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Abstract

osteoarthritis animal arthritis models.

Extracellular vesicles (EVs) are nano-sized particles secreted by almost all cell types, and they mediate various
biological processes via cell-to-cell communication. Compared with parental cells for therapeutic purposes, stem
cell-derived EVs have several advantages such as reduced risk of rejection, less oncogenic potential, ease of long-
term storage, lower chance of thromboembolism, and readiness for immediate use. Recent studies have
demonstrated that EVs from stem cells, mostly from mesenchymal stem cells (MSCs) from various tissues, have anti-
inflammatory, anti-oxidative, anti-apoptotic, and proliferative role in injured organs including osteoarthritic lesions.
Herein, we provide a review about the up-to-date studies in preclinical application of stem cell-derived EVs in
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Introduction

Among joint diseases, osteoarthritis (OA) is one of the
most severe types of arthritis that is caused by loss of
joint cartilage and bone [1]. Mostly, the articular damage
is due to loss of self-repair capability of injured cartilage
caused by mechanical stress, e.g., sudden or unadjusted
movements, mechanical injury, excess weight, loss of
muscle strength supporting joint, and damage in periph-
eral nerves [2]. Also, it is still under debate whether ex-
ercise increases the risk of osteoarthritis in the knee [3].

Osteoarthritis: its pathophysiology

So far various soluble mediators have been reported to
be involved in the progression of OA. Readers are re-
ferred to other reviews on the detailed role of the role of
pro-inflammatory (IL-1B, TNF-«, IL-6, IL-17) (Fig. 1)
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and anti-inflammatory cytokines that are involved in OA
pathogenesis (IL-4, IL-10, IL-13) [4, 5]. For example, an
elevated level of IL-1B and TNF-a was found in OA
synovial fluid, synovial membrane, and subchondral
bone cartilage [6]. Mechanistically, these cytokines
down-regulated the synthesis extracellular matrix (ECM)
component by inhibiting anabolic activities of chondro-
cytes. Another study showed that IL-1p reduces the ex-
pression of the type II collagen, which is a major ECM
component constituting the cartilaginous tissues in sev-
eral animal species [7, 8]. Also, the expression of Aggre-
can, which is one of the major components of the
cartilage, was found to be decreased by IL-1p treatment
in chondrocytes and cartilage [9]. Indirectly, IL-1p and
TNF-a stimulate chondrocyte to produce a proteolytic
enzyme such as matrix metalloproteinases (MMPs), in-
cluding MMP-1 (interstitial collagenase), MMP-3 (stro-
melysin 1), MMP-13 (collagenase 3) [10-12]. In
addition, ADAMTS (a disintegrin-like and metallopro-
teinase with thrombospondin motifs) of is also one of
the major players in cartilage degradation in OA. It was
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Fig. 1 The role of proinflammatory cytokines in the pathophysiology of OA. The role of proinflammatory cytokines, including IL-1(3, TNF-q, IL-6
and IL-17, are elevated in OA. These cytokines contribute to the pathogenesis of OA through several mechanisms including downregulation and

upregulation of inflammatory responses. Abbreviations: ADAMTS: a disintegrin-like and metalloproteinase with thrombospondin motifs; IL:
interleukin; MMP: matrix metalloproteinase; NO: nitric oxide; TNF: tumor necrosis factor

reported that the expression of ADAMTS-4 can be in-
duced by IL-1p and TNF-a, while the expression of
ADAMTS-5 was not affected [13]. In contrast, subse-
quent study has shown that IL-1f induced its mRNA ex-
pression in rabbit nucleus [14]. Other than these
proteases, miR30a was also shown to play an important
role in controlling ADAMTS-5 expression that was
caused by IL-1p [15]. Also, IL-1p and TNF-a induce the
generation of inflammatory cytokines such as IL-6 [14]
and IL-8 [16], monocyte chemoattractant protein 1
(MCP1) [17] and CC-chemokine ligand 5 (CCL5) [18],
all of which are well-reported players in sustaining tissue
inflammation. IL-6 exists at a low concentration level in
normal chondrocyte. However, its concentration in sera
and chondrocytes is increased in osteoarthritic condi-
tion, after which it causes the increases in IL-1p and
TGE-p, which in turn they promoted the production of
IL-6 [19, 20]. Studies also demonstrated that IL-6 stimu-
lates the expression of MMP-1 and MMP-13 in bovine
and humans (cell type) [21, 22], and IL-6 reduced the
expression of type II collagen (cell type) [23]. Other
studies showed that the expression of IL-17 is upregu-
lated by IL-1B, TNF-a and IL-6, after which IL-17 up-
regulated NO and MMPs production [24]. In addition,
IL-17 led to a reduced expression of proteoglycan [25].

