
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

 

 

공학박사 학위논문 

 

Development of Sound Quality Index for 

Quantification of Sporty Vehicle Engine Sound 

and Methods for Index Accuracy Improvement 

 

차량의 스포티한 엔진음 정량화를 위한 음질 지수 개발과  

그 정확도 향상을 위한 방법 연구 

 

 

 

 

 

2020년 8월 

 

 

서울대학교 대학원 

기계항공공학부 

박  재  혁 



 

 

 

Development of Sound Quality Index for 

Quantification of Sporty Vehicle Engine Sound 

and Methods for Index Accuracy Improvement  

 

 

 

 

by  

 

Jae Hyuk Park 

 

 

 

A Dissertation  

Submitted to the Faculty of  

 

School of Mechanical and Aerospace Engineering 

 

at 

 

 Seoul National University 

 

in Partial Fulfillment of  

the Requirements for the Degree of  

 

Doctor of Philosophy 

 

August 2020 



 

i 

 

ABSTRACT 

 

Development of Sound Quality Index for 

Quantification of Sporty Vehicle Engine Sound 

and Methods for Index Accuracy Improvement 

 

Jae Hyuk Park 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

   

Developments in vehicle technology and accompanying 

improvements in NVH performance have led to increased consumer 

demand for high sound quality, such as a “sporty” engine sound. As 

sporty sound is subjective, this thesis sought to express its meaning 

quantitatively and to develop a model that accommodates the 

differences in individuals’ tastes. This thesis tackles two main issues. 

The first is to identify the efficiency of factor analysis for utilizing it in 

developing a sound quality index of sportiness. The second is to further 
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improve the accuracy of the sound quality index and to refine the 

definition of sportiness by adding K-means cluster analysis.  

In Chapter 2 and 3, the initial procedure for developing the 

sportiness index is presented. Accordingly, the process of recording the 

vehicle’s interior operating sound under wide open throttle acceleration 

conditions for 4 different vehicles and producing 13 evaluation samples 

by using parametric band-pass filtering is described. Acoustic and 

psychoacoustic parameters of the samples produced were calculated, 

and the preferences for sportiness were identified through jury testing. 

Jury test was jointly carried out by 23 evaluators and a semantic 

differential method was used to find adjectives that could explain the 

concept and preference for sportiness. The “Sportiness” index was 

developed using factor analysis and multiple linear regression analysis 

between the calculated values and the previously collected jury test 

results. The index was then validated by examining the correlation 

coefficient through a new sample group. Furthermore, the necessity of 

factor analysis for the sportiness index development was concluded.  

In Chapter 4, after K-means clustering, factor and multiple linear 

regression analysis were repeated to develop a model reflecting 

differences for each group in evaluator’s tastes. The improved index 
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was also retested using new evaluators and new samples, demonstrating 

its reliability through the high correlation observed in the validation 

studies. 

This sound quality evaluation index is useful for producing highly 

accurate results and reflecting the opinions of groups expressing a 

variety of commonalities. 

 

Keywords: Sound quality index, Vehicle engine sound, Sportiness, 

Semantic differential method, K-means clustering, Factor 

analysis, Multiple linear regression 

Student Number: 2012-23165 
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CHAPTER 1 

 

INTRODUCTION 

 

This study sought to determine how to identify a “sporty engine sound” 

in terms of sounds from an engine, which is the main source of sound 

generated by a vehicle. Moreover, the study sought to determine how to 

objectify the subjective concept of “sportiness” and increase its accuracy. To 

achieve these objectives, we focused on classifying the tastes of evaluators 

by analyzing preferences with regard to the engine sounds people would feel 

are “sporty” and by applying the K-means clustering algorithm. The study 

additionally applied a multiple linear regression analysis based on the 

classified values to derive regression equations, thereby quantifying the 

results.  

Recently, the influence of AI, arising from the Fourth Industrial 

Revolution [1], has also been felt in the field of noise, vibration, and 

harshness (NVH). Electric vehicles and the like may also reduce interest in 

internal combustion engines, which are still the main power sources for most 

vehicles. However, because of various factors including marketability, 

supply infrastructure, and price issues, there is still a need for competitive 
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and ongoing research [2]. Furthermore, in the last few decades, there has 

been a rise in consumer demand for good sound rather than for simple noise 

reduction in internal combustion engines. Consequently, researchers must 

continuously investigate the quality of various sounds generated by vehicles 

in addition to those of the engine. Many relevant results are presented here. 

Kwon et al. identified the sound quality metrics that have an effect when 

loudness is excluded, which normally dominates vehicle interior sound to 

provide a sporty image [3]. He et al. proposed a structure–loudness model to 

represent exhaust tail noise according to structural differences in the exhaust 

system [4]. S. K. Lee et al. proposed a method to predict changes in the 

sound inside a car cabin with respect to variations in absorption materials [5]. 

In addition, researchers have investigated methods for improving and 

objectifying various types of vehicle-generated noise, including window 

movement sounds [6-7], car horn sounds [8], and the buzz, squeak, and rattle 

from the instrument panel [9].  

However, although many sound quality indices are being developed, 

providing accurate answers for the target sound or concept is a difficult 

problem because it is influenced not only by individual preferences but also 

by regional and cultural differences [10]. Thus, research that aims to produce 

highly accurate equations can yield very useful results. One of the 
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approaches to gradually increase the accuracy of the indices involves 

applying various methods including regression analysis on a trial and error 

basis. These attempts will eventually help us develop the ideal indices we 

require. Lee used an artificial neural network (ANN) to create sound quality 

indices for booming and rumbling sounds that occur during driving [11], and 

Cerda et al. proposed a method for classifying and grading the characteristics 

of halls by extracting common variables into representative factors by using 

factor analysis [12]. This study had two main objectives. The first was to 

determine which engine sounds people feel are sporty and objectively define 

them through sound quality evaluation and to identify the effects as well as 

the necessity and effectiveness of factor analysis. The second was to derive 

more detailed results by clustering the data. The second objective is a 

follow-up to an earlier study [13-14]. Based on our finding that evaluators’ 

concepts of sporty sound are divided, we classified similar characteristics 

through clustering and created indices to reflect the opinions of minority 

groups.  

Nopiah et al. proposed a k-NN algorithm with more accurate results 

than those of previous neural networks and then used it to develop a model 

that can evaluate vibration levels in a vehicle cabin without subjective 

testing [15]. Pietila and Lim conducted a study to efficiently identify and 
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classify juries for small-engine sound using K-means clustering and Ward's 

clustering method [16]. Yunoh et al. used an artificial neural network and K-

means clustering for fatigue strain signals to find the optimal levels of 

fatigue damage [17]. In addition, studies have been carried out utilizing 

cluster analysis to classify marketing problems, climate data, casino 

gambling motivations, and the characteristics of offshore workers [18-21]. 

Cluster analysis is a tool used across various fields such as computer science, 

social science, medicine, psychology, and business administration. However, 

it is used relatively less in the automobile field. In addition, as there are still 

limitations in developing indices of sporty sound that can accommodate all 

opinions, research is needed to obtain accurate equations through 

segmentation using clustering.  

Accordingly, the study was conducted according to the flow chart given 

in Fig. 1.1, and this thesis is structured as follows: Chapter 2 covers the 

general procedures relating to sound quality, including vehicle experiments, 

sample production, and jury testing. Chapter 3 and Chapter 4 describe the 

statistical process for examining the correlation between the objective data 

and the subjective test results based on factor analysis and K-means cluster 

analysis, respectively. Chapter 5 concludes the thesis by summarizing the 

findings and discussing the results. 
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Figure 1.1 Flow chart of the research process. 
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CHAPTER 2 

 

SOUND QUALITY EVALUATION OF VEHICLE 

ENGINE SPORTINESS 

 

2.1 Introduction 

 

This chapter describes the sound quality evaluation process for deriving 

an evaluation model for the target sound or image. It covers the entire 

process until sound quality evaluation (Fig. 1.1), which includes recording 

the engine sound to producing sounds using a filter, calculation of the 

acoustic and psychoacoustic parameters (which are the objective values of 

the sounds), and the jury test process to determine how people think about 

sportiness on hearing the sounds.   
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2.2 Sound recording and objective evaluation of engine 

sound 

 

2.2.1 Recording of interior sound 

 

To identify and materialize a concept for what people think of as 

“sportiness,” an engine sound that can be played for people to hear is needed. 

Thus, in preparation for producing such samples, we recorded the driving 

sound of actual vehicles. Four vehicles (three benchmarking vehicles and 

one target vehicle) were selected from among vehicles in the market that 

consumers perceive as sporty. Two were 4-cylinder engines, and two were 6-

cylinder engines; all were gasoline engines. Fig. 2.1 shows the data 

acquisition process for objective evaluation and Table 2.1 shows the 

specifications of the test vehicles. As the feeling of sporty sound is 

somewhat less relevant in the stationary condition than under acceleration 

while driving [22], this study recorded sound under the wide open throttle 

(WOT) acceleration condition. As shown in Fig. 2.2, sound was recorded 

using the chassis dynamometer of a semi-anechoic chamber to minimize 

ambient noise. The tests were conducted with a dummy head from HEAD 

Acoustics placed in the passenger seat and two test members. One member 



 

8 

 

was the driver, who pressed the gas pedal, and the other performed test 

operations and data acquisition. All driving tests were repeated five times to 

obtain reliable data. Each sound recording was approximately 10 s long and 

consisted of full-throttle data from second gear before changing to fifth gear. 

The four original samples obtained in this way were filtered to make various 

samples. 
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Figure 2.1 Data acquisition process for objective assessment. 
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Table 2.1 Specification of test vehicle including target vehicle and 

benchmarking vehicle. 

