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Evaluation of Ground LiDAR Derived Sky View 

Factor and Green View Index of Urban Streets 

Han Kyul Heo 

Interdisciplinary Doctoral Program in Landscape Architecture  

Graduate School, Seoul National University  

Supervised by Professor Dong Kun Lee 

 

 

Urban streets play an important role in improving biodiversity, storing 

carbon, mitigating the urban heat island effect, and on the physical and mental 

health of urban residents. Studies on quantifying the ecological structure of 

urban streets are an important research topic as they are important for urban 

planning. With the development of Light Detection and Ranging (LiDAR) 

systems, three-dimensional data acquisition is possible and an accurate 

ecological structure can be constructed for an urban street. 

Trees are one of the most essential ecological component of urban streets 

and the first step is to quantifying the ecological structure of urban streets. 

This research used ground based LiDAR to quantify three parameters of 

urban trees: their height, crown base height (CBH), and diameter at breast 

height (DBH). The tree height and CBH, estimated by LiDAR with high 
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accuracy, showed a root mean square error of 0.359 m and 0.09 m, 

respectively, whereas the DBH was estimated with medium accuracy, 

showing a root mean square error of 0.0377 meters. 

Sky view factor (SVF) is a key indicator to evaluate the formation of 

urban buildings and trees, and also used as solar energy availability index in 

urban heat islands and renewable energy research. A method to compute SVF 

in complex urban areas using LiDAR has been developed recently; however, 

its accuracy in areas with trees and buildings is low because of limitations in 

resolution of aerial LiDAR. Hence, this study tried to improve the accuracy 

of the SVF by using the terrestrial LiDAR and proved that using the terrestrial 

LiDAR provided greater accuracy than the aerial LiDAR. The results of 

terrestrial LiDAR-based SVF were high, with an 𝑅2  of 0.915, RMSE of 

0.037, and a maximum error of 0.156. This is more accurate than the results 

obtained from aerial LiDAR. This work studied whether a higher accuracy is 

obtainable by increasing the spatial resolution of the data. With terrestrial 

LiDAR, a voxel size of 2.5 is sufficient to estimate SVF in a complex urban 

area, reducing maximum error by 60% in comparison with aerial LiDAR, thus 

providing an accurate estimate. 

This work explored the possibility of constructing data at a larger scale. 

For strategic urban planning urban-scale data that can be analyzed faster is 



 

- 10 - 

 

ideal, even at lower resolutions, but for higher efficiency. Voxelized 3D point 

cloud data was applied to construct a virtual environment and help researchers 

take advantage of using objects actually scanned by LiDAR. The result shows 

that lanes where the experiment was conducted significantly affected the SVF 

and GVI values. Therefore, through multiple simulations and computations, 

ideal representative points were identified which can provide the most 

accurate average value of the research area. Hence, when constructing urban-

scale data, researchers should select an appropriate lane that best represents 

the average SVF and GVI of the area and thereby reduce potential error. 

Keywords: LiDAR, Urban scale, Street tree, Urban greenery, 

Diameter at breast height, Crown base height 

Student Number: 2016-30705 
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I. Introduction 

Urban streets, a part of the urban environment, influence the biodiversity 

(Watts et al. 2010; Nielsen et al. 2013; Yuan et al. 2014; Pagani-Núñez et al. 

2017; Canedoli et al. 2018), carbon storage (Nowak and Crane 2002; Anaya 

et al. 2009; Song 2013; Yoon et al. 2013; Zhao et al. 2018), urban heat island 

(Cao et al. 2010; Ren et al. 2013; Kim et al. 2016a; Park et al. 2017; Chun 

and Guldmann 2018), and physical and mental health of residents (Kim et al. 

2016b; Wey and Wei 2016; Browning and Lee 2017). In particular, the 

influence of morphological characteristics of urban streets on public health 

have been highlighted in a number of studies (Odgers et al. 2012; 

Vanwolleghem et al. 2014; Xu et al. 2017; Chun and Guldmann 2018; Gong 

et al. 2018; Yu et al. 2018). These morphological characteristics such as sky 

view factor (SVF), green view index (GVI), building height and tree 

characteristics are quantified (Suzuki et al. 2001; Nowak and Crane 2002; 

Yoon et al. 2013; Song et al. 2016; Zhao et al. 2018; Lee and Levermore 2019) 

and measured directly. SVF and GVI are factors that have physical and 
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psychological effects, respectively (Li et al. 2015a; Bernard et al. 2018). SVF 

and GVI can be generated using two dimensional images such as satellite 

images and aerial photographs (Geiß et al. 2011; Wang et al. 2011; Li et al. 

2017), however, direct measurements are incomplete and cost prohibitive, 

and this lack of information makes it difficult to analyze the data. 

LiDAR is an active sensing method that shoots laser pulses, measures the 

return time of the reflected pulse, and stores the position of the object as a 3D 

point cloud data (Heo et al. 2019), thus collecting three-dimensional images. 

This data, including the information pertaining to the height of the object, 

makes it possible to collect urban morphological characteristics that cannot 

be generated by existing two-dimensional data (Chen et al. 2012; Oshio et al. 

2015; Martínez-Rubio et al. 2016; Yang et al. 2016). In terms of urban street 

data in particular, SVF and GVI have been analyzed using photogrammetry 

that exhibit a low efficiency in urban-scale research. Put differently, LiDAR 

allows the analysis of SVF and GVI data that have been difficult to analyze 

without three-dimensional information. 
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Both SVF and GVI are important indicators of urban street environments 

and require three-dimensional information for analysis. SVF is an index of 

the relationship between the area covered by a building or tree and the degree 

to which the sky is visible (Souza et al. 2003; Zhang et al. 2012). SVF is 

mainly used for research on the urban heat island and estimation of renewable 

energy (Carneiro et al. 2009; An et al. 2014; Xu et al. 2017). Particularly, 

studies related to urban heat island mitigation and adaptation calculate the 

amount of radiant energy at the pedestrian level by calculating the SVF 

(Svensson 2004; Lindberg et al. 2008; Unger 2009). Conventional SVF data 

generation has been done using GIS 2.5D data or fisheye photogrammetry 

(Robitu et al. 2006; Lindberg et al. 2008). This method has low accuracy, and 

using photogrammetry it is difficult to acquire data in a large area. 

GVI evaluates the number of trees visible to the human eye rather than the 

structure of the trees themselves. Reaching a minimum level of urban 

greenery has been a goal of urban planning and management (Nowak et al. 

2010; Jiang et al. 2016). GVI is a measure of urban greenery and evaluates it 
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under human perspective that is different from the top-down view evaluation 

using satellite imagery or aerial photographs. GVI is calculated by the 

quantity of vegetation from a photograph, as interpreted by a viewer (Yang et 

al. 2009). Different methods, such as taking pictures from multiple directions, 

and using a panoramic view or 360-degree cameras, have been employed to 

analyze the GVI (Nordh et al. 2009; Jiang et al. 2014). Even with the 

development of different methodologies, it is difficult to generate data with 

current photogrammetry, for a scale equivalent to a city. 

The accuracy of LiDAR based calculation is critical to replacing the 

photogrammetry method in calculating SVF and GVI. The SVF was 

calculated using airborne LiDAR by transforming the point cloud type data 

into 2.5D raster form (Carneiro et al. 2009; Susaki et al. 2014) and using the 

original LiDAR (Kidd and Chapman 2012; An et al. 2014). Studies relating 

to SVF that use highly accurate data and resolution, such as mobile LiDAR 

and terrestrial LiDAR, are yet to be tested. Unlike SVF, the accuracy of the 

mobile LiDAR derived GVI has been analyzed and it has proven to be 
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accurate in a certain location of small area (Susaki and Kubota 2017). 

Using LiDAR data, the limitations of conventional SVF and GVI methods 

have can be overcome in a large scale. Nevertheless, in a larger scale analysis, 

analyzing all points at a high resolution requires extensive computational 

capacity. In this context, to ensure the possibility of constructing SVF and 

GVI data on a larger scale, the following two parameters are considered: 1) 

the reliability of the accuracy at each analysis point and 2) maintaining the 

accuracy of data in a large scale analysis. The main objectives of this study 

are to create: 1) accurate preprocessed LiDAR data for SVF and GVI data 

generation, 2) accurate SVF and GVI, and 3) a method for analysis at a larger 

scale. 
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II. Literature Review 

1. SVF estimation 

SVF is an index of the relationship between the area covered by a building 

or tree and the degree to which the sky is visible (Souza et al. 2003; Zhang et 

al. 2012). SVF is a parameter that reflects urban morphology and is highly 

related to the amount of solar radiation coming into the urban canopy (Watson 

and Johnson 1987; Hämmerle et al. 2011). For this reason, SVF is mainly 

used for research on urban heat islands and renewable energy estimation 

(Carneiro et al. 2009; An et al. 2014; Xu et al. 2017). In particular, studies 

related to mitigation and adaptation to the urban heat island effect have 

calculated the amount of radiant energy at the pedestrian level by calculating 

the SVF (Svensson 2004; Lindberg et al. 2008; Unger 2009). 

This calculation requires a consideration of buildings and trees. The former 

are considered during the process of calculating SVF as they are the primary 

factors blocking radiant energy coming into the urban canopy (Hatefnia et al. 
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2017). Trees are a secondary factor in this process. 

Therefore, although calculation of SVF considering trees is important it is 

difficult to accomplish in a complex city (Teller and Azar 2001; Teller et al. 

2014). SVF is calculated by using three kinds of data: photographs and digital 

surface model (DSM) data in both raster format and vector format (Holmer et 

al. 2001; Lindberg and Grimmond 2011; An et al. 2014; Yi and Kim 2017; 

Gong et al. 2018). The photograph method is widely applied by using a 

fisheye lens that can calculate the SVF considering all elements such as trees 

and buildings at the pedestrian level; however, it is limited to the calculation 

of SVF of only one point at any given time. 

To overcome this limitation, google street view image based SVF 

calculation technique has been developed (Gong et al. 2018; Zhang et al. 

2019). This technique makes it possible to map SVF continuously by using 

many photographed images on the street. Despite the google street view, 

images taken from many different positions on the road at random lanes and 

constant distances needed interpolation or resulted in low-resolution mapping. 
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Moreover, google street view images were not taken during the same season, 

leading to a change in the physical appearance of trees, (Ye et al. 2018) 

resulting in an inaccurate SVF estimation. Therefore, continuous SVF 

mapping is difficult to achieve with photographs. 

Alternatively, the use of GIS-based raster and vector data allows 

continuous SVF mapping by computing SVF for multiple points (Robitu et 

al. 2006; Lindberg et al. 2008). With raster data, higher resolution results in 

greater accuracy. Raster data stores objects in the form of a grid with a height 

value, so the objects are stored as a 2.5D shape. Therefore, raster data may be 

insufficient to reflect complicated urban structures, such as bridges and trees. 

Vector data can store information in 3D form, which can accurately reflect 

the urban structure compared to raster data. However, it is still not sufficient 

to store highly complex building structures and trees with great accuracy; 

moreover, both raster and vector data cannot be directly acquired by 

measuring the objects. 
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LiDAR (Light Detection and Ranging) can measure the structure of a city 

with high accuracy and has been used in urban studies to increase the accuracy 

of 3D structures mapping. LiDAR is an active sensor that shoots laser pulses, 

measures the return time of reflected pulse, and stores the position of the 

object as a 3D point in cloud data. Multiple studies have used airborne LiDAR 

to measure urban building structures (Chen et al. 2014; Yang et al. 2016), and 

measure the shape of trees (Hosoi and Omasa 2009; Oshio et al. 2015; Grau 

et al. 2017). Highly accurate LiDAR data has contributed to the increase in 

resolution and accuracy of the results of such studies. 

Past studies have shown that SVF can be measured using LiDAR data. 

SVF was calculated using airborne LiDAR data to compute solar irradiance 

in Geneva (Carneiro et al. 2009). This study transformed the point cloud type 

LiDAR data into 2.5D raster form and calculated the SVF, which generated a 

map that was less accurate what would have been created if the original 

LiDAR data was applied (An et al. 2014). Research has also been done to 

calculate the SVF using airborne LiDAR driven 3D point cloud data (Kidd 
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and Chapman 2012; An et al. 2014). Studies using airborne LiDAR data 

directly have shown higher accuracy except for areas with trees. This is 

because trees have a structure made up of thin branches and small leaves, 

which the airborne LiDAR data is unable to express precisely. 

 

2. GVI estimation 

Reaching a minimum level of urban greenery has been a goal of urban 

planners and managers. Studies on street-level greenery (Yang et al. 2009), 

which is the degree of greenery visible to urban residents, is known to affect 

urban aesthetics and reduce residents’ stress (Jiang et al. 2014). The concept 

of green view index (GVI), which derives the measure of vegetation in a 

photo from an individuals’ perspective (Yang et al. 2009), is used to analyze 

street level greenery. Satellite and aerial images have been widely used to 

quantify the greenery affecting pedestrian or urban environments (Tan et al. 

