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Abstract 
 

Integration of Clustering-based 
Unlearned Object Detection and Deep 
Neural Network for Real-time 
Perception in Autonomous Driving 
System 
 

Jungkyum Yu 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 
 

 In recent few years, the interest in automotive researches on autonomous 

driving system has been grown up due to advances in sensing technologies and 

computer science. In the development of autonomous driving system, 

knowledge about the subject vehicle’s surroundings is the most essential 

function for safe and reliable driving. When it comes to making decisions and 

planning driving scenarios, to know the location and movements of surrounding 

objects and to distinguish whether an object is a car or pedestrian give 

valuable information to the autonomous driving system. In the autonomous 

driving system, various sensors are used to understand the surrounding 

environment. Since LiDAR gives the distance information of surround objects, 

it has been the one of the most commonly used sensors in the development of 

perception system.  

Despite achievement of the deep neural network research field, its application 

and research trends on 3D object detection using LiDAR point cloud tend to 

pursue higher accuracy without considering a practical application. A deep 

neural-network-based perception module heavily depends on the training 
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dataset, but it is impossible to cover all the possibilities and corner cases. To 

apply the perception module in actual driving, it needs to detect unknown 

objects and unlearned objects, which may face on the road. To cope with these 

problems, in this dissertation, a perception module using LiDAR point cloud is 

proposed, and its performance is validated via real vehicle test. The whole 

framework is composed of three stages : stage-1 for the ground estimation 

playing as a mask for point filtering which are considered as non-ground and 

stage-2 for feature extraction and object detection, and stage-3 for object 

tracking. In the first stage, to cope with the methodological limit of supervised 

learning that only finds learned object, we divide a point cloud into equally 

spaced 3D voxels the point cloud and extract non-ground points and cluster the 

points to detect unknown objects. In the second stage, the voxelization is 

utilized to learn the characteristics of point clouds organized in vertical columns. 

The trained network can distinguish the object through the extracted features 

from point clouds. In non-maximum suppression process, we sort the 

predictions according to IoU between prediction and polygon to select a 

prediction close to the actual heading angle of the object. The last stage presents 

a 3D multiple object tracking solution. Through Kalman filter, the learned and 

unlearned object’s next movement is predicted and this prediction updated by 

measurement detection.  

Through this process, the proposed object detector complements the detector 

based on supervised learning by detecting the unlearned object as an unknown 

object through non-ground point extraction. Recent researches on object 

detection for autonomous driving have been actively conducted, but recent 

works tend to focus more on the recognition of the objects at every single frame 

and developing accurate system. To obtain a real-time performance, this paper 

focuses on more practical aspects by propose a performance index considering 

detection priority and detection continuity. The performance of the proposed 

algorithm has been investigated via real-time vehicle test.  

 

Keywords: Autonomous Driving (AD), LiDAR Sensor, Artificial Neural 

Network, Object Detection, Multi Object Tracking (MOT) 
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Chapter 1 Introduction 

 

1.1. Background and Motivation  

 

Autonomous driving has been an aspiring research topic for many years 

because it is one of the core technologies that might redefine our society and 

life. Once autonomous driving is realized in our real life, the infrastructure of 

public transportation and our life environment will change. Furthermore, 

autonomous driving is expected to reduce traffic accidents caused by driver 

errors, as well as to save driver's time. The achievement in researches about 

autonomous driving has been facilitated mostly by improvements and lowered 

cost of computer hardware capable of running the complex algorithms needed. 

Autonomous driving also needs various sensors and a large amount of data 

calculations. Unlike the early days of autonomous driving research, where 

sensor manufacturers were less common, the appearance of many new sensor 

manufacturers and the lowered price of sensors make it more possible to use 

various sensors to develop an autonomous vehicle. A large amount of sensor 

data is being utilized to localize and ultimately guide the vehicle through its 

environment and this requires fast processing and considerable computational 

power. 

 Many automotive companies and related industries have been struggling to 

develop an autonomous vehicle or self-driving related technologies. Some of 
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the most advanced self-driving vehicles in existence today are in the fourth 

stage according to The Society of Automotive Engineering (SAE). The fourth 

stage is defined as “Fully Automated Driving: the vehicle drives independently 

most of the time but the driver must remain able to drive.”  

 This means that they are not perfect and they are fully autonomous but just 

under certain conditions like on the highway. 

 To reach level 5 autonomy, perception and related technologies play the 

most important roles in not only the safety of autonomous vehicles but in their 

ability to account for unexpected variables while driving - a key milestone for 

autonomous vehicles to achieve. 

 Perception of autonomous drive systems is the most essential function for 

reliable driving because it is the task of identifying the surrounding 

environment and understanding information that is related to driving safety. 

Various methods have been attempted to develop a perception module for 

autonomous driving in various environments, and recently, methods using 

Artificial Neural Networks (ANNs) have been actively attempted. 

 Artificial Neural Networks (ANNs) are a type of computer model that 

simulates the behavior of biological neural networks such as the human 

brain. Over the past few years, the researches on Artificial Neural Network 

have been infused by drastic improvements and lowered the cost of computer 

hardware. This results in a notable success in object detection and classification 

on RGB images. [Liu’16, Girshick’15, Ren’15, Redmon’16, Redmon’17] 

 This has been proved that the applications of the neural network on a 

regression problem mostly shows higher performance than the past researches, 
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which sets a specific model. Inspired by the positive results of 2D ANN 

implementations, research groups and companies have looked towards 

applying the more successful variants of neural networks to 3D data such as 

RGB-D images, CAD models, and 3D point cloud scans, and also to the 

autonomous driving system. The main obstacle in the application of neural 

networks on autonomous driving is handling 3D data. Because previous 

researches and almost existing networks are appropriately designed to 2D 

image data, so it is required to take different approaches and method of handle 

the data and to construct model structure properly to 3D data. Several methods 

such as projecting 3D data to 2D [Chen’17, Ku’18, Li’16] and voxelization the 

3D data into occupancy grids stored as binary matrices [Chen’17, Ku’18, 

Simon’18, Yang’18] have been tried to solve the problems and they have been 

shown to have relatively high success in comparison to the existing methods. 

However, most studies are not approaching from a practical point of view by 

concentrating to receive high Average Precision (AP) of their object detector 

for KITTI dataset. Although the actual autonomous driving is a continuous 

situation in which each frame is connected, the network is learned the dataset 

without any association between continuous scenes. So even if it finds the 

learned object in this scene, it may miss it in the next scene. In order to respond 

to such situations, object detection, as well as object tracking, must be 

performed together. 

 Also, we may encounter many objects that the detector has never learned. 

For example, many buses are encountered on Korean roads while there are no 

bus annotations in the KITTI dataset. It is difficult to learn all kinds of objects 
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that can be encountered on the road, and it is necessary to cope with the 

methodological limitations of supervised learning that can find only the 

learning objects. Therefore, this dissertation focuses on developing a perception 

module that tracks both of unlearned objects detection from object clustering 

and the results of neural network-based object detectors. 

 

1.2. Overview and Previous Researches 

 

 Even though the application of Artificial Neural Network on a 3D point 

cloud for the autonomous driving systems is still a fresh research topic, a 

number of researches and thesis work have been published over the last few 

years. In this chapter, the characteristics and the difficult aspects to processing 

of 3D point cloud data will be discussed, as well as the research trends related 

to object detection using 3D point cloud. The point cloud is data with 3D spatial 

information, and there have been various methods exist depending on how to 

process this data. In addition, these researches are divided into a one-stage 

method or two-stage method according to the network structure. 

 

Properties of point cloud. As mentioned earlier, autonomous driving 

system usually uses multiple types of sensors to ensure reliability. The most 

commonly used sensors are radio detection and ranging (RADAR), light 

detection and ranging (LiDAR), and ultrasonic sensors. As shown in the Figure 

1.1, among those sensors, LiDAR can directly provide a precise 3D information 
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of surroundings. There have been many researches trying to reconstruct 3D 

environment information or to estimate the depth information based on 2D 

images. Recent works related to these topics have been achieved significant 

improvements with the development of deep learning based methods. Despite 

these achievements, the results of these studies are still not always precise or 

reliable. On the aspect of this, LiDAR is useful because it provides 3D 

environment information through direct physical sensing. Most companies 

leading the autonomous driving market and researches rely on LiDAR to 

perceive the surroundings and build a reliable autonomous vehicle [Meyer’19]. 

 

 

Figure 1.1. Comparison of the features of the different sensors used in 

environment perception systems [Rosique’19] 

 

 3D point cloud is represented as a set, which ignores any order of 3D points. 

Let   
1

,
N

i i i
S


 p a  be a set of 3D point cloud having N points. The set is 

consists of N elements and i th element ip  represents the 3D coordinate of 



 6

the i th point, which can be defined as   3, ,i i i ix y z p  . In addition, ia  

represents other attributes i th point, and it is intensity i ir a  in general 

cases. Thus, in general, the i t th point of 3D point cloud has a form of feature 

  4,i i i x p a  . 

3D object detection from 2D images. There are several approaches to detect 

3D bounding box from 2D images. Utilized the geometric relation between 3D 

and 2D bounding box to estimate the 3D object position and orientation. Chen 

et al. leveraged an energy function as a presentation of the 3D geometric 

information of objects to score the predefined 3D boxes. However, although the 

performance of object detection on 2D images is already proved and the image 

has rich information, these works can only generate coarse 3D detection results 

due to the lack of depth information.  

3D object detection from point clouds. Recently, most of 3D detectors have 

been adopted LiDAR to get depth information. However, since the LiDAR 

point cloud has a form of 3D spatial information unlike 2D image information, 

it is difficult to directly apply the method used in the vision area. Some studies 

[Chen’17, Ku’18, Simon’18, Yang’18] have adopted the voxelization method 

to process this three-dimension spatial information into the form of a tensor that 

is easy to apply to the convolution network. Because object detection with point 

clouds is an essentially three-dimensional problem, it is intuitive to deploy a 

3D convolutional network for object detection. Despite the intuitive structure, 

the 3D convolutional method is relatively more computational than 2D 
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convolution. Engelcke et al. [Engelcke’17] require 0.5s for inference on a single 

point cloud. To overcome the computational time problem, recent researches 

adopted the method to project the 3D point cloud onto the ground plane 

[Chen’17, Ku’18, Yang’18, Liang’18, Yang’18, Lang’19], which is called a 

bird’s eye view (BEV). To form a pseudo-image that can be processed by the 

2D Convolution network method, the bird's eye view projection utilizes the 

voxelization to allocate the point clouds into vertical columns encoded as fixed-

size. Some researches including MV3D [Chen’17], PIXOR [Yang’18] and 

Complex YOLO [Simon’18], AVOD [Ku’18] have leveraged the bird’s eye 

view method and accomplished notable results. MV3D and AVOD fuse the 

point cloud features with 2D image features and these detectors adopted two-

stage detection pipelines.  

Meanwhile, Qi et al. [Qi’17] proposed a simple architecture, PointNet, which 

can learn the feature characteristics directly from point cloud without 

voxelization. VoxelNet [Zhou’18] is one of the first methods accomplished 

notable performance by deploying PointNets in their object detection 

architecture. VoxelNet applied a simple version of PointNet to voxels, then they 

are processed by a sequential 3D convolution layers followed by a 2D CNN 

backbone and a detection head. Despite end-to-end learning and high 

performance, VoxelNet has low detection speed requiring 225ms (4.4 Hz) for 

a single point cloud scene in inference by using 3D CNN. This detection speed 

is not fast enough to infer in real-time because the conventional LiDAR data 

update is 0.1ms.  
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Paradigms of 3D object detection based on point cloud. There are usually 

two frameworks of 3D object detection: one-stage detection and two-stage 

detection; These frameworks are shown in Figure 1.2.  

Figure 1.2. The network frameworks of the one-stage detection and the two-

stage detection. The one-stage detection directly estimates object’s position 

and bounding boxes. The two-stage detection first proposes coarse regions 

where object is supposed to be included and then estimates the object’s 

information. 

The one-stage detection directly estimates object’s position and bounding 

boxes. The two-stage detection first proposes coarse regions where object is 

supposed to be included and then estimates the object’s position and boundary 

boxes. The detector based on the one-stage framework satisfies following form. 