 

Vehicle Engine Type Displacement Fuel Type Transmission 

A 

(Target 

Vehicle) 

I4 1.6 L Gasoline A/T 

B V6 3.5 L Gasoline A/T 

C V6 3.7 L Gasoline A/T 

D I4 2.0 L Gasoline A/T 
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Figure 2.2 Example of a driving test setup to obtain the interior sound of a 

vehicle using a dummy head. 
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2.2.2 Production of sound samples 

 

Sporty engine sound is characterized by a range of variables, such as 

engine performance or shift timing. Because in this study, the variable that is 

controllable in a given environment is the feeling of sound, four recorded 

samples were prepared with frequency modulation by using several digital 

filters. First, after determining the frequency characteristics of the 

benchmarking vehicles, the target vehicle was synthesized to generate 

similar frequency spectra. Fig. 2.3 shows the examples. Fig. 2.3(a) shows the 

amplitudes of the recorded and modulated signals in the time domain. Fig. 

2.3(b) shows the frequency characteristics of the target and benchmarking 

vehicles. Fig. 2.3(c) shows the frequencies of the target vehicle modulated 

using a band-pass filter to refer to the characteristics of the benchmarking 

vehicle. Next, the number of samples was increased by amplifying the 

frequency or order by considering elements affecting the sporty sound. The 

rationale is based on existing studies [11, 23-26]. The rumbling sound 

generated owing to half-order components, powerfulness that can be felt by 

variation of loudness, peak frequency originated from the explosive engine 

sound, and frequency ratio difference in the acceleration/deceleration area 

were emphasized. A parametric band-pass filter was used, and the degree of 
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modulation was varied by at least 6 dB depending on the frequency band, 

such that people could feel the difference between samples. As a result, the 

juries heard and evaluated the varying sounds of the target vehicle. The color 

maps of Fig. 2.4 are examples of the fast Fourier transform (FFT) vs. time 

data for three samples. Fig. 2.4 (a) shows the spectrum of the original sound 

recorded before using the filter. Fig. 2.4 (b) shows a case in which the sound 

pressure of all frequencies was increased by applying the filter, and Fig. 2.4 

(c) is a case in which only the sound pressure of the main order was 

increased. Since the variables for preparing the samples are further varied, an 

increase in the number of samples disturbs the concentration of the sound 

evaluators and inaccuracy occurs due to the increase in fatigue [27]. Thus, as 

a suitable number of samples is required for the jury test, we increased the 

number of samples from four to obtain a total of 13 samples. 
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Figure 2.3 Time history and frequency spectra of the recorded and 

modulated signals: (a) time history of recorded target vehicle sound (black 

line) and modulated sound (green line), (b) frequency spectra of recorded 

target vehicle (green line) and benchmarking vehicle sound (red line), (c) 

frequency spectra of modulated target vehicle (green line) and recorded 

benchmarking vehicle sound (red line). 

  

(c) (b) 

(a) 
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Figure 2.4 Example of a color map of the signal modulated through the 

recorded driving data and filters. (a) Original recorded sound before 

modulation. (b) Sound with increase in sound pressure of all frequencies 

within the audible frequency range. (c) Sound with increase in sound 

pressure of the second-order component that has a dominant effect on 

interior sound due to engine explosion. 

 

  

(a) (b) 

(c) 
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2.2.3 Calculation of objective acoustic and psychoacoustic 

parameters 

 

As a basic process in sound quality research, subjective concepts can be 

quantified by correlating the measurement data of recorded or produced 

sound with the results of jury tests. To accomplish this, the corresponding 

objective data are needed. Although sound pressure level (SPL) data can 

suffice when the goal is simply to reduce engine noise, it has limited use in 

determining people’s preferences regarding the sound’s “sportiness.” 

Therefore, this study not only measured the SPL of the 13 samples but also 

calculated the values of psychoacoustic parameters. We considered the 

typical sound quality metrics of loudness, sharpness, roughness, and tonality 

and calculated their values using HEAD Acoustics ArtemiS Version 8 with 

reference to ISO 532B and Aures’s model [28-37]. Table 2.2 shows the 

calculated results for each sample. The calculated values of the objective 

sound metrics were used as independent variables to analyze the correlation 

with human preference for sporty engine sounds and to further derive the 

sound quality index through multiple linear regression. In the following 

sections, the concepts of representative acoustic and psychoacoustic metrics 

used in this study are briefly described. 
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Table 2.2 Calculations of single values of acoustic and psychoacoustic 

parameters for each sample. 

 

Sample 
SPLOA 

(dBA) 

Loudness 

(sone) 

Sharpness 

(acum) 

Roughness 

(asper) 

Tonality 

(tu) 

1 62.90 15.70 1.18 1.56 0.257 

2 70.30 26.80 1.47 2.18 0.236 

3 73.60 24.40 1.11 1.89 0.203 

4 75.90 35.50 1.42 2.53 0.256 

5 66.60 18.50 1.14 1.56 0.281 

6 69.60 21.80 1.43 1.92 0.189 

7 67.10 22.50 1.59 2.09 0.225 

8 65.70 18.60 1.56 1.83 0.184 

9 71.20 24.20 1.02 1.84 0.264 

10 66.50 16.40 1.07 1.58 0.207 

11 62.90 18.20 1.70 1.81 0.226 

12 74.10 23.90 0.95 1.82 0.209 

13 75.00 31.10 1.15 2.19 0.256 
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2.2.3.1 Sound pressure level  

 

Sound pressure level is a physical measure representing the level of 

sound pressure deviation relatively to a reference pressure. It is quantified 

using the ratio of measured pressure over a certain reference pressure 

represented on a decibel (dB) scale [38]. It is usually abbreviated as SPL or 

𝐿𝑝, and is defined as  

 

 SPL = 20 log (
𝑃𝑒

𝑃𝑟𝑒𝑓
) (2.1) 

 

where 𝑃𝑒  is the measured effective pressure amplitude and 𝑃𝑟𝑒𝑓  is the 

reference effective pressure amplitude. As the reference sound pressure is 20 

𝜇Pa in air, a sound pressure level of 0 dB indicates a sound pressure of 20 

𝜇Pa. SPL is often used to measure and identify the level of noise generated 

from machines. However, when the sound pressure is doubled, the SPL 

increases by 6 dB; but that sound can be audibly perceived by a person as an 

increase of 10 dB depending on the frequency. Therefore, all the 

psychoacoustic parameters must be considered because the difference in 

sound quality cannot be determined by sound pressure analysis alone [28-29]. 
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2.2.3.2 Loudness  

 

Loudness refers to the intensity of sound that is felt subjectively. It is a 

representative sound quality metric that indicates the difference in hearing as 

recognized through the human ear and is a basic factor for describing 

sharpness, roughness, and tonality. Zwicker proposed a loudness model that 

can analyze loudness regardless of the sound field by correcting the level 

between free and diffuse sound fields. It was certified by ISO 532B and the 

mathematical loudness model defined in this standard is as follows [28]: 

 

 𝑁′ = 0.08 (
𝐸𝑇𝑄

𝐸0
)

0.23

[(0.5 + 0.5
𝐸

𝐸𝑇𝑄
)

0.23

− 1] (2.2) 

 

where 𝑁′ is the specific loudness in sone/Bark, 𝐸𝑇𝑄 is the excitation at 

threshold in quiet ambient, and 𝐸0 is the excitation of the reference sound 

with an intensity of 𝐼0 = 10−12 W/m2. The unit of loudness is sone, and 1 

sone is a sine tone of frequency 1 kHz at a level of 40 dB. As shown below, 

the total loudness can be determined by obtaining the specific loudness from 

a stimulus according to each critical band and then integrating it for the 

critical band rate, as follows: 
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 𝑁 = ∫ 𝑁′
24 Bark

0

𝑑𝑧 (2.3) 

 

where 𝑁 is the total loudness of the sound and 𝑧 is the critical band rate. 

However, in this study, loudness was calculated by referring to DIN 

45631/A1 [30-32], which is based on the Zwicker model for time-variant 

sounds. As no international standard loudness measurement method for 

transient signals has yet been developed, the values may differ depending on 

the software application used by researchers. 

 

2.2.3.3 Sharpness  

 

Sharpness is a sound quality metric that represents the degree of 

sharpness of sound. Even if two sounds have the same loudness, the one with 

more high frequency components is audibly perceived as sharp. Sharpness is 

an important factor in the evaluation of vehicle engine sound [11]. Among 

the various sharpness calculation methods, this thesis used the Aures method 

[28, 33, 37]: 

 

 𝑆 = 0.11
∫ 𝑁′24 Bark

0
g(𝑧)𝑧𝑑𝑧

∫ 𝑁′24 Bark

0
𝑑𝑧

 (2.4) 
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where 𝑁′ is the specific loudness and g(𝑧) is an additional factor that 

depends on critical band rate 𝑧. In other words, sharpness is determined by 

the frequency distribution of specific loudness. The unit of sharpness is 

acum, and 1 acum is defined as the sharpness of narrowband noise of 1 kHz 

with bandwidth less than 150 Hz and a level of 60 dB.  

 

2.2.3.4 Roughness  

 

Roughness is a sound quality metric for expressing the degree of 

roughness of sound. The frequency and amplitude modulation of sound can 

generate different senses such as fluctuation in addition to roughness, and 

this thesis recognized roughness, which has a high correlation with the 

sportiness of engine sound, as an important metric [11, 39]. The calculation 

method suggested by Aures was referenced for the roughness model [28, 34], 

which can be expressed as follows. 