2013; Storbeck et al. 2017). However, the results from these methods differed 

from the actual street level greenery (Jiang et al. 2016). The most accurate 
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way to measure greenery at any given point is by using photogrammetry; 

however, it is difficult to apply to large areas. 

Using images from Google Street View (GSV), Tencent street view, and 

Baidu street view (collectively referred to as GSV hereafter), the GVI for 

specific locations was estimated. GSV provides 360-degree panoramic 

pictures of various points in cities, which is useful to apply to GVI 

calculations (Li et al. 2015b; Yu et al. 2018), SVF calculations (Gong et al. 

2019), street walkability (Wang et al. 2019), environment assessment of 

cycling routes (Vanwolleghem et al. 2014), and other analyses of the urban 

environment (Charreire et al. 2014; Liu et al. 2017). With the calculation of 

large urban-scale GVI values made possible, the relationship between GVI 

and environmental inequity (Li et al. 2016), physical activities (Yin and Wang 

2016; Lu 2018; Lu et al. 2019; Wang et al. 2019), and housing prices (Zhang 

and Dong 2018) were analyzed in previous studies. 

Although GSV is the most commonly used method in GVI research, 

LiDAR is the most accurate method. As the GSV images obtained are from 
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roads at a constant distance along random lanes, the results may vary 

depending on camera locations. 

 

Fig. 1 Schematic of the GVI calculation process (Susaki and Kubota 2017). The GVI is 

calculated by considering the vertical, horizontal viewing angles at the human eye level (h). 

The analysis range for each analysis point is determined by designating the limit distance 

Dmax. 

 

LiDAR based data method calculates the ratio of the area occluded by trees 

(Susaki and Kubota 2017), which is useful for the researcher as he can 
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manage the angle of perception. For example, we can manage the maximum 

angle that a person can see and calculate GVI based on the set angle. 

Additionally, since the analysis point changes in multiple ways, it has the 

advantage of being utilized for both buildings and roads. 

 

 

Fig. 2 Schematic image of GVI calculation process of a building (Yu et al. 2016). Based on 

the height of the analysis point, the object obscuring the field of view is taken into account 

to calculate the GVI. 
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In GVI analysis using LiDAR, there are studies which include the entire 

tree (Yu et al. 2016) and which include the green part of the tree for GVI 

estimation (Susaki and Kubota 2017). If the entire tree is used for GVI 

analysis, LiDAR data with the trees are classified is required. On the other 

hand, if the green part of the tree is used for GVI analysis, data is required to 

classify the green part of the trees. In other words, a certain level of LiDAR 

data preprocessing is needed to calculate GVI. 

 

3. Summary 

Both SVF and GVI are important data, researched in urban street studies 

to generate LiDAR data. Airborne LiDAR studies of SVF are present, but 

there are no records of ground level point cloud data generation. Unlike SVF, 

GVI has analyzed the accuracy using point cloud data collected from mobile 

LiDAR; however, GVI analysis needs classified data to distinguish the green 

part of trees. 
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Table 1. Previous research about accuracy assessment and urban scale analysis with ground 

based LiDAR related to SVF and GVI. 

 Accuracy assessment 
Urban scale analysis 

with ground based LiDAR 

SVF X X 

GVI O X 

 

GVI calculation requires preprocessing of LiDAR data. In this study, the 

crown of individual trees was assumed to be green. The canopy base height 

(CBH) was derived for crown classification. In addition, this study analyzed 

tree height and DBH, which are the major quantitative indicators of trees that 

is the major component of the urban street environment. Accordingly, the 

research flow was created as shown in Fig. 3. 

In Chapter 3, this study investigated the preprocessing of LiDAR data for 

GVI calculations and accuracy of the LiDAR derived urban street tree 

characteristics. In Chapter 4, this study focused on the accuracy of the LiDAR 

derived SVF and investigated the cause of the errors. In Chapter 5, a method 

that does not decrease the accuracy in constructing urban scale data using 

LiDAR was researched. 
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Fig. 3 Research flow  
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III. Evaluating the accuracy of LiDAR derived tree 

characteristics: tree height, CBH, DBH 

1. Scope of study 

In this study, tree height, CBH (crown base height), DBH (diameter at 

breast height) were calculated on a street and at a small urban park. The study 

area was selected as the area for obtaining the street tree data and the small 

park data. For the data acquisition of the street trees, an area located at Seoul 

National University, Gwanak-ro 1 Seoul, South Korea (37.57142°N, 

126.9658°E) was selected (Fig. 4). It is 100 m in length and 11 m in width, 

including sidewalks, and there are 15 street trees on both sides (Table 2). 

 

Table 2. Tree species on the street. A total of 15 trees of four species are planted at the study 

area. 

Tree species Number of trees 

Ginkgo (Ginkgo biloba) 10 

Sawleaf Zelkova (Zelkova serrata) 2 

Prunus yedoensis (Prunus yedoensis) 2 

Platanus (Platanus Occidentalis) 1 
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Fig. 4 Research area. View of street located at Seoul National University. 

 

2. Method 

2.1. Mobile LiDAR and field data collection 

Mobile LiDAR data from the street was collected on December 1, 2018, 

while field data were collected on December 3, 2018. During the field survey, 

specific information on urban trees, including DBH and tree height, was 

obtained. Point cloud data of the street was collected by a Stencil laser 
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scanning system, which is a stand-alone simultaneous localization and 

mapping (SLAM) algorithm-based real-time three-dimensional mapping 

device produced by Kaarta. To scan the road trees, a person carried the mobile 

LiDAR in the center of the road from one end of the site to the other end of 

the site. 

This research compared tree structure quantified using the mobile LiDAR 

with physical measurements taken in the field. The DBH of all trees in the 

research area were measured with the DBH ruler. In a study using terrestrial 

LiDAR, the research was carried out except for trees with a DBH less than 

4cm (Olofsson et al. 2014). In another study conducted in Korea, DBH of 

6.2cm (Seo et al. 2015) and 4.8cm were the minimum sizes used for biomass 

estimation in forests and urban areas respectively (Jo and Ahn 2012; Jo et al. 

2013). In this study, trees with DBH smaller than 5cm were excluded from 

the analysis, resulting in exclusion of 8 trees. As a result, 15 trees were 

measured. 
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2.2. Mobile LiDAR data preprocessing 

Three steps of preprocessing were carried out on the mobile LiDAR data. 

All preprocessing steps were performed using CloudCompare software 

(version 2.9.1). First, noise was removed using a noise filter tool. This study 

applied radius 0.3, max error-relative 1.0 to option parameters. Second, 

ground classification was performed. This study used a CSF filter for ground 

classification, and the flat option was applied. Third, the trees in the study 

area were classified. Trees were manually classified, and tree data were 

segmented by individual trees. Although several automatic tree classification 

techniques have been developed and show high accuracy, data must be 

manually postclassified due to incomplete classification (Zhao et al. 2018). 

Therefore, this research manually classified and segmented the trees. 
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2.3. Tree height estimation 

This research calculated the tree height using the height-above-ground 

method. The height above ground was calculated by subtracting the height 

value of the point from the height value of the ground surface. For each 

individual tree point cloud, the maximum value of the height above ground 

was taken as the tree height. The height-above-ground calculation was 

performed using the cloud/mesh distance tool in CloudCompare software, and 

the maximum height-above-ground value of each tree was computed using 

MATLAB 2018b. 

 

2.4. CBH estimation 

For each individual tree point cloud data was used to estimate CBH. CBH 

can be calculated by measuring the distance from the ground to the lowest 

branch of the tree crown (Næ sset and Ø kland 2002; Popescu and Zhao 2008; 

Luo et al. 2018). In this research, CBH for verification was manually 
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measured by extracting the lowest point among the tree crown points (Jung et 

al. 2011). 

To calculate CBH, the point cloud data of the tree was extracted in 10cm 

interval from the ground parallel to the x, y plane. For each slice, convex hull 

using x, y coordinates was derived, and the side length of the convex hull was 

calculated. As a result, the side length data of the convex hull was constructed 

every 10 cm of the 15 trees. As the height increase, side length data will highly 

increase when the crown. That is, CBH can be determined based on the 

increment of the side length. To determine the threshold increment, this 

research tested threshold values including 10cm, 15cm, 20cm, 25cm, 30cm. 

 

2.5. DBH estimation 

DBH refers to the diameter of a tree trunk measured at a height of 1.2 m. 

Mobile LiDAR scanned data have a lower point density than terrestrial 

LiDAR. Therefore, the shape of the trunk cannot be extracted when extracting 
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data only at a height of 1.2 m. In this study, DBH was calculated for each tree 

by extracting scanned points from 1.19 m - 1.21 m height from the ground. 

 

Fig. 5 Point cloud data acquired at breast height (1.19-1.21m above the ground). a Point cloud 

data with full point coverage around the trunk. b Point cloud data with half point coverage 

around the trunk. 

 

Many studies have been carried out to measure the DBH of trees using 

terrestrial LiDAR (Côté et al. 2011; Huang et al. 2011; Yao et al. 2011). 

However, the mobile LiDAR data used in this study have incomplete 

information on the tree trunk because full point coverage around the trunk 

could not be obtained for some trees (Fig. 5b). That is, this study needed a 

method that estimated the remaining part by using incomplete data. Therefore, 

this research employed the least-squares circle fitting method in this study 

(Pratt 1987). 
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2.6. Statistical analysis 

Statistical analysis was performed to evaluate the accuracy of tree height 

and DBH. The accuracy of the results was verified by calculating the 

correlation coefficient (R2) and root mean square error (RMSE). R2 is 

computed as follows: 

𝑅2 = 1 −
∑ (𝐸𝑖 − 𝑀𝑖)2𝑛

𝑖=1

∑ (𝐸𝑖 − 𝑀𝑖𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

 

where n is the number of trees, 𝐸𝑖  and 𝑀𝑖  represent the estimated and 

measured values, respectively, and 𝑀𝑖𝑚𝑒𝑎𝑛 is the average of the measured 

values. RMSE was computed as follows: 

RMSE = (
1

𝑛
∑(𝐸𝑖 − 𝑀𝑖)

2

𝑛

𝑖=1

)

1
2

 

The higher the R2 and the lower the RMSE, the higher the accuracy. R2 

and RMSE were calculated for each study site and calculated for DBH and 

for tree height. 
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3. Result 

3.1. LiDAR data construction 

 

Fig. 6 Collected mobile LiDAR data with preprocessing performed. Each tree is a separate 

object colorized by the height above ground value. Ground points were replaced by ground 

mesh. (a) Data collected at the road. 

 

Fig. 6 shows the collected mobile LiDAR data that preprocessing was 

performed on. A small number of points were created at the top of the tree 

compared to the bottom. This is because the mobile LiDAR has a low vertical 

field of view (FOV) of 30, and lasers were blocked by the surrounding tree 

crowns. 
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3.2. Tree height estimation 

This research first computed the tree heights extracted from the height 

above ground value. To assess accuracy, the estimated tree heights were 

compared to the measured tree heights (Table 3). The difference between the 

measured and estimated heights had a mean value of 0.24 m, and the 

maximum error was 0.8 m. 

 

Table 3. Field-measured and LiDAR-estimated heights of trees. The maximum height 

difference was shown at r-3. Most tree heights were underestimated. 

Tree 

(ID) 

Measured 

Height 

(m) 

Estimated 

Height 

(m) 

Height 

Difference 

(m) 

Tree 

(ID) 

Measured 

Height 

(m) 

Estimated 

Height 

(m) 

Height 

Difference 

(m) 

r-1 7.5 7.6 -0.1 r-9 12.4 12.1 0.3 

r-2 9.7 9.5 0.2 r-10 16.6 16.5 0.1 

r-3 11.0 10.2 0.8 r-11 6.4 6.6 -0.2 

r-4 7.8 7.6 0.2 r-12 9.1 9.0 0.1 

r-5 11.9 11.7 0.2 r-13 10.5 10.4 0.1 

r-6 10.8 10.4 0.4 r-14 11.6 10.9 0.7 

r-7 8.7 8.5 0.2 r-15 11.3 10.8 0.5 

r-8 13.8 13.5 0.3     
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3.3. CBH estimation 

This study estimated the CBH from the individual tree point cloud data. 

The convex hull length was calculated to derive the CBH (Appendix 1, 

Appendix 2). To assess the accuracy, manually extracted CBHs were 

compared to the measured tree heights (Table 4). The difference between the 

manually extracted and estimated heights had a mean value of 0.09 m, and 

the maximum error was 0.3 m. Based on the CBH, this research could classify 

trunk and crown of the trees (Fig. 7, Fig. 8).  

 

Table 4. Manually extracted and estimated CBH of trees. The maximum difference was 

shown at r-11. 

