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ABSTRACT 

 

Studies on the effect of post-translational 
modification on learning and memory using 

transgenic mice of Lsd1 and Neurl 1/2 
 

Jaehyun Lee 

College of Natural Science  

Interdisciplinary Program in Neuroscience, 

 Seoul National University 

 

Numerous molecular signaling pathways are engaged in the regulation of learning 

and memory. A growing number of reports provide that post-translational 

modification is important for learning and memory. Nonetheless, there is still a lot 

to be discovered. In this thesis, among the various post-translational modification 

mechanisms, I focused on the role of phosphorylation and ubiquitination in the 

regulation of learning and memory. To do this, I used two strains of transgenic mice. 

The first strain of mice was PKCα-mediated phosphorylation-defective Lysine-

specific demethylase 1 (Lsd1) knock-in mice. The second strain of mice consisted of 
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three types of transgenic mice wherein Neurl 1 gene (Neurl 1 KO) or Neurl 2 gene 

(Neurl 2 KO) was knocked-out, or Neurl 1 and Neurl 2 gene were both knocked-out 

(Neurl 1,2 KO). 

In the first part of the current study, I have identified the function of the 

phosphorylation of Lsd1, mediated by PKCα, in learning and memory. Lsd1 KI mice 

showed impaired hippocampus-dependent fear and spatial memory. In addition, 

Lsd1 KI mice showed altered presynaptic function and short-term synaptic plasticity; 

however, long-term synaptic plasticity, such as long- term potentiation (LTP) and 

long-term depression (LTD), was intact. Consistent with this, RNA-seq analysis of 

the hippocampus of Lsd1 KI mice provided that the gene expressions related to 

presynaptic function-related genes were altered. These results suggest that PKCα-

mediated phosphorylation of Lsd1 is involved in the regulation of short-term 

synaptic plasticity and hippocampus-dependent memory. 

In the second part of the study, I have elucidated the specific functions of Neurl 1 

and Neurl 2, which are both E3 ubiquitin ligase enzymes in hippocampus-dependent 

learning and memory. In sum, the results showed that hippocampus-dependent 

spatial learning and memory were impaired only in Neurl 1,2 KO mice. In addition, 

protein synthesis-dependent LTP was impaired only in Neurl 1,2 KO mice, 

nonetheless basal synaptic properties have not been altered. Moreover, I revealed 

that there was neither compensatory overexpression of Neurl 1 transcripts in Neurl 

2 KO mice nor that of Neurl 2 transcripts in Neurl 1 KO mice. Therefore, these 

findings suggest that hippocampus-dependent spatial memory and protein-synthesis 

dependent LTP were impaired when Neurl 1 and Neurl 2 are both absent, but not 
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when either Neurl 1 or Neurl 2 is present.   

Taken together, I have identified two cases in which post-translational modification 

is involved in the regulation of learning and memory, one concerning the effect of 

PKCα mediated-phosphorylation of Lsd1, and the other about the role of E3 

ubiquitin ligases, Neurl 1 and Neurl 2. Even though it is hard to say that Lsd1 and 

Neurl 1 and Neurl 2 gene, per se, share the same molecular pathway in regulating 

learning and memory, these studies suggest that the phosphorylation of Lsd1 and the 

expression of either neurl 1 or neurl 2 is essential, in regulating hippocampus-

dependent spatial learning and memory. Thus, this thesis provides multiple pieces of 

evidence for the fact that post-translational modification provides multiple conduits 

through which regulation of learning and memory could be achieved. 

 

Keywords: Phosphorylation, Ubiquitination, Synaptic plasticity, Histone 

demethylase, E3 ligase, Hippocampus  
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BACKGROUND 

Post-translational modification  

Post-translational modification is a critical biochemical process involved in the 

diversification of protein functions and the regulation of various cellular events such 

as gene expression, protein-protein interaction, and cellular signal transduction 

(Routtenberg and Rekart 2005, Walsh 2006, Sunyer, Diao et al. 2008, Deribe, 

Pawson et al. 2010, Nussinov, Tsai et al. 2012, Hasegawa, Yoshida et al. 2014, 

Lussier, Sanz-Clemente et al. 2015). There exist many different types of post-

translational modifications, such as acetylation, methylation, phosphorylation, 

ubiquitination, and SUMOylation. Each process modulates the structural and 

functional changes of proteins through enzymatic modification which add functional 

groups to target substrates following protein biosynthesis. For instance, 

Acetylation/deacetylation and methylation/demethylation are well studies post-

translational modification in epigenetic regulation of gene expression through 

histone modification (Bannister and Kouzarides 2011). Protein kinases/phosphatases 

regulate activity of target substrates such as receptors and enzymes through 

attachment or detachment of phosphate (Ardito, Giuliani et al. 2017). Ubiquitination 

involves an enzymatic cascade which leads to the degradation of target substrates by 

means of ubiquitin-proteasome system (Nandi, Tahiliani et al. 2006). SUMOylation 

is mediated by the function of Small Ubiquitin-like Modifier (SUMO) proteins in 

gene transcription, cell cycle, and subcellular transport (Hay 2005). These 

multifaceted pieces of evidence testify the fact that post-translational modification 

plays a role in various biological functions. 
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Protein phosphorylation involved in the regulation of learning & 

memory and synaptic plasticity  

Phosphorylation is an enzymatic reaction in which a phosphate group is added to 

target proteins. Phosphate groups primarily attach to serine, threonine, or tyrosine 

residues (Brady and Siegel 2012). Two kinds of enzymes regulate the 

phosphorylation of protein: protein kinases and protein phosphatases. Protein 

kinases phosphorylate specific target proteins, while protein phosphatases remove 

amino acid residue of its substrate proteins (Manning, Whyte et al. 2002).  

Accumulating evidence suggests that protein kinases and protein phosphatases are 

also engaged in synaptic plasticity, especially in long-term potentiation (LTP) 

(Pasinelli, Ramakers et al. 1995) and long-term depression (LTD) (Lee 2006). 

Involvement of protein kinase M ζ (PKMζ) (Sacktor, Osten et al. 1993, Serrano, Yao 

et al. 2005), Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Silva, Stevens 

et al. 1992, Giese, Fedorov et al. 1998), cAMP-dependent protein kinase (PKA) 

(Matthies and Reymann 1993, Abel, Nguyen et al. 1997) and various kinases are 

required for the regulation of LTP. Moreover, PKA (Brandon, Zhuo et al. 1995, 

Kameyama, Lee et al. 1998) and several protein phosphatases such as protein 

phosphatase 1 (PP1), protein phosphatase 2A (PP2A) and protein phosphatase 2B 

(PP2B, calcineurin) (Mulkey, Herron et al. 1993, Mulkey, Endo et al. 1994) are 

involved in the regulation of LTD.  

Furthermore, previous studies using transgenic mice in which phosphorylation 

deficit occurred to M3-muscarinic receptor (Poulin, Butcher et al. 2010), TrkB (Lai, 
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Wong et al. 2012), and AMPA Receptor GluR1 Subunit (Lee, Takamiya et al. 2003) 

showed impairments in spatial memory and synaptic plasticity.  

Protein ubiquitination involved in the regulation of learning & memory 

and synaptic plasticity  

Ubiquitin is a 76–amino acid polypeptide, which can be covalently attached to 

lysine residues in substrate proteins (Hershko and Ciechanover 1998). 

Ubiquitination is a process in which target substrates are modified through an 

enzymatic cascade comprising ubiquitin-activating enzymes (E1 ligase), ubiquitin-

conjugating enzymes (E2 ligase), and ubiquitin ligases (E3 ligase) (Wilkinson 1987, 

Song and Luo 2019). In brief, activated E1 ligase first activates ubiquitin; then, 

activated ubiquitin is transferred and conjugated to E2 ligase; depending on the E3 

ubiquitin ligase, E2-ubiquitin conjugate can be transferred to the protein substrate 

(Hershko and Ciechanover 1998). This modification induces a change in properties 

of substrate proteins, including protein activity, intracellular trafficking, cellular 

localization, protein-protein interaction, and proteasomal degradation (Hicke 2001).  

Ubiquitination plays an important role in modulating overall synaptic plasticity, 

including synapse formation, elimination, LTP, and LTD (Haas and Broadie 2008, 

Mabb and Ehlers 2010). In specific, ubiquitination is reported to be crucial in a 

number of processes which enable some of the functionalities related to neuronal 

receptors known to regulate synaptic plasticity, such as AMPA receptors trafficking 

(Widagdo, Guntupalli et al. 2017), activity-dependent degradation of NMDA 

receptors (Kato, Rouach et al. 2005), and regulation of kainate receptors (KARs) and 

metabotropic glutamate receptors (Lin and Man 2013). 
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In addition, previous reports suggested diverse roles of various E3 ligases in 

synaptic plasticity, learning and memory (Zhang, Li et al. 2013, Chakraborty, Paul 

et al. 2015, Kim, Kim et al. 2015, Sun, Zhu et al. 2015). For instance, transgenic 

mice lacking a type of ubiquitin E3, UBE3A, in the brain exhibited impaired 

contextual fear learning and LTP (Jiang, Armstrong et al. 1998). Another study that 

used a knock-out transgenic mice of an E3 ligase, Dorfin, showed impaired 

contextual fear memory, but not in other kinds of memories, and enhanced LTP 

(Park, Yang et al. 2015).  

Studies of hippocampus-dependent memory in rodent model  

Over the past decades, numerous lines of transgenic mice were produced and this 

provided a novel opportunity for approaching specific biological functions in those 

model mice. Even more, cognitive functions, such as learning and memory, have been 

accessed using rodent models.     

Spatial memory is a well-studied form of memory in rodent models. Researchers assess 

spatial memory using various behavioral paradigms such as Barnes maze test (Barnes 

1979), object location memory test (Murai, Okuda et al. 2007, Vogel-Ciernia and Wood 

2014), and Morris water maze test (Brandeis, Brandys et al. 1989, Vorhees and Williams 

2006). Among these tests, the Morris water maze test is considered as a test for 

hippocampus-dependent spatial memory (Morris, Garrud et al. 1982), because this test 

requires mice to memorize and utilize spatial cues, such as the location of objects within 

the surrounding, in order to reach a platform concealed under opaque water.  

Fear memory is one of the best-studied memory in rodent models. Previous fear 

memory studies about contextual fear learning and cued fear learning provided us with 
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a deeper understanding of fear memory (Wehner and Radcliffe 2004). The contextual 

fear conditioning test is one of the most popular behavioral tasks for testing 

hippocampus-dependent forms of memory (Fanselow 2000). Since fear learning is a sort 

of Pavlovian conditioning (Maren and Holt 2000), association between the context (CS) 

and foot shock (US) is formed during the experimental paradigm of contextual fear 

conditioning.  

LTP and LTD in the hippocampus 

Synapses are modified in an activity-dependent way. On the one hand, persistent 

stimulation induces a strengthened connection between a pre- and postsynaptic 

terminal, in a process termed LTP. On the other hand, unpaired activation of pre- 

and postsynaptic terminals induces long-lasting depression, or LTD. Researches on 

LTP and LTD have provided a much deeper understanding regarding the molecular 

mechanisms of synaptic plasticity (Bear and Malenka 1994). In this study, I 

investigated two forms of LTP: early-phase LTP (E-LTP) and late-phase LTP (L-

LTP). E-LTP requires a signal transduction cascade by several kinases that 

phosphorylate essential molecules, including ion channels in neurons. However, the 

effects of E-LTP ebbs away within several hours. In contrast, while L-LTP requires 

de novo protein synthesis, it continues to exist for several hours in vitro and persists 

for weeks or even months in vivo (Santini, Huynh et al. 2014). Moreover, LTP and 

LTD are also important for synaptic plasticity in learning and memory (Collingridge, 

Peineau et al. 2010, Nicoll 2017).  

 

 



 

15 

PURPOSE OF THIS STUDY 

Among multiple types of post-translational modifications, phosphorylation and 

ubiquitination are reversible and have been reported to play crucial roles in learning 

and memory and synaptic plasticity. However, there still remains a lot to be 

revealed. Here, I have focused on the effect of phosphorylation and ubiquitination 

on learning and memory in terms of behavior, physiological and molecular 

mechanisms.    

In chapter II, I examine specific effects of phosphorylation of Lsd1 mediated by 

PKCα on hippocampus-dependent learning and memory. Using PKCα-mediated 

phosphorylation-defective Lsd1 KI mice, I conduct behavioral and physiological 

tests for learning and memory. First, I demonstrate the hippocampus-dependent 

learning and memory and physiological property of Lsd1 KI mice. Second, I 

introduce phosphorylation-defective Lsd1 induced alterations of gene expression. I 

sort out changes in mRNA expression levels using RNA-seq and qRT-PCR. 

In chapter III, I identify specific functions of Neurl 1 and Neurl 2, which are E3 

ligase enzymes, in hippocampus-dependent learning and memory. Using single 

knock-out mice of Neurl 1 or Neurl 2, and knock-out mice of both Neurl 1 and 

Neurl 2, I performed behavioral and physiological tests for learning and memory. 

First goal of this study is to underline the role of Neurl 1 and Neurl 2 in 

hippocampus-dependent learning and memory. Second goal of this study is to check 

if there occurred any alteration in the expression levels of downstream molecules 

of Neurl 1 and Neurl 2 and if there existed compensatory mechanisms between the 

two genes for making amends for the loss of one of the genes.  
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INTRODUCTION 

Lysine-specific demethylase 1 (Lsd1), also referred to as KDM1, is a histone-

specific demethylase. Lsd1 acts on mono-and di-methylated histone H3K4 or H3K9 

via amine oxidation reaction which requires flavin adenine dinucleotide (FAD) (Shi, 

Lan et al. 2004, Yang, Gocke et al. 2006). Lsd1 form CoREST complexes together 

with histone deacetylase (HDAC) 1 and 2 which contribute in the repression of 

certain genes and interact with androgen receptor (AR) to induce the activation of 

AR-dependent genes (Metzger, Wissmann et al. 2005, Wang, Hevi et al. 2009, 

Rudolph, Beuch et al. 2013). On the other hand, Lsd1 also plays an important role 

in embryogenesis, tissue differentiation process, and tumor cell growth (Kahl, 

Gullotti et al. 2006, Lim, Janzer et al. 2010, Pedersen and Helin 2010). Moreover, 

Lsd1 represses Notch signaling by forming a SIRT-LSD1 co-repressor complex 

(Mulligan, Yang et al. 2011).  