 

 𝑅 = 0.3
𝑓𝑚𝑜𝑑

𝑘𝐻𝑧
∫

∆𝐿(𝑧)𝑑𝑧

𝑑𝐵/𝐵𝑎𝑟𝑘

24 Bark

0

 (2.5) 

 

where 𝑓𝑚𝑜𝑑  is the frequency of modulation and ∆𝐿(𝑧) is the temporal 
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masking depth. The unit of roughness is asper, and 1 asper is a sine tone of 1 

kHz with a level of 60 dB, 100% amplitude-modulated at a frequency of 70 

Hz.  

 

2.2.3.5 Tonality  

 

Tonality is a measure of the ratio of tonal components in the spectrum 

of signals. It is a sound quality metric that quantifies the importance of 

single-frequency sounds included in a sound. In other words, the higher the 

number of tones included in a sound, the higher is the tonality value. The 

unit of tonality is tu, and 1 tu is a sine tone of frequency 1 kHz at a level of 

60 dB. Tonality is calculated based on the loudness model of ISO 532B. The 

method for calculating tonality has been well-established by Aures and 

Terhardt [28, 33, 35]. Gonzalez et al. considered tonality as a major 

parameter when conducting a study on vehicle engine sound quality for 

active noise control (ANC) [40]. Tonality is a frequently measured metric in 

analyzing a vehicle’s powertrain sound [41]. Therefore, this thesis also 

examined tonality as a major variable.  
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2.3 Subjective evaluation of sound quality 

 

2.3.1 Semantic differential method and pre-test 

 

The semantic differential method is used by the evaluator himself or 

herself to absolutely evaluate the subjective feeling of a specific sound on a 

scale by using a variety of emotional vocabularies. The method is highly 

suitable for displaying the characteristics of the sound being evaluated 

because it is relatively easy to obtain a large amount of data. Thus, we chose 

to use the semantic differential method devised by Osgood [42], which 

facilitates analyzing what a concept (such as “sportiness”) means to people. 

And the method helps to specify the abstract image an individual has about 

sportiness and to identify the adjectives that best describe the engine sound 

being targeted. Before selecting adjective pairs for the final evaluation, 503 

adjective pairs were first listed in alphabetical order, among which 25 

adjective pairs related to sportiness were primarily selected [22, 42-43]. Next, 

through the pre-test, 19 evaluators were asked to select the adjectives that 

best describe the sporty sound after hearing the sound of 12 sports cars. 

Subsequently, seven adjective pairs were selected by identifying the 

frequency of selection excluding synonyms. The adjective pairs were 
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“Strong–Weak,” “Sharp–Soft,” “Dynamic–Static,” “Overwhelming–

Comfortable,” “Stereophonic–Simple,” “Thick–Thin,” and “Clear–

Ambiguous.” The preference for each evaluation item was assessed as 

“Sporty–Not Sporty.” The questionnaire that was used to discover the 

relationship with sportiness by using the semantic differential method is 

provided in Table 2.3.
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Table 2.3 Jury test questionnaires to understand the relationship between adjective pairs and preferences. 
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2.3.2 Jury testing 

 

The evaluation was conducted in a semi-anechoic chamber to minimize 

ambient noise (the same conditions under which the vehicles were recorded), 

and the PEQ V playback system of HEAD Acoustics was used. To 

investigate the sporty sound preference, the jury comprised a total of 23 

participants: 20 males and 3 females, with a mean age of 27.4 years and no 

hearing impairments (Fig. 2.5). The participants were all unbiased non-

experts and were fully informed of the purpose and method of the jury test 

through pre-training. Each sample was played five times; the playback order 

was random to eliminate any effects between samples when listening.  

Box plots were produced by excluding outliers consisting of singular 

values. Fig. 2.6 shows a box plot for the “sharp-soft” evaluation item among 

the seven adjective pairs. The abscissa represents the samples, and the 

ordinate represents the scores for each sample. The red circles indicate 

singular values and the numbers represent the number of evaluators. In this 

way, every evaluation item was tested for consistency; singular values and 

the data of evaluators that did not satisfy the criteria were excluded. 

According to Otto et al., inconsistent evaluation should be carefully 

considered because it directly affects the data reliability, and their study 
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allowed the inclusion of data when the data reliability was higher than 75% 

on average [27]. Accordingly, in this study, of the 23 evaluators, the three 

who showed dissimilar responses to the same sample were deemed to be 

inconsistent and were removed. More specifically, three identical samples 

were additionally randomized for evaluation together and accepted in the 

case when the scores did not differ by more than one point. Consequently, 

the final dataset consisted of data from 20 evaluators.  

Fig. 2.7 shows the results of the jury test. For improved visibility, only 

six among the 13 samples with a large difference in their scores are shown, 

and the remaining samples with similar patterns are omitted. The radar graph 

provides an approximate idea of the relationship between sportiness 

preferences and adjectives. The sample with the highest sportiness score is 

no. 13 (represented by a red dotted line), whereas the sample with the lowest 

score is no. 5 (represented by a blue dashed line). The results show that the 

pairs strong, dynamic, overwhelming, stereophonic, and thick tend to follow 

the trend as the sportiness score increases and decreases based on the results 

of samples no. 13 and no. 5. However, the pair consisting of sharp and clear 

does not follow that tendency. The results predict that the sportiness is 

influenced by the characteristics of strength and richness of sound. It can be 

predicted that the effect of sharpness on sportiness will be relatively small. 



 

28 

 

Factor analysis was carried out with the aim of obtaining a basis for the 

results and to define sportiness more precisely. 
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Figure 2.5 Jury test environment 
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Figure 2.6 Box plot for the “sharp-soft” evaluation item. 
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Figure 2.7 Subjective evaluation results to confirm the relevance between 

sporty preferences and adjectives. 
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CHAPTER 3 

 

DEVELOPMENT OF EVALUATION INDEX OF 

SPORTY ENGINE SOUND : USING FACTOR 

ANALYSIS 

 

3.1 Introduction 

 

This chapter describes the process of developing a regression model for 

sportiness from the objective and subjective evaluation results in Chapter 2. 

In this process, factor analysis is used to obtain better results when 

quantifying sportiness and to emphasize the necessity of factor analysis.  
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3.2 Factor analysis  

 

Based on the results of the jury test obtained by using the 

aforementioned semantic differential method, factor analysis was conducted 

to collect common variables with a high association between the words used 

in the evaluation and to further reduce them to a smaller number of 

representative factors. The objective of the factor analysis is to determine 

how many factors affect the data of various variables, and a subsequent 

analysis such as regression analysis can produce more accurate results 

through new latent variables rather than variables of the original data [44-45].  

In order to perform a regression analysis based on the results of the 

factor analysis, a factor score matrix corresponding to the number of 

extracted factors is required. The first step to construct the factor score 

matrix is the determination of the correlation matrix. The correlation matrix 

is the matrix consisting of correlation coefficients of the observed variables. 

Next, the factor loading matrix is calculated by decomposing the correlation 

matrix, and the eigenvalues are identified in the process to determine the 

number of latent factors. If necessary, the researcher can rotate the axis of 

the factors around the origin, this process is carried out to facilitate the 

interpretation of the data, using two methods: orthogonal rotation or oblique 
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rotation. Finally, by matching the dimension of the calculated factor loading 

matrix and multiplying by the inverse matrix, the factor score matrix can be 

calculated. The mathematical model of the factor analysis is expressed as 

follows [46]:  

 

 

𝑧𝑗 = 𝑎𝑗1𝐹1 + 𝑎𝑗2𝐹2 + ⋯ + 𝑎𝑗𝑖𝐹𝑖 + 𝑑𝑗𝑈𝑗 (3.1) 

𝑧𝑗  represent the n observed values where 𝑗 = 1, 2, 3,…, n. 𝐹𝑖 represent 

the m common factors where 𝑖 = 1, 2, 3,…, m. 𝑎𝑗𝑖 represent the 𝑛 × 𝑚 

factor loadings. And 𝑑𝑗𝑈𝑗  are unique factors, which represent unobserved 

stochastic error terms. Eq. (3.2) is expressed in matrix [47],  

 

 

[𝐙] = [𝐅][𝐋]𝐓 (3.2) 

where [𝐙] denotes the original data matrix, [𝐋] is the factor loading matrix, 

and [𝐅] is the factor score matrix. The factor score matrix can be calculated by 

solving the Eq. (3.2) for [𝐅]: 

 

 

[𝐅] = [𝐙][𝐋]([𝐋]𝐓[𝐋])−1 (3.3) 

Thus, based on the calculation process shown above, the study 

confirmed the results of the factor analysis by using the statistical program 

SPSS to discover new factors that can represent each group by identifying 
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the correlations of adjective pairs and grouping the variables showing similar 

characteristics. Principle components analysis was applied as a factor 

extraction method and the result was further analyzed by using a correlation 

matrix. In order to solve the problem of multicollinearity when conducting 

regression analysis, factor scores of two factors with an eigenvalue greater 

than 1 were extracted through factorial rotation using varimax rotation one 

of many methods of orthogonal rotation. Fig. 3.1 shows a scree plot to show 

the eigenvalue of each factor visually. As shown in the Fig. 3.1, the 

eigenvalues of factor 1 and factor 2 are 4.516 and 2.028, respectively, and 

the total percent variance is 93.482% with the accumulation of 64.511 and 

28.971. The value means that the two extracted factors have an explanatory 

power exceeding 93% of the total variance. The validity and reliability of the 

factor analysis should be secured before using the results of the factor 

analysis. First, a reliability analysis was conducted to confirm whether 

respondents who participated in the evaluation provided responses with 

reliability. The reliability was confirmed by the Cronbach's coefficient α, 

which is determined to be reliable if α is greater than 0.7 [48]. 