Tree 

(ID) 

Manually 

extracted 

CBH 

(m) 

Estimated 

CBH 

(m) 

Height 

Difference 

(m) 

Tree 

(ID) 

Manually 

extracted 

CBH 

(m) 

Estimated 

CBH 

(m) 

Height 

Difference 

(m) 

r-1 1.28 1.2 0.08 r-9 1.41 1.5 -0.09 

r-2 0.74 0.7 0.04 r-10 2.26 2.2 0.06 

r-3 1.41 1.3 0.11 r-11 1.47 1.7 -0.23 

r-4 1.22 1.3 -0.08 r-12 1.66 1.6 0.06 

r-5 1.92 1.9 0.02 r-13 2.15 2.2 -0.05 

r-6 2.68 2.8 -0.12 r-14 1.50 1.8 -0.30 

r-7 1.78 1.8 -0.02 r-15 1.51 1.6 -0.09 

r-8 1.50 1.4 0.10     
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Fig. 7 Crown classified trees based on CBH (r1-r8). Green represents the crown of the tree and brown represents the trunk of the tree. 
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Fig. 8 Crown classified trees based on CBH (r9-r15). Green represents the crown of the tree and brown represents the trunk of the tree. 
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3.4. DBH estimation 

This research computed the DBH extracted from the point cloud at 1.19 

m-1.21 m. Unlike tree height, DBH does not calculate only one value per tree 

because there are some trees whose trunk splits less than 1.2 m from the 

ground. This study measured and estimated the DBH of those trees. 

Table 5. Field-measured and LiDAR-estimated DBH. The maximum DBH difference was 

shown at r-13. Most tree heights were overestimated.  

Tree 

(ID) 

Meas

ured 

DBH 

(cm) 

Estimated 

DBH 

(cm) 

DBH 

Difference 

(cm) 

Tree 

(ID) 

Meas

ured 

DBH 

(cm) 

Estimated 

DBH 

(cm) 

DBH 

Difference 

(cm) 

r-1 19.6 20.5 -0.9 r-8 30.2 29.8 0.4 

r-2 21.4 23.0 -1.6 r-9 22.1 22.3 -0.2 

r-3 18.6 21.1 -2.5 r-10 51.9 54.4 -2.5 

r-4-a 11.9 16.0 -4.1 r-11 32.3 36.0 -3.7 

r-4-b 13.2 20.6 -7.4 r-12 19.4 22.3 -2.9 

r-4-c 10.5 16.7 -6.2 r-13 73.0 80.7 -7.7 

r-5 23.6 27.9 -4.3 r-14 21.8 21.8 0.0 

r-6 17.5 21.6 -4.1 r-15 22.1 22.1 0.0 

r-7 23.5 23.3 0.2     

 

To assess accuracy, the estimated DBH values were compared to the 

measured DBH values (Table 5). The difference between the measured and 

estimated heights had a mean value of -2.79 cm, and the maximum error was 

-7.7 cm. 



 

- 41 - 

 

3.5. Statistical analysis 

This study also evaluated the accuracy by calculating the root mean square 

error (RMSE) and the correlation coefficient. Concerning tree height, as 

shown in Fig. 4, the correlation coefficient was 0.963 with an R square of 

0.988 and the RMSE was 0.359 m, which indicated that there was a high 

correlation between the measured and estimated tree heights. 

 

 

Fig. 9 Scatter plot, linear regression line and ideal line between the measured tree height and 

estimated tree height using mobile LiDAR. Most points are distributed near the ideal line. 

The linear regression line appears similar to the ideal line. 
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Concerning CBH, as shown in Fig. 11, the correlation coefficient was 

0.9214 with an R square of 0.937 and the RMSE was 0.12 m. The manually 

extracted and estimated CBH has high correlation. However, compared to tree 

height estimation, CBH has relatively high RMSE. 

 

Fig. 10 Scatter plot, linear regression line and ideal line between the manually extracted CBH 

and estimated CBH using mobile LiDAR. Most points are distributed near the ideal line, but 

are more dispersed than the tree height. The linear regression line appears similar to the ideal 

line. 

 

Concerning DBH, as shown in Fig. 11, the correlation coefficient was 

1.033 with an R square of 0.973 and the RMSE was 3.77 cm. The measured 

and estimated DBH has high correlation. However, compared to tree height 
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estimation, there was a relatively low correlation between the measured and 

estimated DBH. 

 

 

Fig. 11 Scatter plot, linear regression line and ideal line between the measured DBH and 

estimated DBH using mobile LiDAR. Most points are distributed near the ideal line and 

slightly overestimated, but are more dispersed than the tree height. 

 

4. Discussion 

This study calculated tree height, CBH, DBH of trees using mobile LiDAR 

and evaluated its accuracy by comparing it with field-based measurements. 

Unlike terrestrial LiDAR, mobile LiDAR can scan a large area, which could 
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enable the construction of data at the city level. This study evaluates the 

potential accuracy of that scaling up of data. According to the result, it is 

possible to calculate tree height, CBH and DBH for the street trees in urban 

areas using mobile LiDAR with a high degree of accuracy. 

Mobile LiDAR has other advantages in addition to being able to measure 

large areas when compared to terrestrial LiDAR. Unlike LiDAR 

measurements in a forest, measurements in urban areas are more challenging 

due to the difficulty of controlling the measurement situation. Obstacles in 

urban areas result in shadows, which are areas with no data (Bonnaffe et al. 

2007). Cars passing by or parked on the street can block tree trunks and people 

on the street or at the park may also block trees. In this case, terrestrial LiDAR 

scanning from certain points results in shadows, whereas mobile LiDAR 

moves while scanning, thus the trees are not completely hidden. Nonetheless, 

these obstacles lower the density of the point cloud and reduce the accuracy 

of the final estimation. 

There were factors that decreased the estimation accuracy. The estimated 
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tree heights were generally slightly underestimated compared to the measured 

tree heights (Fig. 9). As the average height difference indicates, the estimated 

tree heights were lower than the measured tree heights in the study areas. The 

differences between the measured and estimated tree heights were larger 

when the tree heights were higher. The underestimation is likely related to the 

low point density at the top of the trees in mobile LiDAR data. Because 

mobile LiDAR has a smaller vertical FOV, the upper part of the tree can only 

be scanned far from the tree, which results in a lower point density. The low 

point density at the top of the tree indicates that the mobile LiDAR is unlikely 

to scan the highest part of the tree. For instance, (Hopkinson et al. 2004) 

calculated tree height from ground-based LiDAR data and underestimated the 

height due to foliage obstruction, particularly for tall trees. Unlike tall trees, 

small trees have relatively high accuracy because mobile LiDAR scans are 

less likely to be blocked by the tree crowns. 

CBH is used to estimated by using airborne LiDAR and density of the 

point cloud data (Popescu and Zhao 2008). Point cloud data of the tree crown 
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with frequency and intensity crown vertical profiles were used because 

airborne LiDAR cannot evenly scan whole tree structure. However, terrestrial 

and mobile LiDAR can evenly scan the tree so that vertical profile cannot be 

applied (Jung et al. 2011). Therefore, this research applied morphological 

features of trees to estimate CBH. 

The estimated DBH was generally slightly overestimated compared to the 

measured DBH (Fig. 11). As the average DBH difference indicates, the 

estimated DBHs were generally larger than the measured DBHs in both study 

areas. The irregular shape of tree trunks and incomplete point data around the 

trunk are likely the reasons (Fig. 12c). DBH can be estimated with higher 

accuracy when the tree has a circular trunk (Yao et al. 2011; Fan et al. 2018). 

Contrary to (Fan et al. 2018), the result of this study was biased because tree 

stems in this study do not form a uniform circular shape. 
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Fig. 12 Points at breast height and their fitted circles: a. complete point coverage with precise 

trunk shape, b. incomplete point coverage, c. incomplete point coverage around the trunk and 

the irregular shape of the trunk. 

 

Since the DBH estimation has a large error compared to the tree height 

estimation, this study explored the reasons for the error. There were two major 

factors that decreased DBH estimation accuracy. One source of error was the 

relatively low precision of the mobile LiDAR-driven point cloud data. 

Because the mobile LiDAR scanned data have lower precision than terrestrial 

LiDAR (Pierzchała et al. 2018), it is difficult to detect precise trunk shapes 

(Fig. 12a). Another source of error was the combined effect of incomplete 

point coverage around the trunk and the irregular shape of the trunk (Fig. 12c). 

Although tree p-1 has incomplete point coverage (Fig. 12b), there is a small 

difference between the measured and estimated DBH. However, as shown in 
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Fig. 12c, tree DBH is overestimated when the data are incomplete and the 

shape is irregular. 

Tree height, CBH, DBH are basic structure parameters for quantifying tree 

characteristics (Huang et al. 2011; Jung et al. 2011; Song and Ryu 2015; Luo 

et al. 2018). Tree height and DBH have been used as variables to calculate 

carbon storage of individual tree (Nowak and Crane 2002; Yoon et al. 2013; 

Zhao et al. 2018). CBH have been used for measuring crown volume 

(Korhonen et al. 2013) and tree health monitoring (Korhonen et al. 2013). 

Thus, the vertical structure and horizontal pattern effect of green space is 

quantified, and the width of tree is measured by using satellite image or the 

aerial photograph. However, since tree height, DBH and CBH were difficult 

to compute from satellite images, field survey has been done (Yoon et al. 

2013; Seo et al. 2015; Song and Ryu 2015). Therefore, acquiring data from 

each individual tree is time-consuming and laborious. According to this 

research, LiDAR can be used to measure the DBH and tree height, making it 

possible to overcome the inefficiency of direct irradiation.  
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IV. Evaluating LiDAR based SVF accuracy on 

complex urban street 

1. Scope of study 

This study tried to calculate the SVF, beginning from an indoor area with 

simple conditions, extending to complex outdoor conditions, and a Terrestrial 

LiDAR was employed to collect urban geometry data, and a fisheye lens 

photo to verify the results. 

 

Fig. 13 Research area: (a) Testbed A (artificial structure), (b) Testbed B (vegetation), (c) 

Testbed C (actual complex structure). 
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Artificial structures such as buildings and natural occurrences such as trees 

are two main sources that affect SVF in urban areas. Therefore, this study 

selected testbeds with three different conditions to calculate the SVF and 

evaluate its accuracy. Two testbeds with stable conditions, having zero effect 

of wind on their main obstacles, will not result in a SVF calculation error. In 

consideration of the buildings in the city, Testbed A consisted of artificial 

structures only. as it is difficult to find an area with only buildings, this 

research selected the roofs of some buildings for this. They had a low to high 

SVF due to narrow pathways and open spaces (Fig. 13a). In consideration of 

the trees and plants in the city, testbed B had consisted of vegetation only. To 

study this condition, four potted trees were set up in a room at 2 × 2 m 

rectangular vertices (Fig. 13b). The minimum tree height was 1.2 m and 

maximum was 1.3 m; these included a pot height of 0.25 m. 

Testbed C has a complex outdoor structure with buildings and vegetation 

(Fig. 13c). This research selects this testbed to confirm the possibility of SVF 

computation method using terrestrial LiDAR in a complex city. The left- and 
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right-hand side buildings were six stories high; on the down side was a three-

story building. There was a garden between the buildings with various trees 

planted in it. The entrance area is dense with trees and the interior is relatively 

open. Given that buildings surround the area from three directions and the 

fourth is left open, the lower area of the building is influenced by SVF, which 

this decreases as the analysis points goes up. As the trees are unevenly 

distributed, the effect of their diversity is captured in testbed C. Additionally, 

this study set up a testbed D that was similar to testbed C by removing the 

collected data of buildings. All testbeds were located at Seoul National 

University, Seoul, South Korea. 

 

2. Method 

2.1. Terrestrial LiDAR data collection 

Scanning of selected research areas was done between March and April 

2018 with a FARO Focus3D-S350 instrument. Scanning was conducted to 

minimize the shaded area with resolution at a point spacing of 4 mm at 25 m 
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distance and up to 966,000 points per second. Details pertaining to the 

scanning conditions are as shown in Table 6. This research registered the 

scanned data with the registration tool of the software Faro Scene 7.1. Each 

registered testbed was sliced with a cross-section tool of the software 

CloudCompare to extract the region of interest. 

 

Table 6. Terrestrial LiDAR and fisheye lens photo observation specifications at each testbed. 