Previous studies reported that Lsd1 plays a role in learning and memory. In the 

novel object recognition (NOR) task, inhibition of Lsd1 by treatment of a specific 

inhibitor, RN-1, immediately following a novel object recognition training resulted 

in a long-term memory deficit in the NOR task. However, short-term memory of the 

subject mice was intact (Neelamegam, Ricq et al. 2012). Lsd1-mediated histone 

lysine methylation on H3K9 results in gene expressions needed for fear memory 

consolidation (Gupta, Kim et al. 2010, Gupta-Agarwal, Jarome et al. 2014). In 

addition, it was reported that an alternatively spliced neuronal isoform of Lsd1 

(Lsd1n) is also produced in mammalian (Zibetti, Adamo et al. 2010). Instead of 

H3K4 demethylase activity, Lsd1n has a demethylase activity upon histone H4K20 
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and is involved in long-term memory formation via control of transcriptional 

elongation (Wang, Telese et al. 2015).  

Moreover, a recent study reported that phosphorylation of Lsd1 at Serine 112 

residue is mediated by PKCα (Nam, Boo et al. 2014). Several studies suggested that 

PKCα-mediated phosphorylation of Lsd1 is implicated in the induction of epithelial-

mesenchymal transition and metastasis of breast cancer (Feng, Xu et al. 2016), 

regulation of inflammatory response (Kim, Nam et al. 2018) and circadian 

rhythmicity (Nam, Boo et al. 2014). However, the function of the phosphorylation 

of Lsd1 by PKCα in cognitive capabilities still awaits to be elucidated. To shed light 

on this issue, I investigated how phosphorylation of Lsd1 by PKCα affects the 

regulation of both learning and memory and synaptic plasticity.   

In this study, I used transgenic mice expressing PKCα mediated phosphorylation-

defective Lsd1, henceforth referred as Lsd1 KI mice. My results provide that Lsd1 KI 

mice show altered presynaptic plasticity and impaired hippocampus-dependent 

learning and memory. In addition, I revealed that the expression levels of memory 

and presynaptic function-related genes were altered in the hippocampus of Lsd1 KI 

mice.  
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EXPERIMENTAL PROCEDURES 

Mice 

Production of a defective form of Lsd1 knock-in (Lsd1 KI) mice was conducted 

according to a previously established protocol (Nam, Boo et al. 2014). As a brief 

explanation, PKCα phosphorylates the 112th serine residue of Lsd1. However, Lsd1 

KI mice express phosphorylation-defective Lsd1, in which serine 112 is replaced 

into alanine. Mice were co-housed and provided with food and water ad libitum. The 

animals were subjected to 12-hour dark/light cycle (lights on at 9:00 a.m., lights off 

at 9:00 p.m.). Adult male mice between age of 8-15 week were used, and behavioral 

experiments were performed during the light phase. All tests were performed as blind 

tests with regard to the information of genotypes. This research was endorsed by 

Seoul National University's Institutional Animal Care and Use Committee. All 

experiments were conducted in compliance with the institution’s tabulated 

guidelines and regulations. 

Immunohistochemistry 

Sample preparation  

Cardiac perfusion was performed using a 4% solution of paraformaldehyde (PFA) 

dissolved in 1x PBS. Brains extracted from Lsd1 KI mice and WT littermates were 

stored in the 4% PFA solution overnight at 4 ° C. Using a cryostat machine, the brain 

was sectioned into 40 μm-thick slices.  
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Antibody staining & Imaging  

Brain sections were incubated in 2% goat serum blocking solution (0.2% Triton X-

100 in PBS) for 1 hour. After the first blocking step, Lsd1 antibodies (1:500, 

Abcam), dissolved in a blocking solution with the same composition, were applied 

to the brain sections at 4 °C overnight. The next day, anti-rabbit Alexa Fluor 555 

IgG (1:400, Invitrogen) in the blocking solution was treated to the brain sections and 

the sections were incubated at room temperature for 2 hours. A fluorescent 

microscope (IX51, Olympus) was employed while capturing images with 

fluorescent signals.  

Behavioral tests 

Open-field test 

A white plexiglas box (40 × 40 × 40 cm) was used as an open field box. Mice were 

put into an empty open field box and were permitted to explore freely in a dim light 

condition. Time spent in each of two zones (Center zone (within a 20 × 20 cm) and 

the peripheral zone ( 40 × 40 cm)) and the total moved distance were calculated 

using a tracking program (EthoVision 9.0, Noldus). 

Elevated zero maze test  

The elevated zero maze (EZM) apparatus used in this study was a round track (60 

cm diameter, 5 cm width) elevated 65 cm above ground level. EZM apparatus 

consisted of four zones: two zones had walls on both sides (closed arms) and the 
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other two were without walls (open arms). Mice were positioned on one of the closed 

arms and freely explored the apparatus for 5 minutes. The movement of mice in each 

arm was quantified via a tracking program (EthoVision 9.0, Noldus). Increased time 

spent in closed arms was considered as an indicator of high-level basal anxiety. 

T-maze test 

Mice were group-housed and fed 80-85% of the average daily consumption as 

enforcement of dietary restriction. The T-maze apparatus was made of black walls 

and white floor made out of acrylic (long arm = 41 cm × 9 cm × 10 cm, short arms 

= 30 cm × 9 cm × 10 cm, start box = 8 cm × 8 cm × 10 cm). For three consecutive 

days, mice were handled by the experimenter for 3 minutes a day. Habituation 

sessions were performed on two consecutive days. During the habituation sessions, 

50% condensed milk reward (diluted with saline) was given at the end of the two 

long arms. Mice were allowed to move freely in the T-maze for 15 minutes. Tests 

were conducted for five consecutive days from the day after the habituation period, 

and mice were tested four times a day. All tests are performed under dim light, and 

each trial consisted of a forced run and a choice run. The forced run arm and the 

choice run arm were switched in each successive trial as a measure of 

counterbalancing. 

Contextual fear conditioning test 

For three consecutive days, the experimenter handled mice for 3 minutes per day. 

For conditioning, mice were put into a chamber and allowed to explore it freely. 

Then a foot shock (Single shock, 0.6 mA for 2 sec) was presented through the floor 
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grid. After the conditioning, the mice were returned to their respective home cages. 

After the conditioning, the mice were re-exposed to the same chamber for 3 min at 

either 1 hour or 24 hours after training. The state of immobility, excluding 

respiration, was regarded as a manifestation of freezing behavior. The level of 

freezing was automatically evaluated using computer software (Freeze Frame, 

Coulbourn Instruments). 

Cued fear conditioning test 

The experimenter handled mice for 3 minutes each for four consecutive days. On 

the day of the conditioning, the mice were placed in a conditioning chamber, and a 

30-second tone (3 kHz, 80 dB) was delivered twice (at 3 min and 5 min). When the 

tone was finished, an electrical foot shock was immediately released (0.7 mA for 2 

sec). One day after the conditioning, subject mice were introduced into a different 

chamber, which was considered as a distinctive context, for 3 minutes and the same 

tone was played for another 1 minute. The percentage of freezing behavior was 

automatically calculated using a computer program (Freeze Frame, Coulbourn 

Instruments).  

Morris water maze test 

Mice were handled 3 min per day for three consecutive days prior to the training. 

For training, mice were put into a round tank (140 cm diameter, 100 cm height), 

filled with opaque white water (20~22 °C), situated in a room with multiple spatial 

cues on the walls. I divided the tank into four virtual quadrants, and a platform (10 

cm diameter) was positioned at the center of the target quadrant (TQ). During 



 

23 

training days, the experimenter observed whether the subject mouse reached the 

platform successfully and stayed more than a second on the platform, and rescued 

the mouse 10 seconds after the observation. Four trials per day were conducted, and 

2 min interval was given between trials. Mice were randomly loosed from the edge 

of the maze and trained to attain the platform within a 60-second-period. When the 

mouse failed to reach the platform within 60 seconds, they were guided and 

positioned for 10 seconds on the platform. In probe tests, mice were allowed to 

explore the tank without the platform; the movement of mice was tracked for 1 

minute. Probe tests were conducted twice: on day 4 before starting the training 

session for that day, and on day 6. A tracking program (EthoVision 9.0, Noldus) was 

used for analysis. 

Three-chamber test 

The procedure of the three-chamber test was conducted over five consecutive days 

and was composed of two parts: four days of handling period and one test day. 

During the first four days, the experimenter handled stranger mice, with which the 

test mice never acquainted, for 3 minutes and then habituated them in a wired cage 

located in the three-chamber apparatus for 5–10 minutes. On the fourth day, after the 

end of habituation for a stranger mouse, another mouse (the test mouse) was 

introduced to the three-chamber apparatus and habituated for 10 minutes. On the 

fifth day, a sociability test and a social recognition test were serially performed. First, 

the test mouse was brought to the middle chamber while the doors opening to the 

other areas were shut. In the other two chambers, two wired cages were positioned. 

Cage on one side contained a same-sex mouse (stranger 1), while cage on the other 
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side was empty. Then the doors were opened and the test mouse was allowed to 

approach the two wired cages. 10 minutes later, the test mouse was put into the 

middle chamber again, and the doors were closed. For the social recognition test, an 

empty wire cage was removed, and another same-sex mouse (stranger 2) in a wired 

cage was situated instead. The doors were again opened, and the test mouse was 

permitted to access two wired cages. For each set of tests, positions for the two wired 

cages, one with strangers 1 and one empty (or with stranger 2), were 

counterbalanced. During the two tests, movement of mice was tracked by tracking 

software (EthoVision 9.0, Noldus).  

Electrophysiology  

Extracellular field recordings 

Transverse hippocampal slices (thickness 400 μm) were prepared from 4~5-week-

old mice (for LTD) and 8~12-week-old mice (for LTP) for extracellular field 

recordings. The brain tissues extracted from deeply anesthetized mice (isoflurane 

anesthetization) were sectioned by a manual tissue chopper. Brain slices were 

allowed to recover for 2 hours and then placed in a recording chamber at 25 °C, 

perfused (1~1.5 mL/min) with oxygenated artificial cerebrospinal fluid (ACSF, 290 

Osm) containing (in mM) 124 NaCl, 2.5 KCl, 1 NaH2PO4, 25 NaHCO3, 10 glucose, 

2 CaCl2, and 2 MgSO4. Extracellular field EPSPs (fEPSPs) were recorded in the 

CA1 region of hippocampal slices using a glass electrode filled with ACSF (1 MΩ). 

Using concentric bipolar electrodes (MCE-100; Kopf Instruments), the Schaffer 

collateral (SC) pathway was stimulated every 30 seconds. For measurement, field 
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potentials were amplified, low-pass filtered (GeneClamp 500; Axon Instruments), 

and digitized (NI PCI-6221; National Instruments). Using the WinLTP program, 

data were monitored, analyzed online, and then reanalyzed offline. After a stable 

baseline was recorded, LTP was induced by high-frequency stimulation (100 Hz, 1 

s for HFS-LTP),  and four trains of high-frequency stimulation (4 × 100 Hz, 1 s each, 

5 minutes inter train interval for HFS-L-LTP). After a stable baseline was recorded, 

LTD was induced by low-frequency stimulation (1 Hz, 900 stimuli for LFS-LTD), 

theta-burst stimulation (3 × TBS, 1 s each for TBS-LTP), or (R, S)-3,5-

Dihydroxyphenylglycine (DHPG) (100 μM for 10 minutes for DHPG-LTD). 

Whole-cell patch-clamp recordings 

A vibratome (VT1200S; Leica) was used to prepare 300 μm hippocampal slices 

and to incubate these slices in a recovery chamber for at least 1 hour. After recovery, 

the CA3 region was incisioned in the slice, and then the hippocampus tissue was 

moved to a recording chamber to maintain the RT with oxygenated ACSF. In the 

case of experiments for test of miniature excitatory post synapses current (mEPSC), 

the recording pipettes (3~5 MΩ) were filled with an internal solution containing (in 

mM) 100 Cs-gluconate, 5 NaCl, 10 HEPES, 10 EGTA, 20 TEA-Cl, 3 QX-314, 4 

MgATP, and 0.3 Na3 GTP (280~300 mOsm, pH adjusted to 7.2 with CsOH). For 

blocking the GABA receptor-mediated current, picrotoxin (100 μM) has been added 

to the ACSF. Additional tetrodotoxin (1μM) was added for the mEPSC 

measurement. For the spontaneous inhibitory postsynaptic current (sIPSC) 

recording, I used the following internal solution (in mM): 145 KCl, 5 NaCl, 10 

HEPES, 10 EGTA, 10 QX-314, 4 MgATP, and 0.3 Na3GTP (280~300 mOsm, pH 
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adjusted to 7.2 with KOH) in the presence of AP5 (50 μM) and CNQX (100 μM). 

Using a Multiclamp 700B (Molecular Devices), the hippocampal neurons were 

voltage-clamped at −70 mV. The analysis included only cells with a change in access 

resistance of < 20%. For mEPSC and sIPSC analyses, I used the MiniAnalysis 

program (Synaptosoft). 

RNA-seq analysis  

By using TRIzol reagent (Invitrogen), total cellular RNA was extracted from 

hippocampal tissues of Lsd1 KI mice and WT littermates. BioAnalyzer tested the 

purity of extracted RNA. In preparing libraries for RNA-Seq, the standard Illumina 

protocol was imposed. DNA fragments in libraries having insertion sizes of 300 bp 

or less were isolated and amplified by using a gel electrophoresis method. Then, 

using an Illumina HiSeq 2000 sequencer, The DNA fragments in libraries were 

sequenced in the paired-end sequencing mode (2 × 151 bp reads). To align total 

sequenced raw reads onto the mouse genome reference sequence (mm10), the 

GSNAP alignment tool (2013–11–27) [PMID: 20147302] was used. For further 

analysis, only appropriately and uniquely mapped reading pairs were added. The 

EdgeR kit [PMID: 19910308] was used to classify the genes that were expressed 

differently between the Lsd1 KI mice and WT littermates. Differentially expressed 

genes were defined in this experiment as the genes that changed their expression 

level at a minimum of 1.5-fold between samples and 10% cutoff at a false discovery 

rate (FDR) was further imposed as a criterion on the basis of p values modified by 

edgeR. 



