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Abstract

For any set S of positive definite and integral quadratic forms with

bounded rank, there is a finite subset S0 of S such that any S0-universal

quadratic form is also S-universal. Such a set S0 is called an S-universality

criterion set.

In this thesis, we introduce various properties on minimal S-universality

criterion sets. When S is a subset of positive integers, we show that a minimal

S-universality criterion set is unique. For higher rank cases, we prove that

a minimal S-universality criterion set is not unique when S is the set of all

quadratic forms of rank n with n ≥ 9.

We say a quadratic form f is recoverable if there is a minimal Sf -universality

criterion set other than {f}, where Sf is the set of all subforms of f with

same rank. We provide some necessary conditions, and some sufficient con-

ditions for quadratic forms to be recoverable.

Key words: Representations of quadratic forms, minimal S-universality cri-

terion sets

Student Number: 2013-20241
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Chapter 1

Introduction

A positive definite (classic) integral quadratic form is a homogeneous quadratic

polynomial

f(x1, x2, . . . , xn) =
n∑

i,j=1

aijxixj (aij = aji ∈ Z)

such that f(x1, x2, . . . , xn) > 0 for any nonzero vector (x1, x2, . . . , xn) ∈ Zn.

We say a quadratic form f represents an integerN if the diophantine equation

f(x1, x2, . . . , xn) = N has an integer solution. We also say a quadratic form

f is universal if it represents all positive integers.

The famous Legendre’s four square theorem says that every integer n is

a sum of four squares of integers, that is, the quaternary quadratic form

x2 + y2 + z2 + t2 is universal. In 1916, Ramanujan [21] found all positive def-

inite integral diagonal quaternary universal quadratic forms. Later, Dickson

[6] confirmed Ramanujan’s results except for x2 + 2y2 + 5z2 + 5t2. In the

exceptional case, it is known that x2 + 2y2 + 5z2 + 5t2 represents all integers

except for 15.

In 1997, Conway and Schneeberger provided a very interesting criterion,

so-called, the ‘15-Theorem’, which states that any positive definite integral

quadratic form representing

1, 2, 3, 5, 6, 7, 10, 14, and 15.
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CHAPTER 1. INTRODUCTION

is, in fact, universal.

Let S be a set of positive definite integral quadratic forms with bounded

rank. A quadratic form f is called S-universal if it represents all quadratic

forms in S. A subset S0 of S is called an S-universality criterion set if any

quadratic form representing all quadratic forms in S0 is S-universal. For an

arbitrary set S of quadratic forms with bounded rank, the existence of a

finite S-universality criterion set was proved in [11].

An S-universality criterion set S0 is called minimal if any proper subset of

S0 is not an S-universality criterion set. In [11], Kim, Kim, and Oh proposed

the following questions: Let Γ(S) be the set of all S-universality criterion

sets.

(i) For which S is there a unique minimal S0 ∈ Γ(S)?

(ii) Is there a constant γ(S) such that |S0| = γ(S) for every minimal S0 ∈
Γ(S)? If not, when?

Let Φn be the set of all (positive definite and integral) quadratic forms

of rank n. For the question (i), the uniqueness of minimal Φn-universality

criterion sets was proved by Bhargava [1] for rank 1 case, and by Kominers

[16], [17] for rank 2 and 8 cases, respectively(see also [12], [10], and [18]).

Recently, Elkies, Kane, and Kominers [8] answered the question (ii) in the

negative for some special set S of quadratic forms.

In this thesis, we discuss some problems related to the above two ques-

tions. Some results in this thesis were done by joint work with B.-K. Oh.

In Chapter 2, we introduce several terminologies and results on quadratic

spaces and lattices.

In Chapter 3, we consider the case when S is a subset of positive integers.

In Section 1, we prove the uniqueness of minimal S-universality criterion sets.

Moreover, we show that the sizes of minimal S-universality criterion sets can

be arbitrarily large. We also discuss the size of a minimal S-universality

criterion set for some special set S, so called, ‘2-full set’. In Section 2, we

show that minimal S-universality criterion sets are not unique, in general.

In fact, we prove there are infinitely many minimal Φn-universality criterion

sets for any integer n greater than 8.
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CHAPTER 1. INTRODUCTION

In Chapter 4, we give an answer for the question (ii) in the case when S

is the set of all subforms of a quadratic form. Note that if S is the set of

all subforms of f , then the one element set {f} is a minimal S-universality

criterion set. We say f is recoverable by S0 if there is a finite set S0 of

subforms of f other than {f} such that any quadratic form representing all

quadratic forms in S0 represents f itself. In other words, a quadratic form

f is not recoverable if and only if f has the unique minimal S-universality

criterion set {f}. In this chapter, we prove some necessary conditions, and

some sufficient conditions for quadratic forms to be recoverable. In Section 1,

we provide some properties of recoverable quadratic forms, and we prove that

every indecomposable binary or ternary quadratic form is not recoverable.

In Section 2 and Section 3, we concentrate on recoverable binary quadratic

forms. We find infinite examples of recoverable binary quadratic forms, and

also infinite examples of non-recoverable binary quadratic forms.
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Chapter 2

Preliminaries

In this chapter, we introduce some terminologies and results which will be

used throughout the thesis.

2.1 Quadratic spaces and lattices

Let Q be the rational number field. For a prime p, we denote the field of

p-adic completion of Q by Qp. When p = ∞, we denote Q∞ by the field of

real numbers R. Let F be a field Q or Qp for some prime p.

Let V be a finite dimensional vector space over F . Let B be a symmetric

bilinear map defined on V , that is, B : V × V → F satisfies the following

properties:

B(x, y) = B(y, x), B(αx+ βy, z) = αB(x, z) + βB(y, z),

for any x, y, z ∈ V and α, β ∈ F . Then the quadratic map Q associated with

B is defined by

Q(x) = B(x, x),

for any x ∈ V . We define (V,B) a quadratic space over F . We say that

a quadratic space V is unary, binary, ternary, quaternary,. . . , n-ary, if the

dimension of V is 1, 2, 3, 4, . . . , n, respectively.

Let (V,B) be a quadratic space over F and let B = {x1, x2, . . . , xn} be a

4



CHAPTER 2. PRELIMINARIES

basis for V . The symmetric matrix defined by

(B(xi, xj))1≤i,j≤n

is called the Gram matrix of V in B, and we write

V = (B(xi, xj))1≤i,j≤n in B.

If the symmetric matrix (B(xi, xj))1≤i,j≤n is a diagonal matrix, then we sim-

ply write

V = 〈Q(x1), Q(x2), . . . , Q(xn)〉 in B.

Given a symmetric matrix A and a quadratic space V , the expression V ' A

means that there is a basis C for V such that V = A in C. We say that a

quadratic space V defined over Q is positive definite if the matrix (B(xi, xj))

is positive definite. The canonical image of the determinant of the symmetric

matrix (B(xi, xj)) in (F×/(F×)2) ∪ {0} is called the discriminant of V , and

is denoted by dV . We say V is a regular quadratic space if dV 6= 0.

Let V and W be quadratic spaces over F and let Q be the quadratic map

defined on each of them. A linear map σ from V into W satisfying

Q(σ(x)) = Q(x) for any x ∈ V

is called a representation of V into W . We also say that W represents V . A

bijective representation σ is called an isometry from V onto W . In this case,

we say that V and W are isometric, and write V ' W .

Let R be the ring of integers Z, or the ring of p-adic integers Zp for a

prime p, and let F be its quotient field. Let V be a quadratic space over

F . An R-module L in V is called a lattice in V if L is finitely generated.

We denote the set {αx | α ∈ F, x ∈ L} as FL. We define the rank of L the

dimension of FL and we say L is an R-lattice on V if FL = V .

Note that every finitely generated torsion-free R-module is free when

R = Z or Zp for some prime p. Let B = {x1, x2, . . . , xn} be a basis for L.

The symmetric matrix defined by (B(xi, xj))1≤i,j≤n is called the Gram matrix

5



CHAPTER 2. PRELIMINARIES

of L in B, and we write

L = (B(xi, xj))1≤i,j≤n in B.

If the symmetric matrix (B(xi, xj))1≤i,j≤n is a diagonal matrix, then we sim-

ply write

L = 〈Q(x1), Q(x2), . . . , Q(xn)〉 in B.

We sometimes omit ‘in B’ in the above expression if there is no confusion.

Given a symmetric matrix A and an R-lattice L, the expression L ' A means

that there is a basis C for L such that L = A in C. The canonical image of

the determinant of the symmetric matrix (B(xi, xj)) in (F×/(R×)2) ∪ {0}
is called the discriminant of L, and we denote it by dL. We say L is a

regular R-lattice if dL 6= 0. If there exists a nonzero vector v in L satisfying

Q(v) = 0, then we call L isotropic. Otherwise, we call L anisotropic. The

scale of L is defined by the ideal of R generated by B(x, y) for any x and y in

L, and the norm of L is defined by the ideal of R generated by Q(x) for any

x in L. We use Lα with α ∈ Z to denote the lattice L with a new bilinear

form Bα(x, y) = αB(x, y) and the quadratic map Qα(x) = αQ(x) for any

x, y ∈ L.

The corresponding quadratic form of L is defined by

fL = fL(y1, y2, . . . , yn) =
∑

1≤i,j≤n

B(xi, xj)yiyj.

Throughout this thesis, we identify a lattice with its Gram matrix or the

corresponding quadratic form. We always assume that all quadratic spaces

and lattices are regular. We also assume that all Q-spaces are positive definite

and all Z-lattices are integral, that is, their scales are contained in Z .

Let L and M be R-lattices on the quadratic spaces V and W , respectively.

We say that M represents L if there is a representation σ : FL → FM

satisfying σ(L) ⊆ M , and in this case, we simply write L → M . Moreover,

we say that L and M are isometric if there is a representation σ : FL→ FM

satisfying σ(L) = M and we write L 'M .

Let Zp be the p-adic integer ring for a prime p. We define Lp = Zp ⊗ L,

which is a Zp-lattice. We say that L is anisotropic at a prime p if Lp is

6



CHAPTER 2. PRELIMINARIES

anisotropic. For Z-lattices L and M , if Lp is isometric to Mp for all primes

p, then we say that L is locally isometric to M . The set of all Z-lattices

isometric to L is defined by the class of L, and denoted by cls(L). The set of

all Z-lattices that are locally isometric to L is defined by the genus of L, and

denoted by gen(L). The class number h(L) of L is defined by the number of

classes in the genus of L.

For Z-lattices L and M , although L locally represents M for every prime

p, L does not represent M , in general. More precisely, the following theorem

holds.

Theorem 2.1.1. For Z-lattices L and M , if M is locally represented by L,

then there exist a Z-lattice L′ ∈ gen(L) which represents M.

Proof. See 102:5 Example in [19].

Theorem 2.1.2. For 3 ≤ n ≤ 5, every quadratic form of rank n is repre-

sented by a sum of n+ 3 integral linear squares.

Proof. See [15]. One may easily verify this by using the above theorem and

the local representation theory.

When the rank of L is greater than or equal to 4, the following theorems

are also known.

Theorem 2.1.3. For a Z-lattice L of rank r ≥ 5, there is a constant c(L)

satisfying the following property: if an integer n is locally represented by L

and n ≥ c(L), then n is represented by L.

Proof. See [22].

Theorem 2.1.4. For a Z-lattice L of rank 4, there is a constant c(L) satis-

fying the following property: if an integer n satisfies

(i) n is locally represented by L,

(ii) n is primitively represented by L at the anisotropic primes,

(iii) n ≥ c(L),

then n is represented by L.

7



CHAPTER 2. PRELIMINARIES

Proof. See [14].

Suppose that L1, L2, . . . , Lr are sublattices of an R-lattice L and

L = L1 ⊕ L2 ⊕ · · · ⊕ Lr.

Suppose further that

B(x, y) = 0 for any x ∈ Li, y ∈ Lj with 1 ≤ i < j ≤ r.

Then we say that L is the orthogonal sum of L1, . . . , Lr, and in this case, we

write

L = L1 ⊥ L2 ⊥ · · · ⊥ Lr.

The dual lattice L# of a Z-lattice L is defined by

L# = {x ∈ QL | B(x, L) ⊆ Z}.

One may easily show that L ⊆ L# and |L#/L| = |dL|. A Z-lattice L is called

unimodular if dL = ±1. If L is unimodular, then we have L# = L.