 Testbed A Testbed B Testbed C 

LiDAR 

Number of 

scanning positions 
9 14 23 

Number of targets 44 12 39 

Date 
March 13, 

2018 

March 16, 

2018 

April 26, 

2018 

Fisheye 

image 

Height above the 

target 
50 cm 50 cm 100 cm 

Number of pictures 44 12 39 

Date 
March 13, 

2018 

March 16, 

2018 

April 26, 

2018 
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2.2. SVF calculation with terrestrial LiDAR (SVFt) 

Original 3D point cloud data acquired from terrestrial LiDAR was 

voxelized to compute the SVF. Voxel is a compound word combining volume 

and pixel, meaning a pixel having a volume. Point cloud data are not suitable 

for representing the surface of an object because it is data with an empty space 

between points. To compensate this drawback, this study used the data as a 

voxel. Additionally, the redundant point cloud data is eliminated by 

voxelizing it, thus reducing the size of the data and shortening the computing 

time. This study did not apply vertical offset because of the characteristics of 

terrestrial LiDAR. It is selectively applied when calculating SVF with 3d 

point cloud data (An et al. 2014). Data is classified in consideration of the 

characteristics of the obstacle, and vertical offset is not applied in case the 

obstacle, such as a tree or bridge, had an empty bottom. This is because the 

airborne LiDAR allows easy detection of the top of an object beneath it, but 

difficult to detect the object’s bottom. Therefore, a classification process of 

the LiDAR data was not conducted. 



 

- 54 - 

 

A ray-tracing algorithm was applied to compute SVF (Souza et al. 2003). 

First, this study checked the objects that covered the sky at every calculation 

point. Hypothetical rays representing the same solid angle were shot out from 

the calculation point to the sky covering that hemisphere. Rays were divided 

as those making or not making contact with the object voxel. Secondly, based 

on the horizontal and vertical angle of the rays, SVFt was computed as 

follows: 

𝑆𝑉𝐹𝑡 = (1 −
∑ 𝑠𝑖𝑛𝛾𝑟

𝑚
𝑟=1

∑ 𝑠𝑖𝑛𝛾𝑖
𝑛
𝑖=1

) 

where n is the number of rays in the computation process; 𝑖  the 𝑖𝑡ℎ ray; 

𝛾𝑖  the vertical angle of the ray 𝑖.  The computation was conducted using 

MATLAB R2017a. 

In the SVF calculation using ray tracing, the size of the voxel and spacing 

between the rays are related to the accuracy of results. If the LiDAR data has 

a sufficient number of points, the smaller the voxel size, the higher the 

accuracy of the surrounding environment. However, accuracy of the 
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surrounding environment decreases if the LiDAR data has a small number of 

points, and there is an empty space inside the object when the voxel size is 

small. Ray interval is also related to the detection of nearby objects to 

calculate SVF. The smaller the ray interval, the more precise is the detection 

of the shape of the object. Therefore, with smaller space between rays, SVF 

can be calculated with higher accuracy. 

Therefore, this study calculated SVF with different voxel sizes and ray 

intervals at testbeds A and B, respectively. Because these two testbeds have 

a simplified condition, this study could analyze the effect of voxel size and 

ray intervals on each artificial structure and trees. Voxel size of 20, 10, 5 and 

2.5 cm were analyzed with ray interval of 0.5 degree, and Ray interval of 1, 

0.5, 0.25 degrees were analyzed with a voxel size of 2.5 cm. 

A continuous SVF map was constructed for each testbed, and to evaluate 

accuracy, the SVF above the targets was calculated at a specific height. SVF 

was calculated at 50 cm, above the targets in testbed A and B and at 100 cm 

above testbed C. The condition of the SVFt calculation is listed in Table 7. 
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Table 7. SVFt calculation conditions in each testbed. 

 Testbed A Testbed B Testbed C 

Voxel size 5 cm 2.5 cm 5 cm 

Ray interval 0.5° 0.5° 1° 

Heights above the 

target 
50 cm 50 cm 100 cm 

 

2.3. SVF calculation with a fisheye lens (SVFf) 

To verify the SVF calculation method with terrestrial LiDAR data, SVF 

was measured using a fisheye lens as reference. In this study, fisheye 

photographs were captured using a Nikon D810 camera with SIGMA 8 mm 

F3.5 circular fisheye lens. Fisheye images were taken above the target at 

different heights depending on the condition of the testbeds (Table 7). A 

camera was mounted on a tripod to achieve sufficient height. 

The SVF calculation with a fisheye lens was performed using the 

SOLWEIG SVF calculator (Lindberg et al. 2008). This calculator is one of 

the SOLWEIG-models from the University of Gothenburg and can calculate 

SVF from fisheye images. 
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2.4. Accuracy analysis 

Verification points were selected at positions where fisheye-lens images 

were taken, and SVFt was calculated at the same positions. The accuracy of 

the model was verified by calculating the root mean square error (RMSE) and 

correlation coefficient (R2) of the findings. The RMSE is computed as 

follows: 

RMSE = (
1

𝑛
∑(𝑇𝑖 − 𝐹𝑖)2

𝑛

𝑖=1

)

1
2

 

where 𝑇𝑖 is the computed SVFt, 𝐹𝑖 is the SVFf, and n is the number of 

verification points. R2 is computed as follows: 

𝑅2 = 1 −
∑ (𝑇𝑖 − 𝐹𝑖)

2𝑛
𝑖=1

∑ (𝑇𝑖 − 𝐹𝑖𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

 

where n is the number of verification points; 𝑇𝑖  and 𝐹𝑖  represent the 

computed SVFt and SVFf, respectively; and 𝐹𝑖𝑚𝑒𝑎𝑛  is the average of the 

computed SVFf. 
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2.5. Tree effect on SVF calculation 

In order to investigate the effect of trees on SVF calculations, a testbed D 

was setup similar to testbed C but without the data of buildings. At first, this 

study removed data pertaining to buildings from terrestrial LiDAR data and 

fisheye lens photographs. Secondly, SVFt and SVFf were calculated using 

that data. Removal of data pertaining to buildings in terrestrial LiDAR data 

was done using the interactive segmentation tool of the software 

CloudCompare. Fuzzy selection, select by color, and the eraser tools of in the 

software GIMP were applied to remove the data of buildings from the fisheye 

lens photographs. With this data, this research calculated SVFt and SVFf and 

compared the results and accuracy of terrestrial LiDAR based SVF, analyzed 

in the testbeds C and D. 

 

2.6. Sensitivity analysis 

The voxelization process assigns a volume to a point that has no volume. 

In this process, the size of the object is overestimated. Additionally, even if 
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the same sized voxel is used, the possibility of being found by the ray varies 

according to the position of the voxel and its distance from the measurement 

point. When the size of the voxel is small or it is far from the measurement 

point, the voxel is less likely to be found by the ray. One way to compensate 

for this is to narrow the ray interval. 

To analyze how voxel size and ray interval affects SVF, sensitivity 

analysis was performed, and Voxelized points were randomly generated at a 

distance of 1 m and 20 m from the analysis point. This research analyzed how 

the generated voxel affects SVF depending on different ray intervals. Voxel 

sizes of 5, 10, and 20 cm and ray intervals of 0.5°, 1°, 2°, 4° and 8° were 

simulated (Table 8). This process was repeated 100,000 times. 

 

Table 8. Simulation variables and values. Voxel size and ray interval are the main component 

of the sensitivity analysis. Both voxel size and ray interval were doubled from baseline. 

Voxel size 5 cm 10 cm 20 cm 

Ray interval 0.5°, 1°, 2°, 4°, 8° 0.5°, 1°, 2°, 4°, 8° 0.5°, 1°, 2°, 4°, 8° 
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3. Result 

3.1. LiDAR data construction 

Fig. 14 shows point cloud data at each testbed. Scanning was conducted at 

9, 14, and 23 positions in testbeds A, B, and C, respectively. Testbed A covers 

a 20 m × 42 m square area consisting of 257,669,139 points and a maximum 

structure height of 9.8 m. Testbed B covers a 2 m × 2 m square area consisting 

of 9,039,101 points and a maximum tree height of 1.3 m and Testbed C covers 

a 24 m × 69 m square area, consisting of 439,985,137 points and a maximum 

structure height of 29.9 m (Table 9). 

 

Table 9. Basic information of terrestrial LiDAR data at each testbed. 

 Testbed A Testbed B Testbed C 

Covered area 20 m ⅹ 42 m 2 m ⅹ 2 m 24 m ⅹ 69 m 

Number of points 257,669,139 9,039,101 439,985,137 

Maximum height 9.8 m 1.3 m 29.9 m 
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Fig. 14 Collected LiDAR data: (a) Testbed A, (b) Testbed B, (c) Testbed C. Color 

represents the reflectivity at the captured surface. In general, bright surfaces have higher 

reflectivity than dark surfaces. 

 

3.2. Testbed A 

In testbed A, SVF was calculated using 44 fisheye photographs and 

terrestrial LiDAR at the same points (Table 10). The SVF error at testbed A 

has mean, maximum and minimum values of 0.038, 0.088, and 0.002, 

respectively. SVF errors of 95% or more showed an error range less than 0.7. 

A high R2 (0.984) and a low RMSE (0.0432) value indicate that the SVFt is 

extremely close to the SVFf. 
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Table 10. Computed SVF and difference between SVFt and SVFf in testbed A. 

Point 

(ID) 

SVFt 

(T) 

SVFf 

(F) 

SVF 

Difference 

(T)-(F) 

Point 

(ID) 

SVFt 

(T) 

SVFf 

(F) 

SVF 

Difference 

(T)-(F) 

1 0.467 0.440 0.027 23 0.726 0.728 -0.002 

2 0.449 0.440 0.009 24 0.874 0.905 -0.031 

3 0.448 0.390 0.058 25 0.942 0.989 -0.047 

4 0.430 0.384 0.046 26 0.958 0.996 -0.038 

5 0.354 0.294 0.060 27 0.950 0.995 -0.045 

6 0.098 0.162 -0.064 28 0.950 0.995 -0.045 

7 0.346 0.434 -0.088 29 0.832 0.848 -0.016 

8 0.685 0.683 0.002 30 0.882 0.896 -0.014 

9 0.722 0.720 0.002 31 0.958 0.991 -0.033 

10 0.696 0.715 -0.019 32 0.971 1.000 -0.029 

11 0.612 0.540 0.072 33 0.970 1.000 -0.030 

12 0.771 0.808 -0.037 34 0.955 0.989 -0.034 

13 0.843 0.897 -0.054 35 0.952 0.996 -0.044 

14 0.824 0.871 -0.047 36 0.935 0.985 -0.050 

15 0.870 0.922 -0.052 37 0.505 0.474 0.031 

16 0.861 0.913 -0.052 38 0.412 0.350 0.062 

17 0.772 0.812 -0.040 39 0.147 0.166 -0.019 

18 0.869 0.913 -0.044 40 0.046 0.067 -0.021 

19 0.925 0.978 -0.053 41 0.109 0.168 -0.059 

20 0.926 0.980 -0.054 42 0.442 0.398 0.044 

21 0.904 0.960 -0.056 43 0.531 0.536 -0.005 

22 0.820 0.835 -0.015 44 0.396 0.438 -0.042 

 

3.3. Testbed B 

In testbed B, SVF was calculated using 12 fisheye photographs and 

terrestrial LiDAR at the same points (Table 11). The SVF error at testbed A 

has a mean, maximum, and minimum value of 0.033, 0.086, and 0.005, 

respectively. SVF errors were all less than 0.04, indicating that the accuracy 
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was high. A high R2 (0.819) and low RMSE (0.04) value indicate that the 

SVFt is close to SVFf. 

 

Table 11. Computed SVF and difference between SVFt and SVFf in testbed B. 

Point 

(ID) 

SVFt 

(T) 

SVFf 

(F) 

SVF 

Difference 

(T)-(F) 

Point 

(ID) 

SVFt 

(T) 

SVFf 

(F) 

SVF 

Difference 

(T)-(F) 

1 0.971 0.966 0.005 7 0.819 0.780 0.039 

2 0.895 0.872 0.023 8 0.806 0.784 0.022 

3 0.725 0.759 -0.034 9 0.695 0.727 -0.032 

4 0.668 0.744 -0.076 10 0.759 0.730 0.029 

5 0.716 0.737 -0.021 11 0.654 0.741 -0.087 

6 0.748 0.760 -0.012 12 0.888 0.867 0.021 

 

3.4. Testbed C 

SVF map was derived in testbed C with 0.5 m resolution. The cross-

sectional map and SVF graphs are compared at three points. Buildings and 

trees are the two main sources that decrease the SVF. Because the buildings 

are located at both ends, SVF decreased significantly at both ends (Fig. 15b, 

c, d). Graphs were fluctuated according to tree position. As shown in Fig. 15c, 

relatively big trees were evenly planted which resulted in the appearance of 

zero in the middle of the research area. In contrast, there were relatively small 
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trees resulting in values greater than zero, as shown in Fig. 15b. In Fig. 15d, 

because four trees are clustered to the right, the SVF value converged to zero. 

 

 

Fig. 15 SVF map of testbed C. (a) A SVF map of testbed C with a resolution of 0.5m, (b) 

SVF graph and cross-section map at Y axis 108, (c) SVF graph and cross-section map at Y 

axis 57, (d) SVF graph and cross-section map at Y axis 20. The x axis of (b), (c), (d) is the 

same as (a), and the y-axis represents the SVF value. 

