target calculator and finite-horizon optimal control problem to im-

prove the prediction accuracy and closed-loop performance of MPC.

Moreover, we examine the robust asymptotic stability of the proposed

offset-free MPC scheme, which is known to be really difficult in nom-

inal offset-free MPC, by exploiting the learned model-plant mismatch

information.

The summary of three proposed approaches are below:

• Move-blocked model predictive control with linear interpola-

tion of base sequences.

• Move-blocked model predictive control with time-varying block-

ing structure by semi-explicit approach.

• Model-plant mismatch learning offset-free model predictive con-

trol.
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The rest of this thesis is organised as follows. In Chapter 2, move

blocked model predictive control with guaranteed stability and im-

proved optimality using linear interpolation of base sequences is pro-

posed. In Chapter 3, we propose move blocked model predictive con-

trol with improved optimality using semi-explicit approach for apply-

ing time-varying blocking structure. In Chapter 4, offset-free model

predictive control with guaranteed robust asymptotic stability using

model-plant mismatch learning is proposed. Finally, we present the

conclusion of this thesis and summary in Chapter 5.

4



Chapter 2

Move-blocked model predictive control with
linear interpolation of base sequences1

2.1 Introduction

One of the most outstanding issues in MPC is the online compu-

tational load required to solve the optimization problem within a sam-

pling period. Computational load is not an issue for systems with rela-

tively slow dynamics, intermittent input updates, or sufficient compu-

tational capacity. However, for systems with fast dynamics (e.g., vehi-

cles, robots) or limited computational capacity (e.g., on-board single-

chip controllers), computational load can hinder the real-time im-

plementation of MPC. Therefore, various techniques have been pro-

posed for reducing the online computational load. Some techniques

are concerned with faster optimization algorithms by exploiting the

structure of the optimal control problem. Among them are the hierar-

chical decomposition approach to separate the objective function of

the optimization problem [9], warm-starting to obtain a better initial

point of optimization algorithm from the information of the previous
1This chapter is a slightly adapted version of Son, S. H., Park, B. J., Oh, T. H., Kim, J.

W., and Lee, J. M. (2019). "Move blocked model predictive control with guaranteed stability
and improved optimality using linear interpolation of base sequences". International Journal
of Control, under review.
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sampling instant [10], and fast MPC to improve interior-point search

direction by exploiting the structure of the optimization problem [11].

Other techniques reduce computational complexity by modifying the

optimal control problem at the expense of optimality such as input pa-

rameterization. Various input parameterization techniques have been

proposed including approximation of the control law with a param-

eterised function to reduce the order of problem [12, 13], a move

blocking method fixes the decision variables over arbitrary time in-

tervals [14], and linear interpolation of typical solutions [15]. Move

blocking and linear interpolation are one of the most commonly used

methods to reduce computational complexity, and are the focus of

this study.

In input parameterization methods which construct input trajec-

tory with a restricted number of variables, the analysis for closed-loop

property such as feasibility and convergence is not straightforward as

in [16] with only given degree of freedom (d.o.f). Therefore, these

methods usually utilise the typical solutions with feasibility or sta-

bilizing property, which can be derived without much computational

cost, to improve the closed-loop performance of the controller.

In case of interpolation methods, they utilise these typical so-

lutions directly as the basis. [17] use linear interpolation of uncon-

strainted linear quadratic regulator (LQR) solution and the shifted

version of the previous solution as the solution of MPC. [18] inter-

polate LQR solution, tail of dual-mode control, and the mean level

solution which is an easily computed feasible solution apart from the

boundary of feasible solution set, to ensure feasibility under some

uncertainty. [19] interpolate LQR solution, tail, and an explicit so-

lution at the nearest facet of feasible region to reduce the compu-

6



tational complexity of multiparametric programming by restricting

the required critical region. However, these interpolated solutions are

usually too restrictive in general because the solutions have to lie in

the convex hull of basis solutions. There also exist interpolation meth-

ods based on stabilizing feedback solutions. [20, 21, 22] directly con-

struct the solution by interpolating feedback solutions, and [23] and

[15] apply the interpolation at the terminal control law of dual-mode

control. However, these methods use conservative constraint handling

and the number of variables may become large for high dimensional

systems.

In case of move blocking, they utilise the typical solutions as

base sequece and block the offset from the base sequence. [14] use

the infinite-horizon LQR solution as the base sequence to exploit the

pre-stabilizing property and optimality. [24, 25] use the shifted pre-

vious solution as the base sequence to exploit the feasibility of the

retained previous solution and guarantee monotonic decrease of the

objective value. However, existing move blocking schemes use fixed

base sequences only and do not fully exploit the valuable properties

of several solutions. When using LQR solution as the base sequence,

since its feasibility is not guaranteed, a specific format of blocking

structure called moving window blocking proposed in [14] and a re-

strictive terminal constraint set must be used. On the other hand, when

using the shifted previous solution as the base sequence, since the

optimality of the solution is not guaranteed, the closed-loop perfor-

mance of the controller can be degraded.

Thus, we propose to implement the interpolation of LQR so-

lution and shifted previous solution as the base sequence of move

blocking. Then, the solution trajectory of the proposed method can

7



be interpreted as the direct sum of interpolated solution and blocked

offset term. This allows the controller to exploit the valuable proper-

ties of both parameterization methods and overcome each limitation

by allowing both schemes to complement each other. In terms of in-

terpolation method, the accessible space of the solution is expanded

outside the convex hull of basis solutions by the blocked offset term

with a flexible blocking structure. In terms of move blocking, the

solution set embeds LQR solution and shifted previous solution by

the base sequence, and the controller can utilise valuable properties

of them. Therefore, the proposed method can effectively enlarge the

feasible region, and improve the closed-loop optimality performance

compared to the existing schemes while easily guaranteeing recursive

feasibility, convergence, stability, only with a little additional compu-

tational cost due to the interpolation parameter.

The rest of this chapter is organised as follows. We provide the

MPC formulation with move blocking for a discrete linear time-invari-

ant system in Section 2.2. In Section 2.3, we analyze the existing

move blocking schemes. In Section 2.4, we propose the interpolated

solution based move bocking scheme, analyze the closed-loop prop-

erties of the proposed scheme, and provide the QP formulation of

the interpolated solution based move blocked MPC. Finally, the nu-

merical examples verify that the proposed interpolated solution based

move blocking scheme can efficiently enlarge the feasible region and

improve the optimality of move blocked MPC compare to the existing

schemes in Section 2.5.
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2.2 Preliminaries

2.2.1 MPC formulation

We consider the discrete linear time-invariant system

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) (2.1)

where k is the discrete-time index, u(k) ∈ Rnu is the input, x(k) ∈
Rnx is the state, and y(k) ∈ Rny is the output. A, B, and C are

matrices with appropriate dimensions, and the pair (A,B) is assumed

to be controllable. nu, nx, and ny are the dimensions of the input,

state, and output vectors, respectively.

In the design of control systems, operational constraints are usu-

ally imposed for safe and stable operations. These constraints are

commonly presented as convex polyhedral regions on the input and

state variables.

u ∈ U , x ∈ X (2.2)

where U := {u ∈ Rnu|Auu ≤ bu} and X := {x ∈ Rnx|Axx ≤ bx}
are compact polyhedral sets containing the origin in their interiors.

In addition, the terminal state x
N

is usually imposed to lie in an

control invariant terminal constraint set XT to guarantee the recur-

sive feasbility and closed-loop stability. A non-empty set C ∈ X is

referred to as a control invarinat (CI) set for the system in Eq. (2.1)

subject to the constraints in Eq. (2.2), if and only if ∀x ∈ C, ∃u ∈ U
such that Ax+Bu ∈ C [26].
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The objective function of regulation problem is commonly de-

scribed as a sum of quadratic stage costs:

J(x0, U) := x⊤
N
Q

N
x

N
+

N−1∑
i=0

ϕ(xi, ui) (2.3)

ϕ(x, u) := x⊤Qxx+ u⊤Quu

where ϕ(x, u) denotes a single-stage cost. Qx ∈ Rnx×nx , Q
N
∈

Rnx×nx , and Qu ∈ Rnu×nu are positive definite weighting matrices

for the state vector, terminal state vector, and input vector, respec-

tively.

Then, the optimal control problem in P1 is solved at each sam-

pling instant to derive an optimal input sequence.

P1 : J∗(x) := min
U

J(x0, U)

s.t. x0 = x, xi+1 = Axi +Bui

ui ∈ U , xi+1 ∈ X , ∀i = 0, · · · , N − 1

x
N
∈ XT

where U denotes the future input sequence [u0|k;u1|k; · · · ;uN−1|k]

([v1; v2; · · · ; vn] denotes the vertical concatenation [v⊤1 , v
⊤
2 , · · · , v⊤n ]⊤).

The objective function in Eq. (2.3) can be rewritten as a quadratic

function of U by expressing all the predicted states explicitly:

J(x, U) = U⊤HU + 2U⊤f + c (2.4)
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H := Ψ⊤Q
X
Ψ+Q

U
, f := Ψ⊤Q

X
Φx

c := x⊤(Φ⊤Q
X
Φ +Qx)x

Φ :=


A

A2

...

AN

, Ψ :=



B 0 0 · · · 0
AB B 0 · · · 0
A2B AB B · · · 0

...
...

...
...

AN−1B AN−2B AN−3B · · · B


where Q

X
∈ RNnx×Nnx and Q

U
∈ RNnu×Nnu are the matrices with

diagonal form having {Qx, · · · , Qx, QN
} and {Qu, · · · , Qu} as main

diagonal blocks, respectively. Since ΨTQ
X
Ψ ≻ 0, Q

U
≻ 0, and H ≻

0, the objective function J in Eq. (2.4) is a positive definite quadratic

function of U .

Since U , X , and XT are polytopic, we can describe constraints in

P1 as a set of linear inequalities with suitable matrices, and then P1
can be reformulated in a condensed form with the objective function

in Eq. (2.4):

P1′ : J∗(x) := min
U

J(x, U)

s.t. Fx+GU ≤ h

where F ∈ Rnc×nx , G ∈ Rnc×Nnu and h ∈ Rnc are suitable matrices,

and nc is the number of inequalities.

In MPC, P1′ is solved based on the current measured(or ob-

served) state for each sampling instant, then the first input of the re-

sulting optimal input trajectory is implemented on the system. This

procedure is repeated at later sampling instants in a receding horizon

11



fashion.

2.2.2 Move blocking

Since the computational complexity of solving an optimization

problem depends on the number of decision variables or d.o.f., the

move blocking method that reduces the number of decision variables

by fixing the decision variables over blocks illustrated in Figure 2.1
is commonly used in practice. The input blocking directly parameter-

izes the input sequence, while the offset blocking parameterizes the

offset from the base sequence.

The structure of move blocking is determined by the blocking

positions in Definition 1.

Definition 1. (Blocking position set) The set s := {s1, · · · , sN} in

ascending order denotes the blocking position set, where each com-

ponent si ∈ N≤N denotes the blocking position where each block

begins, and N is the number of blocks (N≤N is the set of natural

numbers less than or equal to N ). Additionally, we represent the set

of admissible s as S.

Definition 2. (Blocking matrix) P ∈ BN×N denotes the blocking ma-

trix, where BN×N is an N×N matrix whose elements are restricted to

the binary values 0 or 1. P is a lower triangular matrix, and the posi-

tion of non-zero elements in P is determined by the blocking position

set s:

P = [P 1, · · · , PN ] (2.5)
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Figure 2.1: A schematic illustration of move blocking when N = 10, N =
3, and s = {1, 4, 9}.
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P i :=

[0si−1;1si+1−si ;0N−si+1+1] for i = 1, · · · , N − 1

[0si−1;1N−si+1] for i = N

where P i is the ith column of P , si is the ith component of s, and 0m

and 1n represent a vector of zeros with length m and a vector of ones

with length n, respectively.

In case of input blocking, the entire input sequence U can be de-

scribed with P and a reduced input sequence U := [u1;u2; · · · ;uN ]

as

U = (P ⊗ Inu)U = PU (2.6)

where P := P ⊗ Inu and ⊗ denotes the Kronecker product.

In case of offset blocking, U is formulated with a base sequence

UB ∈ RNnu and an offset sequence Θ := [θ1; θ2; · · · ; θN ]. Then, Θ

can be parameterized with move blocking as

U = UB +Θ = UB + PΘ (2.7)

where Θ denotes a reduced offset sequence [θ1; θ2; · · · ; θN ].
Despite the studies aimed at improving the performances of in-

put blocking [16, 27], input blocking suffers from poor closed-loop

performance owing to the inflexibility associated with fixing the ac-

tual inputs [14]. On the other hand, offset blocking fixes the offset

from the base sequence not the actual input.
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2.2.3 Move blocked MPC (MBMPC)

In this study, we proceed the discussion based on the MPC with

the offset blocking scheme in Eq. (2.7). When move blocking is im-

plemented on MPC, the d.o.f. is reduced by parameterization, while

the blocking positions are added as new variables with the additional

constraints as in P2.

P2 : J∗(x, UB) := mins,Θ J(x0, U)

s.t. U = UB + PΘ

x0 = x, xi+1 = Axi +Bui

ui ∈ U , xi+1 ∈ X , xN
∈ XT

s = {s1, · · · , sN}, sj ∈ N≤N

∀i = 0, · · · , N − 1, ∀j = 1, · · · , N

The objective function in Eq. (2.4) can be reformulated as a

quadratic function for the parameterized offset Θ:

J(x, UB, s,Θ) = Θ
⊤
HΘ+ 2Θ

⊤
f + c (2.8)

H := P⊤HP

f := P⊤(HUB + f)

c := U⊤
BHUB + 2U⊤

B f + c

15



Then, P2 can be reformulated in a compact form using Eq. (2.8):

P2′ : J∗(x,UB) = mins,Θ J(x, UB, s,Θ)

s.t. Fx+GΘ ≤ h

s = {s1, · · · , sN}

si ∈ N≤N , ∀i = 1, · · · , N

where F ∈ Rnc×nx , G ∈ Rnc×Nnu and h ∈ Rnc are appropriate

matrices, and nc is the number of inequalities.

2.3 Move blocking schemes

In nominal MPC, the CI terminal constraint set is imposed to en-

sure recursive feasibility and stability as in Section 2.2.1. However,

constraining the x
N

to lie in a CI set cannot guarantee recursive fea-

sibility in MBMPC owing to the extra constraints imposed on the

control input sequence by move blocking. Therefore, several move

blocking schemes have been developed to ensure recursive feasibil-

ity.

One input blocking scheme directly allows the closed-loop state

trajectory to remain within a feasible set by proposing the notion of a

control invariant feasibility (CIF) set [27]. However, this input block-

ing scheme has several major drawbacks such as flexibility degra-

dation of the controller owing to the blocking of the actual input and

considerable domain reduction owing to the restrictiveness of the CIF

set.

In contrast to input blocking, offset blocking guarantee recur-

sive feasibility and stability by utilizing the valuable property from
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the base sequence. We introduce two representative offset blocking

schemes in subsequent sections.

2.3.1 Previous solution based offset blocking

[24, 25] formulate an offset blocking scheme which retains the

previous solution for the base sequence at the current sampling in-

stant, and parameterizes the input sequence in terms of the offsets

from it.

U = λÛ(k) + PΘ (2.9)

Û(k) := [u∗
1|k−1; · · · ;u∗

N−1|k−1;0nu ]

where λ ∈ [0, 1], and [u∗
1|k−1; · · · ;u∗

N−1|k−1] represents the shifted

input solution from the previous sampling instant.

Since the shifted version of previous solution sequence is always

constructible from the base sequence, this scheme can easily ensure

the recursive feasibility and stability with the terminal constraint set

of nominal MPC, i.e., the maximal control invariant set in Defini-
tion 3, for all admissible blocking structure only with the condition

sN = N . Therefore, this scheme can handle a relatively large feasible

region compared to other move blocking schemes where the previous

solution is not constructible.

Definition 3. (Maximal control invariant set) The maximal control

invariant (MCI) set C∞ is a CI set which contains all other CI sets

17



and can also be defined as

C∞ := {x0 ∈ X | ∃{ui ∈ Rnu}∞i=0 such that ui ∈ U ,

xi+1 = Axi +Bui ∈ X ∀i ∈ Z≥0} (2.10)

where Z≥0 is the set of non-negative integers.

However, since the optimality of the retained previous solution

is not ensured, the base sequence can be undesirable for the current

time step especially when the solution sequence is not sufficiently

updated by the blocked offset term at the early stage of the control

system or the reference trajectory rapidly changes in a tracking prob-

lem. In this case, the optimality performance of the controller can be

degraded. Moreover, this scheme cannot utilise the stabilizing prop-

erty of proper feedback law such as the LQR solution.

2.3.2 LQR solution based offset blocking

[14] proposed an offset blocking scheme which utilises the infinite-

horizon LQR solution as the base sequence. The entire input sequence

can be formulated as

U = ULQR(k) + Ψ
L
PΘ (2.11)
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ULQR(k) := Φ
L
x(k)

Ψ
L
:=



Inu 0 0 · · · 0

K
L
B Inu 0 · · · 0

K
L
A

L
B K

L
B Inu · · · 0

...
...

...
...

K
L
AN−2

L
B K

L
AN−3

L
B K

L
AN−4

L
B · · · Inu



Φ
L
:=


K

L

K
L
A

L

...

K
L
AN−1

L

 , A
L
:= A+BK

L

where K
L

is the infinite-horizon LQR gain. ULQR(k) is the LQR so-

lution sequence from x(k).

The underlying philosophy of this scheme is quite similar to the

dual-mode control in [28, 29]. This scheme can exploit the optimality

and stabilizing property of the LQR solution. Therefore, when the

state enters the maximal positive invariant (MPI) set subject to the

LQR gain in Definition 4, this scheme can stabilise the system in an

optimal way.

Definition 4. (Maximal positive invariant set) The set O∞(Ks) is the

maximal positive invariant (MPI) set for the system in Eq. (2.1) sub-

ject to a stabilizing feedback gain Ks [30].

O∞(Ks) := {x0 ∈ X | xi+1 = (A+BKs)xi ∈ X ,

ui = Ksxi ∈ U ∀i ∈ Z≥0} (2.12)
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However, when the state is outside MPI set subject to K
L

and

thus the LQR solution is not feasible, the shifted version of previous

solution sequence has to be constructible at the current step to suffi-

ciently ensure the recursive feasibility. For this, the blocking structure

of this scheme is restricted to propagate through a specific pattern

called moving window blocking (MWB) strategy and the terminal

state has to lie in the relatively restrictive set, O∞(K
L
), compared to

that of nominal MPC, C∞. Therefore, this scheme can only handle the

smaller feasible region than other move blocking schemes with flexi-

bility in selecting the blocking structure and a larger terminal set.

2.4 Interpolated solution based move blocking

The offset blocking schemes introduced in Section 2.4 mainly

focus on utilizing the fixed form of base sequences, the previous

solution Û and the LQR solution ULQR, respectively. Since Û and

ULQR have their own advantages and limitations as base sequences,

we propose to implement the interpolated solution of Û and ULQR

as the base sequence to improve the closed-loop performance of the

MBMPC by addressing the limitations and inheriting the valuable

properties of each solution.

2.4.1 Interpolated solution based MBMPC

The proposed interpolated solution based offset blocking uses

the linear interpolation of Û and ULQR as the base sequence.

UB(k) = λÛ(k) + (1− λ)ULQR(k) (2.13)
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where λ ∈ [0, 1] is the interpolation parameter.