We say that L is decomposable if L is isometric to the orthogonal sum of

two nonzero sublattices of L. Otherwise, we say that L is indecomposable.

Let L be a Z-lattice. Suppose that for any representation σ from L into

the orthogonal sum of two nonzero Z-lattices M1 and M2, σ(L) ⊆ M1 or

σ(L) ⊆ M2 holds. Then, we say that L is additively indecomposable. It is

well known that every indecomposable unimodular lattice is also additively

indecomposable. For more properties on additively indecomposable lattices,

see [20].

2.2 Minkowski-reduced forms

Let V be a quadratic space over Q and let L be a Z-lattice in V . We say

B = {x1, x2, . . . , xn} is a Mikowski-reduced basis for L if for each i with

1 ≤ i ≤ n,

Q(xi) ≤ Q(y),

8



CHAPTER 2. PRELIMINARIES

for any vector y ∈ L such that the set {x1, x2, . . . , xi−1, y} can be extended

to a basis for L. Here, if i = 1, the above inequality holds for all primitive

vectors y in L.

Theorem 2.2.1. Every positive definite Z-lattice has at least one Minkowski-

reduced basis.

Proof. See Theorem 1.1 of Chapter 12 in [2].

If rank of L is less than or equal to 4, then the following holds.

Theorem 2.2.2. Let n ≤ 4. For a Z-lattice L, {x1, x2, . . . , xn} is a Mikowski-

reduced basis for L if and only if the following holds:

(i) 0 < Q(x1) ≤ Q(x2) ≤ · · · ≤ Q(xn);

(ii) Q(xj) ≤ Q(y) for any j with 1 ≤ j ≤ 4 and for any

y =
n∑
i=1

aixi with ai =


0 or ± 1 if i < j,

1 if i = j,

0 if i > j.

Proof. See Lemma 1.2 of Chapter 12 in [2].

Note that for n = 2, the conditions (i) and (ii) are equivalent to

0 < Q(x1) ≤ Q(x2), and 2|B(x1, x2)| ≤ Q(x1).

For n = 3, the conditions (i) and (ii) implies that

0 < Q(x1) ≤ Q(x2) ≤ Q(x3),

2|B(x1, x2)| ≤ Q(x1), 2|B(x1, x3)| ≤ Q(x1), 2|B(x2, x3)| ≤ Q(x2).

On the other hand, for a Z-lattice L of rank n, the i-th minimum µi(=

µi(L)) of L is defined by the positive integer such that

(i) the dimension of the subspace of QL which spanned by x ∈ L with

Q(x) ≤ µi is greater than or equal to i;

9



CHAPTER 2. PRELIMINARIES

(ii) the dimension of the subspace of QL which spanned by x ∈ L with

Q(x) < µi is less than i.

Note that

µ1(L) = min(L) = min
x∈L−{0}

Q(L).

The integers µ1, µ2, . . . , µn are called the successive minima of L. One may

easily show that µ1, µ2, . . . , µn are well defined and, in fact,

µ1 ≤ µ2 ≤ · · · ≤ µn.

Theorem 2.2.3. Let L be a Z-lattice of rank n and let i be an integer

with 2 ≤ i ≤ n. Suppose that there exist linearly independent vectors

x1, x2, . . . , xi−1 in L such that Q(xj) = µj for all j with 1 ≤ j ≤ i − 1. If

y ∈ L satisfies Q(y) < µi, then y is linearly independent of x1, x2, . . . , xi−1.

Proof. See Lemma 2.1 of Chapter 12 in [2].

Theorem 2.2.4. Let L be a Z-lattice of rank n with successive minima

µ1, µ2, . . . , µn. Then there exists a constant C depending only on n such

that

dL ≤ µ1 · µ2 · · ·µn ≤ C · dL.

Proof. See Proposition 2.3 in [7].

Theorem 2.2.5. Let d and n be positive integers. Then there exist only

finitely many Z-lattices of discriminant d of rank n up to isometry.

Proof. See Corollary 2.1.1 in [13].

The above two theorems imply that there exist only finitely many Z-

lattices of given rank n such that their n-th successive minima are bounded.

10
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2.3 Gluing theory

Let {e1, e2, · · · , en} be a standard orthonormal basis for Rn. Then we define

some Z-lattices as follows.

In = Ze1 + Ze2 + · · ·+ Zen (for n ≥ 1)

An =

{
n+1∑
i=1

aiei ∈ In+1 :
n+1∑
i=1

ai = 0

}
(for n ≥ 1)

= Z(e1 − e2) + Z(e2 − e3) + · · ·+ Z(en − en+1)

Dn =

{
n∑
i=1

aiei ∈ In :
n∑
i=1

ai ∈ 2Z

}
(for n ≥ 4)

= Z(e1 − e2) + Z(e2 − e3) + · · ·+ Z(en−1 − en) + Z(en−1 + en)

E8 =

{
8∑
i=1

aiei : 2ai ∈ Z, ai − aj ∈ Z,
8∑
i=1

ai ∈ 2Z

}

E7 =

{
8∑
i=1

aiei ∈ E8 :
8∑
i=1

ai = 0

}

E6 =

{
8∑
i=1

aiei ∈ E8 :
7∑
i=2

ai = a1 + a8 = 0

}

We call these lattices root lattices. Witt’s Theorem states that for any Z-

lattice L, the sublattice generated by vectors of norm 1 and 2 is a direct sum

of root lattices.

Gluing theory is a way to describe a Z-lattice of rank n that has a sub-

lattice of full rank which is the orthogonal sum

L1 ⊥ L2 ⊥ · · · ⊥ Lk

of given Z-lattices L1, L2, . . . , Lk. We can write every vector x in L as x1 +

x2 + · · ·+ xk with xi ∈ L#
i for all 1 ≤ i ≤ k. Since any xi can be replaced by

adding a vector of Li, we may assume that xi is one of representatives of a

standard system for the cosets of Li in L#
i . These representatives are called

glue vectors for Li and the quotient group L#
i /Li is called the glue group for

11
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Li. Note that the order of the glue group for Li equals to the determinant

of Li. We list glue vectors and the glue group for each root lattices. We

usually choose glue vectors to be of minimal norm in their cosets for the

computational convenience.

(i) An for n ≥ 1:

The glue group of An is the cyclic group of order n+ 1, that is,

A#
n /An ' Z/(n+ 1)Z.

The typical glue vector of An is given by

[i] =
( i

n+ 1
, . . . ,

i

n+ 1︸ ︷︷ ︸
j–components

,
−j
n+ 1

, . . . ,
−j
n+ 1︸ ︷︷ ︸

i–components

)
,

where i + j = n + 1 and 0 ≤ i ≤ n. For i, j and k with 0 ≤ i, j, k ≤ n,

the norm of [i] is ij
n+1

and [j] + [k] = [j + k] holds in glue group.

(ii) Dn for n ≥ 4:

The glue group of Dn is

D#
n /Dn '

{
Z/4Z if n ≡ 1 (mod 2),

Z/2Z⊕ Z/2Z if n ≡ 0 (mod 2).

The typical glue vectors of Dn are given by

[0] = (0, 0, . . . , 0) of norm 0,

[1] =

(
1

2
,
1

2
, . . . ,

1

2

)
of norm

n

4
,

[2] = (0, 0, . . . , 0, 1) of norm 1,

[3] =

(
1

2
,
1

2
, . . . ,

1

2
,−1

2

)
of norm

n

4
.

Note that if n is even, then [i] + [i] = 0 holds for any i with 0 ≤ i ≤ 3

and if n is odd, then [1] + [2] = [3] holds.

12



CHAPTER 2. PRELIMINARIES

(iii) En for n = 6, 7, 8:

The glue group of En is the cyclic group of order 9− n, that is,

E#
n /En ' Z/(9− n)Z.

Since E#
8 = E8, the only glue vector for E8 is

[0] = (0, 0, . . . , 0︸ ︷︷ ︸
8–components

).

The typical glue vectors of E7 are given by

[0] = (0, 0, 0, 0, 0, 0, 0, 0) of norm 0,

[1] =

(
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,−3

4
,−3

4

)
of norm

3

2
.

The typical glue vectors of E6 are given by

[0] = (0, 0, 0, 0, 0, 0, 0, 0) of norm 0,

[1] =

(
0,−2

3
,−2

3
,
1

3
,
1

3
,
1

3
,
1

3
, 0

)
of norm

4

3
,

[2] = −[1] of norm
4

3
.

2.4 S-universality criterion sets

Definition 2.4.1. Let S be any set of Z-lattices. A Z-lattice L is called S-

universal if L represents all Z-lattices in S. For a subset S0 of S, if every S0-

universal lattice is also S-universal, then we say that S0 is an S-universality

criterion set.

When S is a subset of positive integers, the existence of a finite S-

universality criterion set was proved by Bhargava. He also found a finite

S-universality criterion set for some interesting set S such as the set of all

primes, and the set of all positive odd integers:

13
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Theorem 2.4.2. An integral quadratic form represents all prime numbers if

and only if it represents

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 67, and 73.

Theorem 2.4.3. An integral quadratic form represents all odd integers if

and only if it represents

1, 3, 5, 7, 11, 15, and 33.

Bhargava’s result was fully generalized by Kim, Kim, and Oh [11]. In

fact, they proved the following:

Theorem 2.4.4. Let S be a set of Z-lattices with bounded rank. Then there

exists a finite subset S0 of S such that every S0-universal Z-lattice is S-

universal.

Proof. See [11].

Corollary 2.4.5. Let S be any set of Z-lattices with bounded rank. There

always exists an S-universal Z-lattice.

Proof. By Theorem 2.4.4, there exists a finite subset S0 of S such that every

S0-universal Z-lattice is S-universal. Put S0 = {L1, L2, . . . , Lt}. Then L1 ⊥
L2 ⊥ · · · ⊥ Lt is S0-universal, and so it is S-universal.

Definition 2.4.6. Let S be any set of Z-lattices. For a subset S0 of S,

we say that S0 is a minimal S-universality criterion set if S0 itself is an S-

universality criterion set and any proper subset of S0 is not an S-universality

criterion set.

Let Φn be the set of all quadratic Z-lattices of rank n. It is well known

that there is a unique minimal Φn-universality criterion set for n = 1, 2 or 8.

Theorem 2.4.7. The set

S0 = {1, 2, 3, 5, 6, 7, 10, 14, 15}

is the unique minimal Φ1-universality criterion set.

14
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Proof. See [1].

Theorem 2.4.8. The set

T0 =

{
〈1, 1〉, 〈2, 3〉, 〈3, 3〉,

[
2 1

1 2

]
,

[
2 1

1 3

]
,

[
2 1

1 4

]}
is the unique minimal Φ2-universality criterion set.

Proof. See [10].

Theorem 2.4.9. The set

U0 = {I8, E8}

is the unique minimal Φ8-universality criterion set.

Proof. See [18].

However, in general, minimal S-universality criterion sets are not unique,

and furthermore, the sizes of minimal S-universality criterion sets may vary.

The following example was given by Elkies and his collaborators.

Theorem 2.4.10. Let S be the set of all sublattices of a Z-lattice 〈1, 1, 2〉.
Then the sets

{〈1, 1, 2〉} and {〈1, 1, 16〉, 〈2, 2, 2〉}

are minimal S-universality criterion sets.

Proof. See [8].
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Chapter 3

Uniqueness of minimal

S-universality criterion sets

In this chapter, we focus on answering of the question:

for which S is there a unique minimal S-universality criterion set?

We prove that there is a unique minimal S-universality criterion set when

S is a subset of integers. Moreover, we prove that there is a subset S of

positive integers such that the cardinality of its minimal universality criterion

set is arbitrarily large.

3.1 Rank 1 case

Let N be the set of positive integers. For a positive integer m and a nonneg-

ative integer α, we define the set of arithmetic progressions

Am,α = {mn+ α : n = 0, 1, 2, . . . }.

If a quadratic form f represents all elements inAm,α, we simply writeAm,α → f .

Proposition 3.1.1. Let S = {s0, s1, s2, . . . } be a subset of N, where si ≤ si+1

for any nonnegative integer i, and let k be a positive integer. If there is a

16
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quadratic form f(x1, x2, . . . , xu) such that

s0, s1, . . . , sk−1 ∈ Q(f) and sk 6∈ Q(f),

then there is a quadratic form F such that Q(F ) ∩ S = S − {sk}.

