

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

실시간 자율주행 인지 시스템을 위한

신경 네트워크와 군집화 기반 미학습

물체 감지기 통합

Integration of Clustering-based Unlearned Object

Detection and Deep Neural Network for Real-time

Perception in Autonomous Driving System

2020년 8월

서울대학교 대학원

기계항공공학부

유 정 겸

ii

Abstract

Integration of Clustering-based
Unlearned Object Detection and Deep
Neural Network for Real-time
Perception in Autonomous Driving
System

Jungkyum Yu

School of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

 In recent few years, the interest in automotive researches on autonomous

driving system has been grown up due to advances in sensing technologies and

computer science. In the development of autonomous driving system,

knowledge about the subject vehicle’s surroundings is the most essential

function for safe and reliable driving. When it comes to making decisions and

planning driving scenarios, to know the location and movements of surrounding

objects and to distinguish whether an object is a car or pedestrian give

valuable information to the autonomous driving system. In the autonomous

driving system, various sensors are used to understand the surrounding

environment. Since LiDAR gives the distance information of surround objects,

it has been the one of the most commonly used sensors in the development of

perception system.

Despite achievement of the deep neural network research field, its application

and research trends on 3D object detection using LiDAR point cloud tend to

pursue higher accuracy without considering a practical application. A deep

neural-network-based perception module heavily depends on the training

iii

dataset, but it is impossible to cover all the possibilities and corner cases. To

apply the perception module in actual driving, it needs to detect unknown

objects and unlearned objects, which may face on the road. To cope with these

problems, in this dissertation, a perception module using LiDAR point cloud is

proposed, and its performance is validated via real vehicle test. The whole

framework is composed of three stages : stage-1 for the ground estimation

playing as a mask for point filtering which are considered as non-ground and

stage-2 for feature extraction and object detection, and stage-3 for object

tracking. In the first stage, to cope with the methodological limit of supervised

learning that only finds learned object, we divide a point cloud into equally

spaced 3D voxels the point cloud and extract non-ground points and cluster the

points to detect unknown objects. In the second stage, the voxelization is

utilized to learn the characteristics of point clouds organized in vertical columns.

The trained network can distinguish the object through the extracted features

from point clouds. In non-maximum suppression process, we sort the

predictions according to IoU between prediction and polygon to select a

prediction close to the actual heading angle of the object. The last stage presents

a 3D multiple object tracking solution. Through Kalman filter, the learned and

unlearned object’s next movement is predicted and this prediction updated by

measurement detection.

Through this process, the proposed object detector complements the detector

based on supervised learning by detecting the unlearned object as an unknown

object through non-ground point extraction. Recent researches on object

detection for autonomous driving have been actively conducted, but recent

works tend to focus more on the recognition of the objects at every single frame

and developing accurate system. To obtain a real-time performance, this paper

focuses on more practical aspects by propose a performance index considering

detection priority and detection continuity. The performance of the proposed

algorithm has been investigated via real-time vehicle test.

Keywords: Autonomous Driving (AD), LiDAR Sensor, Artificial Neural

Network, Object Detection, Multi Object Tracking (MOT)