The input sequence within the optimization window is the sum

of the base sequence and the parameterized offset expressed as

U = λÛ(k) + (1− λ)ULQR(k) + PΘ (2.14)

The optimal control problem of interpolated solution based MBM-

PC is given by

P3 : J∗(x, Û) := mins,Θ,λ J(x0, U)

s.t. U = λÛ(k) + (1− λ)ULQR(k) + PΘ

x0 = x, xi+1 = Axi +Bui

ui ∈ U , xi+1 ∈ X , xN
∈ XT

s = {s1, · · · , sN}, sj ∈ N≤N

∀i = 0, · · · , N − 1, ∀j = 1, · · · , N

0 ≤ λ ≤ 1

Since the shifted optimal solution sequence at the previous sam-

pling instant [u∗
1|k−1; · · · ;u∗

N−1|k−1] can be constructed from Û in Eq.

(2.14), this scheme guarantees the recursive feasibility and stability.

These closed-loop properties can be proved in a similar way to nom-

inal MPC in [1].

Theorem 1. Consider the optimal control problem P3. If the blocking

position set s satisfies sN = N , then a feasible solution is always

guaranteed to exist.
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Proof ) We can select the interpolation parameter as λ = 1 and the

reduced offset sequence as Θ = [0; · · · ; 0; ν], ν ∈ U . If sN = N , then

the entire offset sequence can have the form of Θ = [0; · · · ; 0; ν], and

the entire input sequence can always be given by

Ũ(k) := [u∗
1|k−1; · · · ;u∗

N−1|k−1; ν] (2.15)

which results in the prediction of future state sequence as

X̃(k) := [x∗
2|k−1; · · · ;x∗

N |k−1; x̃N |k] (2.16)

Since [u∗
1|k−1; · · · ;u∗

N−1|k−1] is the shifted version of the previ-

ous optimal input solution, x∗
N |k−1 ∈ C∞ is guaranteed. Moreover,

because of the invariance of C∞, there always exists ν ∈ U such that

x̃N |k = Ax∗
N |k−1 + Bν ∈ C∞. Therefore, we can ensure that there

always exists a feasible solution for the problem.

Remark 1. From Theorem 1, we can reformulate any arbitrary in-

put sequence U in Eq. (2.14) as in Eq. (2.17) with a pseudo base

sequence ŨB.

U = ŨB(k) + PΘν (2.17)

ŨB(k) := λŨ(k) + (1− λ)ULQR(k)

Θν := [θ1; θ2; · · · ; θN − λν]

From Remark 1, we can consider ŨB as the base sequence of

the interpolated solution based MBMPC instead of UB, and proceed

with the analysis using ŨB.
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Remark 2. Since Ũ in Eq. (2.15) is ensured to be feasible with proper

ν ∈ U , the base sequence ŨB always enters the feasible solution set

as λ→ 1 even when ULQR and Û are infeasible.

In case of LQR solution based MBMPC, since the LQR solu-

tion is not guaranteed to be feasible, a specific pattern of blocking

structure called MWB strategy and a restrictive terminal setO∞(K
L
)

have to be used to ensure recursive feasibility and stability, which

can considerably reduce the feasible region. On the other hand, in

case of the proposed interpolated solution based MBMPC, since the

feasibility of P3 is ensured by the base sequence as in Remark 2, the

selection of blocking structure is flexible only with the condition of

sN = N . Moreover, since LQR solution does not need to be feasible

at the terminal state, the proposed scheme does not require to impose

the terminal state to lie in O∞(K
L
) and can use a relatively large ter-

minal constraint set, C∞. Therefore, the proposed scheme can handle

a relatively large feasible region compared to that of LQR solution

based MBMPC. We demonstrate this property by directly comparing

the feasible region of both schemes in the numerical example section.

In case of previous solution based MBMPC, since the optimality

of the base sequence is not guaranteed, the optimality performance of

the controller can be considerably degraded than that of the nominal

MPC. On the other hand, in case of the proposed interpolated solution

based offset blocked MPC, since the base sequence ŨB is always ac-

cessible to the infinite-horizon LQR solution as λ→ 0, the controller

has an additional d.o.f. in the monotonically decreasing direction of

the objective value. Therefore, this scheme can effectively improve
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the optimality performance of the controller by adjusting the interpo-

lation parameter with the parameterised offset compared to the sim-

ple previous solution based MBMPC. Moreover, we can maximise

the utilization of the closed-loop optimality of the LQR solution in

this scheme by applying the concept of dual-mode prediction in [29]

and fixing the control input as the LQR solution when the state of

the system reaches the O∞(K
L
) where the LQR solution is always

feasible and optimal.

The convergence property of the interpolated solution based MB-

MPC is described below.

Theorem 2. Consider the closed-loop receding horizon control sys-

tem with input update by the optimal control problem of the interpo-

lated solution based MBMPC in P3. The system will converge to the

origin as k → ∞ under the commonly used basic stability assump-

tion given by

min
ν∈U ,x̃N|k∈C∞

x∗ T
N |k−1 (Qx −Q

N
)x∗

N |k−1 + ϕN(x̃N |k, ν) ≤ 0 (2.18)

where ϕN(x, u) := xTQ
N
x+ uTQuu.

Proof ) As in the proof of Theorem 1, we can obtain a feasible so-

lution Ũ in Eq. (2.15) by selecting s with sN = N , λ = 1, and

Θ = [0; · · · ; 0; ν]. Then, we can describe the expected objective value
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when Ũ is implemented to the system as

J(x(k), Ũ(k)) =
N−1∑
i=1

ϕ(x∗
i|k−1, u

∗
i|k−1) + ϕ(x∗

N |k−1, ν) + x̃⊤
N |kQN

x̃N |k

(2.19)

where x∗
1|k−1 = x(k).

Since the optimal solution sequence of the previous sampling in-

stant U∗
k−1 := [u∗

0|k−1; u
∗
1|k−1; · · · ;u∗

N−1|k−1] and Ũ are identical ex-

cept for the first and last components, we can reformulate Eq. (2.19)

as

J(x(k), Ũ(k)) =J∗
k−1 − ϕ(x(k), u(k − 1)) (2.20)

+ x∗ T
N |k−1 (Qx −Q

N
)x∗

N |k−1 + ϕN(x̃N |k, ν)

where J∗
i := J∗(x(i), Û(i), s(i)) denotes the optimal cost at the sam-

pling instant i.

Since Ũ is not the optimal input sequence, the inequality in Eq.

(2.21) holds:

J∗
k ≤ J(x(k), Ũ(k)) (2.21)

Substituting Eq. (2.20) into Eq. (2.21) gives

J∗
k ≤ J∗

k−1−ϕ(x(k), u(k − 1)) (2.22)

+ x∗ T
N |k−1 (Qx −Q

N
)x∗

N |k−1 + ϕN(x̃N |k, ν)

25



By the assumption in Eq. (2.18), Eq. (2.22) can be reformulated as

J∗
k − J∗

k−1 ≤ −ϕ(x(k), u(k − 1)) (2.23)

Since ϕ(x(k), u(k − 1)) > 0 ∀x(k) ̸= 0nx and u(k − 1) ̸= 0nu ,

we can see that the optimal cost J∗ strictly decreases over time. More-

over, since the optimal cost is lower-bounded by zero, J∗ ≥ 0, the se-

quence of J∗ converges to zero as the state of the closed-loop system

converges to the origin.

The closed-loop stability of the interpolated solution based MBMPC

is easily ensured by Corollary 1.

Corollary 1. When the convergence to the origin of the interpolated

solution based MBMPC is guaranteed, the asymptotic stability of the

origin is inherently ensured by the fact that O∞(K
L
) is a neighbor-

hood containing the origin in its interior, and the stabilizing control

law u = K
L
x is feasible and optimal ∀x ∈ O∞(K

L
).

2.4.2 QP formulation

We reformulate the input sequence in Eq. (2.14) as

U = ULQR(k) +M(k)V (2.24)

M(k) := [Û(k)− ULQR(k), P ]

V := [λ; Θ]

where V is the vector of decision variables.
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Then, the objective function can be reformulated in a quadratic

function for V :

J = V TH
V
V + 2V Tf

V
+ c

V
(2.25)

H
V
:= M(k)THM(k)

f
V
:= M(k)T (HULQR(k) + f)

c
V
:= ULQR(k)

THULQR(k) + 2ULQR(k)
Tf + c

The constraints can be formulated in terms of V as Eqs. (2.26)–

(2.30). For generality, the constraint on the rate of input changes δu ∈
Ud is also considered, where Ud := {δu ∈ Rnu : Aδuδu ≤ bδu} is a

compact polyhedral set containing the origin in the interior.

� Input values

[(I
N
⊗ Au)M(k)]V ≤ C1 ⊗ bu − (I

N
⊗ Au)ULQR(k) (2.26)

� Rate of input changes

[(I
N
⊗ Aδu)C2M(k)]V ≤ C1 ⊗ bδu

− (I
N
⊗ Aδu)(C2ULQR(k)− u0(k)) (2.27)

� State values

[(I
N
⊗ Ax)ΨM(k)]V ≤ C1 ⊗ bx

− (I
N
⊗ Ax)(Φx(k) + ΨULQR(k)) (2.28)

� Terminal state value

[ATC3ΨM(k)]V ≤ bT − ATC3(Φx(k) + ΨULQR(k))
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� Weighting factor[
−C4

C4

]
V ≤

[
0

1

]
(2.29)

where

u0(k) :=


u(k − 1)

0
...

0

 , C1 :=


1

1
...

1

 , C2 :=



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0−1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · ·−1 1


⊗ Inu

C3 := [0nx×nx , · · · ,0nx×nx , Inx ], C4 := [1, 0, · · · , 0]

where 0nx×nx represents the nx × nx matrix of zeros.

Now, after the blocking structure is selected, we can reformulate

P3 as a standard QP problem by substituting Eqs. (2.25)–(2.30) into

P3 and omitting the constant term:

P4 : J∗(x(k), Û(k), s) = min V V THV + 2V Tf

s.t. ΓV ≤ γ
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where

Γ :=



(I
N
⊗ Au)M(k)

(I
N
⊗ Aδu)C2M(k)

(I
N
⊗ Ax)ΨM(k)

ATC3ΨM(k)

−C4

C4



γ :=



C1 ⊗ bu − (I
N
⊗ Au)ULQR(k)

C1 ⊗ bδu − (I
N
⊗ Aδu)(C2ULQR(k)− u0(k))

C1 ⊗ bx − (I
N
⊗ Ax)(Φx(k) + ΨULQR(k))

bT − ATC3(Φx(k) + ΨULQR(k))

0

1


Then, the optimal control problem in P4 can be solved by a QP

solver. The outline of the interpolated solution based MBMPC with

applying the concept of dual-mode control is summarised in Algo-
rithm 2.1.

2.5 Numerical examples

In this section, we demonstrate the efficacy of the interpolated

solution based MBMPC through examples comparing the performance

of the proposed scheme and existing MBMPC schemes in terms of

the volume of feasible region, closed-loop cost and computational

load.

The selection of blocking positions has a significant impact on
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Algorithm 2.1. Interpolated solution based MBMPC

Initialise x(0) = x0, Û(0) = 0Nnu

for k = 0, 1, · · · ,K do
Measure(or estimate) x(k) at sampling instant k
Select blocking position set s(k) with sN = N

Compute ULQR(k) = Φ
L
x(k)

if x(k) ∈ O∞(K
L
) then

Set λ∗ = 0, Θ
∗
= 0Nnu

else
Solve P4→ λ∗, Θ

∗

end if
Compute U∗ = λ∗Û(k) + (1− λ∗)ULQR(k) + PΘ

∗

Apply u∗
0|k to the system

Update Û(k + 1) = [u∗
1|k; · · · ;u

∗
N−1|k;0nu ]

Wait for the next sampling instant k + 1

end for

Table 2.1: Interpolated solution based MBMPC

the optimality performance of the controller, and the optimality of

the blocking structure has been considered in various perspectives

[25, 31]. However, in this study, since we only focus on the efficiency

of base sequence, we apply an arbitrary time-invariant blocking struc-

ture for all the cases.

The terminal MPI set O∞(K
L
) and MCI set C∞ were calcu-

lated using the MPT3 toolbox [32]. Simulations are performed using

MATLAB® R2019a with Intel® CoreTM i7-6700 CPU @ 3.40GHz,

32 GB RAM.

2.5.1 Example 1 (Feasible region)

The linear discrete time model is given by
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x(k + 1) =


0.9146 0.1665 0.0405

0.2665 0.3353 0.0058

0 0.0405 0.5353

x(k) +


0.0544 −0.0757
0.0053 0.1477

0.8647 0

u(k)

The system constraints are given by

− 100 ≤ x1 ≤ 100, −100 ≤ x2 ≤ 100, −100 ≤ x3 ≤ 100

− 1 ≤ u1 ≤ 1, −2 ≤ u2 ≤ 2

We derived the feasible region of each MBMPC scheme with

N = 10, N = 3, and the time-invariant blocking structure s =

{1, 5, 10}. The control parameters are Qx = diag{2, 2, 2} and Qu =

diag{1, 1}. We also describe the trajectory of a constrained regulation

problem from the initial state x(0) = [60;−60; 60] with the proposed

scheme.

Figure 2.2 shows the feasible regions of the nominal MPC and

MBMPC based on previous solution, interpolated solution, and LQR

solution. The first three 2D plots are the projections of the 3D feasible

region in the last plot onto 2D spaces, respectively. It is clear that the

feasible region of the proposed interpolated solution based MBMPC

is much larger than that of LQR solution based MBMPC. The consid-

erable difference in the volume of the feasible regions is mainly due

to the difference in the terminal sets. The LQR based MBMPC have

to constrain the terminal state in the MPI set for recursive feasibility.

On the other hand, since previous solution or interpolated solution

based MBMPC can inherently ensure the recursive feasibility by the
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base sequence, it has the terminal MCI set yielding a much larger

feasible region.

2.5.2 Example 2 (Performance in regulation problem)

The linear descrete time model of the ball-plate system in [14] is

given by

x(k + 1)=


1 0.03−0.315−0.00412
0 1 −21 −0.452
0 0 1 0.0514

0 0 0 2.71

x(k) +

−0.00011
−0.0156
0.00245

0.195

u(k)

x = [lb, vb, ϕ, vϕ] denotes the state vector where lb and vb are the po-

sition and velocity of the ball, and ϕ and vϕ are the angle and angular

velocity of the plate, respectively. The input variable u is the voltage

to the motor of the plate. The operational constraints are given by

− 20 ≤ lb ≤ 20, −30 ≤ vb ≤ 30, −10 ≤ ϕ ≤ 10

− 2 ≤ vϕ ≤ 2, −10 ≤ u ≤ 10

We simulated a constrained regulation problem from the initial

state x(0) = [15; 5;−0.1; 1] using nominal MPC and the proposed

and existing MBMPC scheme with N = 15, N = 3, and the time-

invariant blocking structure s = {1, 8, 15}. The control parameters

are Qx = diag{6, 0.1, 500, 100}, Q
N
= 3Qx, and Qu = 1.

Figure 2.3 shows the results of nominal MPC and MBMPC based

on the interpolated solution and previous solution in regulation prob-

lem. In this example, the states and input trajectories of the proposed
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Figure 2.4: Comparison of the average computation time and closed-loop
cost of nominal MPC and MBMPC based on the interpolated solution with
and without dual-mode control, and previous solution in regulation problem
in the ball-plate system.

35



interpolated solution based MBMPC are regulated to the origin faster

than that of the existing previous solution based MBMPC. Moreover,

we also compare the result of interpolated solution based MBMPCs

with and without the dual-mode control. We can see the interpolation

parameter λ of the case with dual-mode control is maintained as 0

from the 17th sampling instant, after the state of the system reaches

O∞(K
L
), to fully utilise the optimality of LQR solution. Since the

infinite horizon LQR solution is superior to that of the finite hori-

zon optimal solution, if it is feasible, the interpolated solution based

MBMPC with dual-mode control even shows better performance than

that of the nominal MPC after the 17th sampling instant. On the other

hand, the interpolated solution based MBMPC without dual-mode

control cannot fully exploit the optimality of LQR solution. There-

fore, the case with dual-mode control shows slightly better closed-

loop cost than the case without dual-mode control in Figure 2.4. The

graph in Figure 2.4 quantitatively shows that the proposed interpo-

lated solution based MBMPC can efficiently improve the closed-loop

optimality compare to the existing previous solution based MBMPC

with a slight additional computational cost due to the interpolation

parameter.

2.5.3 Example 3 (Performance in tracking problem)

The objective function of the reference tracking problem is com-

monly given by

J = (Rs(k)− Y )TQ
Y
(Rs(k)− Y ) + ∆UTQ

dU
∆U (2.30)
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where Rs(k) ∈ RNny denotes the reference trajectory at sampling in-

stant k, ∆U := [δu0|k; δu1|k; · · · ; δuN−1|k] denotes the future rate of

input change sequence, and Q
Y

and Q
dU

are weighting matrices with

diagonal form having {Qy, · · · , Qy} and {Qdu, · · · , Qdu} as main di-

agonal blocks, respectively. This objective function can be reformu-

lated as the quadratic function of U :

Jy(x, U) = U⊤HyU + 2U⊤fy + cy (2.31)

Hy := Ψ⊤
y QY

Ψy + C⊤
2 QdU

C2

fy := Ψ⊤
y QY

(Φyx−Rs)− C⊤
2 QdU

u0

cy := (Rs− Φyx)
⊤Q

Y
(Rs− Φyx) + u⊤

0 QdU
u0

Φy := (I
N
⊗ C)Φ, Ψy := (I

N
⊗ C)Ψ

In the reference tracking problem, we cannot derive the infinite-

horizon LQR solution when the reference trajectory changes contin-

ually. Therefore, we used the unconstrained optimal solution U∗
un :=

−H−1
y fy instead of ULQR. Then, the entire input sequence of the in-

terpolated solution based move blocking in Eq. (2.14) can be refor-

mulated as

U = λÛ(k) + (1− λ)U∗
un(k) + PΘ

= M(k)V + U∗
un(k) (2.32)

M(k) := [Û(k)− U∗
un(k), P ]
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and the objective function in Eq. (2.32) can be reformulated as

Jy = V ⊤HyV + 2V ⊤f y + cy (2.33)

Hy := M(k)⊤HyM(k)

f y := M(k)⊤(HyU
∗
un(k) + fy)

cy := U∗
un(k)

⊤HyU
∗
un(k) + 2U∗

un(k)
⊤fy + cy

Finally, we can construct the standard QP problem by substitut-

ing the objective function in Eq. (2.34) into P4 in the same manner as

in Section 2.5.2.

