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Abstract

Study on Zonal Flow:

Its In-Out Asymmetry and Residual Level

Y.W. Cho

Department of Nuclear Engineering,

Seoul National University, Seoul 08826, Republic of Korea

This thesis addresses the studies on the zonal flow which is symmetric in the

azimuthal direction and does not induce radial transport but suppresses the

turbulent transport in tokamak plasmas. I investigate the zonal flow in two ways:

1) turbulence suppression and 2) residual level in the absence of the collision and

turbulence. In-out asymmetry of ion temperature gradient (ITG) turbulence and

zonal flow shear driven turbulence suppression are analyzed by performing nonlinear

gyrokinetic simulation using gyroKinetic Plasma Simulation Program (gKPSP).

Analysis based on E × B shear decorrelation theory well explains the simulation

results and find that asymmetry of E × B flow shear makes turbulence relatively

symmetric. In-out asymmetry of E × B flow shear and turbulence in KSTAR

plasma is also discussed using the ECEI(Electron Cyclotron Emission Image) data.

Finally, I identify the role of non-Maxwellian energetic ions on residual zonal flow

via the systematic procedure using gyrokinetics and bounce-kinetics.

Keywords: Tokamak Plasma, Zonal flow, in-out asymmetry, energetic ions, Gy-

rokinetics, ECEI

Student Number: 2013-23184
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I. INTRODUCTION

In tokamak plasma, there’s E×B flow which runs in binormal direction,

and is symmetric in toroidal and poloidal direction but oscillates in the

radial direction. Based on its origin, E × B flow is classified into mean

E × B flow and zonal flow. Mean E × B flow comes from the radial

electric field calculated from the radial force balance equation. Thus, it

does not linearly damped and evolves when radial profiles of plasma flow

and pressure change. Whereas, zonal flow is driven by turbulent Reynolds

stress which is generated by drift wave instabilities excited by free energy

sources such as the radial gradient of particle density and temperature,

and Maxwell’s stress driven by the fluctuation of magnetic fields. It is

linearly damped in collisionless plasma, but not completely and saturates

to a certain level. This undamped level is called residual zonal flow level

which is firstly derived using gyrokinetic theory[1].

Both mean E×B flow and zonal flow play a crucial role in suppression

of turbulent transport and thus enhance the confinement time, which is the

reason why they have been received attention in a tokamak plasma. Based

on the two-point correlation theory, the mechanism and specific criteria of

the flow-shear-induced turbulence suppression were analytically proposed

in Refs. 2 and 3. Besides, it is confirmed by most plasma turbulence sim-

ulations with the zonal flow, which shows the significant reduction of the

turbulence eddy size and intensity, resulting in the reduction of transport-

level to the gyroBohm scale. In the experiments, the mean radial electric

field identified via radial force balance equation shows the correlation with

the formation of transport barriers, like internal transport barrier (ITB)
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and edge transport barrier (ETB). Besides, L-H transition was observed

when externally imposed biased voltage, which establishes the radial elec-

tric field, exceeds the threshold. 2D wave spectrum analysis showed the

suppression of the fluctuations which corresponds to the analytic results

that turbulence is reduced when E × B shearing rate exceeds turbulence

autocorrelation rate.

For flute-like fluctuations, E×B shearing rate ωE has following form[3]:

ωE =
∆ψ

∆φ

∂2

∂ψ2
φ00(ψ) =

∆r

r∆Θ

(RBθ)
2

B

∂2

∂ψ2
φ00(ψ) (1)

where ∆r = ∆ψ/RBθ and R∆φ are the correlation lengths of the ambient

turbulence in the radial, and toroidal direction, respectively. And φ00 is

the electric potential symmetric in toroidal and poloidal direction. Usu-

ally, correlation length in the binormal direction r∆Θ is assumed to be the

same as the radial correlation length ∆r. Note that it was derived based

on the kinetic theory which can calculate the perturbed electric potential

generally using Poisson equation. Accordingly, the charged particles are

affected by E × B drift only, not by flow motion itself and diamagnetic

drift. Thus, it is E × B flow shear, not the shear of plasma fluid motion

which suppresses the turbulence.

From Eq. (1), E × B shearing rate is not axisymmetric even though

electric potential is axisymmetric and thus, ∂φ00/∂ψ is constant in toroidal

and poloidal direction. This is because of the inhomogeneous magnetic

field structure, which is the function of the poloidal angle in toroidal ge-

ometry. As a result, E ×B shearing rate is proportional to R3 in circular

flux surface when shaping effects based on Grad-Shafranov equation are

considered[3]. Meanwhile, the drift wave turbulence is also expected to
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be stronger at the low field side (LFS) of the tokamak due to the unfa-

vorable curvature of the magnetic field lines concerning the interchange

drive. Therefore, both the linear growth rate of the fluctuation and the

suppression by E × B flow shear are stronger at the LFS than the high

field side (HFS), resulting in the reduction of in-out asymmetry of the

fluctuation.

Not only the suppression of the turbulence via zonal flows, its gener-

ation and damping are also important. Until mid of the ’90s, researches

based on gyrofluid formalism showed that zonal flow is expected to be com-

pletely damped even in the collisionless plasma. However, M.N. Rosen-

bluth and F.L. Hinton analytically derived that the zonal flow in toroidal

plasma is not damped in the collisionless plasma, based on gyrokinetics[1].

When simulations cannot reproduce this residual zonal flow level, they

overpredict the transport level. I explain the brief mechanism of energy

loss and the existence of a residual level. Zonal flow and geodesic acous-

tic mode are linear coupled because of the transit magnetic pumping via

poloidally varying magnetic field structure in a toroidal plasma. Although

orbits of the particles are radially fixed when they do bounce/transit mo-

tion, there’s radial motion and thus interact with the non-zonal mode, like

geodesic acoustic mode (GAM). Unlike zonal flow, other modes easily lose

energy via Landau damping. So, the energy transferred by this linear cou-

pling is completely damped. This phenomenon is seen as GAM oscillation

in most of the simulations on residual zonal flow. Nevertheless, there’s no

radial transport of the particles, and axisymmetric density perturbations

are still maintained. As a result, axisymmetric electric potential remains
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but is shielded via bounce/transit particles. The analytic expression of the

residual zonal flow level (RZF ) contains this physics and has the following

form:

RZF =
φ00(t = 0)

φ00(t→∞)
=

ncl
ncl + nnc

(2)

Here, ncl is the classical polarization density, comes from the gyroangle-

dependent part of electric potential. And nnc is the neoclassical polariza-

tion density that comes from the bounce/transit angle-dependent part of

electric potential.

From the above explanations, I can find that the particle’s motion in

the normal direction to the flux surface plays a crucial role in the residual

zonal flow level. Meanwhile, there are growing interests of the energetic

particles, as a tokamak device becomes bigger and the plasma confinement

gets enhanced. It is expected that energetic particles like fusion product α

particles and particles injected by neutral beam injection (NBI) affect the

residual zonal flow since they have large motions in the normal direction.

But the Maxwellian distribution is not suitable to describe these particles

and the slowing-down distribution should be used.

In this thesis, I address the following subjects in the remaining parts.

In chapter II, I describe the in-out asymmetry of the E × B flow shear.

This chapter contains the theoretic derivation of the poloidal angle de-

pendency of E × B shearing rate and its effects on turbulence reduction

via gyrokinetic simulation using gKPSP (gyroKinetic Plasma Simulation

Program). I found that poloidally asymmetric E × B flow shear makes

turbulence relatively symmetric in poloidal direction. In chapter 3, I ad-

dress the analysis of this in-out asymmetry in the KSTAR experiments
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using ECEI (Electron Cyclotron Emission Imaging) data. Since I can get

the fluctuation data from 24(perpendicular to radial) × 8 (radial) chan-

nels at the same time with the time resolution as 2µs, E×B velocity can

be estimated using correlation analysis. Using this E × B velocity and

flux surface profile from EFIT, in-out asymmetry of E×B shearing rate is

calculated. Also, characteristics of the fluctuations at both LFS and HFS

are analyzed. In chapter 4, I present the effect of the energetic ions on the

residual zonal flow level in the systematic procedure. The orbit motions

of the particles are fully addressed using the general expressions of the

eikonal factors. I found that residual zonal flow level in the long wave-

length regime is the same as the expressions in Ref. 1 for any isotropic

distributions. Also, the enhancement of the residual zonal flow level by

energetic ions are discussed. I conclude my thesis paper in chapter 5 by

summarizing my researches.
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II. IN-OUT ASYMMETRY OF ZONAL FLOW SHEAR AND

TURBULENCE REDUCTION

In the tokamak plasma, drift wave turbulence which is driven by free

energy source like temperature and density gradient induces anomalous

transport across the magnetic field line. The drift wave turbulence tends

to be stronger at the low field side of the torus from theory[4] because of

the unfavorable curvature of the magnetic field lines with respect to the in-

terchange mode at this side. This has been confirmed from simulations[5].

Although it is not frequently addressed, poloidal asymmetry of tur-

bulence properties has been also observed in various devices. These in-

clude fluctuations of electron temperature, electron density and electro-

static potential in TEXT-U(Texas Experimental Tokamak-Upgrade),[6–

8] amplitude and radial correlation length of density fluctuations in T-

10,[9] and density fluctuation amplitude in Tore-Supra.[10] Turbulence

in spherical torus exhibits even stronger in-out asymmetry than those in

tokamaks.[11, 12]

Meanwhile, reduction of in-out asymmetry of fluctuations was observed

during the L-H transition. After L-H transition in CCT(Continuous Cur-

rent Tokamak), root mean square fluctuation level measured by reflec-

tometer showed significant reduction at low field side, while its level at

high field side remained almost at the same level, resulting in significant

reduction of in-out asymmetry.[13] In DIII-D L-mode plasma, turbulent

region measured by X-mode reflectometry was broader in radius at low

field side. However, after the H-mode transition, the turbulent region at

low field side became narrower to the level comparable to the turbulent
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region at high field side.[14] A plausible explanation was the in-out asym-

metry in the E × B shearing rate in toroidal geometry from the mean

E ×B flow.[3]

There has been steady progress in understanding tokamak turbulence

through gyrokinetic simulations and now it is widely accepted that self-

generated zonal E×B flows play a crucial role in regulating and saturating

the turbulence.[15] While in-out asymmetry of turbulence is visible from

various simulations,[5] there has been no systematic and theoretical stud-

ies on it in the presence of zonal flows.

In this chapter, I investigate the in-out asymmetry of ITG(Ion Temper-

ature Gradient) turbulence and its dependence on zonal flows in a quanti-

tative manner. I note that the electrostatic potential associated with the

self-generated zonal flows is a flux function with no poloidal and toroidal

dependences in most cases. Even with this flux-function potential, zonal

flow shear has a significant poloidal dependence from its dependence on

the nonuniform magnetic field in tokamaks as I will explain in detail in

the main text. For this analysis, I use gKPSP(GyroKinetic Plasma Sim-

ulation Program), which is a global δf gyrokinetic PIC(particle-in-cell)

code.[16] In-out asymmetry of ITG turbulence is investigated in terms of

radial correlation length and turbulence amplitude.

The rest of this chapter is organized as follows. In Sec. II. A, I briefly

introduce the simulation model for gKPSP. Poloidal dependence of E ×B

shearing rate in circular flux surface is calculated in Sec. II. B. In this

section, I also show the radial profile and time evolution of turbulence

intensity and zonal flow with respect to the different collisionalities. From
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the characteristics that are analyzed in previous sections, in Sec. II. C,

I show how in-out asymmetry of turbulence gets affected by zonal flow

shear which has poloidal dependence. Conclusions are drawn in Sec. II.

D.

II.A. Gyrokinetic Simulation of Ion Temperature Gradient

Turbulence

II.A.1. Introduction of gKPSP

I perform ITG turbulence simulations using a global δf gyrokinetic

PIC(Particle-In-Cell) code, gKPSP[16]. The gKPSP code solves the elec-

trostatic gyrokinetic Vlasov-Poisson equations[17] including a linearized

Coulomb collision operator[18] with the adiabatic electron response. I

briefly introduce the gyrokinetic equation before explaining gKPSP code in

detail.

In the plasma confined by strong magnetic field, Lorentz force makes

charged particles gyrate along the magnetic field lines. Since gyration pe-

riod is independent of the particles’ velocity and shorter than the turbu-

lence time scale, utilization of the gyromotion in formulating the governing

equation doesn’t have much effect in describing turbulence. Furthermore,

Hamiltonian becomes symmetric to the gyroangle θ, so that its canonical

momentum µ = mv2
⊥/2 is constant in time. So µ is the adiabatic invariant

and θ becomes ignorable variable in this system.

Gyrokinetic equation is the 5D Vlasov equation which uses the above

characteristics of the system. In modern gyrokinetic theory, gyrokinetic
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equation is formulated using Lie transform perturbation approach. Lie

transform method is recursive phase transform via extending the func-

tion in n-dimension differential geometry in terms of canonical variables

and satisfies the Poisson bracket. Thus push-forward transform and pull-

back transform are symmetric, and systematic calculation of the perturbed

Hamiltonian and distributions is valid.

Based on the modern gyrokinetic formalism, electrostatic gyrokinetic

equation is

∂

∂t
f +

dz

dt
· ∇zf = C(f) (3)

Here z = (x, θ, ϕ, v||) represents the phase space coordinate and C(f) is

the collision operator. dz/dt are determined by the Poisson bracket, such

that [57]

dz

dt
= {z, H}z =

∂z

∂qi

∂H

∂pi
− ∂z

∂pi

∂H

∂qi
, (4)

where pi is the canonical momentum of qi. And Hamiltonian in the elec-

trostatic limit is

H(z) =
|p|2

2m
+ eφ =

1

2
mv2
‖ +

µ2

2m
+ eφ. (5)

At the each time step, gyrokinetic simulation solves Eq. (3) and then

calculate the Gauss equation to find φ in the simulation domain.