 

27 

Quantitative real-time PCR (qRT-PCR) 

I used TRIzol (Invitrogen) to extract total cellular RNA and then performed reverse 

transcription with oligo (dT) primers and M-MLV Reverse Transcriptase 

(Enzynomics). The acquired cDNA was mixed with gene-specific primers and 

TOPrealTM qPCR 2X PreMIX (SYBR Green, Enzynomics) for qRT-PCR. The 

quantity of mRNA was detected by using CFX384 TouchTM Real-Time PCR 

Detection System (Bio-Rad) or ABI 7500 System with SYBR Green. The qRT-PCR 

cycling conditions were: holding on 95 °C for 15 minutes, followed by 40 cycles of 

95 °C for 10 seconds, 60 °C for 15 seconds, and 72 °C for 30 seconds. Amplification 

of β-actin was used as an internal control and carried out in tandem with each sample. 

 

 

 

 

 

 

 

 

 



 

28 

Table 1. Primer list for qRT-PCR using Lsd1 KI mice and WT 

littermates 
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Statistics 

I have conducted either D'Agostino & Pearson omnibus, Shapiro-Wilk or 

Kolmogorov-Smirnov normality tests to determine whether the data presented here 

were normally distributed. For analyzing the data from fear conditioning, two-way 

analysis of variance (ANOVA) was used (between-group factor: genotype; within-

group factor: condition). In the analysis of the data from Morris water maze, two-

way repeated measure (RM) ANOVA were used for escape latency (between-group 

factor: genotype; within-group factor: time) and one-way ANOVA analysis was 

used for quadrant occupancy (% time spent in the quadrant). Also, Bonferroni 

posttests were performed to evaluate the differences of a pair-wise group. Depending 

on the result of the normality test, either the Mann Whitney test or unpaired two-

tailed t-test was used. The level of significance is indicated as follows: *p < 0.05, 

**p < 0.01, and ***p < 0.001. GraphPad Prism 5 or 6 program was used. Data were 

represented as mean ± standard mean error, SEM (or standard deviation, SD).  

Data availability 

 The RNA-Seq data was provided to the NCBI Gene Expression Omnibus (GEO) 

with an ID of GSE94018. 
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RESULTS 

PKCα-mediated phosphorylation of Lsd1 is required for hippocampus-

dependent fear memory 

First of all, I examined the gene expression of Lsd1 in the sub-region of the 

hippocampus: CA1, CA3, and dentate gyrus. The immunohistochemistry (IHC) 

experiment was performed using the hippocampus tissues of Lsd1 KI mice and WT 

littermates. The signal intensity and localization of  Lsd1, detected by Lsd1 antibody, 

were almost similar in both genotypes (Fig. 1a). These results provide that the 

phosphorylation deficit of Lsd1 did not affect the expression level of Lsd1 gene 

itself. 

Next, I conducted contextual fear conditioning (CFC) test to confirm whether the 

substitution to phosphorylation defective form of Lsd1 leads to a change in 

hippocampus-dependent fear memory. I tested fear memory at two-time points after 

training: 1 hour (short-term) and 24 hours (Long-term). Compared to WT littermates, 

Lsd1 KI mice showed significantly decreased levels of freezing both in 1 hour (short-

term) and 24 hours (Long-term) (Fig. 1b and 1c). These results proposed that short- 

and long-term contextual fear memory impairment was induced by phosphorylation-

defective Lsd1.  

To investigate the spatial working memory of Lsd1 KI mice, I carried out the T-

maze test. As a brief reminder, a training trial of the T-maze test consisted of a forced 

run and a choice run. During the forced run, between two target arms, one of the 

arms was blocked. Thus, mice mandatorily entered the unblocked arm. During the 

choice run, however, mice were allowed to choose between two arms. If they choose 
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to visit the unacquainted arm, they were able to get the reward (50% condensed milk) 

once more. During the training, WT littermates showed an increase of correct choice, 

while the correct choice of Lsd1 KI mice had not increased (Fig. 1d). Consistent with 

the short-term CFC results, these data showed that phosphorylation-defective Lsd1 

induced impairment in formation of spatial working memory. 

To investigate whether the effect of phosphorylation-defective Lsd1 was restricted 

to the hippocampus or extended also to the other brain regions, I performed an 

amygdala-dependent memory task: auditory fear conditioning (AFC) test. One day 

after the training, the freezing levels of both genotypes were measured. In contrast 

with the results of the CFC test, a similar level of freezing was observed in both Lsd1 

KI mice and WT littermates (Fig. 1e). These results indicated that PKCα-mediated 

phosphorylation of Lsd1 is required for hippocampus-dependent memory but not for 

amygdala-dependent fear memory. 
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Figure 1 
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Figure 1. PKCα-mediated phosphorylation of Lsd1 is required for 

hippocampus-dependent fear memory 

(a) Representative images of immunohistochemistry. There were no differences in 

the pattern of Lsd1 expression in the hippocampus of both genotypes. Scale bar: 500 

μm (WT: n = 5, KI:n = 5). (b) Short-term CFC. During the retrieval, Lsd1 KI mice 

(red) exhibited significantly lower level of freezing than WT (black) littermates 

(WT: n = 7, KI: n = 6; two-way ANOVA, genotype x condition, F1,22 = 13.58, p < 

0.01; effect of genotype, F1,22 = 18.21, p < 0.001; effect of condition, F1,22 = 40.07, 

p < 0.0001; Bonferroni posttests, ***p < 0.001). (c) Long-term CFC. During the 

retrieval, Lsd1 KI mice displayed significantly decreased level of freezing compared 

to WT (black) littermates (WT: n = 9, KI: n = 9; two-way ANOVA, genotype x 

condition, F1,32 = 7.06, p < 0.05, effect of genotype, F1,32 = 13.36, p < 0.001, effect 

of condition, F1,32 = 44.73, p < 0.0001; Bonferroni posttests ***p < 0.001). (d) T-

maze test. The rate of correct arm choice significantly differed between Lsd1 KI 

mice and WT littermates. (WT: n = 11;  KI: n = 8; two-way RM ANOVA, genotype 

x time, F4,68 = 1.83, p = 0.133, effect of genotype, F1,68 = 7.53, *p < 0.05, effect 

of time, F4,68 = 0.37, p = 0.826; Bonferroni posttests, WT vs KI at day 4, *p < 0.05). 

(e) AFC. Lsd1 KI mice displayed a similar level of freezing compared to WT (black) 

littermates (WT: n = 8, KI: n = 9; two-way ANOVA, genotype x condition, F1,30 = 

1.94, p = 0.174, effect of genotype, F1,30 = 2.08, p = 0.160, effect of condition, 

F1,30 = 40.15, p < 0.0001; Bonferroni posttests, ns: not significant).  
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PKCα-mediated phosphorylation of Lsd1 is required for hippocampus-

dependent spatial memory  

To investigate whether phosphorylation defective Lsd1 altered hippocampus-

dependent spatial learning and memory, I performed the Morris water maze (WMW) 

test. I trained both WT littermates and Lsd1 KI mice for five consecutive days so that 

the mice can acquire the location of a hidden platform in a round-shape water tank, 

filled with opaque white water. On day 4 (before training for the day) and day 6, 

probe tests were performed without the platform for 1 minute (Fig. 2a). In the 

training sessions, data for escape latencies show that Lsd1 KI mice spent a 

significantly longer time to reach the platform compared to WT littermates (Fig. 2b). 

This data indicates that spatial learning was retarded in Lsd1 KI mice. During the 

probe tests, both genotypes were allowed to explore all quadrants in the water tank. 

In the results of probe test 1, it was observed that WT littermates spent more time in 

the target quadrant compared to other quadrants, while Lsd1 KI mice spent nearly 

equal time in all quadrant (Fig. 2c). This tendency continued in the second probe 

test, where Lsd1 KI mice again spent less time in the target quadrant than WT 

littermates (Fig. 2d).  In addition, I compared the mean distance between the subject 

mouse and the position where the platform was located during the training of both 

genotypes. Lsd1 KI mice stayed farther from the location of the platform compared 

to WT littermates (Fig. 2e). The result demonstrated that PKCα-mediated 

phosphorylation of Lsd1 is required for hippocampus-dependent spatial memory. 
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Figure 2 
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Figure 2. PKCα-mediated phosphorylation of Lsd1 is required for 

hippocampus-dependent spatial memory  

(a) Timeline of behavior experiment and a mimetic picture of the Morris water maze. 

(b) The learning curve of the MWM task. Escape latency of Lsd1 KI mice was 

delayed compared to WT littermates (WT: n = 8, KI: n = 7; two-way ANOVA, 

genotype x time, F4,65 = 0.71, p = 0.590, effect of genotype, F1,65 = 4.03, *p < 

0.05, effect of time, F4,65 = 20.16, p < 0.0001). (c) Time spent in each quadrant 

measured in probe test 1 (day 4). (WT: n = 8, KI: n = 7; one-way ANOVA of WT, *p 

< 0.05, Bonferroni’s multiple comparison test, TQ vs OQ, p < 0.01; one-way 

ANOVA of KI, ns p = 0.307, Bonferroni’s multiple comparison test, TQ vs OQ, ns: 

not significant). (d) Time spent in each quadrant measured in probe test 2 (day 6) 

(WT: n = 8, KI: n = 7; one-way ANOVA of WT, ***p < 0.0001; one-way ANOVA 

of KI, ***p < 0.0001; unpaired t-test, WT vs KI in TQ, *p < 0.05). TQ: target, OQ: 

opposite, AQ1: right, AQ2: left quadrant. (e) In probe test 2, mean distance (cm) 

from the location of the platform was measured (WT: n = 8, KI: n = 7; unpaired t-

test, *p < 0.05).  
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Lsd1 KI mice show intact basal anxiety and increased locomotion 

To investigate the effect of phosphorylation-defective Lsd1 on basal anxiety, I 

carried out two kinds of anxiety tests: open-field (OF) test and elevated zero maze 

(EZM) test (Shepherd, Grewal et al. 1994, Prut and Belzung 2003). Mice with a high 

level of anxiety favor staying near the peripheral zone compared to the center zone 

in the OF test. Also, mice with a high level of anxiety prefer closed arms compared 

to open arms in the EZM test. It is because of their nature for avoiding potentially 

dangerous places. Results of the OF test and EZM test provide that there was no 

significant difference in anxiety-like behavior between two genotypes (Fig. 3a and 

3b). However, Lsd1 KI mice showed significantly elevated moved distance during 

the OF test (Fig. 3c). These results suggest that anxiety had not been altered but there 

rather existed inherent hyperactivity in Lsd1 KI mice. Thus, these results provide 

that phosphorylation defective Lsd1 did not affect the mood of the mice. 
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Figure 3  

 

Figure 3. Lsd1 KI mice exhibit normal basal anxiety and increased 
locomotion.  

(a) EZM test. There were no significant differences in time spent in closed arms 

between two genotypes (WT: n = 9, KI: n=9; two-way ANOVA, genotype x sector, 

F1,32= 4.21, p < 0.05; effect of genotype, F1,32= 0.00, p = 1.000; effect of sector, 

F1,32= 24.57, p < 0.0001; Bonferroni posttests, WT vs KI in closed sector, ns: not 

significant) (b-c) OF test. There were no significant differences in time spent in the 

center zone between two genotypes (b, unpaired t-test, ns: not significant), Lsd1 KI 

mice showed significantly high level of moved distance compared to WT littermates 

(c, WT: n = 9, Lsd1 KI: n = 9; unpaired t-test, * p < 0.05). 
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Memory for social recognition is impaired in Lsd1 KI mice 

To investigate whether phosphorylation-defective Lsd1 is implicated in sociability 

and social recognition, I conducted the three-chamber test (Kaidanovich-Beilin, 

Lipina et al. 2011). In the three-chamber test paradigm, it is regarded that animals 

with natural sociability prefer to approach a stranger mouse compared to 

approaching an object. As a result, both genotypes displayed a similar level of social 

interaction (Fig. 4a and 4b), indicating that sociability was intact in Lsd1 KI mice. 

While WT littermates exhibited significantly increased interaction time to a stranger 

mouse 2 (S2, a novel stranger mouse), interaction times of Lsd1 KI mice toward 

stranger mouse 2 and stranger mouse 1 (S1, a familiar mouse) were at comparable 

levels in the social recognition task (Fig. 4c and 4d). These observations indicate 

that the lack of phosphorylation of Lsd1 has affected social recognition memory but 

not sociability itself.  
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Figure 4 
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Figure 4. Memory for social recognition is impaired in Lsd1 KI mice 

(a) Mimetic picture of the three-chamber test for social preference test. (b) 

Both Lsd1 KI mice and WT littermates showed significantly higher exploring time 

for a stranger mouse (S1) than an empty cup (E) (WT: n = 13, KI: n = 11; two-way 

ANOVA, genotype x condition, F1,44 = 0.00, p = 1.000, effect of genotype, F1,44 

= 1.78, p = 0.189, effect of condition, F1,44 = 58.21, p < 0.0001; Bonferroni 

posttests, S1 vs E ***p < 0.0001). (c) Mimetic picture of the three-chamber test for 

social recognition test. (d) Lsd1 KI mice showed comparable exploring time for the 

stranger mouse 1 (S1) and the stranger mouse 2 (S2), while WT littermates showed 

significantly higher exploring time for the stranger mouse 2 (S2) than the stranger 

mouse 1  (S1) (WT: n = 13, KI: n = 11; two-way ANOVA, genotype x 

condition, F1,44 = 2.59, p = 0.115, effect of genotype, F1,22 = 0.79, p = 0.231; 

effect of condition, F1,44 = 8.08, p < 0.01; Bonferroni posttests, S2 vs S1 *p < 0.05, 

ns: not significant). All graphs were plotted as mean ± SEM. 
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Table 2. Summary of behavioral experiments with Lsd1 KI mice 

N.S.: Not Significant 
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Lsd1 KI mice showed changes in presynaptic plasticity 

The results of behavioral experiments shown thus far can be summarized as 

showing the fact that Lsd1 KI mice exhibit hippocampus-dependent memory 

impairment. Since synaptic plasticity is supposed to be the underpinning of 

hippocampus-dependent long-term memory (Bliss and Collingridge 1993, Malenka 

and Bear 2004), I performed extracellular field recordings to test whether any 

physiological changes were induced by phosphorylation defective Lsd1. By testing 

the input-output (I/O) relationship and paired-pulse ratio (PPR), I estimated the 

basal synaptic transmission of SC-CA1 synapses in Lsd1 KI mice and WT 

littermates. Improved I/O relationship (Fig. 5a), and reduced PPR (Fig. 5b) were 

observed in Lsd1 KI mice. An increase in the I/O relationship indicates enhanced 

synaptic transmission, and a decline of PPR suggests increased presynaptic 

neurotransmitter release probability. Thus, these results provide that the alteration 

of presynaptic plasticity has occurred by phosphorylation-defective Lsd1. 

