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Abstract
Study on Zonal Flow:

Its In-Out Asymmetry and Residual Level

Y.W. Cho
Department of Nuclear Engineering,

Seoul National University, Seoul 08826, Republic of Korea

This thesis addresses the studies on the zonal flow which is symmetric in the
azimuthal direction and does not induce radial transport but suppresses the
turbulent transport in tokamak plasmas. I investigate the zonal flow in two ways:
1) turbulence suppression and 2) residual level in the absence of the collision and
turbulence. In-out asymmetry of ion temperature gradient (ITG) turbulence and
zonal flow shear driven turbulence suppression are analyzed by performing nonlinear
gyrokinetic simulation using gyroKinetic Plasma Simulation Program (gKPSP).
Analysis based on F x B shear decorrelation theory well explains the simulation
results and find that asymmetry of F x B flow shear makes turbulence relatively
symmetric. In-out asymmetry of E x B flow shear and turbulence in KSTAR
plasma is also discussed using the ECEI(Electron Cyclotron Emission Image) data.
Finally, I identify the role of non-Maxwellian energetic ions on residual zonal flow

via the systematic procedure using gyrokinetics and bounce-kinetics.

Keywords: Tokamak Plasma, Zonal flow, in-out asymmetry, energetic ions, Gy-
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I. INTRODUCTION

In tokamak plasma, there’s F' x B flow which runs in binormal direction,
and is symmetric in toroidal and poloidal direction but oscillates in the
radial direction. Based on its origin, £ x B flow is classified into mean
E x B flow and zonal flow. Mean E x B flow comes from the radial
electric field calculated from the radial force balance equation. Thus, it
does not linearly damped and evolves when radial profiles of plasma flow
and pressure change. Whereas, zonal flow is driven by turbulent Reynolds
stress which is generated by drift wave instabilities excited by free energy
sources such as the radial gradient of particle density and temperature,
and Maxwell’s stress driven by the fluctuation of magnetic fields. It is
linearly damped in collisionless plasma, but not completely and saturates
to a certain level. This undamped level is called residual zonal flow level
which is firstly derived using gyrokinetic theory[1].

Both mean E x B flow and zonal flow play a crucial role in suppression
of turbulent transport and thus enhance the confinement time, which is the
reason why they have been received attention in a tokamak plasma. Based
on the two-point correlation theory, the mechanism and specific criteria of
the flow-shear-induced turbulence suppression were analytically proposed
in Refs. 2 and 3. Besides, it is confirmed by most plasma turbulence sim-
ulations with the zonal flow, which shows the significant reduction of the
turbulence eddy size and intensity, resulting in the reduction of transport-
level to the gyroBohm scale. In the experiments, the mean radial electric
field identified via radial force balance equation shows the correlation with

the formation of transport barriers, like internal transport barrier (ITB)
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and edge transport barrier (ETB). Besides, L-H transition was observed
when externally imposed biased voltage, which establishes the radial elec-
tric field, exceeds the threshold. 2D wave spectrum analysis showed the
suppression of the fluctuations which corresponds to the analytic results
that turbulence is reduced when FE x B shearing rate exceeds turbulence
autocorrelation rate.

For flute-like fluctuations, E x B shearing rate wg has following form|[3]:

Ay P
C Apou?

Ar (f{Bg)2 82

oo(V) = X6 B 2

boo(¥) (1)

WE

where Ar = Ay /RBy and RA¢ are the correlation lengths of the ambient
turbulence in the radial, and toroidal direction, respectively. And ¢q is
the electric potential symmetric in toroidal and poloidal direction. Usu-
ally, correlation length in the binormal direction rA© is assumed to be the
same as the radial correlation length Ar. Note that it was derived based
on the kinetic theory which can calculate the perturbed electric potential
generally using Poisson equation. Accordingly, the charged particles are
affected by E x B drift only, not by flow motion itself and diamagnetic
drift. Thus, it is £ x B flow shear, not the shear of plasma fluid motion
which suppresses the turbulence.

From Eq. (1), £ x B shearing rate is not axisymmetric even though
electric potential is axisymmetric and thus, O¢go /0 is constant in toroidal
and poloidal direction. This is because of the inhomogeneous magnetic
field structure, which is the function of the poloidal angle in toroidal ge-
ometry. As a result, E x B shearing rate is proportional to R?® in circular
flux surface when shaping effects based on Grad-Shafranov equation are

considered[3]. Meanwhile, the drift wave turbulence is also expected to
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be stronger at the low field side (LFS) of the tokamak due to the unfa-
vorable curvature of the magnetic field lines concerning the interchange
drive. Therefore, both the linear growth rate of the fluctuation and the
suppression by E x B flow shear are stronger at the LFS than the high
field side (HFS), resulting in the reduction of in-out asymmetry of the
fluctuation.

Not only the suppression of the turbulence via zonal flows, its gener-
ation and damping are also important. Until mid of the ’90s, researches
based on gyrofluid formalism showed that zonal flow is expected to be com-
pletely damped even in the collisionless plasma. However, M.N. Rosen-
bluth and F.L. Hinton analytically derived that the zonal flow in toroidal
plasma is not damped in the collisionless plasma, based on gyrokinetics[1].
When simulations cannot reproduce this residual zonal flow level, they
overpredict the transport level. I explain the brief mechanism of energy
loss and the existence of a residual level. Zonal flow and geodesic acous-
tic mode are linear coupled because of the transit magnetic pumping via
poloidally varying magnetic field structure in a toroidal plasma. Although
orbits of the particles are radially fixed when they do bounce/transit mo-
tion, there’s radial motion and thus interact with the non-zonal mode, like
geodesic acoustic mode (GAM). Unlike zonal flow, other modes easily lose
energy via Landau damping. So, the energy transferred by this linear cou-
pling is completely damped. This phenomenon is seen as GAM oscillation
in most of the simulations on residual zonal flow. Nevertheless, there’s no
radial transport of the particles, and axisymmetric density perturbations

are still maintained. As a result, axisymmetric electric potential remains
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but is shielded via bounce/transit particles. The analytic expression of the
residual zonal flow level (Rzr) contains this physics and has the following

form:

_ Poo(t = 0) __ Na
¢00<t — OO) Uz + Nne

Ryr (2)

Here, n. is the classical polarization density, comes from the gyroangle-
dependent part of electric potential. And n,,. is the neoclassical polariza-
tion density that comes from the bounce/transit angle-dependent part of
electric potential.

From the above explanations, I can find that the particle’s motion in
the normal direction to the flux surface plays a crucial role in the residual
zonal flow level. Meanwhile, there are growing interests of the energetic
particles, as a tokamak device becomes bigger and the plasma confinement
gets enhanced. It is expected that energetic particles like fusion product «
particles and particles injected by neutral beam injection (NBI) affect the
residual zonal flow since they have large motions in the normal direction.
But the Maxwellian distribution is not suitable to describe these particles
and the slowing-down distribution should be used.

In this thesis, I address the following subjects in the remaining parts.
In chapter II, I describe the in-out asymmetry of the £ x B flow shear.
This chapter contains the theoretic derivation of the poloidal angle de-
pendency of E x B shearing rate and its effects on turbulence reduction
via gyrokinetic simulation using gKPSP (gyroKinetic Plasma Simulation
Program). I found that poloidally asymmetric F x B flow shear makes
turbulence relatively symmetric in poloidal direction. In chapter 3, I ad-

dress the analysis of this in-out asymmetry in the KSTAR experiments
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using ECEI (Electron Cyclotron Emission Imaging) data. Since I can get
the fluctuation data from 24(perpendicular to radial) x 8 (radial) chan-
nels at the same time with the time resolution as 2us, F X B velocity can
be estimated using correlation analysis. Using this £ x B velocity and
flux surface profile from EFIT, in-out asymmetry of E x B shearing rate is
calculated. Also, characteristics of the fluctuations at both LFS and HFS
are analyzed. In chapter 4, I present the effect of the energetic ions on the
residual zonal flow level in the systematic procedure. The orbit motions
of the particles are fully addressed using the general expressions of the
eikonal factors. I found that residual zonal flow level in the long wave-
length regime is the same as the expressions in Ref. 1 for any isotropic
distributions. Also, the enhancement of the residual zonal flow level by
energetic ions are discussed. I conclude my thesis paper in chapter 5 by

summarizing my researches.



II. IN-OUT ASYMMETRY OF ZONAL FLOW SHEAR AND

TURBULENCE REDUCTION

In the tokamak plasma, drift wave turbulence which is driven by free
energy source like temperature and density gradient induces anomalous
transport across the magnetic field line. The drift wave turbulence tends
to be stronger at the low field side of the torus from theory[4] because of
the unfavorable curvature of the magnetic field lines with respect to the in-
terchange mode at this side. This has been confirmed from simulations[5].

Although it is not frequently addressed, poloidal asymmetry of tur-
bulence properties has been also observed in various devices. These in-
clude fluctuations of electron temperature, electron density and electro-
static potential in TEXT-U(Texas Experimental Tokamak-Upgrade),[6—
8] amplitude and radial correlation length of density fluctuations in T-
10,[9] and density fluctuation amplitude in Tore-Supra.[10] Turbulence
in spherical torus exhibits even stronger in-out asymmetry than those in
tokamaks.[11, 12]

Meanwhile, reduction of in-out asymmetry of fluctuations was observed
during the L-H transition. After L-H transition in CCT(Continuous Cur-
rent Tokamak), root mean square fluctuation level measured by reflec-
tometer showed significant reduction at low field side, while its level at
high field side remained almost at the same level, resulting in significant
reduction of in-out asymmetry.[13] In DIII-D L-mode plasma, turbulent
region measured by X-mode reflectometry was broader in radius at low
field side. However, after the H-mode transition, the turbulent region at

low field side became narrower to the level comparable to the turbulent



region at high field side.[14] A plausible explanation was the in-out asym-
metry in the E x B shearing rate in toroidal geometry from the mean
E x B flow.[3]

There has been steady progress in understanding tokamak turbulence
through gyrokinetic simulations and now it is widely accepted that self-
generated zonal E x B flows play a crucial role in regulating and saturating
the turbulence.[15] While in-out asymmetry of turbulence is visible from
various simulations, [5] there has been no systematic and theoretical stud-
ies on it in the presence of zonal flows.

In this chapter, I investigate the in-out asymmetry of I'TG(Ion Temper-
ature Gradient) turbulence and its dependence on zonal flows in a quanti-
tative manner. I note that the electrostatic potential associated with the
self-generated zonal flows is a flux function with no poloidal and toroidal
dependences in most cases. Even with this flux-function potential, zonal
flow shear has a significant poloidal dependence from its dependence on
the nonuniform magnetic field in tokamaks as I will explain in detail in
the main text. For this analysis, I use gkPSP(GyroKinetic Plasma Sim-
ulation Program), which is a global §f gyrokinetic PIC(particle-in-cell)
code.[16] In-out asymmetry of ITG turbulence is investigated in terms of
radial correlation length and turbulence amplitude.

The rest of this chapter is organized as follows. In Sec. II. A, I briefly
introduce the simulation model for gkPSP. Poloidal dependence of E x B
shearing rate in circular flux surface is calculated in Sec. II. B. In this
section, I also show the radial profile and time evolution of turbulence

intensity and zonal flow with respect to the different collisionalities. From
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the characteristics that are analyzed in previous sections, in Sec. 1I. C,
I show how in-out asymmetry of turbulence gets affected by zonal flow

shear which has poloidal dependence. Conclusions are drawn in Sec. II.

D.

II.A. Gyrokinetic Simulation of Ion Temperature Gradient

Turbulence
IILA.1.  Introduction of gKPSP

I perform ITG turbulence simulations using a global §f gyrokinetic
PIC(Particle-In-Cell) code, gKPSP[16]. The gKPSP code solves the elec-
trostatic gyrokinetic Vlasov-Poisson equations[17] including a linearized
Coulomb collision operator[18] with the adiabatic electron response. I
briefly introduce the gyrokinetic equation before explaining gkPSP code in
detail.

In the plasma confined by strong magnetic field, Lorentz force makes
charged particles gyrate along the magnetic field lines. Since gyration pe-
riod is independent of the particles’ velocity and shorter than the turbu-
lence time scale, utilization of the gyromotion in formulating the governing
equation doesn’t have much effect in describing turbulence. Furthermore,
Hamiltonian becomes symmetric to the gyroangle 6, so that its canonical
momentum g = mw? /2 is constant in time. So y is the adiabatic invariant
and 0 becomes ignorable variable in this system.