In the δf -scheme, only the perturbed part of distribution function δf

evolves in time as

∂

∂t
δf+(ż0 + ż1)·∇zδf = −ż1·∇zf0+C(δf, f0)+C(f0, δf)−γsδf+Scor(z, t)+SH(z, t).

(6)
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A magnetic flux surface label x =
√
ψ/ψedge is used as the radial vari-

able, where ψ is equilibrium poloidal magnetic flux. ż0 and ż1 denote the

unperturbed and perturbed motion of gyro-center, respectively. C(δf, f0)

and C(f0, δf) represent the test particle and field particle component of

the linearized Coulomb collision operator, respectively. The numerical

method in Ref. 19 is used for PIC simulation of the collision operator.

A modified Krook operator −γsδf+Scor is employed to control discrete

particle noise in the simulations. Since the original Krook operator damps

the noise and physical fluctuations simultaneously, the correction term Scor

is needed to prevent artificial damping of physical quantities, especially

the axisymmetric quantities related to zonal flow [20]. The correction

operator Scor is chosen as

Scor(z, t) =
N∑
i=1

gi(s, t)Mi(z)f0(z). (7)

The parameters gi(s, t) can be set to conserve a set of physical quantities

Mi. In this model, the three conserved quantities are chosen: zonal flow

structure M1 = v||/B −
〈
v||/B

〉
Ψ

, the density M2 = 1, and the kinetic

energy M3 = v2. Here, 〈· · · 〉Ψ represents the bounce orbit average[20].

Although f0 is time independent, turbulence-driven transport relaxes the

temperature profile via perturbed quantities. For steady state simulation,

profile control is necessary. To this end, a heat source SH is implemented

as

SH(z, t) = −γH(x)

[
δf(z, t)− f0(z)

δn(x, t)

n0(x)

]
, (8)

where n0 and δn correspond to the equilibrium and perturbed density,

respectively. This heat source continuously damps the components of
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FIG. 1: Initial profiles of (a)R0/LT i, R0/Lni, ηi = Lni/LT i, and (b) safety

factor q.

the perturbed distribution δf deviating from the equilibrium distribution

f0 on a time scale 1/γH . So, the heat source drives the temperature

profile toward the initial equilibrium form, and do not modify the zonal

component of density fluctuations.

The growth of non-axisymmetric fluctuations is reduced by applying

the modified Krook and heating operator as γL → γL − γs − γH . Relax-

ation rate γs and heating/cooling parameter γH are set to be sufficiently

smaller than both the linear growth rate γL ' 0.35vT i0/R0 and the inverse

of turbulence correlation time 1/τc ' 0.1vT i0/R0, i.e., γs = γH ∼ γL/20.

(Here, R0 and vT i0 =
√
Ti0/mi are the major radius and the ion thermal

velocity in the center of plasma, respectively.) So, the effects of the noise

and profile controls on turbulence evolution are limited.

I use a concentric circular equilibrium of deuterium plasma with

R0 = 210cm and the minor radius a = 70cm. The radial profile of

ion temperature gradient is given by R0/LT i = 6.67 exp (−y4
T ), where

yT = (r− rm)/(0.25a) and rm = 0.6a. The electron temperature profile is
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set as the same with Ti. The density gradient profile is flat and given by

R0/Lni = 2.22 exp (−y4
n), where yn = (r − rm)/a. These gradient profiles

as well as ηi = Lni/LT i are shown in Fig. 1 (a). The radial profile of

safety factor q, which is plotted in Fig. 1 (b), has a parabolic shape with

q = 1.6 and magnetic shear s = 0.5 at r = rm. The ion temperature

and the normalized ion gyroradius are Ti(r = 0) = Ti0 = 4.5keV and

ρi0/a ≈ 1/140 in the center, respectively. The size of radial grid is set as

∆r ≈ 0.7ρi0. The range of toroidal mode number is chosen as [−64, 64],

for which |kθρi| ≤ 1.0 at the center of the unstable region (r/a = 0.6). I

use about 100 marker particles per grid.

II.B. Collisionality dependence of turbulence and zonal flow

Before analyzing the simulation results, I illustrate the E×B shearing

rate and its poloidal dependency in the circular flux surface used in this

simulations. In toroidal geometry, the E ×B shearing rate for flute-like

fluctuations has following form[3]

ωE =
∆ψ

∆ϕ

∂2

∂ψ2
Φ00(ψ) =

RBθ∆r

ν∆Θ

∂2

∂ψ2
Φ00(ψ) =

∆r

r∆Θ

(RBθ)
2

B

∂2

∂ψ2
Φ00(ψ),

(9)

where ∆ψ = RBθ∆r, ∆ϕ = ν∆Θ, ν is the local safety factor, and Φ00 is

the zonal component of potential fluctuation. ∆r and ∆Θ are the radial

correlation length and poloidal correlation angle of the turbulence eddy,

respectively. In most cases, turbulence eddy is assumed to be circular, so

that ∆r ∼ r∆Θ. Using this assumption, Eq. (9) becomes

ωE =
(RBθ)

2

B

∂2

∂ψ2
Φ00(ψ). (10)
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In my model, the magnetic field is expressed as B = I∇ϕ+∇ϕ×∇ψ

where ϕ is the toroidal angle and I = B0R0 with the magnetic field in

the center B0. This leads toroidal magnetic field Bφ = I/R and poloidal

magnetic field Bθ = |∇ψ| /R. For concentric circular flux surfaces, most

gyrokinetic codes including gKPSP set ψ as

dψ

dr
=

Iε

q(r)
√

1− ε2
, (11)

where ε ≡ r/R0. Therefore, there is no poloidal dependency in |∇ψ|, and

I can rewrite the E ×B shearing rate as

ωE(r, θ) =
R

I
|∇ψ|2 ∂2

∂ψ2
Φ00(ψ) =

R0(1 + ε cos θ)

I
|∇ψ|2 ∂2

∂ψ2
Φ00(ψ) (12)

This results in the E × B shearing rate proportional to R. Meanwhile,

when ψ satisfies Grad-Shafranov equation, ωE ∝ R3[3] which has stronger

dependency than this simulation. So, I expect that the in-out asymmetry

of zonal flow shear could be more pronounced in actual experiments than

my simulations. To represent the poloidal variation of the E ×B shear,

I define the local mean E ×B shearing rate as

ωE,rms(θ) =

√∫
dV ω2

E(r, θ′)

/∫
dV , (13)

where
∫
dV =

∫ r2
r1

∫ θ+∆θ

θ−∆θ

∮
rR0(1 + ε cos θ′)drdθ′dϕ, i.e., the average is

taken around a poloidal angle θ.

To obtain different levels of zonal flow in a self-consistent manner, I

vary ion density so that linear growth rate of ITG doesn’t change but

linear collisional damping differs the zonal flow [21]. Here, ion-ion colli-

sionality is ν∗i ≡ ε−3/2νiiqR0/vT i, where νii and q are the ion-ion collision

frequency and the safety factor, respectively. Furthermore, I artificially
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FIG. 2: Radial profiles of (a) turbulence intensity
〈
φ2
〉
, (b) turbulent heat

diffusivity χi, and (c) zonal flow VE . And (d) time evolution of zonal flow shear

V ′E integrated over volume from r/a = 0.5 to 0.8 for different collisionalities.

switch off the zonal flow in some runs to distinguish the effects of zonal

flow from other saturation mechanisms, such as nonlinear mode coupling.

The turbulence in the case without zonal flow is expected to preserve the

ballooning features better. The profiles of turbulence intensity and zonal

flow for the different collisionalities are shown in Fig. 2. The profiles are

averaged over a steady state time period from t/(R0/vT i0) = 280 to 320.

In the absence of zonal flow, the shape of the turbulence intensity profile

〈φ2〉 in Fig. 2(a) is very similar to the R0/LT i profile. Here, φ ≡ eΦ/Ti0
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is the flux surface average of the normalized potential fluctuation. While

turbulence intensity is almost constant in the linearly unstable region from

r/a = 0.4 to 0.8, the radial profile of heat diffusivity shows a variation

[Fig. 2(b)]. When zonal flow is retained, both turbulence intensity and

turbulent heat diffusivity get reduced. The radial profiles of zonal flow are

shown in Fig. 2(c). The level of zonal flow and thus its shear decrease as

the collisionality increases. The strong zonal flow shear appears around

r/a = 0.6 where the linear drive is the strongest, and turbulence reduction

around r/a = 0.6 is more noticeable. I study characteristics of turbulence

in the radial range from r/a = 0.5 to 0.8 in detail where the collisionality

dependence of the zonal flow is clearly observed.

It is noteworthy that the collisionality dependence of the zonal flow

does not persist as intended during the whole simulation period. This

is because of the self-regulation dynamics between turbulence and zonal

flow, which can be characterized by a ‘predator-prey’ model [22, 23]. The

time evolution of the volume-integrated zonal flow shear, defined as

V ′E =

√∮
dV ω2

E(r, θ)

/∮
dV , (14)

is shown in Fig. 2(d). Here, the integration is performed in the whole

domain of toroidal angle and poloidal angle and from r/a = 0.5 to 0.8

in radial direction. Since not only the fixed point of the predator-prey

oscillation but also the oscillation amplitude depend on the zonal flow

damping rate, higher collisionality does not lead to a lower level of zonal

flow for the whole simulation duration. The details of the analysis based

on a predator-prey model are presented in the Appendix. To avoid the

complications due to the self-regulation dynamics, I analyze turbulence

18



properties in the time period from t/(R0/vT i0) = 280 to 320 when the zonal

flow level decreases with the collisionality. This time period is sufficiently

longer than the turbulence correlation time τc . 10R0/vT i0 which will be

discussed shortly.

II.C. Poloidal Asymmetry of Turbulence and Zonal Flow Shear

The radial correlation length and intensity of the ambient turbulence

are significantly reduced when the E × B shearing rate ωE exceeds the

ambient turbulent decorrelation rate ∆ωT , that is ωE > ∆ωT [2, 15, 22, 24–

26]. I note that all the quantities have poloidal angle dependent and

are larger at the low field side of the toroidal geometry. The reduction

is easily measured and more pronounced for turbulence intensity from

simulations. In this section, I examine the turbulence intensity and radial

correlation length to investigate the poloidal dependency of the turbulence

suppression by the zonal flow from gKPSP simulations.

First, I study the poloidal dependence of the turbulence radial cor-

relation length and correlation time for the different zonal flow shear in

a quantitative way. To evaluate the ambient turbulent scattering rate

∆ωT , I approximate its inverse as the turbulence correlation time in the

case without zonal flow. A Lagrangian time correlation function C(τ) is

calculated as

C(τ) =

∫
φ(x, t)φ∗(x, t+ τ)dV√∫

|φ(x, t)|2dV
∫
|φ(x, t+ τ)|2dV

. (15)

Here, x = (r, θ) and τ are, respectively, a position of a turbulence eddy

on a poloidal plane and the time difference. This correlation function is

19



0 π/2 π 3π/2 2π

Poloidal Angle

4

6

8

10

12

14

16

18

T
im

e
[R

0
/v

T
i0

]

τ
c

τ
E× B

 at ν
*i
=0.15

τ
E× B

 at ν
*i
=0.02

(a)

0 π/2 π 3π/2 2π

Poloidal Angle

5

10

15

20

25

30

r c
 [
ρ

i]

no V
E

ν
*i
=0.15

ν
*i
=0.02

(b)

FIG. 3: (a) Turbulence correlation time τc, E×B decorrelation time τE×B, and

(b) radial correlation length of turbulence as functions of poloidal angle for the

different collisionalities. Local averages are taken in the range from r/a = 0.5

to 0.8 and ∆θ = π/8.

fitted by a function with a form fc(τ) = cos(ω0τ) exp[−(τ/τc)
2], and con-

sequently the turbulence correlation time τc is obtained. Here, ω0 is a

characteristic frequency. Comparison between the turbulence correlation

time τc and the E × B decorrelation time τE×B ≡ 1/ωE,rms as functions

of poloidal angle for different collisonalities are shown in Fig 3(a). A local

average is taken from r/a = 0.5 to 0.8 and ∆θ = π/8. τc is the shortest at

high field side(HFS) and the longest near low field side(LFS). Whereas,

τE×B shows the opposite trend. Thus the criteria for the effective reduc-

tion of the ambient turbulence, τE×B < τc, is satisfied only around LFS

for low collisionality.

The poloidal variations of the radial correlation length for different

collisionalities are displayed in Fig. 3(b). Here, ρi is evaluated at LFS

in the center of the radial domain (r/a = 0.6). At LFS, radial correla-

tion length gets reduced in the low collisionality case since the criterion of
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in Eq. (16).

τE×B < τc is satisfied. On the other hand, the radial correlation length at

HFS shows little difference for the different collisionalities because τE×B at

HFS is considerably longer than τc even in the low collisionality case. Con-

sequently, the poloidal asymmetry of radial correlation length decreases

as zonal flow shear increases. The poloidal asymmetry of zonal flow shear

reduces the poloidal asymmetry of the turbulence correlation length.

I plot the radial correlation length as a function of the local zonal

flow shear at LFS (θ = 0) and HFS (θ = π) in Fig. 4 and compare this

simulation result with the analytic prediction in Refs. 24 and 25. The

stronger reduction of the correlation length at LFS than that at HFS is

noticeable. The ratio of radial correlation length at LFS to that at HFS
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is also plotted in Fig. 4. (The zonal flow shear is taken from the values

at LFS.) As the zonal flow shear increases, the in-out asymmetry of the

correlation length gradually decreases. According to Refs. 24 and 25, the

radial correlation length gets reduced according to the following equation

when E ×B shear is not too strong

rc =
rc0

(1 + τ 2
c ω

2
sE)1/2

, (16)

where τc and rc0 are the correlation time and radial correlation length of

ambient turbulence. To consider the eddy shape dependence of zonal flow

shear [27], I define ωsE = ∆rωE/r∆Θ ≈ rcωE/rc0. The poloidal correla-

tion length is assumed to be same as the radial correlation length in the

case without zonal flow. The reduction of the radial correlation length as

a function of zonal flow shear is well fitted by the analytic formula if I use

the turbulence correlation time τc = 9.5 at LFS and τc = 5.8 at HFS. The

values of the correlation time measured from my simulations are τc = 9.1

at LFS and τc = 5.6 as shown in Fig. 3(a), in a good agreement with the

values used for fitting the theoretical formula.