   1

O

i i
h S


o   (1.1) 

Where  , ,i i i io y b c  is the i th object in the scene, with iy the object’s 

label, such as car, cyclist and pedestrian, and the positions and ib the bounding 

 

(a) One-stage detection framework 

 

(b) Two-stage detection framework 

Data
Representation

LiDAR
3D point cloud

Voxels/
images Proposal

Generation

Two-stage networks

Objet
Prediction

region Positions,
Boxes,

Confidence
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box information, and ic the confidence. A neural network based on one-stage 

method consist of a backbone, which extracts deep spatial features, and a 

detection head, which estimates outputs. One-stage method has relatively 

simpler architecture than two-stage method, so one-stage detection tends to be 

faster and enjoys a high recall, while the two-stage method tends to achieve 

high recall. For this reason, some researches [Zhou’18, Yan,’18, Lang’19, 

Yang,’18, Simon,’18] are following the one-stage method for achieve simpler and 

faster model. Contrary to the one-stage method, the two-stage approach 

implements the detection in two stages, which can be defined as follows: 

 

   

    
11

21 1
,

R

i i

O R

i ii i

r h S

h S r



 



o
  (1.2) 

Where ir is a th proposed region where the object is supposed to be included 

in the 3D space. As shown above equations, two-stage detection process is 

consists of two steps, which are region proposal stage and object detection stage. 

At the detection stage, the positions and bounding boxes are estimated based 

on the proposals from earlier stage. A two-stage method, which are Patches 

[Lehner,’19], PointRCNN [Shi’19] and FrsutumNet PointNet [Qi’18], tend to 

accomplish higher detection accuracy. Frustum PointNet detects object on an 

image plane and generates a frustum from it into 3D space, then it uses PointNet 

segment and classifies the point cloud in the frustum. Despite their structural 

advantages to accomplish high accuracy, they have low detection speed 
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because they split the detection process into two steps as region proposal and 

regression.  

3D Multi-Object Tracking. Multi-object tracking (MOT) is an essential 

function for many applications not only autonomous driving. Due to the drastic 

advance in object detection performance on 2D image, they can also achieve 

the much progress on 2D MOT. Although the accuracy of object tracking on 

the 2D image has been improved, its application on 3D motion prediction and 

tracking has not been conducted sufficiently and some works require more 

complex architecture and computational cost. Several methods have been tried 

to tracking objects in an environment and these methods can be divided into 

two categories: model-based tracking and model-free tracking 

In the model-based tracking method, the most widely used approaches are 

using Kalman filters or a variant methods with an appropriate pre-defined 

model.  When the task is to track a two or four-wheeled vehicle, a standard 

bicycle model is used to predict object next state. However, model-based 

method needs an appropriate pre-defined model, and if the assumption about 

the model or its parameters are different from real values, the prediction based 

on the method will result in errors. In addition, some object’s behaviors are very 

difficult to associate with a specific model. 

On the Contrary, model-free approaches need no specific model to predict the 

object's next motion. The proposed model by [Tipaldi’16] uses random sample 

consensus (RANSAC) to estimate motion models for both the sensor and the 

dynamic objects. Bahraini et al. [Bahraini’18] proposes the Multilevel Random 

Sample Consensus (ML-RANSAC) algorithm that enhances the speed of 
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RANSAC. The RANSAC algorithm comprises two repeated steps. The first 

step is the generation of hypotheses. A randomly minimal sample subset is 

selected from the input data to form a set of hypotheses. The second step is 

hypothesis validation, which verifies if the data is consistent with the estimated 

model, which was obtained from the first step. The hypotheses that lie outside 

of the confidence interval of the estimated model will be removed. 

While model-free object tracking approaches usually serve faster tracking 

results compare to the model-based approaches, it serves little accurate tracking 

result in heading angle since the model-free approach does not consider 

dynamic and kinematic constraints of objects.  

Xinshuo et al. [Xinshuo’19] proposed a simple object tracking method 

separable from the object detector. The proposed tracking method takes object 

detection results and associate it with the prediction result predicted by Kalman 

filter. This method utilizes Hungarian algorithm to associate the current objects 

and previous objects. The newly appeared and disappeared objects are 

controlled by birth and death memory. This paper proposes a network having 

high detection performance and this network’s detection performance between 

frames is supported by the object tracking module. Furthermore, we secure the 

real-time performance of this network by rising its detection frequency. 
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1.3. Thesis Objectives 

 

 This dissertation focuses on developing an object detection and tracking 

algorithm for various objects (learned and unlearned) that may encounter while 

driving.  

 The perception module corresponds to the eyes of autonomous vehicles. The 

autonomous vehicle should recognize the surrounding environment and 

obstacles by various sensors, and the fault of the perception module directly 

leads to an autonomous vehicle accident. Despite there have been many types 

of research using neural network in recent years due to drastic enhance of the 

neural network, they only focus only to single frame detection without object 

tracking and they have been less researched the perception algorithm in a 

practical aspect. Most of the object detectors developed based on the neural 

network are using a supervised learning method. Although they show relatively 

high performance, there is still a methodological limitation that they only detect 

learned objects.  In actual driving, there are cases that the detector encounters 

an object it did not learn or that the detector misses an object even though it 

learned. It is very important to fail to recognize or miss these objects because 

they lead to accidents. Therefore, it is necessary to detect even if the object has 

not to be learned or detected. 

To complement the methodological limitations of the current supervised 

learning-based detector and secure practically applicable perception ability, it 

is necessary to find the unknown object (the objects that detector never learned), 
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and it is needed to track the discovered objects and the unknown objects to 

ensure the detection continuity. 

 In the remainder of this thesis, we will provide an object detection using 

neural network method, point clustering method, and multi-object tracker 

developed in practical aspect and the experimental results which show the 

effectiveness of the proposed perception algorithm. The effectiveness of the 

proposed automated driving perception algorithm is evaluated via vehicle tests 

with 32 channel LiDAR. In addition, we propose a performance index 

considering detection priority and detection continuity. The test result has been 

evaluated via the performance index we proposed in this paper.  
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1.4. Thesis Outline 

 

 This dissertation is structured in the following manner. An overall 

architecture of the proposed perception module using a LiDAR point cloud is 

described in Chapter 2. In Chapter 3, the object detector based on a neural 

network method is introduced. The object detector utilizes the point cloud raw 

data and non-ground mask, which is generated from the non-ground point 

clustering process introduced in Chapter 4. In Chapter 4, the non-ground point 

clustering process is described. By using the result from the process, we can 

find the obstacles or objects that vehicles should avoid. In Chapter 5, the object 

tracking method is introduced. This predicts the object's motion based on 

Kalman filter, then associates the predictions from previous detections and 

current detection by using Hungarian algorithm. In Chapter 6, the performance 

of the proposed object detector is compared with other networks.  

In Chapter 7, Average precision (AP), which is broadly used in object 

detection research area, is introduced and modified performance index which 

considering detection priority and continuity is proposed. 

Chapter 8 shows the experiment results for the evaluation of the performance 

of the proposed perception algorithm. Then future works and conclusion that 

describes the summary and contribution of the proposed perception algorithm 

are presented in Chapter 7.   
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Chapter 2 Overview of a Perception in 

Automated Driving 

 

From a considerable amount of recent literature, automated driving 

technology has the potential to reduce the environmental impact of driving, 

reduce traffic jams, and increase the safety of motor vehicle travel. However, 

in advancing self-driving technology, the ability to recognize the surrounding 

environment and obstacles is an essential task to be achieved. Because 

perception module corresponds to the eyes of autonomous vehicles, to secure 

reliability of automated vehicle technology requires highly accurate perception 

algorithm to distinguish the nearby object to avoid the crush and achieve right 

path planning, control, and decision in complex driving conditions. Perception 

in autonomous driving has made great progress through going down of sensors 

cost, improving computing technology, and remarkable achievements in the 

neural network field. Recently, through the achievement of neural networks in 

the field of vision, many studies have been conducted on object detection using 

Lidar point clouds. Indeed, some recent studies have been trained with the 

KITTI dataset and have shown remarkable achievements. 

However, these researches have an unpractical aspect to actual driving, and 

as aforementioned, some issues are considered. First, a methodological 

limitation of supervised learning. Most of the recent researches related to object 

detectors based on neural networks has been developed based on supervised 
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learning techniques. The supervised learning based detector can only find the 

kind of object the detector has learned. In the case of KITTI dataset, there is no 

annotation of 'bus', so the object detector trained by KITTI dataset cannot find 

a bus in actual driving. Secondly, most of the recent researches only focuses 

only on single frame detection without object tracking and they have been less 

researched the perception algorithm in time continuous aspect. This frame-by-

frame detection has a problem related to the detector performance evaluation, 

and the current object detection performance evaluation based on AP, which do 

not consider detection priority and continuity, cannot show reasonable 

performance. The perception architecture of the algorithm proposed in this 

dissertation to solve the aforementioned problems is outlined in Figure 2.1.  

In the remainder of this paper, we will provide an overview of the overall 

architecture of the proposed perception algorithm using point cloud and the 

experimental results which show the effectiveness of the proposed algorithm. 
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Figure 2.1. Overview of the proposed perception algorithm. The proposed 

algorithm consists of two parts: object detection and multi-object tracking. 
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Chapter 3 Object Detector 

 

   Autonomous driving costs a significant computational load because it is a 

complex total system, which its sub-modules such as localization, planning, and 

control operate complementarily each other. Besides, most LiDAR products 

basically update point cloud data at speeds of 0.1Hz or higher, so it is said that 

the detector does not guarantee real-time performance if the update frequency 

of detection result is slower than point cloud update frequency.  

Therefore, the speed of the perception module is directly related to whether 

the algorithm is real-time applicable. The LiDAR product used in the KITTI 

dataset is Velodyne’s HDL-64E and this LiDAR is mounted on the roof of the 

test vehicle to cover 360 degrees around the test vehicle. Even though all the 

point cloud around the test vehicle are served, the KITTI dataset offers ground 

truth's annotation only limited to objects within the front camera’s field of view. 

This means that the inference speed on KITTI benchmark, which many pieces 

of research are showing, was recorded using less than half of the total point 

cloud. Naturally, the calculation burden of point clouds will increase as the 

number of point clouds increases. 

For this reason, it is reasonable to expect that the actual inference rate of the 

networks on KITTI benchmark will be reduced if they are applied in a real-time 

environment, which is the case that all the point cloud are used or the perception 

algorithm operates with other self-driving modules like planning, localization, 

control. 
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Most state-of the-the-art object detection methods can be categorized into 

either (1) a two-stage framework or (2) a one-stage framework. Essentially, the 

two-stage methods are divided into two steps. It generates a set of sparse 

candidate bounding box proposals and calculates an objectness score for the 

content of each box in the first step and then conduct further regression and 

classification in the second step. In contrast, a one-stage method [Redmon,’15, 

Liu,’16, Redmon,’16, Lin,’17, Redmon,’18, Iandola,’16] performs object 

location and bound box regression and classification directly by dense sampling 

from each feature map. 

Some recent works showing good performance on KITTI benchmark 

adopted this two-stage method [Qi’18, Wang’19, Shi’19, Chen’19, Yang’19, 

Shi’19]. They pre-trained a segmentation network that learns point-wise object 

scores to generate coarse object proposals. With these proposals, they regressed 

box size and heading angle, confidence. Because two-stage method divided the 

detection process completely into (1) providing the balanced proposals and (2) 

Regression stage which tends to improve the object location and heading angle, 

they usually show more accurate results than the one-stage method. However, 

the two-stage method requires a pre-trained model to generate proposals, so this 

method is not advantageous for end-to-end training, or even though end-to-end 

is possible, the separated process of two-stage method leads to low detection 

speed.  

For these reasons, networks using the two-stage method have a low inference 

speed than one-stage method. In practice, networks adopted two-stage method 
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in KITTI benchmark have inference rate about 40ms to 80ms. As mentioned 

before, the inference rate could be lower in actual real-time application because 

of other computational burden or LiDAR point cloud ranges. In this dissertation, 

one-stage method is adopted to secure the detection speed as efficiently as 

possible for practical aspects. 
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Figure 3.1. Camera view and point cloud of KITTI dataset. Green boxes are 

ground truth information. Annotation is limited to objects inside camera view 
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3.1. Voxelization & Feature Extraction 

 

LiDAR point cloud data is 3D spatial information and has information of x, 

y, z, and intensity. Therefore, unlike a tensor type 2D image data, it is 

impossible to apply a convolutional network directly. In addition, since there is 

no order for 3D spatial data, the same result should be shown even when the 

points order is changed. PointNet [Qi’17] achieved notable result by learning 

the relationship between the points and classifing them as point-wise directly 

processing the LiDAR point cloud without converting it to another form. 

