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Abstract

For any set S of positive definite and integral quadratic forms with
bounded rank, there is a finite subset Sy of S such that any Sp-universal
quadratic form is also S-universal. Such a set S is called an S-universality
criterion set.

In this thesis, we introduce various properties on minimal S-universality
criterion sets. When S is a subset of positive integers, we show that a minimal
S-universality criterion set is unique. For higher rank cases, we prove that
a minimal S-universality criterion set is not unique when S is the set of all
quadratic forms of rank n with n > 9.

We say a quadratic form f is recoverable if there is a minimal S-universality
criterion set other than {f}, where Sy is the set of all subforms of f with
same rank. We provide some necessary conditions, and some sufficient con-
ditions for quadratic forms to be recoverable.

Key words: Representations of quadratic forms, minimal S-universality cri-
terion sets
Student Number: 2013-20241
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Chapter 1

Introduction

A positive definite (classic) integral quadratic form is a homogeneous quadratic

polynomial
n
f(.%'l,xg, P ,l’n) = Z aijxix]- (aij = aji € Z)
ij=1
such that f(x1,2s,...,z,) > 0 for any nonzero vector (x1,xs,...,x,) € Z".

We say a quadratic form f represents an integer NV if the diophantine equation
f(z1,29,...,2,) = N has an integer solution. We also say a quadratic form
f is universal if it represents all positive integers.

The famous Legendre’s four square theorem says that every integer n is
a sum of four squares of integers, that is, the quaternary quadratic form
22 +y% + 22 +¢* is universal. In 1916, Ramanujan [21] found all positive def-
inite integral diagonal quaternary universal quadratic forms. Later, Dickson
[6] confirmed Ramanujan’s results except for z? + 2y? + 522 + 5. In the
exceptional case, it is known that 22 + 2y% + 522 + 5t represents all integers
except for 15.

In 1997, Conway and Schneeberger provided a very interesting criterion,
so-called, the ‘15-Theorem’, which states that any positive definite integral
quadratic form representing

1,2,3,5,6,7,10, 14, and 15.



CHAPTER 1. INTRODUCTION

is, in fact, universal.

Let S be a set of positive definite integral quadratic forms with bounded
rank. A quadratic form f is called S-universal if it represents all quadratic
forms in S. A subset Sy of S is called an S-universality criterion set if any
quadratic form representing all quadratic forms in Sy is S-universal. For an
arbitrary set S of quadratic forms with bounded rank, the existence of a
finite S-universality criterion set was proved in [11].

An S-universality criterion set Sy is called minimal if any proper subset of
So is not an S-universality criterion set. In [11], Kim, Kim, and Oh proposed
the following questions: Let I'(S) be the set of all S-universality criterion
sets.

(i) For which S is there a unique minimal Sy € I'(S)?

(i) Is there a constant v(S) such that |Sp| = v(S) for every minimal Sy €
['(S)? If not, when?

Let @, be the set of all (positive definite and integral) quadratic forms
of rank n. For the question (i), the uniqueness of minimal ®,-universality
criterion sets was proved by Bhargava [1] for rank 1 case, and by Kominers
[16], [17] for rank 2 and 8 cases, respectively(see also [12], [10], and [18]).
Recently, Elkies, Kane, and Kominers [8] answered the question (ii) in the
negative for some special set S of quadratic forms.

In this thesis, we discuss some problems related to the above two ques-
tions. Some results in this thesis were done by joint work with B.-K. Oh.

In Chapter 2, we introduce several terminologies and results on quadratic
spaces and lattices.

In Chapter 3, we consider the case when S is a subset of positive integers.
In Section 1, we prove the uniqueness of minimal S-universality criterion sets.
Moreover, we show that the sizes of minimal S-universality criterion sets can
be arbitrarily large. We also discuss the size of a minimal S-universality
criterion set for some special set S, so called, ‘2-full set’. In Section 2, we
show that minimal S-universality criterion sets are not unique, in general.
In fact, we prove there are infinitely many minimal ®,,-universality criterion
sets for any integer n greater than 8.
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In Chapter 4, we give an answer for the question (ii) in the case when S
is the set of all subforms of a quadratic form. Note that if S is the set of
all subforms of f, then the one element set {f} is a minimal S-universality
criterion set. We say f is recoverable by Sy if there is a finite set Sy of
subforms of f other than {f} such that any quadratic form representing all
quadratic forms in Sy represents f itself. In other words, a quadratic form
f is not recoverable if and only if f has the unique minimal S-universality
criterion set {f}. In this chapter, we prove some necessary conditions, and
some sufficient conditions for quadratic forms to be recoverable. In Section 1,
we provide some properties of recoverable quadratic forms, and we prove that
every indecomposable binary or ternary quadratic form is not recoverable.
In Section 2 and Section 3, we concentrate on recoverable binary quadratic
forms. We find infinite examples of recoverable binary quadratic forms, and
also infinite examples of non-recoverable binary quadratic forms.



Chapter 2

Preliminaries

In this chapter, we introduce some terminologies and results which will be
used throughout the thesis.

2.1 Quadratic spaces and lattices

Let @ be the rational number field. For a prime p, we denote the field of
p-adic completion of Q by Q,. When p = oo, we denote Q4 by the field of
real numbers R. Let F' be a field Q or Q, for some prime p.

Let V be a finite dimensional vector space over F'. Let B be a symmetric
bilinear map defined on V, that is, B : V x V — F satisfies the following
properties:

B(z,y) = B(y,x), Blaz+By,2) = aB(x,) + BB(y, 2),

for any z,y,2z € V and «, f € F. Then the quadratic map () associated with
B is defined by

Q(ZE) = B(ZL‘, J]),
for any = € V. We define (V, B) a quadratic space over F. We say that
a quadratic space V' is unary, binary, ternary, quaternary,..., n-ary, if the
dimension of V' is 1,2, 3,4, ..., n,respectively.

Let (V, B) be a quadratic space over F' and let B = {z1,25,...,2,} be a
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basis for V. The symmetric matrix defined by
(B(i, 25))1<i,j<n
is called the Gram matriz of V in 8, and we write
V = (B(2i,5))1<ij<n in B.

If the symmetric matrix (B(x;, x;))1<; j<n is a diagonal matrix, then we sim-
ply write
V= <Q(l’1>, Q(I2)7 cee 7Q(xn)> in B.

Given a symmetric matrix A and a quadratic space V, the expression V' ~ A
means that there is a basis € for V' such that V= A in €. We say that a
quadratic space V defined over Q is positive definite if the matrix (B(x;, z;))
is positive definite. The canonical image of the determinant of the symmetric
matrix (B(z;,x;)) in (F*/(F*)?) U {0} is called the discriminant of V', and
is denoted by dV. We say V is a regular quadratic space if dV # 0.

Let V and W be quadratic spaces over F' and let () be the quadratic map
defined on each of them. A linear map o from V into W satisfying

Qo(x)) =Q(x) forany x eV

is called a representation of V into W. We also say that W represents V. A
bijective representation o is called an isometry from V onto W. In this case,
we say that V and W are isometric, and write V ~ V.

Let R be the ring of integers Z, or the ring of p-adic integers Z, for a
prime p, and let F' be its quotient field. Let V be a quadratic space over
F. An R-module L in V is called a lattice in V' if L is finitely generated.
We denote the set {az | @ € Fyo € L} as FL. We define the rank of L the
dimension of F'L and we say L is an R-lattice on V if FL =1V

Note that every finitely generated torsion-free R-module is free when
R =7 or Z, for some prime p. Let B = {z1,22,...,2,} be a basis for L.
The symmetric matrix defined by (B(z;, z;))1<ij<n is called the Gram matriz



CHAPTER 2. PRELIMINARIES

of L in B, and we write
L = (B(z, j))1<ij<n in B.

If the symmetric matrix (B(x;, x;))1<; j<n is a diagonal matrix, then we sim-
ply write
L= <Q((L’1>, Q(Ig), ce 7Q(xn)> in B.

We sometimes omit ‘in B’ in the above expression if there is no confusion.
Given a symmetric matrix A and an R-lattice L, the expression L ~ A means
that there is a basis € for L such that L = A in €. The canonical image of
the determinant of the symmetric matrix (B(x;,z;)) in (F*/(R*)?) U {0}
is called the discriminant of L, and we denote it by dL. We say L is a
reqular R-lattice if dL # 0. If there exists a nonzero vector v in L satisfying
Q(v) = 0, then we call L isotropic. Otherwise, we call L anisotropic. The
scale of L is defined by the ideal of R generated by B(x,y) for any x and y in
L, and the norm of L is defined by the ideal of R generated by Q(z) for any
x in L. We use L* with a € Z to denote the lattice L with a new bilinear
form B%(z,y) = aB(z,y) and the quadratic map Q%(z) = aQ(x) for any
x,y € L.
The corresponding quadratic form of L is defined by

fo=fo(yiyo, - yn) = Z B(z;, x5)yiy;.

1<ij<n

Throughout this thesis, we identify a lattice with its Gram matrix or the
corresponding quadratic form. We always assume that all quadratic spaces
and lattices are regular. We also assume that all Q-spaces are positive definite
and all Z-lattices are integral, that is, their scales are contained in Z .

Let L and M be R-lattices on the quadratic spaces V and W, respectively.
We say that M represents L if there is a representation o : FIL — FM
satisfying o(L) C M, and in this case, we simply write L — M. Moreover,
we say that L and M are isometric if there is a representation o : FL — FFM
satisfying o(L) = M and we write L ~ M.

Let Z, be the p-adic integer ring for a prime p. We define L, = Z, ® L,
which is a Z,-lattice. We say that L is anisotropic at a prime p if L, is
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anisotropic. For Z-lattices L and M, if L, is isometric to M, for all primes
p, then we say that L is locally isometric to M. The set of all Z-lattices
isometric to L is defined by the class of L, and denoted by cls(L). The set of
all Z-lattices that are locally isometric to L is defined by the genus of L, and
denoted by gen(L). The class number h(L) of L is defined by the number of
classes in the genus of L.

For Z-lattices L and M, although L locally represents M for every prime
p, L does not represent M, in general. More precisely, the following theorem
holds.

Theorem 2.1.1. For Z-lattices L and M, if M s locally represented by L,
then there exist a Z-lattice L' € gen(L) which represents M.

Proof. See 102:5 Example in [19]. O

Theorem 2.1.2. For 3 < n < 5, every quadratic form of rank n is repre-
sented by a sum of n + 3 integral linear squares.