Student Number: 2013-20687

iv

List of Figures

Figure 1.1. Comparison of the features of the different sensors used in

environment perception systems [Rosique’19] ... 5

Figure 1.2. The network frameworks of the one-stage detection and the two-

stage detection. The one-stage detection directly estimates object’s

position and bounding boxes. The two-stage detection first proposes

coarse regions where object is supposed to be included and then estimates

the object’s information. ... 8

Figure 2.1. Overview of the proposed perception algorithm. The proposed

algorithm consists of two parts: object detection and multi-object

tracking. .. 17

Figure 3.1. Camera view and point cloud of KITTI dataset. Green boxes are

ground truth information. Annotation is limited to objects inside camera

view ... 21

Figure 3.2. Voxelized map of point cloud .. 23

Figure 3.3. Feature Extraction Network ... 25

Figure 3.4. Backbone Network of object detector.. 27

Figure 3.5. The relation between ground truth and anchors 31

Figure 3.6. Data Augmentation Example ... 33

Figure 3.7. Vertical Translation augmentation ... 35

Figure 3.8. Number of car and image ... 37

Figure 3.9. Construct Ground Truth Database ... 38

Figure 3.10. Random data scattering augmentation from database 39

Figure 3.11. Polygon and predictions with confidence 40

Figure 3.12. Confidence scores and IoU of predictions 42

Figure 4.1. Vertical distance in a voxel for non-ground point extraction 46

Figure 4.2. Non-ground point extraction result on KITTI dataset. Red points

in the right figure are non-ground points, and grey points are grounds. . 47

Figure 4.3. Bird’s eye view of non-ground point extraction result on real

vehicle test .. 49

v

Figure 4.4. 3D view of non-ground point extraction result on real vehicle test

 .. 50

Figure 4.5. Point Clustering Sequence ... 52

Figure 4.6. Clustering result on KITTI dataset .. 55

Figure 4.7. Two cases according to boundary of unknown object clustering. 56

Figure 5.1. Multi Object Tracking Architecture ... 58

Figure 5.2. Vehicle model defined in object tracking 59

Figure 5.3. Prediction and detection matching with IoU 61

Figure 6.1. Performance comparison about car on BEV 65

Figure 6.2. Performance comparison about car on 3D detection 65

Figure 6.3. Qualitative analysis of KITTI results. We show the 3D bounding

boxes projected onto the image (top), as well as 3D point cloud view

(bottom). The predicted boxes for car are ‘purple’, for pedestrian are

‘blue’, for cyclist are ‘orange’. ... 74

Figure 6.4. Failure cases on KITTI. The predicted bounding boxes are shown

in 3D point cloud (top) and they are projected onto RGB image (bottom).

 .. 75

Figure 6.5. Recording zone of KITTI dataset [Geiger’13]. 77

Figure 6.6. Test vehicle and sensor configuration .. 78

Figure 6.7. Bus data extraction example .. 80

Figure 6.8. The detection results after training about the bus. The detection

results are shown as 3D bounding boxes on the point cloud view. The

predicted boxes for car are ‘pink’, for bus are ‘red’, for cyclist are

‘orange’ ... 82

Figure 6.9. Qualitative analysis of additional training results on real-time test.