The reliability analysis was twice conducted before and after the factor 

analysis. In the former analysis, the α value was found to be 0.889, testing 

whether the entire evaluation items were well composed. The latter analysis 
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tested whether common factors can be extracted by averaging the grouped 

evaluation items based on the similarity. The values for each factor are 0.964 

and 0.872, respectively, showing a high level of reliability. Furthermore, in 

order to validate the results of the factor analysis, it is necessary to confirm 

whether the conditions of KMO (Kaiser-Meyer-Olkin) and Bartlett's test of 

sphericity are satisfied. The KMO measure is a measure of whether the 

correlation between variables is well explained by other variables. Typically, 

the KMO measure judges whether a factor analysis is appropriate with a 

threshold of 0.5 or more. Bartlett's test of sphericity is to determine if the 

factor analysis is appropriate by checking if the p-value is less than 0.05 [45]. 

The results are shown in Table 3.1, and the validity of the factor analysis 

was secured by the KMO value of 0.675 and the significance of 0.000. Table 

3.2 shows the rotated factor matrix, which was obtained by the factor 

analysis, and Fig. 3.2 is the corresponding factor plot in two-dimensional 

space. Although each component was sorted in decreasing order of size, as 

shown in Table 3.2, the seven adjective pairs are "strong-weak," 

"overwhelming-comfortable," "dynamic-static," "stereophonic-simple," and 

"thick-thin," which are classified as factor 1; "sharp-soft," and "clear-

ambiguous," which are classified as factor 2. Based on the meaning of each 

adjective, factor 1 was named "sonorousness" representing a feeling of 
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powerfulness and dynamics; and factor 2 was named "shrillness" showing a 

characteristic of sharpness. The naming means that in describing sportiness, 

the characteristics that people commonly feel about sportiness are defined as 

"sonorousness" and "shrillness", and that a small number of factors can 

provide sufficient explanatory power. Moreover, as previously predicted in 

Fig. 2.7, "sharp-soft," and "clear-ambiguous" have different characteristics 

from adjectives belonging to factor 1, and the eigenvalues and percent 

variances of factor 1 and factor 2 could confirm that the influence of factor 1 

on sportiness was high and that the contribution of factor 2 was relatively 

small. When people produce an image of sportiness, they think about images 

such as "sonorousness" and "shrillness," which can be interpreted to mean 

that an image that expresses dynamics and strength is more important than 

an image of sharpness. Subsequently, by using the factor scores of two 

factors based on the factor loading values derived from this factor analysis, 

the regression analysis is performed to specifically segment the concept of 

sportiness and objectively quantify the concept. As a result, this study is 

aimed to confirm that we can derive a more effective performance model by 

minimizing the inclusion of unnecessary variables through factor analysis 

than the results obtained by simple regression analysis of sportiness with 

multiple variables.  
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Figure 3.1 Scree plot to identify eigenvalues. 
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Table 3.1 KMO and Bartlett's Test to confirm the validity of the factor 

analysis results. 

 

KMO and Bartlett’s Test 

Kaiser-Meyer-Olkin Measure of Sampling  

Adequacy. 
0.675 

Bartlett’s Test of 

Sphericity 

Approx. Chi-Square 126.422 

df 21 

Significance 0.000 
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Figure 3.2 Factor plot in a two-dimensional space to visualize the 

components of two factors. 
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Table 3.2 Factor matrix showing the factor loadings after varimax rotation 

and Cronbach alpha. 

 

Rotated Factor Matrix 

 

Factor 
Cronbach Alpha 

1 2 

Strong-Weak 0.979 0.046 

0.964 

0.889 

Overwhelming-Comfortable 0.972 0.116 

Dynamic-Static 0.946 0.278 

Stereophonic-Simple 0.917 0.163 

Thick-Thin 0.899 -0.400 

Sharp-Soft 0.103 0.964 
0.872 

Clear-Ambiguous 0.055 0.934 
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3.3 Regression analysis 

 

3.3.1 Multiple linear regression 

 

Multiple linear regression analysis is a statistical technique that 

analyzes the effect between variables based on linear regression with one 

dependent variable and multiple independent variables. The analysis is 

useful for testing the validity of a hypothesis, and thereby used as a tool to 

predict the value of the dependent variable. Unlike correlation analysis, 

which simply compares linear associations between two variables, the 

regression analysis must find regression equations which can best explain 

the linearity by proving causality between correlated variables. Because this 

study was aimed to develop a sound quality index for the sportiness of the 

engine sound, the study was conducted to derive the optimal regression 

equation based on regression analysis theory. Typically, multiple linear 

regression is expressed as described below [49-50]: 

 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯ + 𝛽𝑖𝑋𝑖 + 𝜀𝑖 (3.4) 
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where i = 1, 2, 3,…, n. In the linear regression model, 𝑌𝑖 is a dependent 

variable, sportiness, showing the influences by factors, 𝛽𝑖 is the coefficient 

estimated for the independent variable, 𝑋𝑖  is an independent variable 

corresponding to factor 1 or factor 2 obtained through factor analysis. 

Accordingly, the final regression equation is derived by estimating an initial 

regression equation between sportiness and factors, and by further setting the 

factors as dependent variables and related sound metrics as independent 

variables. Finally, the relationship between sportiness and sound metrics can 

be derived by substituting the result into the equation of sportiness and 

factors. 
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3.3.2 Development of a sound quality index for sportiness 

 

The sound quality index for sportiness is derived from the subjective 

evaluation based on the results of the jury test on preferences and images of 

adjective pairs previously obtained as well as objective evaluation results 

based on the actual measurement data of the vehicle. The most basic task of 

multiple regression analysis is to find the beta regression coefficient. Thus, 

SPSS was used for the data processing to obtain the coefficient, as in the 

factor analysis, and the confidence level was allowed by 90% in obtaining 

the regression equation. As a method of estimation, to explain the dependent 

variable, a stepwise method is used to obtain a regression equation 

consisting of only variables whose influence is at least above a certain level. 

The results are shown in Eqs. (3.5)-(3.8): 

 

 

𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠FA = 4.958 + 0.923 × 𝐹1sonorousness

+ 0.121 × 𝐹2shrillness 

(3.5) 

 

Eq. (3.5) is the regression equation obtained by regression analysis 

based on the results of the factor analysis, and the subscript of the dependent 

variable is the factor analysis. 𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠FA  represents preference for 
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sportiness, F1sonorousness and F2shrillness imply factors to express preference for 

sportiness. One of the important considerations in multiple regression 

analysis is multicollinearity. Multicollinearity refers to a phenomenon where 

it is difficult to grasp the influence of each of these variables when the 

correlation between variables is high. When the factor analysis is performed, 

independent variables, which are completely independent between variables, 

are derived. Thus, the issue of multicollinearity can be resolved. According 

to the results, the sportiness that people perceive means that the engine 

sounds sporty when it sounds sonorous and shrill. Furthermore, the 

standardized regression coefficients for these variables are 0.967 and 0.127, 

respectively, specifically showing that the perception is affected by 

sonorousness to a larger extent. Moreover, to evaluate how well a regression 

equation explains the data, the degree of validity of the regression model is 

determined by R
2
 or R

2
adjust, where the values are 0.952 and 0.943, 

respectively, showing high explanatory power. The p-value of each variable 

is 0.000, and 0.097, respectively, which is a significant result. 

 

 

𝐹1sonorousness = −12.979 + 0.157 × SPLOA

+ 1.088 × Roughness 

(3.6) 

 



 

46 

 

 𝐹2shrillness = −4.829 + 3.739 × Sharpness (3.7) 

 

Eqs. (3.6)-(3.7) show the causal relationships between the sound 

metrics related to each factor. First, in Eq. (3.6), the dependent variable has a 

positive correlation to the magnitude of sound and degree of roughness. R
2
 

and R
2
adjust are 0.866 and 0.839, respectively, and the p-values of the 

variables are 0.001 and 0.075, respectively. Eq. (3.6) shows that the 

independent variable well explains the dependent variable. In the same 

manner, F2shrillness of Eq. (3.7) is affected by sharpness, and R
2
 and R

2
adjust are 

0.842, and 0.828, respectively, with a high explanatory power. SPLOA is the 

A-weighted sound pressure level, which represents the overall value of the 

audible frequency range, and roughness and sharpness are the single values 

that were calculated by using Aures's model. By finally combining Eqs. 

(3.6)-(3.7) with Eq. (3.5), the relationship between sportiness and metrics, 

Eq. (3.8), can be obtained, which is a relationship between sportiness and 

metrics. 

  

 

𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠FA = −7.606 + 0.145 × SPLOA + 1.004

× Roughness + 0.452 × Sharpness 

(3.8) 
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As shown in Eq. (3.8), the sound quality index obtained from the factor 

analysis means that the image of the sportiness experienced by people can be 

expressed by the degrees of roughness and sharpness of the sound including 

the magnitude of the sound. Each contribution can be revealed through the 

standardized regression coefficient, and the standardized regression 

coefficient shows a degree of contribution in order of SPLOA, roughness, and 

sharpness with the values of 0.676, 0.296, and 0.116, respectively. Eq. (3.8) 

was obtained from Eq. (3.5), and the contribution of each independent 

variable follows that in Eq. (3.5). 

Typically, regression analysis itself is a powerful tool for estimating the 

causal relationship between variables. Thus, many studies have been 

conducted to develop a linearized index with only regression analysis in 

various engineering fields [13, 51-54]. Therefore, this study emphasizes the 

effect and necessity of factor analysis by comparing the results of regression 

analysis without additional factor analysis. 