Proof. See [15]. One may easily verify this by using the above theorem and
the local representation theory. O]

When the rank of L is greater than or equal to 4, the following theorems
are also known.

Theorem 2.1.3. For a Z-lattice L of rank r > 5, there is a constant c(L)
satisfying the following property: if an integer n s locally represented by L
and n > ¢(L), then n is represented by L.

Proof. See [22]. O

Theorem 2.1.4. For a Z-lattice L of rank 4, there is a constant c¢(L) satis-
fying the following property: if an integer n satisfies

(i) n is locally represented by L,
(ii) n is primitively represented by L at the anisotropic primes,
(iii) n > ¢(L),

then n 1s represented by L.
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Proof. See [14]. O

Suppose that Ly, Lo, ..., L, are sublattices of an R-lattice L and
L=0L1®L @& L.
Suppose further that
B(z,y) =0forany x € L;,y € L; with 1 <i < j <.

Then we say that L is the orthogonal sum of Ly, ..., L,, and in this case, we

write
L:LlJ_LQJ_J_LT

The dual lattice L of a Z-lattice L is defined by
L* ={x € QL | B(z,L) C Z}.

One may easily show that L C L# and |L#/L| = |dL|. A Z-lattice L is called
unimodular if dL = +1. If L is unimodular, then we have L# = L.

We say that L is decomposable if L is isometric to the orthogonal sum of
two nonzero sublattices of L. Otherwise, we say that L is indecomposable.

Let L be a Z-lattice. Suppose that for any representation ¢ from L into
the orthogonal sum of two nonzero Z-lattices M; and M,, (L) € M; or
o(L) € M; holds. Then, we say that L is additively indecomposable. 1t is
well known that every indecomposable unimodular lattice is also additively
indecomposable. For more properties on additively indecomposable lattices,
see [20].

2.2 Minkowski-reduced forms

Let V be a quadratic space over Q and let L be a Z-lattice in V. We say

B = {x1,29,...,2,} is a Mikowski-reduced basis for L if for each i with
1<1<n,
Qlzi) < Q(y),
8
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for any vector y € L such that the set {x,z2,...,2;_1,y} can be extended
to a basis for L. Here, if © = 1, the above inequality holds for all primitive
vectors y in L.

Theorem 2.2.1. Every positive definite Z-lattice has at least one Minkowski-
reduced basis.

Proof. See Theorem 1.1 of Chapter 12 in [2]. ]
If rank of L is less than or equal to 4, then the following holds.

Theorem 2.2.2. Letn < 4. For a Z-lattice L, {x1,xa, ..., x,} is a Mikowski-
reduced basis for L if and only if the following holds:

(i) 0< Q1) < Q(xz) <--- < Q)

(i) Q(z;) < Q(y) for any j with 1 < j <4 and for any

0or £1 ifi<y,

y:Zaixi with a; = < 1 ifi =17,
= 0 if i > j.
Proof. See Lemma 1.2 of Chapter 12 in [2]. ]

Note that for n = 2, the conditions (i) and (ii) are equivalent to

0 <Q(z1) < Q(x2), and 2|B(zy,22)| < Q(z1).

For n = 3, the conditions (i) and (ii) implies that

0 < Q1) < Q(x2) < Q(x3),
2|B(x1,29)| < Q(21), 2|B(x1,73)| < Q(x1), 2[B(z9,73)] < Q(x2).

On the other hand, for a Z-lattice L of rank n, the i-th minimum p;(=
w;(L)) of L is defined by the positive integer such that

(i) the dimension of the subspace of QL which spanned by x € L with
Q(z) < p; is greater than or equal to ;

9
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(ii) the dimension of the subspace of QL which spanned by z € L with
Q(z) < p; is less than i.

Note that
L) =min(L) = i L).
p1(L) = min(L) xg?i?o}Q( )
The integers pq, po, - - . , i, are called the successive minima of L. One may

easily show that py, po, ..., 1, are well defined and, in fact,

Theorem 2.2.3. Let L be a Z-lattice of rank n and let © be an integer
with 2 < 1@ < n. Suppose that there exist linearly independent vectors
X1, %o, ..., Ti—1 in L such that Q(z;) = p; for all j with 1 < j <i—1. If
y € L satisfies Q(y) < p;, then y is linearly independent of x1,xa, ..., x;1.

Proof. See Lemma 2.1 of Chapter 12 in [2]. O

Theorem 2.2.4. Let L be a Z-lattice of rank n with successive minima
W1y fh2s - ooy fhn.  Then there exists a constant C' depending only on n such
that

dL <y -pa---pn < C-dL.

Proof. See Proposition 2.3 in [7]. O

Theorem 2.2.5. Let d and n be positive integers. Then there exist only
finitely many Z-lattices of discriminant d of rank n up to isometry.

Proof. See Corollary 2.1.1 in [13]. O

The above two theorems imply that there exist only finitely many Z-
lattices of given rank n such that their n-th successive minima are bounded.

10
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2.3 Gluing theory

Let {e1, €9, -+ ,e,} be a standard orthonormal basis for R”. Then we define
some Z-lattices as follows.

I, = Ze, + Zey + -+ - + Ze,, (for n > 1)
n+1 n+1

An:{ZaieiGInH : Zai:()} (forn > 1)
i=1 i=1

=Z(ey —ey) + Zleg —e3) + -+ - + Z(en — €nt1)

D, —{Zalelel Z%EQZ} (for n > 4)
=1

:Z€1_62 +Z(ea —e3) + -+ Zlep—1 — €n) + Z(en—1 + €5)

8
z:a,eZ : 20, € Z,a; — a; € 7, ZazEQZ}
=1
8
Za,eZGEg : Zai:0}

i=1

/—/H/—M

We call these lattices root lattices. Witt’s Theorem states that for any Z-
lattice L, the sublattice generated by vectors of norm 1 and 2 is a direct sum
of root lattices.

Gluing theory is a way to describe a Z-lattice of rank n that has a sub-
lattice of full rank which is the orthogonal sum

Ly L Lyl -1 Ly

of given Z-lattices Li, Lo, ..., L;. We can write every vector x in L as x; +
To+ -+ xp with z; € L?é for all 1 < ¢ < k. Since any x; can be replaced by
adding a vector of L;, we may assume that x; is one of representatives of a
standard system for the cosets of L; in L;#. These representatives are called
glue vectors for L; and the quotient group L?E /L; is called the glue group for

11
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L;. Note that the order of the glue group for L; equals to the determinant
of L;. We list glue vectors and the glue group for each root lattices. We
usually choose glue vectors to be of minimal norm in their cosets for the
computational convenience.

(i) A, forn > 1:
The glue group of A, is the cyclic group of order n + 1, that is,

A* /A, ~7/(n+1)Z.

The typical glue vector of A, is given by

= L))

1| = . ce

\TL + 1 7 Y n + 117 p + 1 Y Y n + 1 Y
jfcomz)gnents ifcom;ronents

where i +j7=n+1and 0 <7 <n. For¢,7 and k£ with 0 < 14,5,k < n,

the norm of [i] is -2 and [5] 4 [k] = [j + k] holds in glue group.

(ii) D, for n > 4:
The glue group of D,, is

Z]AZ if n =1 (mod 2),

D# /D, ~
Z]2Z & 7/27 if n=0 (mod 2).

The typical glue vectors of D,, are given by

[0] = (0,0,...,0) of norm 0,

11 1 n
l=(==...,= f -
0= (353) of nora 2,
2] =(0,0,...,0,1) of norm 1,

11 1 1 n
[3] = (5,5,...,5,—5) Of norm Z

Note that if n is even, then [i] + [i]] = 0 holds for any 7 with 0 <7 < 3
and if n is odd, then [1] + [2] = [3] holds.

12
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(iii) E, forn=26,7,8:
The glue group of FE,, is the cyclic group of order 9 — n, that is,

E¥/E, ~7/(9 —n)Z.

Since Ef = Fj, the only glue vector for Ejg is

[0] = (0,0,...,0).

8—components

The typical glue vectors of E; are given by

[0] =(0,0,0,0,0,0,0,0) of norm 0,
1 111111 3 3 . 3
=|-,-,=, === —=,— of norm —.
1y ee 14 ot 5

The typical glue vectors of Eg are given by

[0] = (0,0,0,0,0,0,0,0) of norm 0,
= (o 2 21111 0 ; 4
- 9 37 37373a3737 Ol norm 37

4

2] = —[1] of norm 3

2.4 S-universality criterion sets

Definition 2.4.1. Let S be any set of Z-lattices. A Z-lattice L is called S-
universal if L represents all Z-lattices in S. For a subset Sy of S, if every Sp-
universal lattice is also S-universal, then we say that Sy is an S-universality

criterion set.

When S is a subset of positive integers, the existence of a finite S-
universality criterion set was proved by Bhargava. He also found a finite
S-universality criterion set for some interesting set S such as the set of all
primes, and the set of all positive odd integers:

13
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Theorem 2.4.2. An integral quadratic form represents all prime numbers if
and only if it represents

2,3,5,7,11,13,17,19, 23,29, 31, 37, 41, 43,47, 67, and 73.

Theorem 2.4.3. An integral quadratic form represents all odd integers if
and only if it represents

1,3,5,7,11,15, and 33.

Bhargava’s result was fully generalized by Kim, Kim, and Oh [11]. In
fact, they proved the following:

Theorem 2.4.4. Let S be a set of Z-lattices with bounded rank. Then there
exists a finite subset Sy of S such that every Sy-universal Z-lattice is S-
universal.

Proof. See [11]. O

Corollary 2.4.5. Let S be any set of Z-lattices with bounded rank. There
always exists an S-universal Z-lattice.

Proof. By Theorem 2.4.4, there exists a finite subset Sy of S such that every
So-universal Z-lattice is S-universal. Put So = {Ls, Lo,...,L;}. Then L; L
Lo 1L --- 1 L;is Sp-universal, and so it is S-universal. O

Definition 2.4.6. Let S be any set of Z-lattices. For a subset Sy of S,
we say that Sy is a minimal S-universality criterion set if Sy itself is an S-
universality criterion set and any proper subset of Sy is not an S-universality
criterion set.

Let ®,, be the set of all quadratic Z-lattices of rank n. It is well known
that there is a unique minimal ®,-universality criterion set for n = 1,2 or 8.

Theorem 2.4.7. The set
So=11,2,3,5,6,7,10,14,15}
18 the unique minimal ®1-universality criterion set.