Current treatment method for OA

Depending on the disease status, clinical protocols can
be classified into surgical method, using NSAIDs (Non-
steroidal anti-inflammatory drugs), via physical therapy,

opioids, or intra-articular injection of hyaluronic acid
(Fig. 2). Although NSAIDs have been commonly used
for relieving inflammation due to their analgesic and
anti-inflammatory effect, side effects such as the organ
toxicity (e.g., liver and kidney) have been critical. In par-
ticular, using NSAIDs for a long-term or repeated time
can lead to gastrointestinal tract hemorrhage [26-28].
Thus, other alternatives, i.e., cellular therapies using au-
tologous or allogenic origins are now becoming recog-
nized as save and effective option. Also, application of
induced pluripotent stem cell (iPSC)-derived chondro-
cytes may be another choice depending on the regula-
tion and safety guidelines [29]. Although several
protocols are currently available for clinical purposes
[30], cell-based therapy inherently possess the risk of im-
mune rejection and tumor formation in vivo [31, 32].
Accordingly, application of extracellular vesicles, which
can be obtained from desired cell types during culture,
would be an ideal cell-free strategy that can solve the
problems that can be raised upon implementing cell
therapy [29, 33, 34].

Isolation methods of EVs

Currently, various protocols are being used to isolate
EVs. Classically, ultracentrifugation is recognized as the
most standardized method for isolating a large scale of
EVs. Other methods include immunoaffinity isolation
(magnetic bead isolation), tangential flow filtration, size
exclusion chromatography, and polymer precipitation
[35-38]. Ultracentrifugation can be modified or further
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Fig. 2 Current treatment methods and the potential for cell-based treatment methods in OA. Abbreviations: ACI: autologous chondrocyte
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optimized, such as applying density gradient force dur-
ing ultracentrifugation for harvesting EVs with an en-
hanced purity. To obtain EVs with higher purity in a
large amount, tangential flow filtration method has been
developed. This technique enables the removal of cell
debris and unnecessary biomolecules by filtering the cell
culture supernatant using sterile hollow fiber polyether-
sulfone membrane [39]. This system may be ideal for
producing in an industrial (20-501) or laboratory scale
(e.g.,300 ml) [37, 40]. Size exclusion (chromatography)
method is based on physical barriers, for example filters
or chromatographs. Ideally, this technique enables re-
moving many contaminating elements such as albumin
or lipoproteins. Depending on the size of EVs that are of
interest, a range of different pore sizes (0.8 or 0.2 um)
may be used [41, 42]. Finally, polymeric precipitation
method is relatively easy and quick, and optimal for
enriching EVs for small-scale experimental purposes.
Precipitation mixtures are incubated with culture
medium, and low speed centrifugation is used to con-
centrate EVs [43]. There is, however, a study showing
the quality of RNA extracted from polymeric precipita-
tion may not be optimal [44].

Characterization of EVs
EVs are collective term for heterogeneous nano-sized
lipid-bilayerd membrane vesicles having 30-2000 nm

diameter. Importantly, EVs play essential role in intercel-
lular communications due to a large variety of biologic-
ally active signaling molecules within EVs, including
RNA species (messenger RNA and small RNA), proteins,
enzymes, lipids and DNA fragments [45]. So far various
characterization methods are available. TEM (Transmis-
sion electron microscopy) and SEM (Scanning electron
microscopy) are usually used for verifying their cup- or
round- shape [46-49]. TEM is more commonly used
than SEM [50, 51]. The diameter size as well as their size
distribution can be measured by NTA (nanoparticle
tracking analyzer) [49, 52]. Finally, the presence of EV-
specific markers (CD9. CD63, CD81, TSG101, and Alix)
[48, 49] can be examined by immunoblotting or flow
cytometry.