 

 

𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠MLR = −11.756 + 0.218 × SPLOA

+ 1.232 × Sharpness 

(3.9) 

 

Eq. (3.9) is the result of the regression analysis to confirm the causal 
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relationship between sportiness and sound metrics that have not undergone 

factor analysis, and the subscript of the dependent variable is written as 

multiple linear regression to differentiate it from Eq. (3.8). SPLOA and 

sharpness were selected as independent variables, and R
2
 and R

2
adjust in the 

regression equation are 0.880, and 0.856, respectively. The p-values are 

0.000 and 0.024, respectively. The results of Eq. (3.9) further show that the 

independent variables can sufficiently explain the sportiness, as previously 

shown in the results obtained with Eq. (3.8). The standardized regression 

coefficient showed that the effect of roughness was excluded, which is 

different from Eq. (3.8), and that the effect of sharpness was increased. 

These differences between Eqs. (3.8)-(3.9) can be explained by a re- 

performance of the objective and subjective evaluations with a new sample 

set to determine which regression equation is more effective. The results of 

the derived regression equations are summarized in Table 3.3.
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Table 3.3 Summary of the results of the derived regression equations. 

Dependent variable Independent variable 𝛽𝑖 
Standardized 

coefficient 
t p 𝑅2 𝑅adjust

2  

𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠FA 

Constant 4.958 
   0.952 0.943 𝐹1sonorousness 0.923 0.967 13.980 0.000 

𝐹2shrillness 0.121 0.127 1.833 0.097 

𝐹1sonorousness 

Constant -12.979 
   0.866 0.839 SPLOA 0.157 0.699 4.527 0.001 

Roughness 1.088 0.306 1.984 0.075 

𝐹2shrillness 
Constant -4.829 

   0.842 0.828 
Sharpness 3.739 0.918 7.656 0.000 

𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠MLR 

Constant -11.756 
   0.880 0.856 SPLOA 0.218 1.017 8.518 0.000 

Sharpness 1.232 0.317 2.655 0.024 
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3.4 Validation 
 

It is necessary to check the reliability of the derived regression equation 

and the extent to which the equation can accurately describe the sportiness. 

Thus, eight new samples were prepared, the jury test was performed, the 

sound metrics were calculated, and the results were confirmed. The new 

samples underwent level modulation by using an order filter. The samples 

were prepared by considering the main order, half order, and harmonic 

components of the engine in the operating area of the vehicle. Fig. 3.3 shows 

the difference between the recorded sound of the target vehicle (green line) 

and the sample fabricated through order amplification (red line), regarding 

the second-order components corresponding to the main order of a 4-

cylinder engine. To perform the subjective evaluation, 15 evaluators (normal 

hearing subjects; 15 males aged 30.2 years on average) were asked to rate 

the sportiness of the eight samples by using the seven-point scale. The 

objective evaluation was performed, as in Sec. 2, by calculating the values of 

SPLOA, roughness, and sharpness, which were combined with the developed 

sound quality index to obtain the sportiness scores. A comparison of the 

correlation in the sportiness scores from the jury test and the sound quality 

index can show how the derived regression equation can represent the 
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responses by the evaluators. Furthermore, the correlation coefficients from 

the scores estimated from Eqs. (3.8)-(3.9) could determine which equation 

explains the sportiness more accurately. The results are presented in Table 

3.4. 

Fig. 3.4(a) shows the correlation between the scores of Eq. (3.8) and the 

subjective evaluation which was obtained after the factor analysis was 

conducted. The correlation coefficient R showed a strong positive correlation 

with a value of 0.923, which means that the result can be appropriately used 

as an index representing sportiness. Fig. 3.4(b) shows the correlation 

between the scores of Eq. (3.9), which were obtained without factor analysis, 

and of the subjective evaluation. The correlation coefficient R is high with a 

value of 0.889, indicating the linearity is weaker than that in Eq. (3.8). As 

shown in Fig. 3.4, although both Eqs. (3.8)-(3.9) are indices with high 

reliability, the index with the factor analysis produces a more accurate result 

than that without the analysis when using factor analysis. 
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Table 3.4 Jury test score, indices score, and correlation coefficient of new 

samples for validation. 

 

 
Jury Test SportinessFA SportinessMLR 

Sample 1 3.463 4.754 4.832 

Sample 2 5.074 5.172 5.212 

Sample 3 5.321 5.373 5.785 

Sample 4 5.970 5.656 5.928 

Sample 5 3.546 4.860 5.050 

Sample 6 4.111 4.862 4.963 

Sample 7 4.157 4.971 5.016 

Sample 8 4.796 4.913 5.125 

Correlation  

coefficient R 
0.923 0.889 
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Figure 3.3 Second-order components of the recorded target vehicle sound 

(green line) and the modulated sound (red line). 
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Figure 3.4 Correlation between subjective rating and derived indices: (a) 

SportinessFA and (b) SportinessMLR. 

  

(a) 

(b) 
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3.5 Summary 

 

In Chapter 3, based on the results of the sound quality evaluation of the 

vehicle engine sportiness in Chapter 2, a sound quality study was conducted 

to determine the commonly perceived feeling toward and to objectively 

define the sportiness of engine sound as a subjective concept. First, the 

engine sounds of 4 vehicles were recorded and 13 samples were created by 

using various filters based on the recorded data. Sound metrics with a 

significant relationship to the engine sound were selected to calculate the 

corresponding values for each sample. In the subjective evaluation, the 

semantic differential method was used to segment the meaning of sportiness 

into easy-to-understand adjectives, and to link the preferences of sportiness 

with the meaning of adjectives. Twenty-three evaluators participated, and the 

factor analysis was conducted by using their responses. The results of the 

factor analysis showed that the various adjective pairs could be classified 

into "sonorousness" and "shrillness," both of which emotions people 

commonly experience in relation with sportiness, and these two factors can 

explain 93% of the total variance. Based on the results of subjective 

evaluation and objective measurement, multiple linear regression analysis 

was used to prove the causal relationship between sportiness preference and 
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related sound metrics. Finally, a sound quality index capable of explaining 

the sportiness of the engine sound was developed. The developed index has a 

positive correlation with SPLOA, roughness, and sharpness, which means that 

the sportiness can be estimated by using these three metrics. The results 

further mean that the image of the sportiness people experience can be 

expressed by the degrees of roughness and sharpness of the sound including 

the magnitude of the sound. The sportiness index obtained by factor analysis 

was tested by using Eq. (3.8) to assess the reliability of the new sample 

group. As a result, the validity of the equation was proved by showing very 

high correlation with subjective evaluation. Furthermore, a comparison of 

the index (Eq. (3.9)) from the regression analysis alone and correlation 

coefficient confirmed that 𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠FA  is a more appropriate index. 

Ultimately, by objectively quantifying the subjective feeling of sportiness, 

the study could obtain more efficient and more accurate results by using 

factor analysis to develop a sound quality index. 
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CHAPTER 4 

 

NEW APPROACH TO DEVELOPMENT OF 

EVALUATION INDEX OF SPORTY ENGINE SOUND : 

USING K-MEANS CLUSTER ANALYSIS 

 

4.1 Introduction 

 

This chapter describes the process of searching for a method to develop 

an index that acknowledges the opinion of minority groups regardless of 

gender or age, under the assumption that the sportiness index obtained in 

Chapter 3 reflects the opinion of the majority but does not describe that of 

relevant minority groups. Therefore, the effect on gender differences [55] 

was not taken into account in determining preferences. And the process of 

further subdividing the meaning of sporty engine sound based on this index 

is also described. By assessing the evaluators’ comments and preference 

tendencies in the results of the jury test as mentioned in chapter 2, we found 

that the participants could be divided into two groups: one whose concept of 

“sportiness” is a feeling of rich and heavy bass, and one whose concept of 

“sportiness” is a feeling of speed due to high-frequency components, such as 
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the sound of a Formula One. Thus, this chapter applied cluster analysis to 

develop sound quality indices that can also consider the sounds demanded by 

minority groups of customers, which are often not reflected because of the 

influence of the majority. 

Consequently, a new evaluation model was developed by classifying 

what the evaluators think by using K-means clustering and performing the 

research detailed in Chapters 2 and 3.    
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4.2 Statistical analysis 

 

4.2.1 K-means cluster analysis 

 

Cluster analysis is a multivariate analysis technique in which the 

variables are measured for the observed objects, after which the values of the 

observed variables are used to judge the degree of similarity between the 

objects to classify them; they are then clustered by distance. This facilitates 

understanding the classified groups and enables their efficient use. Fig. 4.1 

shows a brief cluster analysis procedure. In this study, the variables 

correspond to the engine sound samples, and the observation targets are 

evaluators, who have different feelings about the variables. As mentioned in 

Section 2.3.2, when the abstract concept “sportiness” is used in an objective 

equation, the concept is expressed differently according to the tastes of the 

different individuals. As a result, cluster analysis is needed to reflect the 

opinions of minority groups as well. K-means clustering was performed for 

this purpose.  

Cluster analysis methods are divided into hierarchical and 

nonhierarchical; the K-means clustering method is typical of the latter type. 

In this method, the number of clusters K is determined, and the observed 
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objects nearest to the center of the initially set cluster are included. The 

method is also a type of unsupervised learning used to study the structure of 

unlabeled data, in which the specific response variables are unknown. In K-

means clustering, the dependence of the result can vary because the number 

of clusters K is determined by the user; after hierarchical methods such as 

Ward’s clustering are performed, methods of comparison using K-means 

clustering are applied [16]. This study, however, focused on setting the 

desired results and validating their meaningfulness. Factor analysis, which 

will be described in Section 4.2.2, provides a rough estimate of the number 

of clusters based on the number of principal components. As a result of this 

analysis, we set the number of initial clusters K to 2 without considering the 

effect of the optimal number of clusters. The K-means clustering algorithm 

is clear and not very complex; it follows the following procedure [56-57].  