Next, I examine the poloidal asymmetry of the local mean potential

fluctuation intensity φ 2 for different collisionalities and plot in Fig. 5(a).

The local average is taken in the same range of the correlation analysis

(from r/a = 0.5 to 0.8 and ∆θ = π/8). The turbulence intensity is sig-

nificantly reduced by the presence of the zonal flow for the whole poloidal

angle. This can be understood in terms of the nonlinear energy transfer

from turbulence to zonal flow, leading to the conservation of the total

energy [22]. In contrast to the turbulence decorrelation process, this tur-

bulence energy transfer process is not localized in the LFS as shown in Fig.

22



0 π/2 π 3π/2 2π

Poloidal Angle

10
-6

10
-5

10
-4

10
-3

φ
2

no V
E

ν
*i
=0.15

ν
*i
=0.02(a)

0 100 200 300 400

Time [R
0
/v

Ti0
]

0

1

2

3

4

5

E
n
e
rg

y
 [
n

0
T

i0
]

×10
-5

E
k
 w/o V

E

E
v
+E

k
 with V

E

E
k
 with V

E

(b)

FIG. 5: (a) Local mean turbulence intensity φ2 as a function of poloidal angle.

(b) Time histories of the zonal flow Ev and turbulence energy Ek in the cases

with, and without zonal flow. In the case with zonal flow, ν∗i = 0.02.

5(a). The total energy of turbulence and zonal flow can be approximately

expressed as[28]

Etot = Ev + Ek =

∫
dV

min0(r)

2
V 2
E(r) +

∫
dV

n0(r)Ti(r)

2

∑
m,n

(1 + k2
⊥ρ

2
s)φ

2
mn.

(17)

Here, Ev and Ek denote the energies of the zonal flow and the turbulence,

respectively. The integration is performed in the whole 3D simulation do-

main. The time histories of the turbulence energy in the case without zonal

flow and the total energy in the case retaining zonal flow with ν∗i = 0.02

are displayed in Fig. 5(b). In this calculation of the turbulence energy, I

neglect the small term related to the polarization drift for simplicity. The

total energy of zonal flow and turbulence becomes comparable to the tur-

bulence energy excited without zonal flow after an initial transient phase.

In the case with zonal flow, the turbulence energy corresponds 13% of the

total energy during the time period from t/(R0/vT i0) = 280 to 320. Al-
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ternatively, about 87% of the turbulence energy is nonlinearly transferred

to zonal flow in the simulations.

The turbulence amplitude φrms is represented as a function of zonal

flow shear at LFS and HFS in Fig. 6. The ratio of turbulence amplitude

at LFS to that at HFS plotted in this figure summarizes the behavior

of the in-out asymmetry of the amplitude. Compared to the case with-

out zonal flow, the presence of zonal flow enhances the in-out asymmetry

of the turbulence amplitude. The in-out asymmetry of the amplitude

φrms,LFS/φrms,HFS is 1.3 in the case without zonal flow, and increases to

1.7-2.0 with zonal flow. This significant enhancement of the in-out asym-

metry of turbulence amplitude is different from the modest and gradual
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decrease in the in-out asymmetry of the radial correlation length. On the

other hand, for non-zero zonal flow, the in-out asymmetry of the ampli-

tude peaks at a certain level of zonal flow shear and then decreases slightly

as zonal flow shear becomes stronger.

A formula describing the turbulence level reduction by E × B shear

decorrelation, without considering the effects of nonlinear energy trans-

fer explicitly, can be obtained by adopting a mixing length relation (i.e.,

φ ∝ rc).[24] The resulting formula has the identical form to the equa-

tion for the radial correlation length reduction in Eq. (16), that is

φrms ∝ 1/(1 + τ 2
c ω

2
sE)1/2. The results fitting the cases with zonal flow

are presented in Fig. 6. The amplitude reduction trends in the cases with

zonal flow are well described by the turbulence decorrelation theory at

LFS and HFS. However, the ambient turbulence amplitude obtained by

this fitting to the E ×B decorrelation theory is much smaller than that

measured in the simulation excluding zonal flow.

Now, I illustrate the different behaviors of turbulence amplitude and

radial correlation length in the following fashion. φrms as a function of

rc is shown in Fig. 7. A noticeable feature is the difference in the am-

plitude to correlation length ratio φrms/rc (i.e., the slope of lines in Fig.

7) between simulations with and without zonal flows. I speculate that

this can result from the difference in the dominant nonlinear saturation

mechanisms between the two cases. In the absence of zonal flow, the sta-

tionary turbulence properties are determined by the balance between the

turbulent energy transfer via nonlinear couplings involving both strongly

ballooning and flute-like modes, and the linear drive. In the presence of
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zonal flow, on the other hand, the nonlinear energy transfer to zonal flow

is the dominant turbulence saturation mechanism, as illustrated in Figs.

5(a) and (b). So, the qualitatively different saturation mechanisms could

lead to different amplitude to length ratio values.

In addition to the properties of potential fluctuation, I briefly report

the in-out asymmetry of the ion heat transport. Turbulent heat diffusivity

χi at LFS and HFS as well as their ratio are shown in Fig. 8. Compared to

the case without zonal flow, the presence of zonal flow significantly reduces

χi at both LFS and HFS and decreases its in-out asymmetry. Among the

cases retaining zonal flow, in-out asymmetry of χi increases with zonal
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flow shear. The reduction of the χi magnitude with the increased zonal

flow (shear), or equivalently, with low collisionalities is similar to the be-

havior of the turbulence intensity in my simulations. But the behavior of

the in-out asymmetry of χi is opposite to that of the turbulence ampli-

tude. To elucidate the behavior of the in-out asymmetry of χi, detailed

analysis of ion temperature fluctuation δTi is necessary but has not been

performed in this work. I defer a study of the in-out asymmetry of the

heat transport in a subsequent paper.

II.D. Conclusions

I have investigated the poloidal asymmetry of ITG turbulence in

toroidal geometry for different zonal flow levels. I have performed gyroki-
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netic simulations and analyzed the turbulence amplitude, radial correla-

tion length, and correlation time of the potential fluctuations as functions

of the poloidal angle. To clarify the effect of zonal flow, the fluctuation

characteristics in the presence of zonal flow are compared to those in the

simulation without zonal flow. It is found that the in-out asymmetry of

the radial correlation length continuously decreases as zonal flow shear

increases because the reduction of the correlation length is larger at LFS

than HFS. This correlation length reduction trend from the zero zonal flow

case is well described by the E ×B shear decorrelation theory. However,

turbulence amplitude behaves differently from the prediction of the mix-

ing length relation in combination with the decorrelation theory [24]. It

seems that while the E×B decorrelation theory works well for the radial

correlation length, more detailed nonlinear theory taking nonlinear energy

transfer from turbulence to zonal flow into account rather than a naive

mixing length relation is required to predict the behavior of turbulence

amplitude.
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III. ANALYSIS OF IN-OUT ASYMMETRY OF E ×B FLOW

SHEAR USING ECEI DATA

In this section, I extend my previous gyrokinetic study on the in-out

asymmetry of E×B flow shear to the experiments. Unlike the simulations,

it is difficult to analyze the problem in limited situations like electrostatic

ITG turbulence with an adiabatic electron case. In addition, the mean ra-

dial electric field Er can be estimated using radial force balance equation,

but the zonal flow is almost unmeasurable. Meanwhile, correlation analy-

sis via ECEI data[31] makes it possible to distinguish the fluctuations of

each mode. Furthermore, E × B flow velocity can be derived from the

wave velocity of the modes. One of the advantages of the analysis using

ECEI is that radial profiles of the plasma pressure, binormal flow velocity,

and magnetic field strength are not necessary to calculate the Er. Thus,

from this research, I can verify my research on in-out asymmetry of the

E × B shearing rate in the gyrokinetic simulation, through the KSTAR

experiments.

For these reasons, I analyze the in-out asymmetry of E ×B flow shear

in the KSTAR experiments measured by ECEI. The remained part of this

section is organized as follows. In the Sec. III. A.1., I briefly introduce the

experiment I analyzed. Then, I compare the velocity of the fluctuations

estimated by ECEI data and vE×B deduced from the CES data on radial

profiles of Ti and vT in the Sec. III. A.2. And finally, I analyze the effects

of the E × B shearing rate on the in-out asymmetry of the fluctuations

measured by ECEI in Sec. III A.3. In Sec. III B., I address the summary

and the future work for this topic.
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III.A. Analysis of Poloidal Asymmetry of the Fluctuations and

E ×B shearing rate

III.A.1. Set-up of the Experiments

In order to analyze the in-out asymmetry of the fluctuations and the

E × B shearing rate, I investigate the previous KSTAR experiments in

which ECEI system measured both the low field side (LFS) and the high

field side (HFS) at the same time. One of the past experiments which

fulfill this condition is the KSTAR #18431. In this experiment, plasma

was heated by three neutral beam (NB) injection channels with their power

1.7, 1.08, and 1.7MW . Toroidal magnetic field strength on-axis was 2.3T ,

and the plasma current was on the reversed direction with 500kA. Ion

temperature and toroidal velocity were measured by CES from t = 6s to

t = 9s. Based on the measured data, equilibrium magnetic surface, and

radial profiles of Ti, vT , and safety factor q are calculated using EFIT

code.

Time evolution of total energy, electron density, β, Zsurf , and plasma

elongation κ are illustrated in Fig. 9. Here, Zsurf is the flux-surface-

averaged vertical location of the last closed flux surface. In this H-mode

plasma with type-1 ELM, bursty n = 2 fishbone mode and weak n = 1 har-

monic oscillation at the core was observed by Mirnov coil from t = 5.5s

to 6.15s. From t = 6s, the external magnetic field pushed the plasma

down, so that βp decreased with Zsurf slowly moving down. Plasma was

extremely destabilized after t = 8s, because of the disruption. Although

this experiment is not suitable to analyze because of this external mag-
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FIG. 9: Time evolution of the total energy, electron density, β, Zsurf , and

plasma elongations at KSTAR #18431. Plasma moved down from t = 6s and

stopped at t = 8s. Plasma was measured by CES from t = 6s and stopped at

t = 9s

netic field, it is one of the few experiments which was observed using CES

and ECEI at both LFS and HFS. In addition, MHD modes have a stronger

spectrum compared to other fluctuations, which can lead to higher accu-

racy in this analysis. Due to the above reasons, I analyze the KSTAR

experiment #18431 from t = 6s to t = 6.1s, when there’s both CES data

and ECEI data and MHD phenomenon occurred.

In order to analyze the in-out asymmetry of E×B shearing rate on the

same flux surface, I illustrate the equilibrium magnetic flux surface from
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FIG. 10: Magnetic flux surface calculated by ECEI at t = 6s. Red and blue box

correspond to the location where ECEI measured. Red line is the last closed

flux surface.

EFIT and the position where ECEI detected in Fig. 10. ECEI detected

the plasma inside the last closed flux surface (LCFS) at the LFS, whereas

it detected the plasma across the LCFS at the HFS. Thus, I analyzed the

spectrum from the channels which detected inside the LCFS.

III.A.2. Estimation of the E ×B shearing rate

In most cases, radial electric field Er from the experimental data is

estimated using radial force balance equation[27]. To calculate the Er

using radial force balance equation, I need the radial profiles of pressure,

toroidal rotation speed, and poloidal rotation speed. Usually, this data

are measured by charge exchange spectroscopy (CES)[30]. It measures the
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radiation emitted by the excited impurity ions due to the charge exchange

between a neural hydrogen atom and an impurity ion[30]. Generally, a

neutral hydrogen atom comes from the neutral beam injection from the

outside of the tokamak. So this spectroscopy requires the device to inject

the neutral beam source.

Whereas, Electron Cyclotron Emission Imaging (ECEI) system mea-

sures the radiation emitted by the gyration of electrons in the magnetized

plasmas [31]. Since the frequency of the gyration is the function of the

charge, mass, and magnetic field, the location of the emission can be es-

timated based on the magnetic field strength. So, ECEI measures the

intensity of the radiation emitted by the gyromotion and estimate the

electron temperature fluctuations.

If E × B shearing rate can be estimated using ECEI, this detection

system can give us not only the information of the fluctuation of Te, but

also the current status of the stabilization effects. The main method to

estimate E ×B velocity is the correlation analysis using the signals from

the multi-channels. Comparing the two signals with the same frequency

of nearby channels, the phase difference between two channels can be

measured. Using phase difference ∆θ and distance between the channels

∆d, I can find the wavelength k = ∆θ/∆d with respect to the frequency

of the signal[32]. Since E × B flow induces the Doppler shift of the wave

frequency,

ωTh = ωLab − kθvE×B (18)

where ωTh is the actual frequency of the wave, ωLab is the measured fre-

quency, and kθ is the wavelength measured by the phase difference between
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FIG. 11: Spectrum of the 〈T̃ /T 〉 on wavelength and frequency at the LFS.

the two channels[33]. So, phase velocity measured in the lab frame is the

function of the phase velocity in the plasma frame and E ×B velocity.

Fig. 11 shows the spectrum of the Te fluctuation calculated from the

ECEI data. Spectrum at the LFS shows the poloidal flow motion of the

fluctuation induced by the Doppler shift due to the E×B flow. Since this

flow motion is not merely due to the E × B flow, the assumption on the

plasma phase velocity and group velocity are needed. Moreover, the phase

velocity is difficult to identify when the amplitude of the fluctuation is

weak. So I calculate the group velocity using RANdom SAmple Consensus

(RANSAC) method[34] for higher reliability. This numerical method aims

to distinguish the inlier data from the outlier data by random sampling.