We consider a chemical semi-batch reactor where a exothermic

series-parallel first order reactions take place. The objective is to con-

trol the reactor temperature (T ), concentration of reactant A (CA),

and volume of the solution (V ) by manipulating the temperature of

the jacket (Tj) and the feed flow rate of the reactant B (Qfeed). The

following equations describe the dynamics of the semi-batch reactor

[33, 34]:

dT

dt
=

Qfeed

V
(Tfeed − T )− UA

V ρCp

(T − Tj)−
∆H1

ρCp

k10e
E1
RT CACB

− ∆H2

ρCp

k20e
E2
RT CBCC

dCA

dt
= −Qfeed

V
CA − k10e

− E1
RT CACB

dCB

dt
=

Qfeed

V
(CB,feed − CB)− k10e

− E1
RT CACB − k20e

− E2
RT CBCC

dCC

dt
= −Qfeed

V
CC + k10e

− E1
RT CACB − k20e

− E2
RT CBCC

dV

dt
= Qfeed
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We consider T , CA, CB, CC , V as the state and assume that all states

are measurable. We used the following parameters in this system:

Tfeed = 308 K, CB,feed = 0.9 mol/L, UA/ρCp = 3.75 L/min

k10 = 5.0969× 1016 L/mol ·min, k20 = 2.2391× 1017 L/mol ·min

E1/R = 12305 K, E2/R = 13450 K, ∆H1/(ρCp) = −28.5 K · L/mol,

∆H2/(ρCp) = −20.5 K · L/mol

The linearised discrete time model is derived with sampling instant

of 1min at the initial point:

x0 = [298.15; 1; 0; 0; 50], u0 = [0; 298.15]

The operational constraints are given by

0 ≤ CA ≤ 1, 0 ≤ CB ≤ 1, 0 ≤ CC ≤ 1

290 ≤ T ≤ 310, 290 ≤ Tj ≤ 310

50 ≤ V ≤ 100, 0 ≤ Qfeed ≤ 0.3

We used the objective function in Eq. (2.32) with the control param-

eters of Qy = diag{5, 5000, 1} and Qdu = diag{10, 0.01}; and the

prediction horizon of N = 24 and number of blocks of N = 3; and

the time-invariant blocking structure s = {1, 12, 24}.
Figure 2.5 shows the trajectories of variables in the reference

tracking control of nominal MPC, and previous solution and inter-

polated solution based MBMPC. In the plot of controlled variable

T , the proposed interpolated solution based MBMPC shows better
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Figure 2.6: Comparison of the average computation time and closed-loop
cost of nominal MPC and MBMPC based on the interpolated solution, and
previous solution in reference tracking problem in the chemical reactor sys-
tem.
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tracking performance than that of the existing previous solution based

MBMPC, while the proposed scheme shows quite similar trajectory

in the plot of manipulated variable Tj . On the other hand, in case of

CA and V trajectory, the MBMPCs and nominal MPC do not show

much difference, because this variable has a relatively small effect

on the objective value. We can quantitatively confirm that the pro-

posed scheme efficiently improved the closed-loop cost compared to

the existing scheme with a slight additional computation time due

to the interpolation parameter in Figure 2.6. Additionally, we can

see the interpolation parameter λ does not remain as 0 after a spe-

cific sampling instant unlike the result in Figure 2.3. This is because,

since no fixed stabilizing feedback law is available in this case ow-

ing to the continually changing reference trajectory as in the plot of

controlled variables, the interpolated solution based MBMPC utilises

the unconstrained optimal solution U∗
un instead of ULQR so that the

MBMPC cannot apply the concept of dual-mode control.
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Chapter 3

Move-blocked model predictive control with
time-varying blocking structure by semi-explicit
approach2

3.1 Introduction

On-line computational load is one of the most outstanding is-

sues in MPC which calculates the optimal solution for every sampling

instant. Therefore, various computational complexity reduction tech-

niques have been developed. Some techniques exploit the structure of

the optimal control problem such as hierarchical decomposition ap-

proach [9], warm-starting [10], and fast MPC [11]. Other techniques

reduce the order of the problem by input parameterization [12] or

move blocking which fixes decision variables over arbitrary time in-

tervals, so-called blocks [14].

Since move blocking fixes the value of decision variables in each

block, the commonly used methods for ensuring recursive feasibil-

ity and closed-loop stability in MPC cannot work in move blocked

MPC due to the extra constraints imposed on the control input se-
2This chapter is a slightly adapted version of Son, S. H., Oh, T. H., Kim, J. W., and Lee,

J. M. (2019). "Move blocked model predictive control with improved optimality using semi-
explicit approach for applying time-varying blocking structure". Journal of Process Control,
under review.
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quence. Therefore, the offset blocking scheme which fixes the devia-

tion from the specific base sequence is widely used to guarantee the

recursive feasibility and closed-loop stability by utilizing the valuable

properties from the base sequence. In offset blocked MPC, the base

sequence and the blocking structure act as the initial point and the

search direction, respectively, in solution space. Therefore, the opti-

mality performance of move blocked MPC is considerably affected

by the optimality of the base sequence and the blocking structure.

There exist several sudies based on various kinds of base sequence

[14, 24]. However, since the optimal control problem of the move

blocked MPC is a mixed integer program (MIP) where blocking po-

sitions are integer variables, considering the optimality of blocking

structure is not a simple problem.

Some studies consider the optimality of the blocking structure

in various perspectives, but the scheme which derives a proper time-

varying blocking structure according to the current state on-line has

not been studied yet. Shekhar and Maciejowski (2012) [31] propose a

move blocking scheme which derives the time-varying optimal block-

ing structure by solving all the optimization problems for every ad-

missible blocking structure on-line using parallel computing. How-

ever, this scheme cannot reduce the actual on-line computational load

of the controller. Shekhar and Manzie (2015) [25] propose the move

blocking scheme which derives the time-invariant optimal blocking

structure in terms of maximizing the region of attractions not the op-

timality.

Since the on-line computation for the optimal blocking struc-

ture in MIP of move blocked MPC is prohibitive, we employ the

methodology of explicit MPC [35], which moves the computational
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effort for on-line optimization to off-line by exploiting the encoded

state dependent information from parametric programming. Paramet-

ric programming studies the behavior of the optimizer and the value

function according to the parameter (or current state) and subdivide

the parameter space into several characteristic regions to depict the

corresponding performance as a function of the parameter off-line

[36].

In nominal MPC, the value function and optimizer function can

be explicitly derived as a function of the current state when the active

constraints at the optimum are known [37]. However, in case of move

blocked MPC, both the active constraints and the blocking position

set at the optimum are needed to specify the optimizer and value func-

tion. Therefore, when we consider all the combinations of admissible

blocking position sets and the active constraint sets, the number of

critical regions become exorbitant. Thus, we propose a semi-explicit

approach which combines the explicit approach with simplified on-

line optimization as in [38, 39, 40]. In the proposed semi-explicit

move blocked MPC, we solve the multiparametric program and gen-

erate critical regions only for the blocking position set off-line. Then,

we can explicitly obtain the proper time-varying blocking structure

according to the current parameter by searching the critical regions,

and derive the optimal blocked offset by on-line optimization of the

reduced optimal control problem.

The rest of the chapter is organized as follows. We provide the

standard MPC formulation with quadratic stage-wise cost in a dis-

crete linear time-invariant system in Section 3.2. In Section 3.3, we

introduce the move blocking scheme and implement it on MPC. In

Section 3.4, we propose the semi-explicit approach for move blocked
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MPC, and provide the formulation that generates the critical regions

off-line and search them on-line. We also show the closed-loop prop-

erty of the proposed scheme. Finally, Section 3.5 presents the numeri-

cal examples to verify the efficacy of the proposed semi-explicit move

blocked MPC scheme compared to existing methods.

3.2 Problem formulation

We consider the discrete linear time-invariant system in Eq. (3.1)

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(3.1)

with constraints

u ∈ U , x ∈ X (3.2)

where u(k) ∈ Rnu , y(k) ∈ Rny , and x(k) ∈ Rnx denote the in-

put, output, and state, respectively. U and X are the input and state

constraint sets presented as compact polyhedral region containing the

origin in their interiors. We assume the pair (A, B) is stabilizable and

the pair (C, A) detectable.

To render the state of the system to the origin from a given ini-

tial state, the objective function is commonly described as a sum of
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quadratic stage costs as Eq. (3.3).

J(x0, U) = ||xN ||2QN
x
+

N−1∑
i=0

(||xi||2Qx
+ ||ui||2Qu

) (3.3)

U := [u0;u1; · · · ;uN−1]

where Qu ∈ Rnu×nu , Qx ∈ Rnx×nx , and QN
x ∈ Rnx×nx denote

the positive definite weight matrix for input, state, and the terminal

state, respectively. [v1; v2; · · · ; vn] represents the vertical concatena-

tion [v⊤1 , v
⊤
2 , · · · , v⊤n ]⊤.

We can reformulate J as a quadratic function of the input se-

quence by substituting Eq. (3.1) into Eq. (3.3):

J(x0, U) = U⊤HU + 2U⊤f + c (3.4)

H := Ψ⊤Q
X
Ψ+Q

U

f := Ψ⊤Q
X
Φx

c := x⊤(Φ⊤Q
X
Φ +Qx)x

where

Φ :=


A

A2

...

AN

, Ψ :=



B 0 0 · · · 0
AB B 0 · · · 0
A2B AB B · · · 0

...
...

...
...

AN−1B AN−2B AN−3B · · · B


Q

X
:= diag{Qx, · · · , Qx, Q

N
x }

Q
U
:= diag{Qu, · · · , Qu}.
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diag{Q1, Q2, · · · , Qn} is a matrix with the diagonal form having

Q1, Q2, · · · , Qn as main diagonal blocks.

Then, model predictive controller solves the finite horizon op-

timal control problem P1 for each sampling instant and apply the

solution to the system in a receding horizon manner.

P1 : J∗(x) = min
U

J(x, U)

s.t. Fx+GU ≤ h

where F ∈ Rnc×nx , G ∈ Rnc×Nnu and h ∈ Rnc are suitable matrices

derived considering the constraint sets in Eq. (3.2) and the terminal

state constraint set for the purpose of ensuring the recursive feasibility

which is commonly chosen as a control invariant (CI) set [26].

3.3 Move blocked MPC

3.3.1 Move blocking scheme

Move blocking is a kind of input parameterization scheme which

mitigates the computational complexity associated with optimization

by fixing the value of decision variables over arbitrary time intervals,

so-called blocks as illustrated in Figure 3.1. The blocking structure

is determined by the blocking positions in Definition 1.

Definition 1. The ascending set s := {s1, · · · , sN} is a blocking po-

sition set where si ∈ N≤N for i = 1, · · · , N denotes each blocking

position where the block begins, and N denotes the number of blocks

(N≤N is the set of natural numbers less than or equal to N ). In addi-
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𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

Basic form

𝛿𝑢 𝛿𝑢 𝛿𝑢 𝛿𝑢 𝛿𝑢 𝛿𝑢 𝛿𝑢 𝛿𝑢 𝛿𝑢 𝛿𝑢

𝛿𝑢 0 0 𝛿𝑢 0 0 0 0 𝛿𝑢 0

Velocity form

Figure 3.1: A schematic illustration of move blocking when N = 10, N =
3, and s = {1, 4, 9}.
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tion, let S represent the collection of admissible s.

Figure 3.1 represents the input sequence in velocity form where

δui := ui − ui−1. The blocking matrix in velocity form is derived

from s as in Definition 2.

Definition 2. P s ∈ BN×N denotes the blocking matrix where BN×N

is an N × N matrix whose elements are restricted to the binary val-

ues 0 or 1. P s takes a lower triangular form and each column of P s

contains exactly one non-zero element. The position of non-zero el-

ements in P s is determined by the elements of blocking position set

s:

P s = [P s1 , · · · , P s
N
] (3.5)

P si := [0si−1; 1;0N−si ] for i = 1, · · · , N

where 0m represents a vector of zeros with length m.

The blocking matrix in velocity form is simpler than that of the

basic form, and allows for a straightforward formulation.

Remark 1. When move blocking scheme is expressed in velocity

form, δui is non-zero only when i ∈ s, and δui at remaining parts are

fixed as 0. From this, we can see the selection of blocking positions

is identical to the selection of variables having degrees of freedom in

the prediction horizon in velocity form.

Now, we can describe the parameterized input variation sequence
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using the reduced variables and the blocking matrix in velocity form:

∆U = (P s ⊗ Inu)∆U (3.6)

where ⊗ denotes the Kronecker product, ∆U := [δu1; δu2; · · · ; δuN ]

denotes the sequence of input variation, and ∆U := [δu1; δu2; · · · ; δuN ]

denotes the reduced sequence of input variation. This is the basic type

of move blocking scheme called input blocking which parameterizes

the input sequence by directly fixing the actual input. Input blocking

scheme is simple but has limitations in terms of closed-loop perfor-

mance due to the inflexibility from fixing the actual input [14].

Offset blocking fixes the offset from the base sequence not the

actual input as in the input blocking:

∆Θ = (P s ⊗ Inu)∆Θ

∆U = ∆Ub + (P s ⊗ Inu)∆Θ
(3.7)

where ∆Ub denotes the variation of base sequence, ∆Θ := [δθ1; δθ2;

· · · ; δθN ] denotes the offset variation sequence, and ∆Θ := [δθ1; δθ2;

· · · ; δθN ] denotes the reduced offset variation sequence. Offset block-

ing scheme can deal with the limitations of input blocking scheme by

exploiting the valuable properties from base sequences.

3.3.2 Implementation of move blocking

In this study, we proceed the formulation based on the offset

blocking scheme in velocity form using the shifted previous solu-

tion as the base sequence with fixing the last blocking position as N ,
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sN = N , to ensure the recursive feasibility [24, 25]:

U = Û + C1Ps∆Θ (3.8)

Û(k) := [u∗
1|k−1; · · · ;u∗

N−1|k−1;0nu ]

C1 :=


1 0 · · · 0
1 1 · · · 0
...

...
...

1 1 · · · 1

⊗ Inu

Ps := P s ⊗ Inu

where Û denotes the shifted previous solution. Then, the objective

function can be rewritten as a quadratic function of ∆Θ by substitut-

ing Eq. (3.8) into Eq. (3.4) as

J(x, Û , s,∆Θ) = ∆Θ
⊤
H∆Θ+ 2∆Θ

⊤
f + c (3.9)

H := P⊤
s C⊤

1 HC1Ps

f := P⊤
s C⊤

1 (HÛ + f)

c := Û⊤HÛ + 2Û⊤f + c.

Proposition 1. H is positive definite ∀s ∈ S.

Proof ) P⊤
s XPs generates an N ×N matrix consisting of X ∈ RN×N

elements only corresponding to each blocking position in s. From

this, we can see P⊤
s C⊤

1 HC1Ps is a principal submatrix of C⊤
1 HC1.

Thus, since C⊤
1 HC1 is positive definite, P⊤

s C⊤
1 HC1Ps is also posi-

tive definite ∀s ∈ S.
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When move blocking scheme is implemented on MPC, the or-

der of existing variables is reduced by parameterization, the blocking

positions are added as new variables, and additional constraints from

move blocking are imposed on the optimal control problem as in P2.

P2 : J∗(x,Û) = min s,∆Θ J(x, Û , s,∆Θ)

s.t. Fx+G∆Θ ≤ h

s = {s1, · · · , sN}, sN = N

si ∈ N<N for i = 1, · · · , N − 1

As we can see above, P2 is an MIP where blocking positions

si are integer variables. Since the computational complexity to derive

the optimal solution of MIP is too high, time-invariant blocking struc-

tures, such as control horizon [41, 42] or blocking structure which

maximizes the volume of the approximate region of attraction [25],

are commonly used. The computation of the time-varying optimal

blocking structure by enumeration with the assumption of a parallel

controller is proposed in [31, 43]. However, since this scheme cannot

reduce the actual on-line computation burden, we do not consider it

in this study.

3.4 Semi-explicit approach for move blocked MPC

Since the selection of blocking structure has a significant impact

on optimality as described in Remark 1, the optimality performance

of the controller can be efficiently improved when we can select a

proper blocking structure given a current state on-line. However, the
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on-line optimization of the MIP in P2 is not practical. Thus, we pro-

pose to apply the explicit approach using multiparametric program-

ming to move the on-line computational load to off-line.

In nominal MPC, the optimization problem is usually convex

where the optimizer and the value function can be explicitly derived

as functions of the current state by utilizing Karush-Kuhn-Tucker

(KKT) conditions when the active constraints at the optimum are

known. Thus, critical region in multiparametric programming of nom-

inal MPC is usually derived for each active constraint set as in Defi-
nition 3.

Definition 3. Let U∗(x) be the optimizer for x ∈ X0 and Ic :=

{1, · · · , nc} be the set of constraint indices in P1. Then, the critical

region related to a set of active constraints with the index set A ⊂ Ic

is defined as

CRA = {x ∈ X0 | Fix+GiU
∗(x) = hi ∀i ∈ A} (3.10)

where Fi, Gi and hi denote the ith elements of F , G, and h in P1,

respectively[36].

In case of move blocked MPC, both the active constraints and

the blocking position set at the optimum are needed to specify the

optimizer and value function. Therefore, when we consider all the

combinations of admissible blocking position sets and the active con-

straint sets among the non-redundant constraints depending on each

blocking position set, the number of critical regions in the worst case
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can be ns,A in Eq. (3.11).

ns,A =
ns∑
i=1

2nA(i) (3.11)

ns :=

(
N − 1

N − 1

)

where ns denotes the number of admissible blocking position sets

with sN = N , and nA(i) denotes the number of the non-redundant

constraints when the blocking structure with the ith admissible block-

ing position set is implemented.

To move all the on-line computational load for solving P2 to off-

line, we have to investigate ns,A combinations in Eq. (3.11). However,

in this case, the off-line computational cost for generating the criti-

cal regions is significantly large, and the on-line computational cost

for finding the critical region of the current parameter belongs to the

parameter space would also be large. Therefore, this multiparamatric

programming in fully explicit manner is not practical.

To address this limitation of move blocked MPC, we propose to

proceed multiparametric programming in semi-explicit manner which

generates critical regions only for the blocking position sets off-line

not for the blocked offset variation sequence. Then, we can explicitly

derive the proper time-varying blocking position set s̃∗ for a current

parameter with critical region search and solve the reduced problem

on-line only for ∆Θ in P3 with s̃∗.

P3 : J∗(x,Û , s̃∗) = min∆Θ J(x, Û , s̃∗,∆Θ)

s.t. Fx+G∆Θ ≤ h
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Since the MIP in P2 is converted to a convex optimization problem

in P3 by deriving the proper integer variables (i.e., blocking position

set) explicitly, the proposed scheme considerably reduces the on-line

computational complexity and makes it possible to exploit the proper

time-varying blocking structure for the current parameter on-line.

3.4.1 Off-line generation of critical region

In P1 of nominal MPC, the optimal solution depends on the cur-

rent state x only, therefore, the parameter vector of multiparametric

programming is identical to x. In P2 of move blocked MPC, since the

optimal solution depends on x and Û , the parameter vector should be

dependent on (x, Û ) pair. Then, the critical regions are generated in

the space of the parameter vector.

Now, based on Definition 3, we can simply think of the critical

regions for each admissible s as the sets of parameters for which the

same s is optimal. To generate these critical regions, we should be

able to obtain the optimal ∆Θ
∗
s from given s. However, we cannot

obtain ∆Θ
∗
s only from the blocking structure. Therefore, we utilize

the unconstrained optimal solution ∆Θ̃∗
s which can be easily derived

from the blocking structure instead of the exact solution ∆Θ
∗
s:

∆Θ̃∗
s(x, Û) = −H−1

f. (3.12)

This allows for a straightforward formulation of the unconstrained

value function J̃∗
s (x, Û) given s by substituting Eq. (3.12) into Eq.
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(3.9):

J̃∗
s (x, Û) = −f⊤

H
−1
f + c (3.13)

= −(HÛ + f)⊤C1HsC
⊤
1 (HÛ + f) + c

Hs := Ps(P
⊤
s C⊤

1 HC1Ps)
−1P⊤

s .

Now, we define the parameter vector g dependent on (x, Û ) pair

as

g(x, Û) := C⊤
1 (HÛ + f). (3.14)

Then, we can reformulate J̃∗
s with g by substituting Eq. (3.14) into

Eq. (3.13):

J̃∗
s (g) = −g⊤Hsg + c. (3.15)

J̃∗
s (g) implies the unconstrained value function for the current

parameter g given the blocking position set s. Let SN represent the

collection of admissible s with sN = N . Then, we can derive the min-

imal unconstrained value function among J̃∗
s (g) for each admissible

s ∈ SN and the minimizing blocking position set s̃∗ for the current

parameter g:

s̃∗(g) = argmin s∈S J̃∗
s (g). (3.16)

Let Is := {1, · · · , ns} denote the set of indices for each s ∈ SN
and s(i) be the blocking position set corresponding to the index i ∈
Is. Then, we define the critical regions as the sets of parameters g for
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which the same blocking position set s achieves the minimal J̃∗
s (g)

as in Definition 4.