Gyrokinetic equation is the 5D Vlasov equation which uses the above
characteristics of the system. In modern gyrokinetic theory, gyrokinetic
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equation is formulated using Lie transform perturbation approach. Lie
transform method is recursive phase transform via extending the func-
tion in n-dimension differential geometry in terms of canonical variables
and satisfies the Poisson bracket. Thus push-forward transform and pull-
back transform are symmetric, and systematic calculation of the perturbed
Hamiltonian and distributions is valid.

Based on the modern gyrokinetic formalism, electrostatic gyrokinetic

equation is

dz
f + o Vaf =C(f) (3)
Here z = (z,0, p,v)) represents the phase space coordinate and C(f) is
the collision operator. dz/dt are determined by the Poisson bracket, such

that [57]

dz 0z 0H 0z OH
% B {Z’ H}z B a%’ api a 31%‘ 3%’ <4)

where p; is the canonical momentum of ¢;. And Hamiltonian in the elec-
trostatic limit is
2

L
—|—€¢_ ﬁ—F%

|p?

H(z) = 2.

+ e¢. (5)

At the each time step, gyrokinetic simulation solves Eq. (3) and then
calculate the Gauss equation to find ¢ in the simulation domain.
In the J f-scheme, only the perturbed part of distribution function 4 f

evolves in time as

%(h“r(io +21)- Va0 f = —21:-Va ot C(f, fo)+C(fo,0f) =150 f+Scor(2,1)+5n (2, 1).
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A magnetic flux surface label z = \/Wedge is used as the radial vari-
able, where v is equilibrium poloidal magnetic flux. z, and z; denote the
unperturbed and perturbed motion of gyro-center, respectively. C(df, fo)
and C(fo,0f) represent the test particle and field particle component of
the linearized Coulomb collision operator, respectively. The numerical
method in Ref. 19 is used for PIC simulation of the collision operator.

A modified Krook operator —v,0 f + S, is employed to control discrete
particle noise in the simulations. Since the original Krook operator damps
the noise and physical fluctuations simultaneously, the correction term S,
is needed to prevent artificial damping of physical quantities, especially
the axisymmetric quantities related to zonal flow [20]. The correction
operator S, is chosen as

N

Scor(zat) = Zgz(syt)Mz(Z)fO(Z) (7)

i=1
The parameters g;(s,t) can be set to conserve a set of physical quantities
M;. In this model, the three conserved quantities are chosen: zonal flow
structure My = vy /B — (v/B),,, the density M, = 1, and the kinetic
energy M3 = v?. Here, (---), represents the bounce orbit average[20].
Although fy is time independent, turbulence-driven transport relaxes the
temperature profile via perturbed quantities. For steady state simulation,
profile control is necessary. To this end, a heat source Sy is implemented

" on(x,t)
no(x)

Su(z,1) = —yu(x) |0f(2,1) = fo(2) (8)

where ng and dn correspond to the equilibrium and perturbed density,

respectively. This heat source continuously damps the components of
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(a) —Ry/Ly
61 —Ry/L;

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
r/a r/a

FIG. 1: Initial profiles of (a)Ro/Lyp;, Ro/Lni, i = Lni/L7i, and (b) safety

factor q.

the perturbed distribution ¢ f deviating from the equilibrium distribution
fo on a time scale 1/yg4. So, the heat source drives the temperature
profile toward the initial equilibrium form, and do not modify the zonal
component of density fluctuations.

The growth of non-axisymmetric fluctuations is reduced by applying
the modified Krook and heating operator as v, — v — s — yu. Relax-
ation rate 75 and heating/cooling parameter vy are set to be sufficiently
smaller than both the linear growth rate v, ~ 0.35vr;0/ Ry and the inverse
of turbulence correlation time 1/7. ~ 0.1vpy /Ry, ie., vs = vg ~ ~v1/20.
(Here, Ry and vy = \/m are the major radius and the ion thermal
velocity in the center of plasma, respectively.) So, the effects of the noise
and profile controls on turbulence evolution are limited.

I use a concentric circular equilibrium of deuterium plasma with
Ry = 210cm and the minor radius a = 70cm. The radial profile of
ion temperature gradient is given by Ro/Lp; = 6.67exp (—y+), where
yr = (r —r,,)/(0.25a) and 7, = 0.6a. The electron temperature profile is
A
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set as the same with T;. The density gradient profile is flat and given by
Ro/L,; = 2.22exp (—y?), where y,, = (r — 1,,,)/a. These gradient profiles
as well as n; = Ly;/Lr; are shown in Fig. 1 (a). The radial profile of
safety factor ¢, which is plotted in Fig. 1 (b), has a parabolic shape with
q = 1.6 and magnetic shear s = 0.5 at » = r,,,. The ion temperature
and the normalized ion gyroradius are T;(r = 0) = Tjy = 4.5keV and
pio/a =~ 1/140 in the center, respectively. The size of radial grid is set as
Ar = 0.7p;. The range of toroidal mode number is chosen as [—64, 64],
for which |kgp;| < 1.0 at the center of the unstable region (r/a = 0.6). 1

use about 100 marker particles per grid.

II.B. Collisionality dependence of turbulence and zonal flow

Before analyzing the simulation results, I illustrate the F x B shearing
rate and its poloidal dependency in the circular flux surface used in this
simulations. In toroidal geometry, the E2 x B shearing rate for flute-like

fluctuations has following form|3]

A _ RByAr &

A_903_1/)2 OO(w)_ vAO 8_W¢00(¢)

. Ar (RB@)2 82
rA® B o2

WE

Do (¥),
(9)
where Ay = RByAr, Ap = vAO, v is the local safety factor, and ®gq is
the zonal component of potential fluctuation. Ar and A© are the radial
correlation length and poloidal correlation angle of the turbulence eddy,
respectively. In most cases, turbulence eddy is assumed to be circular, so

that Ar ~ rAO. Using this assumption, Eq. (9) becomes




In my model, the magnetic field is expressed as B = IV + Vi x Vi)
where ¢ is the toroidal angle and I = ByR, with the magnetic field in
the center By. This leads toroidal magnetic field B, = I/R and poloidal
magnetic field By = |V| /R. For concentric circular flux surfaces, most

gyrokinetic codes including gKPSP set v as

ﬂ B le
dr — g(r)V1—e’

where € = r/Ry. Therefore, there is no poloidal dependency in |V|, and

(11)

I can rewrite the E X B shearing rate as

2 0
07 Poo

Ry(1+ €ecosb)
1

82
V[ a—w%(w (12)

This results in the E x B shearing rate proportional to R. Meanwhile,

wg(r,0) = IWJI (¥) =

when 1) satisfies Grad-Shafranov equation, wg oc R3[3] which has stronger
dependency than this simulation. So, I expect that the in-out asymmetry
of zonal flow shear could be more pronounced in actual experiments than
my simulations. To represent the poloidal variation of the E x B shear,

I define the local mean E x B shearing rate as

o rm6) = \/ [ vz o) / [av. (13)

where [dV = ['* f9+M rRo(1 + ecos@)drdfd'dyp, i.e., the average is

taken around a poloidal angle 6.

To obtain different levels of zonal flow in a self-consistent manner, I
vary ion density so that linear growth rate of ITG doesn’t change but
linear collisional damping differs the zonal flow [21]. Here, ion-ion colli-
sionality is vy = €319 R /v, where v; and ¢ are the ion-ion collision

frequency and the safety factor, respectively. Furthermore, 1 artificially
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—w/o Vg (a)

02 03 04 05 06 07 08 09

Velvpol

0 100 200 300 400

Time [Ry/v, ]

FIG. 2: Radial profiles of (a) turbulence intensity (¢?), (b) turbulent heat
diffusivity x;, and (c) zonal flow Vg. And (d) time evolution of zonal flow shear

V, integrated over volume from r/a = 0.5 to 0.8 for different collisionalities.

switch off the zonal flow in some runs to distinguish the effects of zonal
flow from other saturation mechanisms, such as nonlinear mode coupling.
The turbulence in the case without zonal flow is expected to preserve the
ballooning features better. The profiles of turbulence intensity and zonal
flow for the different collisionalities are shown in Fig. 2. The profiles are
averaged over a steady state time period from ¢/(Ry/vrio) = 280 to 320.
In the absence of zonal flow, the shape of the turbulence intensity profile

(¢?) in Fig. 2(a) is very similar to the Ry/Ly; profile. Here, ¢ = e® /T
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is the flux surface average of the normalized potential fluctuation. While
turbulence intensity is almost constant in the linearly unstable region from
r/a = 0.4 to 0.8, the radial profile of heat diffusivity shows a variation
[Fig. 2(b)]. When zonal flow is retained, both turbulence intensity and
turbulent heat diffusivity get reduced. The radial profiles of zonal flow are
shown in Fig. 2(c). The level of zonal flow and thus its shear decrease as
the collisionality increases. The strong zonal flow shear appears around
r/a = 0.6 where the linear drive is the strongest, and turbulence reduction
around r/a = 0.6 is more noticeable. I study characteristics of turbulence
in the radial range from r/a = 0.5 to 0.8 in detail where the collisionality
dependence of the zonal flow is clearly observed.

It is noteworthy that the collisionality dependence of the zonal flow
does not persist as intended during the whole simulation period. This
is because of the self-regulation dynamics between turbulence and zonal
flow, which can be characterized by a ‘predator-prey’ model [22, 23]. The

time evolution of the volume-integrated zonal flow shear, defined as

VL = \/ ]4 AV (r,0) / 7{ v, (14)

is shown in Fig. 2(d). Here, the integration is performed in the whole

domain of toroidal angle and poloidal angle and from r/a = 0.5 to 0.8
in radial direction. Since not only the fixed point of the predator-prey
oscillation but also the oscillation amplitude depend on the zonal flow
damping rate, higher collisionality does not lead to a lower level of zonal
flow for the whole simulation duration. The details of the analysis based
on a predator-prey model are presented in the Appendix. To avoid the

complications due to the self-regulation dynamics, I analyze turbulence
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properties in the time period from ¢/(Ry/vri0) = 280 to 320 when the zonal
flow level decreases with the collisionality. This time period is sufficiently

longer than the turbulence correlation time 7, < 10Ry /vy which will be

~

discussed shortly.

II.C. Poloidal Asymmetry of Turbulence and Zonal Flow Shear

The radial correlation length and intensity of the ambient turbulence
are significantly reduced when the E x B shearing rate wg exceeds the
ambient turbulent decorrelation rate Awr, that is wg > Awr [2, 15, 22, 24—
26]. T note that all the quantities have poloidal angle dependent and
are larger at the low field side of the toroidal geometry. The reduction
is easily measured and more pronounced for turbulence intensity from
simulations. In this section, I examine the turbulence intensity and radial
correlation length to investigate the poloidal dependency of the turbulence
suppression by the zonal flow from gKPSP simulations.

First, I study the poloidal dependence of the turbulence radial cor-
relation length and correlation time for the different zonal flow shear in
a quantitative way. To evaluate the ambient turbulent scattering rate
Awr, I approximate its inverse as the turbulence correlation time in the
case without zonal flow. A Lagrangian time correlation function C(7) is

calculated as

[ o(x,t)¢*(x,t + 7)dV

C(r) = |
\/f 6(x, )[PdV [ |o(x,t +7)[2dV

(15)

Here, x = (r,6) and 7 are, respectively, a position of a turbulence eddy

on a poloidal plane and the time difference. This correlation function is
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161 -7 gatr,=0.15

=7, gat 1/.‘:0402

Time[RO/vTiO]

0 /2 T 3r/2 2r 0 /2 T 3n/2 27
Poloidal Angle Poloidal Angle

FIG. 3: (a) Turbulence correlation time 7., E x B decorrelation time 7g« g, and
(b) radial correlation length of turbulence as functions of poloidal angle for the
different collisionalities. Local averages are taken in the range from r/a = 0.5

to 0.8 and A = 7/8.

fitted by a function with a form f.(7) = cos(woT) exp|—(7/7.)?*], and con-
sequently the turbulence correlation time 7. is obtained. Here, wy is a
characteristic frequency. Comparison between the turbulence correlation
time 7, and the £ x B decorrelation time 7gxp = 1/wgms as functions
of poloidal angle for different collisonalities are shown in Fig 3(a). A local
average is taken from r/a = 0.5 to 0.8 and Af = 7/8. 7, is the shortest at
high field side(HFS) and the longest near low field side(LFS). Whereas,
Texp shows the opposite trend. Thus the criteria for the effective reduc-
tion of the ambient turbulence, 7gxp < 7., is satisfied only around LFS
for low collisionality.