14
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Proof. See [1]. O

Theorem 2.4.8. The set

75:{<1,1>,<2,3>,<3,3>7 ﬁ ﬂﬁ :ﬂﬁ ﬂ}

15 the unique minimal ®o-universality criterion set.
Proof. See [10]. O

Theorem 2.4.9. The set
Uy = {Is, Es}

15 the unique minimal Pg-universality criterion set.
Proof. See [18]. O

However, in general, minimal S-universality criterion sets are not unique,
and furthermore, the sizes of minimal S-universality criterion sets may vary.
The following example was given by Elkies and his collaborators.

Theorem 2.4.10. Let S be the set of all sublattices of a Z-lattice (1,1,2).
Then the sets
{(1,1,2)} and {(1,1,16),(2,2,2)}

are minimal S-universality criterion sets.

Proof. See [8]. O

15



Chapter 3

Uniqueness of minimal
S-universality criterion sets

In this chapter, we focus on answering of the question:
for which S is there a unique minimal S-universality criterion set?

We prove that there is a unique minimal S-universality criterion set when
S is a subset of integers. Moreover, we prove that there is a subset S of
positive integers such that the cardinality of its minimal universality criterion

set is arbitrarily large.

3.1 Rank 1 case

Let N be the set of positive integers. For a positive integer m and a nonneg-
ative integer o, we define the set of arithmetic progressions

Apo={mn+a:n=0,1,2,... }.
If a quadratic form f represents all elements in A, , we simply write A,, » — f.

Proposition 3.1.1. Let S = {so, 1, S2, ... } be a subset of N, where s; < s;11
for any nonnegative integer i, and let k be a positive integer. If there is a

16
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quadratic form f(x1,xq,...,2,) such that

$0,S1y -5 Sk—1 EQ(f) and Sk gQ(f%
then there is a quadratic form F such that Q(F)NS =S — {s}.

Proof. First, we define

C={0<u<spp1 — 1Ay N {Shg1s Shgas - J £ 0} = {1, 00, ..., e},

and for each c € €, s(c) = min(A,, | c N {Sk+1, Sk42,--- }). Now, define

F(xy, .o Ty Yty ooy Yy 21y - -5 Z0)
v

:f(xlw--vxu)+8k+1(y%+”'+yi)+ZS(Cj)Z]2“

j=1

Since sg41,5(c;) > s and si & Q(f), sk is not represented by F. Further-
more, for any integer a € {Ski1, Skt2,...}, there is a nonnegative integer
M and an integer i (1 < i < v) such that a = sg1 M + s(¢;). Since M is
represented by a sum of four squares, the integer a is represented by F'. The
proposition follows directly from this. n

Theorem 3.1.2. For any set S = {sg,$1,52,...+ € N, a minimal S-
universality criterion set is unique.

Proof. Without loss of generality, we may assume that s; < s;41 for any
nonnegative integer i. An integer s; € S is called a truant of S if there is
a quadratic form f such that f represents all integers in {sg,$1,...,si-1},
whereas f does not represent s;. Clearly, s is a truant of S. Let T'(S) be the
set of truants of S. Then, by Proposition 3.1.1, any S-universality criterion
set should contain 7T'(S). Hence it suffices to show that T'(S) itself is an
S-universality criterion set. Let f be a quadratic form that represents all
integers in 7'(S). Suppose that f is not S-universal. Let m be the smallest
integer such that s,, is not represented by f. Then, clearly, s,, is a truant
of S, and hence s, € T(S). This is a contradiction. Therefore T'(S) is the
unique minimal S-universality criterion set. O
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From the proof of Theorem 3.1.2, one may also show that if Sy is the
unique minimal S-universality criterion set, then for any N € Sy, there is a
Z-lattice Ly that represents all integers in S except for V.

Proposition 3.1.3. For any positive integer k greater than 3, the diagonal
Z-lattice (k,k+1,...,2k) represents all integers greater than or equal to k.

Proof. Note that every positive integer n greater than or equal to & is of the
form km + a for some integers m and a with m > 0 and k <a <2k — 1.

Firstly, assume that k is greater than or equal to 7. Let a be any integer
with £ < a <2k — 1. One may choose two integers k; and ky with 0 < k; <
ky < L%J such that both of k; and ky are not equal to a — k and 2k — a.
Note that (1,2,3,3) is universal. Since (k, 2k, 3k, 3k) is a sublattice of the
diagonal Z-lattice

L = (k,2k, k+ k1,2k — k1, k + ko, 2k — ko),
L represents all nonnegative integers which are multiple of k. Then
Ak,a — <]{7, 2/{3, k+ /{31, 2k — ]{31, k + k’Q, 2k — kQ, (Z>,
which implies that Ay, — (k. k+1,...,2k).
Secondly, suppose that k = 6. Since (6, 12, 18, 36) is a sublattice of (6,6+
k' 9,12 — k', 12) for k' = 1,2, it is clear that

Aga —> (6,7,8,9,10,11,12) with a = 7,8, 10, 11.

On the other hand, we know that Ago — (6,12, 18,18) and (6,12, 18,18) is
a sublattice of (6,7,8,10,11,12). Therefore,

Ags — (6,7,8,9,10,11,12) and Agg — (6,7,8,9,10,11,12).

Thirdly, assume that £ = 5. It is well known that (1,2,3) represents
all nonnegative integers except for integers of the form 4™(16u + 10) for
some nonnegative integers m and u. Note that (5,10, 15) is a sublattice of
(5,6,9,10) and (5,7, 8, 10).

18
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(Case 1) For an integer n with n > 11, note that
Sn+5=5n—2)+15=>5(n—11) + 15 2
and either n — 2 or n — 11 is not of the form 4™ (16u + 10). Then either
5(n—2) — (5,10,15) or 5(n— 11) —» (5,10, 15)

holds, and the same thing is also true for (5,6,9,10). Thus, every integer of
the form 5n+5 with n > 3 is represented by (5,6, 7,8,9,10). One may easily
check that (5,6,7,8,9,10) also represents all integers of the form 5n + 8 for
0<n<l1l.

(Case 2) For an integer n with n > 15, note that

5n+6=>5(n—15) +9 -3
and either n or n — 15 is not of the form 4™(16u + 10). Then either
5n —s (5,10,15) or 5(n — 15) — (5,10, 15)

holds, and the same thing is also true for (5,7,8,10). Thus, every integer
of the form 5n + 6 with n > 15 is represented by (5,6,7,8,9,10). One may
easily check that (5,6,7,8,9,10) also represents all integers of the form 5n+6
for 0 <n < 15.

(Case 3) For an integer n with n > 5, note that

5n+7=>5(n—>5)+8-22
and either n or n — 5 is not of the form 4™(16u + 10). Then either
5n — (5,10,15) or 5(n —5) — (5,10, 15)

holds, and the same thing is also true for (5,6,9,10). Thus, every integer of
the form 5n+7 with n > 5 is represented by (5,6, 7,8,9,10). One may easily
check that (5,6,7,8,9,10) also represents all integers of the form 5n + 7 for
0<n<b.
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(Case 4) For an integer n with n > 11, note that
5n+8 =5(n—11) 4732
and either n or n — 11 is not of the form 4™ (16w + 10). Then either
5n — (5,10,15) or 5(n —11) — (5,10, 15)

holds and the same thing is also true for (5,6,9,10). Thus, every integer of
the form 5n+7 with n > 5 is represented by (5,6, 7,8,9,10). One may easily
check that (5,6,7,8,9,10) also represents all integers of the form 5n + 8 for
0<n<l1l.

(Case 5) For an integer n with n > 3, it is true that

5n+9=>5(n—3)+6-2?
and either n or n — 3 is not of the form 4™(16u + 10). Then either
5n —s (5,10,15) or 5(n—3) — (5,10, 15)

holds and the same thing is also true for (5,7,8,10). Thus, every integer of
the form 5n+9 with n > 3 is represented by (5,6, 7,8,9,10). One may easily
check that (5,6,7,8,9,10) also represents all integers of the form 5n + 5 for
0<n<3.

Finally, suppose that k& = 4. Note that (1,2,5,6) and (1,2,5,7) are
universal. Since (4, 8,20,24) is a sublattice of (4,5,6,8) and (4,8, 20, 28) is
a sublattice of (4,5,7,8), we have

Apg — (4,8,20,24) — (4,5,6,8) — (4,5,6,7,8),
Ayg — (4,8,20,28) — (4,5,7,8) — (4,5,6,7,8),
Asz — (4,8,20,24) — (4,5,6,8) — (4,5,6,7,8).

On the other hand, One may easily check that (1,2,6) represents all non-
negative integers except for integers of the form 4™ (8u + 5) for some non-
negative integers m and u. For an integer n with n > 10, it is true that
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4n+5 = 4(n—10)+5-3% and either n or n—10 is not of the form 4™ (8u+5).
Thus, every integer of the form 4n+5 is represented by (4,5, 6,7, 8) for n > 10
and one may easily check that (4,5,6,7,8) also represents all integers of the
form 4n + 5 for 0 < n < 10. ]

Remark 3.1.4. Note that (3,4,5,6) and (2,3,4) do not represent 35 and
10, respectively.

Theorem 3.1.5. The diagonal Z-lattice (3,4,5,6,7) represents all integers
greater than or equal to 3 and the diagonal Z-lattice (2,3,4,5) represents all
integers greater than or equal to 2.

Proof. First, we will show that (3,4,5,6,7) represents all integers greater
than or equal to 3. It is well known that (2,3,6) represents all nonnegative
integers except for integers of the form 4™(8u+7) or 3v+ 1 with nonnegative
integers m, u and v. Note that (4,6, 12) is a sublattice of (3,4, 6). We observe
that

m+1=2n—-2)+5=2n—-3)+7=2(n—13) +5-2 +7,
2n =2(n—6) +5+7=2(n—10) +5-2* = 2(n — 40) + 5 - 4°.

For the convenience of discussion, we assume that n > 40.
(Case 1-1) Suppose that

n#1 (mod3) and n#4™(8u+7).