Definition 4. Consider an admissible blocking position set s(i) ∈
SN , i ∈ Is. The critical region associated with s(i) is defined as

CRs(i) = {g | s̃∗(g) = s(i)}. (3.17)

Let i∗(g) ∈ Is denote the corresponding index of s̃∗(g), i.e.,

s(i∗(g)) = s̃∗(g). Then, the inequality in Eq. (3.18) holds based on

the definition of J̃∗
s (g) and s̃∗(g) in Eqs. (3.15) and (3.16).

g⊤(Hs(i∗(g)) −Hs(j))g > 0 ∀j ∈ Is \ i∗ (3.18)

where Hs(i) := Ps(i)(P
⊤
s(i)C

⊤
1 HC1Ps(i))

−1P⊤
s(i). Then, we can derive

CRs(i) as Eq. (3.19) with Eq. (3.18) according to Definition 4.

CRs(i) = {g | g⊤Hs(i,j)g > 0 ∀j ∈ Is \ i} (3.19)

where Hs(i,j) := Hs(i) −Hs(j).

Proposition 2. Hs(i) is positive semi-definite ∀i ∈ Is.

Proof ) From Eq. (3.5), Ps(i)XP⊤
s(i) becomes a sparse matrix where the

X elements are located on each blocking position in s(i). Thus, the

principle minors of Ps(i)(P
⊤
s(i)C

⊤
1 HC1Ps(i))

−1P⊤
s(i) are identical to the

principle minors of (P⊤
s(i)C

⊤
1 HC1Ps(i))

−1 or zero. Since P⊤
s(i)C

⊤
1 HC1Ps(i)
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is positive definite from Proposition 1, its inverse (P⊤
s(i)C

⊤
1 HC1Ps(i))

−1

is also positive definite ∀i ∈ Is. Therefore, we can see Ps(i)(P
⊤
s(i)C

⊤
1 H

C1Ps(i))
−1P⊤

s(i) is positive semi-definite ∀i ∈ Is.

Proposition 3. Hs(i,j) is indefinite ∀i, j ∈ Is, i ̸= j.

Proof ) The position of nonzero diagonal components of Hs(i) and

Hs(j) are identical to the elements of s(i) and s(j), respectively. There-

fore, there is at least one nonzero diagonal component in each of

Hs(i) and Hs(j) whose positions do not overlap with each other when

i ̸= j. We can see these nonzero diagonal components are positive

from Proposition 2. Then, the diagonal components of Hs(i) −Hs(j)

corresponding to the nonoverlapped components of Hs(i) are positive

and those of Hs(j) are negative. Thus, we can see Hs(i,j) is indefinite

∀i, j ∈ Is, i ̸= j.

From Proposition 3, we can see Hs(i,j) is not positive definite

and the inequality g⊤Hs(i,j)g > 0 does not hold ∀g ∈ RNnu . There-

fore, the critical region defined in Definition 4 is always a partition

of parameter space of g, and we can subdivide the parameter space

into ns number of critical regions for each admissible blocking posi-

tion set s ∈ SN off-line. Then, we can obtain s̃∗ for current parameter

g(k) on-line only by determining which critical region the parameter

belongs to.
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3.4.2 On-line MPC scheme with critical region search

In this section, we present the on-line move blocked MPC scheme

with the semi-explicit approach. As the receding horizon control pro-

ceeds, the critical region where the current parameter belongs to chan-

ges according to the change of x and Û . Therefore, we have to track

the transition of critical region in the parameter space continually.

This study utilizes an efficient line-search based point location tech-

nique presented in [44], which tracks the boundaries of critical re-

gions where the parameter point crosses on the straight line from the

previous parameter g(k − 1) to the current parameter g(k), to track

the transition of critical region.

Based on Eq. (3.19), the boundary between the critical regions

CRs(i) and CRs(j) can be described as

Bs(i,j) = {g | g⊤Hs(i,j)g = 0}. (3.20)

Each critical region shares ns − 1 number of boundaries with other

critical regions for each admissible (i, j) pair.

Now, let i(k) ∈ Is denote the index of critical region where the

current parameter g(k) belongs to. Then, we can derive i(k) by track-

ing the transition of critical region from i(k − 1) through successive

iteration of line-search as described in Algorithm 3.1. ℓi,j denotes the

scaled distance from the parameter g0 to the boundary Bs(i,j) along

the ∆g direction derived from the quadratic formula.

As shown in Proposition 3, Hs(i,j) is a sparse matrix in which

only the elements at positions corresponding to the components of

s(i) and s(j) are nonzero. Therefore, only the components of param-

eter g ∈ Bs(i,j) corresponding to s(i) ∪ s(j) are constrained whereas
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Algorithm 3.1. Tracking of critical region transition

Initialize g0 = g(k − 1), gf = g(k), and i = i(k − 1)

loop
Set ∆g = gf − g0
Perform the line search: ℓ(j∗) = minj∈Is\i ℓi,j > 0

(ℓi,j :=
−g⊤0 Hi,j∆g ± (∆g⊤Hi,j(g0g

⊤
f − gfg

⊤
0 )Hi,jg0)

1/2

∆g⊤Hi,j∆g
)

if ℓ < 1 then
Update g0 ← g0 + ℓ∆g, i← j∗

else
Set i(k) = i and apply i(k) to the controller
Exit the loop

end if
end loop

Table 3.1: Tracking of critical region transition

the remaining components have degrees of freedom. For example,

when N = 10, s(i) = {1, 2, 3, 10}, and s(j) = {1, 4, 5, 10}, then the

6, 7, 8, and 9th components of g have degrees of freedom. Therefore,

the more number of s(j) elements are identical to the elements of

s(i), the more sparse the Hs(i,j) is, g ∈ Bs(i,j) has more degrees of

freedom, and Bs(i,j) occupies more volume among the boundary of

CRs(i).

In this point of view, the most dominant boundaries for CRs(i)

are Bs(i,j) where the components of s(i) and s(j) are identical ex-

cept one element. Then, the set of indices j that form the dominant

boundaries for CRs(i) can be defined as

Idoms(i) = {j ∈ Is \ i | n(s(i) ∩ s(j)) = N − 1}. (3.21)

The number of components of Idoms(i) with fixing s(j)N = N to ensure
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the recursive feasibility is

ndom
s = (N −N)(N − 1). (3.22)

Since the number of dominant boundaries ndom
s is much smaller than

the number of overall boundaries ns− 1 of CRs(i), we can efficiently

reduce the computation time for line search in Algorithm 3.1 by con-

sidering the dominant boundaries only, i.e. performing the line search

for j ∈ Idoms(i) instead of j ∈ Is \ i.
By tracking the critical region where the current parameter be-

longs to with Algorithm 3.1, we obtain the proper blocking position

set s̃∗. Then, we obtain optimal blocked offset ∆Θ
∗

by solving the

reduced problem P3 with s̃∗. The outline of move blocked MPC with

semi-explicit approach is summarized in Algorithm 3.2.

3.4.3 Property of semi-explicit move blocked MPC

Since the shifted previous solution Û(k) := [u∗
1|k−1; · · · ;u∗

N−1|k−1;

0nu ] is guaranteed to be feasible until the k + N − 1th sampling in-

stant, the offset blocking with Û can utilize this feasible property.

Thus, the proposed semi-explicit move blocked MPC based on this

offset blocking scheme can guarantee the recursive feasibility with

any admissible blocking structure under the condition of sN = N

and XT = C∞, where C∞ is the maximal controlled invariant set de-

fined below.

Definition 5. The maximal controlled invariant (MCI) set C∞ is a CI
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Algorithm 3.2. Semi-explicit move blocked MPC

Initialize x(0) = x0, Û(0) = Û0, g(0) = g0, and i(0) = i0
Set s̃∗ = s(i(0)) and derive ∆Θ

∗
by solving P3

Compute U∗ = Û(0) + C1Ps(i(0))∆Θ
∗

Apply u∗
0 to the system

Update Û(1) = [u∗
1; · · · ;u∗

N−1;0nu
]

Wait for the next sampling instant 1
for k = 1, · · · ,K do

Measure(or estimate) x(k) at sampling instant k
Compute g(k) = C⊤

1 (HÛ(k) + f)

if ∆g(k) < εg then
Set i(k) = i(k − 1)

else
Obtain i(k) through Algorithm 3.1 with j ∈ Idoms(i(k−1))

end if
Set s̃∗ = s(i(k)) and derive ∆Θ

∗
by solving P3

Compute U∗ = Û(k) + C1Ps(i(k))∆Θ
∗

Apply u∗
0 to the system

Update Û(k + 1) = [u∗
1; · · · ;u∗

N−1;0nu
]

Wait for the next sampling instant k + 1

end for

Table 3.2: Semi-explicit move blocked MPC

set which contains all other CI sets and can also be defined as

C∞ := {x0 ∈ X | ∃{ui ∈ Rnu}∞i=0 such that ui ∈ U ,

xi+1 = Axi +Bui ∈ X ∀i ∈ Z≥0} (3.23)

where Z≥0 is the set of non-negative integers [29].

The recursive feasibility of semi-explicit move blocked MPC is

described below.
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Theorem 1. Consider the optimal control problem P3. If s∗ ∈ SN
and XT = C∞, then a feasible solution is always guaranteed to exist.

Proof ) We can choose the reduced offset variation sequence as ∆Θ =

[0; · · · ; 0; ν], ν ∈ U . If sN = N , then the entire input sequence can

always be given by

Ũ(k) := [u∗
1|k−1; · · · ;u∗

N−1|k−1; νk] (3.24)

which results in the prediction of future state sequence as

X̃(k) := [x̃1|k; · · · ; x̃N−1|k; x̃N |k]. (3.25)

Since [u∗
1|k−1; · · · ;u∗

N−1|k−1] is the shifted previous input solu-

tion, x̃N−1|k ∈ XT is guaranteed. Moreover, there always exists νk ∈
U which satisfies the terminal constraint x̃N |k = Ax̃N−1|k + Bνk ∈
XT owing to the invariance of XT . Therefore, we can ensure that a

feasible solution of P3 is always guaranteed to exist.

From Theorem 1, feasibility of the initial values x(0) and Û(0)

guarantees the recursive feasibility of the proposed semi-explicit move

blocked MPC.

The convergence of semi-explicit move blocked MPC can be

proved in a similar manner shown in [33] with Theorem 1.

Theorem 2. Consider the closed-loop system under receding horizon

control with input update by the semi-explicit move blocked MPC in

Algorithm 3.2. The system will converge to the origin as k → ∞
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under the assumption given by

min
u∈U ,x+∈C∞

ϕ
∆N

(x, u) ≤ 0, ∀x ∈ C∞ (3.26)

ϕ
∆N

(x, u) := ϕ(x, u) + x+⊤QN
x x

+ − x⊤QN
x x

ϕ(x, u) := x⊤Qxx+ u⊤Quu

where x+ = Ax+Bu.

Proof) As in Theorem 1, we can always obtain a feasible input se-

quence Ũ in Eq. (3.24) with suitable νk ∈ U . Then, we can derive the

expected objective value when Ũ is implemented:

J(x(k), Ũ(k)) =
N−2∑
i=0

ϕ(x̃i|k, u
∗
i+1|k−1) + ϕ(x̃N−1|k, νk) + x̃⊤

N |kQ
N
x x̃N |k

(3.27)

where x̃0|k = x(k).

Since the optimal input sequence and resulting state sequence at

the previous sampling instant are identical to Ũ and X̃ except the first

and last components, we can reformulate Eq. (3.27) as

J(x(k), Ũ(k)) = J∗
k−1 − ϕ(xk−1, uk−1) + ϕ

∆N
(x̃N−1|k, νk) (3.28)

where J∗
i := J∗(x(i), Û(i), s̃∗(i)) denotes the optimal cost of the

problem P3 at the sampling instant i.

Since Ũ is just a feasible solution sequence of P3 with ∆Θ =
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[0; · · · ; 0; ν], the following inequality holds:

J∗
k ≤ J(x(k), Ũ(k)). (3.29)

Substituting Eq. (3.28) into Eq. (3.29) gives

J∗
k ≤ J∗

k−1 − ϕ(xk−1, uk−1) + ϕ
∆N

(x̃N−1|k, νk). (3.30)

By the assumption in Eq. (3.26), Eq. (3.30) can be reformulated as

J∗
k − J∗

k−1 ≤ −ϕ(xk−1, uk−1). (3.31)

Since J∗ ≥ 0, the sequence of J∗ strictly decreases over time. Now,

summing both sides of Eq. (3.31) over all k ≥ 1 gives

J∗
∞ − J∗

0 ≤ −
∞∑
k=1

ϕ(xk−1, uk−1). (3.32)

Since J∗
∞ ≥ 0, Eq. (3.32) can be rearranged as

∞∑
k=1

ϕ(xk−1, uk−1) ≤ J∗
0 . (3.33)

From the non-negativity of ϕ(xk−1, uk−1) for all k ≥ 1, Eq. (3.33)

implies

lim
k→∞

ϕ(xk, uk) = 0. (3.34)

Since ϕ(x, u) > 0 for all x ̸= 0nx and u ̸= 0nu , we can see xk and

uk converge to the origin as k → ∞ from Eq. (3.34), and thus J∗
k
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converges to zero.

The stability of semi-explicit move blocked MPC can be proved

by establishing that J∗ is a Lyapunov function. Since the positivity

and decreasing property are followed from the definition of J∗ and

Eq. (3.31), respectively, we only need to prove the continuity of J∗ at

the origin.

Lemma 1. Consider the optimal control problem P3. If s̃∗ ∈ S
N

and

XT = C∞, then X0 = X1 = · · · = XN−1 = C∞, where Xi is the set of

states at time i for which P3 is feasible:
Xi = {x ∈ X | ∃u ∈ U such that Ax+Bu ∈ Xi+1},

for i = 0, · · · , N − 1

XN = XT .

Proof ) The problem is always feasible by Theorem 1. When Xi+1

is control invariant, by the definition of CI set, Xi+1 ⊆ Xi. Then,

since there always exists u ∈ U such that Ax + Bu ∈ Xi+1 for all

x ∈ Xi, Xi is also a CI set. Therefore, Xi is control invariant for all

i = 1, · · · , N − 1 and X0 ⊇ X1 ⊇ · · · ⊇ XN holds. From this and the

definition of MCI set C∞, we can see X0 = X1 = · · · = XN−1 = C∞
when XT = C∞.

Lemma 2. Consider the offset blocking controller with the fixed block-

ing position set sν = {N} yielding the same form of solution and

resulting state sequence in Eqs. (3.24) and (3.25). If XT = C∞, then
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Eq. (3.36) holds:

ν∗
k = argmin

νk∈U ,x̃N|k∈XT

ϕ
∆N

(x̃N−1|k, νk). (3.35)

Proof ) Let J∗
ν (x, Û , sν) denote the optimal cost of the controller with

sν . Then, we can describe J∗
ν,k as Eq. (3.37) in a similar manner with

deriving Eq. (3.28):

J∗
ν,k = J∗

ν,k−1 − ϕ(xk−1, uk−1) + ϕ
∆N

(x̃N−1|k, ν
∗
k). (3.36)

Since x̃N−1|k ∈ C∞, we can reformulate Eq. (3.37) as

J∗
ν,k = J∗

ν,k−1 − ϕ(xk−1, uk−1) + min
νk∈U ,x̃N|k∈XT

ϕ
∆N

(x̃N−1|k, νk).

(3.37)

From this, we can see Eq. (3.36) holds.

Theorem 3. Consider the optimal cost J∗ of the optimal control prob-

lem P3 with s̃∗ ∈ SN and XT = C∞. J∗ is continuous at the origin

under the assumption of Eq. (3.26).

Proof ) Consider the controller in Lemma 2. Since the controller only

updates the last component of Û , the entire input sequence and result-

ing state sequence for k ≥ N − 1 can be written as

Ũ∗(k) = [ν∗
k−N+1; · · · ; ν∗

k−1; ν
∗
k ] (3.38)

X̃∗(k) = [x̃∗
N |k−N+1; · · · ; x̃∗

N |k−1; x̃
∗
N |k]. (3.39)
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Then, we can describe J∗
ν,k as the sum of stage costs using Ũ∗(k) and

X̃∗(k) in Eqs. (3.39) and (3.40):

J∗
ν,k = x̃∗ ⊤

N |k QN
x x̃

∗
N |k +

k∑
i=k−N+1

ϕ(x̃∗
N |i−1, ν

∗
i ) (3.40)

where x̃∗
N |k−N = xk. Substituting ϕ

∆N
in Eq. (3.26) into Eq. (3.41)

yields

J∗
ν,k = x⊤

k Q
N
x xk +

k∑
i=k−N+1

ϕ
∆N

(x̃∗
N |i−1, ν

∗
i ). (3.41)

From Lemma 2, Eq. (3.42) can be rewritten as

J∗
ν,k = x⊤

k Q
N
x xk +

k∑
i=k−N+1

min
νi∈U ,x̃N|i∈XT

ϕ
∆N

(x̃∗
N |i−1, νi). (3.42)

Since sν ∈ SN and XT = C∞, we can see x̃∗
N |i−1 ∈ XT for all

i = k−N +1, · · · , k from Lemma 1. Therefore, we can have the

inequality in Eq. (3.44) by applying the assumption in Eq. (3.26):

J∗
ν,k ≤ x⊤

k Q
N
x xk ∀xk ∈ XT . (3.43)

Since sν ⊆ s̃∗ when s̃∗ ∈ SN , move blocked MPC with s̃∗ al-

ways provides a superior solution to that with sν . Therefore, it can be

readily shown that

0 ≤ J∗(x, Û , s̃∗) ≤ J∗
ν (x, Û , sν). (3.44)
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Applying the inequality in Eq. (3.44) to Eq. (3.45) yields

0 ≤ J∗(x, Û , s∗) ≤ x⊤QN
x x ∀x ∈ XT . (3.45)

Since x⊤QN
x x is continuous at the origin, J∗(x, Û , s∗) must be con-

tinuous at the origin with suitable Û .

From Theorem 3, we can conclude that semi-explicit move bloc-

ked MPC can steer x ∈ XT to a level set of J∗(x, Û , s∗) contained in

XT where the convergence to and stability of the origin is guaranteed

under the conditions of s∗ ∈ SN and XT = C∞ with suitable Û .

3.5 Numerical examples

In this section, we demonstrate the efficacy of the semi-explicit

move blocked MPC through the examples comparing the closed-loop

trajectories and on-line computation time of MPC with the time-

varying blocking structure from the proposed semi-explicit approach

and an arbitrary time-invariant blocking structure.

Simulations are performed using MATLAB® R2019a with Intel®

CoreTM i7-6700 CPU @ 3.40GHz, 32 GB RAM.
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3.5.1 Example 1 (Regulation problem)

Consider the ball-plate system in [14]:

ẋ(t) =


0 1 0 0

0 0 −700 0

0 0 0 1

0 0 0 33.18

x(t) +


0

0

0

3.7921

u(t).

x = [lb, vb, ϕ, vϕ] is the state vector where lb and vb denote the po-

sition and velocity of the ball, and ϕ and vϕ denote the angle and

angular velocity of the plate, respectively. The input u is the voltage

to the motor of the plate that makes the plate rotate. The operational

constraints are given by

− 20 ≤ lb ≤ 20, −30 ≤ vb ≤ 30, −10 ≤ ϕ ≤ 10

− 2 ≤ vϕ ≤ 2, −10 ≤ u ≤ 10.

The discrete time model with the sampling time of 0.03s is de-

rived using zero-order hold. The prediction horizon and the number

of blocks are N = 15 and N = 4, and the blocking position set s =

{1, 6, 11, 15} is used in the time-invariant blocking structure case.