Proof. First, we define

C = {0 ≤ u ≤ sk+1 − 1 : Ask+1,u ∩ {sk+1, sk+2, . . . } 6= ∅} = {c1, c2, . . . , cv},

and for each c ∈ C, s(c) = min(Ask+1,c ∩ {sk+1, sk+2, . . . }). Now, define

F (x1, . . . , xu, y1, . . . , y4, z1, . . . , zv)

= f(x1, . . . , xu) + sk+1(y
2
1 + · · ·+ y24) +

v∑
j=1

s(cj)z
2
j .

Since sk+1, s(cj) > sk and sk 6∈ Q(f), sk is not represented by F . Further-

more, for any integer a ∈ {sk+1, sk+2, . . . }, there is a nonnegative integer

M and an integer i (1 ≤ i ≤ v) such that a = sk+1M + s(ci). Since M is

represented by a sum of four squares, the integer a is represented by F . The

proposition follows directly from this.

Theorem 3.1.2. For any set S = {s0, s1, s2, . . . } ⊆ N, a minimal S-

universality criterion set is unique.

Proof. Without loss of generality, we may assume that si ≤ si+1 for any

nonnegative integer i. An integer si ∈ S is called a truant of S if there is

a quadratic form f such that f represents all integers in {s0, s1, . . . , si−1},
whereas f does not represent si. Clearly, s0 is a truant of S. Let T (S) be the

set of truants of S. Then, by Proposition 3.1.1, any S-universality criterion

set should contain T (S). Hence it suffices to show that T (S) itself is an

S-universality criterion set. Let f be a quadratic form that represents all

integers in T (S). Suppose that f is not S-universal. Let m be the smallest

integer such that sm is not represented by f . Then, clearly, sm is a truant

of S, and hence sm ∈ T (S). This is a contradiction. Therefore T (S) is the

unique minimal S-universality criterion set.

17
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From the proof of Theorem 3.1.2, one may also show that if S0 is the

unique minimal S-universality criterion set, then for any N ∈ S0, there is a

Z-lattice LN that represents all integers in S except for N .

Proposition 3.1.3. For any positive integer k greater than 3, the diagonal

Z-lattice 〈k, k + 1, . . . , 2k〉 represents all integers greater than or equal to k.

Proof. Note that every positive integer n greater than or equal to k is of the

form km+ a for some integers m and a with m ≥ 0 and k ≤ a ≤ 2k − 1.

Firstly, assume that k is greater than or equal to 7. Let a be any integer

with k ≤ a ≤ 2k − 1. One may choose two integers k1 and k2 with 0 < k1 <

k2 ≤ bk−12 c such that both of k1 and k2 are not equal to a − k and 2k − a.

Note that 〈1, 2, 3, 3〉 is universal. Since 〈k, 2k, 3k, 3k〉 is a sublattice of the

diagonal Z-lattice

L = 〈k, 2k, k + k1, 2k − k1, k + k2, 2k − k2〉,

L represents all nonnegative integers which are multiple of k. Then

Ak,a −→ 〈k, 2k, k + k1, 2k − k1, k + k2, 2k − k2, a〉,

which implies that Ak,a → 〈k, k + 1, . . . , 2k〉.
Secondly, suppose that k = 6. Since 〈6, 12, 18, 36〉 is a sublattice of 〈6, 6+

k′, 9, 12− k′, 12〉 for k′ = 1, 2, it is clear that

A6,a −→ 〈6, 7, 8, 9, 10, 11, 12〉 with a = 7, 8, 10, 11.

On the other hand, we know that A6,0 → 〈6, 12, 18, 18〉 and 〈6, 12, 18, 18〉 is

a sublattice of 〈6, 7, 8, 10, 11, 12〉. Therefore,

A6,6 → 〈6, 7, 8, 9, 10, 11, 12〉 and A6,9 → 〈6, 7, 8, 9, 10, 11, 12〉.

Thirdly, assume that k = 5. It is well known that 〈1, 2, 3〉 represents

all nonnegative integers except for integers of the form 4m(16u + 10) for

some nonnegative integers m and u. Note that 〈5, 10, 15〉 is a sublattice of

〈5, 6, 9, 10〉 and 〈5, 7, 8, 10〉.

18
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(Case 1) For an integer n with n ≥ 11, note that

5n+ 5 = 5(n− 2) + 15 = 5(n− 11) + 15 · 22

and either n− 2 or n− 11 is not of the form 4m(16u+ 10). Then either

5(n− 2) −→ 〈5, 10, 15〉 or 5(n− 11) −→ 〈5, 10, 15〉

holds, and the same thing is also true for 〈5, 6, 9, 10〉. Thus, every integer of

the form 5n+5 with n ≥ 3 is represented by 〈5, 6, 7, 8, 9, 10〉. One may easily

check that 〈5, 6, 7, 8, 9, 10〉 also represents all integers of the form 5n+ 8 for

0 ≤ n < 11.

(Case 2) For an integer n with n ≥ 15, note that

5n+ 6 = 5(n− 15) + 9 · 32

and either n or n− 15 is not of the form 4m(16u+ 10). Then either

5n −→ 〈5, 10, 15〉 or 5(n− 15) −→ 〈5, 10, 15〉

holds, and the same thing is also true for 〈5, 7, 8, 10〉. Thus, every integer

of the form 5n + 6 with n ≥ 15 is represented by 〈5, 6, 7, 8, 9, 10〉. One may

easily check that 〈5, 6, 7, 8, 9, 10〉 also represents all integers of the form 5n+6

for 0 ≤ n < 15.

(Case 3) For an integer n with n ≥ 5, note that

5n+ 7 = 5(n− 5) + 8 · 22

and either n or n− 5 is not of the form 4m(16u+ 10). Then either

5n −→ 〈5, 10, 15〉 or 5(n− 5) −→ 〈5, 10, 15〉

holds, and the same thing is also true for 〈5, 6, 9, 10〉. Thus, every integer of

the form 5n+7 with n ≥ 5 is represented by 〈5, 6, 7, 8, 9, 10〉. One may easily

check that 〈5, 6, 7, 8, 9, 10〉 also represents all integers of the form 5n+ 7 for

0 ≤ n < 5.
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(Case 4) For an integer n with n ≥ 11, note that

5n+ 8 = 5(n− 11) + 7 · 32

and either n or n− 11 is not of the form 4m(16u+ 10). Then either

5n −→ 〈5, 10, 15〉 or 5(n− 11) −→ 〈5, 10, 15〉

holds and the same thing is also true for 〈5, 6, 9, 10〉. Thus, every integer of

the form 5n+7 with n ≥ 5 is represented by 〈5, 6, 7, 8, 9, 10〉. One may easily

check that 〈5, 6, 7, 8, 9, 10〉 also represents all integers of the form 5n+ 8 for

0 ≤ n < 11.

(Case 5) For an integer n with n ≥ 3, it is true that

5n+ 9 = 5(n− 3) + 6 · 22

and either n or n− 3 is not of the form 4m(16u+ 10). Then either

5n −→ 〈5, 10, 15〉 or 5(n− 3) −→ 〈5, 10, 15〉

holds and the same thing is also true for 〈5, 7, 8, 10〉. Thus, every integer of

the form 5n+9 with n ≥ 3 is represented by 〈5, 6, 7, 8, 9, 10〉. One may easily

check that 〈5, 6, 7, 8, 9, 10〉 also represents all integers of the form 5n+ 5 for

0 ≤ n < 3.

Finally, suppose that k = 4. Note that 〈1, 2, 5, 6〉 and 〈1, 2, 5, 7〉 are

universal. Since 〈4, 8, 20, 24〉 is a sublattice of 〈4, 5, 6, 8〉 and 〈4, 8, 20, 28〉 is

a sublattice of 〈4, 5, 7, 8〉, we have

A4,4 → 〈4, 8, 20, 24〉 → 〈4, 5, 6, 8〉 → 〈4, 5, 6, 7, 8〉,
A4,6 → 〈4, 8, 20, 28〉 → 〈4, 5, 7, 8〉 → 〈4, 5, 6, 7, 8〉,
A4,7 → 〈4, 8, 20, 24〉 → 〈4, 5, 6, 8〉 → 〈4, 5, 6, 7, 8〉.

On the other hand, One may easily check that 〈1, 2, 6〉 represents all non-

negative integers except for integers of the form 4m(8u + 5) for some non-

negative integers m and u. For an integer n with n ≥ 10, it is true that
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4n+5 = 4(n−10)+5 ·32, and either n or n−10 is not of the form 4m(8u+5).

Thus, every integer of the form 4n+5 is represented by 〈4, 5, 6, 7, 8〉 for n ≥ 10

and one may easily check that 〈4, 5, 6, 7, 8〉 also represents all integers of the

form 4n+ 5 for 0 ≤ n ≤ 10.

Remark 3.1.4. Note that 〈3, 4, 5, 6〉 and 〈2, 3, 4〉 do not represent 35 and

10, respectively.

Theorem 3.1.5. The diagonal Z-lattice 〈3, 4, 5, 6, 7〉 represents all integers

greater than or equal to 3 and the diagonal Z-lattice 〈2, 3, 4, 5〉 represents all

integers greater than or equal to 2.

Proof. First, we will show that 〈3, 4, 5, 6, 7〉 represents all integers greater

than or equal to 3. It is well known that 〈2, 3, 6〉 represents all nonnegative

integers except for integers of the form 4m(8u+7) or 3v+1 with nonnegative

integers m,u and v. Note that 〈4, 6, 12〉 is a sublattice of 〈3, 4, 6〉. We observe

that

2n+ 1 = 2(n− 2) + 5 = 2(n− 3) + 7 = 2(n− 13) + 5 · 22 + 7,

2n = 2(n− 6) + 5 + 7 = 2(n− 10) + 5 · 22 = 2(n− 40) + 5 · 42.

For the convenience of discussion, we assume that n ≥ 40.

(Case 1-1) Suppose that

n 6≡ 1 (mod 3) and n 6= 4m(8u+ 7).

If n is not of the form 4m(8u + 7) + 3, then n− 3 6≡ 1 (mod 3) and n− 3 is

not of the form 4m(8u + 7). Then 〈4, 6, 12〉 represents 2(n − 3) and so does

〈3, 4, 6〉. Thus, 2n + 1 is represented by 〈3, 4, 5, 6, 7〉. Assume that n is of

the form 4m(8u + 7) + 3. Then either n− 2 or n− 13 is not congruent to 1

modulo 3 and is not of the form 4m(8u+ 7). Hence, either

2(n− 2) −→ 〈4, 6, 12〉 or 2(n− 13) −→ 〈4, 6, 12〉

holds and the same thing is also true for 〈3, 4, 6〉. Thus, every integer of the

form 2n + 1 is represented by 〈3, 4, 5, 6, 7〉 if n 6≡ 1 (mod 3) and n is not of

the form 4m(8u+ 7).
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(Case 1-2) Suppose that

n 6≡ 1 (mod 3) and n = 4m0(8u0 + 7)

for some nonnegative integers m0 and u0. If m0 > 0, then n− 3 6≡ 1 (mod 3)

and n− 3 is not of the form 4m(8u+ 7). Then 〈4, 6, 12〉 represents 2(n− 3)

and so does 〈3, 4, 6〉. Thus, 2n + 1 is represented by 〈3, 4, 5, 6, 7〉. Assume

that m0 = 0, that is, n = 8u0 + 7. Then, either n − 2 or n − 13 is not

congruent to 1 modulo 3 and is not of the form 4m(8u+ 7). Hence, either

2(n− 2) −→ 〈4, 6, 12〉 or 2(n− 13) −→ 〈4, 6, 12〉

holds and the same thing is also true for 〈3, 4, 6〉. Thus, every integer of the

form 2n + 1 is represented by 〈3, 4, 5, 6, 7〉 if n 6≡ 1 (mod 3) and n is not of

the form 4m(8u+ 7).

(Case 1-3) Suppose that

n ≡ 1 (mod 3).

Then n− 2 ≡ 2 (mod 3) and n− 13 ≡ 0 (mod 3). Moreover, either n− 2 or

n− 13 is not of the form 4m(8u+ 7). Then, either

2(n− 2) −→ 〈4, 6, 12〉 or 2(n− 13) −→ 〈4, 6, 12〉

holds and the same thing is also true for 〈3, 4, 6〉. Thus, every integer of the

form 2n+ 1 with n ≡ 1 (mod 3) is represented by 〈3, 4, 5, 6, 7〉.
(Case 2-1) Suppose that

n 6≡ 1 (mod 3) and n 6= 4m(8u+ 7).