If n is not of the form 4™(8u + 7) + 3, then n —3 # 1 (mod 3) and n — 3 is
not of the form 4™(8u + 7). Then (4,6, 12) represents 2(n — 3) and so does
(3,4,6). Thus, 2n + 1 is represented by (3,4,5,6,7). Assume that n is of
the form 4™(8u + 7) + 3. Then either n — 2 or n — 13 is not congruent to 1
modulo 3 and is not of the form 4™(8u + 7). Hence, either

2n —2) — (4,6,12) or 2(n—13) —> (4,6,12)

holds and the same thing is also true for (3,4,6). Thus, every integer of the
form 2n + 1 is represented by (3,4,5,6,7) if n # 1 (mod 3) and n is not of
the form 4™(8u + 7).
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(Case 1-2) Suppose that
n#1 (mod3) and n=4""(8uy+7)

for some nonnegative integers mg and ug. If my > 0, then n —3 # 1 (mod 3)
and n — 3 is not of the form 4™ (8u + 7). Then (4,6, 12) represents 2(n — 3)
and so does (3,4,6). Thus, 2n + 1 is represented by (3,4,5,6,7). Assume
that mg = 0, that is, n = 8ug + 7. Then, either n — 2 or n — 13 is not
congruent to 1 modulo 3 and is not of the form 4™(8u + 7). Hence, either

2(n—2) — (4,6,12) or 2(n—13) — (4,6,12)

holds and the same thing is also true for (3,4,6). Thus, every integer of the
form 2n + 1 is represented by (3,4,5,6,7) if n # 1 (mod 3) and n is not of
the form 4™(8u + 7).
(Case 1-3) Suppose that

n =1 (mod 3).

Then n — 2 =2 (mod 3) and n — 13 = 0 (mod 3). Moreover, either n — 2 or
n — 13 is not of the form 4™ (8u + 7). Then, either

2(n —2) — (4,6,12) or 2(n—13) — (4,6,12)

holds and the same thing is also true for (3,4,6). Thus, every integer of the
form 2n 4+ 1 with n = 1 (mod 3) is represented by (3,4, 5,6, 7).
(Case 2-1) Suppose that

n#1 (mod3) and n#4™(8u+7).

Then we have
2n — (4,6,12)

and so 2n is represented by (3,4,6). Thus, every integer of the form 2n
is represented by (3,4,5,6,7) if n Z 1 (mod 3) and n is not of the form
4" (8u + 7).
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(Case 2-2) Suppose that
n#1 (mod3) and n=4""(8uy+7)

for some nonnegative integers mg and ug. It is true that n — 6 #Z 1 (mod 3)
and n — 6 is not of the form 4" (8w + 7). Then we have

2(n —6) — (4,6,12)

and so 2(n — 6) is represented by (3,4,6). Thus, every integer of the form
2n with n #Z 1 (mod 3) is represented by (3,4,5,6,7).
(Case 2-3) Suppose that

n =1 (mod 3).

Then n — 10 = n — 40 = 0 (mod 3). Moreover, either n — 10 or n — 40 is not
of the form 4™(8u + 7). Then, either

2(n —10) — (4,6,12) or 2(n — 40) —> (4,6,12)

holds and the same thing is also true for (3,4, 6). Thus, every integer of the
form 2n with n = 1 (mod 3) is represented by (3,4,5,6,7).

One may easily check that (3,4,5,6,7) also represents all integers n with
3 < n < 80 and therefore, (3,4, 5,6, 7) represents all integers greater than or
equal to 3.

Now, we will show that (2,3,4,5) represents all integers greater than or
equal to 2. It is well known that (1,2, 6) represents all nonnegative integers
except for integers of the form 4™ (8u + 5) with nonnegative integers m and
u. We observe that

m+1=2n—-2)+5=2(n—-22)+5-3*=2(n—62)+5 -5
2n = 2(n — 10) + 5 - 2%

(Case 1) It is obvious that (2,3, 4,5) represents 3, so we assume that n > 2.
If n — 2 is not of the form 4™(8u + 5), then

2n —2) — (2,4,12) —> (2,3,4)
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and so 2n + 1 is represented by (2, 3,4, 5).
Suppose that n — 2 is of the form 4™ (8u + 5) and n > 62. Either n — 22
or n — 62 is not of the form 4™(8u + 5). Then, either

2n —22) — (2,4,12) or 2(n—62) —> (2,4,12)

holds and the same thing is also true for (2,3,4). Thus, 2n+1 is represented
by (2,3,4,5) if n > 62. One may easily check that (2,3,4,5) also represents
all odd integers n with 1 < n < 125.

(Case 2) Suppose that n > 10. Either n or n — 10 is not of the form
4™(8u + 5). Then, either

on —» (2,4,12) or 2(n—10) —> (2,4,12)

holds and the same thing is also true for (2,3,4). Thus, 2n is represented
by (2,3,4,5). One may easily check that (2,3,4,5) also represents all even
positive integers less than 20. This completes the proof. O]

Theorem 3.1.6. For any positive integer k, there is a subset S of positive
integers such that the cardinality of its minimal universality criterion set is
exactly k.

Proof. Let L be a Z-lattice such that there exist vectors xy,...,xy in L
satisfying Q(x;) = k + i for any ¢ with 1 <1 < k. Consider the sublattice ¢
of L defined by

{ = Zxy + Zxoy + -+ + Zaxy,.

Let m be the rank of ¢ and pq, po, - . ., ft;, be successive minima of ¢. Then
we have m < k and pu,, < 2k. It follows from puy < pg < -+ < p,, that
Al < piapy -+ pim < (2k)".

Then there are only finitely many candidates for ¢ since the discriminant and
the rank of ¢ are bounded. Let {¢1, (s, ..., ¢} be the set of all candidates for
¢ and put

S = U§:1Q(€i)-
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Then by the definition of S, it is obvious that {k + 1,k + 2,...,2k} is an
S-universality criterion set.

Put M; = (k + 2). Since k + 1 is not represented by M;, by Proposition
3.1.1, there is a Z-lattice Ny such that Q(N;) NS =S — {k + 1}. Now, put

My=(k+1,... k+i—1)

for i = 2,3,...,k. One may easily show that £ + 7 — M, for any j with
7=0,1,...,i—1 and k + 7 is not represented by M;. Then, by Proposition
3.1.1 again, there is a Z-lattice IV; such that Q(N;) NS =S — {k +i}. This
implies that {k + 1,k + 2,...,2k} is the minimal S-universality criterion
set. [

From the above theorem, we directly obtain the following corollary.

Corollary 3.1.7. For any positive integer N, there is a subset S of positive
integers such that the cardinality of a minimal S-universality criterion set is
greater that N.

It seems to be very difficult to determine a minimal S-universality crite-
rion set for an arbitrary subset S of positive integers. In the following, we
give some information on the cardinality of a minimal S-universality criterion
set for some subset S of positive integers satisfying some special property.

Definition 3.1.8. Let S be a subset of positive integers and let
m:N— Q5 /(Q5)?

be a natural projection. We say that the set S is 2-full if the restriction of 7
to S is surjective. For example, the set {1,2,3,5,6,7,10, 14} is 2-full.

Proposition 3.1.9. Let S be a 2-full set. Then the cardinality of the minimal
criterion set is greater than or equal to 7. Moreover, there exists a 2-full set
whose minimal universality criterion set consists of exactly 7 elements.

Proof. At first, we list Z-lattices that represents all positive integers except
for positive integers that are in only one coset of Q5 /(Q3)? in the following
table. Therefore, if S is a 2-full set, then the minimal S-universality cri-

25



CHAPTER 3. UNIQUENESS OF MINIMAL SETS

Z-lattices exceptions
2 10
1 21 225(8k + 1)
01 3
o
(1) L X 225TL(8k + 1)
15
(1,1,5) 225(8k + 3)
0
1) L 225(8k + 5
il (8h+5)
(1,2,3) 225T1(8k + 5)
(1,1,1) 225(8k + 7)
(1,1,2) 2251 (8K + 7)

Table 3.1: Ternary Z-lattices and their exceptions

terion set must contain positive integers whose projection to Q5 /(Q5)? are
1,2,3,5,7, 10, 14.

Now, we prove that there exists a 2-full set whose minimal criterion set
consists of exactly 7 elements. To prove this, we will construct a 2-full set
whose minimal criterion set is

{1,2,3,5,7,10,14}.

Let L be a Z-lattice that represents 1,2,3,5,7,10 and 14. Since L repre-
sents 1, we have L ~ (1) L Ly. Since L represents 2, either L ~ (1,1) L L,
or 2 — L holds. First, consider the case when L ~ (1,1) 1 L;. Since 3 is
not represented by (1,1), we have min(L;) < 3. Then L represents at least
one of the following Z-lattices:

L) =(1,1,3), L(1)={(1,1,1),  L(2)=(1,1,2).
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Next, consider the case when 2 — Ly. Since 5 is not represented by (1, 2), we
have pa(Lg) < 5. Then L represent at least one of the following Z-lattices:

L(3) = (1,2,2), L(4) = (1,2,3),

L(5) = (1,2,4), L(6) = (1,2,5),

RO P TR O e
2 1

M%:QLLL4y LGW:GLLE;}

We define the truant of a Z-lattice ¢ to be the smallest positive integer not
represented by £, and denote it by ¢(L). Then, the truant of L(i) for each i
with 0 <7 <10 is as follows:

HL0) =6  HL(1) =7, HL(2) =14, HL3)) =7
t(L(4)) = 10, t(L(5)) = 14, t(L(6)) =10, t(L(7)) =5,
tH(L(8)) =5, t(L(9)=7, tL(10))="T.

Suppose that L(1) = (1,1,1) — L. To represent all elements of 1,2,3,5,7,
10 and 14, we have p4(L) < t(L(1)) = 7. Then one can find the set € (1) of
quaternary Z-lattices consisting of Z-lattices that represent L(1), and whose
4-th minimum is less than or equal to 7. By the same argument, for each
i with 2 <4 < 10, one can also find the set €(i) of quaternary Z-lattices
consisting of Z-lattices that represent L(i) and whose 4-th minimum is less
than or equal to ¢(L(7)). Finally, one may also find the set € (0) of quater-
nary Z-lattices consisting of Z-lattices that represent L(0), and whose 4th
minimum is less than or equal to 7.

Put € = Up<i<10%(i) and let D be the product of all odd primes that
divide the discriminant of a Z-lattice in . Then by the Dirichlet’s theorem
on arithmetic progression, one can find a prime p such that

p =3 (mod8), and 2p =1 (mod D).

Note that any positive integer which is not represented by L(0) is of the form
32k+1(3s 4 2) for some nonnegative integers k and s. For any prime ¢ with
q|D, we have 2p = 1 (mod ¢), and so 2p is primitively represented by ¢,
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for any ¢ € €. For any prime ¢ with ¢ 1 2D, every ¢ € € is a unimodular
quaternary Z-lattice over Z,, and so 2p is represented by ¢,. If ¢ = 2, one
may easily check that 6 is primitively represented by L(i) for any ¢ with
1 <4 <10 and 22 is primitively represented by L(0). Thus, 2p is primitively
represented by /5 for any ¢ € €. Thus, 2py is locally represented by ¢ and is
primitively represented by ¢ at the anisotropic primes for any ¢ € €. Hence
there exists an integer 2py such that

po = 3 (mod 8), and 2py =1 (mod D),
and 2pq is represented by ¢ for any ¢ € €. We put
S ={1,2,3,5,7,10, 14, 2p, }.