However, if the number of points in LiDAR is large, a lot of calculation is 

required to process in point units, so it can be seen through Voxelnet [Zhou’18] 

showed that it is effective to convert the point cloud data into a pseudo-image 

and apply a convolution network. 

To apply a 2D convolutional network method, we first transform the point 

cloud into a pseudo-image form such as RGB image. As a first step, the 

voxelization step subdivide the point cloud x, y, z, r into equally spaced voxel 

in the x-y plane with one z-direction channel as Voxelnet. In this step, like 

[Lang’19] did, we adopt only one-channel along the z-axis to secure network 

efficiency. As the pseudo-image has only one-channel, it is easy to apply 2D 

convolution not 3D convolution, which results in speed efficiency. To obtain 

point canonical locations in each voxel, we subtracting the arithmetic mean 

(X,Y,Z) values and augmented the distance to the arithmetic mean of all points 
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and offset from the voxel center position in the voxel. The augmented LiDAR 

point is 9 dimensional information: , , , , , , , , ,c c c p p px y z x y z x y z r . We 

set the number of the augmented information number as D = 9. According to 

many researches [Yan’18] we set the voxel size to ( ld = 0.16m, wd =0.16m, 

hd = 4m), ld  , ld   and ld   means width, height and height of voxel 

respectively. By applying voxelization, we can allocate the points cloud into 

voxels having much less number than total point numbers as shown in Figure 

3.2. 

 

 

Figure 3.2. Voxelized map of point cloud 
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Most of the voxels will be empty due to sparsity of the point cloud, and there 

are only a few points even in the non-empty voxels. We impose a limit both on 

the number of non-empty voxels per sample (P) and on the number of points 

per voxel (N) to create a dense tensor of size (D, P, N). If too much number of 

the point cloud are allocated in a sample or voxel, the points are randomly 

sampled to fit this tensor. Conversely, zero paddings is applied if a sample or 

voxel has too little number of the point cloud to populate the tensor.  

Many researches [Simon’18, Ali’18, Beltran’18] adopted max height, 

intensity, density(the number of the points in a voxel or grid) for the network 

input feature's channel. This selection is intuitive and simple to process. 

However, it is not easy to learn feature characteristics in the local area of the 

voxel unit. 

 Next, we apply a simplified PointNet to each point to extract the feature 

characteristics of the voxel. PointNet is consists of a linear layer followed by 

Batch Normalization [Ioffe’15] and ReLU to generate a tensor with the size of 

(C, P, N). After passes the simplified PointNet, a max operation is applied over 

the channels to generate a (C, P) sized output feature tensor. If the feature 

extraction process is ended, the extracted features present values of 

corresponding voxel channels. We can get pseudo-image after applying this 

process over the whole voxels. The feature extraction process is shown in 

Figure 3.3. 
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Figure 3.3. Feature Extraction Network 

 

3.2. Backbone Network 

 

 As one of the basic components in object detectors, the region proposal 

network serves as an important module to decode the input feature maps and 

transform them into candidate boxes. The backbone structure is shown in 

Figure 3.4. 

The backbone is consists of two sub-networks. The first sub-network has a 

form of top-down Feature Pyramid Network (FPN) design that produces 

features at increasingly small spatial resolution. The second sub-network takes 

features from the first network and performs upsampling. Upsampled features 

are concatenated at the end of the network. 
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The top-down network is a series of convolution layers followed by Batch 

Normalization and a ReLU. The feature passed a first top-down layer are 

combined with a non-ground mask created by the non-ground extraction 

process, then the combined feature passes a top-down network again. The final 

features from each block of first sub-network pass upsampling layer, then Batch 

Norm and a ReLU is applied to each upsampled feature. The final upsampled 

features are concatenated. 
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Figure 3.4. Backbone Network of object detector 
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3.3. Detection Head & Loss Function Design 

 

  Essentially, the trouble in object detection problem with LiDAR point cloud 

comes from the difference between image and point cloud’s data form. RGB 

image data are 2D pixel-wise data and they are filled with meaningful data 

without emptiness. However, the point cloud is 3D physical data having 

distance and orientations. Even though we convert the point cloud point to 

voxel-wise data, there are only a few voxels filled with point cloud and the most 

voxels are empty and these voxels are out of our interests, and this imbalance 

between foreground voxels and background voxels results in degradation of 

detection performance while training.  

 

LiDAR sparsity 

 On the other hand, most cells of voxelized will be empty due to sparsity of 

the point cloud, and the non-empty voxels will, in general, have few points in 

them. For example, despite the description in it’s user manual that the LiDAR 

model used in KITTI, HDL-64E Velodyne LiDAR, generates 1,300,000 points 

per second in single return mode and 2,200,000 points per second in dual return 

mode, at 
2 20.16 m bins the point cloud from the LiDAR has 6k-9k non-empty 

voxels in the range typically used in KITTI for ~ 97% sparsity. 
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Class Imbalance Problem 

 Although the major driving force of progress in object detection has been 

the incorporation of deep neural networks, imbalance problems in object 

detection at several levels have also received significant attention because this 

imbalance can result in performance degradation. 

 The balanced distribution of the inputs is the key property affecting the 

performance. When the distribution imbalance is not addressed, an imbalance 

problem has adverse effects on the final detection performance. The most 

commonly known imbalance problem in object detection is the foreground-to-

background imbalance which means the extreme inequality between the 

number of positive examples versus the number of negatives. In that imbalance 

case, if a given image, while there are typically a few positive examples, one 

can extract millions of negative examples. If not addressed, this imbalance 

greatly impairs detection accuracy.  

 

Detection head 

 We found that this imbalance problem occurs in object detection using the 

LiDAR point cloud because of the aforementioned problems. To take a one-

stage structure for efficient detection speed with mitigating the class imbalance 

problem, we adopt the focal loss as a loss function for class classification and 

the detection head of Single Shot Detector (SSD) because the structure’s 

performance of SSD already verified in 2D object detection on the image. 

Similar to SSD, we set the anchor boxes and match the anchors to the ground 

truth using 2D Intersection over Union (IoU). The matching processed on the 
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Bird’s Eye View (BEV), which means bounding box height and elevation were 

not used for matching. The height and elevation become additional regression 

targets. 

 

3.4. Loss Function Design 

 

Because we divide the range as equal-sized voxels, the objects to be detected 

are of an approximately fixed size. Thus, we use two fixed-size anchors 

determined based on the means of the size and center locations of all ground 

truths in the KITTI training set with a rotation of 0 and / 2 . In the case of 

cars, we define an anchor with dimensions of (1.6 Ⅹ 3.9 Ⅹ 1.56m), centered 

at z = -1.0m. In a voxel, we can describe the relation between anchors and 

ground truth as shown in Figure 3.5. Similar to [Yan’18], we set the residuals 

between ground truth and anchors to be encoded with the following equations: 
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Where x , y, z  are the center coordinates and  , l ,h are the width, length, 

and height of the 3D bounding boxes respectively.  is the heading angle, and 
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2 2d l    is the diagonal of the base of the anchor box. Subscripts ‘g’ and 

‘a’ indicate the ground truth and anchor boxes respectively. The total 

localization loss is given by: 
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According to SECOND [Yan’18], the angle loss form has two advantages. 

First, the adversarial problem occurs between orientations of 0 and   can be 

solved because 0 and   have the same orientation of the box, but they generate 

a large loss in the loss function. Secondly, it naturally models the IoU against 

the angle offset function. Because this angle function treats boxes with opposite 

directions as being the same, this approach can converge the angle loss 

regardless of direction problem. 

 

Figure 3.5. The relation between ground truth and anchors 
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  As aforementioned, there is a class imbalance between non-object proposals 

and object proposals. For example, there are usually only a few voxels 

including points belong to ground truths even though our network usually 

generates about ~70k anchors within a KITTI dataset. So the most voxels in the 

input features are not related to the object. This lead to a considerable class 

imbalance between the foreground and background classes, which there are 

only a few foreground gird comparing to the background grid. To handle the 

imbalance problem, we use the focal loss for the object classification introduced 

by the authors of RetinaNet [Lin’17], thus the classification loss has the 

following form: 

 

 ( ) 1 log( )a a
tFL p p p


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where 
ap  is the estimated probability of an anchor to be a positive sample 

and  and   are the tuning parameters of the focal loss. We use the settings 

of  = 0.25 and = 2 according to original paper [Lin’17] in our training 

process. Therefore, by combining the losses discussed earlier, the total loss 

function is defined as follows: 
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Where is the classification loss and is the regression loss for location and 

object dimension. posN  stands for a total number of positives, loc  and 

loc are the constant coefficients of our loss function. To optimize the loss 

function we use Adam optimizer with an initial learning rate of 
42 10  and 

decay the learning rate by a factor of 0.8 every 15 epochs, and we set total 

training epochs as 160.  

 

 

3.5. Data Augmentation 

 

 

Figure 3.6. Data Augmentation Example 

 

The neural networks based on supervised learning heavily depend on big data 

to avoid overfitting. Overfitting refers to the phenomenon when a network has 
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high variance with respect to other datasets because it is intensively trained on 

specific data. Data Augmentation encompasses a set of techniques that apply a 

transformation on the size or quality of training datasets for better Deep 

Learning models to be built by using them. For this reason, data augmentation 

is a critical component of training deep neural network models. Data 

augmentation involves the process of creating new data by manipulating the 

original data by various methods as shown in Figure 3.6. The smaller the 

amount of data to train, the more effective this augmentation process can be for 

model training. In addition, overfitting also can be mitigated by data 

augmentation. In this dissertation, we apply basic augmentation such as global 

flip and rotation, translation on pseudo-image. Furthermore, we apply 

additional augmentation proposed by [Yan’18]. 

 

Global Translation and Global Rotation  

 We applied global translation and rotation to the whole point cloud and to 

all ground truth boxes. The translation is randomly applied from the uniform 

distribution [-30, 30] in x-direction and y-direction, and rotation augmentation 

is also randomly applied and the rotation angle range of [− π/4, π/4] is used. 

 We tested our network via real vehicle test using 32 channel LiDAR, it will 

be introduced in later. The test LiDAR is mounted at the front of the test 

vehicle's bumper, and this position is different from the mount position of 

KITTI test vehicle. The difference in the sensor mounting position causes a 

change in the appearance of the scenes produced by the lasers emitted from the 



 35

LiDAR, and when the trained network is applied, the performance of the 

network is sensitive to the vertical position calibration. 

To mitigate the sensitive performance change according to vertical 

calibration, vertical translation augmentation is applied to train the model as 

shown in Figure 3.7.  

 

 

Figure 3.7. Vertical Translation augmentation 

 

Global Flip & Scaling  

The LiDAR product used in KITTI dataset is Velodyne’s HDL-64E and this 

is mounted on the roof of the test vehicle to cover 360 degrees around the test 

vehicle. Even though all the point cloud around the test vehicle is served, the 

KITTI dataset offers ground truth's annotation only limited to objects within 

the front camera’s field of view. In actual driving situations, however, the 

network may also need to detect vehicles in the rear. In order to train the model 

to cope with obstacles coming from the rear, the image created by LiDAR laser 

on the obstacle is needed to be similar to what of when the object is behind it. 

So we applied global vertical flip and horizontal flip to the whole point cloud 

and to all ground truth boxes. 
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Finally, we perform two kinds of global augmentations, which are 

scaling[Zhou’18, Yan’18] and noise addition that is jointly applied to the point 

cloud and ground truth information. When applying a noise augmentation to 

the point cloud, we randomly add or subtract the number of points from original 

point cloud data. 

 

Ground Truths Scattering from the Database 

 As mentioned earlier, we encountered the imbalance problem during 

training. There are usually only a few ground truths even though our network 

usually generates about 70k anchors within a KITTI point cloud.  

So the most voxels in the input features are not related to the object. This 

imbalance significantly limited the convergence speed and final performance 

of the network. As shown in Figure 3.8, the KITTI dataset used for training 

shows that there are less than 5 cars in most frames. 

To solve this problem, we adopt a data augmentation approach similar to 

[Yan’18]. As shown in Figure 3.9, we construct a database containing the labels 

of all ground truths and their associated point cloud data from the training 

dataset. The associated point cloud data is filtered by extracting the points 

inside the 3D bounding boxes of the ground truths. 
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Figure 3.8. Number of car and image 

 

 Then, during training, as shown in Figure 3.9, we randomly selected several 

ground truths from this database and scattered them into the current training 

point cloud with translation and rotation augmentation. When the additional 

ground truth points from the database are scattered, we checked whether the 

points are overlapped with existing ground truth points to avoid an unnatural 

scene that the objects are overlapped. If there is overlapping, we re-scattered 

the points until the overlapping does not occur. 