 

In testbed C, SVF was calculated using 39 fisheye photographs and 

terrestrial LiDAR at the same points (Table 12). The SVF error at testbed A 

has a mean, maximum, and minimum values of 0.022, 0.153 and 0. SVF 
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errors of 90% or more showed an error range of less than 0.1. A high R2 

(0.915) and low RMSE (0.037) value indicates that the SVFt is close to SVFf. 

 

Table 12. Computed SVF and difference between SVFt and SVFf in testbed D. 

Point 

(ID) 

SVFt 

(T) 

SVFf 

(F) 

SVF 

Difference 

(T)-(F) 

Point 

(ID) 

SVFt 

(T) 

SVFf 

(F) 

SVF 

Difference 

(T)-(F) 

1 0.489 0.509 -0.02 21 0.639 0.627 0.012 

2 0.519 0.526 -0.007 22 0.681 0.677 0.004 

3 0.243 0.349 -0.106 23 0.696 0.679 0.017 

4 0.538 0.593 -0.055 24 0.699 0.707 -0.008 

5 0.612 0.613 -0.001 25 0.703 0.686 0.017 

6 0.630 0.617 0.013 26 0.708 0.697 0.011 

7 0.573 0.573 0.000 27 0.689 0.695 -0.006 

8 0.626 0.620 0.006 28 0.690 0.667 0.023 

9 0.629 0.606 0.023 29 0.676 0.656 0.020 

10 0.444 0.597 -0.153 30 0.656 0.646 0.010 

11 0.550 0.586 -0.036 31 0.638 0.645 -0.007 

12 0.637 0.631 0.006 32 0.668 0.657 0.011 

13 0.637 0.632 0.005 33 0.671 0.662 0.009 

14 0.653 0.641 0.012 34 0.674 0.667 0.007 

15 0.662 0.647 0.015 35 0.687 0.680 0.007 

16 0.670 0.658 0.012 36 0.680 0.650 0.030 

17 0.681 0.672 0.009 37 0.683 0.673 0.010 

18 0.670 0.662 0.008 38 0.297 0.377 -0.080 

19 0.623 0.590 0.033 39 0.570 0.620 -0.050 

20 0.672 0.663 0.009     
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3.5. Testbed D 

In testbed D, the buildings in the LiDAR data and fisheye lens photos were 

removed (Fig. 16). In this testbed, SVF was calculated using 39 fisheye lens 

photographs and terrestrial LiDAR at the same points (Table 13) without the 

data of buildings. The SVF error at testbed A has a mean, maximum, and 

minimum value of 0.062, 0.238, and 0.001, respectively. About 80% showed 

an error range of less than 0.1. High R2 (0.9275) and a small value of RMSE 

(0.086) indicate that the SVFt is close to the SVFf. 

 

Fig. 16 Before and after building removals: (a) LiDAR data of testbed C, (b) LiDAR data 

of testbed D, (c) Fisheye lens image of testbed C point 10, (d) Fisheye lens image of testbed 

D point 10. 
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Table 13. Computed SVF and difference between SVFt and SVFf in testbed D. 

Point 

(ID) 

SVFt 

(T) 

SVFf 

(F) 

SVF 

Difference 

(T)-(F) 

Point 

(ID) 

SVFt 

(T) 

SVFf 

(F) 

SVF 

Difference 

(T)-(F) 

1 0.711 0.837 -0.126 21 0.961 0.970 -0.009 

2 0.749 0.821 -0.072 22 0.967 0.979 -0.012 

3 0.379 0.614 -0.235 23 0.967 0.978 -0.011 

4 0.663 0.813 -0.150 24 0.957 0.952 0.005 

5 0.742 0.843 -0.101 25 0.961 0.962 -0.001 

6 0.852 0.895 -0.043 26 0.961 0.964 -0.003 

7 0.758 0.909 -0.151 27 0.953 0.965 -0.011 

8 0.881 0.967 -0.086 28 0.958 0.990 -0.032 

9 0.875 0.964 -0.089 29 0.958 0.963 -0.005 

10 0.615 0.854 -0.239 30 0.925 0.939 -0.014 

11 0.751 0.846 -0.095 31 0.863 0.895 -0.032 

12 0.847 0.923 -0.075 32 0.916 0.969 -0.053 

13 0.857 0.901 -0.044 33 0.917 0.967 -0.049 

14 0.885 0.920 -0.035 34 0.913 0.978 -0.065 

15 0.904 0.927 -0.022 35 0.946 0.967 -0.022 

16 0.936 0.958 -0.022 36 0.912 0.958 -0.046 

17 0.952 0.988 -0.035 37 0.925 0.974 -0.049 

18 0.954 0.975 -0.021 38 0.449 0.651 -0.202 

19 0.937 0.956 -0.019 39 0.669 0.812 -0.142 

20 0.962 0.972 -0.009  0.961 0.970 -0.009 

 

Overall, SVF values were increased because buildings were removed. The 

large increment means that the ratio of buildings blocking the sky is high, and 

the buildings are located at the center of the fisheye lens photo. In contract, a 

small increment in SVF relates to the proportion of trees being relatively high. 
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3.6. Accuracy 

SVFt is relatively accurate in testbed A compared with other testbeds. The 

main difference between testbed A and other testbeds is the inclusion of trees. 

Trees are the main cause for lack of accuracy. Complicated geometrical shape 

and leaves in the canopy make trees a key challenging factor in SVF 

calculation (Kidd and Chapman 2012; An et al. 2014). They also block the 

sky as obstacles; however, many small gaps between leaves make it difficult 

to compute SVF accurately. 

 

 

Fig. 17 Scatter plot, linear regression line and ideal line between the SVFt and SVFf: (a) 

testbed A, (b) testbed B. 
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Fig. 18 Scatter plot, linear regression line and ideal line between the SVFt and SVFf at 

testbed C. Few points were distance away from the ideal line. 

 

In testbeds B and C, graphs show that errors are higher at lower SVF than 

higher (Fig. 17 and Fig. 18). It is assumed that a lower SVF means more trees 

near the verification points, which exacerbate the error. Table 12 and Fig. 18 

show that most of the verification points fit the ideal line, with the exception 

of 3 points having a point ID of 3, 10, and 38 (Fig. 19). Trees with many gaps 

were located at the center of verification points 3, 10 and 38, which lead to 

the high value of error. 
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Fig. 19 Fisheye lens images at testbed C: (a) point 3, (b) point 10, (c) point 38. 

 

Fig. 20 Scatter plot, linear regression line and ideal line between the SVFt and SVFf at 

testbed D. Points with lower SVF were more overestimated than the points with higher 

SVF. 
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The graph of testbed D shows that errors are higher at lower SVF than 

higher (Fig. 20). Different from other testbeds, SVFf was higher than SVFt at 

all points. Moreover, errors were large at point ID 3, 10, and 38 similar to 

testbed C. 

 

3.7. Sensitivity analysis 

 

 

Fig. 21 created 100,000 random points. The points were randomly generated at a distance 

between 1-20 m from the analysis point (0, 0). The analysis was done by calculating the 

contribution to the SVF by point. 



 

- 72 - 

 

The SVF reduction effect of each randomly generated 100,000 points (Fig. 

21) was computed (Table 14). Larger the voxel size, higher the SVF reduction. 

In the case of ray interval of 0.5°, which had the highest accuracy, the SVF 

decreased by 5.25, 20.09, and 74.66 when the voxel size was 5, 10, and 20 

cm, respectively. In other words, doubling the voxel size increased the SVF 

reduction effect by about four times. 

Contrary to voxel size, when the ray interval increases, the SVF reduction 

effect is weakened. With a voxel size of 5 cm and the ray interval doubled, 

SVF reduction decreases by 80% - 90%. In case of a 10 cm and 20 cm voxel, 

the SVF reduction decreases by 80% - 95% with the ray interval doubled. 

 

Table 14. Total sum of SVFs lowered by points (100,000 points). 

 
Ray interval 

0.5 ° 1 ° 2 ° 4 ° 8 ° 

Voxel 

size 

5cm 5.25 4.67 3.99 3.40 2.84 

10cm 20.09 18.66 16.38 13.65 11.33 

20cm 74.66 70.91 64.65 55.75 45.06 
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The degree of underestimation/overestimation of 5cm objects is 

summarized according to the analysis conditions (Table 15). In summary, 

when the voxel size is increased, the size of the object is overestimated, and 

when the ray interval is increased, the size of the object is underestimated. 

For example, a 5 cm object is overestimated by 3.8 times when analyzed at 

10cm voxel size. 

 

Table 15. Error rate of each analysis condition based on 0.5 degree 5cm condition. 

 
Ray interval 

0.5 ° 1 ° 2 ° 4 ° 8 ° 

Voxel 

size 

5cm 1.0 0.9 0.8 0.6 0.5 

10cm 3.8 3.6 3.1 2.6 2.2 

20cm 14.2 13.5 12.3 10.6 8.6 

 

4. Discussion 

Terrestrial LiDAR based SVF estimation has better accuracy than aerial 

LiDAR and GIS based estimation. The accuracy of SVF estimation using 

terrestrial LiDAR is not precise, however, it is more accurate than other 

methods. In high-density urban areas, GIS based SVF estimation, which 
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calculates SVF with vector data, was highly overestimated, particularly in 

high-rise areas (Gong et al. 2018). This is because the complexity of urban 

structures is extremely difficult to capture with a generalized GIS file. Other 

studies done in a similar environment using aerial LiDAR having both trees 

and buildings, achieved a maximum error of 0.26 (Kidd and Chapman 2012; 

An et al. 2014). This study observed a lower error of 0.156 by using the 

terrestrial LiDAR. Moreover, it is possible to map the estimated SVF 

continuously, similar to previous GIS methods.  

Trees are the main cause of major errors. This research have investigated 

to determine which of the artificial structures and natural occurrences are the 

main factors in decreasing accuracy, because they are the main drivers of SVF 

change in urban areas (Kidd and Chapman 2012). Comparing the results of 

testbeds C and D, the error increased after removing the data of buildings (Fig. 

17 and Fig. 18). Put differently, after this study removed the data of buildings, 

trees were the only obstacles that blocked the sky, and this area was larger 

than before increasing the error. Thus this study can conclude that trees are 
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the main cause of error. 

A possible alternative would be to make another testbed without the data 

of trees. Though it is possible to remove the trees in the terrestrial LiDAR 

data, removing them from the fisheye lens photography is impossible. To 

make a testbed with no tree condition, this study must remove the data of trees 

and restore the data of buildings obscured by trees. In this process, this study 

could not confirm the presence of buildings in areas of tree removal. Hence, 

this study could not build an additional testbed. 

Testbeds B and D have vegetation as the only condition and have an RMSE 

of 0.04 and 0.089 respectively, and a higher error in testbed D. The main 

difference between the two testbeds is that B is indoors and D is outdoors. 

Outdoor conditions are affected by wind which reduces the data accuracy of 

terrestrial LiDAR (Dassot et al. 2011) thereby increasing the SVF estimation 

error. Additionally, trees relative to testbed B are included in testbed D, 

having smaller leaves and branches. From this perspective, the voxel size and 

ray interval may not be appropriate to reflect smaller leaves and branches. 
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Fig. 22 Boxplot of voxel size effect on absolute error in testbed A and testbed B at a 0.5 

degree ray interval. 

 

Voxel size and ray interval are the most important factors that affect SVF 

accuracy. Therefore, SVF computations were conducted with different voxel 

sizes and ray intervals using same method as previously applied. At a ray 

interval of 1°, and reduction in the voxel size, SVF errors decreased (Fig. 22). 

In testbed A, the error significantly decreased when the voxel size was 

reduced from 20 cm to 10 cm. The change in error is not substantially 

observed at the voxel size of 10, 5, and 2.5 cm (Fig. 22a). In testbed B, the 

error decreased significantly as the voxel size was reduced (Fig. 22b). This is 
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due to the condition difference between testbed B, with trees, and testbed A, 

without trees. Because of the complexity of the tree canopy, testbed B needs 

greater resolution than testbed A, to decrease this error. Unlike voxel size, ray 

interval does not affect the SVF accuracy in both testbeds A and B, at a fixed 

voxel size of 2.5 cm (Fig. 23). 

 

 

Fig. 23 Boxplot of ray interval effect on absolute error in testbed A and testbed B at 2.5 cm 

voxel size. 
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Based on the resolution effect on SVF accuracy, this research computed 3 

verification points at testbed C, which had high errors. Points 3, 10 and 38 

were computed at a fixed voxel size of 2.5 cm with 1° of ray interval. The 

SVF errors decreased (Fig. 24) to 0.011, 0.039, and 0.069 at points 3, 10, and 

18, respectively. Unlike others, the degree of improvement in the result was 

small at point 3. It is considered that the effect of needle leaf tree at point 3 

makes the error higher as its leaf is thin and long, its covered area would be 

overestimated, and thus needs a smaller voxel size to reduce the error. 