I commit the random sampling with weighting each data by the S(k, ω).

Then, the trend of the sampled data is deduced and check the consensus to

the other data which is not selected by random sampling. After repeating
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FIG. 12: Group velocity vgp deduced from the fluctuations measured by ECEI

and vE×B calculated using radial profiles of the Ti and vT measured by CES.

Purple line is the fitted using vgp and Eq. 20.

this process several times, I choose the trend which has the least outlier

and determines the group velocity of the fluctuations.

The radial electric field Er is deduced from the radial force balance

equation using CES data. But there’s only CES data on ion temperature

Ti and toroidal velocity vT in this experiment which is the reason why

few assumptions for the profiles that were not measured are used. For the

pressure profile, I assume that Te(r) = Ti(r) and ni(r)/ni0 = Ti(r)/Ti0.

Poloidal velocity is deduced from the neoclassical poloidal velocity. Con-

sequently, the equation of vE×B in this work is

vE×B '
Er
BT

=
1

BT

(
vTBθ − vθNeoBT +

1

niZe
∇P

)
(19)

Comparisons on the E×B velocity (vE×B) and the group velocity (vgp)
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FIG. 13: |ωE | deduced from the ECEI data and CES data at the both LFS and

HFS.

of the fluctuations are illustrated in Fig. 12. vgp at the LFS and that at

the HFS are comparable, which corresponds to the characteristics of the

vE×B which is independent of the poloidal angle. To compare vgp with

vE×B and their shear, I use the following equation to fit the vgp.

vgp = A1
(1 + b∆ψn)exp(∆ψn)− exp(−∆ψn)

exp(∆ψn)− exp(−∆ψn)
+ A2 (20)

Here, ∆ψn = (ψn−ψn(rTB))/∆b, rTB is the location of transport barrier,

and ∆b is the width of transport barrier. Fitted vgp is slower than vE×B,

but their radial tendencies are similar. Also, the measured radial location

of the transport barrier is different between the vE×B and vgp, which is

due to the measurement position error of the two measurement devices.

To calculate ωE, I assume that Doppler shift by the vE×B has a dom-

inant role on the radial variation of the vgp. ωE in Fig. 13. is calculated
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by

ωE =
1

BT

|∇ψ|2 ∂
∂ψ

(
BT

|∇ψ|
vE×B

)
(21)

As mentioned in the previous paragraph, there’s a difference in the po-

sition of the max(|ωE|) resulting from the ECEI and CES. It is also re-

flected in the asymmetry of ωE since this asymmetry is the function of

R. The ratio of the max(|ωE|) between that at the LFS and HFS is 3.22

and 2.93 for the data measured by CES and ECEI, respectively.‘ ωE is

proportional to (R2.1), which has stronger poloidal asymmetry than the

results in the gyrokinetic simulation at the concentric circular flux sur-

face (∝ R1)[35]. The main reason for the strong poloidal asymmetry

compared to the simulation is the magnetic field structure with shaping

effects. In my previous work, poloidal angle dependent part of the ωE

is the |∇ψ|2/BT and ∂2φZF (ψ)/∂ψ2 is independent of the poloidal angle.

Actually, |∇ψ|2/BT ∝ R2.1, which is much stronger in-out asymmetry

than |∇ψ|2/BT ∝ R1 in concentric flux surface. Therefore, shaping ef-

fect which was not considered in my previous work enhances the in-out

asymmetry of ωE.

III.A.3. Effect of ωE on the in-out asymmetry of the fluctuations

To analyze the effect of in-out asymmetry of ωE, I first calculate the

correlation time tc at both sides, which is shown in Fig. 14. a). The

correlation time of the LFS is longer than that of the HFS only near the

ψn = 0.8. To compare the tc to the ωE, I use the ωE from the ECEI, since

tc is calculated using the data from ECEI. At the LFS, E×B decorrelation
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FIG. 14: a) Correlation time tc and ω−1
E , estimated using ECEI data. b)

Electron temperature fluctuation 〈T̃ /T 〉 and tcωE on the ψn.

time ω−1
E is comparable to the tc at the ψn ∈ [0.9, 0.95], which corresponds

to the location of the transport barrier. Because of the in-out asymmetry

of ωE, opposite relation is shown in the HFS. So, a weaker reduction of

the turbulence at the HFS is expected. However, this estimation is not

applicable to analyze the traits of temperature fluctuations 〈T̃ /T 〉 in Fig.

14 b). Although tcωE ∼ 1 at the transport barrier (ψn ∼ 0.95), 〈T̃ /T 〉 is

the highest. This can be because of ELM activities and MHD instabilities,

which are measured as strong fluctuations and are not stabilized by E×B

flow shear. Thus, in order to figure out the role of the E × B flow shear

on turbulence fluctuations, I need to restrict the range of wavelength and

frequency.

III.B. Summary and Future work

In this work, I analyze the in-out asymmetry of the E × B shearing

rate ωE using the data estimated by the ECEI system. To convince the
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results, I investigate the experiments which measured by both CES and

ECEI the same time, in order to compare the vE×B calculated by usual

radial force balance equation, to the correlation analysis based on the

ECEI data. Although plasma moved down at the measured time, KSTAR

#18431 was one of the few experiments which were measured by the ECEI

at both LFS and HFS, and CES at the same time. At first, I compare the

group velocity vgp estimated from the ECEI data, with the vE×B calculated

from the radial force balance equation using the radial profiles of the Ti

and vT measured by CES. It is shown that vgp is slower than the vE×B and

the location of the transport barrier differ, but their shear is comparable.

In-out asymmetry of the E × B shearing rate is stronger than that at

the gyrokinetic simulation in my previous research[35]. It comes from the

magnetic field structure |∇ψ|2/BT with shaping effects. The comparison

between correlation time tc and ωE is consistent with the theoretic predic-

tion on the enhancement of the confinement. Nevertheless, temperature

fluctuations do not correspond to this prediction and the observation of

the transport barrier because of the ELM and MHD activities.

As future work, I need more experiment results to convince my present

results. First, by comparing more results on vE×B using CES data and vgp

estimated by ECEI data, I need to ensure my calculation on ωE. Then,

from the results which observed the LFS and HFS at the same time using

ECEI, in-out asymmetry of the E × B shearing rate can be estimated.

Finally, the analysis of the role of the E×B flow shear on the fluctuations

should be performed on the drift wave wavelength and frequency regime.
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IV. RESIDUAL ZONAL FLOW IN THE PRESENCE OF THE

ENERGETIC IONS

Zonal flows are well-known to regulate and reduce the tokamak plasma

turbulence. A noteworthy property of zonal flows in toroidal plasma is

that it is not damped to non-zero amplitude, known as residual zonal

flow, in the absence of collisional and turbulence induced damping. Since

Rosenbluth and Hinton analyzed residual zonal flow level in the long wave-

length regime (krρi,b, ρi,b is banana orbit width) [1], there have been var-

ious extensions which mostly assumed Maxwellian equilibrium for every

ion species. However, for fusion product α-particles in tokamak plasmas,

the Maxwellian distribution is a poor approximation and the slowing-down

distribution should be used.

In this chapter, I study the residual zonal flow level in the presence

of α particles with slowing-down distribution function and compare the

results against those for Maxwellian distribution case with the same av-

erage kinetic energy and the case without α particles. I only consider the

electrostatic fluctuations in the limit of adiabatic electron response for

simplicity in this work. Mostly, I consider a parameter regime expected

for ITER core plasmas.

Principal results of this chapter are as follows. The values for ncl and

nnc for the same dimensionless radial wave number krρ
T
i , normalized to

the average-energy ion gyroradius ρTi =
√
Ē/m/Ωc are not significantly

different depending on the ion equilibrium distribution function, whether

it’s a Maxwellian or a slowing-down in long wavelength limit. However,

since typical α-particle’s Larmor radius is much larger than that of back-
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ground ion Larmor radius, for the zonal flows in the kr range satisfying

krρ
T
i < 1 < krρ

T
α , I obtain that classical polarizability of alpha particle

is significantly higher than that of background ions, with a consequence

of RZF with α-particles exceeding RZF in the absence of α-particles con-

siderably. The beneficial effect on confinement from this is predicted to

depend on the α-particle’s concentration. The effect is obviously negligi-

ble if nα/ne is negligible. However, for nα/ne = 10% I predict more than

10% enhancement of residual zonal flows for krρi,eff ≈ 10−1. I note that

the predicted value of nα/ne in ITER depends on the operation scenarios

and assumptions used in models[70, 71].

An analytic derivation is possible for an arbitrary well-behaved equi-

librium distribution function F0 for the long wavelength(krρ
T
θ,i � 1) zonal

flows. In this regime, the well-known expression for a high aspect ratio

circular tokamak plasmas[1], i.e., RZF = 1/(1 + 1.6q2/
√
ε) which has been

derived for Maxwellian F0, remains to be valid for any well-behaved F0

which is isotropic in velocity space.

The remainder of this chapter is organized in the following order. In

Sec. IV.A.1, I introduce the slowing down distribution function for ener-

getic ions. ncl and nnc for slowing down distribution function in arbitrary

wavelength regime are derived in Sec. IV.A.2, and 3 respectively. Then,

residual zonal flow level for slowing down distribution function is esti-

mated in Sec.IV.B. and compared to the Maxwellian F0 case. Discussions

regarding other related works are given in Sec. IV.C.
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IV.A. Classical and Neoclassical Polarization Density

In this section, I derive expressions for the classical and neoclassical

polarization density for arbitrary wavelength. More details can be found

from the following works. Wang and Hahm[53] have derived the gener-

alized expressions which are valid for the arbitrary wavelength of zonal

flows for both classical and neoclassical polarization density using the

modern gyrokinetics[56, 57] and bouncekinetics[58]. Those expressions in-

clude the finite Larmor radius (FLR) effect and finite orbit width (FOW)

effect. Duthoit, Brizard, and Hahm[72] have shown how to further improve

the analytic approximations. In this way, both classical and neoclassical

polarization density have been derived systematically. The schematic de-

scription of pull-back transformations is illustrated explicitly in Fig. 2 of

Ref. 53. I don’t consider the electron dynamics which can be relevant to

electron temperature gradient (ETG) turbulence driven hyper fine-scale

zonal flows[50–54] for simplicity.

IV.A.1. Slowing Down Distribution Function

When high energy ions which are created or injected in the plasmas

are slowed down due to collisions with background ions and electrons, the

slowing down distribution is a good description of an equilibrium distri-

bution function[73]. Assuming an isotropy in velocity space, I have

FSD(v) =
nα

4πv3
cA2

H(vα − v)

1 + ( v
vc

)3
(22)
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where vα is the maximum velocity of an energetic particle and vc is the

slowing down critical velocity related to the electron thermal velocity of

background plasmas,

v3
c = 3

√
π

4

me

mα

ZIv
3
th,e (23)

Here, ZI = mαΣini(Z
2
i /mi)/ne is an effective charge which is inversely

weighted by ion mass. I use the definition v2
th,e = 2Te/me and v2

α =

2Ebirth/mα, while v2
th = T/m for other ion species such as D and T.

Ebirth is the birth energy of energetic particle. The following integrals as

functions of vα/vc appear in my analysis,

An

(
vα
vc

)
=

∫ vα/vc

0

xn

1 + x3
dx (24)

For each n, they are given by

A0(a) =
1

6

[
ln

(a+ 1)3

a3 + 1
+ 2
√

3

(
tan−1

(
2a− 1√

3

)
+
π

6

)]
(25)

A2(a) =
1

3
ln(a3 + 1) (26)

A4(a) =
1

6

[
3a2 + ln

(a+ 1)3

a3 + 1
− 2
√

3

(
tan−1

(
2a− 1√

3

)
+
π

6

)]
(27)

It has been derived from a Fokker-Planck equation which considers

slowing-down of high energy particles with source an ion birth velocity

that has the form of δ−function in particle velocity space[73]. Therefore,

Eq. (22) is applicable for fusion product α particles in the future toka-

mak fusion plasmas such as ITER or DEMO. For high energy ions from

the negative neutral beam injection(NNBI), an anisotropic distribution

should be considered depending on the NBI injection direction. I need to

define an effective temperature for non-Maxwellian distribution function
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for proper normalizations. I take the average kinetic energy(Ē) and define

the effective temperature(Teff ), accordingly, i.e.,

Ē =
1

2n

∫
mv2F0(Z)d3v ≡ 3

2
Teff (28)

for an arbitrary distribution function F0(Z). Here, Z denotes the guiding

center coordinates. The mean kinetic energy for slowing down distribution

is given as following,

ESD =
1

2nα

∫
mαv

2FSD(v)d3v ≡ 3

2
TSD =

A4

2A2

Tc (29)

Then, the temperature of the equivalent Maxwellian distribution func-

tion TM = TSD and the critical temperature of slowing down distribution

defined as Tc = mv2
c are related by

TM =
A4

3A2

Tc (30)

From now on, I use the average mean kinetic energy for any distribution

function for normalization of vth,i, ρ
T
i , and ρTθ , i.e., vth,i =

√
Teff/m.

”T” will be used as a simplified notation for Teff (TSD for slowing-down

distribution) unless specified otherwise. Also, I use vα as the birth speed

of fusion product α-particles.

IV.A.2. Classical polarization density

Classical polarization density(ncl) comes from the difference between

the particle density and the gyrocenter density[56, 57, 74]. Nonlinear gy-

rokinetic formulations[56, 57, 75] don’t assume Maxwellian equilibrium

distribution. Modern gyrokinetic approach[56, 57, 76] separates the po-

larization density systematically in the gyrokinetic Poisson equation.
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For an arbitrary distribution function F (Z), ncl in the presence of a

zonal potential δφ can be expressed as following[77] :

ncl =
Z|e|δφ
T

∫ ∞
0

∫ ∞
−∞

2πdv‖
Bdµ

m

(
1− J2

0 (krρi)
)(
− T∂

B∂µ

)
F (Zgy) (31)

where B is the magnetic field strength, v|| is parallel velocity, µ = mv2
⊥/2B

is guiding-center magnetic moment and Zgy denotes gyrocenter phase

space coordinates. Since ncl depends on FLR effect strongly, I consider

two asymptotic wavelength regimes, the long wavelength regime krρ
T
i � 1

and the short wavelength regime krρ
T
i � 1. Here, ρi represents each ion’s

Larmor radius while ρTi represents the Larmor radius at the thermal ve-

locity.