Step 1. Determine the initial number of clusters K. 

Step 2. Calculate the centroid for each variable corresponding to the 

determined number of clusters.  

Step 3. Calculate the distance between each observed object and the initial 

centroid, and assign the observed object to the cluster closest to the result.  

Step 4. Set a new centroid based on the mean of the variables in the group.  
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Step 5. Repeat Step 3 using the new centroid until the observed objects are 

not relocated to another group. 

This can be expressed mathematically as follows [58]. First, the initial 

centroid 𝐦(𝑘) is set to a random value, and the initial estimated value 

identifying the cluster 𝑘(𝑛) to which the point 𝐱(𝑛) belongs is 𝑘̂(𝑛). This is 

expressed by Eq. (4.1):  

 

 𝑘̂(𝑛) = argmin𝑘{𝑑(𝐦(𝑘), 𝐱(𝑛))} (4.1) 

 

where 𝑑(𝐦(𝑘), 𝐱(𝑛)) indicates the distance between the data point 𝐱(𝑛) 

and the centroid 𝐦(𝑘) and is typically calculated using Euclidean distance. 

Argmin represents the minimum distance value for arranging each data point 

to be closer to the centroid of a cluster. Eq. (4.2) is the equation for updating 

the position of the centroid.  

 

 𝐦(𝑘) =
∑ 𝑟𝑘

(𝑛)
𝐱(𝑛)

𝑛

𝑅(𝑘)
 (4.2) 

 

 𝑅(𝑘) = ∑ 𝑟𝑘
(𝑛)

𝑛

 (4.3) 
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𝑟𝑘
(𝑛)

 is an indicator variable that is 1 when 𝑘̂(𝑛) = 𝑘 and 0 otherwise. 

The new centroid is calculated from the mean of the data, and 𝑅(𝑘) is the 

data number in the cluster. This process is iterated, and if the clustered 

results do not change, the calculation is terminated. 

Based on the above theory, we calculated the values using the data 

obtained from the tests. All statistical processing, including cluster analysis, 

was performed using IBM SPSS Statistics Version 23. Given that 

individuals’ ideas and tastes differ, the goal of this study was to determine 

how the participants’ feelings about sporty engine sound are typically 

divided and to classify them effectively. Thus, K-means clustering was 

conducted to obtain the results. As shown in Table 4.1, for cluster count K = 

2, the data of 7 jury test evaluators were assigned to Group A and those of 13 

to Group B, and these were then allocated by closeness to the centroid. Table 

4.2 shows the shift from the center position of the initial clusters to that of 

the final cluster centers after iterative calculation. Using these results, factor 

analysis was conducted, as well as multiple linear regression analysis for 

quantification. For this, we utilized only the data of the evaluators classified 

into each group rather than the data of all the evaluators. 
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Figure 4.1 Cluster analysis procedure. 
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Table 4.1 Results of allocating evaluators to groups using K-means 

clustering algorithm and distance from final cluster center. 

Jury Number Cluster Distance 

1 A 4.006 

2 B 2.456 

3 B 3.387 

4 A 3.390 

5 B 4.380 

6 A 3.791 

7 B 2.208 

8 A 2.611 

9 A 3.592 

10 B 2.535 

11 B 1.592 

12 B 2.361 

13 B 2.506 

14 B 2.718 

15 B 1.888 

16 A 3.422 

17 B 1.506 

18 B 1.271 

19 B 4.179 

20 A 3.277 
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Table 4.2 Change in distance from initial cluster centroid to that from final 

cluster centroid for each sample through iterative calculation. 

Sample 
Initial Cluster Centers Final Cluster Centers 

A B A B 

1 1.531 -0.481 -0.481 0.293 

2 0.467 0.467 -0.215 0.191 

3 -0.309 1.111 -0.511 0.347 

4 0.112 0.754 -0.347 0.408 

5 -0.249 0.569 -0.560 0.380 

6 -2.569 0.000 -0.612 0.461 

7 0.030 -1.339 -0.557 0.398 

8 -1.780 1.310 -0.456 0.537 

9 0.573 -1.938 0.394 -0.055 

10 0.479 -1.464 -0.169 0.030 

11 0.524 -0.079 -0.423 0.199 

12 0.266 0.266 -0.358 0.333 

13 -2.054 1.096 -0.704 0.490 
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4.2.2 Factor analysis after K-means clustering 

 

As mentioned in Chapter 3, factor analysis is a statistical method that 

finds potential common factors and analyzes the correlation between the 

evaluation items and variables to assign meaning to the factors, thus 

identifying the characteristics to be known. As such, factor analysis facilitates 

analyzing the data evaluated using the semantic differential method. The 

efficiency of factor analysis was confirmed through a preliminary study [6] 

and Chapter 3. In the following section, results which would carry more 

information were sought using factor analysis after having applied K-means 

clustering.  

Factor analysis was conducted using only the data of each group 

classified through cluster analysis. In addition, we performed factor extraction 

using principal components, determining the appropriate number of factors by 

checking the eigenvalues. Generally, the appropriate number of factors is 

determined using an eigenvalue threshold of 1 [45]. As shown in the scree 

plots in Fig. 4.2, there are two eigenvalues of 1 or more for each group: 4.717 

and 1.669 (Group A) and 4.637 and 1.881 (Group B). This indicates that only 

two common factors that can be represented suffice to explain all of the data, 

and they have an explanatory power of 91.233% (Group A) and 93.122% 
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(Group B). For describing the feeling of “sportiness,” the factor loading 

values in Table 4.3 show that the two main factors extracted can represent the 

several adjective pairs. In terms of meaning, Factor 1 is related to the loudness 

or modulation of the sound, and Factor 2 is related to the sharpness of the 

sound or the ratio of the tone. Thus, by finding the meaning of the target 

concept, the factor analysis shows that the feelings commonly felt by 

individuals converge into a concept, whose meaning then materializes.  

To verify whether the factor analysis was appropriate and whether it 

was performed well, we used the Kaiser-Meyer-Olkin (KMO) test, Bartlett’s 

test, and Cronbach’s alpha coefficient. The KMO test and Bartlett’s test 

determine the suitability of data in a factor analysis. The criteria are a KMO 

value of 0.5 or more and a p-value of less than 0.05 [45]. Cronbach’s alpha 

is a measure of reliability for an evaluation item that gauges the consistency 

of an evaluator’s responses to the question items. The criterion for this is a 

value of 0.7 or more [48]. Table 4.4 summarizes the results; all of the values 

are good and meet the significance level. Based on the validity of the factor 

analysis, the regression analysis was performed using the factor score results 

for the two groups. 

  



 

68 

 

Table 4.3 Component matrix showing the factor loading values for each 

group obtained from factor analysis. Two common factors were extracted for 

each group; what they represent can be seen in the meaning of the adjectives. 

 

Group A Factor Group B Factor 

1 2 1 2 

Strong–Weak 0.976 -0.157 0.957 0.193 

Overwhelming–Comfortable 0.940 -0.294 0.940 0.268 

Dynamic–Static 0.959 0.185 0.927 0.351 

Stereophonic–Simple 0.943 -0.012 0.925 0.020 

Thick–Thin 0.794 -0.576 0.941 -0.239 

Sharp–Soft 0.451 0.828 -0.189 0.944 

Clear–Ambiguous 0.488 0.711 -0.449 0.838 
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Figure 4.2 Scree plots to determine the appropriate number of factors in 

factor analysis. (a) Group A. (b) Group B. 

(a) 

(b) 



 

70 

 

Table 4.4 Cronbach’s alpha, Kaiser-Meyer-Olkin (KMO) test, and Bartlett’s 

test for validation of factor analysis. 

 

Cluster A B 

Cronbach’s Alpha 0.913 0.818 

KMO Measure of Sampling Adequacy 0.713 0.773 

Bartlett’s Test of 

Sphericity 

Approx. Chi-Square 111.253 110.715 

df 21 21 

Significance 0.000 0.000 
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4.2.3 Multiple linear regression analysis after K-means 

clustering 

 

In this section, the dependent variable is “sportiness,” and the 

explanatory variables correspond to the factors and parameters calculated as 

described in section 2.2.3. Thus, to identify the relationship between the 

sportiness of the vehicle engine sound and the objective parameters for each 

group, we first perform a first-order regression analysis between “sportiness” 

and the extracted factors. In the next step, the factor becomes the dependent 

variable, and a second-order regression analysis is conducted for the factor 

and psychoacoustic and acoustic parameters. Finally, the results are 

substituted into the first-order regression to reveal the relationship. Thus, 

finally, we obtain two equations because the data are divided into two groups 

in the cluster analysis.  

First, the regression analysis was performed between the sportiness score 

of the jury test and the factor score obtained through factor analysis. Here, the 

relationship between the variables representing the differences by group is as 

follows.  
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𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠A = 4.418 + 0.904 × 𝐹1A_loud_related

− 0.441 × 𝐹2A_sharp_related 

(4.4) 

 

 

𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠B = 5.249 + 0.835 × 𝐹1B_loud_related

+ 0.405 × 𝐹2B_sharp_related 

(4.5) 

 

As shown by Eqs. (4.4) and (4.5), the sportiness preferences of each group 

classified in the cluster analysis increased as the parameters related to the 

loudness of both groups increased. Moreover, for the sharpness of sound, 

Group A and Group B showed opposite tendencies. The standardized 

coefficient shows the influence of each variable on preference. The 

standardized coefficient is the product of the regression coefficient 𝛽𝑝 and 

the ratio of the standard deviations of the independent and dependent variable 

data. In Group A, the standardization coefficients of Factor 1 and Factor 2 

were 0.851 and −0.415, respectively, and in Group B, 0.875 and 0.425, 

respectively; thus, Factor 1 exhibited a greater effect on the dependent 

variable than Factor 2. This indicates that when people think of sportiness, 

they are more responsive to the parameters related to loudness.  