The poloidal variations of the radial correlation length for different
collisionalities are displayed in Fig. 3(b). Here, p; is evaluated at LFS
in the center of the radial domain (r/a = 0.6). At LFS, radial correla-

tion length gets reduced in the low collisionality case since the criterion of
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FIG. 4: Radial correlation length at LFS and HFS as a function of zonal flow
shear. Black symbols show the ratio of radial correlation length at LFS to that
at HFS. Solid line s are the fitted results using the E x B decorrelation formula

in Eq. (16).

TeExB < T is satisfied. On the other hand, the radial correlation length at
HF'S shows little difference for the different collisionalities because 7gx g at
HF'S is considerably longer than 7, even in the low collisionality case. Con-
sequently, the poloidal asymmetry of radial correlation length decreases
as zonal flow shear increases. The poloidal asymmetry of zonal flow shear
reduces the poloidal asymmetry of the turbulence correlation length.

I plot the radial correlation length as a function of the local zonal
flow shear at LFS (# = 0) and HFS (§ = 7) in Fig. 4 and compare this
simulation result with the analytic prediction in Refs. 24 and 25. The
stronger reduction of the correlation length at LEF'S than that at HFS is

noticeable. The ratio of radial correlation length at LFS to that at HFS
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is also plotted in Fig. 4. (The zonal flow shear is taken from the values
at LFS.) As the zonal flow shear increases, the in-out asymmetry of the
correlation length gradually decreases. According to Refs. 24 and 25, the
radial correlation length gets reduced according to the following equation

when E x B shear is not too strong

Tco

16
(L + 722 )2 (16)

re =

where 7, and r. are the correlation time and radial correlation length of
ambient turbulence. To consider the eddy shape dependence of zonal flow
shear [27], I define wsp = Arwg/rA© = r.wg/r«o. The poloidal correla-
tion length is assumed to be same as the radial correlation length in the
case without zonal flow. The reduction of the radial correlation length as
a function of zonal flow shear is well fitted by the analytic formula if T use
the turbulence correlation time 7. = 9.5 at LFS and 7. = 5.8 at HF'S. The
values of the correlation time measured from my simulations are 7, = 9.1
at LFS and 7. = 5.6 as shown in Fig. 3(a), in a good agreement with the
values used for fitting the theoretical formula.

Next, I examine the poloidal asymmetry of the local mean potential
fluctuation intensity ¢? for different collisionalities and plot in Fig. 5(a).
The local average is taken in the same range of the correlation analysis
(from r/a = 0.5 to 0.8 and Af = 7/8). The turbulence intensity is sig-
nificantly reduced by the presence of the zonal flow for the whole poloidal
angle. This can be understood in terms of the nonlinear energy transfer
from turbulence to zonal flow, leading to the conservation of the total
energy [22]. In contrast to the turbulence decorrelation process, this tur-

bulence energy transfer process is not localized in the LFS as shown in Fig.
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FIG. 5: (a) Local mean turbulence intensity ¢ as a function of poloidal angle.
(b) Time histories of the zonal flow E, and turbulence energy E} in the cases

with, and without zonal flow. In the case with zonal flow, v,; = 0.02.

5(a). The total energy of turbulence and zonal flow can be approximately

expressed as[28]

mno(r)

T;
Etot = Ev + Ek - /dV—VE%(T) + /de Z(l + kipg)gﬁ?ﬂn

2

(17)
Here, E, and E}, denote the energies of the zonal flow and the turbulence,
respectively. The integration is performed in the whole 3D simulation do-
main. The time histories of the turbulence energy in the case without zonal
flow and the total energy in the case retaining zonal flow with v,; = 0.02
are displayed in Fig. 5(b). In this calculation of the turbulence energy, I
neglect the small term related to the polarization drift for simplicity. The
total energy of zonal flow and turbulence becomes comparable to the tur-
bulence energy excited without zonal flow after an initial transient phase.
In the case with zonal flow, the turbulence energy corresponds 13% of the

total energy during the time period from t/(Ro/vri) = 280 to 320. Al-
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FIG. 6: Local mean turbulence amplitude ¢;,,s as a function of zonal flow shear.
Error bar indicates the range of ¢,,s variation measured from t/(Ro/vri) =
280 to 320. Black symbols represent the ratio of ¢..,,s at LES to that at HFS.

Solid lines are the fitted results using an E x B decorrelation formula.

ternatively, about 87% of the turbulence energy is nonlinearly transferred
to zonal flow in the simulations.

The turbulence amplitude ¢,,,s is represented as a function of zonal
flow shear at LFS and HFS in Fig. 6. The ratio of turbulence amplitude
at LFS to that at HFS plotted in this figure summarizes the behavior
of the in-out asymmetry of the amplitude. Compared to the case with-
out zonal flow, the presence of zonal flow enhances the in-out asymmetry
of the turbulence amplitude. The in-out asymmetry of the amplitude
Grms.LFS/ Prms,Hrs 18 1.3 in the case without zonal flow, and increases to
1.7-2.0 with zonal flow. This significant enhancement of the in-out asym-

metry of turbulence amplitude is different from the modest and gradual
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decrease in the in-out asymmetry of the radial correlation length. On the
other hand, for non-zero zonal flow, the in-out asymmetry of the ampli-
tude peaks at a certain level of zonal flow shear and then decreases slightly
as zonal flow shear becomes stronger.

A formula describing the turbulence level reduction by E x B shear
decorrelation, without considering the effects of nonlinear energy trans-
fer explicitly, can be obtained by adopting a mixing length relation (i.e.,
¢ o r.).[24] The resulting formula has the identical form to the equa-
tion for the radial correlation length reduction in Eq. (16), that is
Grms o< 1/(1 4+ 72w%,)Y/2. The results fitting the cases with zonal flow
are presented in Fig. 6. The amplitude reduction trends in the cases with
zonal flow are well described by the turbulence decorrelation theory at
LFS and HFS. However, the ambient turbulence amplitude obtained by
this fitting to the E x B decorrelation theory is much smaller than that
measured in the simulation excluding zonal flow.

Now, I illustrate the different behaviors of turbulence amplitude and
radial correlation length in the following fashion. ¢,,,s as a function of
r. is shown in Fig. 7. A noticeable feature is the difference in the am-
plitude to correlation length ratio ¢,.,s/7. (i.e., the slope of lines in Fig.
7) between simulations with and without zonal flows. I speculate that
this can result from the difference in the dominant nonlinear saturation
mechanisms between the two cases. In the absence of zonal flow, the sta-
tionary turbulence properties are determined by the balance between the
turbulent energy transfer via nonlinear couplings involving both strongly

ballooning and flute-like modes, and the linear drive. In the presence of
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FIG. 7: Turbulence amplitude ¢,n,s as a function of the radial correlation length
re. The ratios of the amplitude to the length ¢,,,s /7. can be classified into three
values, which correspond the slopes of three lines. The black line fits the values
at both LFS and HFS in the cases with zonal flow. The other two lines fit the

values at LFS and HFS in the case without zonal flow, respectively.

zonal flow, on the other hand, the nonlinear energy transfer to zonal flow
is the dominant turbulence saturation mechanism, as illustrated in Figs.
5(a) and (b). So, the qualitatively different saturation mechanisms could
lead to different amplitude to length ratio values.

In addition to the properties of potential fluctuation, I briefly report
the in-out asymmetry of the ion heat transport. Turbulent heat diffusivity
x; at LE'S and HF'S as well as their ratio are shown in Fig. 8. Compared to
the case without zonal flow, the presence of zonal flow significantly reduces
x: at both LFS and HFS and decreases its in-out asymmetry. Among the

cases retaining zonal flow, in-out asymmetry of y; increases with zonal
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FIG. 8: Turbulent heat diffusivity x; as a function of zonal flow shear. Error
bar indicates the range of y; variation measured from ¢/(Ro/vri0) = 280 to

320. Black symbols represent the ratio of x; at LFS to that at HFS.

flow shear. The reduction of the y; magnitude with the increased zonal
flow (shear), or equivalently, with low collisionalities is similar to the be-
havior of the turbulence intensity in my simulations. But the behavior of
the in-out asymmetry of y; is opposite to that of the turbulence ampli-
tude. To elucidate the behavior of the in-out asymmetry of y;, detailed
analysis of ion temperature fluctuation 07} is necessary but has not been
performed in this work. I defer a study of the in-out asymmetry of the

heat transport in a subsequent paper.

II.D. Conclusions

I have investigated the poloidal asymmetry of ITG turbulence in

toroidal geometry for different zonal flow levels. I have performed gyroki-
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netic simulations and analyzed the turbulence amplitude, radial correla-
tion length, and correlation time of the potential fluctuations as functions
of the poloidal angle. To clarify the effect of zonal flow, the fluctuation
characteristics in the presence of zonal flow are compared to those in the
simulation without zonal flow. It is found that the in-out asymmetry of
the radial correlation length continuously decreases as zonal flow shear
increases because the reduction of the correlation length is larger at LEF'S
than HF'S. This correlation length reduction trend from the zero zonal flow
case is well described by the E x B shear decorrelation theory. However,
turbulence amplitude behaves differently from the prediction of the mix-
ing length relation in combination with the decorrelation theory [24]. It
seems that while the E x B decorrelation theory works well for the radial
correlation length, more detailed nonlinear theory taking nonlinear energy
transfer from turbulence to zonal flow into account rather than a naive
mixing length relation is required to predict the behavior of turbulence

amplitude.
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III. ANALYSIS OF IN-OUT ASYMMETRY OF FE x B FLOW

SHEAR USING ECEI DATA

In this section, I extend my previous gyrokinetic study on the in-out
asymmetry of F x B flow shear to the experiments. Unlike the simulations,
it is difficult to analyze the problem in limited situations like electrostatic
ITG turbulence with an adiabatic electron case. In addition, the mean ra-
dial electric field E, can be estimated using radial force balance equation,
but the zonal flow is almost unmeasurable. Meanwhile, correlation analy-
sis via ECEI data[31] makes it possible to distinguish the fluctuations of
each mode. Furthermore, £ x B flow velocity can be derived from the
wave velocity of the modes. One of the advantages of the analysis using
ECEI is that radial profiles of the plasma pressure, binormal flow velocity,
and magnetic field strength are not necessary to calculate the E,.. Thus,
from this research, I can verify my research on in-out asymmetry of the
E x B shearing rate in the gyrokinetic simulation, through the KSTAR
experiments.

For these reasons, I analyze the in-out asymmetry of £ x B flow shear
in the KSTAR experiments measured by ECEIL. The remained part of this
section is organized as follows. In the Sec. III. A.1., I briefly introduce the
experiment I analyzed. Then, I compare the velocity of the fluctuations
estimated by ECEI data and vgyp deduced from the CES data on radial
profiles of T; and vy in the Sec. III. A.2. And finally, I analyze the effects
of the F x B shearing rate on the in-out asymmetry of the fluctuations
measured by ECEI in Sec. III A.3. In Sec. III B., I address the summary

and the future work for this topic.
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ITI.A. Analysis of Poloidal Asymmetry of the Fluctuations and

FE x B shearing rate
III.A.1.  Set-up of the Experiments

In order to analyze the in-out asymmetry of the fluctuations and the
E x B shearing rate, I investigate the previous KSTAR experiments in
which ECEI system measured both the low field side (LFS) and the high
field side (HFS) at the same time. Omne of the past experiments which
fulfill this condition is the KSTAR #18431. In this experiment, plasma
was heated by three neutral beam (NB) injection channels with their power
1.7, 1.08, and 1.7TMW . Toroidal magnetic field strength on-axis was 2.37",
and the plasma current was on the reversed direction with 500kA. Ion
temperature and toroidal velocity were measured by CES from t = 6s to
t = 9s. Based on the measured data, equilibrium magnetic surface, and
radial profiles of T}, vy, and safety factor ¢ are calculated using EFIT
code.