In the long wavelength regime of krρ
T
i � 1, the lowest order FLR

effects can be approximated by using J2
0 (x) ' 1 − x2/2. Then, nlongcl can

be calculated by

nlongcl ' Z|e|δφ
T

∫ ∞
0

∫ ∞
−∞

2πdv‖
Bdµ

m

(
1

2
k2
rρ

2
i

)(
− T∂

B∂µ

)
F (Zgy) (32)

=
Z|e|δφ
T

v2
th,i

∫ ∞
0

∫ ∞
−∞

2πdv‖dµ
∂

∂µ

(
1

2
k2
rρ

2
i

)
F (Zgy)

= (krρ
T
i )2n0

Z|e|δφ
T

.

Then, based on the definition

ncl
n0

= χcl
Z|e|δφ
T

, (33)

I obtain the dimensionless classical polarizability for the long wavelength

χlongcl = (krρ
T
i )2. (34)

This derivation shows that ncl and χcl in the long wavelength limit are the

same for any well-behaved distribution function, because n =
∫
d3vF (v)
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holds for any F (Z). Note that the temperature dependence in Eq. (32)

is absent in nlongcl . In addition, the mathematical expressions in Eqs. (32)

and (34) are identical for any well-behaved distribution function.

In the short wavelength limit of krρ
T
i � 1, x = v/vth,i and θ =

cos−1
(
v||/v

)
are used to facilitate the integration. Then, ncl for isotropic

distribution can be expressed as

ncl =
Z|e|δφ
T

v3
th,i

∫ ∞
0

∫ π

0

2πxsinθdθdx
(
1− J2

0 (krρ
T
i xsinθ)

)(
− ∂

∂x

)
F (x)

=
Z|e|δφ
T

v3
th,i

∫ ∞
0

2πxdx
(
2−H(krρ

T
i x)
)(
− ∂

∂x

)
F (x) (35)

Here, I have defined

H(x) =

∫ π

0

dθJ2
0 (xsinθ)sinθ (36)

= πH0(2x)J1(2x) + (2− πH1(2x))J0(2x)

Hn(x) is the Struve H function[78]. Using the asymptotic behavior,

H(x) ' 1/x for x� 1. I obtain,

nshortcl ' Z|e|δφ
T

v3
th,i

∫ ∞
0

2πdx

(
2x− 1

krρTi

)(
− ∂

∂x

)
F (x) (37)

' Z|e|δφ
T

4πv3
th,i

[∫ ∞
0

Fdx− 1

2krρTi
F (0)

]
Eq. (37) shows that ncl in the short wavelength limit depends on F (x).

Note that
∫∞

0
F (x)dx is not proportional to n in general. n is proportional

to
∫∞

0
F (x)x2dx. In particular, ncl for slowing down distribution in short

wavelength limit can be written as

nshortcl

n0

=
A4

3A2

[
A0

A2

− 1

2A2krρc

]
Z|e|δφ
T

, (38)

where ρc is the Larmor radius at Tc and
(
ρTi /ρc

)2
= T/Tc. Eq. (38) shows

that χcl for slowing down distribution asymptotes to the A0A4/3A
2
2 as
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krρ
T
i →∞. This originates from

∫∞
0
dvF (v) which is not proportional to

n = 4π
∫∞

0
dvv2F (v), except for a Maxwellian F (Z). On the other hand,

it converges to a familiar expression ”1” for a Maxwellian distribution (see

the first term on the R.H.S. of Eq. (31)).

To avoid a spurious pole at krρ
T
i = vth,i/2A0vc in applying Eq. (38)

(which is valid for krρ
T
i � 1) for a connection formula for arbitrary wave-

length, I slightly modify χshortcl as

χshortcl =
A4

3A2

[
A0

A2

− 1

2A2krρc

]
' A0A4

3A2
2

[
1 +

1

2A0krρc

]−1

(39)

which is also valid in the short wavelength regime up to O( 1
krρc

).

Now, I construct a connection formula of χcl for slowing down distri-

bution using Eqs. (34) and (39) by following the recipe used in Ref. 53

χcl =

{
1

1 + (krρTi /Ck)
2

1

χlongcl

+
(krρ

T
i /Ck)

2

1 + (krρTi /Ck)
2

1

χshortcl

}−1

(40)

To avoid an unphysical inflection point which can occur in connection

formula, I demand a continuity in the slope at a connection point, Ck

∂

∂(krρTi )
χlongcl =

∂

∂(krρTi )
χshortcl , at krρ

T
i = Ck (41)

Then Eqs. (34), (39) and (41) lead to

Ck =
vth,i
vc

(
1

4A2

)1/3

(42)

Without this consideration, χcl can exhibit an unphysical overshoot at

krρ
T
i ∼ 1[67].

I first compare the analytic results in Eqs. (34) and (39) with the result

which is numerically calculated based on Eq. (31), and is presented in Fig.
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15 a). Here, Te = 10keV and ρTi is the average Larmor radius of energetic

α particles. Analytic results predict the behavior of χcl at long wavelength

regime and asymptotic level at short wavelength limit well. However, the

analytic result from a connection formula in Eq. (40) overestimates χcl at

krρ
T
i ∼ 1.0. Fig. 15 b) shows the χcl for FM and FSD consisting of (100%)

energetic α-particles only for illustrations, at Te = 10keV and 30keV . I

set Ti = Te for background ions for a black curve for the case without

α-particles. ρi,eff = ΣacmavTa/Za|e|B is the effective Larmor radius of

background ions for corresponding Te. The black curve represents χcl for

both cases of thermal ions at Te = 10keV and 30keV , since χcl for FM
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FIG. 15: a) Analytic and numerical results of χcl for FSD in the wavelength

range 10−2 ≤ krρ
T
i ≤ 10. Here, ρTi is the Larmor radius of energetic particles.

b) Numerical results of χcl based on Eq. (31) for different values of Te and

distribution function. Here, ρi,eff is the effective Larmor radius of background

ions for corresponding Te and ĒM = ĒSD = 814.6keV and 1045.5keV for

Te = 10keV and Te = 30keV , respectively. The black line represents χcl for

thermal ions for Te = 10keV and 30keV .
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FIG. 16: Short wavelength asymptotic value of χcl for FSD consisting of α-

particles only for illustration as a function of Te/Eα. Upper x-axis shows Te

when Eα = 3.5MeV . χcl,SD(∞) = 1 for Te ' 16keV .

is a function of krρ
T
i . Transition to shorter wavelength regime occurs at

different value of krρi,eff . This is because of different values of Larmor

radius of α-particles and of background ions with Ti = Te. So, transition

occurs at the same krρ
T
i but at different krρi,eff .

Unlike FM , asymptotic value of χcl for FSD varies as a function of tem-

perature in the short wavelength regime. Eq. (39) shows that this level

depends on An which in turn depends on the vα and vc which is a func-

tion of electron temperature and composition of background ions. From

the statistical dynamics point of view, ∂ElnF (E) ∝ 1/kBTs, where Ts is

the original definition of the temperature in the this statistic dynamics.

Since Maxwellian distribution is the state with the highest Entropy, no

49



more transport of the energy or particles occur among the phase space,

temperature in terms of the statistical dynamics is the same in the phase

space. Thus, asymptotic level of the χcl is always ’1’ for FM . However,

for non-Maxwellian distributions, if there’s collision, number of particles

in each energy state changes, since this Ts is different for different energy

state. So, average value of the 1/kBTs can differ when internal energy of

the macro state changes. I plot asymptotic level of χcl as a function of

Te/Eα in Fig. 16, where Eα is the birth energy of α-particles. As Te gets

colder, the average value of the kBTs drops faster, resulting in the higher

asymptotic level of χcl. It also means the contribution of energetic ions

on χcl increases as energy of fast ions normalized to the electron temper-

atures increases. In particular, when Te/Eα . 4.5× 10−3 (Te . 16keV for

Eα = 3.5MeV ), χcl(krρi →∞) exceeds 1.

IV.A.3. Neoclassical polarization density

The neoclassical polarization density(nnc) is the difference between

the trapped/passing particle density and the bounce/transit gyrocenter

density[53, 58]. Since nnc is obtained by the two step pull-back transfor-

mation (first, from bounce(transit)-center phase space to gyrocenter phase

space transform, and then gyrocenter to particle phase space transform),

both FOW and FLR effects should be considered[53]. So, nnc should be

characterized in terms of poloidal Larmor radius ρTθi related to the FOW

effect and Larmor radius ρTi related to the FLR effect.

For an isotropic distribution function in velocity space, flux surface
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averaged nnc can be calculated from the following expression[72] :

nnc = Z|e|δφB
m

∫∫
4πR||ω||dµ̂dκ̂

ω||
ωb,t

(43)

× J2
0 (krρi)(1− |〈ei∆ζ〉b,t|2)

(
− ∂

∂E

)
F (Zbgy)

Here, Zbgy is the bounce-center phase space coordinate, and

κ =
E − µB0(1− ε)

2εµB0

, ω|| =
p||e

2
√
κmR||

Jb =
8

π
mR2

||ω||[E(κ)− (1− κ)K(κ)], Jt =
4

π
mR2

||ω||
√
κE(κ−1)

ωb =
πω||

2K(κ)
, ωt = ω||

π
√
κ

K(κ−1)
=

πω||
K(κ)

κ is the pitch angle parameter, which is less than 1 for trapped particles

and greater than 1 for passing particles. ω|| is the characteristic parallel

frequency, R|| = qR is the connection length and p||e is the equatorial

parallel momentum. Jb,t denote the second adiabatic invariant for trapped

particles and passing particles, respectively. ωb denotes bounce frequency

and ωt denotes transit frequency. K(κ) and E(κ) are the complete elliptic

integrals of the first and second kind, respectively. Here, hats are used

for the bounce-gyrocenter coordinate. From now on, I drop the hat for

notational simplicity. J2
0 (krρi) indicates the FLR effect and |〈ei∆ζ〉b,t|2

indicates FOW effect on nnc respectively.

IV.A.4.a. Long Wavelength Regime

In long wavelength regime (krρ
T
i � krρ

T
θi < 1), the FLR effect can

be neglected, but the FOW effect is kept to the lowest order. The orbit-
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averaged eikonal factor in long wavelength limit can be expressed com-

pactly following[72]

 1

2

 × ω||
ωb,t

(
1− |

〈
ei∆ζ

〉
b,t
|2
)

(44)

'
ω||α

2

ωb,t

{
E(κ)
K(κ)
− (1− κ) (0 ≤ κ < 1)

2κ
(
E(κ−1)
K(κ−1)

− π2

4K2(κ−1)

)
(κ > 1),

where α =
√

2εkrρθi. In whole regime, I use a high aspect ratio assumption

for a simple expression relating energy and magnetic moment by E =

µB0(1− ε+ 2εκ) ≈ µB0. Then, I can use y = µB0/T ≈ E/T .

i) nnc for trapped particles:

nnc,b = Z|e|δφ
(
T

m3

)1/2 ∫ ∞
0

∫ 1

0

8
√
εydκdy

× α2 (E(κ)− (1− κ)K(κ))

(
− ∂

∂y

)
F (y)

= 32ε3/2
(
krρ

T
θi

)2 × 4

9
× 3

2
〈√y〉

(
T

m3

)1/2

Z|e|δφ (45)

Since F (y) is a one dimensional distribution function,
〈√

y
〉

for arbitrary

isotropic distribution is proportional to the density since

〈√y〉 =

∫ ∞
0

y1/2F (y)dy (46)

=
1

4
√

2π

(m
T

)3/2

n0

So, neoclassical polarization density for trapped particle in long wave-

length limit becomes

nnc,b
n0

' 1.20ε3/2
(
krρ

T
θi

)2 Z|e|δφ
T

(47)
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It means if the distribution function is isotropic in velocity space in high

aspect ratio limit, nnc for trapped particles in the long wavelength limit

is independent of details of distribution function.

ii) nnc for passing particles:

nnc,t = Z|e|δφ
(
T

m3

)1/2 ∫ ∞
0

∫ ∞
1

8
√
εydydκ

× α2
√
κ

(
E(κ−1)− π2

4K(κ−1)

)(
− ∂

∂y

)
F (y)

' 32ε3/2
(
krρ

T
θi

)2 × 0.16× 1.5 〈√y〉
(
T

m3

)1/2

Z|e|δφ

' 0.43ε3/2
(
krρ

T
θi

)2
n0
Z|e|δφ
T

(48)

Note that flux surface averaged nnc for passing particles in long wavelength

limit is also always the same for arbitrary isotropic distribution function

in high aspect ratio limit.