We show the 3D bounding boxes on the point cloud view. The predicted

boxes for car are ‘pink’, for bus are ‘red’, for cyclist are ‘orange’ 83

Figure 6.10. Failure cases on real-time test with additional training. It shows

predicted boxes for car (pink), bus (red), unknown object (green). 84

Figure 7.1. Object detection continuity .. 88

Figure 7.2. Detection priority of two cases .. 90

Figure 7.3. Object detection and failure ... 91

Figure 7.4. Example of false positive ... 92

Figure 7.5. Continuous object detection ... 93

vi

Figure 7.6. Detection priority ... 94

Figure 8.1. Test vehicle and Experimental setup .. 95

Figure 8.2. LiDAR mount positions of KITT and test vehicle 96

Figure 8.3. Driving course.. 99

Figure 8.4. Qualitative analysis of object tracking effect 101

Figure 8.5. Qualitative analysis of unknown object detection 103

Figure 8.6. Qualitative analysis of test driving .. 105

vii

Contents

Chapter 1 Introduction ... 1

1.1. Background and Motivation ... 1

1.2. Overview and Previous Researches .. 4

1.3. Thesis Objectives .. 12

1.4. Thesis Outline ... 14

Chapter 2 Overview of a Perception in Automated Driving 15

Chapter 3 Object Detector .. 18

3.1. Voxelization & Feature Extraction .. 22

3.2. Backbone Network ... 25

3.3. Detection Head & Loss Function Design 28

3.4. Loss Function Design ... 30

3.5. Data Augmentation ... 33

3.6. Post Process .. 39

Chapter 4 Non-Ground Point Clustering 42

4.1. Previous Researches for Ground Removal 44

4.2. Non-Ground Estimation using Voxelization 45

4.3. Non-ground Object Segmentation .. 50

4.3.1. Object Clustering .. 52

4.3.2. Bounding Polygon .. 55

Chapter 5 . Object Tracking ... 57

5.1. State Prediction and Update .. 58

5.2. Data Matching Association ... 60

Chapter 6 Test result for KITTI dataset 62

viii

6.1. Quantitative Analysis .. 62

6.2. Qualitative Analysis .. 72

6.3. Additional Training ... 76

6.3.1. Additional data acquisition ... 78

6.3.2. Qualitative Analysis ... 81

Chapter 7 Performance Evaluation 85

7.1. Current Evaluation Metrics ... 85

7.2. Limitations of Evaluation Metrics .. 87

7.2.1. Detection Continuity .. 87

7.2.2. Detection Priority ... 89

7.3. Criteria for Performance Index ... 91

Chapter 8 Vehicle Tests based Performance Evaluation 95

8.1. Configuration of Vehicle Tests .. 95

8.2. Qualitative Analysis .. 100

8.3. Quantitative Analysis .. 105

Chapter 9 Conclusions and Future Works 107

Bibliography ... 107

국문 초록 .. 132

 1

Chapter 1 Introduction

1.1. Background and Motivation

Autonomous driving has been an aspiring research topic for many years

because it is one of the core technologies that might redefine our society and

life. Once autonomous driving is realized in our real life, the infrastructure of

public transportation and our life environment will change. Furthermore,

autonomous driving is expected to reduce traffic accidents caused by driver

errors, as well as to save driver's time. The achievement in researches about

autonomous driving has been facilitated mostly by improvements and lowered

cost of computer hardware capable of running the complex algorithms needed.

Autonomous driving also needs various sensors and a large amount of data

calculations. Unlike the early days of autonomous driving research, where

sensor manufacturers were less common, the appearance of many new sensor

manufacturers and the lowered price of sensors make it more possible to use

various sensors to develop an autonomous vehicle. A large amount of sensor

data is being utilized to localize and ultimately guide the vehicle through its

environment and this requires fast processing and considerable computational

power.

 Many automotive companies and related industries have been struggling to

develop an autonomous vehicle or self-driving related technologies. Some of

 2

the most advanced self-driving vehicles in existence today are in the fourth

stage according to The Society of Automotive Engineering (SAE). The fourth

stage is defined as “Fully Automated Driving: the vehicle drives independently

most of the time but the driver must remain able to drive.”

 This means that they are not perfect and they are fully autonomous but just

under certain conditions like on the highway.

 To reach level 5 autonomy, perception and related technologies play the

most important roles in not only the safety of autonomous vehicles but in their

ability to account for unexpected variables while driving - a key milestone for

autonomous vehicles to achieve.

 Perception of autonomous drive systems is the most essential function for

reliable driving because it is the task of identifying the surrounding

environment and understanding information that is related to driving safety.

Various methods have been attempted to develop a perception module for

autonomous driving in various environments, and recently, methods using

Artificial Neural Networks (ANNs) have been actively attempted.

 Artificial Neural Networks (ANNs) are a type of computer model that

simulates the behavior of biological neural networks such as the human

brain. Over the past few years, the researches on Artificial Neural Network

have been infused by drastic improvements and lowered the cost of computer

hardware. This results in a notable success in object detection and classification

on RGB images. [Liu’16, Girshick’15, Ren’15, Redmon’16, Redmon’17]

 This has been proved that the applications of the neural network on a

regression problem mostly shows higher performance than the past researches,

 3

which sets a specific model. Inspired by the positive results of 2D ANN

implementations, research groups and companies have looked towards

applying the more successful variants of neural networks to 3D data such as

RGB-D images, CAD models, and 3D point cloud scans, and also to the

autonomous driving system. The main obstacle in the application of neural

networks on autonomous driving is handling 3D data. Because previous

researches and almost existing networks are appropriately designed to 2D

image data, so it is required to take different approaches and method of handle

the data and to construct model structure properly to 3D data. Several methods

such as projecting 3D data to 2D [Chen’17, Ku’18, Li’16] and voxelization the

3D data into occupancy grids stored as binary matrices [Chen’17, Ku’18,

Simon’18, Yang’18] have been tried to solve the problems and they have been

shown to have relatively high success in comparison to the existing methods.