 However, the method introduced in SECOND [Yan’18] did not care about 

the overlapping with the non-ground points, which are wall, flower bed, traffic 

sign, and tree, etc. In addition, when the additional points are scattered, they 

preserve their vertical positions. This results in an unnatural vertical position.  
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Figure 3.9. Construct Ground Truth Database 

An unnatural scene means situations that cannot occur while real vehicle 

tests. For example, the scene that the objects are overlapped and the scene that 

cars are under the ground or placed off the ground. In addition, the situation 

that the closer object has sparse point cloud density than a distant object is can 

not occur physically. We wanted our model to learn more natural scenes 

because the unnatural scenes can degrade the final performance.  

As shown in Figure 3.10, to avoid physically impossible outcomes, we take 

a step further from the proposed method in SECOND [Yan’18] by exploiting 

the aforementioned ground estimation. By estimating the ground points, we 

distinguish non-ground points from the point cloud. Thus, we additionally 

checked the scattering points overlapping with non-ground points, and move 

their vertical position to be placed on the ground points. Scattering positions 
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are also constrained in a specific range for the relation between point number 

and its distance. 

 Using this augmentation approach, we could increase the number of ground 

truths per point cloud and simulate objects existing in different environments.  

 

 

 

 

Figure 3.10. Random data scattering augmentation from database 

 

 

3.6. Post Process 

 

In detection, adjacent grids produce multiple prediction results for one object. 

In general, by applying non maximum suppression (NMS), prediction with the 

highest confidence is picked as a representative prediction, and the other 
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predictions overlapping with the highest confident prediction are judged as 

predictions for the same object and they are erased. As an example, there are 

five predictions in Figure 3.11 and their confidence scores are shown in Figure 

3.12 (a). From the definition of NMS, the number 3 prediction is selected as a 

result predictio. The confidence score is the probability that a prediction 

contains an object. However, the confidence score is just a value calculated by 

the object detector trained by dataset, not a strictly mathematically and 

physically derived value. Thus it cannot be convinced that the prediction with 

higher confidence leads to a more accurate results.  

Therefore, there is a question that the existing NMS, which simply sorts 

predictions in order of confidence and determines the prediction with the 

highest confidence as the final prediction, is the most reasonable method. To 

compensate for these shortcomings of NMS, the polygon detection results 

covered in Chapter 4 are used. 

 

Figure 3.11. Polygon and predictions with confidence 
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However, the number 2 prediction predicted fitted to the point cloud seems 

to be a more suitable prediction when viewed in intuitively. In this case, we use 

the polygon to predict the unknown object covered in Chapter 4 to induce the 

final prediction to be changed from 3 to 2. First, predictions are not sorted in 

the order of confidence score, but instead, they are sorted based on IoU with 

the polygon. At this time, the IoU with the polygon is defined as the ratio of the 

area of the polygon to the denominator and the overlapping area of the Polygon 

and the prediction to the denominator as defined in equation 3.5. 

1prediction polygon

polygon

Area Area
IoU

Area
 


 (3.5) 

 

The IoU results are shown in Figure 3.12 (b). In this case, the number 2 

prediction has the highest IoU with the polygon. The IoU value with the 

polygon has a maximum of 1, and finally, predictions are sorted based on the 

multiplication of the confidence score and the IoU. The prediction with the 

highest value of the multiplication is picked as the result prediction. If the area 

of the polygon is not defined, the IoU is not considered and the final selection 

is made by sorting in confidence score order according to the existing NMS 

method. 
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(a) Predictions and their confidence scores 

 

(b) Predictions and IoU with polygon 

Figure 3.12. Confidence scores and IoU of predictions 

 

Chapter 4 Non-Ground Point Clustering 
 

 In the classic rule-based method using the existing 2D LiDAR, erasing the 

ground was a basic task. This approach is based on the assumption that objects 

above a certain height above the ground are obstacles. This is a fairly 

appropriate assumption, and since it was a useful approach, ground removal 

was a very important process in performance. Following this manner, previous 

researches using 2D LiDAR have been used as a method of finding an object 

by fitting the features of an object that was supposed for the remaining points 
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after deleting the points belonging to the ground. However, the neural network-

based method is a method of learning the feature characteristics of an object 

from the position of point clouds and recognizing the object through their 

characteristics, so it is not necessary to remove a point belonging to the ground. 

This seems to be a very efficient and sophisticated task. Actually, object 

detection using the LiDAR point cloud has been shown relatively high 

performance and many researches have been conducted on various datasets. 

Most of the detectors that show good performance in the benchmark of object 

detection are developed based on supervised learning. The detector based on 

supervised learning has a methodological limitation that it can only find the 

object learned in the learning process. Detectors that show good performance 

in most studies also show limited performance for specific objects. Since such 

performance considers only the detection results of every scene, detection 

continuity between scenes and scenes is not considered. Even though the 

detector has a very fast detection speed, it often fails to detect even a learned 

object due to the nature of the object detector.  

 In the actual driving process, objects that are not included in the dataset are 

often encountered. In this paper, we studied the method of detecting non-ground 

points and detecting them as unknown objects by clustering them in order to 

respond to these unlearned objects and objects that have been learned. 
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4.1. Previous Researches for Ground Removal 

 

 It is not an easy task to filter out points belonging to the ground in a 3D point 

cloud. There have been many attempts to solve this problem, and these can be 

broadly divided into three categories. 

 First, based on the specification of LiDAR and mount location, a method of 

finding based on the degree and height change of the locations where laser 

beams are formed. [Chu’17, Choi’13] However, this method is not robust to 

changes in the specifications and installation position of LiDAR, and is not 

efficient in terms of calculation since it extracts ground points for each beam 

individually. As mentioned earlier, this method is not appropriate because the 

real-time guarantee is very important in autonomous driving. 

The second method is a ground plane estimation. [Asvadi’16, Zermas’17] In 

this method, planes representing ground are obtained through multiple 

iterations, and points coming within a certain distance are regarded as ground. 

However, in many cases, the road surface of the road we facing while driving 

is actually not neatly flat even though they look perfectly flat. The above 

method attempts to compensate for this by using multiple planes, but the 

number of planes must be fixed in advance, and multiple iterations are not 

efficient in terms of computation. Also, the method of filtering a point with a 

distance threshold from a plane does not completely perform ground removal. 
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 Finally, ground point classification through segmentation using a neural 

network. [Velas’17, Dabbiru’20] This is the most attempted method in recent 

years by the universal application of neural networks.  

Recently, even if not used in the ground removal method, this method is used 

in attempts to use confidence information about whether each point belongs to 

the ground to improve the detection performance of the network. [Shi’19, 

Yang’19] However, because the KITTI dataset used in this study does not 

provide annotations of ground points, the task of creating ground points 

annotations must be preceded in order to train such a network. This work is 

quite a time consuming and needs a hand-craft partially. 

 When a point belonging to the ground is mistaken for a non-ground point, it 

is recognized ground as an obstacle, so incorrect route planning and braking are 

executed, which can create incorrect behavior from the perspective of 

autonomous driving planning and control. For these reasons, we had to devise 

an effective rule-based method in this dissertation to secure both efficiency and 

performance. 

 

 

4.2. Non-Ground Estimation using Voxelization 

 

 It is not easy to filter out the points belonging to the ground through the 3D 

point cloud. This requires a lot of complex computation, and these 

computations must work properly for various ground conditions. Estimating a 

specific ground plane or estimating whether it is a point belonging to the ground 
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with height and angle differences between points does not produce an 

appropriate result for various situations.  

In order to cope with these shortcomings and to produce appropriate results, 

we propose a simple method. In the object detector section, the point cloud is  

allocated in the 2D array through the voxelization divided into a certain size. 

Before the feature extraction, we calculate the height difference between the 

highest point as shown in Figure 4.1 and the lowest point for the point clouds 

in the voxel. 

 

Figure 4.1. Vertical distance in a voxel for non-ground point extraction 

 

If this height difference exceeds a certain value, it can be classified as an 

object. That is, the points belonging to this voxel are regarded as points 

belonging to a non-ground object or obstacle. Conversely, if the height 

difference is smaller than a certain value, the points belonging to this voxel are 

regarded as points belonging to the ground. 
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  However, there is a case when the height difference is ambiguous, which 

is the case that the height is laid between two threshold values. [Wang’18] 

analyzed the variance of the point cloud of KITTI dataset, and found a tendency 

that the variance of the point cloud's reflectance on the ground is higher than 

that of other points. If the value of this variance is more than a certain point, the 

points in the voxel belong to the ground, and in the opposite case, it is 

considered to belong to the non-ground. By doing this, it is possible to 

distinguish non-ground points from ground points in a simple way, and it is 

computationally efficient because it uses voxelization used in the object 

detection process. 

 

Before on-ground points extraction 

 

After non-ground points extraction 

Figure 4.2. Non-ground point extraction result on KITTI dataset. Red points 

in the right figure are non-ground points, and grey points are grounds. 



 48

In addition, since this method produces results according to the relative 

distance of the point cloud along the z-axis, it is relatively robust for the 

specification and installation location of LiDAR. Figure 4.2 shows the result of 

non-ground point extraction is applied to KITTI dataset. 

 

Table 1. Comparison of average processing time per frame for ground 

estimation 

Method 
Average processing 

time per frame (ms) 

Fast ground segmentation [Chu,’17] 4.7 

Sloped Terrain Segmentation [Cho,’14] 19.31 

Loopy belief propagation based ground segmentation 

[Zhang,’15] 
1000 

Ground plane detection with RANSAC [Asvadi,’16] 15.4 

Local convexity criterion [Moosmann,’09] 602 

Proposed Method 8.3 

 

Figure 4.3 and Figure 4.4 show the real vehicle test result. The LiDAR used 

in the vehicle test is 32 channels and installed in front of the vehicle. The driving 

course of the vehicle test is the road leading from Seoul National University 

Entrance Station to the main gate of Seoul National University. This road 
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consists of uphill and downhill roads. As a result of the qualitative evaluation, 

it was observed that the ground points and the non-ground points were properly 

classified even on the uphill and downhill roads. Table 1 shows the comparison 

of average processing time with other algorithms. As shown in the comparison 

result, Fast ground segmentation method is the fastest method followed by the 

proposed method. However, the proposed method is more efficient in this 

dissertation even though it has relatively low processing speed for the reason 

that the proposed network takes the voxelized feature as input. The main 

advantage of the proposed method is that it uses voxelization with high 

processing speed. 

 

Figure 4.3. Bird’s eye view of non-ground point extraction result on real 

vehicle test 
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Figure 4.4. 3D view of non-ground point extraction result on real vehicle test 

 

4.3. Non-ground Object Segmentation 

 

In the methods of using the neural network, it is not necessary to distinguish 

which object each point belongs to, because they find objects directly through 

the point cloud raw data. Finding object detection without any pre-processing 

for point cloud input is the biggest advantage of neural networks. However, as 

mentioned above, such a supervised learning-based neural network has a 

disadvantage that it cannot detect objects except for the object the detector has  

learned.  

Conversely, previous studies not using the neural network method used a 

model-free method, such as fitting objects for a certain size by segmenting the 



 51

remaining points after first removing the ground, or matching cluster by 

considering dynamic information of the subject vehicle. 

  There are many clustering according to its manner, and hierarchical 

clustering, Centroid-based clustering, Distribution-based clustering, and 

Density-based clustering are the representative methods. 

 Hierarchical clustering is based on the idea that close points are more related 

than distant ones. It is divided into several types according to the way of 

calculating the distance, and in general, the complexity is 
3( )O n   for 

agglomerative clustering and 
1(2 )nO 

 for divisive clustering, which makes 

them too slow for large datasets. 

 The most well-known algorithm of centroid-based clustering is k-means 

algorithms. It finds the k cluster centers and assigns the objects to the nearest 

cluster center, which the distances from the cluster are minimized. However the 

most -k-means algorithms require the number of clusters to be specified in 

advance, and this is considered as one of the biggest drawbacks because the 

cluster number can be varied in every time. 

Density-based clustering separates high-density points into clusters, and 

objects in low-density areas are generally considered noise or boundaries. In 

density-based clustering, the most popular method is DBSCAN. (Density-

based spatial clustering of applications with noise) It is based on connecting 

points within a certain distance range and it only includes points that satisfy a 

density criterion. This method has an advantage in that it is not necessary to 

determine the number of clusters in advance and can respond to various types 
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of clusters. In this process, we cluster the non-ground points filtered in non-

ground extraction process and create bounding polygon like bounding box 

detected by object detector. The total process of clustering and convex hull 

polygon with non-ground points are shown in Figure 4.5. 