 

Fig. 24 SVF errors at different voxel size in testbed C at point 3, point 10, and point 38. 

Reducing the voxel size reduced the error at all points. 
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It seems that resolution of the LiDAR data and voxel size are important to 

improve accuracy. However, with high-resolution data, the size of data 

becomes larger, thus requiring a longer time for analysis. Therefore, using 

unconditional high-resolution data would not be the best choice. The results 

dictate that high-resolution data is required only when there are trees having 

a large canopy area. Therefore, we need to calculate SVF with appropriate 

resolution to reflect local characteristics. 

In sensitivity analysis, the voxel size and ray interval were selected as 

variation variables. Voxel size indicates how accurately the real object can be 

reflected in the analysis. As the voxel size increases, the small object in reality 

is overestimated. According to sensitivity analysis, an object that is 5 cm in 

reality is overestimated by four times when analyzed at a voxel size of 10 cm 

(Table 14). However, this corresponds to one point in real data, and points 

will have adjacent points that result in lower overestimation by four times. 

That is, thin and small objects such as branches or leaf can cause 

overestimation by up to four times. As a result, overestimation of object size 
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will result in underestimation of SVF. 

The ray interval determines how accurately the voxel can be detected. The 

smaller the ray interval, the more it can detect farther and smaller objects. As 

the ray interval gets larger, the probability of not detecting increases, which 

causes an underestimated object size and overestimated SVF. 

This research also needs to consider the application of Mobile LiDAR. 

With this paper, this study have established that high accuracy is obtained at 

a voxel size of 2.5 cm. Mobile LiDAR system, wherein LiDAR is mounted 

on moving vehicles, can scan large urban areas at a resolution equal to 

terrestrial LiDAR (Zhao et al. 2018). Therefore, SVF estimation using mobile 

LiDAR is expected to have similar accuracy as terrestrial LiDAR. However, 

since terrestrial LiDAR and mobile LiDAR have different data acquisition 

methods, additional research is required. 
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V. Developing a method to construct urban scale data 

with high accuracy using LiDAR: SVF and GVI 

on the street 

1. Scope of study 

Point cloud enable to construct data in the form of a continuous map with 

high resolution. However, constructing data on an urban scale requires high 

volumes of data and analysis time. Urban scale data at high resolution is 

important, but for better efficiency, it may be better to analyze faster, even at 

lower resolutions. This research tried to identify the better way to construct 

the data for urban scale even if the resolution is slightly lowered. In addition, 

this research tried to analyze how to maintain the accuracy of the values even 

when the resolution is lowered. 

A simulation framework in a controlled virtual environment was employed 

to achieve the objectives of this study because it was not otherwise possible 
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to assume the uniform conditions necessary for this type of research. This 

approach was due to the uneven arrangement of trees and buildings, which 

would cause potential measurement errors in analyzing SVF and GVI. 

Conversely, a controlled virtual site would be flexible to simulate various 

physical conditions, unlike an actual site. It was also able to exclude the 

influence of other factors affecting the SVF and GVI values. 

A virtual site of this study was constructed by using a voxelized 3D point 

cloud. The 3D point cloud represented objects in the form of points. The data 

complied through light detection and ranging (LiDAR) were stored in this 

data type. This approach offered us the advantage that actual objects scanned 

by LiDAR could be used at the virtual site. In this study, virtual cylindrical 

trees and real trees scanned by terrestrial LiDAR were both applied in the 

simulation. Gingko (Gingko biloba) was used for scanned tree and CBH 

estimation algorithm was applied to classify crown part of the tree. 

Various site settings and measurement points were considered to 

investigate the variations in the SVF and GVI estimation. The SVF is affected 
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by the distance from surrounding trees and buildings, as well as the spacing 

between trees. The GVI is affected by the distance from surrounding trees and 

the spacing between trees. Therefore, to examine the influence of the distance 

from the surrounding trees and buildings, this research designed research 

areas considering various road widths, tree spacing for GVI estimation 

simulation. For SVF estimation simulation, various building heights were 

additionally considered. In addition, the SVF and GVI could differ because 

the distances from the surrounding trees depending on the location of the 

measurement point, even within the same research area. In order to reflect 

this issue, this research monitored changes in the SVF and GVI according to 

the measurement point by considering various measurement points within 

each research setting. 

In the GVI analysis, setting the buffer distance is crucial in terms of 

calculation accuracy and time. This study first derived the appropriate buffer 

distance. In order to determine the buffer distance, this study conducted a 

sensitivity analysis to estimate the GVI by applying different buffer distances 
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ranging from 30 m to 302 m at intervals of 16 m for road widths of 7.5 m, 15 

m, 22.5 m, and 30 m. As a result, 150 m was selected as an appropriate buffer 

for the GVI analysis. 

 

2. Research area setting 

This research created a total of 40 research settings (Fig. 25). This research 

considered road width, tree planting interval, and tree type. The road width 

was set to range between 2 and 8 lanes with a 2-lane interval. The widths of 

the sidewalk and road were set at 5 m and 3.75 m, respectively (Fitzpatrick et 

al. 2001). It was assumed that the sidewalks were located on both sides of the 

road and street trees were planted out at equal intervals along the sidewalks 

within 1 meter from the edge of the road. 
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Fig. 25 Schematic diagram of the site conditions for 40 research site settings. 

 

In urban areas, different types of trees can be planted at various intervals. 

To reflect this situation, various planting patterns were set for each research 

site. At first, because the SVF and GVI would change based on the distance 

between the trees, those distances were set to range between 4 m to 12 m at 2 

m increments. 

Additionally, this research analyzed different cases of virtual trees with 

cylindrical canopy and cases with LiDAR-scanned trees. As a result, 40 

different research settings were developed for this research by applying five 

different tree-planting intervals and two tree types to each of the four sites. In 
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addition to 40 research areas, the SVF study additionally applied 10m, 20m, 

and 30m height buildings to the simulation. As a result, a total of 120 research 

areas were created in the SVF study. 

 

3. Method 

3.1. SVF estimation 

The SVF was estimated using the algorithm described in chapter IV.2.2. 

Different from previous chapter, research area of this chapter is voxelized 3D 

point cloud data which have 20cm voxel size. 

 

3.2. GVI estimation 

The GVI was estimated by creating an occlusion map using point cloud 

data; data points were classified as building, road, sidewalk, or tree (Susaki 

and Kubota 2017). To generate the occlusion map, the azimuth and elevation 

angles from the viewpoint were varied from 0° to 360° or −90° to + 90°, 
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respectively, in 1° increments. Under these conditions, this research 

computed a visual observation from each angle (Fig. 26). An occlusion map 

with an azimuth angle as the x-axis and elevation angle as the y-axis was then 

derived from the objects observed from all angles (Fig. 27). In this occlusion 

map, the GVI was calculated using the ratio of green pixels to all the pixels. 

However, this method could cause a high number of errors near the elevation 

angles of −90° and +90° (Susaki and Kubota 2017). Therefore, this research 

applied an equisolid angle projection to reduce such errors (Susaki et al. 2014; 

Susaki and Kubota 2017). 

 

 

Fig. 26 Measurement range at the GVI measurement point. 
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Fig. 27 Occlusion map for estimating the GVI. 

 

Unlike the existing method of dividing a space by the same angular interval 

in the azimuth-elevation angle space, the equisolid angle projection generates 

the unit areas in the space equal. This research converted the azimuth-

elevation angle space data to the equisolid-angle projected space (Fig. 27) and 

applied Equation 1 to compute the GVI. 

GVI =
∑ ∑ 𝑑𝑠(∅,𝜃)𝑓(∅,𝜃)90

𝜃=−90
360−∆∅
∅=0

∑ ∑ 𝑑𝑠(∅,𝜃)90
𝜃=−90

360−∆∅
∅=0

× 100, (1) 

where ∅ and 𝜃 denote the azimuth and elevation angles, respectively, in 

the azimuth-elevation angle space, respectively, and 𝑑𝑠(∅, 𝜃) denotes the 

area of a cell in the equisolid-angle projected space. It is given by: 
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ds(∅, 𝜃) = (𝑅𝑐𝑜𝑠𝜃∆∅) = 𝑅2𝑐𝑜𝑠𝜃∆∅∆𝜃, (2) 

where R denotes the radius of a sphere upon which the projected elements 

are assumed to be located on, and 𝑓(∅, 𝜃) denotes a function of the occlusion 

given by: 

f(∅, 𝜃) = {
1 ∶   𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑  

0 ∶ 𝑛𝑜𝑡 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑑
 , (3) 

According to Equation 1, the GVI can vary from 0% to 100%. 
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3.3. Observation points 

 

Fig. 28 Basic conditions of the research area and horizontal GVI measurement positions. 

 

This research measured the SVF and GVI values on the road. The values 

were different depending on the horizontal (Fig. 28) and vertical (Fig. 29) 

measurement positions. Measurement points can be obtained from various 

positions on a road, and the SVF and GVI differed depending on the point at 

which the photograph was taken. The study area setting was symmetrical 

around the center line, the SVF and GVI were analyzed in the middle of the 
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lanes from the first to the fourth lane (Fig. 28). In this research, the lanes are 

referred to as Lane A, Lane B, Lane C, and Lane D, beginning with the side 

nearest to the sidewalk. This research also considered differences in the 

vertical position. The vertical position causes a difference in the distance from 

the line of trees, resulting in a SVF and GVI variation. Therefore, the analysis 

was carried out for three points: the center of the width of the tree, the point 

at 3/4th the width of the tree, and the point adjacent to the far end of the tree 

(hereafter referred to as V1, V2, and V3, respectively) (Fig. 29). Finally, SVF 

and GVI were analyzed at six points on the 7.5 m-wide road, nine points on 

the 15 m-wide road, 12 points on the 22.5 m-wide road, and 15 points on the 

30 m-wide road. 
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Fig. 29 Vertical GVI measurement positions. 

 

3.4. Statistical analysis 

The SVF was estimated from 600 and the GVI was estimated from 300 

measurement points on the road. At first, this study calculated the average 

GVI for each research site to identify the main causes of GVI changes. In 

addition, to analyze effect of the measurement points of each site on the GVI 

error range, this study computed the difference between the maximum and 
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minimum GVI values for each research site. Secondly, this study analyzed 

the error range caused by the horizontal and the vertical positions. The 

average of the analysis points at the same vertical and horizontal positions in 

each research area with a road width of 30m were computed. Finally, in order 

to derive the position from which the most representative GVI could be 

measured in each research area, this research determined the positions with 

values closest to the average GVI values of each research area. 

 

4. Result 

4.1. SVF 

4.1.1. SVF values as measured from various positions 

Both road widths and tree planting intervals were significantly related to 

average SVF changes. The average SVF values for 120 research settings were 

calculated (Table 22). In general, the SVF was higher when using virtual trees. 

The narrower the road and the lower the tree interval, the lower the average 

SVF were reported.  
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Table 16. Average SVF by study setting. As the road width and tree interval increases, the 

average SVF increases. 

Planting 
condition 

Interval 
(m) 

Road width 

7.5m 15m 22.5m 30m 

Virtual tree 

4 0.479  0.627  0.707  0.759  

6 0.515  0.648  0.722  0.770  

8 0.538  0.661  0.731  0.777  

10 0.553  0.670  0.737  0.782  

12 0.564  0.676  0.742  0.785  

Real tree 

4 0.320  0.550  0.657  0.721  

6 0.388  0.586  0.682  0.740  

8 0.434  0.611  0.698  0.752  

10 0.477  0.633  0.713  0.764  

12 0.498  0.644  0.721  0.769  

 

The differences between the maximum and minimum SVF values for each 

research setting are summarized in Table 23. The wider the road, the greater 

the difference in SVF value for each site. On the 7.5 m-wide road, the most 

significant difference occurred when real trees were planted at 12 m intervals; 

the maximum and minimum GVI values were 0.727 and 0.281, respectively. 

On the 30 m-wide road, the biggest difference occurred when real trees were 

planted at 4 m intervals; the maximum and minimum SVF values were 0.940 

and 0.408, respectively. Compared to the difference between 7.5m road and 

15m road, the difference between 22.5m road and 30m road was smaller. 
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Table 17. Difference between the maximum and minimum GVI values by study setting. 