Next, as described above, a regression analysis was performed between 

the factors and various sound metrics to objectively define the preference for 
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sportiness. Because there are several types of independent variables, the 

stepwise regression method was used to select the variables for the multiple 

regression analysis. This method is a combination of forward selection and 

backward elimination; each time a new variable is added, the importance of 

each existing independent variable is checked to determine whether to keep it 

or eliminate it. Eqs. (4.6)-(4.9) show the results.  

 

 

𝐹1A_loud_related = −10.197 + 0.080 × SPLOA

+ 2.423 × Roughness 

(4.6) 

 

 𝐹2A_sharp_related = −4.156 + 3.218 × Sharpness (4.7) 

 

 𝐹1B_loud_related = −14.286 + 0.206 × SPLOA (4.8) 

 

 𝐹2B_sharp_related = −4.519 + 3.499 × Sharpness (4.9) 

 

Among the numerous candidate groups for sound metrics, we selected the 

variables according to their importance in causality with the dependent 

variable. SPLOA  represents the overall value of the A-weighted sound 

pressure level, and sharpness and roughness represent the psychoacoustic 
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parameters. Eqs. (4.6)-(4.9) show that through the factor analysis of the data 

obtained from the participants’ subjective evaluations, the abbreviated results 

match the objective parameters well. This indicates that it is suitable for 

expressing sportiness objectively and that the regression model based on this 

is well constructed.  

Finally, by substituting the above equations into Eqs. (4.4) and (4.5), the 

target result can be derived from the following:  

 

 

𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠A = −2.967 + 0.072 × SPLOA + 2.190

× Roughness − 1.419 × Sharpness 

(4.10) 

 

 

𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠B = −8.510 + 0.172 × SPLOA + 1.417

× Sharpness 

(4.11) 

 

Thus, the meaning of sportiness is interpreted differently according to the 

person’s preference. For Group A, the greater the SPLOA and roughness and 

the smaller the sharpness, the higher the sportiness score. Meanwhile, for 

Group B, the greater the SPLOA and sharpness, the higher the sportiness 

score. Thus, in quantifying sportiness, cluster analysis can be used even when 

the population is not large enough to represent a single outcome from the 
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overall data. In this way, the opinions of minority groups are not excluded as 

outliers; rather, we can find other commonalities and segment their 

definitions. 

To determine the significance of the regression model obtained in the 

regression analysis, the p-value was used to determine whether the 

independent variable had a significant effect on the dependent variable. We 

also identified the adjusted coefficient of determination 𝑅adj
2  representing the 

explanatory power of the dependent variable, as well as the variation inflation 

factor (VIF) that examines multicollinearity, which is independent between 

variables. Table 4.5 summarizes all of the results. In Eqs. (4.4) and (4.5), 

obtained from the factor analysis results, multicollinearity does not need to be 

considered because it is extracted completely independently of the factors. 

The VIF index between independent variables is usually judged to not show 

multicollinearity if it is less than 10; because the range for VIF in this study is 

1.000–1.782, the data are deemed suitable for regression analysis.  

As a result of the multiple regression analysis, as all of the p-values are 

less than 0.05, all independent variables have a significant effect on the 

dependent variable, and for both groups, Factor 1 has a greater effect on 

sportiness. Among these variables, roughness showed the greatest effect (in 

Group A), indicating that it is the most important variable. The explanatory 
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powers of the regression equations for Groups A and B were 87.6% and 

93.5%, respectively.
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Table 4.5 Results of regression equations obtained through linear regression analysis between dependent and independent 

variables. 

Dependent variable Independent variable 𝛽𝑝 
Standardized 

coefficient 
t p VIF 𝑅adj

2  

𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠A 

Constant 

𝐹1A_loud_related 

𝐹2A_sharp_related 

4.418 

0.904 

-0.441 

 

0.851 

-0.415 

 

8.373 

-4.084 

 

0.000 

0.002 

 

1.000 

1.000 

0.876 

𝐹1A_loud_related 

Constant 

SPLOA 

Roughness 

-10.197 

0.080 

2.423 

 

0.357 

0.682 

 

2.930 

5.596 

 

0.015 

0.000 

 

1.782 

1.782 

0.900 

𝐹2A_sharp_related 
Constant 

Sharpness 

-4.156 

3.218 

 

0.790 

 

4.274 

 

0.001 

 

1.000 
0.590 

𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠B 

Constant 

𝐹1B_loud_related 

𝐹2B_sharp_related 

5.249 

0.835 

0.405 

 

0.875 

0.425 

 

11.916 

5.782 

 

0.000 

0.000 

 

1.000 

1.000 

0.935 

𝐹1B_loud_related 
Constant 

SPLOA 

-14.286 

0.206 

 

0.916 

 

7.566 

 

0.000 

 

1.000 
0.824 

𝐹2B_sharp_related 
Constant 

Sharpness 

-4.519 

3.499 

 

0.859 

 

5.568 

 

0.000 

 

1.000 
0.714 
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4.3 Validation 

 

In addition to checking whether the derived regression equations are 

statistically significant, this study attempted to verify the accuracy on new 

samples. This can be determined by the correlation between the scores from 

the objective data and the scores from the jury test (Eqs. (4.10) and (4.11)). 

Accordingly, we produced new samples for further evaluation. A total of eight 

samples were produced, and an order filter was used to modulate the order 

components. Table 4.6 shows the calculated data. For the jury test, a total of 

15 males (mean age 30.2 years) participated in the hearing evaluation, and the 

evaluation was conducted in the same environment as described in Section 

2.3.2. As before, the results of inconsistent evaluators (3 participants) were 

excluded, resulting in the data of 12 participants. The jury test used a seven-

point rating scale. The evaluator listened to the sound and directly selected the 

score and rank.  

To identify the groups to which the new evaluators belonged, we 

compared the correlations of the scores of the individually felt sportiness and 

the scores from Eqs. (4.10) and (4.11); the higher coefficients were classified, 

and those without a high correlation coefficient in either group were 

excluded (two participants). Finally, five participants were assigned to 
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Group A and five to Group B. We then conducted a correlation analysis to 

investigate how well the sportiness scores of each group represent the 

developed regression scores. The results are shown in Table 4.7, and graphs 

are shown in Fig. 4.3. As shown in the table, the correlation coefficients 𝑅 

for Groups A and B were 0.942 and 0.930, indicating highly accurate results. 

This can be further segmented by grouping the sporty sound of the vehicle 

engine, which feels different for each individual participant in this study, 

through cluster analysis. The objective sound quality indices thus obtained 

can meaningfully represent the thoughts of the new evaluators for the new 

samples as well. 
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Table 4.6 Calculations of single values of acoustic and psychoacoustic 

parameters for new samples. 

Sample 
SPLOA 

(dBA) 

Loudness 

(sone) 

Sharpness 

(acum) 

Roughness 

(asper) 

Tonality 

(tu) 

1 70.10 23.80 1.06 1.71 0.390 

2 71.90 25.50 1.05 1.87 0.392 

3 74.70 29.90 1.02 1.68 0.456 

4 75.30 30.20 1.03 1.87 0.459 

5 71.10 25.40 1.06 1.67 0.411 

6 70.07 24.20 1.06 1.73 0.403 

7 71.00 24.50 1.05 1.80 0.393 

8 71.50 24.50 1.05 1.67 0.417 
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Table 4.7 Results of jury test and regression sportiness scores and 

correlation coefficients for each group. 

Sample 
Jury 

Group A 
𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠A 

Jury 

Group B 
𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠B 

1 3.689 4.321 3.400 5.049 

2 5.556 4.815 4.556 5.345 

3 5.178 4.643 5.156 5.784 

4 6.156 5.088 5.778 5.901 

5 3.667 4.305 3.867 5.221 

6 4.044 4.408 3.622 5.152 

7 4.511 4.597 4.222 5.190 

8 4.600 4.348 4.711 5.276 

Correlation 

Coefficient R 
0.942  0.930 
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Figure 4.3 Correlation between the jury test scores and the sound quality 

evaluation scores for each group, to validate the regression equations 

developed. (a) Group A: R = 0.942. (b) Group B: R = 0.930. 

(b) 

(a) 
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4.4 Summary 
 

In Chapter 4, a sound quality evaluation index that can further improve 

the accuracy of the sound quality index developed in Chapter 3 for 

representing sportiness and can represent the meaning of “sportiness” 

according to individuals in a more concrete manner, was developed. 

Accordingly, based on the results of the jury test, statistical analysis is 

required to convert the data obtained from subjective evaluations, such as 

jury testing, into quantitatively formulated data. The process to accomplish 

this consisted of cluster analysis, factor analysis, and linear regression 

analysis. For cluster analysis, we used the K-means clustering algorithm, 

which distributes the data reflecting differences in the evaluators’ 

preferences. Based on the distances in the distribution, the distances of 

similar responses can be quickly tied together, thus forming two subgroups 

of evaluators. The data from the two groups were then divided into two 

populations and used for the factor analysis. Two common factors were 

extracted from each group: Factor 1 is related to the loudness of the sound, 

and Factor 2 is related to the sharpness of the sound. The explanatory power, 

which indicates how well the two common factors describe all of the data, is 

91.233% (Group A) and 93.122% (Group B). The factor scores obtained 
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through the factor analysis were subjected to a regression analysis with the 

sportiness score responses from the jury test, and the results were analyzed 

mathematically (first-order regression analysis). Because factor analysis was 

performed, an additional regression analysis between the factors and the 

calculated sound metrics was necessary (second-order regression analysis). 