Time evolution of total energy, electron density, 5, Zs,, ¢, and plasma
elongation k are illustrated in Fig. 9. Here, Z, ¢ is the flux-surface-
averaged vertical location of the last closed flux surface. In this H-mode
plasma with type-1 ELM, bursty n = 2 fishbone mode and weak n = 1 har-
monic oscillation at the core was observed by Mirnov coil from ¢ = 5.5s
to 6.15s. From t = 6s, the external magnetic field pushed the plasma
down, so that 3, decreased with Z,, s slowly moving down. Plasma was
extremely destabilized after ¢ = 8s, because of the disruption. Although
this experiment is not suitable to analyze because of this external mag-
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FIG. 9: Time evolution of the total energy, electron density, 3, Zs,f, and

plasma elongations at KSTAR #18431. Plasma moved down from ¢t = 6s and

stopped at t = 8s. Plasma was measured by CES from ¢ = 6s and stopped at
t =9s

netic field, it is one of the few experiments which was observed using CES
and ECEI at both LFS and HFS. In addition, MHD modes have a stronger
spectrum compared to other fluctuations, which can lead to higher accu-
racy in this analysis. Due to the above reasons, I analyze the KSTAR
experiment #18431 from t = 6s to t = 6.1s, when there’s both CES data
and ECEI data and MHD phenomenon occurred.

In order to analyze the in-out asymmetry of £ x B shearing rate on the

same flux surface, I illustrate the equilibrium magnetic flux surface from
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FIG. 10: Magnetic flux surface calculated by ECEI at ¢ = 6s. Red and blue box
correspond to the location where ECEI measured. Red line is the last closed

flux surface.

EFIT and the position where ECEI detected in Fig. 10. ECEI detected
the plasma inside the last closed flux surface (LCFS) at the LFS, whereas
it detected the plasma across the LCFS at the HF'S. Thus, I analyzed the

spectrum from the channels which detected inside the LCF'S.

III.A.2. Estimation of the E x B shearing rate

In most cases, radial electric field E, from the experimental data is
estimated using radial force balance equation[27]. To calculate the E,
using radial force balance equation, I need the radial profiles of pressure,
toroidal rotation speed, and poloidal rotation speed. Usually, this data
are measured by charge exchange spectroscopy (CES)[30]. It measures the

Sk k)
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radiation emitted by the excited impurity ions due to the charge exchange
between a neural hydrogen atom and an impurity ion[30]. Generally, a
neutral hydrogen atom comes from the neutral beam injection from the
outside of the tokamak. So this spectroscopy requires the device to inject
the neutral beam source.

Whereas, Electron Cyclotron Emission Imaging (ECEI) system mea-
sures the radiation emitted by the gyration of electrons in the magnetized
plasmas [31]. Since the frequency of the gyration is the function of the
charge, mass, and magnetic field, the location of the emission can be es-
timated based on the magnetic field strength. So, ECEI measures the
intensity of the radiation emitted by the gyromotion and estimate the
electron temperature fluctuations.

If E x B shearing rate can be estimated using ECEI, this detection
system can give us not only the information of the fluctuation of T,, but
also the current status of the stabilization effects. The main method to
estimate E x B velocity is the correlation analysis using the signals from
the multi-channels. Comparing the two signals with the same frequency
of nearby channels, the phase difference between two channels can be
measured. Using phase difference Af and distance between the channels
Ad, I can find the wavelength k& = Af/Ad with respect to the frequency
of the signal[32]. Since F x B flow induces the Doppler shift of the wave

frequency,

Wrh = Wrah — KoVExB (18)

where wry, is the actual frequency of the wave, wyy, is the measured fre-

quency, and ky is the wavelength measured by the phase difference between

= g :
¥ [ -11
-"*-_E -|.'1.|i

33

.
o
1

1



-55
= -6
L
©
E '6.5
x° -7
-7.5
-8

FIG. 11: Spectrum of the (T'/T) on wavelength and frequency at the LFS.

the two channels[33]. So, phase velocity measured in the lab frame is the
function of the phase velocity in the plasma frame and E x B velocity.
Fig. 11 shows the spectrum of the 7, fluctuation calculated from the
ECEI data. Spectrum at the LFS shows the poloidal flow motion of the
fluctuation induced by the Doppler shift due to the £ x B flow. Since this
flow motion is not merely due to the F x B flow, the assumption on the
plasma phase velocity and group velocity are needed. Moreover, the phase
velocity is difficult to identify when the amplitude of the fluctuation is
weak. So I calculate the group velocity using RANdom SAmple Consensus
(RANSAC) method|[34] for higher reliability. This numerical method aims
to distinguish the inlier data from the outlier data by random sampling.
I commit the random sampling with weighting each data by the S(k,w).
Then, the trend of the sampled data is deduced and check the consensus to

the other data which is not selected by random sampling. After repeating
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FIG. 12: Group velocity vy, deduced from the fluctuations measured by ECEI
and vgxp calculated using radial profiles of the T; and vy measured by CES.

Purple line is the fitted using v, and Eq. 20.

this process several times, I choose the trend which has the least outlier
and determines the group velocity of the fluctuations.

The radial electric field E, is deduced from the radial force balance
equation using CES data. But there’s only CES data on ion temperature
T; and toroidal velocity v in this experiment which is the reason why
few assumptions for the profiles that were not measured are used. For the
pressure profile, T assume that T,(r) = T;(r) and n;(r)/no = Ti(r)/Ti-
Poloidal velocity is deduced from the neoclassical poloidal velocity. Con-

sequently, the equation of vgyp in this work is

E 1 1
e By — coB VP 19
By By (UT 0 — V9Neo DT + nZe ) (19)

VExB =

Comparisons on the E x B velocity (vgxp) and the group velocity (v,)
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FIG. 13: |wg| deduced from the ECEI data and CES data at the both LFS and

HFS.

of the fluctuations are illustrated in Fig. 12. v,4, at the LFS and that at
the HF'S are comparable, which corresponds to the characteristics of the
vpxp which is independent of the poloidal angle. To compare vy, with

vgpxp and their shear, I use the following equation to fit the v,,.

(1 4+ bAYy, )exp(Aih,) — exp(—Aby,)
exp(Aiy,) — exp(—Aiby,)

Here, Ay, = (¥, — ¥n(rrB)) /Ay, rrp is the location of transport barrier,

Vgp = A1 + AQ (20)

and A, is the width of transport barrier. Fitted vy, is slower than vgyp,
but their radial tendencies are similar. Also, the measured radial location
of the transport barrier is different between the vg.p and vy, which is

due to the measurement position error of the two measurement devices.
To calculate wg, I assume that Doppler shift by the vgyp has a dom-
inant role on the radial variation of the v,,. wg in Fig. 13. is calculated
J’J -I‘:ﬁl- )
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As mentioned in the previous paragraph, there’s a difference in the po-
sition of the max(|wg|) resulting from the ECEI and CES. It is also re-
flected in the asymmetry of wg since this asymmetry is the function of
R. The ratio of the max(|wg|) between that at the LFS and HFS is 3.22
and 2.93 for the data measured by CES and ECEI, respectively.® wg is
proportional to (R*!), which has stronger poloidal asymmetry than the
results in the gyrokinetic simulation at the concentric circular flux sur-
face (o< R')[35]. The main reason for the strong poloidal asymmetry
compared to the simulation is the magnetic field structure with shaping
effects. In my previous work, poloidal angle dependent part of the wg
is the |V|?/Br and 8?¢zr(1)/0v? is independent of the poloidal angle.
Actually, |V4|?/Br o« R?*!, which is much stronger in-out asymmetry
than |V |?/Br o« R! in concentric flux surface. Therefore, shaping ef-
fect which was not considered in my previous work enhances the in-out

asymmetry of wg.

1II.A.3. Effect of wg on the in-out asymmetry of the fluctuations

To analyze the effect of in-out asymmetry of wg, I first calculate the
correlation time ¢. at both sides, which is shown in Fig. 14. a). The
correlation time of the LFS is longer than that of the HF'S only near the
¥, = 0.8. To compare the t. to the wg, I use the wg from the ECEI, since
t. is calculated using the data from ECEI. At the LFS, E'x B decorrelation
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FIG. 14: a) Correlation time ¢, and wp', estimated using ECEI data. b)

Electron temperature fluctuation (7'/7) and t.wp on the 1,.

time wgl is comparable to the t. at the v, € [0.9,0.95], which corresponds
to the location of the transport barrier. Because of the in-out asymmetry
of wg, opposite relation is shown in the HFS. So, a weaker reduction of
the turbulence at the HFS is expected. However, this estimation is not
applicable to analyze the traits of temperature fluctuations (T'/T) in Fig.
14 b). Although t.wg ~ 1 at the transport barrier (¢, ~ 0.95), (T/T) is
the highest. This can be because of ELM activities and MHD instabilities,
which are measured as strong fluctuations and are not stabilized by F x B
flow shear. Thus, in order to figure out the role of the £ x B flow shear
on turbulence fluctuations, I need to restrict the range of wavelength and

frequency.

ITII.B. Summary and Future work

In this work, I analyze the in-out asymmetry of the £ x B shearing

rate wg using the data estimated by the ECEI system. To convince the
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results, I investigate the experiments which measured by both CES and
ECEI the same time, in order to compare the vgyp calculated by usual
radial force balance equation, to the correlation analysis based on the
ECEI data. Although plasma moved down at the measured time, KSTAR
#18431 was one of the few experiments which were measured by the ECEI
at both LFS and HFS, and CES at the same time. At first, I compare the
group velocity v, estimated from the ECEI data, with the vg 4 calculated
from the radial force balance equation using the radial profiles of the T;
and vy measured by CES. It is shown that v, is slower than the vgp and
the location of the transport barrier differ, but their shear is comparable.

In-out asymmetry of the E x B shearing rate is stronger than that at
the gyrokinetic simulation in my previous research[35]. It comes from the
magnetic field structure |V)|?/ Bz with shaping effects. The comparison
between correlation time t. and wg is consistent with the theoretic predic-
tion on the enhancement of the confinement. Nevertheless, temperature
fluctuations do not correspond to this prediction and the observation of
the transport barrier because of the ELM and MHD activities.

As future work, I need more experiment results to convince my present
results. First, by comparing more results on vgy g using CES data and vg,
estimated by ECEI data, I need to ensure my calculation on wg. Then,
from the results which observed the LFS and HF'S at the same time using
ECEI in-out asymmetry of the E x B shearing rate can be estimated.
Finally, the analysis of the role of the E x B flow shear on the fluctuations

should be performed on the drift wave wavelength and frequency regime.
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IV. RESIDUAL ZONAL FLOW IN THE PRESENCE OF THE

ENERGETIC IONS

Zonal flows are well-known to regulate and reduce the tokamak plasma
turbulence. A noteworthy property of zonal flows in toroidal plasma is
that it is not damped to non-zero amplitude, known as residual zonal
flow, in the absence of collisional and turbulence induced damping. Since
Rosenbluth and Hinton analyzed residual zonal flow level in the long wave-
length regime (k,p;p, pip is banana orbit width) [1], there have been var-
ious extensions which mostly assumed Maxwellian equilibrium for every
ion species. However, for fusion product a-particles in tokamak plasmas,
the Maxwellian distribution is a poor approximation and the slowing-down
distribution should be used.

In this chapter, I study the residual zonal flow level in the presence
of a particles with slowing-down distribution function and compare the
results against those for Maxwellian distribution case with the same av-
erage kinetic energy and the case without « particles. I only consider the
electrostatic fluctuations in the limit of adiabatic electron response for
simplicity in this work. Mostly, I consider a parameter regime expected
for ITER core plasmas.

Principal results of this chapter are as follows. The values for n, and
nne for the same dimensionless radial wave number krpiT, normalized to
the average-energy ion gyroradius p! = \/E/—m/ Q. are not significantly
different depending on the ion equilibrium distribution function, whether
it’s a Maxwellian or a slowing-down in long wavelength limit. However,

since typical a-particle’s Larmor radius is much larger than that of back-
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ground ion Larmor radius, for the zonal flows in the k, range satisfying
k.pf < 1 < k,pL, T obtain that classical polarizability of alpha particle
is significantly higher than that of background ions, with a consequence
of Rzr with a-particles exceeding Rzp in the absence of a-particles con-
siderably. The beneficial effect on confinement from this is predicted to
depend on the a-particle’s concentration. The effect is obviously negligi-
ble if n,/n. is negligible. However, for n,/n. = 10% I predict more than
10% enhancement of residual zonal flows for k,p; s ~ 107!, I note that
the predicted value of n,/n. in ITER depends on the operation scenarios
and assumptions used in models[70, 71].

An analytic derivation is possible for an arbitrary well-behaved equi-
librium distribution function F{ for the long wavelength(k:rpgi < 1) zonal
flows. In this regime, the well-known expression for a high aspect ratio
circular tokamak plasmas[1], i.e., Rzr = 1/(1+1.6¢*/+/€) which has been
derived for Maxwellian Fj, remains to be valid for any well-behaved Fj
which is isotropic in velocity space.