The initial state and base sequence are x(0) = [5; 7; 0.1; 0.77] and

Û(0) = 015. The control parameters are Qx = diag{6, 0.1, 500, 100},
Q

N
= P∞, and Qu = 1 where P∞ is the solution of the discrete Alge-

braic Riccatie Equation. The terminal MCI set was calculated using

the MPT3 toolbox [32].

Figure 3.2 shows the results of MPC with semi-explicit approach,

time-invariant blocking structure with s = {1, 6, 11, 15}, and non-
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Figure 3.3: Time-varying blocking positions from the move blocked MPC
with semi-explicit approach in the ball-plate system.
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blocking case in a regulation problem at the ball-plate system. We

can see the move blocked MPC with semi-explicit approach shows

much better optimality performance than the case with time-invariant

blocking structure. Figure 3.3 illustrates the applied time-varying

blocking positions for each sampling instant in move blocked MPC

with semi-explicit approach. s4 is fixed as 15 to ensure the recursive

feasibility.

Since obtaining the solution by offset blocked MPC, which pa-

rameterizes the input sequence in terms of deviations from the shifted

previous input solution as the base sequence, is identical with up-

dating the retained previous input solution with a reduced number

of decision variables given by the blocking structure, the selection

of blocking structure has a significant influence on the optimality

performance of the controller. This is why the move blocked MPC

with the proposed semi-explicit approach which selects the appro-

priate blocking structure according to the current state shows supe-

rior performance than that with an arbitrary time-invariant blocking

structure.

In addition, we can see the proposed move blocked MPC with

semi-explicit approach takes slightly more amount of on-line com-

putation time than the conventional time-invariant blocking structure

case. Since both semi-explicit approach and time-invariant blocking

structure case solve the optimal control problem with the same num-

ber of variables and structure, this difference in computational costs

mainly comes from the critical region search in Algorithm 3.1. In

conclusion, the proposed semi-explicit approach effectively improves

the optimality performance of move blocked MPC by providing a

proper blocking position set for the parameter change with compar-
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atively negligible additional computation cost compared to the con-

ventional time-invariant blocking structure case.

Since the initial condition of the system is commonly given be-

fore starting the control system, we can derive the optimal solution

at the initial point U∗(0) over the entire optimization window before

the control starts, and then use U∗(0) as the initial base sequence,

Û(0) = U∗(0) and terminal cost as Q
N
= 3Qx. At later time steps,

move blocking scheme is applied. By this pre-computation technique,

we can provide the fully matured initial base sequence to the con-

troller instead of the simple zero vector 0Nnu .

Figure 3.4 shows the results of MPC with semi-explicit approach,

time-invariant blocking structure with s = {1, 6, 11, 15}, and non-

blocking case in regulation problem in the ball-plate system with the

initial base sequence as U∗(0). We can see the performance of move

blocked MPC with semi-explicit approach and time-invariant block-

ing structure is improved compared to the results in Figure 3.2. This

is because the optimality of the entire input sequence and the effi-

ciency of input sequence update by offset blocking are improved by

the superior initial base sequence.

Particularly, the move blocked MPC with semi-explicit approach

shows similar trajectories to the nominal non-blocking case. From

this, we can see the move blocking with only four blocks is sufficient

to appropriately update the input sequence with the horizon of 15

in this system when the proper initial base sequence and the proper

blocking structure according to the parameter change are provided

through the pre-computation and the semi-explicit approach, respec-

tively.
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3.5.2 Example 2 (Tracking problem)

The objective function of the tracking problem is commonly de-

scribed as a sum of quadratic errors of the predicted output from the

reference and input variation:

J(x0, U) :=
N∑
i=1

(rsi − yi)
⊤Qy(rsi − yi) + δu⊤

i Qduδui (3.46)

where rsi ∈ Rny and δui denote the reference signal and the input

variation at sampling instant i, respectively.

The objective function in Eq. (3.47) can be rewritten as a quadratic

function of the input sequence U :

J(x, U) = U⊤HyU + 2U⊤fy + cy (3.47)

Hy := Ψ⊤
y QY

Ψy + C⊤
2 QdU

C2

fy := Ψ⊤
y QY

(Φyx−Rs)− C⊤
2 QdU

u0

cy := (Rs− Φyx)
⊤Q

Y
(Rs− Φyx) + u⊤

0 QdU
u0

Φy := (IN ⊗ C)Φ, Ψy := (IN ⊗ C)Ψ

C2 :=



1 0 0 · · · 0 0

−1 1 0 · · · 0 0

0−1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · ·−1 1


⊗ Inu

Rs := [rs1 ; rs2 ; · · · ; rsN ]

u0 := [u−; 0; · · · ; 0]

where u− denotes the implemented input at the previous sampling

instant.
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Then, we can construct the semi-explicit move blocked MPC for

the tracking problem using the same formulation in Section 3.4 by

replacing H and f with Hy and fy.

We consider a chemical semi-batch reactor where exothermic

series-parallel first order reactions take place:

A+B
k1−→ C, r1 = k1CACB

B + C
k2−→ D, r2 = k2CBCC .

The control objective is to track the reference trajectories of the re-

actor temperature (T ) and the concentration of reactant A (CA) while

suppressing the concentration of byproduct D (CD) by directly ma-

nipulating the temperature of the jacket (Tj) and the feed flow rate of

the reactant B (Qfeed). The following equations describe the dynam-

ics of the reactor [33, 45]:

dT

dt
=

Qfeed

V
(Tfeed − T )− UA

V ρCp

(T − Tj)−
∆H1

ρCp

k10e
− E1

RT CACB

− ∆H2

ρCp

k20e
− E2

RT CBCC

dCA

dt
= −Qfeed

V
CA − k10e

−−E1
RT CACB

dCB

dt
=

Qfeed

V
(CB,feed − CB)− k10e

− E1
RT CACB − k20e

− E2
RT CBCC

dCC

dt
= −Qfeed

V
CC + k10e

− E1
RT CACB − k20e

− E2
RT CBCC

dCD

dt
= −Qfeed

V
CD + k20e

− E2
RT CBCC

dV

dt
= Qfeed.

We consider T , CA, CB, CC , CD, V as the state and assume that all
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the states are measurable. We used the following parameters in this

system:

Tfeed = 308 K, CB,feed = 0.9 mol/L

UA/ρCp = 3.75 L/min, k10 = 5.0969× 1016 L/mol ·min,

k20 = 2.2391× 1017 L/mol ·min, E1/R = 12305 K,

E2/R = 13450 K, ∆H1/(ρCp) = −28.5 K · L/mol,

∆H2/(ρCp) = −20.5 K · L/mol.

The linearized model is derived at the initial point:

x0 = [298.15; 1; 0; 0; 0; 50], u0 = [0; 298.15].

We obtained the linear discrete time model with sampling instant of

1min. The operational constraints are given by

0 ≤ CB ≤ 0.1, 0 ≤ CC ≤ 1, 0 ≤ CD ≤ 0.01

293 ≤ T ≤ 313, 290 ≤ Tj ≤ 315, 0 ≤ V ≤ 50, 0 ≤ Qfeed ≤ 0.8.

The prediction horizon and the number of blocks were N = 24

and N = 3, and the blocking position set s = {1, 12, 24} was used in

the time-invariant blocking structure case. The initial base sequence

was set as Û(0) = U∗(0) from the pre-computation. The control pa-

rameters were Qy = diag{10, 700, 1} and Qdu = diag{1, 0.01}. The

terminal MCI set was calculated using the MPT3 toolbox [32].

Figure 3.5 shows the results of MPC with the semi-explicit ap-

proach, time-invariant blocking structure with s = {1, 12, 24}, and

non-blocking case in a tracking problem. Figure 3.6 illustrates the
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Figure 3.6: Time-varying blocking positions from the move blocked MPC
with semi-explicit approach in the chemical semi-batch system.
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applied time-varying blocking positions for each sampling instant in

move blocked MPC with semi-explicit approach. s3 is fixed as 24 to

ensure the recursive feasibility.

The closed-loop objective values of both move blocking results

with semi-explicit approach and time-invariant blocking structure sh-

ow considerable disparity from that of the nominal non-blocking case.

From this, we can see the move blocking with only three blocks is in-

sufficient to appropriately update the input sequence with the horizon

of 24 in this system, despite we implemented a fully matured initial

base sequence on the controller by pre-computation technique. This is

because the mismatch between the nonlinear dynamics of the system

and the linearized model implemented on MPC leads to prediction

error. Although the state of the controller is continually updated with

the measured plant state, the degradation in optimality of the base

sequence Û is inevitable.

Nonetheless, we can see the move blocked MPC with semi-explicit

approach tracks the reference trajectory well while showing much

better optimality performance than the case with time-invariant block-

ing structure with a slight increase in the on-line computation time.

From this, we confirm that the proposed semi-explicit approach effec-

tively improves the optimality performance of move blocked MPC in

reference tracking problem.
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Chapter 4

Model-plant mismatch learning offset-free
model predictive control

4.1 Introduction

There are two main types of optimal control methods. Model

based approach predicts the propagation of physical system with kno-

wn model. Model predictive control (MPC) which derives finite hori-

zon optimal solution in receding horizon manner is one of the most

representative model-based approach. MPC effectively derives a re-

liable solution based on the model. Therefore, the closed-loop per-

formance of MPC is directly related to the accuracy of model. Since

model-plant mismatch and unmeasured disturbance always exist in

real systems, MPC usually cannot achieve optimal performance. On

the other hand, data-based machine learning (ML) approach predicts

the system behavior such as dynamics and reward from the real plant

data (e.g. reinforcement learning (RL) directly derives optimal con-

trol policy from data). Thus, ML does not require any given model

or prior assumption about the system, and can implicitly manage un-

certainties. However, this model-free pure learning approach without

any prior knowledge of the system is often restricted because it re-

quires a large amount of data and exploratory policies can damage
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the system.

Since model and data based approaches are complementary to

each other, combination of MPC and ML is an emerging area of re-

search. [46, 47] derive a reliable policy by approximating a nominal

MPC policy through supervised learning method such as guided pol-

icy search. [48] approximate a policy of the robust MPC by learning

a neural network from robust MPC sample. [49, 50] improve MPC

performance by continuously updating the dynamic model approxi-

mated with multi-layer neural network from sampled data, and [51]

improve MPC performance with dynamic model updated by sparse

identification of nonlinear dynamics (SINDY). [52] learns both ap-

proximate MPC policy and system dynamics with recurrent neural

network and multi-layer perceptron, respectively. [53] learns a direct

compensatory control action for MPC which improves the closed-

loop performance of the combined controller using RL with the same

performance measure of MPC.

These existing studies consider the combination of nominal MPC

with ML method. However, researches for model-plant mismatch com-

pensation have already been studied actively in MPC field to over-

come the limitation of model based approach. Offset-free MPC achieves

offset-free tracking in the presence of model-plant mismatch or un-

measured disturbance in two ways. One method exploited integration

of tracking error in the a compensator block as in [54, 55, 56, 57].

However, since the integrated error is independent to controller, this

method may cause windup problem. Therefore, disturbance estimator

approach discussed in [58, 59, 60, 61, 62, 63] is the most standardly

used method to accomplish offset-free tracking in MPC. This ap-

proach tracks the reference trajectory in the presence of plant-model
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mismatch and unmeasured disturbances by augmenting the distur-

bance model to the nominal model and deriving compensatory dis-

turbance by the estimator.

Therefore, we propose model-plant mismatch learning offset-

free MPC combining data based ML and offset-free MPC. In this

scheme, the general regression neural network (GRNN) proposed in

[64] learns the intrinsic model-plant mismatch from the estimated dis-

turbance data at steady-state for each set-point by supervised learn-

ing, and applies the learned model-plant mismatch into the offset-free

MPC scheme. The proposed scheme also uses the nominal distur-

bance estimator to derive the supplementary compensating signal to

exploit both learned model-plant mismatch information and stabiliz-

ing property of the nominal disturbance estimator. By this, the pro-

posed scheme effectively improves the closed-loop performance of

offset-free MPC. Moreover, we examine the robust asymptotic sta-

bility of the proposed scheme by exploiting the learned model-plant

mismatch information, which has not been done in almost all offset-

free MPC studies due to the difficulty in handling the combined dis-

turbance estimator/target calculator/optimizer system ([65]).

The rest of the chapter is organized as follows. We introduce the

standard offset-free MPC formulation with disturbance estimator, tar-

get calculator, and finite-horizon optimal control problem and offset-

free tracking condition in Section 4.2. In Section 4.3, we propose the

model-plant mismatch learning offset-free MPC scheme and exam-

ine the robust asymptotic stability of the proposed scheme. In Section

4.4, we present the numerical examples to demonstrate the efficiency

of model-plant mismatch learning offset-free MPC compared to nom-

inal offset-free MPC in various conditions.
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4.2 Offset-free MPC: Disturbance estimator approach

We present the standard linear offset-free MPC design flow in

[59]; Pannocchia and [63].

4.2.1 Preliminaries

Consider the discrete time-invariant plant in the form:
xp(k + 1) = fp(xp(k), u(k))

yp(k) = gp(xp(k))

zp(k) = Hyp(k)

(4.1)

with constraints

u ∈ U , xp ∈ X (4.2)

where xp ∈ Rnxp , u ∈ Rnu , yp ∈ Rny , and zp ∈ Rnz are the plant state,

input, output, and controlled variables, respectively. Without loss of

generality, the matrix H is assumed to have full row rank. U and X
are constraint sets presented as compact polyhedral region.

The objective of offset-free linear MPC is to make the plant con-

trolled variables z track the reference signal r with the linear time-

invariant plant model in Eq. (4.3).

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(4.3)

where x ∈ Rnx and y ∈ Rny are the model state and output, respec-
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tively. The reference signal r(k) is assumed to converge to a constant

value r∞ as k → ∞. The pair (A, B) and (C, A) are assumed to be

controllable and observable, respectively.

4.2.2 Disturbance estimator and controller design

The most standard method to compensate the mismatch between

the plant in Eq. (4.1) and model in Eq. (4.3), and achieve offset-free

reference tracking at steady-state is to augment the nominal plant

model with additional integrating state so-called disturbance as in Eq.

(4.4). 
x(k + 1) = Ax(k) +Bu(k) +Bdd(k)

d(k + 1) = d(k)

y(k) = Cx(k) + Cdd(k)

(4.4)

where d ∈ Rnd is disturbance vector, and Bd ∈ Rnx×nd and Cd ∈ R
ny×nd are disturbance model matrices.

Proposition 1. The augmented system is observable if and only if

the pair (C, A) is observable and

rank

[
A− I Bd

C Cd

]
= nx + nd (4.5)

([63]).

The appropriate matrices Bd and Cd which satisfy the condition

in Eq. (4.5) can exist if and only if the number of disturbances nd is
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equal or smaller than the number of measured output ny, nd ≤ ny

([61]).

In the assumption that Bd and Cd are chosen to satisfy the condi-

tion in Proposition 1, the state and disturbance estimator is designed

as in Eq. (4.6).

[
x̂(k + 1)

d̂(k + 1)

]
=

[
A Bd

0 I

][
x̂(k)

d̂(k)

]
+

[
B

0

]
u(k)

+

[
Lx

Ld

]
(−yp(k) + Cx̂(k) + Cdd̂(k)) (4.6)

where Lx ∈ Rnx×ny and Ld ∈ Rnd×ny are estimator gains for state

and disturbance, respectively, chosen to make the estimator stable.

The following finite-horizon optimal control problem P0 is solved

in receding horizon manner.

P0 : J0
0 (x̂d) = min

u0,··· ,uN−1

ϕt(x̄, xN) +
N−1∑
i=0

ϕ(x̄, ū, xi, ui)

s.t. x0 = x̂, d = d̂

xi+1 = Axi +Bui +Bdd

ui ∈ U , xi+1 ∈ X , xN ∈ Xt

i = 0, . . . , N

with target state x̄ and input ū are derived from Eq. (4.7).

[
A− I B

HC 0

][
x̄

ū

]
=

[
−Bdd̂

r −HCdd̂

]
(4.7)
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where ϕ(x̄, ū, xi, ui) := ||xi − x̄||2Qx
+ ||ui − ū||2Qu

and ϕt(x̄, xN) :=

||xN − x̄||2QN
x

denote the single-stage cost and terminal cost with

||x||2Q := x⊤Qx, respectively, and Xt denotes the terminal constraint

set. Qx ∈ Rnx and Qu ∈ Rnu are weighting matrices with diago-

nal form. r ∈ Rnz denotes the reference signal which is assumed to

converge to a constant, r(k)→ r∞ as k →∞.

4.2.3 Offset-free tracking condition

By rearranging Eq. (4.6), we can see the disturbance estimator

satisfies Eq. (4.8) at steady-state.

[
A− I + LxC B

LdC 0

][
x̂∞

u∞

]
=

[
Lxyp,∞ − (Bd + LxCd)d̂∞

Ldyp,∞ − LdCdd̂∞

]
(4.8)

where∞ denotes steady-state values.

Let κun denote the unconstrained MPC controller gain of P0.

Since we assume constraints are not active at the equilibrium point,

κun is optimal and feasible. Therefore, the input u∞ and target input

ū∞ at steady-state satisfies Eq. (4.9).

u∞ − ū∞ = κun(x̂∞ − x̄∞). (4.9)

Define steady-state output prediction error and controlled vari-

able offset as in Eqs. (4.10) and (4.11).

ey,∞ := yp,∞ − Cx̂∞ − Cdd̂∞. (4.10)

ez,∞ := Hyp,∞ − r∞. (4.11)
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Then, the offset-free tracking condition can be represented as in Propo-
sition 2.

Proposition 2. If following condition in Eq. (4.12) is satisfied, then

offset-free tracking is achieved.

N (Ld) ⊆ N (H(I − C(I − A−Bκun)
−1Lx) (4.12)

where N denotes null spaces ([63]).

Proof ). By combining and rearranging Eqs. (4.7)–(4.11), we can de-

rive Eq. (4.13).

[
Ld

H(I − C(I − A−Bκun)
−1Lx)

]
ey,∞ =

[
0

I

]
ez,∞ (4.13)

We can see that following condition in Eq. (4.14) should be satisfied

to achieve offset-free tracking, i.e., ez,∞ = 0, for all ey,∞ satisfying

Ldey,∞ = 0.

H(I − C(I − A−Bκun)
−1Lxey,∞ = 0 (4.14)

Then, this condition can be reformulated into the null space condition

in Eq. (4.12).

Remark 1. To construct the Lx and Ld satisfying the condition in

Eq. (4.12), [59] suggests the following estimator gain structure in Eq.
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(4.15).

[
Lx

Ld

]
=

[
L0
x

0

]
+

[
L̄x

L̄d

]
H(I − Ceκx,∞

−1L0
x) (4.15)

eκx,∞ := I − A−Bκun.

When the number of disturbance nd and the number of measured out-

put ny is identical, nd = ny, by Proposition 2 in [59], Ld is nonsingu-

lar. In this case, ey,∞ is naturally become 0 at steady-state, therefore,

a simple gain structure, where L0
x = 0 and L̄x, L̄d are chosen to sta-

bilize the estimator in Eq. (4.6), can satisfy the offset-free tracking

condition in Proposition 2. In case of nd < ny, L0
x, L̄x, and L̄d can

be constructed according to the procedures suggested in Algorithm

4.2 and Algorithm 4.3 in [59].

4.3 Model-plant mismatch learning offset-free MPC

Estimated disturbance d̂ in Eq. (4.6) makes the predicted output

from model be identical to the plant output by compensating the ef-

fect of model-plant mismatch. This compensating disturbance signal

has the intrinsically given value for each state and input pair (x, u)

with proper disturbance model matrices, Bd, Cd, and is naturally 0nd

when the model-plant mismatch does not exist. Therefore, we pro-

pose a perspective to regard this compensating disturbance value for

each (x, u) pair as the intrinsic model-plant mismatch itself and the

scheme to learn and exploit this model-plant mismatch.