Therefore, nnc for isotropic distribution function in long wavelength

limit becomes,

nnc
n0

=
nnc,b + nnc,t

n0

= 1.63ε3/2
(
krρ

T
θi

)2 Z|e|δφ
T

(49)

This result is identical to that obtained by Rosenbluth and Hinton[1] for

a Maxwellian distribution. Using both ncl and nnc in the long wavelength

limit, I can recover their result by

RRH =
VE×B(t→∞)

VE×B(t→ 0)
=

ncl
ncl + nnc

=
χcl

χcl + χnc
'
(

1 + 1.63
q2

√
ε

)−1

(50)

Consequently, residual zonal flow level in the long wavelength limit is the

same as the Rosenbluth-Hinton expression for any isotropic distribution

function in velocity space in the high aspect ratio limit.
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IV.A.4.b. Expression for Shorter Wavelengths

For shorter wavelength regime with krρ
T
θi & 1, I can use the following

approximations for an eikonal factor |
〈
ei∆ζ

〉
b,t
| as suggested in Ref. 72.

|
〈
ei∆ζ

〉
b
|2 ' J2

0 (αa1(κ)) (51)

|
〈
ei∆ζ

〉
t
|2 ' J2

0 (αb2(κ)) (52)

where

a1(κ) = 2
ωb
ω||
sech[0.5πτ(κ)], τ(κ) =

K(1− κ)

K(κ)

b2(κ) =
ωt
ω||
sech[πτ̄(κ)], τ̄(κ) =

K(1− κ−1)

K(κ−1)

Then, Eq. (43) becomes

nnc,b = Z|e|δφB
m

∫∫
4πR||ω||dµ̂dκ̂

ω||
ωb

(53)

× J2
0 (krρi)(1− J2

0 (αa1(κ)))

(
− ∂

∂E

)
F (Zbgy)

nnc,t = Z|e|δφB
m

∫∫
4πR||ω||dµ̂dκ̂

ω||
ωt

(54)

× J2
0 (krρi)(1− J2

0 (αb2(κ)))

(
− ∂

∂E

)
F (Zbgy)

Then, I can numerically integrate Eqs. (53) and (54) for the slowing

down distribution function and the Maxwellian distribution function. My

numerical results in various figures to be presented afterwards are based

on these expressions.

For thorough understanding of the results, I pursue further analytic

progress by considering the intermediate wavelength regime (krρ
T
i < 1 <

krρ
T
θi) and the short wavelength regime (1 < krρ

T
i < krρ

T
θi) separately in

the next subsections.
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IV.A.4.c. Intermediate Wavelength Regime

In the intermediate wavelength regime with krρ
T
i < 1 < krρ

T
θi, FOW

effect can be considered using the approximations for eikonal factor

|
〈
ei∆ζ

〉
b,t
| in Eqs. (51) and (52). On the other hand, FLR effects are

ignored for a feasibility of constructing a connection formula in this main

text. It is further discussed in the Appendix.

Then, nnc for an arbitrary isotropic distribution function becomes

nnc,b/t = Z|e|δφB
m

∫∫
4πdµdκ

(
ε
µB

m

)1/2

(55)

×
ω||
ωb/t

(1− |〈ei∆ζ〉b/t|2)

(
− ∂

∂E

)
F (E)

' Z|e|δφ
(
T

m3

)1/2 ∫∫
4πdydκ

√
εy

×

[ ω||
ωb

(1− J2
0 (αa1))

(
− ∂
∂y

)
F (y) (0 ≤ κ < 1)

2
ω||
ωt

(1− J2
0 (αb2))

(
− ∂
∂y

)
F (y) (κ > 1)

For passing particles, there is a multiplicative factor of 2, because

both co-passing and counter-passing particles exist. Since αa1(κ) � 1

and αb2(κ) � 1, Bessel function can be approximated as J0(z) ∼√
2/(πz)cos(z − π/4). Using this approximation,

nnc,b ' Z|e|δφ
(

16εT

m3

)1/2 [√
8

∫ ∞
0

F (x)dx− Cb
π
√
εkrρTθi

F (0)

]
(56)

nnc,t ' Z|e|δφ
(

16εT

m3

)1/2

(57)

×
[√

8

(
π√
8ε
− 1

)∫ ∞
0

F (x)dx− Ct
π
√
εkrρTθi

F (0)

]
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Here, x = v/vth,i =
√

2y. I define

Cb =

∫ 1

0

dκ
K(κ)

a1(κ)
' 3.89 (58)

Ct =

∫ ∞
1

dκ
K(κ−1)√
κb2(κ)

(59)

Ct is the function of ε, which becomes higher as ε decreases. Since F (0) and

the moment of v−2 depend on particular distribution function, a difference

in nnc will result accordingly. For Maxwellian distribution function, nnc is

expressed as

nnc,b
n0

=

√
8ε

π

[
1− Cb

2π
√
πεkrρTθi

]
Z|e|δφ
T

(60)

nnc,t
n0

=

√
8ε

π

[(
π√
8ε
− 1

)
− Ct

2π
√
πεkrρTθi

]
Z|e|δφ
T

(61)

My results are somewhat different on the second term of R.H.S. when

compared to those in Ref. 53. This is because of an eikonal factor I use for

full finite orbit effects is valid for arbitrary pitch angle parameters of both

trapped and passing particles[72] while an approximate version has been

used for Ref. 53. For slowing down distribution function, contribution of

trapped particles and passing particles to nnc becomes

nnc,b
n0

=
A0A4

3A2
2

√
8ε

π

[
1− Cb√

8επA0krρθc

]
Z|e|δφ
T

(62)

nnc,t
n0

=
A0A4

3A2
2

√
8ε

π

[(
π√
8ε
− 1

)
− Ct√

8επA0krρθc

]
Z|e|δφ
T

, (63)

where ρθc = ρTθivc/vth,i is the ion poloidal Larmor radius at Tc. Note

that asymptotic value of χnc in this wavelength regime for slowing down

distribution function differs from that for Maxwellian distribution by

A0A4/3A
2
2, i.e. by the same factor for the χcl in the short wavelength

regime.

56



IV.A.4.d. Short Wavelength Regime

In the short wavelength limit where 1 < krρ
T
i < krρ

T
θi, both FLR effect

and FOW effect should be considered. In addition, since strongly passing

particles’ condition is not negligible, I use E ' µB0(1 + 2εκ). So, flux

surface averaged nnc for trapped particles can be expressed as following

with the approximation for Bessel function,

nnc,b = Z|e|δφ
(
εT

m3

)1/2 ∫ ∞
0

∫ 1

0

√
8πdκdx

ω||
ωb

(64)

× xJ2
0 (krρ

T
i x)

{
1− J2

0 (αa1(κ))
}(
− ∂

∂x

)
F (x)

' Z|e|δφ
(
εT

m3

)1/2
4

πkrρTi

×
[√

8F (0) +
Cb

π
√
εkrρTθi

∫ ∞
0

dx
1

x

∂

∂x
F (x)

]
Similarly, I can get nnc for passing particle as

nnc,t = Z|e|δφ
(
εT

m3

)1/2

2

∫ ∞
0

∫ ∞
1

√
8π

(1 + 2εκ)3/2
dκdx

ω||
ωt

(65)

× xJ2
0 (

krρ
T
i x√

1 + 2εκ
)
{

1− J2
0 (αb2(κ))

}(
− ∂

∂x

)
F (x)

' Z|e|δφ
(
εT

m3

)1/2
4

πkrρTi

×
[√

8(
π2

√
32ε
− 1)F (0) +

C ′t
π
√
εkrρTθi

∫ ∞
0

dx
1

x

∂

∂x
F (x)

]
,

where

C ′t =

∫ ∞
1

dκ
K(κ−1)√

κ(1 + 2εκ)b2(κ)
(66)
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Therefore, nnc for Maxwellian distribution becomes

nnc,b
n0

=
4
√
ε

π5/2krρTi

[
1− Cb

4
√
πεkrρTθi

]
Z|e|δφ
T

(67)

nnc,t
n0

=
4
√
ε

π5/2krρTi

[(
π2

√
32ε
− 1

)
− C ′t

4
√
πεkrρTθi

]
Z|e|δφ
T

(68)

Whereas, nnc for slowing down distribution can be expressed as

nnc,b
n0

=
A4

3A2
2

√
8ε

π2krρc

[
1− 3Cb√

8επkrρθc
B1

]
Z|e|δφ
T

(69)

nnc,t
n0

=
A4

3A2
2

√
8ε

π2krρc

[(
π2

√
32ε
− 1

)
− 3C ′t√

8επkrρθc
B1

]
Z|e|δφ
T

(70)

where

Bn =

∫ vα/vc

0

xn

(1 + x3)2
dx (71)

IV.A.4.e. Connection formula for neoclassical polarization density

Then, I construct the connection formula which is valid for arbitrary

wavelengths as I did for the classical polarization density. In this proce-

dure, both trapped and passing particle contributions are included. As a

result, the neoclassical polarizability is[53],

χnc,k =

{
1

χlongnc

+
1

1 + (krρTi )2

1

χmednc

+
(krρ

T
i )2

1 + (krρTi )2

1

χshortnc

}−1

(72)

where χlongnc , χmednc , and χshortnc are the neoclassical polarizabilities in the

range of long, intermediate, and short wavelength respectively. χnc for

FM are given as

χlongnc = 1.63ε3/2
(
krρ

T
θi

)2
, (73)

χmednc = 1−
√

2

π5

(Cb + Ct)

krρTθi
, (74)

and χshortnc =

√
1

2π

1

krρTi

[
1−

√
2

π5

Cb + C ′t
krρTθi

]
(75)
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FIG. 17: Analytic and numerical results of χnc for FSD in the wavelength range

10−3 ≤ krρTi ≤ 102. Here, ρTi is the Larmor radius of energetic particles.

Whereas, χnc for FSD in each wavelength regime is

χlongnc = 1.63ε3/2
(
krρ

T
θi

)2
, (76)

χmednc =
A0A4

3A2
2

[
1− Cb + Ct

π2A0krρθc

]
, (77)

and χshortnc =
A4

6A2
2

1

krρc

[
1− 6(Cb + C ′t)

π3krρθc
B1

]
(78)

χnc for FSD depends on the electron temperature, since slowing down dis-

tribution is determined by collision between energetic ions and background

particles. For instance, vc in Eq. (23) depends on Te.

Before I discuss behavior of the χnc in detail, I compare the numerical

result for χnc with the analytic results in Fig. 17. Here, Te = 10keV ,

q = 2.0, and ε = 0.1. For numerical calculation, I use Eqs. (34) and
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(35). Also, I plot another numerical calculation result without FLR ef-

fect by setting J2
0 (krρ

T
i x) → 1. Numerical result slightly overpredicts

χnc in long wavelength regime since approximations of eikonal factors for

bounce/transit motion used in Eqs. (51) and (52) do not fully include

the second order term in krρθ. However the analytic result in Eq. (76)

explains the overall trend in this regime well. Since the FLR effects are

not considered when χmednc is analytically calculated, Eq. (77) shows poor

agreement with numerical result which includes FLR effect. Thus, I de-

rive the χmednc which includes FLR effect in the Appendix. Eq. (B8)

yields a better agreement with the numerical result in the intermediate

wavelength regime. χshortnc behaves similarly to the numerical result which

includes FLR effect. It is noticeable that 1st term of R.H.S. of Eq. (78)

is dominant for χshortnc at krρ
T
i > 1 because of high aspect ratio limit.

Therefore, it is the FLR effect, not the FOW effect which plays crucial

role in determining behavior of χshortnc . Connection formula overestimates

χnc in the intermediate wavelength regime including the krρ
T
i ∼ 1 range,

because of FLR effect. Interestingly, the regime where connection formula

overestimates the value is almost the same for χcl and χnc. I will examine

this issue in terms of residual zonal flow level in the next section.

I plot χnc with q = 2.0 and ε = 0.1 using numerical results for differ-

ent temperature and distribution function in Fig. 18 a). Here, the black

curve represents the χnc for both cases of thermal ions at Te = 10keV and

30keV , because χnc for FM is a function of krρ
T
i . Unlike χnc for FM , the

maximum value of χnc (Max(χnc)) varies as a function of Te for FSD. In

addition, krρi,eff for Max(χnc) for FSD becomes lower than that for FM

60



10
-3

10
-2

10
-1

10
0

10
1

k
r i.eff

0

0.1

0.2

0.3

0.4

0.5

0.6
n
c

F
M

 background ions

F
M

 energetic ions only, T
e
=10keV

F
SD

 energetic ions only, T
e
=10keV

F
M

 energetic ions only, T
e
=30keV

F
SD

 energetic ions only, T
e
=30keV

a)

10
-3

10
-2

10
-1

10
0

T
e
/E

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M
a

x
(

n
c
)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

k
r

i T

Max(
nc

)

(k
r i

T
)
max

3.5 10 10
2

10
3

3.5 10
3

T
e
 [keV]

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

b)

FIG. 18: a) Numerical results of χnc for different values of Te and distribution

functions. Here, ρi,eff is the effective Larmor radius of background ions for

corresponding Te and ĒM = ĒSD for energetic ions. The black curve represents

χnc for both cases of thermal ions with Te = 10keV and with 30keV . b)

Maximum value of χnc and corresponding krρ
T
i for FSD. Upper x-axis shows

Te when Eα = 3.5MeV .

when Te = 30keV .

To understand this trend in detail, Fig. 18 b) is plotted to show the

maximum value of χnc and (krρ
T
i )max for FSD as a function of Te/Eα. Here,

(krρ
T
i )max is defined by χnc((krρ

T
i )max) = Max(χnc). Maximum value of

χnc decreases as Te/Eα increases, and saturates to a certain level which

is similar to the behavior of χcl for FSD. From Eq. (B8), χmednc ∝ A4/A2,

which is proportional to the ĒSD/Tc. As Te/Eα increases, Tc increases

faster than ĒSD. This explains the reason why Max(χnc) decreases.

(krρ
T
i )max also behaves like Max(χnc). So, Max(χnc) occurs at lower

krρ
T
i for hotter background plasma. In addition, when Te/Eα & 4.0×10−3

(Te & 15keV ), χnc for FSD takes a maximum value at lower krρ
T
i than that
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for FM .

IV.B. Residual Zonal Flow Level

IV.B.1. Physics of Residual Zonal Flow

In the previous sections, I have derived the analytic expressions of the

classical and neoclassical polarization densities. Before I address the role

of energetic ions on the residual zonal flow, I emphasize the role of the

classical and neoclassical polarization densities on the residual zonal flow.

Among the theories on residual zonal flow level, I take ”the fixed steady

source”[38] approach[51–53].

Since zonal flow is generated by turbulent Reynolds stress, the time

scale of the initial generation (t = 0 in 1) is much longer than the ion

gyration periods, but shorter than the bounce time, i.e., Ω−1
ci << t < ω−1

bi .