To earn more specific profiles of this alternation in presynaptic function, I 

performed the post-tetanic potentiation (PTP) analysis. PTP reflects an 

improvement of the release of neurotransmitters following high-frequency 

stimulation on a minute time scale. After high-frequency stimulation, residual Ca2+ 

ion is accumulated, and this leads to an increase in the release of neurotransmitters 

triggered by active PKC in the presynaptic terminal (Zucker and Regehr 2002, 

Fioravante and Regehr 2011). Here, I used the PTP protocol consists of a single 

train of tetanic stimulation (100 Hz/s) under the presence of D-APV (D(-)-2-amino-

5-phosphonovaleric acid) (50 μΜ) for obstructing the postsynaptic modifications 
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mediated by NMDA receptor (Lee, Kobayashi et al. 2015, Watabe, Nagase et al. 

2016). I observed that PTP was significantly reduced in the Lsd1 KI mice (Fig. 5c 

and 5d), indicating that Lsd1 KI mice have altered presynaptic functions related to 

short-term synaptic plasticity.  

In addition, I conducted whole-cell patch-clamp recording to estimate miniature 

postsynaptic excitatory current (mEPSC) for basal synaptic transmission. The 

frequency of mEPSC reflects the presynaptic release of neurotransmitters, and the 

amplitude of mEPSC indicates the magnitude of postsynaptic potential. Lsd1 KI 

mice showed a significantly higher frequency of mEPSC than WT littermates but 

comparable amplitudes of mEPSC (Fig. 5e and 5f). In line with the results described 

above, these findings suggested an increased release probability of 

neurotransmitters in Lsd1 KI mice. 
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Figure 5 
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Figure 5. Lsd1 KI mice showed changes in presynaptic plasticity 

(a) The curve of input-output (I/O) relationship at SC-CA1 synapses. Lsd1 KI mice 

showed enhanced I/O relations compared to WT littermates (WT: n = 13, KI: n = 

13; two-way RM ANOVA, input intensity x genotype, F11,264 = 4.46, p < 0.0001, 

effect of input intensity, F11,264 = 121.54, p < 0.0001, effect of genotype, F1,264 

= 3.42, p = 0.077; Bonferroni posttests *p < 0.05, **p < 0.01). (b) Paired-pulse ratio 

(PPR) at SC-CA1 synapses. In Lsd1 KI mice the ratio was significantly decreased in 

comparison with WT littermates (WT: n = 13, KI: n = 11; two-way RM ANOVA, 

inter stimulus interval x genotype, F5,105 = 0.36, p = 0.874, effect of inter stimulus 

interval, F5,105 = 245.20, p < 0.0001, effect of genotype, F1,21 = 6.13, *p < 0.05). 

(c) Post-tetanic potentiation (PTP) at SC-CA1 synapses. Lsd1 KI mice showed 

significantly decreased PTP compared to WT littermates (WT, n = 8; KI, n = 10; 

arrow, 1 × HFS). (d) Significant difference observed in PTP for the first 5 minutes 

of recording between Lsd1 KI mice and WT littermates (WT: 134.7 ±  3.6%, 8 slices 

from 5 mice, KI: 121.7 ± 2.8%, 10 slices from 5 mice; unpaired t-test, *p < 0.05). 

(e) Representative traces of miniature excitatory postsynaptic currents (mEPSCs) 

recording at SC-CA1 synapses. Scale bar, vertical: 50 pA; horizontal: 10 sec. (f) 

Significantly enhanced frequency of mEPSCs was observed in Lsd1 KI mice (WT: 

n = 19, KI: n = 18; unpaired t-test, **p < 0.01). (g) Comparable level of mEPSC 

amplitudes was observed in both genotypes (WT: n = 19, KI: n = 18; unpaired t-test, 

ns: not significant). 
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Lsd1 KI mice showed intact long-term synaptic plasticity: LTP and LTD  

Next, I checked whether phosphorylation-defective Lsd1 also affected long-term 

synaptic plasticity. First of all, I examined the E-LTP, induced by high-frequency 

stimulation (HFS)  (Fig. 6a) and theta-burst stimulation (TBS) (Fig. 6b). Contrary 

to my expectation, there was no significant difference between the genotypes. 

Moreover, I did not observe any impairment in late-LTP (L-LTP) induced by four 

pulses of high-frequency tetanus in 5 min intervals (Fig. 6c). Thus, it was observed 

that phosphorylation-defective Lsd1 affected neither E-LTP nor L-LTP.  

Next, I tested the opposite case of the LTP, long-term depression (LTD). I 

performed two kinds of experiments: NMDA receptor-dependent LTD (Fig. 6d) 

and mGluR-dependent LTD (Fig. 6e). These two types of LTD were intact in both 

genotypes. Therefore, these results provide that PKCα mediated phosphorylation 

of Lsd1 is not involved in the regulation of long-term synaptic plasticity. 
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Figure 6 
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Figure 6. Lsd1 KI mice showed intact long-term synaptic plasticity: LTP 

and LTD  

(a) Early LTP (E-LTP) induced by high-frequency stimulation (HFS) at  SC-CA1 

synapses. There was no difference between the genotypes (WT: n = 11, KI: n = 7). 

(b) TBS E-LTP at SC-CA1 synapses. There was no difference between the two 

genotypes (WT: n = 6, KI: n = 6). (c) HFS L-LTP at SC-CA1 synapses. Both 

genotypes showed comparable levels of LTP (WT: n = 5, KI: n = 7). (d) LFS 

mediated NMDA-R dependent LTD at SC-CA1 synapses. Both genotypes showed 

comparable levels of LTP (WT: n = 6, KI: n = 7). (e) mGluR-LTD induced by DHPG 

at SC-CA1 synapses. There is no difference between the genotypes (WT: n = 9, KI: 

n = 7). 
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Table 3. Summary of electrophysiological experiments with Lsd1 KI mice 

 

                                                                                              N.S.: Not Significant                                                                                                                                
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Distinctive gene expression between Lsd1 KI mice and WT littermates 

The aforementioned analyses conducted in this research provide that Lsd1 KI mice 

exhibit deficits in learning and memory and altered presynaptic plasticity. To 

achieve an explanation of these phenomena on the level of molecular mechanism, I 

investigated whether phosphorylation-defective Lsd1 affected the expression of 

genes related to learning and memory. To do this, mRNA extracted from the 

hippocampus tissue of Lsd1 KI mice and WT littermates was used for RNA-seq 

analysis. By using entire gene expression profiles, I estimated sample distance 

between the two groups (WT and KI) and replicates (1 and 2). The heat map data 

showed that the two groups were correctly separated (Fig. 7a). I obtained 271 

upregulated, and 110 downregulated genes from 381 differentially expressed genes 

using differential gene expression analysis (Fig. 7b and 7c). In order to gain an 

understanding concerning which transcription factors interact with Lsd1 in 

activating or repressing target genes, I used Enrichr  

(http:/amp.pharm.mssm.edu/Enrichr/) (Kuleshov, Jones et al. 2016) to examine 

putative promoters for the differentially expressed genes. Since hippocampus-

dependent memory impairment and the altered presynaptic property was observed 

in Lsd1 KI mice, I looked into the genes that were expressed differently with an 

emphasis on presynaptic and postsynaptic plasticity and memory. Postsynaptic 

function-related genes such as Calcium/calmodulin-dependent protein kinase II 

(CaMKII; Camk2a, Camk2b, Camk2d, and Camk2g), Postsynaptic density protein-

95 (PSD-95; Dlg4), Shank (Shank1, Shank2, and Shank3), SynGAP (Syngap1), 

AMPA-R (Gria1), Homer (Homer1, Homer2 andHomer3), NMDA-R (Grin1, 
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Grin2a, Grin2b, Grin2c, Grin2d, Grin3a, and Grin3b), Neurolign (Nlgn1, Nlgn2 

andNlgn3), mGluR (Grm1, Grm2, Grm3, Grm4 and Grm5), GKAP (Dlgap1, 

Dlgap2, Dlgap3, Dlgap4 and Dlgap5), Spine-associated RapGAP (SPAR; Sipa1l1, 

Sipa1l2, and Sipa1l3), nNOS (Nos1, Nos2 and Nos3), and GRIP (Grip1) did not 

exhibit altered gene expression between Lsd1 KI mice and WT littermates (Table 4). 

However, expression of a number of presynaptic function-related genes such as 

Histamine receptor H1 (H1R; Hrh1), Histamine receptor H3 (H3R; Hrh3), 

Dopamine D2 receptor (D2R; Drd2), and Vesicular monoamine transporter 2 

(VMAT2; Slc18a2) were increased in Lsd1 KI mice (Table 5).   
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Figure 7  

 

 

 

 

 

 

 



 

54 

Figure 7. Distinctive gene expression between Lsd1 KI mice and WT 

littermates 

(a) An expression heat map using the entire gene expression profiles of two 

genotypes (WT and KI) and their replicates (1 and 2) of the sample-to-sample 

distances on the matrix. (b) Volcano plots of differentially expressed genes (DEGs): 

red (upregulated) and blue (downregulated) dots. The x-axis displays the log2-

transformed fold change (FC) in gene expression: FC = expression in Lsd1 KI mice 

divided by that in WT littermates. The y-axis is the Benjamini-Hochberg correction's 

adjusted p-value (negative log10 transformed). (c) A heat map of the level of 

expression (Row Z score applied to log2RPKM; reads per kb of exon per million 

mapped reads) of DEGs in two groups and their replicates.  
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Table 4. RNA-seq results of postsynaptic function-related genes in Lsd1 

KI mice 
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Table 5. Upregulated presynaptic function-related genes in Lsd1 KI mice
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Phosphorylation of Lsd1 is required in the expression of presynaptic-

function related gene 

I obtained some information on differentially expressed genes in Lsd1 KI mice 

from the previous RNA-seq data. To archive more specific evidence for the 

expression level of genes related to presynaptic plasticity and memory, I performed 

qRT-PCR of total hippocampal RNA. The results showed that the up-regulation of 

the genes Crhr1, Hrh1, Hrh3, Oxtr, Drd2, Slc18a2 (VMAT2), Rab39, and Syngr1 

was congruent with the RNA-Seq analysis results (Fig. 8a). However, contrary to 

my expectations, there was no distinctive expression of Bsn, Ppfia2 (Liprin-a-2), and 

Rims1 between the genotypes (Fig. 8a).  

In order to confirm whether the altered expression of these genes is due to PKCα-

mediated phosphorylation deficiency, I designed an experiment where PKCα 

activity is first blocked, and then the expression level of the presynaptic function-

related gene was examined. The previous study suggested that the treatment of 

Go6976, a PKCα inhibitor, attenuates Lsd1 phosphorylation induced by a PKCα 

activator (Nam, Boo et al. 2014). In this experiment, Go6976 (100 nM) was treated 

to a culture of primary hippocampal neurons for 8 hours, and then the mRNA levels 

of presynaptic function-related genes were measured. The data indicated that the 

treatment of Go6976 induced an increase in expression of Crhr1, Hrh1, Hrh3, Oxtr, 

Drd2, Slc18a2 (VMAT2), Rab39, and Syngr1 genes compared to the vehicle group. 

These results are in line with the results of the RNA-seq and qRT-PCR described 

above (Fig. 8b).  

Taken together, the results of the series of experiments investigating the gene 
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expression profiles in Lsd1 KI mice and WT littermates indicate that several genes 

involved in memory and presynaptic plasticity were regulated by PKCα-mediated 

phosphorylation of Lsd1. 
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Figure 8 
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Figure 8 

 

Figure 8. Phosphorylation of Lsd1 required presynaptic-function related 

gene expression  

(a) Quantitative RT-PCR analysis (qRT-PCR). Distinctive expression of genes 

between the genotypes. (WT: n = 9, KI: n = 9; unpaired t-test, *p < 0.05, **p < 

0.01, ***p < 0.001, ns: not significant). Data are expressed as mean ± SEM. (b) 

qRT-PCR analysis of hipppcampal culture after the application of a PKCα inhibitor 

(GM 6976 (100 nM, 8h)) (n = 3; unpaired t-test, *p < 0.05, **p < 0.01, ***p < 

0.001). Data are expressed as mean ± SD. 
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DISCUSSION 

In summary, phosphorylation-defective Lsd1 induced impairments in 

hippocampus-dependent memories such as contextual fear memory (Fig. 1b and 1c), 

spatial memory (Fig. 1d  and Fig. 2), and social recognition memory task (Fig. 4d), 

but not in amygdala dependent memory (Fig. 1e).  

The results of electrophysiology experiments were consistent with these findings. 