Though the nominal offset-free MPC in Section 4.2 has its own

model-plant mismatch compensating property, it basically estimates
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the proper disturbance from the occurred measurement error. There-

fore, there exists some delay to estimate proper compensating signal.

However, since the model-plant mismatch compensating property of

nominal offset-free MPC is sensitive to the estimator performance,

considerable performance degradation can occur in system transition

such as set-point change.

To overcome this limitation, we propose to learn the intrinsic

model-plant mismatch from the past estimated steady-state distur-

bance data and apply the learned model-plant mismatch to the dis-

turbance estimator, target calculator, and model-based finite-horizon

optimal control problem to improve the closed-loop performance of

offset-free MPC.

4.3.1 Model-plant mismatch learning

If we could obtain the entire model-plant mismatch map for ev-

ery state and input pair (x, u) ∈ Rnx×nu , we can derive the actual

optimal solution for real plant. However, since obtaining the entire

model-plant mismatch map is consequently identical to obtaining the

exact entire plant dynamics, it needs massive data and computation.

Therefore, we propose to learn and utilize a reduced model-plant

mismatch map only for steady-state pairs (x̂∞, u∞) for each set-point.

This reduced model-plant mismatch map is a tiny partial manifold on

the entire model-plant mismatch map for every (x, u) pair. Therefore,

we can derive this reduced model-plant mismatch map from consider-

ably smaller amount of data and computation than those for the entire

map.
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Lemma 1. Suppose that the estimator in Eq. (4.6) is stable. Then, the

matrix[
A− I + LxC Bd + LxCd

LdC LdCd

]
is nonsingular.

Proof ). Rearranging Eq. (4.6) follows Eq. (4.16).

[
x̂(k + 1)

d̂(k + 1)

]
=

[
A+ LxC Bd + LxCd

LdC I + LdCd

][
x̂(k)

d̂(k)

]

+

[
B

0

]
u(k)−

[
Lx

Ld

]
yp(k) (4.16)

Since we assumed the estimator is stable, it has no poles at (1,0).

Therefore, following Eq. (4.17) is satisfied.

det

([
A+ LxC Bd + LxCd

LdC I + LdCd

]
− I

)
̸= 0 (4.17)

Thus, the matrix

[
A− I + LxC Bd + LxCd

LdC LdCd

]
is nonsingular.

With Lemma 1, we can show the existence of state and distur-

bance estimate pair at steady-state for each set-point.

Theorem 1. If a set-point r̄ is achievable, i.e., there exist a steady-

state plant output and input pair (yp,∞, u∞) which achieves r̄, then

an estimated state and disturbance pair of the model (x̂∞, d̂∞) at that

steady-state always exists.

Proof ). If a set-point r̄ is achievable, we can see Eqs. (4.18) and
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(4.19) are satisfied at that steady-state from the estimator in Eq. (4.6).

x̂∞ = (A+ LxC)x̂∞ + (Bd + LxCd)d̂∞

+Bu∞ − Lxyp,∞ (4.18)

d̂∞ = LdCx̂∞ + (I + LdCd)d̂∞ − Ldyp,∞ (4.19)

where yp,∞ denotes the steady-state plant output which satisfies r̄ =

Hyp,∞, u∞ denote the steady-state input, and x̂∞ and d̂∞ denote the

state and disturbance estimates at steady-state, respectively. By rear-

ranging Eqs. (4.18) and (4.19), we can derive Eq. (4.20).

[
A− I + LxC Bd + LxCd

LdC LdCd

][
r̄

d̂∞

]
=

[
Lxyp,∞ −Bu∞

Ldyp,∞

]
(4.20)

Since the matrix

[
A− I + LxC Bd + LxCd

LdC LdCd

]
is nonsingular from

Lemma 1, we can see the pair (x̂∞, d̂∞) always exists whenever a

steady-state plant output and input pair (yp,∞, u∞) achieving r̄ ex-

ists.

By rearranging Eq. (4.20), the (x̂∞, d̂∞) pair can be derived di-

rectly from the (yp,∞, u∞) pair.

[
x̂∞

d̂∞

]
=

[
A− I + LxC Bd + LxCd

LdC LdCd

]−1 [
Lx −B
Ld 0

][
yp,∞

u∞

]
(4.21)

Remark 2. We can see the (x̂∞, d̂∞) pair is derived by the linear
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transformation from the corresponding (yp,∞, u∞) pair as in Eq. (4.21).

Therefore, the uniqueness of the (x̂∞, d̂∞) pair for each set-point is

not confirmed when more than one (yp,∞, u∞) pairs can achieve the

set-point r̄. In this study, we focus on the case where the only one

(yp,∞, u∞) pair achieves each r̄, and thus, the uniqueness of (x̂∞, d̂∞)

for each r̄ is ensured.

Since the existence and uniqueness of (x̂∞, d̂∞) for each r̄ are

ensured by Theorem 1 and Remark 2, we can define an intrinsic

relation between r̄ and d̂∞ as Eq. (4.22).

d̂∞ = fd(r̄) (4.22)

The function fd : Rnz → Rnd implies the intrinsic model-plant

mismatch of the system.

We approximate the unknown function fd in Eq. (4.22) from the

estimated disturbance data by GRNN. GRNN is a variation to ra-

dial basis function (RBF) based neural networks for non-parametric

regression proposed by [64] which approximates the probability den-

sity function using Parzens non-parametric estimator with Gaussian

activation function.

GRNN can be interpreted as a normalized RBF network with

hidden units centered at every training sample. The predicted output

o(i) from input i by GRNN is a weighted average of outputs in the

training set:

o(i) =

∑Ns

s=1 osω(i, is)∑Ns

s=1 ω(i, is)
(4.23)
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where Ns is the number of training samples, and ω(i, is) denotes the

weight. Each weight is an RBF output which is the exponential of the

negatively scaled distance between the new pattern and each given

training pattern:

ω(i, is) = e−(i−is)⊤(i−is)/2σ2

(4.24)

where σ is the smoothing factor which represents the width of RBF

[66].

Remark 3. GRNN is a single-pass learning network with no train-

ing parameters while the back-propagation neural network (BPNN)

needs forward and backward pass training. The only adjustable pa-

rameter in GRNN is smoothing factor ρ.

From Remark 3, GRNN needs significantly less time for train-

ing than BPNN. By this notable advantage on rapid training, GRNN

is suitable for on-line systems or systems which require minimal

computation [67].

However, since the number of the neurons in hidden layer is

equal to the number of the training samples, the size of GRNN can

be huge. We overcome this limitation by using only a few recent data

in receding data-window manner for regression. This strategy is rea-

sonable, since the characteristics of the system can change during

operation.
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4.3.2 Application of learned model-plant mismatch

Now, we can utilize the learned model-plant mismatch map d̂ℓ

for each set-point r̄ derive by GRNN in Eq. (4.25).

d̂ℓ = f̂d(r̄) (4.25)

where f̂d is the approximated function of fd in Eq. (4.22). As de-

scribed in Section 4.3.1, this reduced model-plant mismatch map is

reasonably obtainable. However, since this learned model-plant mis-

match map is only a tiny manifold on steady-state pairs (x̂∞, u∞), we

can figure out the target equilibrium point but cannot reach that point

only with this map.

Therefore, we propose to incorporate the learned model-plant

mismatch into the nominal disturbance estimator to exploit the sta-

bilizing property and achieve the offset-free tracking property. For

this, we introduced an additional supplementary disturbance d̂s and

combine it with the learned model-plant mismatch d̂ℓ:

d̂ℓ,s = d̂ℓ + d̂s. (4.26)

The supplementary signal d̂s is continually updated by the es-

timator. The revised disturbance estimator estimates the state x̂ and

the supplementary disturbance d̂s including the influence of learned
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model-plant mismatch d̂ℓ as in Eq (27).

[
x̂ℓ,s(k + 1)

d̂s(k + 1)

]
=

[
A Bd

0 I

][
x̂ℓ,s(k)

d̂s(k)

]
+

[
B

0

]
u(k) +

[
Bd

0

]
d̂ℓ(k)

+

[
Lx

Ld

]
(−yp(k) + Cx̂ℓ,s(k) + Cd(d̂

ℓ(k) + d̂s(k))) (4.27)

The stability of the estimator in Eq. (4.27) can be simply proved in

Theorem 2.

Theorem 2. If Lx and Ld are chosen to make the nominal disturbance

estimator in Eq. (4.6) stable, then proposed disturbance estimator in

Eq. (4.27) is also stable with the same Lx and Ld.

Proof ). Rearranging Eq. (4.27) follows Eq. (4.28).

[
x̂ℓ,s(k + 1)

d̂s(k + 1)

]
=

[
A+ LxC Bd + LxCd

LdC I + LdCd

][
x̂ℓ,s(k)

d̂s(k)

]
(4.28)

+

[
B

0

]
u(k)−

[
Lx

Ld

]
yp(k) +

[
Bd + LxCd

LdCd

]
d̂ℓ(k)

Let x and ds denote the exact model state and supplementary

disturbance:[
x(k + 1)

ds(k + 1)

]
=

[
A Bd

0 I

][
x(k)

ds(k)

]
+

[
B

0

]
u(k). (4.29)
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These exact values satisfy Eq. (4.30).

yp(k) = Cx(k) + Cd(d
s(k) + d̂ℓ(k)). (4.30)

By substituting Eq. (4.30) into Eq. (4.28) and subtracting Eq. (4.29)

from Eq. (4.28), we obtain the error dynamics in Eq.(4.31).

[
ex̂(k + 1)

ed̂s(k + 1)

]
=

[
A+ LxC Bd + LxCd

LdC I + LdCd

][
ex̂(k)

ed̂s(k)

]
(4.31)

where ex̂ := x− x̂ℓ,s and ed̂s := ds − d̂s.

Since the matrix

[
A+ LxC Bd + LxCd

LdC I + LdCd

]
is the same as that of

the nominal disturbance estimator in Eq. (4.6), we can see the pro-

posed estimator is stable with the same Lx and Ld of the nominal

estimator.

From the stability of the revised disturbance estimator proved in

Theorem 2, we can exploit the learned model-plant mismatch while

exploiting the stabilizing property of the disturbance estimator in Eq.

(4.27) with the supplementary signal d̂s.

Remark 4. Even when the d̂ℓ from GRNN is not properly learned

or the intrinsic model-plant relation is changed by system transfor-

mation or unknown disturbance injection, the supplementary signal

d̂s from disturbance estimator in Eq. (4.27) compensates the model-

plant mismatch and achieve the offset-free tracking property.

Then, we apply x̂ℓ,s and d̂ℓ,s to the finite-horizon optimal control
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problem P0 and target calculation problem in Eq. (4.7) to improve the

closed-performance of the offset-free MPC by improving prediction

accuracy.

The offset-free tracking property of the proposed model-plant

mismatch learning offset-free MPC is proved in Theorem 3.

Theorem 3. The same estimator gain constructed as in Remark 1
achieves the offset-tracking property in proposed model-plant mis-

match learning offset-free MPC.

Proof ). By rearranging Eq. (4.27), we obtain Eqs. (4.32) and (4.33)

at steady-state.

x̂ℓ,s
∞ = Ax̂ℓ,s

∞ +Buℓ,s
∞ +Bdd̂

ℓ,s
∞ − Lxe

ℓ,s
y,∞ (4.32)

0 = Lde
ℓ,s
y,∞ (4.33)

eℓ,sy,∞ := −yℓ,sp,∞ + Cx̂ℓ,s
∞ + Cdd̂

ℓ,s
∞ . (4.34)

where eℓ,sy,∞ denotes the output reconstruction error of Pℓ,s at steady-

state. From the target calculator in Eq. (4.7), we can derive Eqs. (4.35)

and (4.36).

x̄ℓ,s
∞ = Ax̄ℓ,s

∞ +Būℓ,s
∞ +Bdd̂

ℓ,s
∞ (4.35)

r̄ = HCx̄ℓ,s
∞ +HCdd̂

ℓ,s
∞ (4.36)

The steady-state input can be derived from the unconstrained optimal
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gain κun of P0:

uℓ,s
∞ − ūℓ,s

∞ = κun(x̂
ℓ,s
∞ − x̄ℓ,s

∞ ). (4.37)

Subtracting Eq. (4.35) from Eq. (4.32) and substituting Eq. (4.37)

yields

x̂ℓ,s
∞ − x̄ℓ,s

∞ = −(I − A−Bκun)
−1Lxe

ℓ,s
y,∞. (4.38)

Now, let eℓ,sz,∞ denote the offset vector of the controlled variables

at steady-state:

eℓ,sz,∞ := Hyℓ,sp,∞ − r̄. (4.39)

Substituting Eq. (4.36) into Eq. (4.39) and rearranging yields

eℓ,sz,∞ = H(yℓ,sp,∞ − Cx̂ℓ,s
∞ − Cd̂ℓ,s∞ + C(x̂ℓ,s

∞ − x̄ℓ,s
∞ )). (4.40)

Then, substituting Eqs. (4.34) and (4.38) into (4.40) yields

eℓ,sz,∞ = H[I − C(I − A−Bκun)
−1Lx]e

ℓ,s
y,∞. (4.41)

Finally, combining and rearranging Eqs. (4.33) and (4.41), we obtain

[
Ld

H(I − C(I − A−Bκun)
−1Lx)

]
eℓ,sy,∞ =

[
0

I

]
eℓ,sz,∞. (4.42)

Since Eq. (4.42) is identical to Eq. (4.13) in Proposition 2, the

proposed scheme achieves offset-free tracking property with the same
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estimator gain as that of nominal scheme.

4.3.3 Robust asymptotic stability of model-plant mis-
match learning offset-free MPC

In order to show the closed-loop asymptotic stability of offset-

free MPC, we have to examine the closed-loop behavior of the com-

bined system consisting of disturbance estimator / target calculator

/ optimizer. Since it is known to be difficult to examine the closed-

loop behavior of the combined system, almost all offset-free MPC

schemes only show the offset-free tracking property when the stable

equilibrium has been reached as in Theorem 3 ([65]).

The most crucial threshold for this problem is that the nominal

offset-free MPC could not specify an equilibrium point and Lyapunov

function candidate until the system reaching the steady-state, since

the target state and input in P0 are continually updated from the target

calculator. However, in the proposed model-plant mismatch learning

offset-free MPC scheme, we can specify the equilibrium point from

the learned model-plant mismatch and provide the Lyapunov function

candidate as the value function of P0 with the fixed target as the spec-

ified equilibrium point. By this, we can handle the above-mentioned

threshold of nominal offset-free MPC and examine the robust asymp-

totic stability of the proposed scheme.

With the specified equilibrium point and Lyapunov function can-

didate from the learned model-plant mismatch, we examine the closed-

loop robust asymptotic stability of model-plant mismatch learning

offset-free MPC based on the framework in [68] and [69] which show

the closed-loop robust asymptotic stability of the combined estima-
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tor/optimizer system.

[69] define the robust asymptotic stability as the input-to-state

stability (ISS) stability ([70]) on a robust positive invariant set.

Definition 1. (Robust positive invariance) A set O ⊆ Y is said to

be robust positive invariant for an autonomous system y+ = g(y, e)

with perturbation e if there exists some δe > 0 such that g(y, e) ⊆ O
for all y ∈ O and e satisfying ||e|| ≤ δe where ||v|| denotes the

supremum norm ||v|| = supk≥0|v(k)| and e denotes the sequence of

e ([69]).

Definition 2. (Robust asymptotic stability) The equilibrium point ȳ

of a perturbed system y+ = g(y, e) is robust asymptotically stable in

O if there exists some δ > 0 such that for all perturbation sequence

e, ||e|| < δ, O is robust invariant and there exist a class KL function

β(·) and a class K function γ(·) satisfying

|y+k (y, e)− ȳ| ≤ β(|y − ȳ|, k) + γ(||e||) (4.43)

for each y ∈ O and for all k ∈ I≥0 where y+k (y, e) is the open-loop

solution of the perturbed system for given step k and I≥0 is the set of

non-negative integers ([69]).

Then, [68] show the robust asymptotic stability of the origin of

the combined system by establishing that the value function of the

finite-horizon optimal control problem is an ISS Lyapunov function

for the combined system and applying Proposition 3.

Definition 3. (ISS Lyapunov function) V (·) is an ISS Lyapunov func-
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tion in the robust positive invariant set O for the difference inclusion

y+ ∈ g(y, e) if there exists δe > 0, classK∞ functions α1(·), α2(·), α3(·),
and classK function σe(·) such that for all y ∈ O and ||e|| ≤ δe which

satisfy Eqs. (4.44) and (4.45).

α1(|y − ȳ|) ≤ V (y) ≤ α2(|y − ȳ|) (4.44)

sup
y+∈g(y,e)

V (y+) ≤ V (y)− α3(|y − ȳ|) + σe(||e||). (4.45)

where ȳ is the equilibrium point ([71]).

Proposition 3. If there exist an ISS Lyapunov function for the per-

turbed system y+ = g(y, e) for all ||e|| ≤ δ for some δ > 0 on a

robust positive invariant set O, then the origin of the system is ro-

bustly asymptotically stable in O for all ||e|| ≤ δ ([68]).

4.3.3.1 Specification of equilibrium point and Lyapunov
function candidate

We examine the closed-loop behavior of the combined system

under the assumption:

Assumption 1. The approximated model-plant mismatch function f̂d

in Eq. (4.25) for each set-point r̄ is completely learned.

Let d̂ℓ∗(r̄) denotes the disturbance value from this completely

learned f̂d which achieves offset-free tracking of set-point r̄ at steady-

state. Then, we can think of the target state and input x̄ℓ∗ and ūℓ∗
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derived by substituting d̂ℓ
∗ into the target calculator in Eq. (4.7):

[
A− I B

HC 0

][
x̄ℓ∗

ūℓ∗

]
=

[
−Bdd̂

ℓ∗

r̄ −HCdd̂
ℓ∗

]
. (4.46)

Target x̄ℓ∗ and ūℓ∗ are the state and input pair which achieves offset-

free tracking of set-point r̄ at steady-state. Let x̄ℓ∗

d denote the aug-

mented state of at this steady-state:

x̄ℓ∗

d :=

[
x̄ℓ∗

d̂ℓ
∗

]
. (4.47)

x̄ℓ∗

d is the equilibrium point of the proposed model-plant mismatch

learning offset-free MPC. Therefore, we can analyze the closed-loop

stability of the proposed scheme by examining the stability of the

point x̄ℓ∗

d .

Then, we can consider the ideal optimal control problem Pℓ∗ with

the ideally fixed target pair (x̄ℓ∗ , ūℓ∗) excluding target calculator in

Eq. (4.7).

Pℓ∗ : J0
ℓ∗(x̂d) = min

u0,··· ,uN−1

ϕℓ∗

t (xN) +
N−1∑
i=0

ϕℓ∗(xi, ui)

s.t. x0 = x̂, d = d̂

xi+1 = Axi +Bui +Bdd

ui ∈ U , xi+1 ∈ X , xN ∈ Xt

i = 0, . . . , N

where ϕℓ∗(xi, ui) := ||xi − x̄ℓ∗ ||2Qx
+ ||ui − ūℓ∗||2Qu

and ϕℓ∗
t (xN) :=
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||xN − x̄ℓ∗ ||2QN
x

. The terminal constraint set Xt is chosen as a sublevel

set of the terminal cost ϕℓ∗
t :

Xt = {x ∈ X | ϕℓ∗

t (x) ≤ ρt} (4.48)

for some ρt > 0. We specify the value function J0
ℓ∗ of Pℓ∗ as a Lya-

punov function candidate.