 

 

Figure 4.5. Point Clustering Sequence 

 

 

4.3.1. Object Clustering   

In this point clustering operation, specifying the number of clusters is not 

appropriate for situations in which various cluster numbers may occur while 

driving. In addition, in the case of the k-means algorithm, since an incorrect 

result is created for an arbitrary cluster type, a clustering technique showing an 

appropriate shape for an arbitrary cluster type is required. Also, an algorithm 

that can cluster points appropriately for any number of clusters is required. 

DBSCAN (Density-based spatial clustering of applications with noise) can 

be the most appropriate algorithm for this task. DBSCAN does not require one 
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to specify the number of clusters in the data a priori, as opposed to k-means 

clustering. In addition, it can find arbitrarily shaped clusters. It can even find a 

cluster completely surrounded by (but not connected to) a different cluster, and it 

is robust to outliers. This algorithm requires just two tuning parameters and is 

mostly insensitive to the ordering of the points in the database.  

In general, it is ideal to apply DBSCAN to non-ground points, but when 

applying clustering to all non-ground points, too much of iteration is applied to 

points with only different z values for similar x and y positions. In Bird's eye 

view, these calculations along the z-axis have little significance for the 

clustering result. This calculation results in a computational load and affects the 

overall processing time. 

When the total number of non-ground points is N and the number of voxels 

where non-ground points exist is M, generally N >> M is satisfied. Therefore, 

clustering based on the non-ground mask can reduce the calculation time 

without significant difference. This phenomenon is expected to reduce the total 

calculation time because the number of grids to be calculated decreases as the 

voxel size increases. About the scene shown in Figure 4.6, there are many 

differences in the number of points to be calculated between raw point cloud 

and voxelization. The total number of calculation leads to a large difference in 

calculation time. 

Table 2 shows the calculation time comparison according to the clustering 

method for the scene shown in Figure 4.6. When the voxelization is performed, 

the number of data to be calculated is reduced to more than one-tenth, and it is 

greatly reduced from the calculation time. 
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Therefore, as the voxel size increases, the efficiency of the calculation time 

increases. However, large voxel size may lead to inappropriate clustering 

results because the points belonging to different objects can be grouped together 

during clustering. 

 Therefore, it is important to cluster through the voxelization to maximize the 

speed without significant difference in clustering results, and to select voxel-

size of the appropriate size empirically in the process 

 

 

 

Table 2. Calculation time according to clustering methods and voxelsize 

Method No. of Data Cal. Time [ms] note 

Raw Point Cloud Data (11714, 4) 147.14 - 

Voxleized 

Data 

(1292, 2) 6.78 Voxelsize = 0.1 

(747, 2) 3.42 Voxelsize = 0.2 

(551, 2) 2.28 Voxelsize = 0.3 

(418, 2) 2.01 Voxelsize = 0.4 
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(a) Original point cloud data 

 

(b) After clustering  

Figure 4.6. Clustering result on KITTI dataset 

 

 

4.3.2. Bounding Polygon  

In the case of object detection in this paper, detection is performed on a car, 

pedestrian, and cyclist. In the case of the object found by the object detector, 

the boundary of the object is defined through the bounding box, which 

includes the information such as object center position, width, length, the 

height of the box, and heading angle. 
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 In the case of other obstacles, it is found as an unknown object through 

clustering. In this case, if a bounding box is defined with only the maximum 

and minimum x and y position of the cluster points, inefficient and 

unreasonable cases may occur as shown in Figure 4.7. 

In order to solve this problem, this study defines the bounding polygon in 

the form of the polygon by finding the outer shell of an unknown object by 

using a convex-hull polygon. 

 

 

 

(a) 

 

(b) 

Figure 4.7. Two cases according to boundary of unknown object clustering 
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Chapter 5 . Object Tracking 

 

Multi-object tracking (MOT) is an essential function for many applications 

not only autonomous driving. By applying the tracking function, the detection 

performance can be enhanced by maintaining detection continuously even if 

detection is missed. A lot of research on multi-object tracking has been 

conducted, and in the last 2 or 3 years, the car class on the KITTI MOT 

benchmark, the MOTA (multi-object tracking accuracy) has advanced from 

57.03 [Yoon’18] to 84.24 [Sharma’18]. Despite the significant increase in 

MOTA score, the complexity and computational cost of the system also 

increased accordingly. 

[Weng’19] proposed a simple but accurate 3D MOT system, which ensures 

a computational speed that can be utilized in real-time. We utilized the 3D MOT 

system architecture, and modify its inputs as object detection results and 

clustering for unknown objects, and its architecture is shown in Figure 5.1. The 

architecture of the tracking system is shown in Figure 5.1. Each tracking 

component has an associated Extended Kalman Filter that is used for prediction 

and estimation of the object state over time. Even if the objects go out of the 

detecting range and the detector lost the object, the tracking solution keeps track 

of detected objects until specified frames. Because the tracker predicts the 

movement of objects within the scene and to infer semantic information 

between frames, it can aid the object detection process. 
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Figure 5.1. Multi Object Tracking Architecture 

 

 

5.1. State Prediction and Update 

 

In order to predict the state of the object in the next frame, a simple kinematic 

model using constant velocity is defined as shown in Figure 5.2.  

As suggested in [Weng’19], even with a simple point model with a constant 

velocity assumption, there was no significant difference in model prediction 

results. But the model based on minimal kinematic is used for future works that 

to predict the possible dynamic behavior of objects using the ego vehicle’s 

dynamic information. Because overlaps between object is physically 

impossible, we project the object behavior onto 2D image feature and define 

the state of the object as a 7-dimensional vector 
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(7 1)[ , , , , , , ]Tx yp p L W V   x   , where xp , yp , L, W,  ,  , V 

means object x, y position, length and width of the bounding box, heading angle, 

and yaw rate, velocity respectively. The object’s next position with respect to 

the current state can be defined in Equation (5.1) to (5.3). 

 

 

Figure 5.2. Vehicle model defined in object tracking 

 

(7 1)[ , , , , , , ]Tx yp p L W V   x     (5.1) 

(5 1)[ , , , , ]T
x yp p L W   z    (5.2) 

 

[ , , , , , , ]

cos( ) sin( ) 0 0 0

T
x y

T

d d
p p L W V

dt dt

V V
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



x 


 (5.3) 
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After state prediction, objects in the previous frame and the objects of the 

current state are compared and matched. This is described in detailed in the next 

section 5.2. At this stage, the objects are divided into matched and unmatched 

objects. Matched objects are considered to be the same object in the previous 

frame and the current frame, and unmatched objects are objects that were newly 

detected or existed in the previous frame but disappeared in the current frame. 

We update the state space to account for uncertainty for matched objects based 

on the measurements. Following the Bayes rule, the updated state is the 

weighted average between the prediction and the measurement. The weights 

are determined by the uncertainty of the prediction and measurement, and this 

is referred to Kalman filter [Kalman’1960] in detail. 

 

5.2. Data Matching Association 

 

The Multi-Object Tracking (MOT) solution creates and deletes object IDs 

constantly as objects enter and exit the scene. The memory director is 

responsible for the creation/deletion process based on the data association at 

the update step.  At first, the detection results come from detection network 

and their corresponding Extended Kalman Filters are being calculated through 

their prediction step. Based on the predicted states of each EKF, an associated 

cost is being computed for each observation at the validation step a stored as a 

matrix. This matrix is based on the Intersection of Union (IoU) used to match 

the observations and the predictions. Since the detection speed is relatively very 

high than point cloud data update, the time gap between the two frames is very 
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short. This means that the distance between data update is very short comparing 

to vehicle size. In this aspect, IoU is a suitable metric to use for the prediction-

to-observation association.  

To match the detections with prediction trajectories, we apply the Hungarian 

algorithm. The affinity matrix with a dimension of 1t tn n  is computed using 

the IoU between every pair of detection and prediction. Then the matching 

problems can be solved in polynomial time with the Hungarian algorithm. In 

addition, we reject the matching when the IoU is less than the threshold value. 

The outputs of the data association module are a set of detections matched with 

predictions along with the unmatched predictions and unmatched detections. 

As shown in Figure 5.3, there are sequential predictions along time T to time 

T+1. If IoU between the predictions of time T and T+1 is larger than threshold, 

we regard the predictions are for the same object. 

 

Figure 5.3. Prediction and detection matching with IoU 
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Chapter 6 Test result for KITTI dataset 

  

We evaluate our proposed object detector by using the KITTI 3D/BEV object 

detection benchmark dataset, which contains 7,481 training samples and 7,518 

testing samples. We divide the training samples into a training set with 3,712 

samples and a validation set with 3,769 samples following the common manner. 

We trained the model with the divided training samples and compared it with 

other networks on validation samples. Since ground truth information provided 

by KITTI dataset is limited to those that exist inside the camera image view, it 

is necessary to evaluate only the objects that laid inside the camera image field 

of view. So we only used the LiDAR point clouds which can be projected onto 

the image for training. We conduct experiments on the car category, which is 

the most commonly used for network performance comparison. Average 

precision (AP) with an IoU threshold 0.7 was used as an evaluation metric to 

compare the results. 

 

6.1. Quantitative Analysis 

 

Network performance comparison proceeded for both Birds Eye View and 

3D. In the case of birds-eye-view, the detection result is projected on the x-y 

plane by removing the z-axis information of the detection result. In the case of 

3D detection, even if the x, y, and heading of detection are matched with ground 
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truth, IoU between detection and ground truth can be lower than 0.7 because of 

the height difference. The 3D object detection performance is generally lower 

than birds-eye-view because IoU threshold 0.7 is more difficult in 3D detection 

considering height information additionally. 

We compare the model to other approaches by using validation samples. The 

KITTI dataset is stratified into three difficulty levels: easy, moderate, and hard. 

These difficulties are divided based on the point cloud number on object and 

obscurity, object distance, and so on.  

Table 3 shows a comparison result of our model and the different methods 

for BEV. As shown here, our detector achieved the highest AP score for hard. 

Although our method did not get the highest score for other difficulties, it got 

a high AP score for the remaining difficulties, which are easy, moderate. In 

addition, despite using only the Lidar point cloud, it scored a higher AP score 

than other networks such as the ones using fusion except for Frustum ConvNet 

and AVOD in Easy difficulty. 

Table 4 shows a comparison result of our model and the different methods 

for 3D detection. Unlike BEV, our network did not achieve the best AP score 

in 3D detection. From this result, we can deduce that our network gives good 

detection for the object's center position, heading angle and length, and width 

of bounding box except for height. 

As mentioned earlier, recent researches in the field of object detection for 

autonomous driving focus more on improving AP performance. However, the 

perception module works with other systems such as planning and control 

modules in actual autonomous driving. This results in a much larger 
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computational load than when only the perception module is operated. 

Even if a perception module has very good performance, it cannot be used in 

actual driving situations if it cannot guarantee real-time performance. For most 

LiDARs, the data update period can be set to 0.1 sec as default and can be 

adjusted more quickly to 0.05 sec, 0.025 sec. Depending on the setting. 

Therefore, it can be seen that the minimum real-time performance can be 

guaranteed only when the processing speed of the network is 10 Hz or higher. 

In this aspect, the network proposed in this dissertation guarantees real-time 

better than other methods. We run our model in a desktop equipped with an 

Intel i7 CPU and a NVIDIA RTX2070 GPU. The overall pipeline consists of 

following steps: 1) read the LiDAR point cloud data file and extract the points 

inside the range of interest, 2) encode the point clouds into a voxelized map, 3) 

extract the non-ground voxels, 4) extract the feature characteristics and 

generate a feature map, 5) processing by the backbone and detection heads, 6) 

application of NMS on the CPU. As shown in the comparison results, our 

network shows good processing speed, although the performance of the 

network does not superior to other networks with high differences. 