Although E- LTP, L-LTP, and LTD (Fig. 6) were normal in Lsd1 KI mice, abnormal 

presynaptic functions such as lower PTP and PPR and increased mEPSC frequency 

were observed (Fig. 5). While long-term synaptic plasticity has been mainly reported 

as the physiological mechanism for learning and memory, several reports suggest 

that the regulation of associated learning and memory requires short-term synaptic 

plasticity. For example, Silva et al. (Silva, Rosahl et al. 1996) established that 

impaired learning and memory had been developed in several transgenic mouse lines 

such as CaMKIIα heterozygote knock-out (CaMKII-α+ /−) and Synapsin II knock-

out mice. These mice displayed intact CA1 LTP but a short-term plasticity deficit in 

various forms. Moreover, RIM1α is a presynaptic protein that plays a role in 

maintaining the normal release of neurotransmitters (Schoch, Castillo et al. 2002) 

and long-term presynaptic potentiation (Castillo, Schoch et al. 2002). It was reported 

that RIM1α KO mice also showed comparable phenotypes to my results, displaying 

normal LTP but abnormal short-term plasticity: lower PTP and higher PPR and 

impairment of long-term fear memory (Powell, Schoch et al. 2004). Experiments on 

(SAD)-B KO mice recently demonstrated a long-term fear memory impairment, with 

improved PPR and lower frequency of mEPSC, but no alternation of PTP and LTP 
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(Watabe, Nagase et al. 2016). These pieces of evidence are consistent with the results 

of the current study that changes in short-term synaptic plasticity, especially 

presynaptic alterations, caused memory impairment. There is no convincing 

explanation for how alterations in these various types of presynaptic plasticity could 

lead, in a concerted manner, to a change in the regulation of cognition. Nevertheless, 

when the impacts of a number of presynaptic abnormalities are accumulated, it may 

be sufficient to result in an impairment of associative memory formation. 

In line with this, the findings of the Genome-wide RNA-seq study on hippocampal 

tissues indicate that Lsd1 KI mice exhibit altered expression levels of several genes 

that function in memory and presynaptic plasticity. Moreover, I confirmed that 

PKCα inhibitor (Go6976) treatment induced the up-regulation of presynaptic-

function related genes, which were found to be up-regulated in the RNA-seq result 

on RNAs extracted from hippocampal tissues of Lsd1 KI mice. These results suggest 

that a large assortment of genes that take a role in memory and presynaptic plasticity 

requires Lsd1 phosphorylation. One possible explanation for up-regulation of 

presynaptic function-related genes caused by phosphorylation deficient Lsd1 is that 

deficit in phosphorylation might alter the structure of Lsd1, which then disrupts 

interactions with other molecules such as HDAC, Co-rest, and Androgen receptor. 

Since serine 112 residue is not placed within the region of Lsd1 protein with amine 

oxidase activity important for the enzymatic reaction, intrinsic histone demethylase 

activity may not have been influenced by the change in Lsd1 phosphorylation site 

(Nam, Boo et al. 2014). Thus, we assume that molecular changes observed in this 

study might have been induced by promotion of interactions between 
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phosphorylated form of Lsd1 and the molecules involved in the regulation of 

presynaptic function-related genes. Further work will be required.  

A previous study showed that phosphorylation of Lsd1 plays an important role in 

circadian rhythm regulation. Phosphorylation of Lsd1 induced its interaction with 

CLOCK:BMAL1, which then triggered the transcription mediated by the E-box. 

Moreover, Lsd1 KI mice displayed disrupted circadian rhythms (Nam, Boo et al. 

2014). Previously studies suggested that memory can be affected by the perturbation 

to the circadian clock gene. For instance, knock-out mice of the gene Bmal1, a 

critical circadian clock-related gene, showed intact anxiety-related behaviors but 

spatial and contextual fear memory was impaired (Wardlaw, Phan et al. 2014, 

Snider, Dziema et al. 2016). Thus, it is reasonable to assume that spatial memory 

impairment exhibited in the results of the current study might also be induced by the 

perturbation in circadian rhythmicity in Lsd1 KI mice.  

Taken together, in this study, I investigated the role of PKCα-mediated 

phosphorylation-deficit Lsd1 through behavioral experiments, electrophysiological 

measurements, and gene expression profiling. I found that the role of 

phosphorylation of Lsd1 is specific to the regulation of hippocampus-dependent 

learning and memory, and presynaptic plasticity. 
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CHAPTER III 

Neurl 1 and Neurl 2 are required for the 

regulation of hippocampus-dependent 

spatial memory and protein synthesis-

dependent LTP 
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INTRODUCTION 

Among the three types of ubiquitin enzymes, E1, E2, and E3, there exist especially 

various kinds of E3 ubiquitin enzymes (Zheng and Shabek 2017). Of the numerous 

E3 ligases, neur, known as Drosophila neurogenic gene (Lehmann, Jimenez et al. 

1983, Boulianne, de la Concha et al. 1991), encodes an ubiquitin E3 ligase (Yeh, 

Dermer et al. 2001) composed of three domains: two copies of a novel domain, the 

neuralized homology repeat (NHR), and a C-terminal C3HC4 RING Zn-finger 

(RING) domain (Price, Chang et al. 1993, Nakamura, Yoshida et al. 1998). Neur is 

involved in Notch signaling regulation (Koutelou, Sato et al. 2008), and known to 

regulate long-term memory formation in Drosophila (Pavlopoulos, Anezaki et al. 

2008, Rullinkov, Tamme et al. 2009). In rodents, Neurl is the mouse homolog of the 

Drosophila neur gene (Pavlopoulos, Kokkinaki et al. 2002, Song, Koo et al. 2006), 

and its product proteins were found to be mostly localized in neuronal dendrites, and 

its expression level changed upon a neuronal activity (Timmusk, Palm et al. 2002). 

Specifically, when Neurl 1 was overexpressed in the mouse hippocampus, LTP and 

hippocampus-dependent memory were both enhanced. This memory-enhancing 

effect was associated with an increase in the number of synapses and AMPAR 

subunits, GluA1 and GluA2, by the up-regulation of a transcriptional factor, 

cytoplasmic polyadenylation element binding protein 3 (CPEB3) (Pavlopoulos, 

Trifilieff et al

Neurl 2, a paralog of Neurl 1 (Timmusk, Palm et al. 2002), also acts as an E3 ligase 

and regulates Notch signaling pathway (Rullinkov, Tamme et al. 2009). In mouse 

embryos, the expression pattern of Neurl 2 was similar to that of Neurl 1 and both 
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Neurl 1 and Neurl 2 have a comparable biochemical activity such as proteasome-

dependent degradation (Song, Koo et al. 2006). However, Neurl 1 transcripts were 

localized in the dendrites of hippocampal neurons, while Neurl 2 transcripts were 

observed in the cytoplasm of the cells (Rullinkov, Tamme et al. 2009). Also, 

expression of Neurl 1 was granule cell-specific while Neurl 2 showed Purkinje cell-

specific expression (Timmusk, Palm et al. 2002). 

Aforementioned studies have suggested both similarities and differences between 

the properties of Neurl 1 and Neurl 2. However, whether the genes have overlapping 

functions or whether the genes have some distinctive roles, remains unknown. Here, 

I investigated the role of these genes in hippocampus-dependent learning and 

memory using Neurl 1 knock-out (Neurl 1 KO), Neurl 2 knock-out (Neurl 2 KO) 

and Neurl 1 and Neurl 2 knock-out (Neurl 1,2 KO) mice. I revealed that spatial 

memory was impaired in Neurl 1,2 KO mice but not in Neurl 1 KO, Neurl 2 KO, 

and WT littermates. In addition, I found that basal synaptic properties were 

unchanged, but protein synthesis-dependent long-term synaptic plasticity was 

impaired in Neurl 1,2 KO mice.  
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EXPERIMENTAL PROCEDURES 

Mice  

Genetic background and generation of Neurl 1 KO, Neurl 2 KO, Neurl 1,2 KO mice 

were previously described (Ruan, Tecott et al. 2001, Koo, Yoon et al. 2007). In brief, 

Neurl 1 KO, Neurl 2 KO, Neurl 1,2 KO mice were generated with backgrounds of 

C57BL/6J. These mice are whole body knock-out mice. The deleted regions encode amino 

acids 218 to 574 of the murine Neurl 1 protein and amino acids 115 to 319 of the murine 

Neurl 2 protein. Both male and female mice with all genotypes were used in each 

experiment. There was no difference in their behavior, depending on sex. All tests were 

conducted as blind tests with respect to the information of genotypes. Animal facility 

controlled 12-hour light-dark cycle (lights on 9:00 a.m., lights off 9:00 p.m.) and all 

animals were co-housed with food and water provided ad libitum in temperature-

controlled (approximately 24°C) conditions. This research has been permitted by the 

Institutional Animal Care and Use Committee of Seoul National University.  

Behavioral tests 

Open-field test                                                                                                                           

In this study, I used a white plexiglas box (acryl 40 × 40 × 40 cm) as an open field box. 

Under the dim light, Mice were placed in an empty open field box and freely explored for 

30 min. Spent time in each of two different zones, central (within a 20 × 20 cm) and the 

peripheral zone, and the mobility of each mouse were estimated using a tracking program 

(EthoVision 9.0, Noldus). 
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Elevated zero maze test 

The elevated zero maze (EZM) is a round-shaped track (60 cm diameter, 5 cm 

width), which is lifted 65 cm above the ground level. EZM is composed of distinct 

zones with or without the walls. The zones without walls are referred as open arms, 

and the zones with 20 cm walls are referred as closed arms. Under the bright light, 

mice were put in one of the closed arms of the track and freely explored the apparatus 

for 5 min. Their movement and spent time in each arm were estimated using a 

tracking program (EthoVision 9.0, Noldus).  

Light-dark box test  

   Mice were put in a rectangular plexiglas box composed of a dark zone covered in 

black and a light zone illuminated by the intense light of 400 lux intensity. The zones 

were connected by a narrow passage sized for a single mouse. The strong light was 

blocked by a black plexiglas board over the dark zone, and mice were allowed to 

freely explore either zones through the passage between them. Trials were initiated 

by putting the mice into the dark zone and covering it with the blackboard. For each 

mouse, the time spent in the light zone (31cm × 25cm) within a 10 min period was 

tracked with a tracking program (EthoVision 9.0, Noldus).  

Morris water maze test 

 A round shaped tank (140 cm diameter, 100 cm height) filled with white opaque 

water (21~23°C) was placed within a room with several spatial cues. During the 

Morris water maze task, the tank was split into four virtual quadrants and a 10 cm 
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diameter platform was positioned at the center of the target quadrant (TQ). Mice 

were handled by the experimenter for 3 min per day for five consecutive days prior 

to training. During the training days, mice were placed at the edge of the maze facing the 

inner wall of the tank and trained to reach the platform within 60 seconds. If the mice were 

unable to arrive at the platform in 60 seconds, they were guided to and let stay on 

the platform for 10 seconds on training days 1 and 2. Mice were trained four times each 

day, with 1 min intertrial intervals. The probe test was performed under the same 

conditions but without a platform on the next day after training day 5.  

Contextual fear conditioning test 

Mice were handled for 3 min per day for three days before the experiment. After 

that, in a given 180-s conditioning period, mice were permitted to explore freely in 

the chamber (Coulbourn Instruments), and then a foot shock (2s duration, 0.4mA 

intensity) was given through the floor grid. At the end of the conditioning, mice were 

returned to their home cages. Twenty-four hours later, mice were re-exposed to the 

same chamber where they previously have experienced a foot shock. Freezing 

behavior was automatically quantified by the Freeze Frame software. 

Object location memory test  

  Mice were first handled for 5 minutes for five consecutive days. For the next two 

days, the subjects were habituated for 15 minutes in an open field chamber, which 

had a visual cue on one side and it was transparent on the other wall. A dim light was 

applied throughout the whole experiment. The next day, two identical objects were 

placed in the box, and mice were allowed to explore and learn the object’s position 
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for 10 minutes. One object’s location was changed to the opposite side on the 

following day, and mice were allowed to explore for 5 minutes each. The chamber 

and the objects were cleaned with distilled water (DW) and 70% ethanol (EtOH) 

between each trial. The experimenter manually counted the time spent by each 

mouse interacting with the objects. 

Y-maze test 

 Each mouse was placed at the center of the apparatus (Plexiglass and acrylic, Y 

maze consist of three identical arms = 30cm × 5.5cm × 15cm) and allowed to explore 

the apparatus for 8 min under dim light. The mice located in the Y shape maze freely 

moved from one arm to another. All tasks were recorded with a digital camera placed 

above the apparatus, and spontaneous arm alterations were manually counted. The 

mice that changed the arm less than five times were excluded from the analysis. 

Three-chamber test  

Mice were put into a rectangular plexiglas box divided into three chambers. The 

chambers were connected by a passage sized for a single mouse. Mice with identical 

sex and age as the test mice were kept in a separate rack during the experiment and 

were used as stranger mice. Stranger mice were put into a cylindrical metal grid 

mounted with a heavy paper cup. They were then put into either the left or right 

corner of the chamber for 10 minutes under dim light. Meanwhile, test mice were 

habituated to the chamber with the grids for 10 minutes under dim light. Stranger 

mice habituation was done for three consecutive days prior to the test, while test 

mice habituation was done for two days. Trials were initiated by 10 minutes of test 
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mouse habituation, after which a stranger and a yellow plastic block were put into 

the grids for 10 minutes. The block was replaced with a new stranger for the next 10 

minutes of the trial. Test mice were kept in the middle chamber by transparent walls 

while either a stranger or an object were introduced into the grids, and allowed to 

freely explore after the walls were lifted. Every dish, grid, and chamber were cleaned 

with 70% EtOH and DW between each trial. The experimenter manually counted 

the total interaction time of the test mice with each grid. 

Electrophysiology 

Mice were anesthetized with isoflurane and killed by decapitation in accordance 

with the policy and regulation approved by the Institutional Animal Care and Use 

Committee at Seoul National University. Transverse hippocampal slices (350 μm) 

were prepared using a Vibratome (Leica, VT1200S) in ice-chilled slicing solution 

that contained (in mM): 210 sucrose, 3 KCl, 26 NaHCO3, 1.25 NaH2PO4, 5 

MgSO4, 10 D-glucose, 3 sodium ascorbate and 0.5 CaCl2, saturated with 95% O2 

and 5% CO2. The slices were transferred to an incubation chamber that contained 

(in mM): 1.25 NaH2PO4, 2 MgSO4, 10 D-glucose, and 2 CaCl2 (carbonated with 

95% O2 and 5% CO2). Slices were allowed to recover at 32-34°C for 30 minutes 

and then maintained at 26-28 °C for a minimum of 1 h before recordings were made.  