4.3.3.2 Perturbation in combined system

We define the perturbation in the combined system of model-

plant mismatch learning offset-free MPC for further robustness anal-

ysis. Let ey denote the measurement error due to the intrinsic model-

plant mismatch:

ey := yp − ŷℓ,s. (4.49)

Let ex̂d
denote the estimate error between real augmented state xd :=

[x⊤, d⊤]⊤ which achieves the current plant measurement yp and esti-

mated augmented state x̂ℓ,s
d := [x̂ℓ,s⊤, d̂ℓ,s⊤]⊤ :

ex̂d
:=

[
x

d

]
−

[
x̂ℓ,s

d̂ℓ,s

]
. (4.50)

Since we can consider the model-plant mismatch as a kind of process

disturbance, we assume the estimate error bound.

Assumption 2. There exists the measurement error bound δy such
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that for all ||ey|| ≤ δy and k ≤ 0, the Eq. (4.51) holds.

|ex̂d
(k)| ≤ β(|ex̂e(0)|, k) + σy(||ey||) (4.51)

where β is a class KL function and σ is a class K function.

Not as the combined estimator/optimizer system in [68], the com-

bined system of proposed model-plant mismatch learning offset-free

MPC additionally has the target calculator. Therefore, we define and

examine the influence of target error δx̄,ū from the ideal target pair

(x̄ℓ∗ , ūℓ∗) as in Eq. (4.52):

ex̄,ū :=

[
x̄ℓ∗

ūℓ∗

]
−

[
x̄ℓ,s

ūℓ,s

]
. (4.52)

Remark 5. Substituting Eq. (4.26) into the right-hand side of Eq.

(4.46) and rearranging yields

[
−Bdd̂

ℓ,s

r̄ −HCdd̂
ℓ,s

]
=

[
−Bdd̂

ℓ∗

r̄ −HCdd̂
ℓ∗

]
+

[
−Bdd̂

s

−HCdd̂
s

]
. (4.53)

Then, we can derive Eq. (4.54) by substituting Eqs. (4.7), (4.52) and

(4.53) into Eq. (4.46) and rearranging.

[
A− I B

HC 0

]
ex̄,ū =

[
Bd

HCd

]
d̂s. (4.54)

We can see ex̄,ū is mainly dependent on d̂s.
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By Remark 5, we examine ex̄,ū by analyzing behavior of d̂s. In

the proposed scheme, d̂ℓ acts as an warm-start signal in disturbance

estimator. Therefore, since the completely learned d̂ℓ
∗ as in Assump-

tion 1 can guarantee considerable prediction accuracy, supplementary

signal d̂s has sufficiently small value. Therefore, we assume that d̂s

is bounded (We can see d̂s is actually bounded near the origin in nu-

merical examples in Section 4.4), and thus, we also assume that ex̄,ū
is bounded.

Now, we examine the influence of ex̄,ū on the closed-loop behav-

ior of the combined system. Let κℓ∗
p and κℓ,s

p denote the control laws

of Pℓ∗ and P0, respectively. Then, we can define the error of control

law as:

eκp := κℓ,s
p − κℓ∗

p . (4.55)

Since we assume that ex̄,ū is bounded, we can also assume that eκp is

bounded:

Assumption 3. There exists d̂s bound δd̂s such that for all ||d̂s|| ≤ δd̂s

and k ≤ 0, the Eq. (4.56) holds.

|eκp(k)| ≤ σd̂s(||d̂
s||) (4.56)

where σ is a class K function.

In Assumption 3, we consider the d̂s as a kind of error source, since

ex̄,ū mainly depends on d̂s as in Remark 5.

Then, we can denote the estimate of evolved state x̂+
d through the
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proposed combined system with perturbation in estimate, target, and

measurement:

x̂+
d := f(x̂d + ex̂d

, κℓ∗

p (x̂d) + eκp) + eLy − e+x̂d
(4.57)

f(xd, u) :=

[
A Bd

0 I

]
xd +

[
B

0

]
u. (4.58)

where eLy :=

[
Lx

Ld

]
ey.

4.3.3.3 Robust asymptotic stability of model-plant mis-
match learning offset-free MPC

In this section, we show the robust asymptotic stability of the

equilibrium point x̄ℓ∗

d by establishing that J0
ℓ∗ is an ISS Lyapunov

function for the proposed combined system.

We can easily show that J0
ℓ∗ satisfies the upper and lower bound-

ing inequality in Eq. (4.44) with Proposition 4:

α1(|xd − x̄ℓ∗

d |) ≤ J0
ℓ∗(xd) ≤ α2(|xd − x̄ℓ∗

d |) (4.59)

Proposition 4. Suppose V : Rn → R to be a continuous positive

definite function defined on Rn and radially unbounded. Then, there

exist classK∞ functions α1 and α2 which satisfy the lower and upper

bounding inequality in Eq. (4.60).

α1(|y − ȳ|) ≤ V (y) ≤ α2(|y − ȳ|) (4.60)
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where ȳ is the equilibrium point. The proof is provided in Appendix

C.4 of [72].

Now, let x̃+
d denote the expected evolved state with the control

law κℓ∗
p of the ideal problem Pℓ∗:

x̃+
d := f(x̂d, κ

ℓ∗

p (x̂d)). (4.61)

We first suggest a standard feasible solution ũ+ for x̃+
d and show that

ũ+ is robustly feasible for x̂+
d . And then, we prove that J ℓ∗

0 (x̂+
d ) sat-

isfies the inequality in Eq. (4.45) using ũ+ under the assumptions:

Assumption 4. The model-plant mismatch is not severe, so that d̂ℓ,s

is always in a compact set D ∈ Rnd .

Assumption 5. LetXD
t := Xt×D, ϕℓ∗

d (xd) := ϕℓ∗(Sxd), and ϕℓ∗

d,t(xd) :=

ϕℓ∗
t (Sxd) where S := [Inx ,0nx×nd

]. For all xd ∈ XD
t , there exist a lo-

cal control law κt : XD
t → U satisfying

f(xd, κt(xd)) ∈ XD
t (4.62)

ϕℓ∗

d,t(f(xd, κt(xd))) ≤ ϕℓ∗

d,t(xd)− ϕℓ∗

d (xd, κt(xd)). (4.63)

Assumption 6. Let XD := X × D. There exists a K∞ function αϕ

satisfying the inequality in Eq. (4.64) for all xd ∈ XD and u ∈ U .

ϕℓ∗

d (xd, u) ≥ αϕ(|xd − x̄ℓ∗

d |). (4.64)
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Proposition 5. Let Y compact metric space and g : Y → Rn continu-

ous. Then, there exists a class K function σ such that |g(p)− g(q)| ≤
σ(|p− q|) for all p, q ∈ Y .

Proof ). Since g is uniformly continuous on Y by Theorem 4.19 in

[73], for every ε there exists δ > 0 such that |g(p) − g(q)| < ε

for all p, q ∈ Y for which |p − q| < δ. Then, we can see there ex-

ists a local overbounding class K function σ̄ and δ̄ > 0 such that

|g(p) − g(q)| ≤ σ̄(|p − q|) for all p, q ∈ Y for which |p − q| < δ̄ by

Proposition 5 in [74]. Finally, as the similar manner in the third part

of proof in Proposition 20 in [68], we can find the global overbound-

ing class K function σ such that |g(p) − g(q)| ≤ σ(|p − q|) for all

p, q ∈ Y .

Proposition 6. Let ec denotes the perturbations in state transition for

the combined disturbance estimator/target calculator/optimizer sys-

tem:

ec := (ex̂d
, eκp , e

L
y , e

+
x̂d
). (4.65)

Then, for x̃+
d and x̂+

d , there exists a class K function σx+ satisfying

the inequality:

|x̂+
d − x̃+

d | ≤ σx+(|ec|). (4.66)
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Proof ). From Eqs. (4.57) and (4.61), we have

|x̂+
d − x̃+

d | = |f(x̂d + ex̂d
, κℓ∗

p (x̂d) + eκp) + eLy − e+x̂d

− f(x̂d, κ
ℓ∗

p (x̂d))|

≤ |f(x̂d + ex̂d
, κℓ∗

p (x̂d) + eκp)− f(x̂d, κ
ℓ∗

p (x̂d))|

+ |eLy |+ |e+x̂d
| (4.67)

Since XD and U are compact sets in metric space and f(xd, u) is

continuous, from Proposition 5, there exists a class K function such

that

|f(x̂d + ex̂d
, κℓ∗

p (x̂d) + eκp)−f(x̂d, κ
ℓ∗

p (x̂d))|

≤ σf (|(ex̂d
, eκp)|). (4.68)

By substituting Eq. (4.68) into Eq. (4.67) and applying Eq. (4.65), we

can derive Eq. (4.69).

|x̂+
d − x̃+

d | ≤ σf (|(ex̂d
, eκp)|) + |eLy |+ |e+x̂d

|

≤ σf (|ec|) + |ec|+ |ec|

≤ σx+(|ec|) (4.69)

where σx+(z) := σf (z) + 2z.

Lemma 2. Let u0 := [u0⊤
0 , u0⊤

1 , · · · , u0⊤
N−1]

⊤ denote the optimal so-

lution sequence from Pℓ∗ for x̂d, and x0
d := [x̂0⊤

d,1, x̂
0⊤
d,2, · · · , x̂0⊤

d,N ]
⊤ de-

note the resultant augmented state sequence where x̂0
d,k := η(k, x̂d,u

0)

and η(k, xd,u) denotes the open-loop solution of Eq. (4.58) for given
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step k from xd with input sequence u. We suppose a standard feasible

solution for x̃+
d with a local control law κt in Assumption 4:

ũ+ := [u0⊤
1 , u0⊤

2 , · · · , u0⊤
N−1, κt(x̂

0
d,N)

⊤]⊤. (4.70)

Then, ũ+ is robustly feasible for x̂+
d when the perturbation |ec| is suf-

ficiently small.

Proof ). Since x̂0
d,N ∈ XD

t , Eq. (4.71) holds from Eqs. (4.63) and

(4.64) in Assumption 5, 6.

ϕℓ∗

d,t(f(x̂
0
d,N , κt(x̂

0
d,N))) ≤ ϕℓ∗

d,t(x̂
0
d,N)− αϕ(|x̂0

d,N − x̄ℓ∗

d |) (4.71)

Let x̂+
d,k := η(k, x̂+

d , ũ
+), and x̃+

d,k := η(k, x̃+
d , ũ

+). Since x̃+
d,N−1 =

x̂0
d,N and x̃+

d,N = f(x̂0
d,N , κt(x̂

0
d,N)) from Eq. (4.61), Eq. (4.72) holds.

ϕℓ∗

d,t(x̃
+
d,N) ≤ ϕℓ∗

d,t(x̂
0
d,N)− αϕ(|x̂0

d,N − x̄ℓ∗

d |) (4.72)

From ϕℓ∗

d,t(x̄
ℓ∗

d ) = 0 and Proposition 5, there exists a class K∞ func-

tion αt such that

ϕℓ∗

d,t(xd) ≤ αt(|xd − x̄ℓ∗

d |) (4.73)

for all xd ∈ XD
t . Substituting Eq. (4.73) into Eq. (4.72) yields:

ϕℓ∗

d,t(x̃
+
d,N) ≤ αt,ϕ(|x̂0

d,N − x̄ℓ∗

d |) (4.74)

αt,ϕ(|x̂0
d,N − x̄ℓ∗

d |) := αt(|x̂0
d,N − x̄ℓ∗

d |)− αϕ(|x̂0
d,N − x̄ℓ∗

d |)
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Now, from Proposition 5, there exists a class K function σt such

that

|ϕℓ∗

d,t(x̂
+
d,N)− ϕℓ∗

d,t(x̃
+
d,N)| ≤ σt(|x̂+

d,N − x̃+
d,N |). (4.75)

Since σt ≥ 0, Eq. (4.76) holds in both cases where ϕℓ∗

d,t(x̂
+
d,N) −

ϕℓ∗

d,t(x̃
+
d,N) is positive or negative.

ϕℓ∗

d,t(x̂
+
d,N) ≤ ϕℓ∗

d,t(x̃
+
d,N) + σt(|x̂+

d,N − x̃+
d,N |). (4.76)

Substituting Eq. (4.69) in Proposition 6 into Eq. (4.76) yields:

ϕℓ∗

d,t(x̂
+
d,N) ≤ ϕℓ∗

d,t(x̃
+
d,N) + σt,x+(|ec|) (4.77)

σt,x+(|ec|) := σt(σx+(|ec|)).

Then, substituting Eq. (4.74) into Eq. (4.77) yields:

ϕℓ∗

d,t(x̂
+
d,N) ≤ αt,ϕ(|x̂0

d,N − x̄ℓ∗

d |) + σt,x+(|ec|). (4.78)

Therefore, since we set XD
t = {xd| ϕℓ∗

t (xd) ≤ ρt}, we can see if Eq.

(4.79) holds, then x̂0
d,N ∈ XD

t implies x̂+
d,N ∈ XD

t .

|ec| ≤ σ−1
t,x+(ρt − αt,ϕ(|x̂0

d,N − x̄ℓ∗

d |)). (4.79)

Lemma 3. Suppose x̂d ∈ XD := {xd| J0
ℓ∗(xd) ≤ ρJ}. Then, XD

is robustly positive invariant and J ℓ∗
0 satisfies Eq. (4.80) with a class
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K∞ function α and a class K function σ.

J0
Pℓ∗

(x̂+
d ) ≤ J0

Pℓ∗
(x̂d)− α(|x̂d|) + σ(||ec||) (4.80)

where ec is the sequence of combined error ec in Eq. (4.65).

Proof ). Let xd,k := η(k, xd,u) and Jℓ∗(xd,u) := ϕℓ∗

d,t(xd,N) +
∑N−1

i=0

ϕℓ∗

d (xd,i, ui) denote the resultant cost sum from xd with solution se-

quence u. Then, we can derive Eq. (4.81).

Jℓ∗(x̃
+
d ,u

+)− J0
ℓ∗(x̂d) + ϕℓ∗

d (x̂d, κ
ℓ∗

p (x̂d))

= ϕℓ∗

d (x̂
0
d,N , κt(x̂

0
d,N)) + ϕℓ∗

d,t(x̃
+
d,N)− ϕℓ∗

d,t(x̂
0
d,N) (4.81)

Substituting Eq. (4.81) into Eq. (4.63) and rearranging yields:

Jℓ∗(x̃
+
d ,u

+) ≤ J0
ℓ∗(x̂d)− ϕℓ∗

d (x̂d, κ
ℓ∗

p (x̂d)) (4.82)

Then, by substituting Eq. (4.64) into Eq. (4.82), we can derive:

Jℓ∗(x̃
+
d ,u

+) ≤ J0
ℓ∗(x̂d)− αϕ(|x̂d − x̄ℓ∗

d |) (4.83)

Now, since Jℓ∗(xd, u) is continuous, there exists a class K func-

tion σJ from Proposition 5.

|Jℓ∗(x̂+
d ,u

+)− Jℓ∗(x̃
+
d ,u

+)| ≤ σJ(|x̂+
d − x̃+

d |). (4.84)

We can drop the absolute value as similar manner in the proof of
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Lemma 2:

Jℓ∗(x̂
+
d ,u

+) ≤ Jℓ∗(x̃
+
d ,u

+) + σJ(|x̂+
d − x̃+

d |). (4.85)

Since Jℓ∗(x̂
+
d ,u

+) ≥ J0
ℓ∗(x̂

+
d ) and |ec| ≤ ||ec||, substituting Eqs.

(4.49) and (4.83) into Eq. (4.85) and rearranging yields:

J0
ℓ∗(x̂

+
d ) ≤ J0

ℓ∗(x̂d)− αϕ(|x̂d − x̄ℓ∗

d |) + σJ,x+(||ec||). (4.86)

where σJ,x+(|ec|) := σJ(σx+(|ec|)) is a class K function. Therefore,

we can see that J0
ℓ∗(·) satisfies the Eq. (4.45).

Additionally, we can see if Eq. (4.87) holds, then x̂d ∈ XD im-

plies x̂+
d ∈ XD.

|ec| ≤ σ−1
J,x+(ρJ − J0

ℓ∗(x̂d) + αϕ(|x̂d − x̄ℓ∗

d |)). (4.87)

Theorem 4. We have established that the value function of the ideal

optimal control problem J0
ℓ∗ from the perfectly learned steady-state

model-plant mismatch is an ISS Lyapunov function in the robust in-

variant set XD of the combined disturbance estimator/target calcula-

tor/optimizer system of the proposed model-plant mismatch learning

offset-free MPC through Lemma 2, 3. Finally, by Proposition 3, we

can see the equilibrium point x̄ℓ∗

d of the combined system is robustly

asymptotically stable.
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4.4 Numerical example

In this section, we demonstrate three numerical simulation re-

sults to demonstrate the performance of the proposed model-plant

mismatch learning offset-free MPC. The first case shows the model-

plant mismatch learning and tracking performance for a randomly

changing set-point, the second case shows the learning efficacy with

data window strategy when the plant deformation occurs during op-

eration, and the third case shows the performance with two randomly

changing set-points.

We consider a continuous stirred-tank reactor (CSTR) where the

first-order reaction, A → B takes place in the liquid phase, and the

reactor temperature is controlled with the external cooling jacket in

[69].

The control objective is to track the reference trajectories of the

outlet concentration of reactant (c) while regulating the reactor tem-

perature (T ) as a fixed value by directly manipulating the temperature

of the jacket (Tc) and the outlet flow rate (F ). The following equations

describe the dynamics of the reactor.

dc

dt
=

F0(c0 − c)

πr2h
− k0 exp(−

E

RT
)c

dT

dt
=

F0(T0 − T )

πr2h
− ∆H

ρCp

k0 exp(−
E

RT
)c

+
2U

rρCp

(Tc − T )

dh

dt
=

F0 − F

πr2

(4.88)

The parameters are given in Table 4.1.
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Parameter Nominal value Units
F0 0.1 m3/min
T0 350 K
c0 1 kmol/m3

r 0.219 m
k0 7.2×1010 min−1

E/R 8750 K
U 54.94 kJ/min ·m2 ·K
ρ 1000 kg/m3

Cp 0.239 kJ/kg ·K
∆H -5×104 kJ/kmol

Table 4.1: Parameters of the CSTR.

The linear model is derived at the steady-state:

cs = 0.878 kmol/m3, T s = 324.5 K, hs = 0.659 m

T s
c = 300 K, F s = 0.1 m3/min

The discretized linear model in Eq. (4.89) with sampling instant

1min is used for MPC.
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

z(k) = Hy(k)

(4.89)
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A =


0.2681 −0.00338 −0.00728
9.703 0.3279 −25.44
0 0 1

 ,

B =


−0.00537 0.1655

1.297 97.91

0 −6.637

 ,

C =


1 0 0

0 1 0

0 0 1

 , H =

[
1 0 0

0 1 0

]
.

The following operational constraints are applied to the system:

0.83 ≤ c ≤ 0.92, 320 ≤ T ≤ 330, 0.4 ≤ h ≤ 1.2,

295 ≤ Tc ≤ 310, 0.07 ≤ F ≤ 0.13

The prediction horizon and weights in optimal control problem

are N = 10, Qx = diag{50; 0.001; 1}, QN
x = 10Qx} and Qu =

diag{0.01; 0.01}, respectively.

For disturbance estimator, following disturbance model and gain
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matrices are applied:

Bd =


1 0

0 1

0 0

 , Cd = 0ny×nd
,

Lx =


0.6141 −0.0034 −0.0071
9.7056 0.7346 −25.4413

0 0 0.2800

 ,

Ld =

[
0.3420 0 0

0 0.4026 0

]

We also suppose that the outlet concentration is 3% higher than

the average concentration in reactor, F → 1.03F , to apply additional

error and increase the model-plant mismatch.

Simulations are performed using MATLAB® R2019a with Intel®

CoreTM i7-6700 CPU @ 3.40GHz, 32 GB RAM.