Thus, we were able to finally determine the relationship between sportiness 

and sound metrics by substituting the results into the first-order regression. 

Eqs. (4.10) and (4.11) show the final results. In both groups, the influence of 

Factor 1, which is related to the loudness of the sound, was greatest. In 

Group A, as SPLOA and roughness increased and sharpness decreased, the 

sportiness score rose; of these, roughness had the greatest effect. In Group B, 

both SPLOA and sharpness showed a positive correlation. Furthermore, for 

the derived regression equations for 𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠A and 𝑆𝑝𝑜𝑟𝑡𝑖𝑛𝑒𝑠𝑠B, the 

regression model was found to be suitable based on the high coefficients of 

determination 0.876 and 0.935, appropriate p-values, and VIF values.  

Verification steps were taken to ensure that the developed indices show 

reliable results when used with new samples and new evaluators. The 

evaluators were allocated to either Group A or Group B depending on 

whether their individual responses showed a higher correlation with Eq. 

(4.10) or Eq. (4.11). The correlation coefficients 𝑅 between the average 
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score of each allocated group and the sportiness score of the developed index 

were checked to verify the reliability of the equations. The correlation 

coefficients 𝑅 of the results were 0.942 (Group A) and 0.930 (Group B), 

indicating a very high correlation. Consequently, the conformity of research 

methods and results could be verified using K-means clustering, which can 

be used to develop the sound quality evaluation index.   
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CHAPTER 5 

 

CONCLUSIONS 

 

This study sought to determine what it means for a sound to be “sporty” 

and to objectively define this abstract concept in terms of engine sound, 

which is the main source of noise generated inside a vehicle. For this 

purpose, it was essential to measure the engine sound of an actual vehicle, 

play back the sound to people for them to evaluate, and determine the 

relationship between the two through statistical processing. In this process, 

the evaluation items were composed by finding adjective pairs that can 

represent the sportiness with which people think of using the semantic 

differential method. Subsequently, the validity and necessity of factor 

analysis were improved by collecting items with a high correlation for 

investigating the characteristics of sportiness through factor analysis and 

expressing them as representative factors, thereby giving them meaning. In 

addition, taking the different expressions of “sportiness” based on the 

preferences or tastes of the evaluators, we used cluster analysis to classify 

the groups with commonalities and developed sound quality evaluation 

indices for each group. Thus, we sought to further specify the meaning and 
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broaden the range for expressing sportiness.  

Accordingly, based on a typical sound quality study, K-means cluster 

analysis and factor analysis were performed, and the results obtained not 

only showed high explanatory power but also showed a very high correlation 

when applied to new samples. This indicates that the developed sound 

quality evaluation indices reflect the tastes of evaluators regarding the 

sportiness of engine sound and can serve as useful indices that objectively 

quantify this subjective concept based on statistical significance and can also 

provide accurate results for new evaluators. 

However, as this study did not have a correct answer for the number of 

clusters K, a disadvantage of K-means clustering, a method is necessary for 

selecting the optimal number of clusters K. Furthermore, no guidelines have 

been established for identifying new customer tendencies and classifying 

them into appropriate clusters. Also, a few limitations were observed in the 

jury test. Although the reliability of the developed evaluation index through 

the responses of new evaluators during the verification has been achieved, it 

is necessary to organize and run the evaluations on more populations 

because the increasing number of test subjects can produce more accurate 

results leading to a more concrete description of sportiness. In addition, since 

the effect of characteristics such as age or gender were not considered when 
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surveying preferences, the study of the correlation between these variables 

and sportiness of a large population size could prove to present some 

interesting insight that might even become the subject of a separate study. 

Therefore, further research is required to address these issues, which may 

lead to more nuanced results. Nevertheless, the method proposed in this 

study can be used to predict sportiness scores while considering differences 

in individual taste without the need for a time-consuming jury test during the 

vehicle development stage. The evaluation indices derived in this study can 

serve as the basis for judgment and will facilitate the determination of 

directions for vehicle development. The scope of research can be further 

broadened by considering the regional and cultural characteristics of the 

customer base, thereby assisting car manufacturers or developers in devising 

customized sales strategies that target specific customers.  
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APPENDIX 

 

VALIDATION FOR 6-CYLINDER ENGINE SOUND 

 

Further verification was carried out to validate the applicability of the 

Sportiness index, as developed in Chapter 3 using a 4-cylinder vehicle, on 

any other target vehicle. The target vehicle was equipped with a V6 engine 

the experimental conditions and procedures were the same as those 

described in Chapter 2. As can be seen from the color map below, for the V6 

engine, the third order component is prominent as opposed to the 4-cylinder 

engine. Furthermore, the frequency range of the third order component 

fluctuates between 60-350 Hz depending on the operating conditions. The 
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samples used for the subject evaluation were recorded by replacing the 

muffler of the original vehicle, and the difference in engine sound 

characteristic can be observed by comparing the order components as seen in 

the figure below. Muffler structure differences have various effects on the 

engine sound, they can amplify third order components leading to an 

accentuation of booming sounds. Or they can also cause in-phase vibrations 
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with the parts around the engine pistons leading to a reinforcement of the 

harmonic components. A total of 7 samples were recorded including the 

original vehicle’s engine sound and the engine sound of the same vehicle 

with 6 different mufflers from 4 different manufacturers. The rating method 

was applied, using the recorded samples, and the jury test was conducted, 

requiring 12 evaluators, 10 males and 2 females with an average age of 28.2, 

to rank the 7 samples in order of sportiness. The results obtained are shown 

in the graph and table below, and are represented using standardized scores 

and correlation between the jury test and the index. A correlation coefficient 

R of 0.903 means that the index developed is highly reliable and can be used 

to represent sportiness preferences despite target vehicle changes. Ultimately, 

clustering becomes more effective with a larger population that is more 

diverse and using a bigger variety of test samples. By further improving the 

limits discussed in this study, a more powerful model can be developed.   
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 Jury Test SportinessFA 

Sample 1 -0.203 -0.719 

Sample 2 0.568 0.373 

Sample 3 -0.590 -0.432 

Sample 4 1.032 1.186 

Sample 5 -1.015 -1.657 

Sample 6 0.490 0.962 

Sample 7 -0.281 0.286 

Correlation  

coefficient R 
0.903 
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국 문 초 록 

현재 차량 개발 기술이 발전함에 따라 차량의 NVH 성능이 많

이 개선되었고, 이로 인해 소음 저감의 측면보다 듣기 좋은 소리와 

같은 음질 측면에서의 소비자의 수요가 계속해서 증가하고 있다. 스

포티한 엔진음이 그 범주에 속하고, 이는 사람마다 떠올리는 이미지

가 다르고 소리에 대한 취향의 차이가 발생하는 주관적인 개념이다. 

따라서 본 연구는 음질 연구를 통해서 그러한 개념의 객관적인 의

미를 찾아 정량적으로 표현하고, 취향의 차이가 발생하는 것을 수용

할 수 있는 방법을 찾기 위해 진행되었다. 본 논문에서 중점적으로 

다루는 내용은 크게 두 가지이다. 첫 번째는, 스포티함의 음질 지수

를 개발함에 있어 요인 분석을 활용함으로써 요인 분석의 효율성을 

확인하고자 한 것이고, 두 번째는,  K-평균 군집 분석을 추가하여 

음질 지수의 정확도를 더 향상시키고 스포티함의 의미를 더욱 구체

화하고자 한 것이다.  

따라서, 본 논문의 2장과 3장에서는, 양산되고 있는 차량 4대

를 wide open throttle 조건에서 엔진음을 녹음하였고, 녹음된 소

리로부터 parametric band-pass filter를 사용해 신호를 변조하

여 13개의 샘플을 제작하였다. 제작된 샘플의 음향심리학적 매개변

수들을 계산하였고, 청음 평가를 통해서 스포티함에 대한 선호도를 
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파악하였다. 청음 평가는 23명의 평가자가 참여하였고, 의미미분법

을 사용해 스포티함의 선호도와 스포티함을 잘 설명할 수 있는 형

용사들을 찾아냈다. 그 결과를 요인 분석에 적용해 사람들이 공통적

으로 느끼는 스포티함의 특성을 두 요인으로 표현하였고, 평가 결과 

간 다중 선형 회귀 분석을 이용해 관련된 음질 인자로 표현할 수 

있는 스포티함 정량화 지수를 개발하였다. 개발된 지수는 새로운 샘

플군을 통해 상관계수를 확인하여 그 유효성이 확인되었다. 또한, 

요인 분석 사용 유무에 따른 회귀식의 결과를 비교함으로써 요인 

분석의 필요성에 대해서도 언급하였다. 4장에서는, 스포티함에 대한 

평가자들의 성향 차이가 발생하는 것을 토대로 K-평균 군집 분석

을 활용해 각 집단에 맞는 회귀식을 개발하기 위해 요인 분석과 다

중선형회귀 분석을 재수행하였다. 개발된 지수의 신뢰성을 역시 확

보하기 위해 새로운 평가자들로 재검사하였고 높은 상관계수를 토

대로 그 신뢰성을 입증하였다.  

결과적으로, 본 연구를 통해 개발된 음질 평가 지수는 스포티함

을 객관적으로 정의함에 있어 또 다른 공통성을 나타내는 집단의 

의견까지도 반영할 수 있고 정확도 높은 결과를 산출해주는 유용한 

지수이다.  
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주요어 : 음질 평가 지수, 차량 엔진음, 스포티함, 의미미분법, K-

평균 군집 분석, 요인 분석, 다중 선형 회귀 
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