However, most studies are not approaching from a practical point of view by

concentrating to receive high Average Precision (AP) of their object detector

for KITTI dataset. Although the actual autonomous driving is a continuous

situation in which each frame is connected, the network is learned the dataset

without any association between continuous scenes. So even if it finds the

learned object in this scene, it may miss it in the next scene. In order to respond

to such situations, object detection, as well as object tracking, must be

performed together.

 Also, we may encounter many objects that the detector has never learned.

For example, many buses are encountered on Korean roads while there are no

bus annotations in the KITTI dataset. It is difficult to learn all kinds of objects

 4

that can be encountered on the road, and it is necessary to cope with the

methodological limitations of supervised learning that can find only the

learning objects. Therefore, this dissertation focuses on developing a perception

module that tracks both of unlearned objects detection from object clustering

and the results of neural network-based object detectors.

1.2. Overview and Previous Researches

 Even though the application of Artificial Neural Network on a 3D point

cloud for the autonomous driving systems is still a fresh research topic, a

number of researches and thesis work have been published over the last few

years. In this chapter, the characteristics and the difficult aspects to processing

of 3D point cloud data will be discussed, as well as the research trends related

to object detection using 3D point cloud. The point cloud is data with 3D spatial

information, and there have been various methods exist depending on how to

process this data. In addition, these researches are divided into a one-stage

method or two-stage method according to the network structure.

Properties of point cloud. As mentioned earlier, autonomous driving

system usually uses multiple types of sensors to ensure reliability. The most

commonly used sensors are radio detection and ranging (RADAR), light

detection and ranging (LiDAR), and ultrasonic sensors. As shown in the Figure

1.1, among those sensors, LiDAR can directly provide a precise 3D information

 5

of surroundings. There have been many researches trying to reconstruct 3D

environment information or to estimate the depth information based on 2D

images. Recent works related to these topics have been achieved significant

improvements with the development of deep learning based methods. Despite

these achievements, the results of these studies are still not always precise or

reliable. On the aspect of this, LiDAR is useful because it provides 3D

environment information through direct physical sensing. Most companies

leading the autonomous driving market and researches rely on LiDAR to

perceive the surroundings and build a reliable autonomous vehicle [Meyer’19].

Figure 1.1. Comparison of the features of the different sensors used in

environment perception systems [Rosique’19]

 3D point cloud is represented as a set, which ignores any order of 3D points.

Let   
1

,
N

i i i
S


 p a be a set of 3D point cloud having N points. The set is

consists of N elements and i th element ip represents the 3D coordinate of

 6

the i th point, which can be defined as   3, ,i i i ix y z p  . In addition, ia

represents other attributes i th point, and it is intensity i ir a  in general

cases. Thus, in general, the i t th point of 3D point cloud has a form of feature

  4,i i i x p a  .

3D object detection from 2D images. There are several approaches to detect

3D bounding box from 2D images. Utilized the geometric relation between 3D

and 2D bounding box to estimate the 3D object position and orientation. Chen

et al. leveraged an energy function as a presentation of the 3D geometric

information of objects to score the predefined 3D boxes. However, although the

performance of object detection on 2D images is already proved and the image

has rich information, these works can only generate coarse 3D detection results

due to the lack of depth information.

3D object detection from point clouds. Recently, most of 3D detectors have

been adopted LiDAR to get depth information. However, since the LiDAR

point cloud has a form of 3D spatial information unlike 2D image information,

it is difficult to directly apply the method used in the vision area. Some studies