4.4.1 System with random set-point

We applied the random set-point of c along [0.84, 0.91] with fixed

set-point of T for every 15 sampling instance, and approximate in-

trinsic model-plant mismatch fd in Eq. (4.22) using GRNN from the

estimated disturbance data at steady-state for each c set-point.

Figure 4.1 illustrates the results of function approximation for fd
from 10 and 50 steady-state disturbance data, respectively, for each

random c set-point, cref . We can see the estimated disturbance data

and set-point shows a certain relation which indicates the steady-

state model-plant mismatch for each set-point between Eqs. (4.88)
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Figure 4.1: Approximated model-plant mismatch by GRNN from 10 and 50
disturbance data at steady-state for each random set-point.
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and (4.89). The approximated function by GRNN follows the trend

of the data well with sufficient data.

Figure 4.2 shows the reference tracking results of the nominal

offset-free MPC and the proposed model-plant mismatch learning

offset-free MPC which applies learned disturbance value for each set-

point c approximated by GRNN with 50 steady-state data in Figure
4.1. Though all the schemes achieve offset-free tracking, the nominal

scheme arouses considerable error when the set-point changes be-

cause the nominal method gradually estimates the model-plant mis-

match for each set-point only from occurred measurement error. On

the other hand, the proposed scheme tracks the reference trajectory

with only tiny error at the transition state and shows much better

performance compared to the standard method. The reason is that

the proposed scheme learns the intrinsic model-plant mismatch from

data and applies the learned information into the estimator and finite-

horizon optimal control problem.

From Figure 4.3 which describes the estimated disturbance val-

ues of each scheme, we can examine how the proposed scheme im-

proved the controller performance in more detail. ‘Nominal D’ and

‘Combined D’ imply the estimated disturbance from the nominal

offset-free MPC and the proposed model-plant mismatch learning

offset-free MPC, respectively. We can see the proposed scheme shows

considerably superior performance in disturbance estimation. ‘Com-

bined D’ is the sum of learned steady-state disturbance from GRNN

‘Learned D’ and supplementary disturbance estimated from the esti-

mator in Eq. (4.27) ‘Supple. D’. We can see the learned disturbance

acts as a warm-start signal so that the supplementary disturbance only

changes in much smaller range than the fully estimated disturbance
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of the nominal scheme. By this, the proposed scheme effectively im-

proves the model-plant mismatch compensating performance of the

disturbance estimator and prediction accuracy in finite-horizon opti-

mal control problem.

4.4.2 Transformed system

In this section, we examine the model-plant mismatch learning

performance with data-window strategy and reference tracking per-

formance when system transformation occurs. We changed the re-

action rate constant k0 in Table 1 from 7.2 × 1010min−1 to 6.2 ×
1010min−1 to implement the system transformation into the plant.

Then, we applied the random set-point of c along [0.84, 0.91] with

fixed set-point of T for every 15 sampling instance as similar in the

previous section, and approximate the intrinsic model-plant mismatch

fd using GRNN for each c set-point with data-window strategy.

Figure 4.4 illustrates the result of approximation for the steady-

state model-plant mismatch for each set-point of c applying data-

window strategy which replaces the old data into the recent data.

We can see the approximated function f̂d gradually transforms from

that of original system to that of transformed system as the sampled

data from the original system is replaced into the data from the trans-

formed system.

Figure 4.5 describes the reference tracking result of nominal and

proposed offset-free MPC schemes where ‘Learned ori.’ and ‘Learned

trs.’ imply the closed-loop results with learned model-plant mismatch

from the 50 original system data and the 50 transformed system data

as in Figure 4.4, respectively. The proposed scheme with learned dis-
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Figure 4.5: Reference tracking results of offset-free MPC for the random
set-point of c and fixed T in the transformed system.
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turbance from the transformed system data shows superior perfor-

mance than that from the original system data. Therefore, we can see

the proposed scheme with data-window strategy works fine under the

system transformation.

Figure 4.6 shows the estimated disturbance values of each scheme.

We can see the learned disturbance value from the transformed the

system data matches the steady-state disturbance well than that from

the original system data, so that the scheme based on the transformed

data can compensate the model-plant mismatch using smaller amount

of supplementary disturbance than that based on the original system

data. By this, the proposed scheme with data-window strategy can

handle the system transformation well.

Additionally, even the scheme based on the original system data

shows considerably superior performance than that of the nominal

scheme in Figure 4.5. Though the learned disturbance signal from

the original data does not match the steady-state value of the trans-

formed system, it can work as a proper warm-start signal for the dis-

turbance estimator. This implies that even the learned model-plant

mismatch without information of system transformation can improve

the closed-loop performance of the controller in the circumstance

where the transformation is not that considerable.

4.4.3 System with multiple random set-points

In this section, we examine the closed-loop behavior of offset-

free MPC schemes in system with multiple random set-points. We ap-

plied the random set-point of c along [0.84, 0.91] and T along [321, 329]

for every 15 sampling instance, and approximate intrinsic model-
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Figure 4.6: Estimated disturbance of offset-free MPC schemes for the trans-
formed system.
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plant mismatch fd using GRNN from the estimated disturbance data

at steady-state for each (c, T ) set-point pair.

Figure 4.7 illustrates the approximation result of the steady-state

model-plant mismatch fd by GRNN. Since the disturbance pair (dss1 ,dss2 )

depends on each (cref ,Tref ) pair, dss1 and dss2 for each (cref ,Tref ) pair

are illustrated separately. We can see the approximated function f̂d by

GRNN follows the trend of the data well in the system with multiple

random set-points.

Figure 4.8 shows the reference tracking results of nominal and

proposed offset-free MPC schemes with learned model-plant mis-

match from 100 and 400 steady-state data, respectively. The both

proposed schemes applying learned model-plant mismatch from 100

and 400 data show considerably superior performance than that of the

nominal scheme. Though the approximated function with 400 data is

more exact and smooth than that of 100 data, the closed-loop perfor-

mances of controllers with these approximated functions are almost

identical. Therefore, we can see the scattered 100 data is sufficient to

learn a proper approximation of model-plant mismatch.

Figure 4.9 shows the estimated disturbance values of nominal

and proposed scheme with 100 steady-state disturbance data in Fig-
ure 4.7. The learned disturbance value matches the steady-state dis-

turbance properly, but there are some deviations near 40th, 80th, and

160th sampling instants. This implies that the model-plant mismatch

map is not perfectly learned near the related set-points. However, the

proposed scheme achieves the offset-free tracking performance and

efficiently improves the closed-loop performance as in Figure 4.8 by

exploiting the supplementary disturbance values in the system with

multiple random set-points.
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Figure 4.8: Reference tracking results of offset-free MPC for the random
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Chapter 5

Concluding remarks

5.1 Move-blocked model predictive control with linear
interpolation of base sequences

This study presented the analysis of existing offset blocking sche-

mes that are commonly used in the field of constrained move blocked

MPC. The offset blocking schemes make it possible to guarantee

recursive feasibility and overcome the drawbacks of input blocking

schemes by utilizing the valuable properties from the base sequence.

However, since existing schemes are trapped in formulations that use

only a fixed base sequence and do not fully exploit valuable prop-

erties from various base sequences, they have limitations in terms of

optimality and could degrade the performance of the controller. Thus,

we analyzed existing offset blocking schemes from the viewpoint of

cost optimality and proposed the interpolated solution based offset

blocking strategy to address these limitations.

The interpolated solution based offset blocking strategy param-

eterizes the input sequence in terms of deviations from the convex

combination of the infinite-horizon LQR solution and the retained

optimal solution from the previous sampling instant. The proposed

interpolated solution based move blocked MPC always guarantees
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recursive feasibility and stability by utilizing the feasibility of the

shifted previous solution with considerably larger feasible region than

the existing LQR solution based move blocked MPC, and also effi-

ciently improves the optimality performance of the controller by uti-

lizing the closed-loop optimality of the LQR solution compared to the

existing previous solution based move blocked MPC. Moreover, the

interpolated solution based move blocked MPC can further improve

the optimality performance by applying the concept of dual-mode

control.

The numerical examples show that the proposed interpolated so-

lution based move blocked MPC efficiently enlarge the feasible re-

gion and improve the optimality performance compare to the existing

move blocked MPC schemes. In conclusion, the interpolated solution

based move blocked MPC can be a useful alternative in the field of

move blocking for computationally-efficient MPC.

5.2 Move-blocked model predictive control with time-
varying blocking structure by semi-explicit approach

This study proposed the semi-explicit approach for move blocked

MPC to improve the optimality performance of the controller by se-

lecting an appropriate time-varying blocking structure for the system

state while moving the on-line computational complexity for deriving

the suitable blocking structure to off-line by solving multiparametric

program.

Since the optimal control problem of move blocked MPC is an

MIP, we have to consider all the combinations of admissible block-

ing structure and the active constraint set to explicitly specify the
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optimizer of the problem. Therefore, we proposed the semi-explicit

approach to move the on-line computational cost for deriving the ap-

propriate blocking structure to off-line. By this, we can considerably

reduce the on-line computation complexity by converting the MIP to

a simple convex optimization problem while avoiding to derive an

excessive number of critical regions.

The numerical examples show that the proposed semi-explicit

move blocked MPC achieves better closed-loop performance than the

commonly used time-invariant blocking structure case. In conclusion,

semi-explicit move blocked MPC can be an effective alternative to

improve the optimality performance of the controller while achieving

computational-efficiency. Moreover, it is expected to be more valu-

able in the situation where MPC is directly implemented at the actu-

ator level with the recent development of Internet of Things technol-

ogy.

5.3 Model-plant mismatch learning offset-free model
predictive control

We propose a novel offset-free MPC scheme which learns the in-

trinsic steady-state model-plant mismatch from data and applies the

learned information into the offset-free model predictive controller

with supplementary signal estimated from the revised disturbance es-

timator. Though we learn only the steady-state so that the learned

model-plant mismatch map is not perfect, we can achieve the offset-

free tracking property by utilizing the stabilizing property of the sup-

plementary signal estimator. Naturally, we could further improve the

closed-loop performance of the controller with the entirely learned
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model-plant mismatch map, but it would be required as enormous

data and computation as for learning the entire dynamics of the sys-

tem. Therefore, only learning and utilizing a tiny manifold on the

entire model-plant mismatch map, steady-state mismatch, we can ef-

ficiently improve the closed-loop performance of offset-free MPC.

In addition, we could mathematically examine the robust asymp-

totic stability of the combined system in offset-free MPC consisting

of disturbance estimator/target calculator/optimizer. Though the sta-

bility analysis of offset-free MPC have not been done yet due to the

difficulty in specifying the equilibrium point and Lyapunov function

candidate with nominal scheme, the proposed scheme makes it pos-

sible by providing the equilibrium point and Lyapunov function can-

didate based on the learned model-plant mismatch.

Moreover, since we combine machine learning and model based

control based on standard offset-free MPC manner, we can exploit its

own model-plant mismatch compensating property in estimator de-

sign. Therefore, proposed method can effectively improve the MPC

performance without enormous data, unlike existing schemes improv-

ing model-based control performance by updating entire dynamics or

learning entire model-plant mismatch compensating signal directly.

In this study, we learn and utilize the model-plant mismatch at

steady-state for each set-point in tracking problem, but there are also

many regulation problems in chemical processes such as regulating

the concentration or temperature of continuous stirred-tank reactor. In

case of regulation problem, set-point change does not exist. However,

if the change of measured disturbance exists, we can apply the pro-

posed model-plant mismatch learning offset-free MPC scheme, since

the influence of measured disturbance change is basically identical as
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the influence of the set-point change to the system.

5.4 Conclusions

In this thesis, we improve the optimality performance of move

blocked MPC, which fixes the decision variables over arbitrary time

intervals to reduce computational load for on-line optimization in

MPC, in two ways. The first scheme provides a superior base se-

quence by linearly interpolating complementary base sequences, and

the second scheme provides a proper time-varying blocking structure

with semi-explicit approach. In these days, though the computation

power of computers is getting increasing, there always exist cases

where the computation capability is limited, for instance, MPC is di-

rectly implemented in the on-board controller such as engine control

units of cars or planes and embedded controller in chemical plants.

Therefore, needs for computationally efficient control schemes al-

ways exists, and proposed move blocking MPC schemes can be valu-

able alternatives in these situations.

We also improve the optimality performance of disturbance esti-

mator based offset-free MPC, which accomplish offset-free tracking

in MPC with additional disturbance signal, by learning and utiliz-

ing the learned model-plant mismatch signal from steady-state distur-

bance data with the supplementary signal from disturbance estimator.

This scheme also valuable in viewpoint of providing a successful and

efficient combining method for the model and data based method.

This scheme would be one of useful starting points of machine learn-

ing based MPC study.
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5.5 Future work

In Chapter 2, we parameterized the input sequence in terms of

deviations from the linear interpolation of the infinite-horizon LQR

solution and the shifted version of previous optimal solution. We for-

mulated the base sequence with linear interpolation because we can

reach with both base sequence with only one additional variable, in-

terpolation parameter. Additionally, if we have sufficient computation

capability, we can assign weights for each shifted previous solution

and LQR solution. By this, we can expand the space of constructible

base sequence as the range space of two basis vector, shifted previ-

ous solution and LQR solution, and formulate the base sequence as

the result from a linear operator with the assigned weights. Therefore,

studying and developing the extended version of offset-blocked MPC

based on this linear operator would be a useful research.

In Chapter 4, we learned and utilized the intrinsic model-plant

mismatch based on only one model. However, when the operating

range of the plant becomes extensive, since control performance can

considerably degraded only with one model, we usually apply model-

bank approach which builds multiple model and utilizes each model

according to current state. In this case, we also have to learn mul-

tiple model-plant mismatch map for each model, since the intrinsic

model-plant mismatch are different for each model. Therefore, when

we change the model during operation, we also have to change the

model-plant mismatch map and apply the different learned distur-

bance signal according to the current state. However, this procedure is

not that simple. Since the learned signal is derived from the set-point,

in case where the current point and set-point are in different regions,
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we have to transform the learned disturbance signal from the region

including the set-point into the suitable signal for the region includ-

ing current point. Therefore, studying and developing the model-plant

mismatch learning offset-free MPC for model-bank approach would

be a valuable research.
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Nomenclature

d: Disturbance

ex̄,ū: Target error

ex̂d
: Estimate error of disturbance-augmented state

eκp: Error in control law

ey,∞: Steady-state output prediction error

ez,∞: Steady-state offset of controlled variable

ec: Combined error

ey: Measurement error

fd: Steady-state disturbance map from each set-point

g: Parameter vector

i∗: Corresponding index of s̃∗

J : Objective function

J∗: Optimal objective value

k: Discrete-time index

Ld: Estimator gain for disturbance vector

Lx: Estimator gain for state vector

N : Prediction horizon

nc: Number of inequalities

nd: Dimension of disturbance vector

ns: Number of admissible blocking position sets

nu: Dimension of input vector

nx: Dimension of state vector

ny: Dimension of output vector

O∞: Maximal positive invariant

Ps: Blocking matrix from blocking position set s
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Q
N

: Weighting matrix for the terminal state vector

Qu: Weighting matrix for the input vector

Qx: Weighting matrix for the state vector

r: Reference signal

s: Blocking position set

si: Blocking position

U : Future input sequence

u: Input

U∗: Optimal solution sequence

UB: Base sequence

U∗
k−1: Optimal solution sequence of the previous sampling instant

ULQR: LQR solution sequence

u∞: Steady-state input

x: State

xd: Disturbance-augmented state

xp: Plant state

y: Output

yp,∞: steady-state plant output

yp: Plant output

zp: Plant controlled variable

r̄: Set-point

ū: Target input

x̄: Target state

x̄ℓ∗: Target input derived from d̂ℓ
∗

x̄ℓ∗: Target state derived from d̂ℓ
∗

∆Θ: Offset variation sequence

∆u: Input variation

∆U : Input variation sequence
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∆Θ: Parameterized offset variation sequence

∆Θ̃∗
s: Unconstrained optimal offset variation sequence with blocking

position s

d̂: Disturbance estimate

d̂ℓ
∗: Learned disturbance signal from completely learned f̂d

d̂ℓ: Learned disturbance signal

d̂s: Estimated supplementary disturbance signal

d̂∞: Disturbance estimate at steady-state

f̂d: Approximated function of fd
x̂: State estimate

x̂ℓ,s: Combined disturbance signal

x̂∞: State estimate at steady-state

x̂d: Disturbance-augmented state estimate

x̂+
d : Expected evolved state with perturbation

κun: Unconstrained MPC controller gain

λ: Interpolation parameter

Z≥0: Set of non-negative integers

C: Control invariant set

C∞: Maximal control invariant set

Idoms(i) : Set of indices j that form the dominant boundaries for CRs(i)

Is: Set of indices for each admissible blocking position set

N : Null space

S: Set of admissible blocking position sets

SN : Collection of admissible s with sN = N

XT : Terminal constraint set

⊗: Kronecker product

Θ: Parameterized offset sequence

N : Number of blocks
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P : Blocking matrix

ϕ : Single-stage cost

ϕt: Terminal cost

Θ: Offset sequence

x̃+
d : Expected ideally evolved state

Û : Shifted version of previous solution

J̃∗
s : Unconstrained value function with blocking position s

s̃∗: Blocking position set minimizing J̃∗
s

s̃∗: Proper blocking position set

Bs(i,j): Boundary between the critical regions CRs(i) and CRs(j)

CRs(i): Critical region associated with s(i)
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초록

모델예측제어는현재시스템상태에대한유한구간최적해를

도출하는온라인이동구간제어방식이다.모델예측제어는피드백

을통한공정동특성과제약조건을효과적으로반영하는장점으로

인해 산업 및 제어 연구 분야에 큰 영향을 미쳤다. 이러한 모델예

측제어에는몇가지해결되어야할문제가있다.모델예측제어에서

는샘플링기간내에최적화문제를풀어내야하기때문에,온라인

계산 복잡성의 감소가 주요 연구 주제 중 하나로 활발히 연구되고

있다.또다른주요문제는모델에기반한예측을이용하는접근방

식으로 인해 모델-플랜트 불일치로 인한 오차를 해결해야 한다는

점이며, 모델 플랜트 불일치 또는 측정되지 않은 외란을 보상하여

잔류편차없이참조신호를추적하는연구가활발히이루어지고있

다.이논문에서는모델예측제어에서의온라인최적화를위한계산

부하를 줄이기 위해 임의의 시간 간격에 걸쳐 결정 변수를 고정시

키는 이동 블록 전략의 최적성 향상에 중점을 두었으며, 또한 잔

류편차를제거하기위해가장표준적으로사용되는외란추정기를

이용한잔류편차-제거모델예측제어기법의최적성향상에중점을

두었다. 이 논문에서는 이동 블록 모델예측제어의 최적 성능을 향

상시키기위한두가지전략을제시한다.첫번째전략은이동블록

전략에서일반적으로고정된채로사용되는기반시퀀스를상호보

완적인두기반시퀀스의선형보간으로대체함으로써보다우수한

기반 시퀀스를 제공하며, 두 번째 전략은 준-명시적 접근법을 활

용하여 현재 시스템 상태에 적절한 시변 블록 구조를 온라인에서

제공한다. 또한, 잔류편차-제거 모델예측제어 기법의 최적 성능을

향상시키기 위해 추정 외란 데이터로부터 학습된 모델-플랜트 불

일치보상신호를온라인에서이용하는전략을제안하였다.제안된
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세가지기법을통해모델예측제어의반복적실현가능성과폐쇄-루

프안정성을보장하면서최적성능을효율적으로개선하였다.

주요어 : 모델예측제어, 입력 파라미터화, 이동블록 전략, 모델 플

랜트불일치,잔류편차제거

학번 : 2016-30232
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