So the zonal potential is shielded by the gyrating charged particles, which

feel gyro-averaged electric potential and gyroangle dependent potential at

the same time. Classified by the gyroangle dependency, the formal one

corresponds to the perturbed gyrocenter density and the latter one corre-

sponds to the classical polarization density (ncl). But the non-adiabatic

response cancels the perturbed gyrocenter density, and only ncl remains

and shielding the electric potential. As a result, perturbed density and

zonal potential at t = 0 satisfy

ncl
n0

= χcl
Z|e|δφ(t = 0)

T
(79)

Relaxation of the
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Taking ”the fixed steady source”[38] approach[51–53], the residual

zonal flow level RZF can be expressed in terms of the classical polarization

shielding quantified by the classical polarizability χcl due to finite ion Lar-

mor radius(FLR) effects which occur at several ion gyration (short term)

time scale and the neoclassical polarization shielding quantified by the

neoclassical polarizability χnc due to finite ion orbit width(FOW) effects

which occur at several ion bounce period (long term) time scale[1, 51].

RZF =
δφ(∞)

δφ(0)
=

χcl
χcl + χnc

(80)

Since Rosenbluth and Hinton have considered the long wavelength regime

(krρi < krρbi � 1) only and have not given detailed discussion in their

letter[1], it is understandable that other approaches have also been taken

for its extension to arbitrary wavelengths[54, 55, 66]. Refs. 54, 55, 66

showed that the final results for δφ(∞)/δφ(0) can depend on the choice of

δf at t = 0. In particular, the short wavelength behavior of the residual

zonal flow level becomes quite different for different choices of ”δf(0)”.

Figs. 7, B1, and B2 of Ref. 54 and Figs. 2, 5, 6, and 13 of Ref. 55 exhibit

the differences.

I note that, for instance, Ref. 54 has solved the lowest order linear gy-

rokinetic equation explicitly as an initial value problem for ω � ωbi. Due

to the frequency ordering and the reciprocal relation between t and ω (sim-

ilar to the uncertainty principle in quantum mechanics) for this procedure,

their lowest order gyrokinetic equation (essentially the bounce/transit-

kinetic equation) can only resolve phenomena which occur with a coarse-

grained time scale ∆t � ω−1
bi . Therefore, it can provide a rigorous and

accurate description[58] of the evolution of a system consisting of zonal
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flows and trapped ion modes[79, 80]. On the other hand, the bounce-

kinetic equation cannot describe the geodesic acoustic mode (GAM) which

occurs with a characteristic time scale of (vth,i/R)−1 < ω−1
bi . The GAM

is not effective in regulating the core turbulence due to its relatively high

frequency[26]. So it’s unimportant compared to the zero-frequency resid-

ual zonal flows considered in this work and the previous publications on

this issue. It is noteworthy that the analytic results from the lowest order

gyrokinetics agree well with those from the gyrokinetic simulations with

the same initial δf (but without the frequency ordering of ω � ωbi), for a

wide radial wavenumber region[54]. In addition, the initial value problem

approach[1, 54, 55, 66] can reveal the detailed long term evolution of the

zonal flows, and can be used for various applications for which more infor-

mation than just δφ(∞)/δφ(0) is required for an assessment of particular

effects. For instance, the effects of the resonant magnetic perturbation

on the long term evolution of zonal flows have been evaluated using the

initial value problem approach[63].

On the other hand, the fixed steady source approach that I have taken

has its own attractiveness of a simple characterization of the residual zonal

flows based on a physical picture of the polarization shielding[1, 38, 58].

Gyrokinetic simulation can also be set up for the fixed steady source

approach[50, 54, 55], and a connection formula[53] based on Eq. (80)

recovers the simulation results in Ref. 50 reasonably well for a wide range

of radial wavenumber. In conclusion, I believe different results from two

different approaches are not necessarily in conflict with one another.

I can express the residual zonal flow level in terms of classical and
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neoclassical polarization density for multi-species ion plasmas,

RZF =

∑
j nj,cl∑

j (nj,cl + nj,nc)
(81)

=
n0i

n0e
χi,cl + Z2

ατ
−1
α

n0α

n0e
χα,cl

n0i

n0e
(χi,cl + χi,nc) + Z2

ατ
−1
α

n0α

n0e
(χα,cl + χα,nc)

Here, Zα is the charge of α particle and τα = Teff/Ti. One should be

careful about the fact that ncl and nnc are weighted by different temper-

atures so that I cannot simply add up dimensionless polarizabilities in

numerator and denominator. Thus, not only the χcl and χnc, but also the

Z2
αnα/n0 and temperature ratio (τα) affect the residual zonal flow level.

This observation is crucial when impurity effects on the residual zonal flow

are estimated as emphasized in Ref. 62. Ref. 62 reports that 10% con-

centration of moderately high temperature Helium (with Teff/Te,i = 10)

impurities with Maxwellian distribution can lead to a considerable en-

hancement of RZF in the intermediate wavelength range of krρi,eff ∼ 0.5.

My results for fusion product α-particles with high equivalent tempera-

ture ratio (τα = Teff/Ti ∼ 30 for Te = 30keV ) exhibit a similar trend for

both slowing down and Maxwellian α-particle distribution functions.

I plot the residual zonal flow level (RZF ) for FSD with q = 2.0, ε = 0.1,

and Te = 10keV for analytic and numerical results in Fig. 19. Numerical

result overestimates residual zonal flow a bit in long wavelength regime

because of an approximate treatment of an eikonal factor in χnc, as men-

tioned in previous section. Near krρ
T
i ∼ 1, analytic result overestimates

χcl and χnc, and slightly overestimates residual zonal flow. So, I construct

the following connection formula for χnc to get more accurate residual
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zonal flow level.

χnc =

{
1

1 + (krρTθi)
2

1

χnc,A
+

(krρ
T
θi)

2

1 + (krρTθi)
2

1

χnc,N

}−1

(82)

Here, χnc,A is the analytic result of χnc and χnc,N is the numerical result

of χnc. The blue dashed-curve from the numerical result for χcl and Eq.

(82) for χnc accurately represents the behavior of RZF throughout all

wavelength regime. Thus, I use Eq. (82) for χnc to analyze the RZF .

Figs. 20 a) and b) show the residual zonal flow for different Te and

distribution functions. For residual zonal flow level for FM , τα only affects

the krρi,eff range where a transition from long wavelength regime to short

wavelength regime occurs. On the other hand, the residual zonal flow

level for FSD in the transition regime depends on Te and becomes higher

10
-2

10
-1

10
0

10
1

k
r i

T

0

0.2

0.4

0.6

0.8

1

R
Z

F

Numerical Result

Analytic Result

Connection formula in Eq. (63)

FIG. 19: Analytic and numerical results of RZF for FSD in the wavelength

range, 10−2 ≤ krρTi ≤ 10. Here, q = 2.0, ε = 0.1, and Te = 10keV .
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FIG. 20: Numerical results of RZF for different distribution functions in the

wavelength range, 10−2 ≤ krρi,eff ≤ 10 for D-T plasma with a) Te = 10keV and

b) Te = 30keV . Enhancement of residual zonal flow level due to the presence

of 10% concentration of energetic ions for D-T plasma with c) Te = 10keV and

d) Te = 30keV .

(lower) than that for FM for Te = 30keV (10keV ). This is because of

the transition characteristics of χnc for FSD. From Fig. 18 b), Max(χnc)

occurs at lower krρ
T
i for higher Te/Eα. Therefore, transition of RZF for

FSD to the shorter wavelength regime occurs at lower krρ
T
i comparing to

that for FM for hotter background plasma. Unless Te is too low compared

to Eα (i.e. if Te/Eα & 5.0×10−3, Te & 20keV for Eα = 3.5MeV ), energetic
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ions with FSD can increase the residual zonal flow more than those with

FM . Enhancement of residual zonal flow level due to 10% concentration

of energetic ions is plotted in Figs. 20 c) and d). As shown in Figs. 20 a)

and b), energetic ions with FSD enhance RZF more than those with FM at

Te = 30keV . Enhancement at krρi,eff ∼ 10−1 is greater for higher q, since

the residual zonal flow level of background plasmas in the long wavelength

is relatively lower. Thus, for the cases with higher electron temperature

target plasmas in ITER with fusion products, the energetic ions with FSD

should exhibit more enhancement of the residual zonal flow level.

Finally, for zonal flows with even shorter wavelengths relevant to ETG-

turbulence, the electron dynamics should be included. Useful results on

this from an initial value problem approach can be found in Figs. 4, 5,

and 8 in Ref. 54.

IV.C. Discussions

Residual zonal flow level for non-Maxwellian distribution, especially

the slowing down distribution, has been systematically calculated in ar-

bitrary wavelength regime in this work. The classical and neoclassical

polarization density are derived from the general expressions which are

obtained from the modern gyrokinetic approach via pull-back transform

from gyro/bounce-center Lagrangian to phase-space Lagrangian using Lie-

transform perturbation method[53, 72, 77]. To elucidate the FOW ef-

fect more accurately, I use explicit compact expressions for orbit-averaged

eikonal factor
〈
ei∆ζ

〉
b,t

which consider full finite-orbit effects with arbitrary

pitch angle parameter values[72]. χcl and χnc for slowing down distribu-
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tion function are analytically derived in the whole wavelength regime by

systematically considering the FLR effect and FOW effect in each wave-

length limit and by constructing a connection formula. As a result, my

analytic result describes the residual zonal flow level for slowing down

distribution function pretty well.

Analytic expressions for χcl and χnc in the long wavelength limit are

found to be the same for any well-defined distribution function which is

isotropic in velocity space. As a consequence, residual zonal flow level in

the long wavelength regime is the same as the Rosenbluth-Hinton expres-

sion for any isotropic distribution function in the high aspect ratio limit[1].

Asymptotic level of χshortcl and maximum value of χnc for FSD decrease as

Te/Eα increases. As a result, the contribution of energetic particles on

χcl and χnc becomes greater as energy of energetic particles normalized to

the electron temperature increases. Maximum value of χnc also occurs at

lower krρ
T
i for higher Te/Eα.

My analytic results of residual zonal flow for slowing down distribution

show good agreement with the numerical results and provide an under-

standing of its behavior. For a plasma with Te = 10keV , nα/ne = 0.1,

q = 2.0, and ε = 0.1, approximately 12% enhancement of residual zonal

flow level at krρi,eff ∼ 10−1 regime is expected. When Te/Eα & 5.0×10−3

or Te & 20keV , my results predict that energetic alpha particles with

slowing down distribution enhance the residual zonal flow level more than

those with Maxwellian distribution.

Recently, electromagnetic gyrokinetic simulation using parameters

from JET experiment emphasized the importance of coupling of fast ions
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and electromagnetic effects on the stabilization of ITG turbulence[81, 82].

Based on Eq. (81) of this paper, approximately 5% enhancement of resid-

ual zonal flow in the range of krρi,eff ∼ 0.1 is expected for JET-like

plasmas[83] due to the fast ion effect. This favorable trend from my elec-

trostatic calculation is encouraging, but does not seem significant enough

to fully explain the results in Refs. 81, 82. Ref. 84 on the other hand,

indicates that turbulence and zonal flows interact for a longer time as β

increases. So electromagnetic effect could make the stabilizing influence of

zonal flows more efficient. Therefore, an extension of my work including

the electromagnetic effects can bring a deeper insight on the aforemen-

tioned results[81, 82] for JET-like plasmas and projection to ITER. For

instance, combined effects of fast ions and finite β can boost zonal flows

even further.
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V. CONCLUSION

In this thesis, I addressed my research on E × B flow through theory,

simulation, and experiment. I analyzed the in-out asymmetry of E × B

flow shear via analytic derivation of its R dependency, and observation

in simulation using δf gyrokinetic code gKPSP. I figured out that E ×B

shearing rate ωE is proportional to R1 in the usual concentric circular

flux surface structure in gyrokinetic simulations. From the gyrokinetic

simulations, I found that turbulence correlation time is also longer at the

low field side (LFS), and thus τcωE is considerably higher at the LFS

than that at the high field side (HFS). As a result, the reduction of the

fluctuations such as δφ and their radial correlation length is stronger at

the LFS as τcωE becomes higher, which weakens the poloidal dependency

of the fluctuations and its radial correlation length.

To extend this work, I estimated the in-out asymmetry of ωE in the

KSTAR experiments using ECEI and CES data. At first, I compared the

group velocity vgp calculated from the ECEI data to the E × B velocity

vE×B calculated by the radial force balance equation. Though vgp was

slower than vE×B and their estimations on the location of the transport

barrier differed, their shear was similar. Thus, I considered the shear

of vgp as ωE to analyze the in-out asymmetry of ωE and its effect on

the fluctuations. In-out asymmetry of ωE(∝ R2.1) was calculated to be

stronger than that in the gyrokinetic simulation in the concentric circular

flux surface (∝ R1). Comparison between τc and ωE corresponded to the

formation of the edge transport barrier. However, a more detailed analysis

of the fluctuation was required because of the ELM and MHD instabilities.
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As a theoretical analysis, I studied the role of non-Maxwellian energetic

ions on the residual zonal flow. To investigate the effects of energetic ions,

I used slowing-down distribution FSD, which provides a precise descrip-

tion of energetic ions. Based on the modern gyrokinetic/bouncekinetic

formalism, classical polarization density ncl and neoclassical polarization

density nnc for FSD were derived in the all wavelength range. I figured out

that ncl and nnc are the same for any isotropic distribution in the long-

wavelength limit, and thus residual zonal flow RZF in the long-wavelength

regime is the same as Rosenbluth-Hinton residual zonal flow level for ar-

bitrary isotropic distributions. Energetic ions enhance the RZF mainly at

the intermediate wavelength regime krρi < 1 < krρib. And FSD enhances

the RZF more than Maxwellian FM if background electron temperature

Te & 20keV .