The comparison results indicate that some networks may perform slightly 

better than our network, but our approach shows better detection speed than 

other approaches. Complex YOLO has a processing speed of 50 frames per 

second, but in terms of AP score, it is much less than other networks. It can be 

seen that the network proposed in this study guarantees good detection speed 

with relatively high detection performance. 
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Figure 6.1. Performance comparison about car on BEV 

 

 

 

Figure 6.2. Performance comparison about car on 3D detection 
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Table 3. Results comparison on the KITTI test BEV detection benchmark 

Method Modality 

Car (BEV) 

Time 

Easy Mod. Hard 

MV3D [Chen,’17] LiDAR + RGB 86.02 76.90 68.49 0.36 

AVOD [Ku,’18] LiDAR + RGB 88.53 83.79 77.90 0.1 

Fast PointRCNN [Chen’19] LiDAR 88.03 86.10 78.17 0.065 

PIXOR [Yang,’18] LiDAR 84.44 80.04 74.31 0.1 

HDNET [Yang’18] LiDAR + Map 89.14 86.57 78.32 0.05 

RoarNet [Shin’18] LiDAR + RGB 88.20 79.41 70.02 0.1 

IPOD [Yang’18] LiDAR + RGB 86.93 83.98 77.85 0.2 

F-ConvNet [Wang’19] LiDAR + RGB 89.69 83.08 74.56 0.47 

VoxelNet [Zhou,’18] LiDAR 89.35 79.26 77.39 0.5 

PointRCNN [Shi,’19] LiDAR 89.47 85.68 79.10 0.1 

SECOND [Yan,’18] LiDAR 88.07 79.37 77.95 0.05 

Complex YOLO [Simon,’18] LiDAR 85.89 77.40 77.33 0.02 

MMF [Liang,’19] LiDAR + RGB 89.49 87.47 79.10 0.08 

Proposed LiDAR 88.25 85.80 79.66 0.028 
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Table 4. Results comparison on the KITTI test 3D detection benchmark 

Method Modality 

Car (3D) 

Time 

Easy Mod. Hard 

MV3D [Chen,’17] LiDAR + RGB 71.09 62.35 55.12 0.36 

AVOD [Ku,’18] LiDAR + RGB 73.59 65.78 58.38 0.1 

Fast PointRCNN [Chen’19] LiDAR 84.28 75.73 67.39 0.065 

PIXOR [Yang’18] LiDAR - - - 0.1 

HDNET [Yang’18] LiDAR + Map - - - 0.05 

RoarNet [Shin’18] LiDAR + RGB 83.71 73.04 59.16 0.1 

IPOD [Yang’18] LiDAR + RGB 79.75 72.57 66.33 0.2 

F-ConvNet [Wang’19] LiDAR + RGB 85.88 76.51 68.08 0.47 

VoxelNet [Zhou,’18] LiDAR 77.47 65.11 57.73 0.5 

PointRCNN [Shi,’19] LiDAR 85.94 75.76 68.32 0.1 

SECOND [Yan,’18] LiDAR 83.13 73.66 66.20 0.05 

Complex YOLO [Simon,’18] LiDAR 67.72 64.00 63.01 0.02 

MMF [Liang,’19] LiDAR + RGB 86.81 76.75 68.41 0.08 

Proposed LiDAR 78.85 74.92 68.10 0.028 
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Table 5. Results comparison on the KITTI test BEV detection benchmark 

Method Modality 

Pedestrian (BEV) 

FPS 

Easy Mod. Hard 

MV3D [Chen,’17] LiDAR + RGB - - - 0.36 

AVOD [Ku,’18] LiDAR + RGB 58.75 51.05 47.54 0.1 

Fast PointRCNN [Chen’19] LiDAR - - - 0.065 

PIXOR [Yang’18] LiDAR - - - 0.1 

HDNET [Yang’18] LiDAR + Map - - - 0.05 

RoarNet [Shin’18] LiDAR + RGB - - - 0.1 

IPOD [Yang’18] LiDAR + RGB 60.83 51.24 45.40 0.2 

F-ConvNet [Wang’19] LiDAR + RGB 58.90 50.48 46.72 0.47 

VoxelNet [Zhou,’18] LiDAR 46.13 40.74 38.11 0.5 

PointRCNN [Shi,’19] LiDAR 55.92 47.53 44.67 0.1 

SECOND [Yan,’18] LiDAR 55.10 46.27 44.76 0.05 

Complex YOLO [Simon,’18] LiDAR 46.08 45.90 44.20 0.02 

MMF [Liang,’19] LiDAR + RGB - - - 0.08 

Proposed LiDAR 56.84 50.20 46.90 0.028 
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Table 6. Results comparison on the KITTI test 3D detection benchmark 

Method Modality 

Pedestrian (3D) 

FPS 

Easy Mod. Hard 

MV3D [Chen,’17] LiDAR + RGB - - - 0.36 

AVOD [Ku,’18] LiDAR + RGB 50.80 42.81 40.88 0.1 

Fast PointRCNN [Chen’19] LiDAR - - - 0.065 

PIXOR [Yang’18] LiDAR - - - 0.1 

HDNET [Yang’18] LiDAR + Map - - - 0.05 

RoarNet [Shin’18] LiDAR + RGB - - - 0.1 

IPOD [Yang’18] LiDAR + RGB 56.92 44.68 42.39 0.2 

F-ConvNet [Wang’19] LiDAR + RGB 52.37 45.61 41.49 0.47 

VoxelNet [Zhou,’18] LiDAR 39.48 33.69 31.5 0.5 

PointRCNN [Shi,’19] LiDAR 49.43 41.78 38.63 0.1 

SECOND [Yan,’18] LiDAR 51.07 42.56 37.29 0.05 

Complex YOLO [Simon,’18] LiDAR 56.66 49.01 45.66 0.02 

MMF [Liang,’19] LiDAR + RGB - - - 0.08 

Proposed LiDAR 50.92 43.48 41.45 0.028 
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Table 7. Results comparison on the KITTI test BEV detection benchmark 

Method Modality 

Cyclist (BEV) 

FPS 

Easy Mod. Hard 

MV3D [Chen,’17] LiDAR + RGB - - - 0.36 

AVOD [Ku,’18] LiDAR + RGB 68.06 57.48 50.77 0.1 

Fast PointRCNN [Chen’19] LiDAR - - - 0.065 

PIXOR [Yang’18] LiDAR - - - 0.1 

HDNET [Yang’18] LiDAR + Map - - - 0.05 

RoarNet [Shin’18] LiDAR + RGB - - - 0.1 

IPOD [Yang’18] LiDAR + RGB 56.92 44.68 42.39 0.2 

F-ConvNet [Wang’19] LiDAR + RGB 82.59 68.62 60.62 0.47 

VoxelNet [Zhou,’18] LiDAR 66.70 54.76 50.55 0.5 

PointRCNN [Shi,’19] LiDAR 81.52 66.77 60.78 0.1 

SECOND [Yan,’18] LiDAR 73.67 56.04 48.78 0.05 

Complex YOLO [Simon,’18] LiDAR 66.70 54.76 50.55 0.02 

MMF [Liang,’19] LiDAR + RGB - - - 0.08 

Proposed LiDAR 78.51 62.22 55.81 0.028 
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Table 8. Results comparison on the KITTI test 3D detection benchmark 

Method Modality 

Cyclist (3D) 

FPS 

Easy Mod. Hard 

MV3D [Chen,’17] LiDAR + RGB - - - 0.36 

AVOD [Ku,’18] LiDAR + RGB 64.00 52.18 46.61 0.1 

Fast PointRCNN [Chen’19] LiDAR - - - 0.065 

PIXOR [Yang’18] LiDAR - - - 0.1 

HDNET [Yang’18] LiDAR + Map - - - 0.05 

RoarNet [Shin’18] LiDAR + RGB - - - 0.1 

IPOD [Yang’18] LiDAR + RGB 71.40 53.46 48.34 0.2 

F-ConvNet [Wang’19] LiDAR + RGB 79.58 64.68 57.03 0.47 

VoxelNet [Zhou,’18] LiDAR 61.22 48.36 44.37 0.5 

PointRCNN [Shi,’19] LiDAR 73.93 59.60 53.59 0.1 

SECOND [Yan,’18] LiDAR 70.51 53.85 46.90 0.05 

Complex YOLO [Simon,’18] LiDAR 68.17 58.32 54.30 0.02 

MMF [Liang,’19] LiDAR + RGB - - - 0.08 

Proposed LiDAR 74.95 59.01 52.85 0.028 
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6.2. Qualitative Analysis 

 

The qualitative results are shown in Figure 6.3 and 6.4. Despite we trained 

our model only on LiDAR point clouds, we visualize the 3D predictions on 

BEV and image perspective. Figure 6.3 shows the vehicle prediction results. As 

can be seen in the figure, the prediction of the vehicle is particularly accurate 

compared to pedestrian and cyclist. In most cases, prediction about the object 

is accurate about the size and orientation. 

In particular, the prediction of the vehicle is very accurate. Even when several 

vehicles are parked and several of them are occluded, it predicts well with 

looking at parts of their shapes. In addition, it finds the vehicle well even when 

it is relatively far away. This is because, unlike pedestrians and cyclists, the size 

of the car is larger, so the number of point clouds is higher than the pedestrian 

and cyclist even when it is far away. The detector also finds pedestrians and 

cyclists well. Especially when two pedestrians are close together, the detector 

predicts they as two pedestrian not one person or cyclist. However, if two close 

pedestrians are farther away, it can be predicted incorrectly, as shown in Figure 

6.4. 

As shown in Figure 6.4, however, there are some failures in some cases, which 

includes false negative and false positive. For false negative, the prediction may 

be missed if there are few points on the object, which is the case that the object 

is partially occluded or far away. Especially, this phenomenon is easy to occur 
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about pedestrian and cyclist. 

 In Figure 6.4 (a), the detector predicts two pedestrian as a cyclist. Since the 

two pedestrians are close to each other and far away from the ego-vehicle, it 

can be seen of as the size of a cyclist from the viewpoint of the detector. As 

shown in (b) of Figure 6.4, the detector does not find a pedestrian that is far 

away, and it mis-predicts a pedestrian as cyclist. When the cyclist is far away, 

there is not enough point cloud, so it is hard to find the object or predict object's 

label correctly. As shown in (c) of Figure 6.4, if the pedestrian is close to the 

vehicle, the number of points belong to pedestrian are reduced because it is 

occluded. This makes detector to miss the pedestrian.  

The object detector based on the neural network recognizes and judges 

objects through the distribution of point clouds. Because pedestrians or 

bicyclists have the number of points significantly less than that of the vehicle 

object, there is a high possibility that recognition may fail or be confused with 

other similar objects. 
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6.3. Additional Training 

 

The KITTI dataset was obtained in the metropolitan area of Karlsruhe, 

Germany and the driving course is shown in Figure 6.5 [Geiger’13]. A driving 

environment consists of city, residential, campus, road, and others. KITTI 

dataset provides several labels, which are car, van, truck, pedestrian, person 

(sitting), cyclist, and tram. car and pedestrian occupy most of the dataset. The 

KITTI dataset has been used in many studies in the past few years and is now 

famous in the field of autonomous driving object detection. Many studies have 

validated the performance of their approaches by using this dataset. However, 

the KITTI dataset has limitations that it cannot cover all objects can show in 

other countries or region. 

 For example, there are some differences in the road conditions between 

Karlsruhe in Germany and Seoul in Korea. First of all, in the case of cyclists 

appearing in the KITTI dataset, they often appear on campus or with people, 

and there are no complex situations where the cyclist is moving between 

vehicles.  

However, in Korea, where delivery and public transport environments are 

well established, it is very common to encounter buses or motorcyclists on the 

road. In the case of the bus, it is impossible to train bus because KITTI dataset 

does not offer data about bus. A method that trains bus by scaling the car was 
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considered, but this method has limitations because the appearance of a general 

car and a bus is very different.  

 With the same reason, it is impossible to train motorcyclists. Since supervised 

learning relies heavily on the dataset, to train objects that do not exist in the 

dataset is a methodological problem. Although the KITTI dataset has been used 

in broad studies, there are some shortages to apply to the Korean road 

environment. 

 

 

 

Figure 6.5. Recording zone of KITTI dataset [Geiger’13]. 
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6.3.1. Additional data acquisition   

The motorcyclist has a shape similar to that of cyclist. As shown in Figure 

6.8, the network trained about the cyclist also detects the motorcyclist. However, 

it fails to detect the bus. Usually, Bus is larger and it has a shape closer to the 

cuboid box than a passenger car and van, so it can be recognized as a shape 

near the edge of the wall. 

To solve the problem of bus detection, we need to train the bus. In order to 

acquire bus data, the KITTI dataset does not offer, driving data was collected 

through our test vehicle and additional data was obtained from it. Note, as 

shown in Figure 6.6, our data-collecting vehicle is equipped with a 32 channel 

LiDAR in front of the vehicle, which is different from the KITTI data 

acquisition vehicle that used 64 channel LiDAR mounted on the roof. While 

driving, we encountered many cars and buses, their point cloud data were stored 

in the form of a bag file of the robot operating system (ROS) in real-time. 