The remainder of this chapter is organized in the following order. In
Sec. IV.A.1, I introduce the slowing down distribution function for ener-
getic ions. ny and n,,. for slowing down distribution function in arbitrary
wavelength regime are derived in Sec. IV.A.2, and 3 respectively. Then,
residual zonal flow level for slowing down distribution function is esti-
mated in Sec.IV.B. and compared to the Maxwellian Fj case. Discussions

regarding other related works are given in Sec. IV.C.
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IV.A. Classical and Neoclassical Polarization Density

In this section, I derive expressions for the classical and neoclassical
polarization density for arbitrary wavelength. More details can be found
from the following works. Wang and Hahm|[53] have derived the gener-
alized expressions which are valid for the arbitrary wavelength of zonal
flows for both classical and neoclassical polarization density using the
modern gyrokinetics[56, 57] and bouncekinetics[58]. Those expressions in-
clude the finite Larmor radius (FLR) effect and finite orbit width (FOW)
effect. Duthoit, Brizard, and Hahm|[72] have shown how to further improve
the analytic approximations. In this way, both classical and neoclassical
polarization density have been derived systematically. The schematic de-
scription of pull-back transformations is illustrated explicitly in Fig. 2 of
Ref. 53. 1 don’t consider the electron dynamics which can be relevant to
electron temperature gradient (ETG) turbulence driven hyper fine-scale

zonal flows[50-54] for simplicity.

IV.A.1.  Slowing Down Distribution Function

When high energy ions which are created or injected in the plasmas
are slowed down due to collisions with background ions and electrons, the
slowing down distribution is a good description of an equilibrium distri-

bution function[73]. Assuming an isotropy in velocity space, I have

N H(ve —v)
CAmudAy T+ (L)

FSD(U)
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where v, is the maximum velocity of an energetic particle and v, is the
slowing down critical velocity related to the electron thermal velocity of

background plasmas,
vg = 3ﬁ Me
4 my,

vafh,e (23)

Here, Z; = myXin;(Z2/m;)/n. is an effective charge which is inversely
weighted by ion mass. I use the definition v, , = 27./m. and v =
2 Ebirth/Mq, while Ufh = T/m for other ion species such as D and T.
Eyiren is the birth energy of energetic particle. The following integrals as

functions of v, /v, appear in my analysis,

'Ua/vc n
A, (U_a) :/ o (24)
Ve 0 14 a3

For each n, they are given by

Ao(a) = é ln(33++1i3 +2V3 (ml (2“\/_§1> + g)] (25)
Asa) — %ln(as—i— 3 (26)
Ay(a) = é [3(12 + ln<z3++1i3 —2V3 (mn—l <2a\/_§1) + g)} (27)

It has been derived from a Fokker-Planck equation which considers
slowing-down of high energy particles with source an ion birth velocity
that has the form of §—function in particle velocity space[73]. Therefore,
Eq. (22) is applicable for fusion product « particles in the future toka-
mak fusion plasmas such as ITER or DEMO. For high energy ions from
the negative neutral beam injection(NNBI), an anisotropic distribution
should be considered depending on the NBI injection direction. I need to

define an effective temperature for non-Maxwellian distribution function
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for proper normalizations. I take the average kinetic energy(FE) and define
the effective temperature(7.s¢), accordingly, i.e.,

_ 1 3
E= o mv* Fo(Z)d*v = g Lers (28)

for an arbitrary distribution function Fy(Z). Here, Z denotes the guiding
center coordinates. The mean kinetic energy for slowing down distribution

is given as following,

1 3 A4
Esp = — ’F, dv=-Tsp = —
SD 2na /mav SD(U) v 9 SD 2A2

T. (29)
Then, the temperature of the equivalent Maxwellian distribution func-
tion Ty = Tsp and the critical temperature of slowing down distribution

defined as T, = mv? are related by
(30)

From now on, I use the average mean kinetic energy for any distribution
function for normalization of v, ;, p;fr, and p(,T, ie., v = \/W
7T will be used as a simplified notation for T.;; (Tsp for slowing-down
distribution) unless specified otherwise. Also, I use v, as the birth speed

of fusion product a-particles.

IV.A.2.  Classical polarization density

Classical polarization density(n.) comes from the difference between
the particle density and the gyrocenter density[56, 57, 74]. Nonlinear gy-
rokinetic formulations[56, 57, 75] don’t assume Maxwellian equilibrium
distribution. Modern gyrokinetic approach[56, 57, 76] separates the po-

larization density systematically in the gyrokinetic Poisson equation.

.-':r-\-.. "T- - 1-_ll 0
= | B
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For an arbitrary distribution function F(Z), ny in the presence of a

zonal potential d¢ can be expressed as following|[77] :

Zlelsp [ [* . Bd ) 79
_ #/O /_OO 2oy = (1= T3 (ko)) (_B—&) F(Z,,) (31)

where B is the magnetic field strength, v, is parallel velocity, u = mv? /2B
is guiding-center magnetic moment and Z,, denotes gyrocenter phase
space coordinates. Since ny depends on FLR effect strongly, I consider
two asymptotic wavelength regimes, the long wavelength regime k,p! < 1
and the short wavelength regime k,p! > 1. Here, p; represents each ion’s
Larmor radius while p] represents the Larmor radius at the thermal ve-
locity.

In the long wavelength regime of k.p! < 1, the lowest order FLR
effects can be approximated by using JZ(x) ~ 1 — 22/2. Then, n'9"Y can

be calculated by

Zlels 1 TO
e 22 [ [, dvll_(§kgpg> (- 3op ) F(2w) (32
— Z|6|5¢ tzhl/ / 27Talv||d,ua ( ) F(Zgy)

Zleld
- <krp?>2no#.

Then, based on the definition

Nel Zleldo
_— = C 9 33
o Xel T (33)

I obtain the dimensionless classical polarizability for the long wavelength

X! = (kep])P. (34)

This derivation shows that n., and Y in the long wavelength limit are the

same for any well-behaved distribution function, because n = [ d*vF(v)

-':r-. I 'kl:l- 1_-]i
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holds for any F'(Z). Note that the temperature dependence in Eq. (32)
is absent in /9", In addition, the mathematical expressions in Egs. (32)
and (34) are identical for any well-behaved distribution function.

In the short wavelength limit of k.p/ > 1, z = v/vy,; and 0 =
cos™1 (UH / v) are used to facilitate the integration. Then, n. for isotropic

distribution can be expressed as

ny — Zle |5¢ ?hz/ / 2rxsinfdfdz (1 — J§ (k.p] zsind)) (—%) F(x)
Zlelo o 0
= # tShZ/O 2rxdx (2 — H(k’rpiTx)) (—%> F(x) (35)

Here, I have defined

H(z) = /07T d0.J3(xsind)sind (36)

= mHy(2x)J,(22) + (2 — mH1(22)) Jo(2x)
H,(z) is the Struve H function[78]. Using the asymptotic behavior,
H(z) ~ 1/z for z > 1. I obtain,

nEert o~ Z’€T|5¢vt3h7i/o 2rdx (235— klp ) (—%) F(x) (37)

Zleldo > 1
T ATvg, ; {/0 Fdx — rip;pr(O)}

Eq. (37) shows that ny in the short wavelength limit depends on F(x).

12

Note that fo x)dx is not proportional to n in general. n is proportional
to fo )z2dx. In particular, ny for slowing down distribution in short

wavelength limit can be written as

nifw” . A4 |:A0 1 :| Z|6|6¢

no  3As [Ay  2Askp.] T

(38)

where p. is the Larmor radius at T, and (p!/ pc)2 =T/T,.. Eq. (38) shows

that x4 for slowing down distribution asymptotes to the AgAy/3A4% as

-':r-. I 'kl:l- 1_-]i
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kypl — oo. This originates from [ dvF(v) which is not proportional to
n = 4m [ dvov?F(v), except for a Maxwellian F(Z). On the other hand,
it converges to a familiar expression ”1” for a Maxwellian distribution (see
the first term on the R.H.S. of Eq. (31)).

To avoid a spurious pole at k.p! = vy, ;/2A0v. in applying Eq. (38)
(which is valid for k,.pl > 1) for a connection formula for arbitrary wave-

short

length, I slightly modify x3

short —_ A4 AO 1
Xet 3A2 A2 2A2krpc
AgAy I
~ —— |1
342 [ +2A0k;rpj (39)

which is also valid in the short wavelength regime up to O s ).
Now, I construct a connection formula of x. for slowing down distri-

bution using Eqs. (34) and (39) by following the recipe used in Ref. 53

Xd:{ 1 L, (kol /O 1} )

T+ (T O X7 T (ko O X
To avoid an unphysical inflection point which can occur in connection

formula, I demand a continuity in the slope at a connection point, Cj,

0 long __ 0 short

ok o) T k)N
Then Eqs. (34), (39) and (41) lead to

o= b (1) (42)
b Ve 4A2

at  k.pl = Cy (41)

Without this consideration, y. can exhibit an unphysical overshoot at
k.pl ~ 1[67].
I first compare the analytic results in Egs. (34) and (39) with the result

which is numerically calculated based on Eq. (31), and is presented in Fig.

-':r-. I 'kl:l- 1_-]i
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15 a). Here, T, = 10keV and p! is the average Larmor radius of energetic
a particles. Analytic results predict the behavior of x at long wavelength
regime and asymptotic level at short wavelength limit well. However, the
analytic result from a connection formula in Eq. (40) overestimates x at
k.p! ~ 1.0. Fig. 15 b) shows the x4 for Fy; and Fsp consisting of (100%)
energetic a-particles only for illustrations, at T, = 10keV and 30keV. 1
set T; = T, for background ions for a black curve for the case without
a-particles. picrr = Lacmavrae/Z,yle|B is the effective Larmor radius of
background ions for corresponding 7,. The black curve represents x,, for

both cases of thermal ions at T, = 10keV and 30keV, since y. for Fy

—F, thermal ions.
—F, energetic ions only T =10keV

5 Fgp energetic ions only T_=10keV
—F,, energetic ions only T =30keV

0.8 i _
—F g energetic ions only T =30keV

© Numerical Result| ]
- - -9 in Eq. (14)
---x3""in Eq. (19) 0.2

Xg in Eq. (20)

0
107 10 10° 10! 10° 102 107" 10° 10"
Kbt

FIG. 15: a) Analytic and numerical results of x. for Fsp in the wavelength
range 1072 < krpiT < 10. Here, p;; is the Larmor radius of energetic particles.
b) Numerical results of x. based on Eq. (31) for different values of 7T, and
distribution function. Here, p; . is the effective Larmor radius of background
ions for corresponding T, and Ej; = Esp = 814.6keV and 1045.5keV for
T, = 10keV and T, = 30keV, respectively. The black line represents x,; for

thermal ions for T, = 10keV and 30keV .
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T, [keV]
35 10 100 1000 3500

10°

FIG. 16: Short wavelength asymptotic value of x. for Fgp consisting of a-
particles only for illustration as a function of T./E,. Upper x-axis shows T

when E, = 3.5MeV. xq,sp(c0) =1 for T, ~ 16keV .

is a function of k.p!. Transition to shorter wavelength regime occurs at
different value of k,p;.sr. This is because of different values of Larmor
radius of a-particles and of background ions with T; = T,. So, transition
occurs at the same k,p! but at different krpiess-

Unlike F);, asymptotic value of y for Fisp varies as a function of tem-
perature in the short wavelength regime. Eq. (39) shows that this level
depends on A,, which in turn depends on the v, and v, which is a func-
tion of electron temperature and composition of background ions. From
the statistical dynamics point of view, dplnF(E) « 1/kgTs, where Ty is
the original definition of the temperature in the this statistic dynamics.

Since Maxwellian distribution is the state with the highest Entropy, no

2t 8k
I — I "
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more transport of the energy or particles occur among the phase space,
temperature in terms of the statistical dynamics is the same in the phase
space. Thus, asymptotic level of the x. is always "1’ for F);. However,
for non-Maxwellian distributions, if there’s collision, number of particles
in each energy state changes, since this Ty is different for different energy
state. So, average value of the 1/kgT; can differ when internal energy of
the macro state changes. I plot asymptotic level of y, as a function of
T./E, in Fig. 16, where E, is the birth energy of a-particles. As T, gets
colder, the average value of the kgT; drops faster, resulting in the higher
asymptotic level of x.. It also means the contribution of energetic ions
on Y increases as energy of fast ions normalized to the electron temper-
atures increases. In particular, when T,/E, < 4.5 x 1073 (T, < 16keV for

E,=35MeV), xa(k.-p; — 00) exceeds 1.