Then from the construction of S, it is a 2-full set whose minimal universality
criterion set is exactly {1,2,3,5,7,10,14}. By applying same argument in
the proof of Theorem 3.1.6, one may also find infinitely many 2-full sets
whose minimal universality criterion set is {1,2,3,5,7, 10, 14}. O]

3.2 Higher rank cases

Recall that ®,, is the set of all quadratic forms of rank n. In this section, we
show that there are infinitely many minimal ®,,-universality criterion sets for
any n > 9.

Proposition 3.2.1. For any n > 9, there are infinitely many minimal ®,,-
universality criterion sets.

Proof. Let SY = {Ly, Lo,..., L} be a minimal ®,-universality criterion set.
Assume that L; = I, L ¢;, where min(¢;) > 2. If ny = max{k;} < n, then
I, L ¢y L --- L { represents all Z-lattices in SY, but it does not represent
I,. This is a contradiction. Therefore ny = n, that is, I, € S°. Similarly, one
may easily show that there is an integer j such that L; represents D,,[1] for
some integer m = 0 (mod 4) with n—4 < m < n. Note that L; = D,,[1] L M
for some Z-lattice M with rank less than or equal to 4. Without loss of
generality, assume that Ly = I, and Ly = D,,[1] L M. Since any Z-lattice
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that represents both L; and Ly should represent I,, L D,,[1]. Furthermore,
since I, is 4-universal, L; cannot represent D,,[1] for any j > 3. Now we
show that for any Z-lattice N with rank n — m,

SON) = {I,,Dp[1] L N, Ls, ..., L}

is also a minimal ®,-universality criterion set. Assume that a Z-lattice £
represents all Z-lattices in SY(N). Since I, L D,,[1] is represented by L,
Ly = D,,[1] L M is also represented by L. Therefore, £ is n-universal from
the assumption that S° is a minimal ®,-universality criterion set. By using
similar argument, one may easily show that S°(N) is, in fact, minimal. [

Remark 3.2.2. Summing up all, the minimal ®,-universality criterion set
is unique for any n = 1,2 and 8, and there are infinitely many minimal ®,,-
universality criterion sets for any n > 9. However, when n = 3,4,5,6, and 7
nothing is known at present. We conjecture that a minimal ®,-universality
criterion set is unique.

29



Chapter 4

Recoverable Z-lattices

In this chapter, we introduce the notion on recoverable Z-lattices and give
some properties on those Z-lattices, and we show some necessary conditions
and some sufficient conditions for Z-lattices to be recoverable.

4.1 Some properties of recoverable Z-lattices

In [8], Elkies and his collaborators gave an example of a set S of ternary Z-
lattices such that the sizes of minimal S-universality criterion sets vary. To
explain their example more precisely, let S be the set of all ternary sublattices
of (1,1,2). Then, clearly, Sp = {(1,1,2)} is a minimal S-universality criterion
set. Furthermore, they proved that

S1=4(1,1,16),(2,2,2) }

is also a minimal S-universality criterion set. The point is that any Z-
lattice that represents both (1, 1,16) and (2,2, 2), which are all sublattices of
(1,1,2), also represents (1,1, 2) itself. From this point of view, the following
definition seems to be quite natural:

Definition 4.1.1. Let ¢ be a Z-lattice and let Sy = {¢1,(a,...,¢;} be a set
of proper sublattices of . We say ¢ is recoverable by S if every Sp-universal
Z-lattice represents ¢ itself.
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From the above, the ternary Z-lattice (1,1,2) is recoverable by S;. We
simply say £ is recoverable if there is a finite set of proper sublattices satisfying
the above property. Note that if ¢ is recoverable, then there is a minimal S-
universality criterion set whose cardinality is greater than 1, where S is the
set of all sublattices of ¢.

Lemma 4.1.2. A Z-lattice ¢ is not recoverable if and only if there is a Z-
lattice L that represents all proper sublattices of £, but not ¢ itself.

Proof. First, suppose that ¢ is not recoverable. Let S be the set of all proper
sublattices of L and let So = {¢1,03,...,¢;} be a minimal S-universality
criterion set. Since ¢ is not recoverable from the assumption, there is a Z-
lattice ¢ that represents all Z-lattices in Sy, whereas it does not represent
¢ itself. Note that L represents all proper sublattices of /. The converse is
trivial. O]

Lemma 4.1.3. Let a be a positive integer. For any Z-lattice £, if £* is
recoverable, then so is .

Proof. Assume that ¢* is recoverable by {¢{,¢5, ..., ¢}, where ¢; is a proper
sublattice of £ for any i = 1,2,...,t. Assume that a Z-lattice M represents ¢;
for any ¢. Then ¢¢ — M*° for any ¢, and hence ¢* — M®. Therefore, ¢ — M
and ¢ is recoverable by {f1, 0y, ..., {;}. O

Remark 4.1.4. Any unary Z-lattice ¢ cannot be recoverable. Let ¢ = (1).
Note that (2,2, 5) represents all squares of integers except for 1 (see [9]). Then
(2,2,5) represents all proper sublattices of ¢, but not ¢ itself. Therefore ¢
is not recoverable by Lemma 4.1.2. Moreover, since every unary Z-lattice is
obtained by scaling ¢, it is not recoverable by Lemma 4.1.3.

Remark 4.1.5. Note that the converse of the above lemma does not hold in
general. Let ¢ = (1,4). Let L be any Z-lattice representing both ¢; = (1, 16)
and 5 = (4,4). Since L represents {1, we may assume that L = Ze; + Ly,
where Q(e;) = 1 and B(ey, L;) = 0. Furthermore, since L represents (o =
(4,4), there are nonnegative integers a, b and vectors z,y € Ly such that

Qae, +z) = a® + Q(x) = Q(be; +y) =4 and B(ae; + x,bey + 1) = 0.
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If a =2, then x =0 and b = 0. Hence (4) — L;. If a = 1, then
b=0 and Q(y)=4 or b=1 Qx)=Q(y) =3, and B(z,y) = —1.

For the latter case, Q(z +y) = 4. If a = 0, then Q(x) = 4. Therefore
Ly represents 4 in any case, which implies that L represents ¢. Hence / is
recoverable by {{1, (s}.

Now, we show that £* = (2, 8) is not recoverable. To show this, let S be
the set of all binary Z-lattices with minimum greater than or equal to 9, and
let So = {my,...,m;} be a finite minimal S-universality criterion set. Then
my L --- 1L my represents all binary Z-lattices with minimum greater than
or equal to 9. Now define

L=K1myL---1Lmy

where

— =N
o o oo~
B~ 00 O -

~ o o

0 10

Clearly, £* = (2,8) is not represented by L. Let £; be any proper sublattice
of /2. If min(¢;) > 9, then ¢, is represented by m; L --- 1 m;. Hence we
may assume that min(¢;) = 2 or 8. For the former case, ¢; ~ (2,8m?), where
m > 2. Since (8m?) — my L --- L my, £, is represented by L. For the latter
case, one may easily show that

8 4

0 ~ (8. 8m? 0 ~
12 (8,8m7) or 4 [4 2 + 8n?

} for some m,n > 1.

Note that K represents each binary Z-lattices for m = 1 or n = 1, and for
m > 2 or n > 2, one may use the fact that any integer greater than 9 is
represented by my L --- 1 m; to show that ¢ is represented by L. Therefore
L represents all proper sublattices of £2, but not ¢? itself. Consequently, £ is
not recoverable.

One may easily check that every additively indecomposable Z-lattice is
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not recoverable. We further prove that every indecomposable Z-lattice L is
not recoverable if the rank of L is less than 4.

Proposition 4.1.6. Any indecomposable binary Z-lattice is not recoverable.

Proof. Suppose that ¢ is indecomposable and {z,y} is a Minkowski-reduced
basis for ¢. Let S be the set of all proper sublattices of ¢ and let Sy =
{l1,0s,...,4;} be a minimal S-universality criterion set. Now, we put ¢; =
Zx;+ ZLy; where {x;,y;} is a Minkowski-reduced basis for ¢; for i = 1,2,... t.
Then we define

L= (Zzy+Zy,) L (Zxo+ Zys) L -+ L (Zxy + Zyy).

Since Sp is an S-universality criterion set and L represents ¢; for any ¢ with
1 <1 <t, L represents all proper sublattices of /.

Now, suppose on the contrary that ¢ is represented by L and ¢ : ¢ — L is
a representation. Since /; is a sublattice of £ for i = 1,2, ... t, without loss of
generalitiy, we may assume that ¢(z) = x1. Then we put ¢(y) = ax1+Ly1+2
where o, € Z and z € (Zxy + Zyo) L --- L (Zzy + Zy,). Since /¢ is
indecomposable, S cannot be zero. Then

dl = do(0) = d(Zxy + Z(axy + Byr + 2)) > d(Zaxy + Z(axy + Byr)) > dby > dl
holds, which is a contradiction. Therefore, L does not represent ¢ and then,

by lemma 4.1.2, ¢ is not recoverable. [l

Proposition 4.1.7. Let L be an indecomposable ternary Z-lattice. Then
there are no proper sublattices Ly, Lo, ..., L; of L such that L is represented
byLlj_LgJ_LLt

Proof. Suppose that the assertion is false. Then there are sublattices Ly, Lo, . . .
of L such that L is represented by L; L Ly 1 --- L L;. We may assume that
all L;’s are of rank 3 and let

QSL—)LlJ_LQJ_J_Lt

be a representation. Let {u, v, w} be a Minkowski reduced basis for L and put
¢(u) = x;1. Clearly, there exists a Minkowski reduced basis for L; consisting
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of x1. Let {x1, x2, x3} be such a Minkowski reduced basis for L, and assume
that

P(v) = arxy + 7w +y,

where x € Zxo + Zxz and y € Ly 1 --- 1L L.
First, assume that x = 0. Since

2|la1|Q(x1) = 2|B(x1, a1 + y)| < Q(a1),
we have a; = 0. Put
d(w) = byxy + boxg + byxs + 2

where z € Ly | -+ L Ly, then ¢(L) = Zxy + Zy + Z(byx1 + baxgy + b3z + 2).
If b3 # 0, then

p3(L) = Q(bizy + bowy + by +2) = Q(biwy + baws + byxs) + Q(2)
> p3(Ly) +Q(2) > ps(L) + Q(2),

which implies that z = 0. Therefore, ¢(L) is decomposable, which is a
contradiction. Hence we have b3 = 0.
Observe that

Ly =Zx1+ Zxos+Zxs C L =7u+Zv+ Zw~ ¢(L) =

o O

0
b
d

o & O

Then bixy + bexys = au + fv + yw for some integers «,  and . If v # 0,
then

p3(L) = Q(brzy + baws) + Q(2) 2 Q(w) + Q(2) = ps(L) + Q(2).