The extracellular recording was performed in an interface chamber (Campden 

Instruments) maintained at 32°C and perfused continuously at 2–3 ml/min with 

ACSF. Standard extracellular recordings were performed in the CA1 region of 

hippocampal slices, as described in Park et al., 2016, to measure the slope of evoked 

field EPSPs (fEPSPs). Recordings were monitored and analyzed using WinLTP 
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(Anderson and Collingridge 2007). Two independent SCCPs were stimulated 

alternatively, each at a frequency of 0.1 Hz. After a stable baseline of at least 20 min, 

LTP was induced using TBS delivered at basal stimulus intensity. An episode of TBS 

comprised five bursts at 5 Hz, with each burst composed of five pulses at 100 Hz. 

Either an episode of TBS or a train of three TBS episodes with an interval of 10 

minutes was given for LTP induction. Representative sample traces are an average 

of five consecutive responses, collected from typical experiments (stimulus artifacts 

were blanked for clarity).  

Western blot analysis 

The hippocampus from Neurl 1 KO, Neurl 2 KO, Neurl 1,2 KO mice and WT 

littermate were homogenized with lysis buffer (0.5% sodium deoxycholate, 50mM 

pH 7.6 Tris-Cl, 1mM EDTA, 1mM DTT, 0.1% SDS, 1% NP-40, and 150Mm NaCl) 

containing protease inhibitor cocktail (PIC). 10 μg of each sample was loaded into 

4-12% SDS-PAGE gels (Invitrogen, USA). Gel with loaded proteins was transferred 

to ECL membrane for 4℃ overnight. The membrane was blocked with 5% skim 

milk solution for 1h followed by treatment of primary antibodies: mouse anti-

GAPDH (1:10000, Invitrogen), goat anti-GluA1 (1:100, Santa Cruz), mouse anti-

GluA2 (1:2000, BD). Secondary antibodies were treated thereafter and were 

composed of goat anti-mouse (1:5000, Santa Cruz), and donkey anti-goat (1:5000, 

Santa Cruz). 

Reverse-transcription PCR (RT-PCR) 

Total RNA from the hippocampus of Neurl 1 KO, Neurl 2 KO, Neurl 1,2 KO mice, 
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and WT littermates were extracted using TRIzol reagent (Ambion). Five hundred 

nanogram of extracted RNA was reverse-transcribed using random hexamer 

(Invitrogen) and Prime Script (TAKARA) following the manufacturers’ instructions. 

cDNA product from each reaction served as a template for subsequent PCR 

amplification. PCR amplifications were conducted using specific primers for each 

gene. 

Quantitive real-time PCR (qRT-PCR) 

Gene-specific primers and TOPrealTM qPCR 2X PreMIX (SYBR Green, 

Enzynomics) was used for qRT-PCR. The amount of mRNA was detected using the 

Applied Biosystems 7300 Real-Time PCR System with SYBR Green. The qRT-PCR 

cycling conditions were: holding on 95 °C for 15 minutes, followed by 40 cycles of 

95 °C for 10 seconds, 60 °C for 15 seconds, and 72 °C for 30 seconds. The expression 

level of Neurl 1 and Neurl 2 transcripts was normalized by GAPDH.  

Table 6. Primer list for qRT-PCR using Neurl 1 KO mice, Neurl 2 KO 

mice, Neurl  1,2 KO mice, and WT littermates 
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Statistics 

For analyzing the data obtained from extracellular recordings, data were 

normalized to the baseline preceding TBS. Statistical significance was assessed 

using one-way ANOVA with post-hoc Sidak’s multiple comparison test. For 

analyzing the data from behavioral tests (Open-field test, Elevated zero maze test, 

Light-dark box test, Object location memory test, Morris water maze test, and Y-

maze test) and molecular experiments (Western blot analysis), one-way ANOVA test 

were used with post-hoc Bonferroni’s multiple comparison correction to determine 

the statistical differences between the groups. For analyzing the data from contextual 

fear conditioning tests, one-way ANOVA test (with post-hoc Bonferroni’s multiple 

comparison test) and unpaired t-test were used to determine the statistical differences 

between the groups. For analyzing the data from three-chamber tests, paired t-test 

was used to determine the statistical differences in interaction time between stranger 

1 and object, or stranger 1 and stranger 2. For analyzing the data from qRT-PCR 

experiment, unpaired t-test was used to determine the statistical significance. The 

level of significance is denoted as follows: *p < 0.05, **p < 0.01, ***p < 0.001, and 

****p< 0.0001. GraphPad Prism 8 program was used for drawing data plots and 

calculating statistics. All graphs are presented as mean ± SEM. 
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RESULTS 

Neurl 1,2 KO mice showed impaired hippocampus-dependent spatial 

learning and memory. 

To understand the role of Neurl 1 and Neurl 2 in hippocampus-dependent spatial 

learning and memory, I performed well-established spatial memory tests: object 

location memory (OLM) and Morris water maze (MWM) tests. 

 In the OLM test, I examined whether mice recognize the fact that objects’ locations 

are altered between trials. I first trained mice to learn the location of two objects and 

one object was relocated to a new position the following day (Fig. 9a). For each 

mouse, I quantified the exploring time of the mouse spent around the relocated 

object. Neurl 1 KO and Neurl 2 KO mice exhibited no difference in exploring time 

compared to WT littermates. However, Neurl 1,2 KO mice spent less time around 

the relocated object (Fig. 9b).  

In the MWM test, I trained mice to learn the location of the platform in the round 

opaque white water. During training, Neurl 1, 2 KO mice displayed retarded learning 

compared to WT littermates, but not with other genotypes (Fig. 9c and 9d). In the 

probe test, the path tracking data for the four genotypes indicate the pattern of 

movement of mice of each genotype in the water maze. (Fig. 9e). In the probe test, 

Neurl 1 KO mice, Neurl 2 KO mice, and WT littermates spent more time in the target 

quadrant, while Neurl 1, 2 KO mice did not spend significantly different time in each 

quadrant (Fig. 9f and 9g). Moreover, Neurl 1, 2 KO mice showed a decreased 

number of platform crossings (Fig. 9h) and the mean distance from platform location 

was significantly larger than that of WT littermates (Fig. 9i). Taken together, these 



 

76 

results suggest that hippocampus-dependent spatial memory was intact under the 

expression of either Neurl 1 or Neurl 2 but it was not the case when both genes were 

absent. 
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Figure 9 
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Figure 9. Neurl 1,2 KO mice showed impaired hippocampus-dependent 

spatial learning and memory 

(a) Schematic drawings of the OLM test. (b) Neurl 1,2 KO mice showed impaired 

object discrimination index in the OLM test. Discrimination index was calculated as 

follows: exploring time of relocated object / exploring time of both objects. (WT: 

n=15, Neurl 1,2 KO: n=10, Neurl 1 KO: n=8, Neurl 2 KO: n=10; One-way ANOVA, 

Bonferroni’s multiple comparison test, WT and Neurl 1,2 KO, *p<0.05). (c) 

Learning curve during 5 training days of MWM test showing the latency of the mice 

to reach the platform. (d) Neurl 1,2 KO mice show delayed escape latency on 

training day 5 (One-way ANOVA, Bonferroni’s multiple comparison test, WT and 

Neurl 1,2 KO ***p<0.001). (e) Schematic drawings of MWM test and 

representative path tracking data for each genotype. (f-g) Time spent in each 

quadrant during 1-minute probe test 24 h after training day 5 (One-way ANOVA of 

time spent in TQ, Bonferroni’s multiple comparison test, WT and Neurl 1,2 KO, 

*p<0.05). (h) Neurl 1,2 KO mice crossed the platform position significantly lesser 

compared to other groups during 1-minute probe test (One-way ANOVA, 

Bonferroni’s multiple comparison test, WT and Neurl 1,2 KO **p<0.01). (i) Neurl 

1,2 KO mice kept a farther distance from the platform during probe test compared 

to WT littermates, Neurl 1 KO, and Neurl 2 KO mice (One-way ANOVA, 

Bonferroni’s multiple comparison test, WT and Neurl 1,2 KO ***p<0.001). (WT: 

n=13, Neurl 1,2 KO: n=8, Neurl 1 KO: n=6, Neurl 2 KO:  n=6). 
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Neurl 1,2 KO mice showed lower, albeit not statistically significant, level 

of freezing in context fear conditioning 

To investigate whether hippocampus-dependent associative fear memory was 

altered in Neurl 1 KO, Neurl 2 KO, and Neurl 1,2 KO mice, I performed the 

contextual fear conditioning (CFC) test. I handled mice for three consecutive days, 

and on the following day, foot shock was given in the chamber. The next day, the 

mice were exposed to the identical chamber for the same duration as in the previous 

day fear conditioning was conducted. All genotypes showed statistically significant 

difference (paired t-test) between the freezing level prior to the training and during 

the retrieval (Fig. 10 b). In addition, I compared the freezing level of all genotypes 

during the retrieval; Neurl 1,2 KO mice showed lower, albeit not statistically 

significant (One-way ANOVA analysis, Bonferroni’s multiple comparison test), 

freezing level compared to WT littermates (Fig. 10 c). I also tried to analyze the 

effect of activity suppression, indicated by the amount of change in activity due to 

shock, by comparing the activity before and after receiving shock (Frankland, 

O'Brien et al. 2001). There was no statistically significant difference in all genotypes 

(Fig. 10 d).  
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Figure 10
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Figure 10. Neurl 1,2 KO mice showed lower, albeit not statistically 

significant, level of freezing in context fear conditioning 

(a) Schematic drawings of the CFC procedure. (b) All genotypes displayed 

significantly increased levels of freezing in retrieval compared to those in pre-

training (Paired t-test of pre-training and retrieval in WT group ****p <0.0001, 

Paired t-test of pre-training and retrieval in Neurl 1,2 KO *p<0.05, Paired t-test of 

pre-training and retrieval in Neurl 1 KO  **p <0.01, Paired t-test of pre-training and 

retrieval in Neurl 2 KO **** p <0.0001). (c) The results of the freezing level during 

the retrieval (One-way ANOVA, Bonferroni’s multiple comparison test, p = 0.1155, 

n.s.: not significant, unpaired T-test of  WT and Neurl 1,2 KO, *p<0.05, unpaired T-

test of  WT and Neurl 1 KO,  p = 0.2959, n.s., unpaired T-test of  WT and Neurl 1 

KO, p = 0.9046, n.s.). (d) The results of the analysis of activity suppression. The 

activity suppression ratio was calculated as follows: Activitytest / (Activity pre-train + 

Activitytest).(One-way ANOVA, Bonferroni’s multiple comparison test, p = 0.1078, 

n.s.). (WT: n=17, Neurl 1,2 KO: n=13, Neurl 1 KO: n=13, Neurl 2 KO: n=12). 
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Spatial working memory was normal in all genotypes 

To investigate hippocampus-dependent spatial working memory, I carried out the 

Y-maze task (Aggleton, Hunt et al. 1986). Mice were put into a Y-shaped maze and 

allowed to explore the three arms of the maze and number of spontaneous arm 

alternations was measured. Because of their nature for exploring novel places, mice 

tend to explore the most remotely visited arm rather than returning to the recently 

visited arms. All genotypes showed a similar level of spontaneous arm alterations 

(Fig. 11b). Therefore, the memory impairment of hippocampus-dependent spatial 

long-term memory was not due to changes in working memory. 
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Figure 11 

Figure 11. Spatial working memory was normal in all genotypes 

(a) Schematic drawing of the Y-maze test. (b) All genotypes exhibited a similar 

level of arm alterations (WT: n=16, Neurl 1,2 KO: n=8, Neurl 1 KO: n=10, Neurl 

2 KO: n=9; One-way ANOVA, Bonferroni’s multiple comparison test, p=0.7874, 

n.s.: not significant).  
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Social memory was normal in all genotypes 

To confirm whether knock-outs of Neurl 1 and Neurl 2 affect the social preference 

and social recognition, I performed the three-chamber test. All genotypes exhibited 

comparable levels of interaction time in both social preference test and social 

recognition test (Fig. 12b and 12d). Thus, these results suggest that neither Neurl 1 

nor Neurl 2 is involved in the regulation of sociability and social memory. 
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Figure 12 
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Figure 12. Social memory was normal in all genotypes 

 (a) Schematic drawing of social preference test. (b) Social preference test results 

(Paired t-test of object and stranger 1 in WT ****p<0.0001, paired t-test of object 

and stranger 1 in Neurl 1,2 KO ****p<0.0001, paired t-test of object and stranger 1 

in Neurl 1 KO ****p<0.0001, paired t-test of object and stranger 1 Neurl 1 KO 

****p<0.0001). (c) Schematic drawing of social recognition test. (d) Social 

recognition test results (Paired t-test of stranger 1 and stranger 2 in WT 

****p<0.0001, Paired t-test of stranger 1 and stranger 2 in Neurl 1,2 KO *p<0.05, 

Paired t-test of stranger 1 and stranger 2 in Neurl 1 KO ***p<0.001, Paired t-test of 

stranger 1 and stranger 2 in Neurl 2 KO **p<0.01 ). (WT: n=8, Neurl 1,2 KO: n=7, 

Neurl 1 KO: n=9, Neurl 2 KO: n=10). 
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Anxiety-like behavior was partially decreased in Neurl 2 KO mice 

To examine whether the knock-out of Neurl 1 or Neurl 2 cause changes in basal 

anxiety level, I employed open-field (OF) test, elevated zero maze (EZM) test, and 

light-dark (LD) box test, which are well-established tests for measuring anxiety-like 

behaviors of mice. Since their innate aversion to the highly illuminated areas, mice 

with a high level of anxiety prefer dark side compared to light side in the LD test. 