Then we have

2n −→ 〈4, 6, 12〉

and so 2n is represented by 〈3, 4, 6〉. Thus, every integer of the form 2n

is represented by 〈3, 4, 5, 6, 7〉 if n 6≡ 1 (mod 3) and n is not of the form

4m(8u+ 7).
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(Case 2-2) Suppose that

n 6≡ 1 (mod 3) and n = 4m0(8u0 + 7)

for some nonnegative integers m0 and u0. It is true that n− 6 6≡ 1 (mod 3)

and n− 6 is not of the form 4m(8u+ 7). Then we have

2(n− 6) −→ 〈4, 6, 12〉

and so 2(n − 6) is represented by 〈3, 4, 6〉. Thus, every integer of the form

2n with n 6≡ 1 (mod 3) is represented by 〈3, 4, 5, 6, 7〉.
(Case 2-3) Suppose that

n ≡ 1 (mod 3).

Then n− 10 ≡ n− 40 ≡ 0 (mod 3). Moreover, either n− 10 or n− 40 is not

of the form 4m(8u+ 7). Then, either

2(n− 10) −→ 〈4, 6, 12〉 or 2(n− 40) −→ 〈4, 6, 12〉

holds and the same thing is also true for 〈3, 4, 6〉. Thus, every integer of the

form 2n with n ≡ 1 (mod 3) is represented by 〈3, 4, 5, 6, 7〉.
One may easily check that 〈3, 4, 5, 6, 7〉 also represents all integers n with

3 ≤ n < 80 and therefore, 〈3, 4, 5, 6, 7〉 represents all integers greater than or

equal to 3.

Now, we will show that 〈2, 3, 4, 5〉 represents all integers greater than or

equal to 2. It is well known that 〈1, 2, 6〉 represents all nonnegative integers

except for integers of the form 4m(8u + 5) with nonnegative integers m and

u. We observe that

2n+ 1 = 2(n− 2) + 5 = 2(n− 22) + 5 · 32 = 2(n− 62) + 5 · 52,

2n = 2(n− 10) + 5 · 22.

(Case 1) It is obvious that 〈2, 3, 4, 5〉 represents 3, so we assume that n ≥ 2.

If n− 2 is not of the form 4m(8u+ 5), then

2(n− 2) −→ 〈2, 4, 12〉 −→ 〈2, 3, 4〉
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and so 2n+ 1 is represented by 〈2, 3, 4, 5〉.
Suppose that n− 2 is of the form 4m(8u+ 5) and n ≥ 62. Either n− 22

or n− 62 is not of the form 4m(8u+ 5). Then, either

2(n− 22) −→ 〈2, 4, 12〉 or 2(n− 62) −→ 〈2, 4, 12〉

holds and the same thing is also true for 〈2, 3, 4〉. Thus, 2n+1 is represented

by 〈2, 3, 4, 5〉 if n ≥ 62. One may easily check that 〈2, 3, 4, 5〉 also represents

all odd integers n with 1 < n < 125.

(Case 2) Suppose that n ≥ 10. Either n or n − 10 is not of the form

4m(8u+ 5). Then, either

2n −→ 〈2, 4, 12〉 or 2(n− 10) −→ 〈2, 4, 12〉

holds and the same thing is also true for 〈2, 3, 4〉. Thus, 2n is represented

by 〈2, 3, 4, 5〉. One may easily check that 〈2, 3, 4, 5〉 also represents all even

positive integers less than 20. This completes the proof.

Theorem 3.1.6. For any positive integer k, there is a subset S of positive

integers such that the cardinality of its minimal universality criterion set is

exactly k.

Proof. Let L be a Z-lattice such that there exist vectors x1, . . . , xk in L

satisfying Q(xi) = k + i for any i with 1 ≤ i ≤ k. Consider the sublattice `

of L defined by

` = Zx1 + Zx2 + · · ·+ Zxk.

Let m be the rank of ` and µ1, µ2, . . . , µm be successive minima of `. Then

we have m ≤ k and µm ≤ 2k. It follows from µ1 ≤ µ2 ≤ · · · ≤ µm that

d` ≤ µ1µ2 · · ·µm ≤ (2k)k.

Then there are only finitely many candidates for ` since the discriminant and

the rank of ` are bounded. Let {`1, `2, . . . , `t} be the set of all candidates for

` and put

S = ∪ti=1Q(`i).

24



CHAPTER 3. UNIQUENESS OF MINIMAL SETS

Then by the definition of S, it is obvious that {k + 1, k + 2, . . . , 2k} is an

S-universality criterion set.

Put M1 = 〈k + 2〉. Since k + 1 is not represented by M1, by Proposition

3.1.1, there is a Z-lattice N1 such that Q(N1) ∩ S = S − {k + 1}. Now, put

Mi = 〈k + 1, . . . , k + i− 1〉

for i = 2, 3, . . . , k. One may easily show that k + j → Mi for any j with

j = 0, 1, . . . , i− 1 and k + i is not represented by Mi. Then, by Proposition

3.1.1 again, there is a Z-lattice Ni such that Q(Ni) ∩ S = S − {k + i}. This

implies that {k + 1, k + 2, . . . , 2k} is the minimal S-universality criterion

set.

From the above theorem, we directly obtain the following corollary.

Corollary 3.1.7. For any positive integer N , there is a subset S of positive

integers such that the cardinality of a minimal S-universality criterion set is

greater that N .

It seems to be very difficult to determine a minimal S-universality crite-

rion set for an arbitrary subset S of positive integers. In the following, we

give some information on the cardinality of a minimal S-universality criterion

set for some subset S of positive integers satisfying some special property.

Definition 3.1.8. Let S be a subset of positive integers and let

π : N −→ Q×2 /(Q×2 )2

be a natural projection. We say that the set S is 2-full if the restriction of π

to S is surjective. For example, the set {1, 2, 3, 5, 6, 7, 10, 14} is 2-full.

Proposition 3.1.9. Let S be a 2-full set. Then the cardinality of the minimal

criterion set is greater than or equal to 7. Moreover, there exists a 2-full set

whose minimal universality criterion set consists of exactly 7 elements.

Proof. At first, we list Z-lattices that represents all positive integers except

for positive integers that are in only one coset of Q×2 /(Q×2 )2 in the following

table. Therefore, if S is a 2-full set, then the minimal S-universality cri-
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Z-lattices exceptions2 1 0

1 2 1

0 1 3

 22s(8k + 1)

〈1〉 ⊥

[
3 1

1 5

]
22s+1(8k + 1)

〈1, 1, 5〉 22s(8k + 3)

〈1〉 ⊥

[
2 1

1 2

]
22s(8k + 5)

〈1, 2, 3〉 22s+1(8k + 5)

〈1, 1, 1〉 22s(8k + 7)

〈1, 1, 2〉 22s+1(8k + 7)

Table 3.1: Ternary Z-lattices and their exceptions

terion set must contain positive integers whose projection to Q×2 /(Q×2 )2 are

1, 2, 3, 5, 7, 10, 14.

Now, we prove that there exists a 2-full set whose minimal criterion set

consists of exactly 7 elements. To prove this, we will construct a 2-full set

whose minimal criterion set is

{1, 2, 3, 5, 7, 10, 14}.

Let L be a Z-lattice that represents 1, 2, 3, 5, 7, 10 and 14. Since L repre-

sents 1, we have L ' 〈1〉 ⊥ L0. Since L represents 2, either L ' 〈1, 1〉 ⊥ L1

or 2 → L0 holds. First, consider the case when L ' 〈1, 1〉 ⊥ L1. Since 3 is

not represented by 〈1, 1〉, we have min(L1) ≤ 3. Then L represents at least

one of the following Z-lattices:

L(0) = 〈1, 1, 3〉, L(1) = 〈1, 1, 1〉, L(2) = 〈1, 1, 2〉.
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Next, consider the case when 2→ L0. Since 5 is not represented by 〈1, 2〉, we

have µ2(L0) ≤ 5. Then L represent at least one of the following Z-lattices:

L(3) = 〈1, 2, 2〉, L(4) = 〈1, 2, 3〉,
L(5) = 〈1, 2, 4〉, L(6) = 〈1, 2, 5〉,

L(7) = 〈1〉 ⊥
[
2 1

1 2

]
, L(8) = 〈1〉 ⊥

[
2 1

1 3

]
,

L(9) = 〈1〉 ⊥
[
2 1

1 4

]
, L(10) = 〈1〉 ⊥

[
2 1

1 5

]
.

We define the truant of a Z-lattice ` to be the smallest positive integer not

represented by `, and denote it by t(L). Then, the truant of L(i) for each i

with 0 ≤ i ≤ 10 is as follows:

t(L(0)) = 6 t(L(1)) = 7, t(L(2)) = 14, t(L(3)) = 7

t(L(4)) = 10, t(L(5)) = 14, t(L(6)) = 10, t(L(7)) = 5,

t(L(8)) = 5, t(L(9)) = 7, t(L(10)) = 7.

Suppose that L(1) = 〈1, 1, 1〉 → L. To represent all elements of 1,2,3,5,7,

10 and 14, we have µ4(L) ≤ t(L(1)) = 7. Then one can find the set C (1) of

quaternary Z-lattices consisting of Z-lattices that represent L(1), and whose

4-th minimum is less than or equal to 7. By the same argument, for each

i with 2 ≤ i ≤ 10, one can also find the set C (i) of quaternary Z-lattices

consisting of Z-lattices that represent L(i) and whose 4-th minimum is less

than or equal to t(L(i)). Finally, one may also find the set C (0) of quater-

nary Z-lattices consisting of Z-lattices that represent L(0), and whose 4th

minimum is less than or equal to 7.

Put C = ∪0≤i≤10C (i) and let D be the product of all odd primes that

divide the discriminant of a Z-lattice in C . Then by the Dirichlet’s theorem

on arithmetic progression, one can find a prime p such that

p ≡ 3 (mod 8), and 2p ≡ 1 (mod D).

Note that any positive integer which is not represented by L(0) is of the form

32k+1(3s + 2) for some nonnegative integers k and s. For any prime q with

q|D, we have 2p ≡ 1 (mod q), and so 2p is primitively represented by `q
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for any ` ∈ C . For any prime q with q - 2D, every ` ∈ C is a unimodular

quaternary Z-lattice over Zq, and so 2p is represented by `q. If q = 2, one

may easily check that 6 is primitively represented by L(i) for any i with

1 ≤ i ≤ 10 and 22 is primitively represented by L(0). Thus, 2p is primitively

represented by `2 for any ` ∈ C . Thus, 2p0 is locally represented by ` and is

primitively represented by ` at the anisotropic primes for any ` ∈ C . Hence

there exists an integer 2p0 such that

p0 ≡ 3 (mod 8), and 2p0 ≡ 1 (mod D),

and 2p0 is represented by ` for any ` ∈ C . We put

S = {1, 2, 3, 5, 7, 10, 14, 2p0}.

Then from the construction of S, it is a 2-full set whose minimal universality

criterion set is exactly {1, 2, 3, 5, 7, 10, 14}. By applying same argument in

the proof of Theorem 3.1.6, one may also find infinitely many 2-full sets

whose minimal universality criterion set is {1, 2, 3, 5, 7, 10, 14}.

3.2 Higher rank cases

Recall that Φn is the set of all quadratic forms of rank n. In this section, we

show that there are infinitely many minimal Φn-universality criterion sets for

any n ≥ 9.

Proposition 3.2.1. For any n ≥ 9, there are infinitely many minimal Φn-

universality criterion sets.

Proof. Let S0
n = {L1, L2, . . . , Ls} be a minimal Φn-universality criterion set.

Assume that Li = Iki ⊥ `i, where min(`i) ≥ 2. If n0 = max{ki} < n, then

In0 ⊥ `1 ⊥ · · · ⊥ `s represents all Z-lattices in S0
n, but it does not represent

In. This is a contradiction. Therefore n0 = n, that is, In ∈ S0
n. Similarly, one

may easily show that there is an integer j such that Lj represents Dm[1] for

some integer m ≡ 0 (mod 4) with n−4 ≤ m < n. Note that Lj = Dm[1] ⊥M

for some Z-lattice M with rank less than or equal to 4. Without loss of

generality, assume that L1 = In and L2 = Dm[1] ⊥ M . Since any Z-lattice
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that represents both L1 and L2 should represent In ⊥ Dm[1]. Furthermore,

since In is 4-universal, Lj cannot represent Dm[1] for any j ≥ 3. Now we

show that for any Z-lattice N with rank n−m,

S0
n(N) = {In, Dm[1] ⊥ N,L3, . . . , Ls}

is also a minimal Φn-universality criterion set. Assume that a Z-lattice L
represents all Z-lattices in S0

n(N). Since In ⊥ Dm[1] is represented by L,

L2 = Dm[1] ⊥ M is also represented by L. Therefore, L is n-universal from

the assumption that S0
n is a minimal Φn-universality criterion set. By using

similar argument, one may easily show that S0
n(N) is, in fact, minimal.