 

Lidar
: RS-32

(Robosesne, Inc.)

1.45m

 

Figure 6.6. Test vehicle and sensor configuration 
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 To make an annotation on objects that appear in every frame is handcraft 

jobs. Two approaches could be considered at the making annotation stage: 1) 

To annotate all existing objects including bus (car, pedestrian, cyclist), or 2) to 

annotate the only bus. The second method was chosen because labeling ground 

truth information for all objects in the frame, including the bus, takes a lot of 

time and labor. The ground truth extraction and build database augmentation 

mentioned earlier was used in this process. 

 We collect as many cases as possible such as partially occluded, observed in 

various angles, and create an annotation for the center, bounding box, and 

heading angle information on the bus. After annotation, we crop the point cloud 

related to the bus and move their center position to the origin and the heading 

angle to zero through translational and rotational transformation. Cropped and 

transformed point cloud is saved in the bus database, thus the database consists 

of bus data with a center of origin and zero heading angle. Figure 6.7 shows 

examples of saved bus data. At the training process, some buses randomly 

selected from the database and then scattered onto the scene with randomly 

applying translational and rotational transformation. In this way, the bus is 

added to the random scattering augmentation mentioned above and learned. 
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Figure 6.7. Bus data extraction example 
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6.3.2. Qualitative Analysis   

Qualitative results are described in this chapter. Because the KITTI dataset 

does not serve bus data, we extracted the point cloud data about the bus from 

our driving data. We train the network by adding random scattering 

augmentation about the bus on training. As shown in Figure 6.8, two networks 

(a model trained including bus and a model only trained about the car) are 

compared on the same driving data. After the network is trained about the bus, 

it is able to find the bus it could not find before training the bus. The detection 

results on the various situations after training about the bus are shown in Figure 

6.9. As shown in the figure, after learning about the bus, the network finds a 

parked bus or an approaching bus in the opposite lane. 

However, the fluctuate prediction about the bus's size occurs sometimes. As 

shown in Figure 6.10 (a), the prediction of the size of the bus changed in the 

case that the bus is occluded at first and gradually appeared by approaching 

closer. At first, the size of the bus is predicted to be small when the bus is 

partially occluded, and if the bus is gradually revealed, the size prediction of 

the bus gradually changes to be large. By training the bus, it seems that the 

accuracy of the size prediction about cars decreased. This means that the 

variance of the prediction for the size of the passenger car was increased 

compared to the case where only the passenger car was trained. In addition, as 

shown in Figure 6.10 (b), there are some false positive cases where the wall or 

the object having a similar shape is mispredicted as a bus. Because, unlike a car 

or a van, the bus's height is very high, and it has a shape closer to the cuboid 

than a car when it viewed in the rear and side view. 
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(a) After training about the bus, the network detect bus on the right side. 

 

(b) After training about the bus, the network detects parked buses 

 

Figure 6.8. The detection results after training about the bus. The detection 

results are shown as 3D bounding boxes on the point cloud view. The 

predicted boxes for car are ‘pink’, for bus are ‘red’, for cyclist are ‘orange’ 
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Chapter 7 Performance Evaluation  

  

In this chapter, we introduce average precision (AP), which is the most 

widely used evaluation metric in the object detection field, and discuss its 

limitations to be used as an effective evaluation metric of practical object 

detection performance. Furthermore, we propose a new metric in measuring the 

practical performance of the perception module by considering detection 

priority and detection continuity. 

 

7.1. Current Evaluation Metrics 

 

Average precision (AP) has been a popular metric for measuring the accuracy 

used in the object detection field. Calculate recall and precision for each frame 

and sort the detection results for total frames in order of high confidence.  

Precision means how accurate are the predictions, and recall represents how 

good the detector finds all the positives.  

 

detections
Precision

Whole detections

detected
Recall

Total number of

TP TRUE

TP FP

TP TRUE

TP FN TRUE

 


 


 (5.4) 
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Mathematical definitions of precision and recall are shown in equation 5.4. 

As shown in Table 8, there are four cases in object detection results, which are 

true positive, true negative, false positive and false negative. Because positive, 

and negative means object we want to find, object we are not interested in 

respectively, true positive denotes the case we correctly find the object we want 

to find. Reversely, true negative is a case we do not find what we want to find. 

False-negative and false positive are can be defined in the same manner. In the 

case of true positive, the success of detection is determined by the Intersection 

of union (IoU). If IoU between object and prediction is larger than the threshold, 

the prediction is regarded as a success. 

 

 

Table 9. Four cases of object detection 

 
Actual 

Positive Negative 

Prediction 

Positive True Positive False Positive 

Negative False Negative True Negative 
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7.2. Limitations of Evaluation Metrics 

 

The object classification and detection fields have been actively researched 

for the last few years, and the performance comparison of each network has 

been constantly performed. In order to compare performance between 

algorithms, there should be a reference dataset. PASCAL VOC and MS’s 

COCO datasets [Lin,’14] have been used as a reference dataset in the 

performance evaluation of the aforementioned research area, and mAP (Mean 

Average Precision) has been broadly used as a representative performance 

index to present the network’s performance. In the object classification and 

detection studies using the LiDAR point cloud, many researchers use KITTI 

benchmark as a standard dataset and mAP as a performance index to show the 

performance of the detection networks they proposed. It looks as a natural flow 

as the dimension of object detection increases from 2D to 3D. However, there 

is a question whether the AP is a suitable performance index in 3D object 

detection as it does in 2D object detection. 

 

7.2.1. Detection Continuity 

An autonomous driving vehicle should react to its surroundings in real-time, 

so it detects objects every single frame. Because actual driving is a sequence 

consists of frames, the detection results has relation previous frame’s result.  

From this point of view, AP has a limitation that it focuses only on how many 

objects are detected for the entire dataset. First, there is no meaningful 
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relationship between the previous scene and current scene when calculate the 

AP using KITTI dataset because the dataset scenes are randomly shuffled. 

Contrary to the way of calculation AP using KITTI dataset, every scene has a 

relation with its previous scene in actual real-time autonomous driving.  

To ensure safe driving, it is necessary to keep detect objects continuously in 

the actual driving because detection fail may lead to traffic accident. Figure 7.1 

shows the detection results of two detectors over time. Detector A detected 

more objects for both frames than detector B. However, the detection is not 

continuously performed and the object detected in time k is missed at time k+1. 

On the other hand, in the case of detector B, the number of detected objects is 

less than A, but it shows continuity for the detected objects. From the AP's point 

of view, detector A is considered a better detector than detector B because it 

succeeded in detecting more objects for the entire frame. However, from an 

actual driving perspective, it is important to maintain object detection around 

the vehicle. 

 

 

Figure 7.1. Object detection continuity 
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7.2.2. Detection Priority 

 Basically, recall and precision have a trade-off relation and they include all 

objects detection results in the current scene.  However, from the point of view 

of autonomous driving control and planning, if the object is far from the subject 

vehicle or not within the drivable area of the subject vehicle, the detection result 

of the object becomes less important or does not matter at all. 

 In the respect of self-driving control and planning, the performance of the 

perception module is enough if it can detect all objects in the ROI even if it 

does not detect the objects outside the ROI.  In other words, if all objects 

outside the ROI are detected but cannot detect a significant object in the ROI 

(for example, the vehicle in front of the subject vehicle in highway or the 

approaching vehicle from right-behind in case of right lane change), then the 

detector should be considered to perform worse than the reverse case. 

In an aspect of mAP, it is a better detector to detect more objects regardless 

of the importance of the objects. This means that mAP has a blind point that it 

does not sufficiently consider the detector’s performance in the practical point 

of view. 
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Figure 7.2. Detection priority of two cases 

In actual driving, it is not a big problem even if you cannot find the object on 

the opposite lane. Rather, it is serious that I cannot find vehicles near the subject 

vehicle. It does not show how well the scene-to-scene detection continues. As 

such, the AP does not consider detection priority and detection continuity. 

Figure 7.2 shows two object detectors. Detector A finds more objects than 

detector B, but it finds only half of the objects in the lane where ego vehicle 

exists. On the other hand, even though detector B finds no objects on opposite 

lanes, it finds all objects around the ego vehicle. In the actual driving situation, 

it is more important to find objects existing in the lanes around the ego vehicle 

than the other lane. The behaviors and existence of the objects around subject 

vehicles affect the ego vehicle's motion planning. For this reason, it is not 

important to simply find many objects in real driving, but it is more important 

to detect objects in and around the region of interest (ROI). Contrary to the 

calculation manner of AP on the object detection field, detection priority is 

considered in actual driving. 
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7.3. Criteria for Performance Index 

 

In defining the performance index, criteria for determining whether or not a 

detector has found an object for an object should be established first. This can 

be defined through the Euclidean distance from the center position of the object 

to the detection position, but this has the disadvantage that the size and heading 

angle of the object cannot be considered. If only the distance is considered, even 

if the heading angle is detected in the opposite direction, the result is the same, 

so only the irrational result is obtained. Also, if the size of the object is small 

and large, the results are different even if they have the same Euclidean 

distance. Therefore, the size, heading angle, and center distance of the object 

should be considered as indicators for determining whether the detector has 

found the object. IoU is very suitable as an index of object detection 

correspondence that satisfies all three. 

 

 

Figure 7.3. Object detection and failure 

IoU = 0.9 IoU = 0.6 IoU = 0.3Polygon
Overlap

Miss
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The KITTI benchmark is based on the IoU 0.7, but it can be regarded as a 

very strict standard for actual driving. In actual driving, a slight position error 

does not lead to a critical issue such as car accident. Nevertheless, the KITTI 

benchmark is set to a high standard of IoU 0.7, which is more strict because it 

considers height in the 3D detection. In fact, the criterion in the object detection 

field using RGB image is set to IoU 0.5 [Annotation, annotation, annotation, 

annotation, annotation]. Based on KITTI dataset , some researches shows the 

performance of their approaches by using IoU 0.5 as well as 0.7. Therefore, in 

a bird's eye view that does not consider height, the indicator IoU 0.5 is relatively 

reasonable, and it is assumed that detection failure occurs when IoU is lower 

than 0.5, and detection success when it is higher than 0.5. It is also regarded 

that object detection is successful even when it is found as an unknown object 

by Polygon. 

In addition, when the detector detects the location where the object does not 

exist, it is a false positive and is deducted. 

 

 

Figure 7.4. Example of false positive 
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In the process of object tracking, the detector continues tracking without 

missing the object. In this process, if the IoU exceeds 0.5, it is regarded as 

detection failure. Also, if an object is missed during the tracking process, it is 

considered a detection failure. However, if detection is detected as an unknown 

object through polygons while detection tracking is broken, it is considered that 

tracking is continuously performed. 

 

 

Figure 7.5. Continuous object detection 

 

Also, it is necessary to define the detection priority. Missing an object at a 

short distance is a more critical miss than missing an object at a distance. 

Therefore, if a short-range object is missed in the process of calculating 

performance, more points should be deducted. That is, in the case of missing 

an object, the importance of missing the object is inversely proportional to the 

distance. 
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Figure 7.6. Detection priority 

 

 

Finally, the closer the detection result is to the ground truth, the closer the 

result is to 1. The following equation is a performance index that satisfies the 

above criteria, and the vehicle test is verified through this performance index. 
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Chapter 8 Vehicle Tests based 

Performance Evaluation 

  

In this chapter, we introduce average precision (AP), which is the most 

widely used evaluation index in the object detection field, and discuss its 

limitations to be used as a practical evaluation metric of practical object 

detection performance. Furthermore, we propose a new metric in measuring the  

 

8.1. Configuration of Vehicle Tests 

 

Industrial 
Computer
: Nuvo-6108GC
(Neousys, Inc.)

Lidar
: RS-32
(Robosesne, Inc.)

GPU
: GTX-1080ti
(NVIDIA, Inc.)

 

Figure 8.1. Test vehicle and Experimental setup 
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The above figure shows a test vehicle which is used in this study. The test 

vehicle is a B-segment SUV model of KIA motors (NIRO-hybrid). The vehicle 

tests have been conducted at the urban and inner circular road in Seoul National 

University, Korea. The network used in this dissertation was trained with point 

cloud data from the KITTI dataset, and the KITTI dataset provides point cloud 

gathered from Velodyne's HDL-64E products. 32 channel LiDAR was used in 

real vehicle test, and the product is RS-32 from Robosense. Since the actual 

driving test uses 32-channel LiDAR and off-line learning is done with 64-

channel LiDAR, it is worth noting how much performance is achieved when 

using a LiDAR product with fewer channels than learning.  