Four genotypes did not show any significant difference in EZM and LD box test 

(Fig. 13e and 13g), but a significantly lower level of anxiety was observed for Neurl 

2 KO mice in OF test (Fig. 13b). These results suggest that the spatial memory deficit 

displayed by Neurl 1, 2 KO mice was not due to mood alteration. In addition, Neurl 

2 KO mice showed decreased anxiety-like behavior in OF test while was not 

impaired in hippocampus-dependent long-term memory. Thus, this decrease in 

anxiety level by the knock-out of Neurl 2 did not affect hippocampus-dependent 

long-term memory. 
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Figure 13 
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Figure 13. Anxiety-like behavior was partially decreased in Neurl 2 KO 

mice 

Three kinds of anxiety tests: OF test, EZM test and LD test (WT: n=17, Neurl 1,2 

KO: n=10, Neurl 1 KO: n=12, Neurl 2 KO: n=13). (a) Schematic drawing of OF test. 

(b) Neurl 2 KO mice spent increased time in the center zone compared to other 

genotypes (One-way ANOVA, Bonferroni’s multiple comparison test, WT and 

Neurl 2 KO ***p<0.001). (c) There was no significant difference in moved 

distances of Neurl 1,2 KO, Neurl 2 KO and Neurl 1 KO mice compared to WT 

littermates; however, Neurl 2 KO mice showed decreased moved distance compared 

to  Neurl 1, 2 KO mice (One-way ANOVA, Bonferroni’s multiple comparison test, 

Neurl 1,2 KO and Neurl 2 KO *p<0.05). (d) Schematic drawing of EZM test. (e) No 

group showed a significant difference in anxiety-like behavior (One-way ANOVA, 

Bonferroni’s multiple comparison test, p = 0.1687, n.s.: not significant). (f) 

Schematic drawing of LD test. (g) No group displayed significant difference in 

anxiety-like behavior (One-way ANOVA, Bonferroni’s multiple comparison test, p 

= 0.1523, n.s.). 
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Table 7. Summary of behavioral experiments with Neurl 1 KO mice,  

Neurl 2 KO mice, and Neurl 1,2 KO mice 

 

N.S.: Not Significant 
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L-LTP was impaired in Neurl 1,2 KO mice 

Previous studies have suggested that E3 ubiquitin ligases regulate hippocampal 

synaptic plasticity (Pavlopoulos, Trifilieff et al. 2011, Takagi, Setou et al. 2012, 

Schreiber, Vegh et al. 2015). In addition, localization of Neurl 1 and Neurl 2 

transcripts were dissimilar within the hippocampus (Rullinkov, Tamme et al. 2009). 

Therefore, I conducted a series of recording experiments to find out whether the 

deletion of Neurl 1 or Neurl 2 altered basal synaptic properties in the hippocampus. 

I recorded the input-output (I-O) relationship and paired-pulse facilitation ratio 

(PPR) from SC-CA1 synapses in acute hippocampal slices of Neurl 1 KO, Neurl 2 

KO, Neurl 1,2 KO mice, and WT littermates. All genotypes showed intact basal 

synaptic properties (Fig. 14a and 14b). 

Furthermore, I investigated the mechanism responsible for the hippocampus-

dependent spatial memory impairment imputed to Neurl 1 and Neurl 2 deletion. I 

performed extracellular field EPSP recordings at the SC-CA1 synapses in acute 

hippocampal slices obtained from Neurl 1 KO, Neurl 2 KO, Neurl 1,2 KO mice, and 

WT littermates. Neurl 1,2 KO mice exhibited deficits in the late-phase LTP (L-LTP), 

but not in the early-phase LTP (E-LTP) (Fig. 14d and 14f). These findings indicate 

that the deletion of Neurl 1 or Neurl 2 does not affect basal synaptic transmission 

and the E-LTP but the presence of at least one of the genes is necessary for the L-

LTP.  
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Figure 14 
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Figure 14. L-LTP was impaired in Neurl 1,2 KO mice 

(a-b) Results of input-output relationships and paired-pulse facilitation from SC-

CA1 synapses in acute hippocampal slices from Neurl 1 KO, Neurl 2 KO, Neurl 1,2 

KO mice, and WT littermates. All genotypes showed no significant impairment in 

the basal synaptic properties (WT: n = 11, Neurl 1,2 KO: n = 7, Neurl 1 KO: n = 6, 

Neurl 2 KO: n = 6). (c-d) Results of extracellular field EPSP recordings at the SC-

CA1 synapses in acute hippocampal slices obtained from Neurl 1 KO, Neurl 2 KO, 

Neurl 1,2 KO mice, and WT littermates. No group showed significant impairment 

in the E-LTP when it was examined using a single episode of theta-burst stimulation 

(WT: n = 11, Neurl 1,2 KO: n = 7, Neurl 1 KO: n = 6, Neurl 2 KO: n = 6; One-way 

ANOVA, Sidak’s multiple comparison test, p =0.6689, n.s.). (e-f) Results of 

extracellular field EPSP recordings at the SC-CA1 synapses in acute hippocampal 

slices obtained from Neurl 1 KO, Neurl 2 KO, Neurl 1,2 KO mice, and WT 

littermates. Neurl 1,2 KO mice specifically exhibited deficits in the L-LTP induced 

by three episodes of theta-burst stimulation with 10 min inter-episode interval (WT: 

n = 11, Neurl 1,2 KO: n = 7, Neurl 1 KO: n = 6, Neurl 2 KO: n = 6 ; One-way 

ANOVA, Sidak’s multiple comparison test, WT and Neurl 1,2 KO *p < 0.05).  
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Table 8. Summary of electrophysiological experiments with Neurl 1 KO 

mice,  Neurl 2 KO mice, and Neurl 1,2 KO mice 

 

N.S.: Not Significant 
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The expression levels of GluA 1 and GluA2 were not changed in all 

genotypes 

I delved further into the molecular mechanism in order to figure out which 

molecules caused hippocampus-dependent spatial memory impairments and 

synaptic plasticity deficits in Neurl 1,2 KO mice. Since Neurl 1 overexpression has 

been shown to induce changes in the expression levels of AMPA receptor subunit 

GluA1 and GluA2 (Pavlopoulos, Trifilieff et al. 2011), I prepared hippocampal 

lysates from brains of Neurl 1 KO, Neurl 2 KO, Neurl 1,2 KO mice, and WT 

littermates and performed western blot analysis for GluA1 and GluA2 levels (Fig. 

15a). Four genotypes did not show any significant difference in the expression levels 

of GluA1 and GluA2 (Fig. 15b and 15c). These results show that the hippocampus-

dependent spatial memory impairments and synaptic plasticity deficits at least in 

Neurl 1,2 KO mice were not brought about by changes in the expression levels of 

GluA1 and GluA2.  
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Figure 15 
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Figure 15. The expression level of GluA1 and GluA2 was not changed in 

all genotypes 

(a) Western blot analysis of GluA1 and GluA2 expression in the hippocampus of 

Neurl 1 KO, Neurl 2 KO, Neurl 1,2 KO mice, and WT littermates. GAPDH was used 

for normalization (b) GluA1 levels did not significantly differ in all genotypes (WT: 

n = 7 mice, Neurl 1,2 KO: n = 5 mice, Neurl 1 KO: n = 6 mice, Neurl 2 KO: n = 5 

mice; One-way ANOVA, Bonferroni’s multiple comparison test, p = 0.9227,  n.s.: 

not significant). (c) GluA2 levels did not significantly differ in all genotypes. (WT: 

n = 11 mice, Neurl 1,2 KO: n = 5 mice, Neurl 1 KO: n = 6 mice, Neurl 2 KO: n = 10 

mice; One-way ANOVA, Bonferroni’s multiple comparison test, p = 0.0672,  n.s.).  
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Neurl 1 KO and Neurl 2 KO mice exhibited no compensatory expression 

of Neurl 2 and Neurl 1 transcripts  

Results reported thus far in this study suggest that hippocampus-dependent long 

term memory and L-LTP were impaired in Neurl 1,2 KO but not in Neurl 1 or Neurl 

2 single KO mice. To explain these phenomena, I hypothesized that each of Neurl 1 

and Neurl 2 genes might play a compensatory role to each other. I expected that the 

gene expression level of Neurl 1 and Neurl 2 might have been increased in order to 

cover up for the absence of their respective paralog. If so, the expression of Neurl 1 

would be increased in Neurl 2 KO mice, and vice versa. First, I performed reverse 

transcription-PCR (RT-PCR) with RNA molecules extracted from the hippocampus 

of Neurl 1 KO, Neurl 2 KO, Neurl 1,2 KO mice, and WT littermates. Using specific 

primers for each gene, I observed Neurl 1 transcripts were nonexistent in Neurl 1 

KO and Neurl 1,2 KO mice, while Neurl 2 transcripts were absent in Neurl 2 KO 

and Neurl 1,2 KO mice (Fig. 16a).  

Then I conducted quantitative real-time PCR (qRT-PCR) to find out whether the 

expression levels of  Neurl 1 transcripts and Neurl 2 transcripts were relatively 

increased in Neurl 2 KO and Neurl 1 KO mice, respectively, compared to WT 

littermates (Fig. 16b and 16c). Results showed that there was neither overexpression 

of Neurl 1 transcripts in Neurl 2 KO mice nor overexpression of Neurl 2 transcripts 

in Neurl 1 KO mice. Therefore, these results suggest that there doesn’t exist a 

compensatory mechanism between Neurl 1 and Neurl 2 and moreover, either Neurl 

1 or Neurl 2 is solely sufficient for the regulation of long-term spatial memory and 

L-LTP. 
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Figure 16 
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Figure 16. Neurl 1 KO and Neurl 2 KO mice exhibited no compensatory 

expression of Neurl 2 and Neurl 1 transcripts 

(a) RT-PCR analysis showed either presence or loss of Neurl 1 and Neurl 2 

transcripts in Neurl 1 KO, Neurl 2 KO, Neurl 1,2 KO mice, and WT littermates. 

(WT: n=4, Neurl 1,2 KO: n=4, Neurl 1 KO: n=4, Neurl 2 KO: n=4). (b-c) Expression 

levels of Neurl 1 transcripts and Neurl 2 transcripts were normalized by GAPDH. 

(b) A similar level of Neurl 1 transcripts were observed in WT and Neurl 2 KO mice 

(Unpaired T-test of  WT and Neurl 2 KO, p = 0.5924, n.s.: not significant). (c) A 

comparable level of Neurl 2 transcripts were observed in WT and Neurl 1 KO mice 

(Unpaired T-test of  WT and Neurl 1 KO, p = 0.9442, n.s.).  
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DISCUSSION 

Previous reports have suggested that it is possible for paralogous genes to function 

interchangeably (Pinne, Denker et al. 2006, Khoriaty, Hesketh et al. 2018, 

O'Callaghan, Zarb et al. 2018), or assume disparate roles (Noree, Sirinonthanawech 

et al. 2019). In this study, I focused on hippocampus-dependent spatial memory and 

its impairment was observed in one condition in which both Neurl 1 and Neurl 2 

were absent while it was intact when either Neurl 1 or Neurl 2 was single knocked-

out (Fig. 9). The qRT-PCR experiment results showed that neither relative expression 

level of Neurl 1 transcripts was increased in Neurl 2 KO mice, nor that of Neurl 2 

transcripts was increased in Neurl 1 KO mice (Fig. 15). Therefore, I suggest that 

there are no compensatory mechanisms between neurl 1 and neurl 2, and either 

presence of Neurl 1 or that of Neurl 2 is sufficient for spatial learning and memory; 

furthermore I suppose neither Neurl 1 nor Neurl 2 is involved in spatial working 

memory, fear memory and social memory. Thus, it seems reasonable to assume from 

my findings that Neurl 1 and Neurl 2 perform generally comparable functionalities 

in the biological system. Therefore, this study provides a novel understanding 

regarding the functions of Neurl 1 and Neurl 2, that the pair of paralogs play similar 

roles in hippocampus-dependent spatial memory.  

I also discovered that basal synaptic transmission and E-LTP were intact in all 

genotypes, but L-LTP was impaired in Neurl 1,2 KO mice. It has been widely 

accepted that L-LTP requires de novo protein synthesis, but such synthesis is not 

needed for E-LTP, which instead requires modification of existing proteins and their 

trafficking at synapses (Bliss and Collingridge 1993, Frey and Morris 1997, Malenka 
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and Bear 2004). Notwithstanding the fact that AMPA Receptor subunit GluA1 and 

GluA2 are important for L-LTP, the expression levels of GluA1 and GluA2 had not 

been altered in Neurl 1,2 KO mice. Accordingly, I conclude that L-LTP impairment 

in Neurl 1,2 KO mice was not caused by the alteration in levels of GluA1 and GluA2. 

Instead, I propound three alternative explanations by which deletion of Neurl 1 and 

Neurl 2 could have induced hippocampus-dependent memory and L-LTP 

impairment. Each of the alternative explanations considers the role of one of three 

different types of substrates of Neurl 1 and Neurl 2: CPEB3, Notch ligands, and 

cGMP-specific phosphodiesterase 9A (PDE9A).  

First, Neurl 1 regulates LTP and LTD maintenance through mono-ubiquitinated 

CPEB3, which promotes the production of AMPA receptor subunit GluA1 and 

GluA2 (Pavlopoulos, Trifilieff et al. 2011). However, the expression levels of GluA1 

and GluA2 were unchanged in all the genotypes (Fig.15). Therefore, I assumed that 

the possibility is slim to none that hippocampus-dependent memory and L-LTP 

impairment were brought by the deficit of mono-ubiquitinated CPEB3 in Neurl 1,2 

KO mice. Second, Neurl 1 and Neurl 2 are involved in the regulation of Notch 

signaling pathway. Neurl 1 represses Notch signaling by down-regulating the 

expression of Notch ligand Jagged1 (Koutelou, Sato et al. 2008). Furthermore, Neurl 

2 regulates the endocytosis of Notch ligand Delta in cooperation with Mind Bomb-

1 (Song, Koo et al. 2006). Previous reports suggested that Notch signaling pathway 

regulates hippocampal synaptic plasticity such as L-LTP and long-term memory 

formation (Wang, Chan et al. 2004, Brai, Marathe et al. 2015, Tu, Zhu et al. 2017). 