Remark 3.2.2. Summing up all, the minimal Φn-universality criterion set

is unique for any n = 1, 2 and 8, and there are infinitely many minimal Φn-

universality criterion sets for any n ≥ 9. However, when n = 3, 4, 5, 6, and 7

nothing is known at present. We conjecture that a minimal Φ4-universality

criterion set is unique.
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Chapter 4

Recoverable Z-lattices

In this chapter, we introduce the notion on recoverable Z-lattices and give

some properties on those Z-lattices, and we show some necessary conditions

and some sufficient conditions for Z-lattices to be recoverable.

4.1 Some properties of recoverable Z-lattices

In [8], Elkies and his collaborators gave an example of a set S of ternary Z-

lattices such that the sizes of minimal S-universality criterion sets vary. To

explain their example more precisely, let S be the set of all ternary sublattices

of 〈1, 1, 2〉. Then, clearly, S0 = {〈1, 1, 2〉} is a minimal S-universality criterion

set. Furthermore, they proved that

S1 = {〈1, 1, 16〉, 〈2, 2, 2〉}

is also a minimal S-universality criterion set. The point is that any Z-

lattice that represents both 〈1, 1, 16〉 and 〈2, 2, 2〉, which are all sublattices of

〈1, 1, 2〉, also represents 〈1, 1, 2〉 itself. From this point of view, the following

definition seems to be quite natural:

Definition 4.1.1. Let ` be a Z-lattice and let S0 = {`1, `2, . . . , `t} be a set

of proper sublattices of `. We say ` is recoverable by S0 if every S0-universal

Z-lattice represents ` itself.

30



CHAPTER 4. RECOVERABLE Z-LATTICES

From the above, the ternary Z-lattice 〈1, 1, 2〉 is recoverable by S1. We

simply say ` is recoverable if there is a finite set of proper sublattices satisfying

the above property. Note that if ` is recoverable, then there is a minimal S-

universality criterion set whose cardinality is greater than 1, where S is the

set of all sublattices of `.

Lemma 4.1.2. A Z-lattice ` is not recoverable if and only if there is a Z-

lattice L that represents all proper sublattices of `, but not ` itself.

Proof. First, suppose that ` is not recoverable. Let S be the set of all proper

sublattices of L and let S0 = {`1, `2, . . . , `t} be a minimal S-universality

criterion set. Since ` is not recoverable from the assumption, there is a Z-

lattice ` that represents all Z-lattices in S0, whereas it does not represent

` itself. Note that L represents all proper sublattices of `. The converse is

trivial.

Lemma 4.1.3. Let a be a positive integer. For any Z-lattice `, if `a is

recoverable, then so is `.

Proof. Assume that `a is recoverable by {`a1, `a2, . . . , `at }, where `i is a proper

sublattice of ` for any i = 1, 2, . . . , t. Assume that a Z-lattice M represents `i
for any i. Then `ai → Ma for any i, and hence `a → Ma. Therefore, `→ M

and ` is recoverable by {`1, `2, . . . , `t}.

Remark 4.1.4. Any unary Z-lattice ` cannot be recoverable. Let ` = 〈1〉.
Note that 〈2, 2, 5〉 represents all squares of integers except for 1 (see [9]). Then

〈2, 2, 5〉 represents all proper sublattices of `, but not ` itself. Therefore `

is not recoverable by Lemma 4.1.2. Moreover, since every unary Z-lattice is

obtained by scaling `, it is not recoverable by Lemma 4.1.3.

Remark 4.1.5. Note that the converse of the above lemma does not hold in

general. Let ` = 〈1, 4〉. Let L be any Z-lattice representing both `1 = 〈1, 16〉
and `2 = 〈4, 4〉. Since L represents `1, we may assume that L = Ze1 + L1,

where Q(e1) = 1 and B(e1, L1) = 0. Furthermore, since L represents `2 =

〈4, 4〉, there are nonnegative integers a, b and vectors x, y ∈ L1 such that

Q(ae1 + x) = a2 +Q(x) = Q(be1 + y) = 4 and B(ae1 + x, be1 + y) = 0.
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If a = 2, then x = 0 and b = 0. Hence 〈4〉 → L1. If a = 1, then

b = 0 and Q(y) = 4 or b = 1, Q(x) = Q(y) = 3, and B(x, y) = −1.

For the latter case, Q(x + y) = 4. If a = 0, then Q(x) = 4. Therefore

L1 represents 4 in any case, which implies that L represents `. Hence ` is

recoverable by {`1, `2}.
Now, we show that `2 = 〈2, 8〉 is not recoverable. To show this, let S be

the set of all binary Z-lattices with minimum greater than or equal to 9, and

let S0 = {m1, . . . ,mt} be a finite minimal S-universality criterion set. Then

m1 ⊥ · · · ⊥ mt represents all binary Z-lattices with minimum greater than

or equal to 9. Now define

L = K ⊥ m1 ⊥ · · · ⊥ mt

where

K =


2 1 1 0

1 8 0 0

1 0 8 4

0 0 4 10

 .
Clearly, `2 = 〈2, 8〉 is not represented by L. Let `1 be any proper sublattice

of `2. If min(`1) ≥ 9, then `1 is represented by m1 ⊥ · · · ⊥ mt. Hence we

may assume that min(`1) = 2 or 8. For the former case, `1 ' 〈2, 8m2〉, where

m ≥ 2. Since 〈8m2〉 → m1 ⊥ · · · ⊥ mt, `1 is represented by L. For the latter

case, one may easily show that

`1 ' 〈8, 8m2〉 or `1 '
[
8 4

4 2 + 8n2

]
for some m,n ≥ 1.

Note that K represents each binary Z-lattices for m = 1 or n = 1, and for

m ≥ 2 or n ≥ 2, one may use the fact that any integer greater than 9 is

represented by m1 ⊥ · · · ⊥ mt to show that `1 is represented by L. Therefore

L represents all proper sublattices of `2, but not `2 itself. Consequently, ` is

not recoverable.

One may easily check that every additively indecomposable Z-lattice is
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not recoverable. We further prove that every indecomposable Z-lattice L is

not recoverable if the rank of L is less than 4.

Proposition 4.1.6. Any indecomposable binary Z-lattice is not recoverable.

Proof. Suppose that ` is indecomposable and {x, y} is a Minkowski-reduced

basis for `. Let S be the set of all proper sublattices of ` and let S0 =

{`1, `2, . . . , `t} be a minimal S-universality criterion set. Now, we put `i =

Zxi+Zyi where {xi, yi} is a Minkowski-reduced basis for `i for i = 1, 2, . . . , t.

Then we define

L = (Zx1 + Zy1) ⊥ (Zx2 + Zy2) ⊥ · · · ⊥ (Zxt + Zyt).

Since S0 is an S-universality criterion set and L represents `i for any i with

1 ≤ i ≤ t, L represents all proper sublattices of `.

Now, suppose on the contrary that ` is represented by L and φ : `→ L is

a representation. Since `i is a sublattice of ` for i = 1, 2, . . . , t, without loss of

generalitiy, we may assume that φ(x) = x1. Then we put φ(y) = αx1+βy1+z

where α, β ∈ Z and z ∈ (Zx2 + Zy2) ⊥ · · · ⊥ (Zxt + Zyt). Since ` is

indecomposable, β cannot be zero. Then

d` = dφ(`) = d(Zx1 +Z(αx1 +βy1 + z)) ≥ d(Zx1 +Z(αx1 +βy1)) ≥ d`1 > d`

holds, which is a contradiction. Therefore, L does not represent ` and then,

by lemma 4.1.2, ` is not recoverable.

Proposition 4.1.7. Let L be an indecomposable ternary Z-lattice. Then

there are no proper sublattices L1, L2, . . . , Lt of L such that L is represented

by L1 ⊥ L2 ⊥ · · · ⊥ Lt.

Proof. Suppose that the assertion is false. Then there are sublattices L1, L2, . . . , Lt
of L such that L is represented by L1 ⊥ L2 ⊥ · · · ⊥ Lt. We may assume that

all Li’s are of rank 3 and let

φ : L→L1 ⊥ L2 ⊥ · · · ⊥ Lt

be a representation. Let {u, v, w} be a Minkowski reduced basis for L and put

φ(u) = x1. Clearly, there exists a Minkowski reduced basis for L1 consisting
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of x1. Let {x1, x2, x3} be such a Minkowski reduced basis for L1, and assume

that

φ(v) = a1x1 + x+ y,

where x ∈ Zx2 + Zx3 and y ∈ L2 ⊥ · · · ⊥ Lt.

First, assume that x = 0. Since

2|a1|Q(x1) = 2|B(x1, a1x1 + y)| ≤ Q(x1),

we have a1 = 0. Put

φ(w) = b1x1 + b2x2 + b3x3 + z

where z ∈ L2 ⊥ · · · ⊥ Lt, then φ(L) = Zx1 +Zy+Z(b1x1 + b2x2 + b3x3 + z).

If b3 6= 0, then

µ3(L) = Q(b1x1 + b2x2 + b3x3 + z) = Q(b1x1 + b2x2 + b3x3) +Q(z)

≥ µ3(L1) +Q(z) ≥ µ3(L) +Q(z),

which implies that z = 0. Therefore, φ(L) is decomposable, which is a

contradiction. Hence we have b3 = 0.

Observe that

L1 = Zx1 + Zx2 + Zx3 ⊆ L = Zu+ Zv + Zw ' φ(L) =

a 0 e

0 b d

e d c

 .
Then b1x1 + b2x2 = αu + βv + γw for some integers α, β and γ. If γ 6= 0,

then

µ3(L) = Q(b1x1 + b2x2) +Q(z) ≥ Q(w) +Q(z) = µ3(L) +Q(z).

Therefore, z = 0, which is a contradiction. Hence b1x1 + b2x2 = αu+ βv.

On the other hand, one may similarly show that x1 = α1u+β1v. Since the

fact that Q(x1) = Q(u) and B(u, v) = 0, we have x1 = ±u, b1x1 + b2x2 = βv

or x1 = ±v, b1x1 + b2x2 = αu. In any case, φ(L) is decomposable, which is

a contradiction.
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Now, assume that x 6= 0. Since

µ2(L) = Q(v) = Q(a1x1 + x+ y) = Q(a1x1 + x) +Q(y)

≥ µ2(L1) +Q(y) ≥ µ2(L) +Q(y),

we have y = 0. Put

φ(v) = a1x1 + a2x2 + a3x3 and φ(w) = b1x1 + b2x2 + b3x3 + z

where a1, a2, a3, b1, b2, b3 are integers and z ∈ L2 ⊥ · · · ⊥ Lt. If b3 6= 0, then

µ3(L) = Q(b1x1 + b2x2 + b3x3) +Q(z) ≥ µ3(L1) +Q(z) ≥ µ3(L) +Q(z)

and so z = 0. Then φ(L) ⊆ L1, which is a contradiction. Thus, b3 = 0.

Suppose that a3 6= 0. Since

µ2(L) = Q(a1x1 + a2x2 + a3x3) ≥ µ3(L1) ≥ µ3(L),

we have µ2(L) = µ3(L) = µ2(L1) = µ3(L1). Then

µ2(L) = µ3(L) = Q(b1x1 + b2x2 + z) ≥ µ2(L1) +Q(z) = µ2(L) +Q(z)

and so z = 0, which is a contradiction. Therefore a3 = 0.

Since a2 6= 0, we have

µ2(L) = Q(a1x1 + a2x2) ≥ µ2(L1) = Q(x2) ≥ µ2(L)

and this in turn means that µ2(L) = Q(a1x1 + a2x2) = µ2(L1) = Q(x2). Let

Zx1 + Zx2 =

[
s r

r t

]
. For Q(x2) = Q(a1x1 + a2x2), we have

t = a21s+ 2a1a2r + a22t = s
(
a1 +

ra2
s

)2
+

(
t− r2

s

)
a22 ≥ a22

(
t− s

4

)
.