Preclinical studies

EVs contain a wide spectrum of biomolecules including
proteins, lipids, nucleic acids (DNAs, RNAs, small RNAs).
Together with the notion that EVs are a natural player of
cell-cell interaction in multicellular organisms, studies
have focused on strengthening their specific function [53].
For example, miR-140-5p-overexpressing synovial MSC-
derived exosomes led to an enhancement of chondrocyte
proliferation and migration, and prevented OA in a medial
meniscus OA rat model [54]. Other study showed that hu-
man embryonic MSC-derived exosomes injected in medial
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meniscus OA mouse model improved the synthesis of car-
tilage regeneration [55]. Another study compared the
therapeutic efficacy between EVs from iPSC derived -
mesenchymal stem-like cells and synovial membrane-
derived MSC in Collagenase-induced mouse OA model,
and showed that EVs from iPSC derived MSC was better
in reducing OA progression [56]. Similarly, in a rat model
of osteochondral defect, EVs derived from human embry-
onic mesenchymal stems was able to reduce the disease
progression [57]. Several mechanistic studies also showed
that EVs from MSCs mediate cartilage repair by enhan-
cing proliferation, attenuating apoptosis, modulating im-
mune reactivity. For example, treatment of MSC-derived
exosomes led to an enhanced activity of AKT and ERK
signaling in cultured chondrocytes in vitro, and an in-
creased infiltration of CD163+ regenerative M2 macro-
phages over CD86+ M1 macrophages was found in the
osteochondral tissue in Surgical defect created on the
model [34]. In addition, EVs from mouse BM-MSCs
showed a therapeutic effect in collagenase induced arth-
ritis model, as shown by Protection from osteoarthritis
damage and a reduction of apoptotic cells injected in
mouse chondrocyte, with a significant improvement cartil-
age generation. Finally, EV treatment was able to reduce
osteophyte formation in a mice model of OA [58]. In an
OA model created by making a rounded trephine grooves
osteochondral model in dogs (3mm diameter, 1 mm
depth), administration of mouse bone marrow MSC-
derived EV led to a marked regeneration of cartilage and
restoration of chondral tissue [59]. Also, it was shown that
WNT5A expression was inhibited by miR-92a-3p delivery
by exosomes, which led to an inhibition of cartilage deg-
radation [60]. In a collagenase induced arthritis model in
mice, EVs from mouse BM-MSCs inhibited T lymphocyte
proliferation in a dose-dependent manner, and also de-
creased the percentages of CD4 and CD8 subsets. Also,
fewer plasmablasts and more Breg-like cell in lymph
nodes was found [61].

miRNAs are one of the major biological cargoes in
EVs from parental cells, and it was shown that miR-100-
5p was enriched in the exosomes derived from human
Infrapatellar fat mesenchymal stem cells. Upon being
injected intra-articular into OA mice induced by
destabilization of the medial meniscus, the OA progres-
sion was dramatically attenuated, as shown by the reduc-
tion of articular damage and amelioration of gait
abnormality. Molecular study also demonstrated that
miR-100-5p inhibited mTOR/ autophagy pathway [62].
Another study demonstrated that exosomes from miR-
92a-3p-overexpressing BM-MSCs was able to promote
the chondrocyte proliferation, and upregulated several
matrix genes (Aggrecan, Col2A1, Sox9) and decreased a
subset of other matrix genes (Col2A10, Runx2, MMP13,
Wnt5A).
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Another study showed that EVs from human amniotic
fluid stem cells has therapeutic effect in MIA (Monoio-
doacetate)-induced OA model in rats, as demonstrated
by an enhanced pain tolerance and improved histological
score. After 3 weeks of EV treatment, rat cartilage restor-
ation with good surface regularity and with the charac-
teristic of hyaline cartilage was shown. Moreover,
markers of resolving marcrophages (CD163, arginase 1,
and TGEP) were significantly increased after EV treat-
ment [63].

Collectively, EVs from various stem cells alleviated the
disease progression, as supported by results of tissue
histology as well as inflammatory cytokine profiles in
various preclinical OA models. We have provided a de-
tailed list of studies that have attempted to use EVs from
various parental cell types in OA animal models
(Table 1).

Conclusion

EV carry out many different functions in organisms that
include repair of tissue injuries, regulation of immune
response, and inhibition of inflammation. The improve-
ment in arthritic pathologies by MSCs is mostly due to
cell-to-cell direct interaction and also by secretion of
various soluble mediators. This review has presented
MSC derived EVs as a cell-free treatment of joint dam-
age and OA. It is currently accepted that the biological
contents of EVs may significantly differ from those from
parental cells, thus more extensive characterization of
the membrane bound or luminal cargoes needed to fur-
ther application of these unique nano-sized particles for
therapeutic uses.
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