Therefore, it is a possibility that hippocampus-dependent memory and L-LTP 
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impairment might have occurred due to abnormal regulation of Notch 

signaling.Third, recent studies suggested that Neurl 1 and Neurl 2 can promote 

polyubiquitination of PDE9A which then leads to its proteasome-mediated 

degradation (Taal, Tuvikene et al. 2019). PDE9A is an enzyme one of whose 

functions is breaking down cGMP. Moreover, cGMP/PKG/CREB pathway is known 

to play a role in learning and memory. Accordingly, previous studies reported that 

L-LTP and long-term memory formation were enhanced by inhibition of PDE9 (van 

der Staay, Rutten et al. 2008) and inhibition of PDE9A rescued memory deficit 

(Kleiman, Chapin et al. 2012). Therefore, I lastly hypothesize that hippocampus-

dependent memory and L-LTP impairment could have occurred because PDE9A was 

not degraded in the absence of both Neurl 1 and Neurl 2 and that this further 

promoted breakdown of cGMP and finally, PKG/CREB pathways were not activated 

(Fig. 17).   
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Figure 17 

 

Figure 17. A model for the interaction of Neurl 1 and Neurl 2 with PDE9A 

in the regulation of PKG/CREB pathway  

(a) In normal state, Neurl 1 and Neurl 2 promote the degradation of PDE9A through 

polyubiquitination of PDE9A and therefore the breakdown of cGMP is controlled 

under a certain level. (b) Under the absence of both Neurl 1 and Neurl 2, PDE9A is 

not degraded and cGMP molecules break down, and thereby PKG/CREB pathway 

cannot be activated.  
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Taken together, these discussions provide possible explanations for the data 

observed in the current study in terms of interactions between Neurl 1 and Neurl 2 

and their substrates; that those interactions are involved in the regulation of 

hippocampus-dependent memory and synaptic plasticity. Further work will be 

required to dissect the specific functions of downstream molecules, including those 

mentioned above.  

Pavlopoulos et al. showed impaired LTP and spatial memory in Neurl 1 inhibited 

mice (Pavlopoulos, Trifilieff et al. 2011). However, this result is somewhat 

incongruent with the results obtained in this study where Neurl 1 KO mice had both 

intact LTP and spatial learning. However, another prior study reported that Neurl 1 

KO mice showed hypersensitivity to ethanol and defective olfactory discrimination 

while spatial memory was undamaged (Ruan, Tecott et al. 2001). I assume this 

difference in observed phenotypes was caused by a difference in methodologies 

employed in the aforementioned studies (El-Brolosy and Stainier 2017). For 

instance, PKMζ is a well-known molecule that plays an important role in LTP 

maintenance and spatial memory (Sacktor 2008). However, Tsokas et al. suggested 

that late-LTP and spatial memory were intact in PKMζ-null mice due to the fact that 

PKCι/λ compensated for the absence of PKMζ. It was also observed that the level of 

the compensatory protein was persistently up-regulated throughout the period of LTP 

maintenance (Tsokas, Hsieh et al. 2016). However, in the research cited above, 

Pavlopoulos et al. inhibited the expression of Neurl 1 by expressing a dominant-

negative form of the gene at a particular time point, whereas in the study of Ruan et 

al. and in my study, Neurl 1 was knocked-out genetically at the embryonic stage. 
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Thus, I conjecture that intact spatial memory found in the current study is due to a 

biological compensation mechanism that functioned during the developmental stage 

that can substitute for the loss of Neurl 1.  

 Results obtained from anxiety behavior tests provide that Neurl 2 KO mice, but 

not those of other genotypes, exhibited a significantly lower level of anxiety in OF 

test. However, this trend has not extended to the other anxiety tests (Fig. 12 a). 

Relevant to this observation, some studies provided that an experimental treatment 

does not always induce the same effects on these tests. It is possible that an identical 

treatment produce observable difference in anxiety level only in one of the tests  

(Paylor, Nguyen et al. 1998, Malleret, Hen et al. 1999) or even produce opposite 

effects across different tests (Rochford, Beaulieu et al. 1997, Strohle, Poettig et al. 

1998). Although these tests are commonly based on a natural conflict within-subject 

animals between the drives for exploring new environments and tendencies to avoid 

places which are potentially dangerous, it was observed that large inter-test 

variations are induced under differential gene expressions and under the effect of 

anxiolytic drugs (Clement, Calatayud et al. 2002, Ramos 2008). Based on these 

observations, it could be posited that significantly lower level of anxiety in OF test 

was observed only in Neurl 2 KO mice, but not in the other genotypes, since such 

phenotype is sufficiently caused by the existence of Neurl 1 gene, but not so by the 

fact that Neurl 2 gene does not exist, in Neurl 2 KO mice. 

Traditionally, the hippocampus has been widely held to function in spatial 

informational processing (O'Keefe and Nadel 1978, O'Keefe and Burgess 1996). To 

assess hippocampus-dependent spatial memory, I used three different memory tasks: 
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OLM test, MWM test, and CFC test. As a result, Neurl 1,2 KO mice displayed 

dramatic impairment in spatial memory (OLM and MWM test), while exhibited 

lower, albeit not statistically significant, contextual fear memory. Previous studies 

have also observed different tendencies resulted in these two memory tests 

conducted against same mutant mice. For instance, mice sometimes showed intact 

fear memory but impaired spatial memory (Beach, Hawkins et al. 1995, Kubota, 

Murakoshi et al. 2001), or vice versa (Blaeser, Sanders et al. 2006, d'Isa, Clapcote et 

al. 2011). One possible explanation that can be provided in accounting for the results 

mentioned above is that the hippocampus functions in various and independent ways 

and these functions collectively underlie spatial memory and contextual fear 

memory. For example, in the MWM test, the escape location should be computed 

and remembered relying on the distal cues attained from the surrounding 

environment. In addition, a goal-directed navigation strategy is crucial in this process 

(Cornwell, Johnson et al. 2008, Eichenbaum 2017). However, CFC test is a type of 

Pavlovian fear conditioning during which a link between context and emotion is 

formed (Kim and Jung 2006), and this process duly requires associative learning 

(Brasted, Bussey et al. 2003). Therefore, I assume the test-variation observed in the 

results of MWM, OLM, and CFC test is due to the fact that hippocampus regulates 

each type of memory in a distinct manner. 
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CHAPTER IV 

  CONCLUSION  
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In the present study, I demonstrated two lines of evidence supporting the 

involvement of post-translational modification in the regulation of learning and 

memory, one about the effect of PKCα mediated-phosphorylation of Lsd1, and the 

other concerning the role of E3 ubiquitin ligases, Neurl 1 and Neurl 2. 

In Chapter II, I provided the first piece of evidence that supports the involvement 

of PKCα-mediated phosphorylation of Lsd1 in the regulation of hippocampus-

dependent memory and short-term synaptic plasticity. Lsd1 KI mice showed 

impairment of hippocampus-dependent fear and spatial memory. Moreover, Lsd1 KI 

mice showed alteration of short-term synaptic plasticity and presynaptic function; 

however, long-term synaptic plasticity including LTP and LTD was normal. 

Providing some support to the findings just mentioned, I found that several 

presynaptic function-related genes are upregulated by phosphorylation-defective 

Lsd1. 

  In Chapter III, I have elucidated specific functions of Neurl 1 and Neurl 2 in 

hippocampus-dependent learning and memory. I revealed that hippocampus-

dependent spatial learning and memory and protein synthesis-dependent LTP were 

impaired in the absence of both Neurl 1 and Neurl 2 but not under the presence of 

either Neurl 1 or Neurl 2. Furthermore, I found that there existed no mechanisms 

between Neurl 1 and Neurl 2 genes for compensating one another in terms of their 

transcriptional level when one of the genes was absent. 

Even though it is hard to say that the three genes dealt in this study, Lsd1, Neurl 1, 

and Neurl 2 share the same molecular pathway in the regulation of learning and 

memory, these studies provide multi-faceted evidence for the fact that various forms 
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of post-translational modifications can work as multiple channels through which 

learning and memory could be controlled in its finest details.   

Despite multiple experiments, the present study mainly provides observations 

regarding biological phenomena rather than specific mechanisms. Thus, a number 

of subsequent questions still remains. For instance: how phosphorylation defective 

Lsd1 up-regulate presynaptic function-related genes? Which downstream molecules 

interact with Neurl 1 and Neurl 2 for regulating memories? Therefore, in further 

studies, it will be required to reveal more specific mechanisms and to deeply 

understand respective impairment of hippocampus-dependent memory observed in 

each transgenic mice.  

Collectively, hereby presented studies add novel pieces of evidence to the 

understanding of the role of post-translational modifications in the regulation of 

learning and memory.  
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국문초록 

학습과 기억은 수많은 분자적 기전들을 통해 조절된다. 그동안 많은 

연구들을 통해 단백질의 번역 후 변형(Post-translational modification)이 

학습과 기억에 중요한 역할을 한다는 점이 알려졌지만 여전히 밝혀내야 할 

부분이 많이 남아있다. 나는 이 연구에서 여러 종류의 번역 후 변형 메커니즘 

중에서 특히 단백질의 인산화 (Phosphorylation)와 유비퀴틴화 

(Ubiquitination)가 학습과 기억에 미치는 영향에 대해서 연구하고자 

하였다. 이를 위해 형질전환 생쥐 모델을 이용하는 일련의 실험을 

진행하였으며 이 두 종류의 번역 후 변형 메커니즘이 학습과 기억에 

관여한다는 생물학적 증거를 제시하였다. 

첫 번째 연구에서 나는 단백질 인산화효소 Cα (PKCα)로 매개되는 

Lysine-specific demethylase 1 (Lsd1) 단백질의 인산화가 해마 의존적 

학습과 기억에 미치는 영향을 알아보기 위해서 단백질 인산화효소 Cα로 

매개되는 인산화가 결핍된 Lsd1 유전자를 삽입한 생쥐 (Lsd1 KI 생쥐)를 

이용하였다. 행동 실험을 진행한 결과 Lsd1 KI 생쥐는 대조군 (WT 

littermate)에 비해서 해마 의존적 공포 기억과 공간 기억이 저해된 것을 

관찰할 수 있었다. 또한, 전기생리학 실험을 통해서 Lsd1 KI 생쥐의 

시냅스전 말단의 기능이 향상되어 있는 것을 관찰 할 수 있었는데, 이는 단기 

시냅스 가소성 (Short-term synaptic plasticity)과 관련이 있다. 한편, 

장기강화 (Long-term potentiation: LTP)와 장기억압 (Long-term 
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depression: LTD)과 같은 장기 시냅스 가소성 (Long-term synaptic 

plasticity)은 Lsd1 KI 생쥐에게서 정상적으로 보존되어 있는 것이 

관찰되였다. 뿐만 아니라, Lsd1 KI 생쥐의 해마 조직에 대해 RNA-seq 

분석을 진행한 결과에서도 시냅스 전 말단의 기능과 관련된 유전자 발현량의 

증가를 확인할 수 있었다. 본 연구는 위 결과들로부터 단백질 인산화효소 Cα 

(PKCα)로 매개되는 Lsd1 단백질 인산화가 생리적, 분자적 수준에서 

시냅스전 말단의 기능을 조절하며 학습과 기억에 영향을 미친다는 해석을 

이끌어내었다. 

두 번째 연구에서 나는 E3 유비퀴틴 연결효소 (E3 ubiquition ligase)인 

Neurl 1 과  Neurl 2 가 해마 의존적 학습과 기억에 미치는 영향에 대해서 

알아보았다. 이를 위해서 Neurl 1 유전자가 결손된 Neurl 1 녹아웃 생쥐 

(Neurl 1 KO 생쥐)와 Neurl 2 유전자가 결손된 Neurl 2 녹아웃 생쥐 

(Neurl 2 KO 생쥐), 그리고 Neurl 1 과 Neurl 2 유전자가 모두 결손된 

Neurl 1, 2 녹아웃 생쥐 (Neurl 1,2 KO 생쥐)를 이용하였다. 행동 실험을 

진행한 결과, 대조군 생쥐에 비해서 Neurl 1,2 KO 생쥐에서만 해마 의존적 

공간 기억이 저해된 점을 확인하였다. 또한, 전기생리학 실험을 통해서 

Neurl 1 KO 생쥐, Neurl 2 KO 생쥐, Neurl 1,2 KO 생쥐 모두 시냅스 기저 

특성 (Basal synaptic property) 및 초기 장기강화 (Earl-phase 

LTP)에는 변화가 없었던 반면 Neurl 1,2 KO 생쥐에서만 단백질 합성 

의존적 장기 강화 (Protein synthesis-dependent LTP)가 저해되어 있는 

사실을 확인할 수 있었다. 마지막으로 Neurl 1 과 Neurl 2 이 서로에 대해서 
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상보적인 역할을 수행할 가능성을 시험해 보기 위해서 Quantitive-real 

time PCR 실험을 진행하였으며, Neurl 1 KO 생쥐에서는 Neurl 2 의 

전사물의, 그리고 Neurl 2  KO 생쥐에서는 Neurl 1 의 전사물의 양이 

증가해 있지 않다는 결과를 얻었다. 이러한 결과들을 종합해 보면, Neurl 1 

혹은 Neurl 2 중 적어도 하나의 유전자가 있는 상황에서 해마 의존적 공간 

기억과 단백질 합성 의존적 장기 강화는 손상되지 않고 유지되지만, Neurl 

1 과 Neurl 2 전사물의 양을 비교해 보았을 때 이 두 가지 유전자가 그 

과정에서 서로 상보적인 역할을 하지는 않는다는 결론을 내릴 수 있다. 

요약하자면 나는 번역 후 변형에 관련된 두 가지 연구로서, 각각 단백질 

인산화효소 Cα (PKCα)로 매개되는 Lsd1 단백질의 인산화와 E3 

유비퀴틴 연결 효소인 Neurl 1 과 Neurl 2 가 해마 의존적 학습과 기억을 

조절한다는 것을 밝혀냈다. 한편, 이 두 연구는 서로 다른 생리학적 특성과 

분자적 기전을 통해서 해마 의존적 기억이 조절된다는 것을 보여주었다는 

점에서 번역 후 변형이 다양한 분자적 기전을 통해 학습과 기억을 조절할 수 

있다는 견해를 지지한다. 

 

주요어: 인산화, 유비퀴틴화, 시냅스 가소성, 히스톤 탈메틸화효소, E3 

유비퀴틴 연결 효소, 해마  
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