 

(a) KITTI data acquisition vehicle 

 

(b) Test Vehicle used in this dissertation 

Figure 8.2. LiDAR mount positions of KITT and test vehicle 
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For acceleration of the network with cuda, GTX-1080ti GPU from NVIDIA 

is used. This is the same product used in most of the studies ranked on the 

KITTI benchmark. NIRO-hybrid of KIA motors used in this experiment has 

different specifications with Passat of Volkswagen, the vehicle used in 

acquiring the KITTI dataset. Besides, in the case of the KITTI dataset, LiDAR 

is installed on the roof of the vehicle, while the 32-channel LiDAR is installed 

on the front bumper of the test vehicle. The specifications of the two vehicles 

and the sensors are shown in Table 9. 

 

Table 10. Comparison of LiDAR sensors used in training and test 

Specifications Training Test 

Manufacturer Velodyne Robosense 

Model HDL-64E RS-32 

Channel 64 32 

Field of view (Horizontal) 360 ° 360 ° 

Field of view (Vertical) 
26.9°  

(+2.0° to -24.9°) 

40° 

 (+15.0° to -25°) 

Angular resolution (Horizontal) 0.09° to 0.18° 0.09° to 0.36° 

Angular resolution (Vertical) 0.4° Min 0.33° 

Field of view update 10-20Hz 5-20Hz 
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Figure 8.3 shows the test driving course. The course is an urban driving 

environment starting from the intersection of Seoul National University Station.  

This leads to hills and downhill roads, leading to the main gate of Seoul 

National University. It is a course that leads to the back gate toward 

Nakseongdae Station after passing through the circular road on the campus of 

Seoul National University. Because passenger cars and city buses enter Seoul 

National University, we can face various buses and vehicles while driving 

through the inner ring road. The total driving distance is about 7.1km. 
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Figure 8.3. Driving course 
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8.2. Qualitative Analysis 

 

The proposed perception model and reference object detector are compared 

through Robot operating system (ROS) bag file achieved by test driving. Figure 

8.4 shows the effect of object tracking over time. As shown in the figure, the 

proposed method detects cars and motorcyclists and keeps track of them over 

time.  

On the other hand, in the reference model, both the car and the motorcyclist 

were detected in time T, but the motorcyclist is missed in T + 1. In the next 

frame, which time T+2, the reference detector missed the car as well as the 

motorcyclist. 

Because of the methodological characteristics of the object detector, the 

object detection result may vary depending on the confidence level even if 

objects have a similar shape. Thus, object detection can not be guaranteed even 

if it is found in the previous frame, the object may be missed in the next frame. 

The tracking function compensates the frames where object detection is 

failed by maintaining the detection result. If a tracking function exists, even if 

the measurement is not received, the prediction is performed through a Kalman 

filter for a certain frame so that the object can be maintained without missing. 

If measurement information, which is detection result from the detector, is 

renewed during the tracking process, object tracking can be continuously 

performed without detection discontinuity. 
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Figure 8.5 shows a scene of experimental results of the proposed approach 

and the reference detector when the bus is not trained. In this scene, the effect 

of unknown object detection through non-ground point extraction and 

clustering can be seen. 

As shown in the left of the figure, the proposed approach finds points that 

are considered to belong to obstacles on the road by using ground extraction. 

after that, boundary polygons of unknown objects are obtained through 

clustering using these non-ground points. 

In the figure, in addition to the bus, other unknown objects or areas where 

ego vehicle should detour such as the flower beds, trees, and the poles are exist. 

On the other hand, in the case of the reference detector, it was not able to 

detect a bus because it is not trained about the bus. Unlike a car or van, the bus 

has a very large size and a shape closer to a cuboid box, so it is very difficult to 

recognize the bus as a car or van. Even if, the bus is luckily recognized as a 

vehicle, it will fail by losing detection continuity for the reason mentioned 

above because it lacks the tracking function. 
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(a) Does not detect unknown object 

 

(b) Detect unknown object as polygon 

Figure 8.5. Qualitative analysis of unknown object detection 

 

Both tracking and unknown object detection appear simultaneously in Figure 

8.6. For pedestrians, the reference detector finds one at time T, and detects all 

three pedestrians in the next frame. However, it fails to secure detection 

continuity by loosing one pedestrian again at T + 2. On the contrary, in the case 

of the proposed approach, the detection was continuously maintained for the 

first two frames by keeping detecting two pedestrians, and the remaining one is 

additionally detected in time T + 2. 

In the figure, a bus on the left approaches over time, and the distance between 
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the bus and ego vehicle is gradually closer. 

 As mentioned above, because the reference detector is not trained about the 

bus, it was not detected even though the bus is close.  

The proposed algorithm is also not trained about the bus. On the other hand, 

the method proposed in this paper detects the bus as an unknown object and 

finds boundary information in the form of a polygon. 

 The poles are lined up on either side of the road in this driving course. 

Unlike the reference detector, the perception algorithm in this paper also finds 

them. Furthermore, the current road is an uphill road, and if a point belonging 

to the ground is incorrectly filtered as a non-ground point in the process of 

ground extraction, it may be detected as an unknown object, and false positives 

may be generated. But, as shown in the figure, there is no false-positive result 

because non-ground extraction goes well even on the slope. 
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Figure 8.6. Qualitative analysis of test driving 

 

 

8.3. Quantitative Analysis 

 

Test results are analyzed through the weighted multi-object tracking 

accuracy defined above. The performance comparison of the proposed method 

and reference detector is calculated based on wMOTA. Both networks are 

trained on cars, pedestrians, and cyclists. Object detection is considered 

successful if they find the object and classify them as anything among the three 

categories. In case that they classify it as an unknown object, detection is also 

considered successful. In addition, the effect of false negative is included in the 

score to reflect the role of continuous detection. The more false negatives occur, 



 106

the greater the deduction 

Table 11 shows a quantitative comparison of the two networks. The proposed 

method scored higher than the reference model when it comes to wMOTA. This 

is a penalty for missing objects in the middle because the reference model lacks 

the tracking function, while the proposed method can maintain detection 

without detection missing between frames even when detection measurement 

information is not renewed through tracking. Also, in the case of buses, both 

models were not trained. In the reference model, not only the bus was not 

detected, but sometimes it is limited to a few frames when it is detected as a car. 

On the other hand, in the proposed model, the bus can be detected as unknown 

object detection, so it scored higher than the reference model in wMOTA. 

 For the maximum detection range, the reference model has a longer detection 

range, and it is related to the tracking function. When the object is tracked, the 

maximum detection distance may be shorter than the reference model that 

detects immediately because the object is not immediately assigned an ID when 

an object is detected, and an ID is assigned when more than a certain frame is 

continuously detected. 

 

Table 11. Comparison of approaches based on proposed performance metric 

Specifications Proposed Method Ref Detector 

wMOTA 0.9311 0.8508 

Maximum detection range 62 m 66 m 
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Chapter 9 Conclusions and Future 

Works 

 

This dissertation has proposed a LiDAR-based autnomous driving 

perception module based on a neural network method and point cloud 

clustering method.  The proposed module is a kind of hybrid object detector 

and tracker using neural network and point clustering simultaneously. In 

addition, a new performance index was proposed by supplementing the 

unpractical part of the performance index of the existing object detection, and 

the vehicle test result was validated via this index. 

Most object detection studies using the existing lidar point cloud have 

utilized supervised learning techniques. This has a methodological limitation 

that objects not learned in the learning process cannot be found in the actual 

infer process because the network learns from the data set. Also, since these 

datasets have different characteristics for each country and region, it is 

impossible to prepare and learn appropriate datasets for all situations. 

 In addition, in the actual driving process, there are many obstacles that have 

not been learned on the road, so it is impossible to cope with infinite cases with 

the learning method through the dataset. In other words, we needed to overcome 

the data-dependent limitations of supervised learning. 

Therefore, in this dissertation, through the non-ground point extraction, the 

points considered as objects can be selected and clustered to find the unknown 
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objects in the form of unknown objects. In addition, continuous object detection 

was performed through clustering and object tracking for objects that could be 

missed during the object detection process. Through these methods, we have 

succeeded in detecting various objects that can be encountered in actual driving 

than the existing object detector. 

  In addition, the items evaluating the performance of the existing object 

detector did not consider the detection priority and continuity, so they could not 

show practical performance. In this study, we proposed a new performance 

index considering these, and the performance of the perception module of this 

study was verified through this performance index and vehicle test. 

For the future works, More rigorous performance index can be proposed by 

selecting the ROI that should be more important in the driving process. In 

addition, it will be possible to examine how much the performance index can 

guarantee the reliability of actual autonomous driving through interworking 

with control and planning modules. 
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초    록 

 

실시간 자율주행 인지 시스템을 위한 
신경망 네트워크와 군집화 기반 
미학습 물체 감지기 통합 

 
 

최근 몇 년간, 센서 기술의 발전과 컴퓨터 공학 분야의 성과들로 

인하여 자율주행 연구가 더욱 활발해지고 있다. 자율주행 시스템에 

있어서 차량 주변 환경을 인식하는 것은 안전 및 신뢰성 있는 

주행을 하기 위해 필요한 가장 중요한 기능이다. 자율주행 시스템은 

크게 인지, 판단, 제어로 구성되어 있는데, 인지 모듈은 자율주행 

차량이 경로를 설정하고 판단, 제어를 함에 앞서 주변 물체의 

위치와 움직임을 파악해야하기 때문에 중요한 정보를 제공한다. 

자율주행 인지 모듈은 주행 환경을 파악하기 위해 다양한 센서가 

사용된다. 그 중에서도 LiDAR은 현재 많은 자율주행 연구에서 가장 

널리 사용되는 센서 중 하나로, 물체의 거리 정보 획득에 있어서 

매우 유용하다.  

본 논문에서는 LiDAR에서 생성되는 포인트 클라우드 raw 

데이터를 활용하여 장애물의 3D 정보를 파악하고 이들을 추적하는 

인지 모듈을 제안한다. 인지 모듈의 전체 프레임워크는 크게 세 
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단계로 구성된다. 1단계는 비지면 포인트 추정을 위한 마스크 생성, 

2단계는 특징 추출 및 장애물 감지, 3단계는 장애물 추적으로 

구성된다. 

현재 대부분의 신경망 기반의 물체 탐지기는 지도학습을 통해 

학습된다. 그러나 지도학습 기반 장애물 탐지기는 학습한 장애물을 

찾는다는 방법론적 한계를 지니고 있다. 그러나 실제 주행 

상황에서는 미처 학습하지 못한 물체를 마주하거나 심지어 학습한 

물체도 놓칠 수 있다. 인지 모듈의 1단계에서 이러한 지도학습의 

방법론적 한계에 대처하기 위해 포인트 클라우드를 일정한 

간격으로 구성된 3D 복셀(voxel)로 분할하고, 이로부터 비접지 

점들을 추출한 뒤 미지의 물체(Unknown object)를 탐지한다. 

2단계에서는 각 복셀의 특성을 추출 및 학습하고 네트워크를 

학습시킴으로써 객체 감지기를 구성한다. 마지막 3단계에서는 칼만 

필터와 헝가리안 알고리즘을 활용한 다중 객체 탐지기를 제안한다. 

이렇게 구성된 인지 모듈은 비지면 점들을 추출하여 학습하지 않은 

물체에 대해서도 미지의 물체(Unknown object)로 감지하여 

실시간으로 장애물 탐지기를 보완한다. 

최근 라이다를 활용한 자율주행 용 객체 탐지기에 대한 연구가 

활발히 진행되고 있으나 대부분의 연구들은 단일 프레임의 물체 

인식에 대해 집중하여 정확도를 올리는 데 집중하고 있다. 그러나 

이러한 연구는 감지 중요도와 프레임 간의 감지 연속성 등에 대한 

고려가 되어있지 않다는 한계점이 존재한다. 본 논문에서는 실시간 

성능을 얻기 위해 이러한 부분을 고려한 성능 지수를 제안하고, 

실차 실험을 통해 제안한 인지 모듈을 테스트, 제안한 성능 지수를 
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통해 평가하였다. 

 

 

주요어: 자율 주행, 라이다 센서, 인공 신경망, 객체 감지, 다중 객체 

추적 
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