If |a2| ≥ 2, then t ≥ 4t − 3s > t, which is a contradiction. If a2 = ±1,

then φ(L) = Zx1 +Zx2 +Zy is decomposable, which is a contradiction. This

completes the proof.
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From the above proposition, we immediately obtain the following corol-

lary.

Corollary 4.1.8. An indecomposable ternary Z-lattice is not recoverable.

4.2 Recoverable binary Z-lattices

In this section, we focus on recoverable binary Z-lattices. We find some

necessary conditions and some sufficient conditions for binary Z-lattices to

be recoverable.

Let n be a positive integer and let S be the set of all binary Z-lattices

with minimum greater than or equal to n. Then there is a finite minimal

S-universality criterion set Sn = {m1, . . . ,mt} by [11]. Put M = m1 ⊥ · · · ⊥
mt. Then M represents all binary Z-lattices with minimum greater than or

equal to n. In this section,M(n) stands for a Z-lattice representing all binary

Z-lattices with minimum greater than or equal to n with min(M(n)) = n.

From the above argument, such a Z-lattice always exists.

Proposition 4.2.1. For any two integers a and b such that 2 ≤ a < b and

a does not divide b, the diagonal Z-lattice ` = 〈a, b〉 is not recoverable.

Proof. Since a does not divide b, there exists the unique positive integer h

such that h2a < b < (h + 1)2a. For any integer h with h ≥ 2, we define a

Z-lattice K(h) by

K(h) = ⊥
i,j:2≤i≤h

1≤j≤[ i
2
]

[
i2a ija

ija j2a+ b

]
.

Then we put

L(h) =

{
(Zx+ Zy) ⊥M(b+ 1) if h = 1,

(Zx+ Zy) ⊥ K(h) ⊥M(b+ 1) if h ≥ 2,
where Zx+Zy =

[
a 1

1 b

]
.

We claim that L(h) represents all proper sublattices of `, whereas L(h) does

not represent ` itself.

First, we will prove that L(h) represents all proper sublattices of `. Let

`′ be a proper sublattice of `.
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(Case 1) If min(`′) > b, then M(b+ 1) represents `′ and so does L(h).

(Case 2) If min(`′) = b, then `′ ' 〈b, α2a〉 for some integer α with α2a > b.

Since α2a is represented by M(b+ 1), L(h) represents `′.

(Case 3) Assume that a < min(`′) < b. In this case, we have h ≥ 2. Note

that

`′ '
[
i2a ija

ija j2a+ β2b

]
for some integers i, j and β with 2 ≤ i ≤ h, 0 ≤ j ≤

[
i
2

]
, β ≥ 1. If β = 1,

then clearly `→K(h)→L(h). Assume that β ≥ 2. Since (β2 − 1)b > b, we

have

`′ '
[
i2a ija

ija j2a+ β2b

]
→
[
i2a ija

ija j2a+ b

]
⊥M(b+ 1),

which implies that L(h) represents `′.

(Case 4) If min(`′) = a, then `′ ' 〈a, β2b〉 for some integer β with β ≥ 2.

Since β2b is represented by M(b+ 1), L(h) represents `′.

Next, we will show that L(h) does not represent `. When h = 1, it is

clear that L(1) does not represent `. Assume h ≥ 2. Let

Kij = Zk1 + Zk2 =

[
i2a ija

ija j2a+ b

]
for some 2 ≤ i ≤ h and 1 ≤ j ≤

[
i
2

]
. Then Q(sk1+ tk2) = (si+ tj)2a+ t2b for

any integers s and t. Since min(Kij) = i2a > a, Kij does not represent a. If

b = Q(sk1+tk2) = (si+tj)2a+t2b, then t2 = 1 and si+tj = 0. Furthermore,

since j = |si| ≤
[
i
2

]
, we have s = j = 0. This is a contradiction. Therefore

Kij does not represent b. Since a does not divide b, from the above fact, we

have

Q(K(h)) ⊆ {ua+ vb | u, v ∈ N ∪ {0}} − {a, b} .

Suppose that L(h) represents `. Let u ∈ L be a vector with Q(u) = b.

Since u ∈ L, u can be written as αx+ βy+ z +w for some integers α, β and

a vector z ∈ K(h), w ∈M(b+ 1). Since Q(u) = Q(αx+ βy) +Q(z) +Q(w)

and Q(w) > b, we have w = 0. One may easily show that z = 0 or Q(z) = δa

for some integer δ with δ ≥ 2. If |β| ≥ 2, then Q(αx + βy) ≥ β2(b− 1) > b.

If β = 0, then Q(αx) is a multiple of a, and so is Q(u). On the other hand,
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if |β| = 1, then Q(αx + βy) > b unless α = 0. Hence, we have u = y or

u = −y. Similarly one may show that if v ∈ L with Q(v) = a, then v = x or

v = −x. However, we have B(±x,±y) 6= 0. This is a contradiction.

Lemma 4.2.2. For any odd positive integer m, 〈1,m〉 is not recoverable.

Proof. For k = 1 or 3, 〈1, k〉 is not recoverable since 〈1〉 ⊥ M(k+1) represents

all proper sublattices of 〈1, k〉, but not 〈1, k〉 itself. Now, we may assume that

m ≥ 5. Let N be any even 2-universal quinary even Z-lattice. Note that

such a Z-lattice exists, for example, D5 is one of such quinary lattices. Define

a Z-lattice

L = 〈1〉 ⊥ N ⊥M(m+ 1).

It is obvious that 〈1,m〉 is not represented by L.

Let ` be a proper sublattice of 〈1,m〉. Firstly, suppose that min(`) = 1.

Then ` ' 〈1,mβ2〉 with an integer β ≥ 2. Since 〈mβ2〉 → M(m + 1), we

have `→ L.

Secondly, suppose that min(`) > 1. From the fact that m ≥ 5, we have

min(`) ≥ 4. Choose a Minkowski reduced basis for ` so that

` '
[
a b

b c

]
with 0 ≤ 2b ≤ a ≤ c.

(Case 1) If a ≡ c ≡ 0 (mod 2), then `→ N and so `→ L.

(Case 2) We consider the case when a ≡ c ≡ 1 (mod 2). Put

`′ =

[
a− 1 b− 1

b− 1 c− 1

]
.

Since d`′ ≥ 3c
4

(a− 4) > 0, `′ is positive definite. Then `′ → N and so `→ L.

(Case 3) Suppose that a ≡ 1 (mod 2) and c ≡ 0 (mod 2). Put

`′ =

[
a− 1 b

b c

]
.

Since d`′ =
(
ac
4
− b2

)
+ c

4
(3a− 4) > 0, `′ is positive definite. Then `′ → N .

Therefore, 〈1〉 ⊥ N represents ` and so does L.
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(Case 4) When a ≡ 0 (mod 2) and c ≡ 1 (mod 2), one may show that `→ L

by the similar way in (Case 3).

Lemma 4.2.3. For any positive integer m with m ≡ 2 (mod 4), the binary

Z-lattice 〈1,m〉 is not recoverable.

Proof. Since 〈1〉 ⊥ M(3) represents all proper sublattices of 〈1, 2〉 but not

〈1, 2〉 itself, the binary Z-lattice 〈1, 2〉 is not recoverable.

Let m = 6 and put

L = 〈1〉 ⊥

4 0 2

0 5 1

2 1 7

 ⊥M(7).

Then one may easily show that L represents all proper sublattices of 〈1, 6〉,
but not 〈1, 6〉 itself.

We may assume that m ≥ 10. Put

L′ = Ze+ Zx+ Zy + Zz = 〈1, 3, 5,m− 1〉.

Let N be an even 2-universal quinary even Z-lattice and let N be the Z-

lattice obtained from N by scaling Q⊗N by 2. Now, define

L = L′ ⊥ N ⊥M(m+ 1).

We show that any proper sublattice of 〈1,m〉 is represented by L, whereas

〈1,m〉 itself is not represented by L. Suppose, on the contrary, that 〈1,m〉 → L.

Then one may easily show that

〈m〉 −→ 〈3, 5〉 ⊥ N .

Thus, m ≡ 3α2 + 5β2 (mod 4) for some integers α and β. Since m ≡
2 (mod 4), this is a contradiction.

Let Zu + Zv = 〈1,m〉, and let ` be a proper sublattice of 〈1,m〉. Then

there are integers a, b, and c such that ` = Z(au) +Z(bu+ cv). Suppose that

|c| ≥ 2. Since ` ⊆ Zu + Z(cv) and Zu + Z(cv) = 〈1, c2m〉 → L, we have

`→ L. Thus, we may assume that ` = Z(au) + Z(bu + v) for some integers
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a and b with 0 ≤ b < a and a ≥ 2. In this case, we have

` =

[
a2 ab

ab m+ b2

]
.

First, we consider the case when a ≡ b ≡ 0 (mod 2). Since

[
a2 ab

ab m+ b2 − 6

]
is represented by N ,

[
a2 ab

ab m+ b2

]
is represented by 〈1, 5〉 ⊥ N . Thus, L

represents `.

Next, we consider the case when a ≡ 0 (mod 2) and b ≡ 1 (mod 2).

Since

[
a2 ab

ab m+ b2 − 3

]
is represented by N ,

[
a2 ab

ab m+ b2

]
is represented by

〈3〉 ⊥ N . Thus, L represents `.

Third, we consider the case when a ≡ b ≡ 1 (mod 2). Since there is a

vector w ∈ N with Q(w) = m− 2,

Z(e+ x+ y) + Z(x+ w) =

[
9 3

3 m+ 1

]
is represented by L. Hence we may assume a ≥ 4. Consider the Z-lattice

`′ =

[
a2 − 9 ab− 3

ab− 3 m+ b2 − 3

]
. Since s(`′) ⊆ 4Z and d`′ > 0, `′ is represented by

N . Choose vectors w1, w2 ∈ N such that

`′ '
[
a2 − 9 ab− 3

ab− 3 m+ b2 − 3

]
= Zw1 + Zw2 ⊆ N .

Since Z(e+ x+ y + w1) + Z(x+ w2) =

[
a2 ab

ab m+ b2

]
, ` is represented by L.

Finally, we consider the case when a ≡ 1 (mod 2) and b ≡ 0 (mod 2).

First, assume that a = 3. Then b = 0 or 2. If b = 0, then

` = 〈9,m〉 −→ 〈1, 5,m− 1〉 ⊥ N→L.
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If b = 2, then ` =

[
9 6

6 m+ 4

]
'
[
9 3

3 m+ 1

]
, which is represented by L.

Now, suppose that a ≥ 4. Consider the Z-lattice `′′ =

[
a2 − 9 ab− 4

ab− 4 m+ b2 − 6

]
.

Since s(`′′) ⊆ 4Z and d`′′ > 0, `′′ is represented by N . Choose vectors

w′1, w
′
2 ∈ N such that[

a2 − 9 ab− 4

ab− 4 m+ b2 − 6

]
= Zw′1 + Zw′2 ⊆ 2N.

Since

Z(e+ x+ y + w′1) + Z(−e+ y + w′2) =

[
a2 ab

ab m+ b2

]
,

` is represented by L.

4.3 Recoverable numbers

From several lemmas in Section 4.2, one may conclude that if a binary Z-

lattice ` is recoverable, then ` = 〈a, 4ma〉 for some positive integers a and

m. In this section, we introduce the notion of a recoverable number which is

related with a recoverable Z-lattice. We prove that any square of an integer

is a recoverable number. We also determine whether or not some numbers

are recoverable.

Definition 4.3.1. A positive integer m is called recoverable if 〈1, 4m〉 is a

recoverable binary Z-lattice.

Proposition 4.3.2. Any positive definite diagonal Z-lattice ` = 〈1, 4m2〉
with m ∈ Z is recoverable. Therefore, m2 is a recoverable number for any

positive integer m.

Proof. Let S be the set of all proper sublattices of ` and let L be an S-

universal Z-lattice. Since 〈1, 16m2〉 → L, we have L = Ze1 ⊥ L′ = 〈1〉 ⊥ L′.

For 〈4, 4m2〉 → L, one of the following holds:

(i) there is a vector y ∈ L′ such that Z(2e1) + Zy = 〈4, 4m2〉;
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(ii) there are vectors x, y ∈ L′ and and integer a such that Z(e1 + x) +

Z(ae1 + y) = 〈4, 4m2〉;

(iii) there are vectors x, y ∈ L′ and an integer a such that Zx+Z(ae1 +y) =

〈4, 4m2〉.