Therefore, z = 0, which is a contradiction. Hence bix1 + boxs = au + [v.

On the other hand, one may similarly show that 1 = aju+f1v. Since the
fact that Q(x1) = Q(u) and B(u,v) = 0, we have z1 = $u, bjx; + baxg = fv
or 1 = +v, bixy + bywy = au. In any case, ¢(L) is decomposable, which is
a contradiction.
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Now, assume that x # 0. Since

pe(L) = Q(v) = Qlarz1 +x+y) = Qlaizr +2) + Qy)
> pa(Ly) + Q(y) > p2(L) + Q(y),

we have y = 0. Put
¢(v) = a171 + apzy + azrs and  G(w) = bywy + baxy + b3ws + 2
where aq, as, as, by, bs, bs are integers and z € Lo 1 -+ L L;. If b3 # 0, then
p3(L) = Q(brxy + bowo + byws) + Q(z) = ps(L1) + Q(z) = ps(L) + Q(2)

and so z = 0. Then ¢(L) C Ly, which is a contradiction. Thus, b3 = 0.
Suppose that az # 0. Since

p2(L) = Q(arxy + agws + agzs) > ps(L1) > ps(L),
we have pia(L) = p3(L) = p2(L1) = p3(L1). Then
p2(L) = p3(L) = Q(brxy + bawa + 2) > pa(Ly) + Q(2) = p2(L) + Q(2)

and so z = 0, which is a contradiction. Therefore az = 0.
Since as # 0, we have

pa(L) = Q(arry + agws) = pa(Ln) = Q(x2) = p2(L)
and this in turn means that ps(L) = Q(a121 + asa) = pa(L1) = Q(x2). Let

Zxy + Lixy = [i :] . For Q(z2) = Q(a1x1 + asxs), we have

rag\ 2 r? s
tza%5+2a1a2r+a§t:s(a1+—2) +<t——>a§2a§(t—1>.
s s

If |ag| > 2, then t > 4t — 3s > t, which is a contradiction. If ay = +1,
then ¢(L) = Zxy + Zxo + Zy is decomposable, which is a contradiction. This
completes the proof. n
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From the above proposition, we immediately obtain the following corol-
lary.

Corollary 4.1.8. An indecomposable ternary Z-lattice is not recoverable.

4.2 Recoverable binary Z-lattices

In this section, we focus on recoverable binary Z-lattices. We find some
necessary conditions and some sufficient conditions for binary Z-lattices to
be recoverable.

Let n be a positive integer and let S be the set of all binary Z-lattices
with minimum greater than or equal to n. Then there is a finite minimal
S-universality criterion set S, = {m1,...,m;} by [11]. Put M =my L --- L
my. Then M represents all binary Z-lattices with minimum greater than or
equal to n. In this section, M(n) stands for a Z-lattice representing all binary
Z-lattices with minimum greater than or equal to n with min(M(n)) = n.
From the above argument, such a Z-lattice always exists.

Proposition 4.2.1. For any two integers a and b such that 2 < a < b and
a does not divide b, the diagonal Z-lattice £ = {(a,b) is not recoverable.

Proof. Since a does not divide b, there exists the unique positive integer h
such that h*a < b < (h + 1)%a. For any integer h with h > 2, we define a
Z-lattice K(h) by

K= 1 {Fa ija ]
igesich [ija jPa+b]
1<5<[3]
Then we put
Zx+Zy) L M(b+1 if h=1
L(h) = (Lo +Zy) L M(b+1) 1 " where Zax+Zy = {a 11_
(Zx +Zy) L K(h) LM(b+1) ifh>2, L b

We claim that L(h) represents all proper sublattices of ¢, whereas L(h) does
not represent /¢ itself.

First, we will prove that L(h) represents all proper sublattices of ¢. Let
¢ be a proper sublattice of £.
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(Case 1) If min(¢') > b, then M(b+ 1) represents ¢’ and so does L(h).
(Case 2) If min(¢") = b, then ¢’ ~ (b, &*a) for some integer o with a?a > b.
Since oa is represented by M(b+ 1), L(h) represents ¢'.

(Case 3) Assume that a < min(¢') < b. In this case, we have h > 2. Note

that
. i’a ija
~ lija j%a+ B%b
for some integers i,j and S with 2 <i < h, 0<j < [L], 8> 1. If B =1,
then clearly ¢— K (h)—L(h). Assume that 8 > 2. Since (8% — 1)b > b, we

have
2

'~ |:7:2a 1ja } N {z a 1ja
ija j2a+ (5%b ija jla+b
which implies that L(h) represents ¢'.
(Case 4) If min(¢') = a, then ¢’ ~ (a, 3%b) for some integer § with 3 > 2.
Since 3?b is represented by M(b+ 1), L(h) represents ¢'.
Next, we will show that L(h) does not represent ¢. When h = 1, it is
clear that L(1) does not represent ¢. Assume h > 2. Let

}LM(bJrl),

9 .
Ko = Zhy 4 Zhs = |:Z]Z jQZi b]

forsome2 <i<hand1l<j< [%} Then Q(sky +thky) = (si+tj)?a+t%b for

any integers s and ¢. Since min(K;;) = i%a > a, K;; does not represent a. If

b= Q(sky+thky) = (si+tj)*a+1t%b, then t* = 1 and si+tj = 0. Furthermore,

since j = |si| < [%}, we have s = j = 0. This is a contradiction. Therefore

K;; does not represent b. Since a does not divide b, from the above fact, we

have

Q(K(h)) C{ua+vb|u,v e NU{0}} — {a,b}.

Suppose that L(h) represents ¢. Let u € L be a vector with Q(u) = b.
Since u € L, u can be written as ax + Sy + 2 + w for some integers «,  and
a vector z € K(h), w e M(b+1). Since Q(u) = Q(ax + fy) + Q(2) + Q(w)
and Q(w) > b, we have w = 0. One may easily show that z = 0 or Q(z) = da
for some integer § with § > 2. If | 8| > 2, then Q(ax + By) > B8*(b—1) > b.
If 5 =0, then Q(az) is a multiple of a, and so is Q(u). On the other hand,

37



CHAPTER 4. RECOVERABLE Z-LATTICES

if |B| = 1, then Q(ax + Py) > b unless @ = 0. Hence, we have u = y or
u = —y. Similarly one may show that if v € L with Q(v) = a, then v = x or
v = —z. However, we have B(+x,+y) # 0. This is a contradiction. O

Lemma 4.2.2. For any odd positive integer m, (1, m) is not recoverable.

Proof. For k = 1or 3, (1, k) is not recoverable since (1) L M (k+1) represents
all proper sublattices of (1, k), but not (1, k) itself. Now, we may assume that
m > 5. Let N be any even 2-universal quinary even Z-lattice. Note that
such a Z-lattice exists, for example, D5 is one of such quinary lattices. Define
a Z-lattice

L=(1)LN1LM(m+1).

It is obvious that (1,m) is not represented by L.

Let ¢ be a proper sublattice of (1,m). Firstly, suppose that min(¢) = 1.
Then ¢ ~ (1,mf3?) with an integer 8 > 2. Since (mf3%) — M(m + 1), we
have ¢ — L.

Secondly, suppose that min(¢) > 1. From the fact that m > 5, we have
min(¢) > 4. Choose a Minkowski reduced basis for ¢ so that

é:{z b} with 0 < 2b < a < c.
C

(Case 1) If a = ¢ =0 (mod 2), then { — N and so ¢ — L.
(Case 2) We consider the case when a = ¢ =1 (mod 2). Put

, la—1 b—1
g_{b—l C—1‘|.

Since d¢’ > %C (a —4) > 0, ¢ is positive definite. Then ¢ — N and so ¢ — L.
(Case 3) Suppose that a =1 (mod 2) and ¢ =0 (mod 2). Put

V=

a—1 b
b cl’

Since dl' = (% — b?) + £ (3a —4) > 0, ¢ is positive definite. Then ¢’ — N.
Therefore, (1) L. N represents ¢ and so does L.

38



CHAPTER 4. RECOVERABLE Z-LATTICES

(Case 4) When a = 0 (mod 2) and ¢ = 1 (mod 2), one may show that £ — L
by the similar way in (Case 3). O

Lemma 4.2.3. For any positive integer m with m = 2 (mod 4), the binary
Z-lattice (1,m) is not recoverable.

Proof. Since (1) L M(3) represents all proper sublattices of (1,2) but not
(1,2) itself, the binary Z-lattice (1,2) is not recoverable.
Let m = 6 and put

40 2
L=()L |0 5 1] LM(7).
2 1 7

Then one may easily show that L represents all proper sublattices of (1, 6),
but not (1,6) itself.
We may assume that m > 10. Put

L'=Ze+Zx+Zy+7Zz={1,3,5,m —1).

Let N be an even 2-universal quinary even Z-lattice and let A be the Z-
lattice obtained from N by scaling Q ® N by 2. Now, define

L=L 1N LM(m+1).

We show that any proper sublattice of (1,m) is represented by L, whereas

(1, m) itself is not represented by L. Suppose, on the contrary, that (1, m) — L.

Then one may easily show that
(m) — (3,5) L .

Thus, m = 3a? + 53? (mod 4) for some integers o and (3. Since m =
2 (mod 4), this is a contradiction.