Planting 
condition 

Interval 
(m) 

Road width 

7.5m 15m 22.5m 30m 

Virtual tree 

4 0.099 0.257 0.311 0.331 

6 0.163 0.278 0.316 0.329 

8 0.208 0.293 0.321 0.329 

10 0.241 0.305 0.325 0.330 

12 0.266 0.313 0.327 0.330 

Real tree 

4 0.147 0.484 0.525 0.532 

6 0.300 0.482 0.512 0.515 

8 0.371 0.485 0.506 0.507 

10 0.416 0.490 0.504 0.504 

12 0.446 0.494 0.504 0.503 

 

4.1.2. Effects of horizontal and vertical road positions on SVF 

values 

A horizontal measurement position on the road caused a SVF difference 

of up to 0.389 (Table 24). The SVF was highest on Lane D and lowest on 

Lane A. In other words, the SVF was higher at the points further from the 

sidewalk and lower when closer to the sidewalk. In particular, the lower the 

average SVF and the narrower the tree interval, the greater the difference is 

SVF values. In some cases where real trees were analyzed, the SVF of Lane 

D was almost twice as high as that of Lane A. That is, the horizontal position 
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highly affected the SVF difference, and that difference grew larger as the tree 

interval narrowed. 

 

Table 18. Average SVF values by horizontal position difference in maximum and minimum 

SVF values. 

Planting 
condition 

Interval 
(m) 

 Horizontal position 

Lane A Lane B Lane C Lane D 
Max- 

Min 

Virtual tree 

4 0.623 0.768 0.813 0.831 0.209 

6 0.652 0.776 0.817 0.834 0.182 

8 0.671 0.781 0.820 0.836 0.165 

10 0.683 0.785 0.821 0.837 0.154 

12 0.692 0.787 0.823 0.838 0.146 

Real tree 

4 0.450 0.777 0.821 0.838 0.389 

6 0.515 0.782 0.823 0.839 0.324 

8 0.560 0.785 0.824 0.840 0.280 

10 0.602 0.788 0.825 0.841 0.239 

12 0.622 0.789 0.826 0.841 0.219 

 

A vertical measurement position on the road caused a SVF difference of 

up to 0.063 (Table 25). The SVF was highest in V3 and lowest in V1. 

Contrary to the horizontal position, the SVF difference was greater when the 

average SVF was higher and tree interval was wider. The SVF difference 

caused by the vertical position was much smaller than that caused by the 

horizontal position. 
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Table 19. Average SVF values by vertical position and differences in maximum and 

minimum SVF values. 

Planting 

condition 

Interval 

(m) 

Vertical position 

V1 V2 V3 Max-Min 

Virtual tree 

4 0.823  0.824  0.826  0.003  

6 0.844  0.848  0.851  0.006  

8 0.859  0.863  0.867  0.009  

10 0.867  0.874  0.879  0.012  

12 0.872  0.882  0.887  0.015  

Real tree 

4 0.796  0.799  0.800  0.004  

6 0.810  0.813  0.848  0.038  

8 0.821  0.838  0.870  0.049  

10 0.827  0.866  0.885  0.058  

12 0.831  0.880  0.894  0.063  

Unlike the horizontal position, the distance between vertical positions 

differed depending on the research settings. Concerning the horizontal 

position, the distance between the analysis points of Lanes A, B, C, and D 

was 3.75 m, which was equal to the road width. On the other hand, concerning 

the vertical position, the distance between the analysis points for V1, V2, and 

V3 varied from 1 m to 3 m. In other words, the wider the planting interval, 

the greater the distance between the analysis points and difference in SVF 

values. Nevertheless, the maximum vertical position influence of 0.063 

indicates that the vertical position effect was minimal compared to that of the 

horizontal position. 
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4.1.3. What position best represents the research setting? 

In order to identify the representative estimation points, the SVF values 

closest to the average SVF for each research setting were selected (Table 26). 

The horizontal position was found to be a major factor in determining the 

most representative estimation point. In research areas with a 15 m road width 

where two horizontal positions existed, all representative estimation points 

were located in Lane A. In the research areas with the 22.5 m, 7 out of 10 

representative estimation points were located in Lane B. 30 m road widths, 

all representative estimation points were located in Lane B. Conversely, it 

was difficult to find a specific trend in analyzing vertical positions, except in 

rare cases. This is because the horizontal position had a greater influence on 

the GVI value than did the vertical position. 
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Table 20. Estimation points closest to the average SVF values. The horizontal and vertical 

positions can be used to specify points within the study site. 

Planting 

condition 

Interval 

(m) 

Road width 

7.5m 15m 22.5m 30m 

Virtual tree 

4 
Lane A 

V2 

Lane A 

V3 

Lane B 

V3 

Lane B 

V3 

6 
Lane A 

V2 

Lane A 

V3 

Lane B 

V3 

Lane B 

V3 

8 
Lane A 

V2 

Lane A 

V3 

Lane B 

V1 

Lane B 

V3 

10 
Lane A 

V2 

Lane A 

V3 

Lane B 

V1 

Lane B 

V1 

12 
Lane A 

V2 

Lane A 

V3 

Lane B 

V1 

Lane B 

V1 

Real tree 

4 
Lane A 

V2 

Lane A 

V3 

Lane B 

V3 

Lane B 

V3 

6 
Lane A 

V2 

Lane A 

V3 

Lane B 

V2 

Lane B 

V2 

8 
Lane A 

V2 

Lane A 

V3 

Lane A 

V3 

Lane B 

V1 

10 
Lane A 

V2 

Lane A 

V3 

Lane A 

V3 

Lane B 

V1 

12 
Lane A 

V2 

Lane A 

V3 

Lane A 

V3 

Lane B 

V1 

 

Based on Table 26, representative estimation points for each road width 

were set. The maximum differences between the average SVF and SVF for 

Lane A on 15m, Lane B on 22.5 m and 30 m roads were used as representative 

SVF values. As a result, the maximum and average differences were 0.172 

and 0.034 respectively (Table 27). 
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Table 21. Maximum difference in SVF from a representative estimation point and average 

SVF by study setting. 

  Building height 
  10m 20m 30m 

Planting 

condition 

Interval 

(m) 

Road width(m) 

15 22.5 30 15 22.5 30 15 22.5 30 

Virtual 

tree 

4 0.069 0.039 0.005 0.068 0.043 0.018 0.036 0.023 0.005 

6 0.052 0.034 0.006 0.053 0.035 0.012 0.027 0.018 0.001 

8 0.040 0.030 0.005 0.043 0.029 0.008 0.023 0.016 0.000 

10 0.030 0.027 0.004 0.035 0.026 0.006 0.020 0.015 0.001 

12 0.021 0.023 0.003 0.029 0.023 0.004 0.018 0.013 0.002 

Real 

tree 

4 0.172 0.104 0.055 0.151 0.101 0.062 0.120 0.080 0.048 

6 0.054 0.087 0.046 0.031 0.079 0.045 0.015 0.062 0.034 

8 0.016 0.081 0.036 0.005 0.058 0.035 0.006 0.037 0.027 

10 0.002 0.056 0.026 0.001 0.048 0.026 0.007 0.031 0.018 

12 0.011 0.039 0.021 0.003 0.041 0.021 0.008 0.027 0.015 
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4.2. GVI 

4.2.1. GVI values as measured from various positions 

Both road widths and tree planting intervals were significantly related to 

average GVI changes. The average GVI values for 40 research settings were 

calculated (Table 22). In general, the GVI was higher when using real trees. 

The narrower the road and the lower the tree interval, the higher the average 

GVI were reported. Irrespective of the tree interval, the GVI of the narrowest 

road was nearly twice as high as that of the GVI of the 30 m-wide road width. 

 

Table 22. Average GVI by study setting. As the road width and the tree interval decreases, 

the average GVI increases. 

Planting 
condition 

Interval 
(m) 

Road width 

7.5m 15m 22.5m 30m 

Virtual tree 

4 27.4% 22.0% 18.3% 15.7% 

6 21.8% 17.4% 14.3% 12.2% 

8 17.8% 14.1% 11.5% 9.8% 

10 15.0% 11.7% 9.6% 8.1% 

12 12.9% 10.1% 8.2% 6.9% 

Real tree 

4 31.1% 23.6% 19.1% 16.1% 

6 27.8% 20.9% 16.8% 14.1% 

8 23.4% 17.4% 13.9% 11.7% 

10 19.6% 14.6% 11.6% 9.7% 

12 16.7% 12.4% 9.9% 8.3% 
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The differences between the maximum and minimum GVI values for each 

research setting are summarized in Table 23. The wider the road, the greater 

the difference in GVI value for each site. On the 7.5 m-wide road, the most 

significant difference occurred when real trees were planted at 12 m intervals; 

the maximum and minimum GVI values were 19.3% and 14.4%, respectively. 

On the 30 m-wide road, the biggest difference occurred when real trees were 

planted at 4 m intervals; the maximum and minimum GVI values were 23.3% 

and 11.7%, respectively. In addition, as the road widened, the difference 

between the maximum and minimum GVI values for each research setting 

tended to increase. 

Table 23. Difference between the maximum and minimum GVI values by study setting. 

Planting 
condition 

Interval 
(m) 

Road width 

7.5m 15m 22.5m 30m 

Virtual tree 

4 0.4%p 1.1%p 3.8%p 6.0%p 

6 1.1%p 1.7%p 3.7%p 5.6%p 

8 1.3%p 1.9%p 3.6%p 5.1%p 

10 1.8%p 2.1%p 3.6%p 4.8%p 

12 2.5%p 2.5%p 3.6%p 4.7%p 

Real tree 

4 0.3%p 6.2%p 9.6%p 11.6%p 

6 0.7%p 5.9%p 9.1%p 11.1%p 

8 1.8%p 5.5%p 8.1%p 9.9%p 

10 3.2%p 5.4%p 7.6%p 9.0%p 

12 4.9%p 5.7%p 7.5%p 8.7%p 
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4.2.2. Effects of horizontal and vertical road positions on GVI 

values 

A horizontal measurement position on the road caused a GVI difference of 

up to 11.6%p (Table 24). The GVI was highest on Lane A and lowest on Lane 

D. In other words, the GVI was higher at the points closer to the sidewalk and 

lower when further from the sidewalk. In particular, the higher the average 

GVI and the narrower the tree interval, the greater the difference is GVI 

values. In some cases where real trees were analyzed, the GVI of Lane A was 

more than twice as high as that of Lane D. In addition, the GVI of Lane A 

was sometimes 1.5 times higher than that of Lane D when virtual trees were 

tested. That is, the horizontal position highly affected the GVI difference, and 

that difference grew larger as the tree interval narrowed. 
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Table 24. Average GVI values by horizontal position difference in maximum and minimum 

GVI values. 

Planting 
condition 

Interval 
(m) 

 Horizontal position 

Lane A Lane B Lane C Lane D 
max- 

min 

Virtual tree 

4 18.7% 16.4% 14.3% 13.1% 5.6%p 

6 15.0% 12.8% 11.0% 10.1% 4.9%p 

8 12.4% 10.2% 8.6% 7.9% 4.4%p 

10 10.4% 8.4% 7.2% 6.5% 3.9%p 

12 8.9% 7.2% 6.0% 5.5% 3.4%p 

Real tree 

4 23.4% 16.1% 13.1% 11.8% 11.6%p 

6 20.8% 14.2% 11.3% 10.2% 10.7%p 

8 17.3% 11.7% 9.3% 8.3% 9.0%p 

10 14.4% 9.8% 7.7% 6.9% 7.5%p 

12 12.3% 8.3% 6.6% 5.9% 6.4%p 

 

A vertical measurement position on the road caused a GVI difference of 

up to 1.2% (Table 25). The GVI was highest in V1 and lowest in V3. Contrary 

to the horizontal position, the GVI difference was greater when the average 

GVI was lower and tree interval was wider. The GVI difference caused by 

the vertical position was much smaller than that caused by the horizontal 

position. 
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Table 25. Average GVI values by vertical position and differences in maximum and 

minimum GVI values. 

Planting 

condition 

Interval 

(m) 

Vertical position 

V1 V2 V3 Max-Min 

Virtual tree 

4 15.7% 15.6% 15.6% 0.1%p 

6 12.4% 12.2% 12.1% 0.4%p 

8 10.0% 9.7% 9.6% 0.3%p 

10 8.3% 8.1% 7.9% 0.4%p 

12 7.3% 6.9% 6.6% 0.7%p 

Real tree 

4 16.1% 16.2% 16.2% 0.1%p 

6 14.3% 14.1% 14.1% 0.2%p 

8 11.9% 11.7% 11.4% 0.4%p 

10 10.1% 9.7% 9.4% 0.8%p 

12 8.9% 8.2% 7.7% 1.2%p 

 

4.2.3. What position best represents the research setting? 

In order to identify the representative estimation points, the GVI values 

closest to the average GVI for each research setting were selected (Table 26). 

The horizontal position was found to be a major factor in determining the 

most representative estimation point. In research areas with a 15 m road width 

where two horizontal positions existed, 9 out of 10 representative estimation 

points were located in Lane A. In the research areas with the 22.5 m and 30 

m road widths, all representative estimation points were located in Lane B. It 

was difficult to find a specific trend in analyzing vertical positions, except in 
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rare cases. This is because the horizontal position had a greater influence on 

the GVI value than did the vertical position. 