[Chen’17, Ku’18, Simon’18, Yang’18] have adopted the voxelization method

to process this three-dimension spatial information into the form of a tensor that

is easy to apply to the convolution network. Because object detection with point

clouds is an essentially three-dimensional problem, it is intuitive to deploy a

3D convolutional network for object detection. Despite the intuitive structure,

the 3D convolutional method is relatively more computational than 2D

 7

convolution. Engelcke et al. [Engelcke’17] require 0.5s for inference on a single

point cloud. To overcome the computational time problem, recent researches

adopted the method to project the 3D point cloud onto the ground plane

[Chen’17, Ku’18, Yang’18, Liang’18, Yang’18, Lang’19], which is called a

bird’s eye view (BEV). To form a pseudo-image that can be processed by the

2D Convolution network method, the bird's eye view projection utilizes the

voxelization to allocate the point clouds into vertical columns encoded as fixed-

size. Some researches including MV3D [Chen’17], PIXOR [Yang’18] and

Complex YOLO [Simon’18], AVOD [Ku’18] have leveraged the bird’s eye

view method and accomplished notable results. MV3D and AVOD fuse the

point cloud features with 2D image features and these detectors adopted two-

stage detection pipelines.

Meanwhile, Qi et al. [Qi’17] proposed a simple architecture, PointNet, which

can learn the feature characteristics directly from point cloud without

voxelization. VoxelNet [Zhou’18] is one of the first methods accomplished

notable performance by deploying PointNets in their object detection

architecture. VoxelNet applied a simple version of PointNet to voxels, then they

are processed by a sequential 3D convolution layers followed by a 2D CNN

backbone and a detection head. Despite end-to-end learning and high

performance, VoxelNet has low detection speed requiring 225ms (4.4 Hz) for

a single point cloud scene in inference by using 3D CNN. This detection speed

is not fast enough to infer in real-time because the conventional LiDAR data

update is 0.1ms.

 8

Paradigms of 3D object detection based on point cloud. There are usually

two frameworks of 3D object detection: one-stage detection and two-stage

detection; These frameworks are shown in Figure 1.2.

Figure 1.2. The network frameworks of the one-stage detection and the two-

stage detection. The one-stage detection directly estimates object’s position

and bounding boxes. The two-stage detection first proposes coarse regions

where object is supposed to be included and then estimates the object’s

information.

The one-stage detection directly estimates object’s position and bounding

boxes. The two-stage detection first proposes coarse regions where object is

supposed to be included and then estimates the object’s position and boundary

boxes. The detector based on the one-stage framework satisfies following form.

   1

O

i i
h S


o (1.1)

Where  , ,i i i io y b c is the i th object in the scene, with iy the object’s

label, such as car, cyclist and pedestrian, and the positions and ib the bounding

(a) One-stage detection framework

(b) Two-stage detection framework

Data
Representation

LiDAR
3D point cloud

Voxels/
images Proposal

Generation

Two-stage networks

Objet
Prediction

region Positions,
Boxes,

Confidence

 9

box information, and ic the confidence. A neural network based on one-stage

method consist of a backbone, which extracts deep spatial features, and a

detection head, which estimates outputs. One-stage method has relatively

simpler architecture than two-stage method, so one-stage detection tends to be

faster and enjoys a high recall, while the two-stage method tends to achieve

high recall. For this reason, some researches [Zhou’18, Yan,’18, Lang’19,

Yang,’18, Simon,’18] are following the one-stage method for achieve simpler and

faster model. Contrary to the one-stage method, the two-stage approach

implements the detection in two stages, which can be defined as follows:

   

    
11

21 1
,

R

i i

O R

i ii i

r h S

h S r



 



o
 (1.2)

Where ir is a th proposed region where the object is supposed to be included

in the 3D space. As shown above equations, two-stage detection process is

consists of two steps, which are region proposal stage and object detection stage.

At the detection stage, the positions and bounding boxes are estimated based

on the proposals from earlier stage. A two-stage method, which are Patches

[Lehner,’19], PointRCNN [Shi’19] and FrsutumNet PointNet [Qi’18], tend to

accomplish higher detection accuracy. Frustum PointNet detects object on an

image plane and generates a frustum from it into 3D space, then it uses PointNet

segment and classifies the point cloud in the frustum. Despite their structural

advantages to accomplish high accuracy, they have low detection speed

 10

because they split the detection process into two steps as region proposal and

regression.