IV.A.3. Neoclassical polarization density

The neoclassical polarization density(n,.) is the difference between
the trapped/passing particle density and the bounce/transit gyrocenter
density[53, 58]. Since n,. is obtained by the two step pull-back transfor-
mation (first, from bounce(transit)-center phase space to gyrocenter phase
space transform, and then gyrocenter to particle phase space transform),
both FOW and FLR effects should be considered[53]. So, n,. should be
characterized in terms of poloidal Larmor radius pf; related to the FOW
effect and Larmor radius p! related to the FLR effect.

For an isotropic distribution function in velocity space, flux surface

I "y
-":I"-\-_E _'H.I.- ok
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averaged n,. can be calculated from the following expression|72] :

B
Nne = Zle|sp— / / A Ry djidi—L (43)
m Wb’t

< B = E0) () F ()

Here, Zy4, is the bounce-center phase space coordinate, and

- E — uBy(1 —¢) P
2ep By ’ I 2/ kmR|
8 4
Jo = —mBjwy[B(x) = (1= KK (®)], J = —mBfwVEE(E)
w Tk Tw
Wy = s, s AL
2K (k) K(s™)  K(k)

k is the pitch angle parameter, which is less than 1 for trapped particles
and greater than 1 for passing particles. wj is the characteristic parallel
frequency, R = ¢R is the connection length and pj. is the equatorial
parallel momentum. J;,; denote the second adiabatic invariant for trapped
particles and passing particles, respectively. w, denotes bounce frequency
and w; denotes transit frequency. K (x) and E(k) are the complete elliptic
integrals of the first and second kind, respectively. Here, hats are used
for the bounce-gyrocenter coordinate. From now on, I drop the hat for
notational simplicity. JZ(k,.p;) indicates the FLR effect and |(e*¢), |2

indicates FOW effect on n,,. respectively.

1V.A.4.a. Long Wavelength Regime

In long wavelength regime (k,p! < k.pl, < 1), the FLR effect can

be neglected, but the FOW effect is kept to the lowest order. The orbit-

J'x--! _CI:I_ 1_]| -_.fj]_ ?]Il_
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averaged eikonal factor in long wavelength limit can be expressed com-

pactly following[72]

M. ﬂ(1—y<em<>byt y?) (44)

2 Wyt
E(k
Nwlaz{%—(l—ﬁ) (0<k<1)
- E Ii71 71'2
Wht | 2k (K((H—l)) — 4K2(H_1)) (k> 1),

where a = /2¢k,.pg;. In whole regime, I use a high aspect ratio assumption
for a simple expression relating energy and magnetic moment by £ =
puBo(1 — € + 2ek) =~ pBy. Then, I can use y = puBy/T ~ E/T.

i) n, for trapped particles:

Npeb = Z’6|5¢ <_3> / / 8\/@d’£dy
m 0o Jo

x o (B(k) — (1 —r)K(K)) <_€%) F(y)

2w (3)1/22|e|5¢ (15)

= 32¢%/2 (k:rpgi)2 X

O W~

m3
Since F(y) is a one dimensional distribution function, (,/y) for arbitrary

isotropic distribution is proportional to the density since

(WE) = / TRy (46)

1 <m>3/2
= — n
4o \T 0
So, neoclassical polarization density for trapped particle in long wave-

length limit becomes

A
Npeb ~ 1.2063/2 (k;Tpg;)Z ’6‘5¢ (47)

ng T
21
|l = =

52
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It means if the distribution function is isotropic in velocity space in high
aspect ratio limit, n,,. for trapped particles in the long wavelength limit
is independent of details of distribution function.

ii) n,. for passing particles:

nes = Ze |5¢( )1/2 / / NG
AR

T
~ 326%2 (kyph)? % 0.16 x 1.5 (\/y <—3> Zle|d¢

Zlelo¢
T

~ 0.43¢% (kpi)” no (48)

Note that flux surface averaged n,,. for passing particles in long wavelength
limit is also always the same for arbitrary isotropic distribution function
in high aspect ratio limit.

Therefore, n,. for isotropic distribution function in long wavelength

limit becomes,

Nne Nped + nnc t

Zle|do
= b TInel 16362 (keply)”
No No ¢ ( 97') T

(49)

This result is identical to that obtained by Rosenbluth and Hinton[1] for
a Maxwellian distribution. Using both n. and n,,. in the long wavelength

limit, I can recover their result by

Ry = Sl 2 00) Xt (1 +1 63q—2) ; (50)
VEXB(t — 0) Nel + Nne Xel + Xne \/E

Consequently, residual zonal flow level in the long wavelength limit is the

same as the Rosenbluth-Hinton expression for any isotropic distribution

function in velocity space in the high aspect ratio limit.
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1V.A..b. Expression for Shorter Wavelengths

For shorter wavelength regime with k,.pj, = 1, I can use the following

approximations for an eikonal factor | <eiA<> b, | @ suggested in Ref. 72.

| (), P ~ Jg(aai(r)) (51)
[(2) 2 = J2(abs()) (52)
where
_ o S (k) — M
(k) = 2, h[0.577 ()], %) = %
— Y sechlnr(x T(k) = M
bolw) = usechlnr(x)) (%) = =%

Then, Eq. (43) becomes

Pnep = Z]e\cwg / / 47rR|w|dﬂd/%Z—b (53)
)
< Rlhp) (1= Flaa() (=51 ) Flzay)
B
Pnct = Zleldg— / / A Ry didi— (54)
t

< Bt = Rlata() (= 55 ) F(Zin)

Then, I can numerically integrate Eqgs. (53) and (54) for the slowing
down distribution function and the Maxwellian distribution function. My
numerical results in various figures to be presented afterwards are based
on these expressions.

For thorough understanding of the results, I pursue further analytic
progress by considering the intermediate wavelength regime (k,p! < 1 <
k.p};) and the short wavelength regime (1 < k.p! < k,.pl.) separately in
the next subsections.

A
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1V.A.j.c. Intermediate Wavelength Regime

In the intermediate wavelength regime with k,.p! < 1 < k.p},, FOW
effect can be considered using the approximations for eikonal factor
\<em<>b’t\ in Egs. (51) and (52). On the other hand, FLR effects are
ignored for a feasibility of constructing a connection formula in this main
text. It is further discussed in the Appendix.

Then, n,. for an arbitrary isotropic distribution function becomes

1/2
Nnepjt = Z|e|5¢§ // Ardudk (e%) (55)
ad INEYRNG 0
< Z 1 ) (-5 ) FE)

12

Z|e|5¢( )1/2 //47rdydw—

L1 - Jlaa)) (~%) Fly) 0<r<)
22 (1 = Ji(aby) (=) F(y) (x> 1)

For passing particles, there is a multiplicative factor of 2, because

X

both co-passing and counter-passing particles exist. Since aa;(k) > 1

and aby(k) > 1, Bessel function can be approximated as Jy(z) ~

2/ (mz)cos(z — m/4). Using this approximation,

Mo =~ Zle |5¢(166T) {f / d — %z;pg;ﬂo)} (56)

1/2
Nner =~ Zlelood (f;T) (57)
e oo Ct
< (F 1) [ rew- o)
.-;':._-u! _k‘l.'ll -|_
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Here, x = v/vy,; = +/2y. I define

C, = 1dnfE:§ ~ 3.89 (58)
o = [T an B (59)

1 Vb (k)
C; is the function of €, which becomes higher as € decreases. Since F'(0) and
the moment of v=2 depend on particular distribution function, a difference
in n,. will result accordingly. For Maxwellian distribution function, n,, is

expressed as

e V/8e {1 G } Zle|dg (60)
no T 2m/mek, pl, T

Nney V/8e {( 0 _1) B C, ] Zle|do (61)
no T NG 2m\/mek,pl, T

My results are somewhat different on the second term of R.H.S. when
compared to those in Ref. 53. This is because of an eikonal factor I use for
full finite orbit effects is valid for arbitrary pitch angle parameters of both
trapped and passing particles[72] while an approximate version has been
used for Ref. 53. For slowing down distribution function, contribution of

trapped particles and passing particles to n,. becomes

Nneb A0A4\/§{ B Cy } Z\elog (62)
no 343 T VBemAokppoc) T

ey AgAy V/Be K T 1) B C, } Zle|do (63)
no 3A3 w V8¢ V8erm Aok, poc T

where pgp. = plive/vim; is the ion poloidal Larmor radius at 7,. Note
that asymptotic value of x,. in this wavelength regime for slowing down
distribution function differs from that for Maxwellian distribution by
AgAy/3A3, ie. by the same factor for the y. in the short wavelength

regime.

2t 8k
¥ — I
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1V.A.J.d. Short Wavelength Regime

In the short wavelength limit where 1 < k,p] < k,.p};, both FLR effect
and FOW effect should be considered. In addition, since strongly passing
particles’ condition is not negligible, I use E ~ uBy(1 + 2¢x). So, flux
surface averaged n,,. for trapped particles can be expressed as following

with the approximation for Bessel function,

Npep = Z|e|5¢( ) / / V8 Wd/ﬁdx (64)

< 23 hopTe) {1 = Ji(aar(x)} (—%) F(a)
Zlelss (i)m 1

12

m3 k. pl
Ch * . 10
F b
X [\/g (O)+7T\/Ek7«pg;/o dwx&cF@)}

Similarly, I can get n,,. for passing particle as

et = Z|e|5¢( ) / / i Hm G edndz Sl (65)

xJO\/L{l T2 (abs(k )}(—(%)F(x)

1/2
Zle|og (£> 4

X

12

m3 k. pl
2 c, [, 10
8(——= — 1)F(0) + —=— ~ZF
" {ﬂm O W\/Ekrpg;/o o (”””)} |

where

[ K
ci= | R+ 2er)a(r) (96)
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Therefore, n,. for Maxwellian distribution becomes

nnc,b . 4\/E 1 . Cb Z|€|5§b (67)
ng  m2k.pl 4y/Tek,pl; T
Nnet A€ ™ ) Cy Zle|dg (68)
ne  ©2k.pl |\ \/32¢ 4y/Tek,pl; T
Whereas, n,,. for slowing down distribution can be expressed as
ne A Zle|o
Npeb _ 42 ;/g |:1 . SCb 31:| |€| ¢ (69)
o 3A2 ™ krpc \/gﬂ'krpgc T
Nne.t Ay V8e 2 3C, Zleldop
= = 55 -1 - By (70)
No 3A2 ™ krpc \/@ \/gﬂ'krpgc T

where

Va [V n
B, = / S (71)
o

1+ 29)?
1V.A.J.e. Connection formula for neoclassical polarization density

Then, I construct the connection formula which is valid for arbitrary
wavelengths as I did for the classical polarization density. In this proce-
dure, both trapped and passing particle contributions are included. As a

result, the neoclassical polarizability is[53],

1 1 1 (kopD)? 1 }‘1
nek = + + : 72
v ={ B TR T G "
where ylong ymed and yshert are the neoclassical polarizabilities in the

range of long, intermediate, and short wavelength respectively. x,. for

F)yy are given as

X9 = 1.63¢%/2 (krpg;y, (73)

2 (Cy+Cy)
med = ] — | =t 74
ch 71_5 krpg; ) ( )

1 1 2 Cy+ O
d short — _ 1 — _ t
e Xne V 27 k. pl V 75 k.pl

o8
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FIG. 17: Analytic and numerical results of x,. for Fsp in the wavelength range

1073 < k:rpiT < 102. Here, pl-T is the Larmor radius of energetic particles.

Whereas, x,. for Fgp in each wavelength regime is

e = 1636 (ko) (76)
ApA Cy + C,
Xne - 3A% |: 7T2A0krp9c:| ) (77)
A1 6(Cy + C)
d short __ o : t B 78
S Ane 643 k,pe [ T3k poc ' 78)

Xne for Fsp depends on the electron temperature, since slowing down dis-
tribution is determined by collision between energetic ions and background
particles. For instance, v, in Eq. (23) depends on T..

Before I discuss behavior of the y,. in detail, I compare the numerical
result for x,. with the analytic results in Fig. 17. Here, T, = 10keV,

g = 2.0, and ¢ = 0.1. For numerical calculation, T use Egs. (34) and
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(35). Also, I plot another numerical calculation result without FLR ef-
fect by setting JZ(k.pfz) — 1. Numerical result slightly overpredicts
Xne in long wavelength regime since approximations of eikonal factors for
bounce/transit motion used in Egs. (51) and (52) do not fully include
the second order term in k,pg. However the analytic result in Eq. (76)

explains the overall trend in this regime well. Since the FLR effects are

med
ne

not considered when x'¢* is analytically calculated, Eq. (77) shows poor
agreement with numerical result which includes FLR effect. Thus, I de-
rive the y™¢ which includes FLR effect in the Appendix. Eq. (BS8)
yields a better agreement with the numerical result in the intermediate
wavelength regime. y*" behaves similarly to the numerical result which

includes FLR effect. It is noticeable that 1st term of R.H.S. of Eq. (78)

short
ne

is dominant for y at k.pI > 1 because of high aspect ratio limit.