Let Zu + Zv = (1, m), and let ¢ be a proper sublattice of (1, m). Then
there are integers a, b, and ¢ such that ¢ = Z(au) + Z(bu + cv). Suppose that
lc| > 2. Since ¢ C Zu + Z(cv) and Zu + Z(cv) = (1,¢*m) — L, we have
¢ — L. Thus, we may assume that ¢ = Z(au) + Z(bu + v) for some integers
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a and b with 0 < b < a and a > 2. In this case, we have
¢ a? ab
lab m+b?|

2
First, we consider the case when a = b = 0 (mod 2). Since “ al;
ab m+b°—6

2

. b
is represented by N, {a ¢

b o4 b2] is represented by (1,5) L N. Thus, L
ab m

represents /.
Next, we consider the case when ¢ = 0 (mod 2) and b = 1 (mod 2).
2 2
Since [Zb . _:;)l; B 3] is represented by N/, [Zb -
(3) L N. Thus, L represents /.
Third, we consider the case when @ = b = 1 (mod 2). Since there is a
vector w € N with Q(w) =m — 2,

b :
(:_ bQ] is represented by

Ze+z+y) +Z(x+w) = [2 mil]

is represented by L. Hence we may assume a > 4. Consider the Z-lattice

o [a2 -9 ab-3
ab—3 m+b -3

N. Choose vectors wy,wy € N such that

] . Since s(¢') C 4Z and d¢’ > 0, ¢’ is represented by

:Zwl—l—ng Q./\f

. [CLQ -9  ab-—3
T lab—3 m+b*—3
[a? ab
lab m + b’
Finally, we consider the case when a = 1 (mod 2) and b = 0 (mod 2).
First, assume that a = 3. Then b =0 or 2. If b = 0, then

¢ is represented by L.

Since Z(e + x +y +w1) + Z(x + wo) =

¢=(9,m)— (1,5,m—1) L N—L.
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9 6 9 3
If b =2, th = ~ hich i L.
b , then / {6 _— 4] {3 o 1}, which is represented by

a>—9 ab—4
ab—4 m+0b*—6]
Since s(¢") C 47 and d¢" > 0, ¢” is represented by N. Choose vectors
wi, why € N such that

Now, suppose that a > 4. Consider the Z-lattice ¢ = [

[a2—9 ab—4

= Zw}| + Zwy C 2N.
ab—4 m+b2—6} WA &

Since

a? ab
Ze+r+y+w) +Z(—e+y+wy) = [ab m—f—b?}’

¢ is represented by L. O]

4.3 Recoverable numbers

From several lemmas in Section 4.2, one may conclude that if a binary Z-
lattice ¢ is recoverable, then ¢ = (a,4ma) for some positive integers a and
m. In this section, we introduce the notion of a recoverable number which is
related with a recoverable Z-lattice. We prove that any square of an integer
is a recoverable number. We also determine whether or not some numbers
are recoverable.

Definition 4.3.1. A positive integer m is called recoverable if (1,4m) is a
recoverable binary Z-lattice.

Proposition 4.3.2. Any positive definite diagonal Z-lattice { = (1,4m?)

2

with m € Z 1is recoverable. Therefore, m* is a recoverable number for any

positive integer m.

Proof. Let S be the set of all proper sublattices of ¢ and let L be an S-
universal Z-lattice. Since (1,16m?) — L, we have L = Ze; L L' = (1) L L'
For (4,4m?) — L, one of the following holds:

(i) there is a vector y € L’ such that Z(2e1) + Zy = (4, 4m?);
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(ii) there are vectors z,y € L' and and integer a such that Z(e; + x) +
Z(aey +y) = (4,4m?);

(iii) there are vectors x,y € L’ and an integer a such that Zz + Z(ae; +y) =
(4,4m?).
If (i) holds, then Q(y) = 4m?.
—1
If (ii) holds, then Zx + Zy = [_3@ Am? — a
If (iii) holds, then Zz + Zy = (4,4m? — a?). Hence Q(mx) = 4m?. In any
case, we have (4m?) — L' and so £ — L. This completes the proof. O

21 . Hence Q(az + y) = 4m?.

Let .Z be the set of all binary Z-lattices, and let .23 be the set of all bi-
nary Z-lattices whose second minimum is greater than or equal to 13. Define
a map ¢g : ZL13 — £ by

a b a

o9 (K) = , where b is a Minkowski-reduced form of K.
b ¢c—9 b ¢

Note that ¢g is well defined, for d(¢g(K')) > 0.

Lemma 4.3.3. Let L be a Z-lattice and let K be a binary Z-lattice. If ¢&(K)
1s represented by L for some nonnegative integer k, then

K — L 1 9I;.

Here, 915 is the Z-lattice obtained from I5 by scaling Q ® Iy by 9.

a

b
reduced form of K. Since 0 < 2b < a < c and ¢ > 13, we have

b
Proof. Let K be a binary Z-lattice in .23 and let [ } be the Minkowski-
c

Cale—9) = (% se
d(6o(K)) = alc — 9) b_<4 b>+a(4 9)>o,
which implies that ¢g(K) € .Z. Thus ¢ is well defined.

For the proof of the second assertion, we use induction on k. Note that 9175
represents all binary Z-lattices whose scale are subsets of 9Z. First, suppose
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that ¢o(K) is represented by L and let [b .

¢ b} is a Minkowski-reduced form

of K. Then, it is obvious that

a b a b 0 0
K_[b J_[b 0_9]+[0 Q]Hu%.

Now, assume the assertion is true for & and ¢k (K) — L. Let K’ = ¢o(K)

and {Z b} is a Minkowski-reduced form of K. Then ¢&(K') = ¢5 1 (K) — L.
c

It follows from the induction hypothesis that K" — L | 915. This implies

that
,__|a b _ | B g o
b= [b 0—9} B {51 71} * [52 72}

where {al 61} — L and [&2 62} — 975. Since [ag Po } is also a
b m B2 7o B2 v2+9

binary Z-lattice whose scale is a subset of 9Z, we have [0@ B2 } — 915.
B2 72+9
Then,
a b 051 51} {042 B2 }
K ~ = + — L 1 91I;.
[b C} {51 " B2 v2+9 °
O

Lemma 4.3.4. All proper sublattices of (1,1) are represented by both

21
15

2 1

Ly =(1,2,3) L
1 <’73> [ 15

] 19I5 and Lo = (1,2,6) L [ ] 1915,

Proof. Let ¢ be a proper sublattice of (1,1). If the scale of ¢ is a subset of
97, then 915 represents £ and so do both L; and L,. Now, suppose that ¢ is
a proper sublattice of (1,1) whose scale is not a subset of 9Z. Since £ is a
a*>  ab

ab b* +
and ¢ with 0 < 2b < a. Put d = df. Then we have {3 ~ (g,ed) for some
e € (Z3)*. Note that d is a square and so ordz(d) cannot be one. Moreover,
since d(¢pg(f)) = df — 9u1(£), we also conclude that ords(d(¢§(¢))) cannot be

proper sublattice of (1,1), we have ¢ ~ [ } for some integers a, b
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one.

oy

Since ¢g(f) = [

} is a Minkowski-reduced form of ¢ and assume that v > 13.

a B
B v—9

- {a B}le[az ab }

} , there exists a unimodular matrix 7} such that

B v ab b+ c?

Then we have

t @ B - a’ ab ot - 00
T, {ﬁ 7_9] T1—le b2+62:| 9 ATh, WhereA_[O e

If we do this procedure repeatedly, then there are unimodular matrices
Ty, T,, ..., Ty such that

t(Tk )My (T -+ Th)
B [cﬂ ab

ab b2+ CQ:| - 9T (A 4 Tr-1(A +t T AT )Ty -+~ ) Ty,

where M, = ¢(¢). If we put
A =Ty (AT (A TAT) Ty -+ ) Ty = [S t} ,

then we have

2 _ _
oE(0) = M, a? —9s ab — 9t }

= lab—ot b2+ —9ul|’

Firstly, suppose that a € 3Z. Since the scale of ¢ is not a subset of 9Z,
we have b? + ¢* € ZJ and so l3 ~ (b* + 2, (b* + ¢*)d). Since b* + ¢ — 9u
is a unit square multiple of b? + ¢ by the local square theorem, we have
b’ + * — (¢5(¢))3. Then

(¢5(0))s = (b + %, (b + ¢*)d(¢5(0))).-
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Secondly, suppose that a & 3Z. Then l3 ~ (a?, a®d) ~ (1,d). Since a>—9sis a
unit square multiple of a® by the local square theorem, we have a? — (¢&(¢))s.
Then

(¢5(6))s = (a®,a”d(¢5(0))) == (1, d(¢5(0)))-

In any cases, we have

(gzﬁlg(f))g ~ (e, 5d(¢>§(€))> for some € € (Z3)™. (4.3.1)

First, we consider the case when

2 1

Ly =(1,2,3) L
1 <773> |:15

] 1975,

Let K be a binary Z-lattice, and let {z,y} be a Minkowski-reduced basis

for K, that is, K = Zx + Zy = {Z

b} with 0 < 2b < a <c. If ¢ <12, then
c

K is represented by (1,2,3) L [2 1] , except for the following 15 Z-lattices:

15

BRI} -
RERRE =2
_g g_’_éll i_’ﬁ 113]’[3 3] (a=4)
_g 2_ ’ _g 100} ’ [g ?7)] ! [g 130} ’ (a = 6)
I 110} ’ {120 120} ' (a =7 or 10)

For any binary Z-lattice K, since us(¢o(K)) < max{pu(K), puo(K) — 9},
there exists a nonnegative integer &’ such that ps(¢k (K)) < 12. Thus, there
exists a nonnegative integer k such that ¢&(¢) € £ and uy(pf(¢)) < 12. If
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. 2 1
og(0) — (1,2,3) L | sl then

2 1
¢ —(1,2,3) L L 51 19I5

by Lemma 4.3.3. Thus, we may assume that ¢§(¢) is isometric to one of 15
lattices given above. On the other hand, Equation (4.3.1) shows that ¢f(¢)
is isometric to one of the following Z-lattices:

R

Note that those lattices are not proper sublattices of (1,1).
The preimages of the above Z-lattices under the map ¢g are as follows:

%1({; ﬂ):{{é 100}’E 110H2 120]’{130 130”’
st () ={E [l B i)

One may easily check that all elements in the preimages of [(1) (1)] and E ﬂ

are represented by (1,2,3) L L .

2 1
} . Then, by Lemma 4.3.3, we have

2 1

l 1,2,3) L
—><7 73> |:1 5

} 1 9I;.
Therefore, all proper sublattices of (1, 1) are represented by L;.