If (i) holds, then Q(y) = 4m2.

If (ii) holds, then Zx+ Zy =

[
3 −1

−a 4m2 − a2

]
. Hence Q(ax+ y) = 4m2.

If (iii) holds, then Zx + Zy = 〈4, 4m2 − a2〉. Hence Q(mx) = 4m2. In any

case, we have 〈4m2〉 → L′ and so `→ L. This completes the proof.

Let L be the set of all binary Z-lattices, and let L13 be the set of all bi-

nary Z-lattices whose second minimum is greater than or equal to 13. Define

a map φ9 : L13 → L by

φ9 (K) =

[
a b

b c− 9

]
, where

[
a b

b c

]
is a Minkowski-reduced form of K.

Note that φ9 is well defined, for d(φ9(K)) > 0.

Lemma 4.3.3. Let L be a Z-lattice and let K be a binary Z-lattice. If φk9(K)

is represented by L for some nonnegative integer k, then

K −→ L ⊥ 9I5.

Here, 9I5 is the Z-lattice obtained from I5 by scaling Q⊗ I5 by 9.

Proof. Let K be a binary Z-lattice in L13 and let

[
a b

b c

]
be the Minkowski-

reduced form of K. Since 0 ≤ 2b ≤ a ≤ c and c ≥ 13, we have

d(φ9(K)) = a(c− 9)− b2 =
(ac

4
− b2

)
+ a

(
3c

4
− 9

)
> 0,

which implies that φ9(K) ∈ L . Thus φ9 is well defined.

For the proof of the second assertion, we use induction on k. Note that 9I5
represents all binary Z-lattices whose scale are subsets of 9Z. First, suppose
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that φ9(K) is represented by L and let

[
a b

b c

]
is a Minkowski-reduced form

of K. Then, it is obvious that

K '
[
a b

b c

]
=

[
a b

b c− 9

]
+

[
0 0

0 9

]
−→ L ⊥ 9I5.

Now, assume the assertion is true for k and φk+1
9 (K)→ L. Let K ′ = φ9(K)

and

[
a b

b c

]
is a Minkowski-reduced form of K. Then φk9(K ′) = φk+1

9 (K)→ L.

It follows from the induction hypothesis that K ′ → L ⊥ 9I5. This implies

that

K ′ =

[
a b

b c− 9

]
=

[
α1 β1
β1 γ1

]
+

[
α2 β2
β2 γ2

]

where

[
α1 β1
β1 γ1

]
→ L and

[
α2 β2
β2 γ2

]
→ 9I5. Since

[
α2 β2
β2 γ2 + 9

]
is also a

binary Z-lattice whose scale is a subset of 9Z, we have

[
α2 β2
β2 γ2 + 9

]
→ 9I5.

Then,

K '
[
a b

b c

]
=

[
α1 β1
β1 γ1

]
+

[
α2 β2
β2 γ2 + 9

]
−→ L ⊥ 9I5.

Lemma 4.3.4. All proper sublattices of 〈1, 1〉 are represented by both

L1 = 〈1, 2, 3〉 ⊥
[
2 1

1 5

]
⊥ 9I5 and L2 = 〈1, 2, 6〉 ⊥

[
2 1

1 5

]
⊥ 9I5.

Proof. Let ` be a proper sublattice of 〈1, 1〉. If the scale of ` is a subset of

9Z, then 9I5 represents ` and so do both L1 and L2. Now, suppose that ` is

a proper sublattice of 〈1, 1〉 whose scale is not a subset of 9Z. Since ` is a

proper sublattice of 〈1, 1〉, we have ` '
[
a2 ab

ab b2 + c2

]
for some integers a, b

and c with 0 ≤ 2b ≤ a. Put d = d`. Then we have `3 ' 〈ε, εd〉 for some

ε ∈ (Z3)
×. Note that d is a square and so ord3(d) cannot be one. Moreover,

since d(φ9(`)) = d`− 9µ1(`), we also conclude that ord3(d(φk9(`))) cannot be
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one.

Let

[
α β

β γ

]
is a Minkowski-reduced form of ` and assume that γ ≥ 13.

Since φ9(`) =

[
α β

β γ − 9

]
, there exists a unimodular matrix T1 such that

tT1

[
α β

β γ

]
T1 =

[
a2 ab

ab b2 + c2

]
.

Then we have

tT1

[
α β

β γ − 9

]
T1 =

[
a2 ab

ab b2 + c2

]
− 9tT1AT1, where A =

[
0 0

0 1

]
.

If we do this procedure repeatedly, then there are unimodular matrices

T1, T2, . . . , Tk such that

t(Tk · · ·T1)Mk(Tk · · ·T1)

=

[
a2 ab

ab b2 + c2

]
− 9tT1

(
A+ · · ·t Tk−1(A+t TkATk)Tk−1 · · ·

)
T1,

where Mk = φk9(`). If we put

A′ =tT1
(
A+ · · ·tTk−1(A+tTkATk)Tk−1 · · ·

)
T1 =

[
s t

t u

]
,

then we have

φk9(`) = Mk '
[
a2 − 9s ab− 9t

ab− 9t b2 + c2 − 9u

]
.

Firstly, suppose that a ∈ 3Z. Since the scale of ` is not a subset of 9Z,

we have b2 + c2 ∈ Z×3 and so `3 ' 〈b2 + c2, (b2 + c2)d〉. Since b2 + c2 − 9u

is a unit square multiple of b2 + c2 by the local square theorem, we have

b2 + c2 → (φk9(`))3. Then

(φk9(`))3 ' 〈b2 + c2, (b2 + c2)d(φk9(`))〉.
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Secondly, suppose that a 6∈ 3Z. Then `3 ' 〈a2, a2d〉 ' 〈1, d〉. Since a2−9s is a

unit square multiple of a2 by the local square theorem, we have a2 → (φk9(`))3.

Then

(φk9(`))3 ' 〈a2, a2d(φk9(`))〉 ' 〈1, d(φk9(`))〉.

In any cases, we have

(φk9(`))3 ' 〈ε, εd(φk9(`))〉 for some ε ∈ (Z3)
×. (4.3.1)

First, we consider the case when

L1 = 〈1, 2, 3〉 ⊥
[
2 1

1 5

]
⊥ 9I5.

Let K be a binary Z-lattice, and let {x, y} be a Minkowski-reduced basis

for K, that is, K = Zx + Zy =

[
a b

b c

]
with 0 ≤ 2b ≤ a ≤ c. If c ≤ 12, then

K is represented by 〈1, 2, 3〉 ⊥
[
2 1

1 5

]
, except for the following 15 Z-lattices:

[
1 0

0 1

]
,

[
1 0

0 6

]
, (a = 1)[

2 1

1 2

]
,

[
2 1

1 3

]
,

[
2 1

1 4

]
, (a = 2)[

4 0

0 6

]
,

[
4 1

1 4

]
,

[
4 1

1 13

]
,

[
4 2

2 7

]
, (a = 4)[

6 0

0 7

]
,

[
6 0

0 10

]
,

[
6 3

3 7

]
,

[
6 3

3 10

]
, (a = 6)[

7 1

1 10

]
,

[
10 2

2 10

]
. (a = 7 or 10)

For any binary Z-lattice K, since µ2(φ9(K)) ≤ max{µ1(K), µ2(K) − 9},
there exists a nonnegative integer k′ such that µ2(φ

k′
9 (K)) ≤ 12. Thus, there

exists a nonnegative integer k such that φk9(`) ∈ L and µ2(φ
k
9(`)) ≤ 12. If
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φk9(`)→ 〈1, 2, 3〉 ⊥
[
2 1

1 5

]
, then

` −→ 〈1, 2, 3〉 ⊥
[
2 1

1 5

]
⊥ 9I5

by Lemma 4.3.3. Thus, we may assume that φk9(`) is isometric to one of 15

lattices given above. On the other hand, Equation (4.3.1) shows that φk9(`)

is isometric to one of the following Z-lattices:[
1 0

0 1

]
,

[
2 1

1 4

]
.

Note that those lattices are not proper sublattices of 〈1, 1〉.
The preimages of the above Z-lattices under the map φ9 are as follows:

φ−19

([
1 0

0 1

])
=

{[
1 0

0 10

]
,

[
2 1

1 10

]
,

[
5 2

2 10

]
,

[
10 3

3 10

]}
,

φ−19

([
2 1

1 4

])
=

{[
2 1

1 13

]
,

[
4 1

1 11

]
,

[
8 3

3 11

]}
.

One may easily check that all elements in the preimages of

[
1 0

0 1

]
and

[
2 1

1 4

]
are represented by 〈1, 2, 3〉 ⊥

[
2 1

1 5

]
. Then, by Lemma 4.3.3, we have

` −→ 〈1, 2, 3〉 ⊥
[
2 1

1 5

]
⊥ 9I5.

Therefore, all proper sublattices of 〈1, 1〉 are represented by L1.

Now, we consider the case when

L2 = 〈1, 2, 6〉 ⊥
[
2 1

1 5

]
⊥ 9I5.

Let K be a binary Z-lattice and let {x, y} be a Minkowski-reduced basis for
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K, that is, K = Zx + Zy =

[
a b

b c

]
with 0 ≤ 2b ≤ a ≤ c. If c ≤ 12, then K

is represented by 〈1, 2, 6〉 ⊥
[
2 1

1 5

]
, except for the following 29 Z-lattices:

[
1 0

0 1

]
,

[
1 0

0 3

]
,

[
1 0

0 12

]
, (a = 1)[

2 1

1 2

]
,

[
2 1

1 3

]
,

[
2 1

1 4

]
,

[
2 1

1 10

]
, (a = 2)[

3 0

0 3

]
,

[
3 0

0 4

]
,

[
3 0

0 7

]
,

[
3 0

0 10

]
,

[
3 1

1 4

]
, (a = 3)[

4 0

0 12

]
,

[
4 1

1 4

]
,

[
4 1

1 10

]
,

[
4 2

2 4

]
, (a = 4)[

5 0

0 5

]
,

[
5 2

2 5

]
,

[
5 2

2 7

]
, (a = 5)[

6 3

3 7

]
,

[
6 3

3 10

]
, (a = 6)[

7 0

0 12

]
,

[
7 1

1 7

]
,

[
7 2

2 10

]
,

[
7 3

3 12

]
, (a = 7)[

10 0

0 12

]
,

[
10 3

3 12

]
,

[
10 4

4 10

]
,

[
10 5

5 10

]
. (a = 10)

As we proved before, there exists a nonnegative integer k such that φk9(`) ∈

L and µ2(φ
k
9(`)) ≤ 12. If φk9(`)→ 〈1, 2, 6〉 ⊥

[
2 1

1 5

]
, then

` −→ 〈1, 2, 6〉 ⊥
[
2 1

1 5

]
⊥ 9I5

by Lemma 4.3.3. Thus, we may assume that φk9(`) is isometric to one of 29

Z-lattices given above. On the other hand, Equation (4.3.1) shows that φk9(`)
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is isometric to one of the following Z-lattices:[
1 0

0 1

]
,

[
2 1

1 4

]
,

[
2 1

1 10

]
,

[
5 0

0 5

]
,

[
5 2

2 7

]
. (4.3.2)

Note that those Z-lattices are not proper sublattices of 〈1, 1〉. The preimages

of the above Z-lattices under the map φ9 are as follows:

φ−19

([
1 0

0 1

])
=

{[
1 0

0 10

]
,

[
2 1

1 10

]
,

[
5 2

2 10

]
,

[
10 3

3 10

]}
,

φ−19

([
2 1

1 4

])
=

{[
2 1

1 13

]
,

[
4 1

1 11

]
,

[
8 3

3 11

]}
,

φ−19

([
2 1

1 10

])
=

{[
2 1

1 19

]
,

[
10 1

1 11

]}
,

φ−19

([
5 0

0 5

])
=

{[
5 0

0 14

]
,

[
10 5

5 14

]}
,

φ−19

([
5 2

2 7

])
=

{[
5 2

2 16

]
,

[
7 2

2 14

]
,

[
8 3

3 14

]}
.

One may easily check that all elements in the preimages of Z-lattices in

(4.3.2) are represented by 〈1, 2, 6〉 ⊥
[
2 1

1 5

]
except for the Z-lattice

[
2 1

1 10

]
.