As future work, I complement the research on in-out asymmetry of

the ωE in the KSTAR plasma using the ECEI data. Present research in

Sec. III has the following shortcomings. The plasma moved down during

it was measured by CES. Although the current estimation on vgp based

on ECEI data shows good agreement with the vE×B deduced from the

radial profiles of Ti and vT measured by CES, it still has a problem on

its reliability. Besides, because of the ELM and MHD instabilities, it

is difficult to analyze the reduction of the fluctuations by E × B flow

shear. To complement those shortcomings, additional experimental data

measured by CES and ECEI at the same time is needed. Especially, the

reason why the estimation of the transport barrier is different between the

two measurements should be figured out to estimate the ωE more clearly.
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Also, the present numerical scheme to estimate the vgp, RANSAC, should

be changed to the other numerical scheme. Since there is too much ’outlier’

in ECEI data, RANSAC gives the results with too high uncertainty. And

the comparison with the gyrokinetic simulation on the same flux surface

can enhance the understanding of the in-out asymmetry of the ωE and

fluctuations.

I finish the conclusion by addressing the possible applications of my

research in the future. The research on the in-out asymmetry of ωE via

analytic theory, simulation, and experiment can be used to enhance the

confinement by constructing the magnetic flux surface. The numerical

scheme to calculate the vE×B using ECEI data can provide the ωE even

without the experiments without the NBI modulation since CES is appli-

cable only when NB is injected. My analytic derivation of the residual

zonal flow for non-Maxwellian distribution can be applied to test the gy-

rokinetic simulation with non-Maxwellian distributions. One of the initial

benchmark simulations for gyrokinetic code is the residual zonal flow test

in the long-wavelength limit. When they introduce the non-Maxwellian

distribution like FSD, my derivation can be used as the reference for the

residual zonal flow test. In addition, the research on the role of energetic

ions on residual zonal flow introduces the other possible stabilization ef-

fects of the energetic ions. I wish my research contributes to the success

of the ITER and commercial nuclear fusion plant in the future.
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Appendix A. (for Sec. II)

To clarify the effect of collisionality on the self-regulation dynamics be-

tween turbulence and zonal flow, we plot zonal flow intensity as a function

of turbulence intensity for different collisionalities in Fig. 21. The self-

regulation dynamics exhibit limit cycle oscillations. Especially, it is visible

that as collisionality increases, the mean value and the oscillation ampli-

tude of the zonal flow intensity are reduced. So, the overall zonal flow level

decreases with collisionality, as anticipated from the collisional damping

of zonal flow. However in short time intervals, the inversely proportional

relation between zonal flow level and collisionality is not apparent because

of the overlap of the limit cycle orbits.

The observed collisionality dependence of the self-regulation dynam-

ics can be understood from a simple predator-prey (or Lotka-Volterra)

model:[22]

∂

∂t
N = γN − αUN, (83)

∂

∂t
U = αNU − γdU. (84)

where N = φ2 and U = V 2
E are turbulence intensity and zonal flow en-

ergy, respectively. Here, γ, γd, and α are the linear growth of turbulence,

the collisional damping of zonal flow, and the coefficient of nonlinear en-

ergy transfer between turbulence and zonal flow, respectively. Nonlinear

damping terms such as ∆ωN2 and γNLU
2 are neglected for simplicity. It

is well-known that the predator-prey equations have limit cycle solutions

due to the existence of the unstable fixed point (N0, U0) = (γd/α, γ/α),
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FIG. 21: Limit Cycle Oscillations for different values of collisionality. Boxes in

the same color lines evolve in time along a line starting from the box with ’X’

mark. Time interval for each simulation result is chosen differently in order to

show one complete cycle. (from t/(R0/vT i0) = 250 to 360 for ν∗i = 0.02, from

t/(R0/vT i0) = 250 to 400 for ν∗i = 0.15, and from t/(R0/vT i0) = 200 to 310 for

ν∗i = 0.29)

which corresponds the center of the limit cycle oscillations. And the eigen-

value and eigenmode of the oscillation are given by λ = ±i√γγd and

Ũ = ∓i
√
γ/γdÑ , respectively. Since γd ∝ νii, the mean value ratio U0/N0

and the oscillation amplitude ratio of zonal flow to turbulence |Ũ/Ñ | de-

crease as collisionality increases. Thus, the collisionality dependence of the

limit cycle oscillations in Fig. 21 is captured by the simple predator-prey

in a qualitative sense. Another gyrokinetic simulation study on collisional-

ity dependence of predator-prey dynamics has been performed in magnetic

shearless plasma in Ref. 29.
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Appendix B. Refinement of neoclassical polarization formula

including the finite Larmor radius effect (for Sec.IV)

In Sec. IV. A. 4, we derived χmednc in Eqs. (62) and (63). However, since

the FLR effect is ignored in Eq. (55), χmednc shows poor agreement with

numerical result as shown in Fig. 17. It results in the 60% overestimation

of χnc in the intermediate wavelength regime. So, in this appendix, we

derive the χmednc in the intermediate wavelength regime including the FLR

effect. For the intermediate wavelength regime, χnc is calculated from

nnc,b = Z|e|δφ
(
εT

m3

)1/2 ∫ ∞
0

∫ 1

0

√
8πdκdx

ω||
ωb
x (B1)

× J2
0 (krρ

T
i x)

{
1− J2

0 (αa1(κ))
}(
− ∂

∂x

)
F (x)

' Z|e|δφ
(
εT

m3

)1/2 ∫ ∞
0

∫ 1

0

√
8πdκdx

2K(κ)

π
x

× J2
0 (krρ

T
i x)

{
1− 1√

2επa1krρTθix

}(
− ∂

∂x

)
F (x)

nnc,t = Z|e|δφ
(
εT

m3

)1/2

2

∫ ∞
0

∫ ∞
1

√
8πdκdx

ω||
ωt
x (B2)

× J2
0 (krρ

T
i x)

{
1− J2

0 (αb2(κ))
}(
− ∂

∂x

)
F (x)

' Z|e|δφ
(
εT

m3

)∫ ∞
0

∫ ∞
1

√
8πdκdx

2K(κ−1)

π
√
κ

x

× J2
0 (krρ

T
i x)

{
1− (1 + 2εκ)1/2

√
2επb2krρTθix

}(
− ∂

∂x

)
F (x)
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For Maxwellian distribution function, we can directly calculate Eqs. (B1)

and (B2) ignoring the effects from the strongly passing particles,

nnc,b
n0

=
Z|e|δφ
T

(
2ε

π3

)1/2

(B3)

×
[
2
√
π 2F2

({
1

2
,
3

2

}
, {1, 1} ,−2(krρ

T
i )2

)
− Cb

π
√
εkrρTθi

Γ0((krρ
T
i )2)

]
nnc,t
n0

=
Z|e|δφ
T

(
2ε

π3

)1/2

(B4)

×
[
2
√
π

(
π√
8ε
− 1

)
2F2

({
1

2
,
3

2

}
, {1, 1} ,−2(krρ

T
i )2

)
− Ct

π
√
εkrρTθi

Γ0((krρ
T
i )2)

]
χnc = 2F2

({
1

2
,
3

2

}
, {1, 1} ,−2(krρ

T
i )2

)
(B5)

−
√

2

π5

Cb + Ct
krρTθi

Γ0((krρ
T
i )2).

This covers both intermediate and short wavelength regime. Here, 2F2 is

the hypergeometric function and Γ0(x) = e−xI0(x). Comparison between

numerical results from Eqs. (53) and (54), and analytic result from Eq.

(B6) is plotted in Fig. 22 a). Except for the range 10−1 < krρ
T
i <

5 × 10−1, Eq. (B6) gives more accurate χnc in the shorter wavelength

regime compared to the Eqs. (75) and (76).

For FSD, we use the approximation that J2
0 (x) ' 1− x2/2 for the term

related to FLR effect. Then, Eqs. (B1) and (B2) become

nnc,b = Z|e|δφ
(
εT

m3

)1/2

4

[
− Cb
π
√
εkrρTθi

F (0) (B6)

+

∫ ∞
0

dxF (x)

{√
8 +

√
εCb
πq

krρ
T
i x− 3

√
2(krρ

T
i )2x2

}]
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FIG. 22: Analytic and numerical results of χnc for a) FM and b) FSD in the

wavelength range 10−2 ≤ krρ
T
i ≤ 10. Here, analytic results which cover the

intermediate wavelength regime are calculated from Eqs. (B6) and (B8).

nnc,t = Z|e|δφ
(
εT

m3

)1/2

4

[
− Ct
π
√
εkrρTθi

F (0) (B7)

+

∫ ∞
0

dxF (x)
{√

8

(
π√
8ε
− 1

)
+

√
εCt
πq

krρ
T
i x

− 3
√

2

(
π√
8ε
− 1

)
(krρ

T
i )2x2

}]

For slowing down distribution function, χmednc is

χmednc =
A4

3A2

[
A0

A2

− 3

2
(krρc)

2 − Cb + Ct
π2A2krρθc

{
1− A1(krρc)

2
}]

(B8)

Compared to Eq. (77), Eq. (B8) contains two additional terms (2nd and

4th terms in R.H.S) which are related to the FLR effect. Fig. 22 b) shows

that Eq. (B8) has a better agreement with numerical result. However, Eqs

(B6) and (B8) are difficult to use for constructing a connection formula

since their Laurent series is not applicable to Eq. (73). In conclusion,

the connection formula (Eq. (73)) and its elements (Eqs. (74-79)) in the
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main text can lead to an overestimation of χnc (with a maximum of 60%

at krρ
T
i ' 0.5), as shown in Fig. 17. Nevertheless, this is not large enough

to change any of our main conclusions in this paper.

79



References

[1] M. Rosenbluth and F. Hinton, Phys. Rev. Lett., 80, 724 (1998)

[2] H. Biglari, P.W. Terry, and P.H. Diamond, Phys. Plasmas 2, 1 (1990)

[3] T.S. Hahm and K.H. Burrell, Phys. Plasmas 2, 1648 (1995)

[4] W. Horton, Rev. Mod. Phys 71, 735 (1999)

[5] X. Garbet, Y. Idomura, L. Villard, and T.H. Watanabe, Nucl. Fusion 50,

043002 (2010)

[6] A. Fujisawa, A. Ouroua, J.W. Heard, T.P. Crowley, P.M. Schoch, K.A.

Connor, R.L. Hickok, and A.J. Wootton, Nucl. Fusion 36, 375 (1996)

[7] C. Watts, R.F. Gandy, and G. Cima, Phys. Rev. Lett. 76, 2274 (1996)

[8] D.R. Demers, P.M. Schoch, T.P. Crowley, K.A. Connor, and A. Ouroua,

Phys. Plasmas 8, 1278 (2001)

[9] V.A. Vershkov, V.F.Andreev, A.A. Borschegovskiy, V.V. Chistyakov,

M.M. Dremin, L.G. Eliseev, E.P. Gorbunov, S.A. Grashin, A.V. Khmara,

A.Ya. Kislov et al., Nucl. Fusion 51, 094019 (2011)

[10] R. Sabot, F. Clairet, G.D. Conway, L. Cupido, X. Garbet, G. Falchetto,

T. Gerbaud, S. Hacquin, P. Hennequin, S. Heuraux et al., Plasma Phys.

Control. Fusion 48, B421 (2006)

[11] B. Lloyd, J-W. Ahn, R.J. Akers, L.C. Appel, D. Applegate, K.B. Axon,

Y. Baranov, C. Brickley, C. Bunting, R.J. Buttery et al., Plasma Phys.

Control. Fusion 46, B477 (2004)

[12] M. Ono, M.G. Bell, R.E. Bell, T. Bigelow, M. Bitter, W. Blanchard, J.

Boedo, C. Bourdelle, C. Bush, W. Choe et al., Plasma Phys. Control.

80



Fusion 45, A335 (2003)

[13] T.L. Rhodes, R.J. Taylor, E.J. Doyle, Jr. N.C. Luhmann, and W.A. Pee-

bles, Nucl. Fusion 33, 1787 (1993)

[14] C.L. Rettig, K.H. Burrell, B.W. Stallard, G.R. McKee, G.M. Staebler,

T.L. Rhodes, C.M. Greenfield, and W.A. Peebles, Phys. Plasmas 5, 1727

(1998)

[15] Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang, and R.B. White, Science 281,

1835 (1998)

[16] J.M. Kwon, S. Yi, T. Rhee, P.H. Diamond, K. Miki, T.S. Hahm, J.Y. Kim,
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초록 
 

이 논문은 토로이달, 그리고 폴로이달 방향으로 대칭이며 토카막 바깥쪽

으로의 입자 및 열 등의 수송에는 관여하지 않으나, 난류 수송을 억제시

키는 zonal flow에 대한 연구에 관한 것이다. 이번 연구는 zonal flow 및 

이의 shear의 특성 중 난류 억제 및 shear의 크기와 비충돌 조건에서의 

토카막 기하 상에서의 잔여 값에 다룬다. 먼저 이온의 온도 기울기에 의

해 유도되는 난류와 zonal flow의 shear의 토카막 안쪽과 바깥쪽의 비대

칭성을 분석하고, zonal flow shear의 비대칭성이 난류의 억제에 미치는 

영향에 대한 연구를 비선형 gyrokinetic 코드인 gKPSP를 활용한 시뮬레

이션으로 수행하였다. E × B flow shear에 의한 난류 억제 이론에 근거한 

분석 결과와 시뮬레이션 결과는 잘 일치하였으며, 비대칭적인 zonal flow

의 shear가 난류를 대칭적으로 만든다는 것을 확인하였다. 이 E × B flow 

shear와 난류가 비대칭적인 것을 KSTAR의 ECEI data를 통해 다시 한번 

확인하였고, 비대칭성의 정도를 시뮬레이션과 비교하였다. 마지막으로 

Maxwellian 분포를 보이지 않는 고 에너지 입자가 zonal flow의 잔여 값

에 미치는 영향에 대해 gyrokinetics와 bouncekinetics에 기반하여 체계

적으로 유도하였다. 

 

Keywords : 토카막 플라즈마, zonal flow, 안쪽과 바깥쪽간 비대칭성, 고 

에너지 이온, Gyrokinetics, ECEI 

Student Number : 2013-23184 
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