Therefore, it is the FLR effect, not the FOW effect which plays crucial

short

swort. Connection formula overestimates

role in determining behavior of y
Xne in the intermediate wavelength regime including the k,p! ~ 1 range,
because of FLR effect. Interestingly, the regime where connection formula
overestimates the value is almost the same for x4 and x,.. I will examine
this issue in terms of residual zonal flow level in the next section.

I plot xp. with ¢ = 2.0 and ¢ = 0.1 using numerical results for differ-
ent temperature and distribution function in Fig. 18 a). Here, the black
curve represents the y,,. for both cases of thermal ions at T, = 10keV and
30keV, because Y. for F); is a function of k,,piT. Unlike x,. for Fys, the

maximum value of y,. (Max(xne)) varies as a function of T, for Fsp. In

addition, k,p;err for Maz(xy,.) for Fsp becomes lower than that for Fy,
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FIG. 18: a) Numerical results of x, for different values of T, and distribution
functions. Here, p; .t is the effective Larmor radius of background ions for
corresponding T, and Ej; = Egp for energetic ions. The black curve represents
Xne for both cases of thermal ions with T, = 10keV and with 30keV. b)
Maximum value of xn. and corresponding k:rp;fp for Fsp. Upper x-axis shows

T, when E, = 3.5MeV.

when T, = 30keV.

To understand this trend in detail, Fig. 18 b) is plotted to show the
maximum value of Y. and (k,p! )mas for Fsp as a function of T,/ E,,. Here,
(kv ol )maz 18 defined by Xpe((krp! )maz) = Maz(xne). Maximum value of
Xne decreases as T,/ F, increases, and saturates to a certain level which
is similar to the behavior of x, for Fsp. From Eq. (B8), x7¢¢ oc Ay/As,
which is proportional to the Esp/T,. As T./E, increases, T, increases
faster than Egp. This explains the reason why Maz(x,.) decreases.
(krp?)mae also behaves like Max(xne). So, Max(xn,.) occurs at lower
k,.pI for hotter background plasma. In addition, when T, /E, = 4.0 x 1073

(T, 2 15keV), Xne for Fsp takes a maximum value at lower k,.p! than that

2t 8k
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for Fy;.

IV.B. Residual Zonal Flow Level
1V.B.1. Physics of Residual Zonal Flow

In the previous sections, I have derived the analytic expressions of the
classical and neoclassical polarization densities. Before I address the role
of energetic ions on the residual zonal flow, I emphasize the role of the
classical and neoclassical polarization densities on the residual zonal flow.
Among the theories on residual zonal flow level, I take "the fixed steady
source”[38] approach[51-53].

Since zonal flow is generated by turbulent Reynolds stress, the time
scale of the initial generation (f = 0 in 1) is much longer than the ion
gyration periods, but shorter than the bounce time, i.e., Q! <<t < wb’il.
So the zonal potential is shielded by the gyrating charged particles, which
feel gyro-averaged electric potential and gyroangle dependent potential at
the same time. Classified by the gyroangle dependency, the formal one
corresponds to the perturbed gyrocenter density and the latter one corre-
sponds to the classical polarization density (ny). But the non-adiabatic
response cancels the perturbed gyrocenter density, and only n. remains
and shielding the electric potential. As a result, perturbed density and

zonal potential at ¢t = 0 satisfy

N, Zleldp(t =0
na _ Zleldolt =0)

Mo T

Relaxation of the
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Taking “the fixed steady source”[38] approach[51-53], the residual
zonal flow level Rz can be expressed in terms of the classical polarization
shielding quantified by the classical polarizability y due to finite ion Lar-
mor radius(FLR) effects which occur at several ion gyration (short term)
time scale and the neoclassical polarization shielding quantified by the
neoclassical polarizability x,. due to finite ion orbit width(FOW) effects

which occur at several ion bounce period (long term) time scale[l, 51].

_ 5¢(OO) _ Xel
5¢(0) Xel + Xne

Since Rosenbluth and Hinton have considered the long wavelength regime

Rzp (80)

(krp;i < kypp; < 1) only and have not given detailed discussion in their
letter[1], it is understandable that other approaches have also been taken
for its extension to arbitrary wavelengths[54, 55, 66]. Refs. 54, 55, 66
showed that the final results for 6¢(c0)/0¢(0) can depend on the choice of
0f at t = 0. In particular, the short wavelength behavior of the residual
zonal flow level becomes quite different for different choices of 7§ f(0)”.
Figs. 7, B1, and B2 of Ref. 54 and Figs. 2, 5, 6, and 13 of Ref. 55 exhibit
the differences.

I note that, for instance, Ref. 54 has solved the lowest order linear gy-
rokinetic equation explicitly as an initial value problem for w < wy;. Due
to the frequency ordering and the reciprocal relation between ¢ and w (sim-
ilar to the uncertainty principle in quantum mechanics) for this procedure,
their lowest order gyrokinetic equation (essentially the bounce/transit-
kinetic equation) can only resolve phenomena which occur with a coarse-

1

grained time scale At > w,,~. Therefore, it can provide a rigorous and

accurate description[58] of the evolution of a system consisting of zonal
-":I"-\-_-E _'k.::. ok i
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flows and trapped ion modes[79, 80]. On the other hand, the bounce-
kinetic equation cannot describe the geodesic acoustic mode (GAM) which

U < w,;'. The GAM

occurs with a characteristic time scale of (vy,;/R)~
is not effective in regulating the core turbulence due to its relatively high
frequency|[26]. So it’s unimportant compared to the zero-frequency resid-
ual zonal flows considered in this work and the previous publications on
this issue. It is noteworthy that the analytic results from the lowest order
gyrokinetics agree well with those from the gyrokinetic simulations with
the same initial 0 f (but without the frequency ordering of w < wy;), for a
wide radial wavenumber region[54]. In addition, the initial value problem
approach[1, 54, 55, 66] can reveal the detailed long term evolution of the
zonal flows, and can be used for various applications for which more infor-
mation than just d¢(o0)/d¢p(0) is required for an assessment of particular
effects. For instance, the effects of the resonant magnetic perturbation
on the long term evolution of zonal flows have been evaluated using the
initial value problem approach[63].

On the other hand, the fixed steady source approach that I have taken
has its own attractiveness of a simple characterization of the residual zonal
flows based on a physical picture of the polarization shielding[1, 38, 58].
Gyrokinetic simulation can also be set up for the fixed steady source
approach[50, 54, 55], and a connection formula[53] based on Eq. (80)
recovers the simulation results in Ref. 50 reasonably well for a wide range
of radial wavenumber. In conclusion, I believe different results from two
different approaches are not necessarily in conflict with one another.

I can express the residual zonal flow level in terms of classical and

I "y
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neoclassical polarization density for multi-species ion plasmas,

> Ml
Ryp = 4 (81)
> (N + Mjne)

N0 ~, . 2, —1ngq
Noe X'L,cl + ZaTa Noe Xa,cl

(Xi,cl + Xi,nc) + ZgTa_l%(Xa,cl + Xa7nc)

e

noq
N0e

Here, Z, is the charge of a particle and 7, = T.f¢/7;. One should be
careful about the fact that n, and n,. are weighted by different temper-
atures so that I cannot simply add up dimensionless polarizabilities in
numerator and denominator. Thus, not only the x4 and x,., but also the
Z%n4/no and temperature ratio (7,) affect the residual zonal flow level.
This observation is crucial when impurity effects on the residual zonal flow
are estimated as emphasized in Ref. 62. Ref. 62 reports that 10% con-
centration of moderately high temperature Helium (with T.;¢/T.; = 10)
impurities with Maxwellian distribution can lead to a considerable en-
hancement of Rzr in the intermediate wavelength range of £, p; crr ~ 0.5.
My results for fusion product a-particles with high equivalent tempera-
ture ratio (7, = Tess/T; ~ 30 for T, = 30keV') exhibit a similar trend for
both slowing down and Maxwellian a-particle distribution functions.

I plot the residual zonal flow level (Rzr) for Fsp with ¢ = 2.0, e = 0.1,
and T, = 10keV for analytic and numerical results in Fig. 19. Numerical
result overestimates residual zonal flow a bit in long wavelength regime
because of an approximate treatment of an eikonal factor in x,., as men-
tioned in previous section. Near k,.p! ~ 1, analytic result overestimates
Xa and X, and slightly overestimates residual zonal flow. So, I construct

the following connection formula for y,. to get more accurate residual

A ! _kl.'ll_ -l_-]i
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zonal flow level.

1 1 (kpZ)? 1 7
Xne = { TN\ - TN\ (82)
1+ (/frpm) Xne,A 1+ (krpgi) Xne,N

Here, Xne,a is the analytic result of x,. and Xy n is the numerical result
of Xne. The blue dashed-curve from the numerical result for y, and Eq.
(82) for x,. accurately represents the behavior of Rz throughout all
wavelength regime. Thus, I use Eq. (82) for . to analyze the Ryp.
Figs. 20 a) and b) show the residual zonal flow for different 7. and
distribution functions. For residual zonal flow level for F);, 7, only affects
the k,p;fr range where a transition from long wavelength regime to short
wavelength regime occurs. On the other hand, the residual zonal flow

level for Fsp in the transition regime depends on 7. and becomes higher

O Numerical Result
— Analytic Result ~
- - -Connection formula in Eq. (63) o

1072 10™" 10° 10’

FIG. 19: Analytic and numerical results of Rzr for Fsp in the wavelength

range, 1072 < k,.p! < 10. Here, ¢ = 2.0, € = 0.1, and T, = 10keV..
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FIG. 20: Numerical results of Rzp for different distribution functions in the
wavelength range, 1072 < krpierr < 10 for D-T plasma with a) T, = 10keV and
b) T. = 30keV. Enhancement of residual zonal flow level due to the presence
of 10% concentration of energetic ions for D-T plasma with ¢) T, = 10keV and

d) T. = 30keV.

(lower) than that for Fy, for T, = 30keV (10keV'). This is because of
the transition characteristics of x,. for Fsp. From Fig. 18 b), Maz(xn.)
occurs at lower k,p! for higher T,/E,. Therefore, transition of Rzp for
Fsp to the shorter wavelength regime occurs at lower k,p! comparing to

that for F; for hotter background plasma. Unless T, is too low compared

to Ey (ie. if T./Eq 2 5.0x1073, T, 2 20keV for E, = 3.5MeV), energetic
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ions with Fgp can increase the residual zonal flow more than those with
Fys. Enhancement of residual zonal flow level due to 10% concentration
of energetic ions is plotted in Figs. 20 ¢) and d). As shown in Figs. 20 a)
and b), energetic ions with Fsp enhance Rzpr more than those with F); at
T. = 30keV. Enhancement at k,p;.;; ~ 107! is greater for higher ¢, since
the residual zonal flow level of background plasmas in the long wavelength
is relatively lower. Thus, for the cases with higher electron temperature
target plasmas in ITER with fusion products, the energetic ions with Fsp
should exhibit more enhancement of the residual zonal flow level.
Finally, for zonal flows with even shorter wavelengths relevant to ETG-
turbulence, the electron dynamics should be included. Useful results on
this from an initial value problem approach can be found in Figs. 4, 5,

and 8 in Ref. 54.

IV.C. Discussions

Residual zonal flow level for non-Maxwellian distribution, especially
the slowing down distribution, has been systematically calculated in ar-
bitrary wavelength regime in this work. The classical and neoclassical
polarization density are derived from the general expressions which are
obtained from the modern gyrokinetic approach via pull-back transform
from gyro/bounce-center Lagrangian to phase-space Lagrangian using Lie-
transform perturbation method[53, 72, 77]. To elucidate the FOW ef-
fect more accurately, I use explicit compact expressions for orbit-averaged
eikonal factor < emg> b which consider full finite-orbit effects with arbitrary

pitch angle parameter values[72]. x and x,. for slowing down distribu-
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tion function are analytically derived in the whole wavelength regime by
systematically considering the FLR effect and FOW effect in each wave-
length limit and by constructing a connection formula. As a result, my
analytic result describes the residual zonal flow level for slowing down
distribution function pretty well.