3D Multi-Object Tracking. Multi-object tracking (MOT) is an essential

function for many applications not only autonomous driving. Due to the drastic

advance in object detection performance on 2D image, they can also achieve

the much progress on 2D MOT. Although the accuracy of object tracking on

the 2D image has been improved, its application on 3D motion prediction and

tracking has not been conducted sufficiently and some works require more

complex architecture and computational cost. Several methods have been tried

to tracking objects in an environment and these methods can be divided into

two categories: model-based tracking and model-free tracking

In the model-based tracking method, the most widely used approaches are

using Kalman filters or a variant methods with an appropriate pre-defined

model. When the task is to track a two or four-wheeled vehicle, a standard

bicycle model is used to predict object next state. However, model-based

method needs an appropriate pre-defined model, and if the assumption about

the model or its parameters are different from real values, the prediction based

on the method will result in errors. In addition, some object’s behaviors are very

difficult to associate with a specific model.

On the Contrary, model-free approaches need no specific model to predict the

object's next motion. The proposed model by [Tipaldi’16] uses random sample

consensus (RANSAC) to estimate motion models for both the sensor and the

dynamic objects. Bahraini et al. [Bahraini’18] proposes the Multilevel Random

Sample Consensus (ML-RANSAC) algorithm that enhances the speed of

 11

RANSAC. The RANSAC algorithm comprises two repeated steps. The first

step is the generation of hypotheses. A randomly minimal sample subset is

selected from the input data to form a set of hypotheses. The second step is

hypothesis validation, which verifies if the data is consistent with the estimated

model, which was obtained from the first step. The hypotheses that lie outside

of the confidence interval of the estimated model will be removed.

While model-free object tracking approaches usually serve faster tracking

results compare to the model-based approaches, it serves little accurate tracking

result in heading angle since the model-free approach does not consider

dynamic and kinematic constraints of objects.

Xinshuo et al. [Xinshuo’19] proposed a simple object tracking method

separable from the object detector. The proposed tracking method takes object

detection results and associate it with the prediction result predicted by Kalman

filter. This method utilizes Hungarian algorithm to associate the current objects

and previous objects. The newly appeared and disappeared objects are

controlled by birth and death memory. This paper proposes a network having

high detection performance and this network’s detection performance between

frames is supported by the object tracking module. Furthermore, we secure the

real-time performance of this network by rising its detection frequency.

 12

1.3. Thesis Objectives

 This dissertation focuses on developing an object detection and tracking

algorithm for various objects (learned and unlearned) that may encounter while

driving.

 The perception module corresponds to the eyes of autonomous vehicles. The

autonomous vehicle should recognize the surrounding environment and

obstacles by various sensors, and the fault of the perception module directly

leads to an autonomous vehicle accident. Despite there have been many types

of research using neural network in recent years due to drastic enhance of the

neural network, they only focus only to single frame detection without object

tracking and they have been less researched the perception algorithm in a

practical aspect. Most of the object detectors developed based on the neural

network are using a supervised learning method. Although they show relatively

high performance, there is still a methodological limitation that they only detect

learned objects. In actual driving, there are cases that the detector encounters

an object it did not learn or that the detector misses an object even though it

learned. It is very important to fail to recognize or miss these objects because

they lead to accidents. Therefore, it is necessary to detect even if the object has

not to be learned or detected.

To complement the methodological limitations of the current supervised

learning-based detector and secure practically applicable perception ability, it

is necessary to find the unknown object (the objects that detector never learned),

 13

and it is needed to track the discovered objects and the unknown objects to

ensure the detection continuity.

 In the remainder of this thesis, we will provide an object detection using

neural network method, point clustering method, and multi-object tracker

developed in practical aspect and the experimental results which show the

effectiveness of the proposed perception algorithm. The effectiveness of the

proposed automated driving perception algorithm is evaluated via vehicle tests

with 32 channel LiDAR. In addition, we propose a performance index

considering detection priority and detection continuity. The test result has been

evaluated via the performance index we proposed in this paper.

 14

1.4. Thesis Outline

 This dissertation is structured in the following manner. An overall

architecture of the proposed perception module using a LiDAR point cloud is

described in Chapter 2. In Chapter 3, the object detector based on a neural

network method is introduced. The object detector utilizes the point cloud raw

data and non-ground mask, which is generated from the non-ground point

clustering process introduced in Chapter 4. In Chapter 4, the non-ground point

clustering process is described. By using the result from the process, we can

find the obstacles or objects that vehicles should avoid. In Chapter 5, the object

tracking method is introduced. This predicts the object's motion based on

Kalman filter, then associates the predictions from previous detections and

current detection by using Hungarian algorithm. In Chapter 6, the performance

of the proposed object detector is compared with other networks.