However,

[
2 1

1 10

]
is not a proper sublattice of 〈1, 1〉. Then, by Lemma 4.3.3,

we have

` −→ 〈1, 2, 6〉 ⊥
[
2 1

1 5

]
⊥ 9I5.

Therefore, all proper sublattices of 〈1, 1〉 are represented by L2.

Proposition 4.3.5. If m is a positive integer with ord3(m) = 1, then m is

not a recoverable number.

Proof. If m is a positive integer with ord3(m) = 1, then either
m

3
≡ 1 (mod 3)

or
m

3
≡ 2 (mod 3) holds. Since the other case can be treated in a similar

manner, we only consider the case when
m

3
≡ 2 (mod 3). Define the Z-lattice
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L by

〈1, 2, 3, 4m− 1〉 ⊥
[
2 1

1 5

]
⊥ 9I5 ⊥M(4m+ 1).

Clearly, L does not represent 〈1, 4m〉. By the definition of L, for any proper

sublattice of 〈1, 4m〉 which is of the form

[
a2 ab

ab b2 + 4m

]
with a ≥ 2, it suffices

to show that

[
a2 ab

ab b2 + 1

]
is represented by 〈1, 2, 3〉 ⊥

[
2 1

1 5

]
⊥ 9I5. This

follows from Lemma 4.3.4.

Proposition 4.3.6. An integer m is a recoverable number if 4m is repre-

sented by all of the following Z-lattices:[
4 0

0 8

]
,

[
4 1

1 8

]
,

[
4 2

2 8

]
,

[
4 3

3 8

]
,

[
4 4

4 8

]
,

[
4 5

5 8

]
,[

4 0

0 9

]
,

[
4 1

1 9

]
,

[
4 2

2 9

]
,

[
4 3

3 9

]
,

[
4 4

4 9

]
,

[
4 5

5 9

]
.

In particular, 5569 is a recoverable number.

Proof. Suppose that there is a Z-lattice L such that it represents every proper

sublattice of 〈1, 4m〉, but not 〈1, 4m〉 itself.

Since 〈1, 16m〉 → L, we have 〈1〉 → L. Let L = 〈1〉 ⊥ L′.

For 〈4, 4m〉 → L, one of the following holds:

(i) there is a vector y ∈ L′ such that Z(2e1) + Zy = 〈4, 4m〉;

(ii) there are vectors x, y ∈ L′ and and integer a such that Z(e1 + x) +

Z(ae1 + y) = 〈4, 4m〉;

(iii) there are vectors x, y ∈ L′ and an integer a such that Zx+Z(ae1 +y) =

〈4, 4m〉.

When (i) or (ii) holds, 4m is represented by L′, which is a contradiction.

Therefore, L′ represents 4 and 〈4, 4m− a2〉 for some odd integer a.

Since 〈9, 4m〉 is represented by L, similarly one may show that L′ repre-

sents either 8 or 9.
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Suppose that L′ represents 4 and 8. Then L′ represents at least one of

the following binary Z-lattices:[
4 0

0 8

]
,

[
4 1

1 8

]
,

[
4 2

2 8

]
,

[
4 3

3 8

]
,

[
4 4

4 8

]
,

[
4 5

5 8

]
.

Here, we have[
4 3

3 8

]
'
[
4 1

1 6

]
,

[
4 4

4 8

]
'
[
4 0

0 4

]
, and

[
4 5

5 8

]
'
[
2 1

1 4

]
.

Suppose that L′ represents 4 and 9. Then L′ represents at least one of

the following binary Z-lattices:[
4 0

0 9

]
,

[
4 1

1 9

]
,

[
4 2

2 9

]
,

[
4 3

3 9

]
,

[
4 4

4 9

]
,

[
4 5

5 9

]
,

[
4 6

6 9

]
.

Here, we have[
4 3

3 9

]
'
[
4 1

1 7

]
,

[
4 4

4 9

]
'
[
4 0

0 5

]
, and

[
4 5

5 9

]
'
[
3 1

1 4

]
.

Suppose that

[
4 6

6 9

]
is represented by L′. Then there are x and y in L′

such that Q(x) = 4, Q(y) = 9 and B(x, y) = 12. Since Q(3x − 2y) = 0, we

have 3x = 2y. Therefore, there exists a vector z in L′ with Q(z) = 1. Then

we have L′ = 〈1〉 ⊥ L′′. Note that L′ represents 〈4, 4m − a2〉. Moreover,

since 9 is represented by L′ from the assumption, it is true that L′ represents

〈9, 4m− b2〉 for some integer b with 4m− b2 > 0. Since the above argument

does not depend on 4m, we conclude that L′′ represents 4 and either 8 or 9.

Then, L′ represents at least one of above 12 Z-lattices.

Hence, m is a recoverable number if 4m is represented by all of the above

12 Z-lattices. In particular, since 4·5569 is represented by all of 12 Z-lattices,

5569 is a recoverable number.

Proposition 4.3.7. For any integer m with 2 ≤ m ≤ 35, m is a recoverable

number only when m is a square.
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Proof. Let pi be the i-th prime when we arrange all prime numbers in the

ascending order. Let m be a positive integer which is not a square. Then

there exists a positive integer M such that p2M < 4m < p2M+1. We define a

Z-lattice K(pi) by

K(pi) = ⊥
1≤j≤[ pi

2
]

[
p2i pij

pij j2 + 4m

]
and a Z-lattice Lm by

Lm = 〈1, 4m− 1〉 ⊥
(
⊥

2≤i≤M
K(pi)

)
⊥M(4m+ 1).

Let `′ be a proper sublattice of ` = 〈1, 4m〉.
(Case 1) If min(`′) > 4m, then M(4m+ 1) represents `′ and so does Lm.

(Case 2) If min(`′) = 4m, then `′ ' 〈4m,α2〉 for some integer α with

α2 ≥ 4m. Since 4m is not a square, we have α2 > 4m and so α2 is represented

by M(4m+ 1). Thus, Lm represents `′.

(Case 3) Assume that 1 < min(`′) < 4m. There exists the unique positive

integer h such that h2 < 4m < (h+ 1)2. Note that

`′ '
[
i2 ij

ij j2 + 4mβ2

]
for some integers i, j and β with 2 ≤ i ≤ h, 0 ≤ j ≤

[
i
2

]
, β ≥ 1. Since i ≥ 2,

i has at least one prime factor p. Put i = pk for some integer k. Then

`′ '
[

(pk)2 (pk)j

(pk)j j2 + 4mβ2

]
−→

[
p2 pj

pj j2 + 4mβ2

]
'
[
p2 pj′

pj′ j′2 + 4mβ2

]
where j′ is the positive integer such that 0 ≤ j′ ≤

[
p
2

]
and either j′ or −j′

is congruent to j modulo p. Since 4m < p2M+1, we have i ≤ pM . Hence `′ is

represented by Lm. Thus, Lm represents all proper sublattices of 〈1, 4m〉.
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If there is no integer solution x1,1, . . . , xM,
pM−1

2
of

4m =
M∑
i=1

 pi−1

2∑
j=1

p2ixi,j

 , (4.3.3)

then Lm does not represent 〈1, 4m〉. Therefore, if Equation (4.3.3) has no

integer solution, m is not a recoverable number. For 2 ≤ m ≤ 30 =
[
112

4

]
,

Equation (4.3.3) has no integer solution except form = 10, 13, 18, 26, 27, 28, 29.

First, we consider the case when m = 10. Although there is an integer

solution of 4x21,1 +9x22,1 = 40, there is no integer solution of 4x21,1 +4x1,1x2,1 +

9x22,1 = 40. Then we consider a following Z-lattice:

L′40 = 〈1〉 ⊥ K ⊥ K(5) ⊥ 〈39〉 ⊥ M(41)

where

K =


4 2 2 0

2 9 0 2

2 0 41 0

0 2 0 41

 .
By the same argument, one may easily prove that L′40 represents all sublat-

tices of 〈1, 40〉. However, since 15 and 40 are not represented by K. Thus,

L′40 does not represent 〈1, 40〉.
Similarly, for an integer m with m = 13, 18 or 26 ≤ m ≤ 35, we can find

a lattice L that represents all proper sublattices of 〈1, 4m〉 but not 〈1, 4m〉
itself. We list a Z-lattice L such that L represents all proper sublattices of

〈1, 4m〉 but not 〈1, 4m〉 itself for each m = 13, 18 or 26 ≤ m ≤ 35 in the

following tables.
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m L

13 〈1, 51〉 ⊥


4 2 2 0

2 9 0 2

2 0 53 0

0 2 0 53

 ⊥ K(5) ⊥ K(7) ⊥M(53)

18 〈1, 71〉 ⊥


4 2 2 0

2 9 0 2

2 0 73 0

0 2 0 73

 ⊥ K(5) ⊥ K(7) ⊥M(73)

26 〈1, 103〉 ⊥


4 2 2 0

2 25 5 10

2 5 105 0

0 10 0 108

 ⊥ K(3) ⊥ K(7) ⊥M(105)

27 〈1, 107〉 ⊥


9 2 3 0

2 25 5 10

3 5 111 0

0 10 0 112

 ⊥ K(2) ⊥ K(7) ⊥M(109)

28 〈1, 103〉 ⊥


9 2 3 0

2 25 5 10

3 5 113 0

0 10 0 116

 ⊥ K(2) ⊥ K(7) ⊥M(113)

29 〈1, 115〉 ⊥


4 2 2 0

2 25 5 10

2 5 117 0

0 10 0 120

 ⊥ K(3) ⊥ K(7) ⊥M(117)

Table 4.1: A Z-lattice L which represents all proper sublattices of 〈1, 4m〉
but not 〈1, 4m〉 itself for each m = 13, 18, 26, 27, 28, 29.
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m L

31 〈1, 123〉 ⊥


4 2 2 0 0

2 49 7 14 21

2 7 125 0 0

0 14 0 128 0

0 21 0 0 133

 ⊥ K(3) ⊥ K(5) ⊥ K(11) ⊥M(125)

32 〈1, 127〉 ⊥


4 2 2 0 0

2 49 7 14 21

2 7 129 0 0

0 14 0 132 0

0 21 0 0 137

 ⊥ K(3) ⊥ K(5) ⊥ K(11) ⊥M(129)

33 〈1, 131〉 ⊥


4 2 2 0 0

2 49 7 14 21

2 7 133 0 0

0 14 0 136 0

0 21 0 0 141

 ⊥ K(3) ⊥ K(5) ⊥ K(11) ⊥M(133)

34 〈1, 135〉 ⊥



4 2 0 0 2 0 0

2 9 2 0 3 0 0

0 2 25 2 5 10 0

0 0 2 49 7 14 21

2 3 5 7 137 0 0

0 0 10 14 0 140 0

0 0 0 21 0 0 145


⊥ K(2) ⊥ K(7) ⊥M(109)

35 〈1, 139〉 ⊥


4 0 2 2 0

0 9 3 3 0

2 3 25 5 10

2 3 5 141 0

0 0 10 0 144

 ⊥ K(7) ⊥ K(11) ⊥M(141)

Table 4.2: A Z-lattice L which represents all proper sublattices of 〈1, 4m〉
but not 〈1, 4m〉 itself for each m = 31, 32, 33, 34, 35.
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국문초록

변수의 개수가 유계인, 양의 정부호이고 정수 계수인 이차형식의 집합 S에

대하여, 모든 S0-보편형식이 S-보편형식이 되는 S의 부분집합 S0를 S-보편성

판정 집합이라 한다.

이 논문에서는 최소 S-보편성 판정 집합에 관한 다양한 성질에 관하여 연

구한다. 먼저집합 S가자연수의부분집합인경우,최소 S-보편성판정집합이

유일함을 증명한다. 또한, 9 이상의 정수 n에 대하여 모든 n차 이차형식의 집

합을 S라 할 때, 최소 S-보편성 판정 집합은 항상 유일하지 않음을 증명한다.

이차형식 f의 모든 부분이차형식들의 집합 Sf에 대하여, {f} 이외의 최소
Sf -보편성 판정 집합이 존재할 때, f를 복구 가능한 이차형식이라 한다. 이

논문에서는 복구 가능한 이차형식이 되기 위한 몇 가지 충분조건과 몇 가지

필요조건을 증명한다.

주요어휘: 이차형식의 표현, 최소 S-보편성 판정 집합

학번: 2013-20241
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