Analytic expressions for y, and y,. in the long wavelength limit are
found to be the same for any well-defined distribution function which is
isotropic in velocity space. As a consequence, residual zonal flow level in
the long wavelength regime is the same as the Rosenbluth-Hinton expres-

sion for any isotropic distribution function in the high aspect ratio limit[1].

short

St and maximum value of y,,. for Fgp decrease as

Asymptotic level of y
T./E, increases. As a result, the contribution of energetic particles on
X« and x,. becomes greater as energy of energetic particles normalized to
the electron temperature increases. Maximum value of x,. also occurs at
lower k,p! for higher T./E,.

My analytic results of residual zonal flow for slowing down distribution
show good agreement with the numerical results and provide an under-
standing of its behavior. For a plasma with T, = 10keV, n,/n. = 0.1,
g = 2.0, and € = 0.1, approximately 12% enhancement of residual zonal
flow level at k. p; erf ~ 107! regime is expected. When T, /E,, = 5.0 x 1073
or T, 2 20keV, my results predict that energetic alpha particles with
slowing down distribution enhance the residual zonal flow level more than
those with Maxwellian distribution.

Recently, electromagnetic gyrokinetic simulation using parameters

from JET experiment emphasized the importance of coupling of fast ions
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and electromagnetic effects on the stabilization of ITG turbulence[81, 82].
Based on Eq. (81) of this paper, approximately 5% enhancement of resid-
ual zonal flow in the range of k.p;err ~ 0.1 is expected for JET-like
plasmas[83] due to the fast ion effect. This favorable trend from my elec-
trostatic calculation is encouraging, but does not seem significant enough
to fully explain the results in Refs. 81, 82. Ref. 84 on the other hand,
indicates that turbulence and zonal flows interact for a longer time as 3
increases. So electromagnetic effect could make the stabilizing influence of
zonal flows more efficient. Therefore, an extension of my work including
the electromagnetic effects can bring a deeper insight on the aforemen-
tioned results[81, 82] for JET-like plasmas and projection to ITER. For
instance, combined effects of fast ions and finite 5 can boost zonal flows

even further.
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V. CONCLUSION

In this thesis, I addressed my research on E x B flow through theory,
simulation, and experiment. I analyzed the in-out asymmetry of £ x B
flow shear via analytic derivation of its R dependency, and observation
in simulation using ¢ f gyrokinetic code gKPSP. I figured out that ¥ x B
shearing rate wg is proportional to R!' in the usual concentric circular
flux surface structure in gyrokinetic simulations. From the gyrokinetic
simulations, I found that turbulence correlation time is also longer at the
low field side (LFS), and thus 7.wg is considerably higher at the LFS
than that at the high field side (HFS). As a result, the reduction of the
fluctuations such as d¢ and their radial correlation length is stronger at
the LFS as 7.wg becomes higher, which weakens the poloidal dependency
of the fluctuations and its radial correlation length.

To extend this work, I estimated the in-out asymmetry of wg in the
KSTAR experiments using ECEI and CES data. At first, I compared the
group velocity v,, calculated from the ECEI data to the £ x B velocity
vgpxp calculated by the radial force balance equation. Though vy, was
slower than vgyp and their estimations on the location of the transport
barrier differed, their shear was similar. Thus, I considered the shear
of vy, as wg to analyze the in-out asymmetry of wg and its effect on
the fluctuations. In-out asymmetry of wg(oc R?!) was calculated to be
stronger than that in the gyrokinetic simulation in the concentric circular
flux surface (< R'). Comparison between 7, and wg corresponded to the
formation of the edge transport barrier. However, a more detailed analysis

of the fluctuation was required because of the ELM and MHD instabilities.
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As a theoretical analysis, I studied the role of non-Maxwellian energetic
ions on the residual zonal flow. To investigate the effects of energetic ions,
I used slowing-down distribution Fsp, which provides a precise descrip-
tion of energetic ions. Based on the modern gyrokinetic/bouncekinetic
formalism, classical polarization density n., and neoclassical polarization
density n,. for Fsp were derived in the all wavelength range. I figured out
that n, and n,. are the same for any isotropic distribution in the long-
wavelength limit, and thus residual zonal flow Rzp in the long-wavelength
regime is the same as Rosenbluth-Hinton residual zonal flow level for ar-
bitrary isotropic distributions. Energetic ions enhance the Rzr mainly at
the intermediate wavelength regime k.p; < 1 < k.psp. And Fgp enhances
the Rzrp more than Maxwellian F); if background electron temperature
T. =2 20keV .

As future work, I complement the research on in-out asymmetry of
the wg in the KSTAR plasma using the ECEI data. Present research in
Sec. III has the following shortcomings. The plasma moved down during
it was measured by CES. Although the current estimation on v, based
on ECEI data shows good agreement with the vgyp deduced from the
radial profiles of 7; and vy measured by CES, it still has a problem on
its reliability. Besides, because of the ELM and MHD instabilities, it
is difficult to analyze the reduction of the fluctuations by E x B flow
shear. To complement those shortcomings, additional experimental data
measured by CES and ECEI at the same time is needed. Especially, the
reason why the estimation of the transport barrier is different between the

two measurements should be figured out to estimate the wg more clearly.
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Also, the present numerical scheme to estimate the vg,, RANSAC, should
be changed to the other numerical scheme. Since there is too much 'outlier’
in ECEI data, RANSAC gives the results with too high uncertainty. And
the comparison with the gyrokinetic simulation on the same flux surface
can enhance the understanding of the in-out asymmetry of the wg and
fluctuations.

I finish the conclusion by addressing the possible applications of my
research in the future. The research on the in-out asymmetry of wg via
analytic theory, simulation, and experiment can be used to enhance the
confinement by constructing the magnetic flux surface. The numerical
scheme to calculate the vgyp using ECEI data can provide the wg even
without the experiments without the NBI modulation since CES is appli-
cable only when NB is injected. My analytic derivation of the residual
zonal flow for non-Maxwellian distribution can be applied to test the gy-
rokinetic simulation with non-Maxwellian distributions. One of the initial
benchmark simulations for gyrokinetic code is the residual zonal flow test
in the long-wavelength limit. When they introduce the non-Maxwellian
distribution like Fsp, my derivation can be used as the reference for the
residual zonal flow test. In addition, the research on the role of energetic
ions on residual zonal flow introduces the other possible stabilization ef-
fects of the energetic ions. I wish my research contributes to the success

of the ITER and commercial nuclear fusion plant in the future.
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Appendix A. (for Sec. II)

To clarify the effect of collisionality on the self-regulation dynamics be-
tween turbulence and zonal flow, we plot zonal flow intensity as a function
of turbulence intensity for different collisionalities in Fig. 21. The self-
regulation dynamics exhibit limit cycle oscillations. Especially, it is visible
that as collisionality increases, the mean value and the oscillation ampli-
tude of the zonal flow intensity are reduced. So, the overall zonal flow level
decreases with collisionality, as anticipated from the collisional damping
of zonal flow. However in short time intervals, the inversely proportional
relation between zonal flow level and collisionality is not apparent because
of the overlap of the limit cycle orbits.

The observed collisionality dependence of the self-regulation dynam-

ics can be understood from a simple predator-prey (or Lotka-Volterra)

model:[22]
0
YN =N —aUN
5V =1V —alUN, (83)
0
EU =aNU —~,U. (84)

where N = ¢* and U = V3 are turbulence intensity and zonal flow en-
ergy, respectively. Here, v, 74, and « are the linear growth of turbulence,
the collisional damping of zonal flow, and the coefficient of nonlinear en-
ergy transfer between turbulence and zonal flow, respectively. Nonlinear
damping terms such as AwN? and vy, U? are neglected for simplicity. It
is well-known that the predator-prey equations have limit cycle solutions
due to the existence of the unstable fixed point (No,Up) = (7ya/c, v/ ),
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%107

FIG. 21: Limit Cycle Oscillations for different values of collisionality. Boxes in
the same color lines evolve in time along a line starting from the box with *X’
mark. Time interval for each simulation result is chosen differently in order to
show one complete cycle. (from t/(Ro/vrio) = 250 to 360 for vy; = 0.02, from
t/(Ro/vrio) = 250 to 400 for v,; = 0.15, and from ¢/(Ro/vri0) = 200 to 310 for

Vyi = 0.29)

which corresponds the center of the limit cycle oscillations. And the eigen-
value and eigenmode of the oscillation are given by A = #i,/774 and
U=7Fi \/WN , respectively. Since 4 o v;;, the mean value ratio Uy/Ny
and the oscillation amplitude ratio of zonal flow to turbulence |U/N| de-
crease as collisionality increases. Thus, the collisionality dependence of the
limit cycle oscillations in Fig. 21 is captured by the simple predator-prey
in a qualitative sense. Another gyrokinetic simulation study on collisional-
ity dependence of predator-prey dynamics has been performed in magnetic

shearless plasma in Ref. 29.
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Appendix B. Refinement of neoclassical polarization formula

including the finite Larmor radius effect (for Sec.IV)

In Sec. IV. A. 4, we derived x™¢¢ in Eqs. (62) and (63). However, since
the FLR effect is ignored in Eq. (55), x7*¢ shows poor agreement with
numerical result as shown in Fig. 17. It results in the 60% overestimation
of xne in the intermediate wavelength regime. So, in this appendix, we

med

derive the x'¢* in the intermediate wavelength regime including the FLR

effect. For the intermediate wavelength regime, Y, is calculated from

Nnep = Z\e[&qﬁ( ) / / V8 7rd/<cda: (B1)
X Rk) {1~ Raan ()} (—33) Flz)
Z\e[dqﬁ( ) / / V8rdrkdz K( )y

20 T B 1 _ﬁ
X Jolkep; 5’3){1 @Walkrpgix}( oz ) F@)

Npey = Zle |5¢>< ) / / V8 Wd/idx (B2)

< JR(kopTa) {1 — JEaba(x >>}(—%) F(x)

Ze |5¢( )/ / VErdrda (\/?

1+ 2er)/? 0
J2(k,pt {1 — (— —— | F
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For Maxwellian distribution function, we can directly calculate Eqgs. (B1)

and (B2) ignoring the effects from the strongly passing particles,

- ne )
< [ovman ({55} 00 —a)
- ﬁro«ipﬂﬂ)}

-0y
e )
- Do)

v = of ({33 oy 2ty (15)

2 Cy+Cy TN
— Lo((krp; )7).
Ve Dokl

This covers both intermediate and short wavelength regime. Here, o F5 is

the hypergeometric function and I'y(z) = e *Ij(z). Comparison between

numerical results from Eqgs. (53) and (54), and analytic result from Eq.

(B6) is plotted in Fig. 22 a). Except for the range 107! < k.p! <

5 x 1071, Eq.

(B6) gives more accurate y,. in the shorter wavelength

regime compared to the Eqs. (75) and (76).

For Fgp, we use the approximation that JZ(z) ~ 1 — z?/2 for the term

related to FLR effect. Then, Eqgs. (B1) and (B2) become

1/2
Nnep = Z\e|5¢(€T) 4

Cy
S F(0) (B6)

m3
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FIG. 22: Analytic and numerical results of y,. for a) Fj; and b) Fsp in the
wavelength range 1072 < k,«plT < 10. Here, analytic results which cover the

intermediate wavelength regime are calculated from Eqgs. (B6) and (BS).

m3 ek, pl;

[l ) S

- 3V2 (%8_ - 1) <krp?>2w2}]

For slowing down distribution function, Y™ is

1/2
Moy = Z|e]0¢ (ET) 4[_ — % o (B7)

Ay 3

Ao 3 G F G
A, 2

B 7T2A2 k’/’pec

med __ A4

— 51 krcz
Xne 34, (krpe)

{1 - Al(kTPC)Q}] (B8)

Compared to Eq. (77), Eq. (B8) contains two additional terms (2nd and
4th terms in R.H.S) which are related to the FLR effect. Fig. 22 b) shows
that Eq. (B8) has a better agreement with numerical result. However, Eqs
(B6) and (B8) are difficult to use for constructing a connection formula
since their Laurent series is not applicable to Eq. (73). In conclusion,

the connection formula (Eq. (73)) and its elements (Eqgs. (74-79)) in the
O 1 = =
.-';r-\.\.-l: -II_I- ]—ll -\.__I'!- 1]II
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main text can lead to an overestimation of x,. (with a maximum of 60%
at k,p!l ~ 0.5), as shown in Fig. 17. Nevertheless, this is not large enough

to change any of our main conclusions in this paper.
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