Now, we consider the case when

21

Lo =1(1,2 L
2 <776> |:15

] 1 91;.
Let K be a binary Z-lattice and let {x,y} be a Minkowski-reduced basis for

46



CHAPTER 4. RECOVERABLE Z-LATTICES

K, that is, K = Zx + Zy = [ b} with 0 < 2b<a <c If c <12, then K

a
b ¢

2 1
is represented by (1,2,6) L [ } , except for the following 29 Z-lattices:

1 5

L] [1o] [uoo] @=1)
0 1|0 3]0 12

2 1) [2 1] [2 1] [2 1

IR 4}’{1 10}’ (a=2)
301 [30] [30] [3 0] [3 1 a=3)
0 3]7[0 4]7[0 7/7[0 10]"|1 4]’ B
4 0] 4 1] [4 1] [4 2

0 12]’[1 4}’[1 10]’[2 4]’ (a=4)
5 0] [5 2] [5 2

0 5}’{2 5 ’{2 7}’ (a=5)
6 3] [6 3

3 7}’{3 10]’ (a=6)
7 0] [7 1] [7 2] [7 3

0 12]’[1 7}’{2 10]’[3 12}’ (a=7)
(10 07 10 37 [10 47 [10 5

0 12}’[3 12}’[4 10}’[5 10}' (a=10)

As we proved before, there exists a nonnegative integer k such that ¢§(¢) €

% and pa(Gh(0)) < 12. TF 6E(0) — (1,2,6) L ﬁ ﬂ then

2 1

¢ —(1,2,6) L {1 -

}L9I5

by Lemma 4.3.3. Thus, we may assume that ¢§(¢) is isometric to one of 29
Z-lattices given above. On the other hand, Equation (4.3.1) shows that ¢§(¢)
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is isometric to one of the following Z-lattices:

Y R R R Y S RO

Note that those Z-lattices are not proper sublattices of (1, 1). The preimages
of the above Z-lattices under the map ¢g are as follows:

%_1(:(1) ?DZ{B 100}’& 110Hg 120}’[130 130”’
i ﬂ>:{ﬁ 113}’{41l 111H§ 131”’
i 110]) - {E 119] ’ [110 111” ’
s )= {6 )
2 ﬂ):{ﬁ 126H; 124H§ 134”'

One may easily check that all elements in the preimages of Z-lattices in

(4.3.2) are represented by (1,2,6) L [2

¢y (
¢y (
¢y’ (
¢y’ (

! except for the Z-lattice 21 :
5 1 10

1
2 1. .
However, L 10} is not a proper sublattice of (1,1). Then, by Lemma 4.3.3,
we have
2 1
(— (12,6) L || .| L9
Therefore, all proper sublattices of (1, 1) are represented by L. ]

Proposition 4.3.5. If m is a positive integer with ords(m) = 1, then m is
not a recoverable number.

Proof. If m is a positive integer with ords(m) = 1, then either % = 1 (mod 3)
or % = 2 (mod 3) holds. Since the other case can be treated in a similar

manner, we only consider the case when % = 2 (mod 3). Define the Z-lattice
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L by
2 1

1,2,3,4m —-1) L
pasan-n L]

} 19I5 L M(4m +1).

Clearly, L does not represent (1,4m). By the definition of L, for any proper

sublattice of (1, 4m) which is of the form {ag ) ab ] with a > 2, it suffices
ab b +4m
to show that [a2 ab } is represented by (1,2,3) L [2 1] 1 975. This
ab bv*+1 o 15
follows from Lemma 4.3.4. O]

Proposition 4.3.6. An integer m is a recoverable number if 4m is repre-
sented by all of the following Z-lattices:

4 0| |4 1| (4 2| (4 3| |4 4] |4 5

0 8]'[1 8|2 8|73 8|74 8|5 8]’

4 0| |4 1| (4 2| (4 3| |4 4] |4 5

0 9|71 9]7[2 9/"[3 9|74 9|5 9]
In particular, 5569 1s a recoverable number.

Proof. Suppose that there is a Z-lattice L such that it represents every proper
sublattice of (1,4m), but not (1,4m) itself.

Since (1,16m) — L, we have (1) — L. Let L = (1) L L.

For (4,4m) — L, one of the following holds:

(i) there is a vector y € L' such that Z(2e;) + Zy = (4,4m);

(ii) there are vectors z,y € L' and and integer a such that Z(e; + x) +
Z<ael + y) = <47 4m>7

(iii) there are vectors z,y € L’ and an integer a such that Zx +Z(ae; +y) =
(4, 4m).

When (i) or (ii) holds, 4m is represented by L', which is a contradiction.
Therefore, L' represents 4 and (4,4m — a?) for some odd integer a.

Since (9,4m) is represented by L, similarly one may show that L’ repre-
sents either 8 or 9.
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Suppose that L’ represents 4 and 8. Then L’ represents at least one of
the following binary Z-lattices:

AR R R

Here, we have

4 31 41 44~40and45~21
3 8 |1 6|74 8 |0 4]’ 5 8] |1 4]
Suppose that L’ represents 4 and 9. Then L’ represents at least one of
the following binary Z-lattices:

IR e e B e R B

Here, we have
4 31 |4 1] |4 4] (40 and 4 51 31
3 9] |1 7714 9] |0 5]’ 5 9] |1 4]

Suppose that [g g} is represented by L’. Then there are x and y in L'

such that Q(x) =4, Q(y) = 9 and B(z,y) = 12. Since Q(3z — 2y) = 0, we
have 3z = 2y. Therefore, there exists a vector z in L' with Q(z) = 1. Then
we have L' = (1) L L”. Note that L' represents (4,4m — a?). Moreover,
since 9 is represented by L’ from the assumption, it is true that L’ represents
(9,4m — b*) for some integer b with 4m — b* > (0. Since the above argument
does not depend on 4m, we conclude that L” represents 4 and either 8 or 9.
Then, L’ represents at least one of above 12 Z-lattices.

Hence, m is a recoverable number if 4m is represented by all of the above
12 Z-lattices. In particular, since 4-5569 is represented by all of 12 Z-lattices,
5569 is a recoverable number. O]

Proposition 4.3.7. For any integer m with 2 < m < 35, m s a recoverable
number only when m is a square.
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Proof. Let p; be the i-th prime when we arrange all prime numbers in the
ascending order. Let m be a positive integer which is not a square. Then
there exists a positive integer M such that p3, < 4m < p3,,;. We define a
Z-lattice K(p;) by

2 .
b; Dbij
Kip)= L o
(#:) ] [pu J”‘lm}

0| S

and a Z-lattice L,, by

L,=(,4m—1) L ( 1 lC(pi)) 1 M(4m +1).
2<i<M

Let ¢’ be a proper sublattice of £ = (1,4m).
(Case 1) If min(¢') > 4m, then M(4m + 1) represents ¢ and so does L,y,.
(Case 2) If min(¢') = 4m, then ¢ ~ (4m,a?) for some integer o with
a? > 4m. Since 4m is not a square, we have o > 4m and so o? is represented
by M(4m + 1). Thus, L,, represents ¢'.
(Case 3) Assume that 1 < min(¢') < 4m. There exists the unique positive
integer h such that h? < 4m < (h + 1)?. Note that

El ~ 7/2 Z.]
i g%+ 4Amps?

for some integers 7,7 and f with 2 <i < h,0< 75 < [%}, £ > 1. Since 1 > 2,
1 has at least one prime factor p. Put ¢ = pk for some integer k. Then

oo [PR)F (pk)j }_> {pz pj }N {zﬂ pJ’ }
~Lpk)g 57+ 4Amp? et P+ Amp?

pj 3%+ 4mp?

p /

where j’ is the positive integer such that 0 < j’ < [5] and either j" or —j
is congruent to j modulo p. Since 4m < p3, +1, we have i < pys. Hence ' is
represented by L,,. Thus, L,, represents all proper sublattices of (1,4m).
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If there is no integer solution 1, ... T g, 20t of

M (P
dm = Z Z x|, (4.3.3)
=1\ j=1

then L,, does not represent (1,4m). Therefore, if Equation (4.3.3) has no

integer solution, m is not a recoverable number. For 2 < m < 30 = % ,

Equation (4.3.3) has no integer solution except for m = 10, 13, 18, 26, 27, 28, 29.

First, we consider the case when m = 10. Although there is an integer
solution of 427 | +-9z73 , = 40, there is no integer solution of 427 | +4x1129; +
93:%71 = 40. Then we consider a following Z-lattice:

L= (1) LK LK(5) L (39) L M(41)

where
4 2 2 0
— 29 0 2
2 0 41 O
02 0 41

By the same argument, one may easily prove that L, represents all sublat-
tices of (1,40). However, since 15 and 40 are not represented by K. Thus,
L, does not represent (1,40).
Similarly, for an integer m with m = 13,18 or 26 < m < 35, we can find
a lattice L that represents all proper sublattices of (1,4m) but not (1,4m)
itself. We list a Z-lattice L such that L represents all proper sublattices of
(1,4m) but not (1,4m) itself for each m = 13,18 or 26 < m < 35 in the
following tables.
O
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L

13

18

26

27

28

29

(1,51) L

(1,103) L

(1,107) L

(1,103) L

(1,115) L

N O O N

N O O N

10

2 0]
0 2
53 0
0 53]
2 0]
0 2
73 0
0 73]
2 0
5 10
105 0
0 108
3 0
5 10
111 0
0 112
3 0
5 10
113 0
0 116]
2 0
5 10
117 0
0 120]

1 K(5) L K(7) L M(53)

1 K(5) L K(7) L M(73)

1 K(3) L K(7) L M(105)

1 K(2) L K(7) L M(109)

1 K(2) L K(7) L M(113)

1 K(3) L K(7) L M(117)

Table 4.1: A Z-lattice L which represents all proper sublattices of (1,4m)
but not (1,4m) itself for each m = 13, 18,26, 27, 28, 29.
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m L
4 2 2 0 0]
2 49 7 14 21
310 (1,123Y L |2 7 125 0 0 | LK(3)LK((G)LK11) L M(125)
014 0 128 0
021 0 0 133
(4 2 2 0 0]
2 49 7 14 21
320 (1,127) L |2 7 120 0 0 | LK(3)LK((B) LK) L M(129)
014 0 132 0
021 0 0 137
4 2 2 0 0]
2 49 7 14 21
330(1,131) L |2 7 133 0 0 | LK(3)LK((G)LK11) L M(133)
0 14 0 136 0
021 0 0 141
(42 0 0 2 0 0]
29 2 0 3 0 0
022 2 5 10 0
34| (1,135Y L |0 0 2 49 7 14 21| LK(2) LK(7) L M(109)
23 5 7 137 0 0
00 10 14 0 140 0
00 0 20 0 0 145
(40 2 2 0]
09 3 3 0
35 (1,139) L |2 3 25 5 10| L K(7) L K(11) L M(141)
2 3 5 141 0
00 10 0 144]

Table 4.2: A Z-lattice L which represents all proper sublattices of (1,4m)
but not (1,4m) itself for each m = 31,32, 33, 34, 35.
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