 

Table 26. Estimation points closest to the average GVI values. 

Planting 

condition 

Interval 

(m) 

Road width 

7.5m 15m 22.5m 30m 

Virtual tree 

4 
Lane A 

V2 

Lane A 

V3 

Lane B 

V3 

Lane B 

V1 

6 
Lane A 

V2 

Lane A 

V3 

Lane B 

V1 

Lane B 

V2 

8 
Lane A 

V2 

Lane A 

V3 

Lane B 

V1 

Lane B 

V3 

10 
Lane A 

V2 

Lane A 

V3 

Lane B 

V2 

Lane B 

V2 

12 
Lane A 

V2 

Lane B 

V1 

Lane B 

V1 

Lane B 

V3 

Real tree 

4 
Lane A 

V3 

Lane A 

V1 

Lane B 

V3 

Lane B 

V1 

6 
Lane A 

V2 

Lane A 

V3 

Lane B 

V1 

Lane B 

V3 

8 
Lane A 

V2 

Lane A 

V3 

Lane B 

V1 

Lane B 

V2 

10 
Lane A 

V2 

Lane A 

V3 

Lane B 

V1 

Lane B 

V3 

12 
Lane A 

V2 

Lane A 

V3 

Lane B 

V1 

Lane B 

V2 

 

Based on Table 26, representative estimation points for each road width 

were set. The maximum differences between the average GVI and GVI for 

Lane A on 15m, Lane B on 22.5 m and 30 m roads were used as representative 
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GVI values. As a result, the differences in the average GVI for the research 

setting decreased to 3% (Table 27). 

 

Table 27. Maximum difference in GVI from a representative estimation point and average 

GVI by study setting 

Planting 

condition 

Interval 

(m) 

Road width 

15m 22.5m 30m 

Virtual tree 

4 0.4%p 0.1%p 0.8%p 

6 0.5%p 0.2%p 0.6%p 

8 0.6%p 0.2%p 0.4%p 

10 0.6%p 0.3%p 0.3%p 

12 0.5%p 0.2%p 0.2%p 

Real tree 

4 3.0%p 1.5%p 0.0%p 

6 2.7%p 1.3%p 0.1%p 

8 2.3%p 1.1%p 0.0%p 

10 1.9%p 0.9%p 0.1%p 

12 1.6%p 0.8%p 0.0%p 

 

 

5. Discussion 

According to the analysis of SVF and GVI in the urban street, values are 

different depending on the position even within the small target area on the 

road. Lowering the resolution of such data and extending it to the urban scale 

can lead to high uncertainty. Based on the results of this study, urban scale 
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data construction can be accomplished in two ways. Firstly, researcher can 

choose where the researcher want to get results. For example, if a researcher 

want data from the center of the street, researcher can get the data by 

analyzing it in the center of the street at regular intervals. Secondly, 

representative points can be used as derived from this study. 

One of the things that makes urban scale analysis possible is that the 

vertical position has little effect on the variation. Accordingly, if the 

horizontal position is selected in the research design, data can be constructed 

with high accuracy at the urban scale by analyzing at regular vertical intervals. 

From this point of view, Google Street View (GSV) imagery, which is widely 

used for urban scale analysis, has its limitations. 

In SVF and GVI studies, the lanes from which GSV is taken impact the 

overall accuracy. Many researchers have used GSV to calculate local SVF 

and GVI values. However, little information have been documented with 

regards to road widths and the lanes from which images were taken. The 

accuracy can be increased by narrowing the collection interval for GSV 
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images. Since this would control the vertical position rather than horizontal 

position, however, we expect that the effect on increasing the accuracy would 

be minimal. Accuracy could be further improved, if the image in the 

representative lane or position is selected based on the width of the road. 

However, GSV does not yet provide information such as road width and lane 

numbers for its images. Nevertheless, there is still some level of accuracy 

when the road is narrow. 

GSV is not only used in SVF and GVI studies but also used in walkability 

analysis by classifying sky area (Yin and Wang 2016; Wang et al. 2019), 

neighborhood environment measurement (Odgers et al. 2012) and pedestrian 

volume measurement (Yin et al. 2015). These studies have something in 

common in using GSV images, but they differ in the way they are used. 

Studies using the area occupied by objects classified in the image are 

considered to be influenced by the lane where the GSV image is taken as 

shown in this study. On the other hand, the lanes should not be considered in 

neighborhood environment and pedestrian volume research because they 
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count objects in the images such as, number of pedestrians or number of speed 

limit signs. 

The lack of consideration of all road conditions is a limitation of this study. 

In this study, multiple road widths, tree intervals, and building heights were 

considered on straight roads. However, there are other roads in the city other 

than straight roads such as curved roads and intersections. Curved roads and 

intersections may have different characteristics than straight roads covered in 

this study. Concerning different conditions, further analysis needs to be done 

to investigate the method for urban scale data construction. Nevertheless, 

because the straight road is the most common road type in the urban area, this 

study has contribution to urban scale data construction study. 
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VI. Conclusion 

This study explores the possibility of measuring SVF and GVI in urban 

scale. In addition, as a LiDAR data preprocessing step for GVI analysis, CBH, 

DBH, tree height were calculated and accuracy assessment was conducted. 

This study shows the feasibility of constructing accurate data for trees in a 

wide area using mobile LiDAR. Mobile LiDAR has medium resolution, 

measurement range and accuracy between airborne LiDAR and terrestrial 

LiDAR. These characteristics of mobile LiDAR allow researchers to obtain 

DBH measurement, which is impossible with airborne LiDAR, and qualify 

more accurate CBH and tree height measurement. Moreover, it is possible to 

build data at a wider range, which is difficult with terrestrial LiDAR. 

For the LiDAR based SVF accuracy evaluation, this research employed 

terrestrial LiDAR unlike the other studies that employed aerial LiDAR. The 

accuracy was higher because the terrestrial LiDAR has a higher resolution 

than that of aerial LiDAR. There are disadvantages as well as advantages to 
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improving accuracy. It is difficult to scan large area with terrestrial LiDAR 

because it collects data at a fixed position. According to the result, it is 

considered that the mobile LiDAR which is convenient for scanning large 

areas has high enough resolution to estimate SVF accurately. Therefore, SVF 

calculation technique used in this study will have higher practicality when it 

comes to mobile LiDAR. 

Through identifying the most accurate SVF and GVI average value in a 

wide area, this study has confirmed the possibility of constructing a city-level 

inventory. To scale up the method that this study offered, accurate data can 

be built over a large area while minimizing the amount of computation load. 

On the other hand, data quality such as point density and accuracy will be an 

important issue as investigated in sensitivity analysis. 

The computation time can be the main issue in a large scale data 

construction. Computation time is highly dependent on data size, computing 

power, required resolution (ray interval, SVF and GVI map resolution, point 

cloud data resolution). This research investigated the resolution effect on the 
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SVF and GVI, and studied ways to reduce the error of the results. However, 

the optimum resolution was not obtained. In order to find the optimal 

resolution, a reasonable error range is required. In other words, further 

research is needed to determine the required accuracy of SVF and GVI 

calculations. 

The urban environment has various variables in addition to those discussed 

in this study and SVF and GVI can be affected by them. For example, 

seasonal changes in vegetation have a significant impact on the SVF and GVI. 

Also, during summer, one tree may obscure another, making it difficult to 

collect LiDAR data itself, and the final result may be affected by it. 

Nevertheless, it is impossible to consider all the conditions of the urban street 

environment. It is necessary to solve important factors in order, and this study 

will be the starting point. 
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Appendix 2. Length of the convex hull at each height (r9-r15). 
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국문 초록 

 

지상 라이다를 이용한 도시 가로 

천공률과 녹시율 평가 

 

 허 한 결  

 

서울대학교 대학원 

협동과정 조경학 

 지도교수: 이 동 근 
 

도시 가로 환경은 생물 다양성을 증진, 탄소를 저장, 도시열섬 

효과를 완화, 도시 주민의 신체적, 정신적 건강 증진 등 다양한 기

능을 수행한다. 이에 따라 도시 가로 환경 구조를 정량화 하기 위

한 연구가 진행되어왔다. 특히 최근에는 LiDAR (Light Detection 

and Ranging) 시스템의 개발로 3차원 데이터 수집이 가능해졌고, 

이로 인해 도시 구조의 정확한 측정이 가능해졌다. 이에 따라 기

존 2차원 데이터의 한계로 직접 대상지에서 사진촬영을 통해 구축

되던 천공률과 녹시율 등의 데이터 구축이 가능해졌다. 
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녹시율 분석을 위해 수목의 수관을 분류하는 등 LiDAR데이터

의 전처리 과정이 필요하다. 특히 나무는 도시 가로 환경에서 가

장 중요한 생태 요소이며, 수목 데이터의 정량화는 LiDAR데이터를 

이용한 분석에서 중요한 기초자료가 된다. 이에 본 연구에서는 첫 

번째로, mobile LiDAR을 사용하여 도시 수목의 수고, 지하고, 흉고

직경을 분석하고 정확도를 검증하였다.  결과적으로 수고와 지하

고는 각각 RMSE가 0.359m와 0.09m로 나타나 높은 정확도를 나타

내었다. 반면 흉고직경은 RMSE 0.0377m로 중간 정도의 정확도를 

나타냈다. 

본 연구에서 두 번째로 분석한 천공률은 도시 인프라와 관련

된 주요 지표이며 도시 열섬 및 재생 가능 에너지 연구에서 태양

복사에너지양을 산정하기 위해 주로 사용된다. 그러나 기존 방법

은 정확도 측면에서 한계가 있거나, 현장조사를 통해 데이터를 구

축하여 한계가 있었다. 최근 LiDAR를 사용하여 복잡한 도시 지역

에서도 천공률 계산이 가능해졌다. 그러나 항공 LiDAR의 해상도 

한계로 인해 나무가 있는 도시지역에서의 정확도가 떨어졌다. 따

라서 본 연구는 지상 LiDAR을 이용한 천공률 계산의 정확성을 검
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증하고자 하였으며, 항공 LiDAR보다 높은 정확도로 천공률을 계산

하였다. 지상 LiDAR 기반 SVF의 결과는 𝑅2 0.915, RMSE 0.037, 최

대 오차 0.156으로 높은 정확도를 나타냈다. 본 연구에 따르면 지

상 LiDAR의 경우 복셀 크기 2.5cm가 복잡한 도시 지역에서 SVF를 

추정하기에 적합하며, 항공 LiDAR과 비교하여 최대 오차를 60 % 

감소시킬 수 있는 것으로 나타났다. 

마지막으로 본 연구에서는 천공률과 녹시율 데이터의 도시 규

모 구축 가능성에 대해 분석하고 구축 방법을 제시하였다. 연구 

결과에 따르면 LiDAR 데이터의 해상도가 높을수록 결과의 정확도

가 높아진다. 그러나 높은 해상도의 LiDAR 데이터로 높은 해상도

의 데이터를 구축하기 위해서는 분석량이 많아 시간 효율이 떨어

진다. 이에 대해 본 연구에서는 가상의 복셀화된 3차원 환경에서 

시뮬레이션 분석을 수행하여 효율적인 데이터 구축 방법을 도출하

고자 하였다. 연구 결과에 따르면 도로 위 어떤 차선에서 분석하

는지에 따라 천공률과 녹시율 값의 변동이 크게 나타나며, 도로의 

폭에 따라 연구 대상지를 대표할 수 있는 위치를 특정지을 수 있

음을 도출하였다. 천공률과 녹시율 모두 대상지의 평균과 가장 가
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까운 위치가 도로 폭에 따라 왕복 8차선 도로에서는 3차선, 왕복 

6차선 도로에서는 2차선에서 나타나며, 왕복 4차선과 2차선에서는 

각각 2차선과 1차선에서 나타난다. 따라서 연구 대상지 모든 지점

에서 분석하지 않고 도출된 지점에서 분석한다면 연구 대상지를 

대표하는 천공률과 녹시율을 쉽게 도출할 수 있다. 

본 연구를 통해 LiDAR 데이터를 이용한 가로환경 중 천공률과 

녹시율 데이터 구축을 더 효율적으로 할 수 있을 것으로 기대된다. 

이는 기존 사진촬영을 통해 높은 정확도의 데이터를 낮은 효율로 

취득하는 방식이나 2차원, 2.5차원 데이터를 통해 중간 정확도의 

데이터를 높은 효율로 취득하는 방식에 비해 상당부분 개선된 것

으로 판단된다. 또한 LiDAR 데이터를 이용함에 있어서도 분석 효

율을 높여, 넓은 대상지에서도 결과물을 도출하는 시간을 앞당길 

수 있을 것으로 기대할 수 있다. 

주요어: LiDAR, 도시규모 분석, 가로수, 도시녹지, 흉고직경, 지하고 

학번: 2016-30705 
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