In Chapter 7, Average precision (AP), which is broadly used in object

detection research area, is introduced and modified performance index which

considering detection priority and continuity is proposed.

Chapter 8 shows the experiment results for the evaluation of the performance

of the proposed perception algorithm. Then future works and conclusion that

describes the summary and contribution of the proposed perception algorithm

are presented in Chapter 7.

 15

Chapter 2 Overview of a Perception in

Automated Driving

From a considerable amount of recent literature, automated driving

technology has the potential to reduce the environmental impact of driving,

reduce traffic jams, and increase the safety of motor vehicle travel. However,

in advancing self-driving technology, the ability to recognize the surrounding

environment and obstacles is an essential task to be achieved. Because

perception module corresponds to the eyes of autonomous vehicles, to secure

reliability of automated vehicle technology requires highly accurate perception

algorithm to distinguish the nearby object to avoid the crush and achieve right

path planning, control, and decision in complex driving conditions. Perception

in autonomous driving has made great progress through going down of sensors

cost, improving computing technology, and remarkable achievements in the

neural network field. Recently, through the achievement of neural networks in

the field of vision, many studies have been conducted on object detection using

Lidar point clouds. Indeed, some recent studies have been trained with the

KITTI dataset and have shown remarkable achievements.

However, these researches have an unpractical aspect to actual driving, and

as aforementioned, some issues are considered. First, a methodological

limitation of supervised learning. Most of the recent researches related to object

detectors based on neural networks has been developed based on supervised

 16

learning techniques. The supervised learning based detector can only find the

kind of object the detector has learned. In the case of KITTI dataset, there is no

annotation of 'bus', so the object detector trained by KITTI dataset cannot find

a bus in actual driving. Secondly, most of the recent researches only focuses

only on single frame detection without object tracking and they have been less

researched the perception algorithm in time continuous aspect. This frame-by-

frame detection has a problem related to the detector performance evaluation,

and the current object detection performance evaluation based on AP, which do

not consider detection priority and continuity, cannot show reasonable

performance. The perception architecture of the algorithm proposed in this

dissertation to solve the aforementioned problems is outlined in Figure 2.1.

In the remainder of this paper, we will provide an overview of the overall

architecture of the proposed perception algorithm using point cloud and the

experimental results which show the effectiveness of the proposed algorithm.

 17

Figure 2.1. Overview of the proposed perception algorithm. The proposed

algorithm consists of two parts: object detection and multi-object tracking.

 18

Chapter 3 Object Detector

 Autonomous driving costs a significant computational load because it is a

complex total system, which its sub-modules such as localization, planning, and

control operate complementarily each other. Besides, most LiDAR products

basically update point cloud data at speeds of 0.1Hz or higher, so it is said that

the detector does not guarantee real-time performance if the update frequency

of detection result is slower than point cloud update frequency.

Therefore, the speed of the perception module is directly related to whether

the algorithm is real-time applicable. The LiDAR product used in the KITTI

dataset is Velodyne’s HDL-64E and this LiDAR is mounted on the roof of the

test vehicle to cover 360 degrees around the test vehicle. Even though all the

point cloud around the test vehicle are served, the KITTI dataset offers ground

truth's annotation only limited to objects within the front camera’s field of view.

This means that the inference speed on KITTI benchmark, which many pieces

of research are showing, was recorded using less than half of the total point

cloud. Naturally, the calculation burden of point clouds will increase as the

number of point clouds increases.

For this reason, it is reasonable to expect that the actual inference rate of the

networks on KITTI benchmark will be reduced if they are applied in a real-time

environment, which is the case that all the point cloud are used or the perception

algorithm operates with other self-driving modules like planning, localization,

control.

 19

Most state-of the-the-art object detection methods can be categorized into

either (1) a two-stage framework or (2) a one-stage framework. Essentially, the

two-stage methods are divided into two steps. It generates a set of sparse

candidate bounding box proposals and calculates an objectness score for the

content of each box in the first step and then conduct further regression and

classification in the second step. In contrast, a one-stage method [Redmon,’15,

Liu,’16, Redmon,’16, Lin,’17, Redmon,’18, Iandola,’16] performs object

location and bound box regression and classification directly by dense sampling

from each feature map.

Some recent works showing good performance on KITTI benchmark

adopted this two-stage method [Qi’18, Wang’19, Shi’19, Chen’19, Yang’19,

Shi’19]. They pre-trained a segmentation network that learns point-wise object

scores to generate coarse object proposals. With these proposals, they regressed

box size and heading angle, confidence. Because two-stage method divided the

detection process completely into (1) providing the balanced proposals and (2)

Regression stage which tends to improve the object location and heading angle,

they usually show more accurate results than the one-stage method. However,

the two-stage method requires a pre-trained model to generate proposals, so this

method is not advantageous for end-to-end training, or even though end-to-end

is possible, the separated process of two-stage method leads to low detection

speed.

For these reasons, networks using the two-stage method have a low inference

speed than one-stage method. In practice, networks adopted two-stage method

 20

in KITTI benchmark have inference rate about 40ms to 80ms. As mentioned

before, the inference rate could be lower in actual real-time application because

of other computational burden or LiDAR point cloud ranges. In this dissertation,

one-stage method is adopted to secure the detection speed as efficiently as

possible for practical aspects.

 21

Figure 3.1. Camera view and point cloud of KITTI dataset. Green boxes are

ground truth information. Annotation is limited to objects inside camera view

 22

3.1. Voxelization & Feature Extraction

LiDAR point cloud data is 3D spatial information and has information of x,

y, z, and intensity. Therefore, unlike a tensor type 2D image data, it is

impossible to apply a convolutional network directly. In addition, since there is

no order for 3D spatial data, the same result should be shown even when the

points order is changed. PointNet [Qi’17] achieved notable result by learning

the relationship between the points and classifing them as point-wise directly

processing the LiDAR point cloud without converting it to another form.

However, if the number of points in LiDAR is large, a lot of calculation is

required to process in point units, so it can be seen through Voxelnet [Zhou’18]

showed that it is effective to convert the point cloud data into a pseudo-image

and apply a convolution network.

To apply a 2D convolutional network method, we first transform the point

cloud into a pseudo-image form such as RGB image. As a first step, the

voxelization step subdivide the point cloud x, y, z, r into equally spaced voxel

in the x-y plane with one z-direction channel as Voxelnet. In this step, like

[Lang’19] did, we adopt only one-channel along the z-axis to secure network

efficiency. As the pseudo-image has only one-channel, it is easy to apply 2D

convolution not 3D convolution, which results in speed efficiency. To obtain

point canonical locations in each voxel, we subtracting the arithmetic mean

(X,Y,Z) values and augmented the distance to the arithmetic mean of all points

 23

and offset from the voxel center position in the voxel. The augmented LiDAR

point is 9 dimensional information: , , , , , , , , ,c c c p p px y z x y z x y z r . We

set the number of the augmented information number as D = 9. According to

many researches [Yan’18] we set the voxel size to (ld = 0.16m, wd =0.16m,

hd = 4m), ld , ld and ld means width, height and height of voxel

respectively. By applying voxelization, we can allocate the points cloud into

voxels having much less number than total point numbers as shown in Figure

3.2.

Figure 3.2. Voxelized map of point cloud

 24

Most of the voxels will be empty due to sparsity of the point cloud, and there

are only a few points even in the non-empty voxels. We impose a limit both on

the number of non-empty voxels per sample (P) and on the number of points

per voxel (N) to create a dense tensor of size (D, P, N). If too much number of

the point cloud are allocated in a sample or voxel, the points are randomly

sampled to fit this tensor. Conversely, zero paddings is applied if a sample or

voxel has too little number of the point cloud to populate the tensor.

Many researches [Simon’18, Ali’18, Beltran’18] adopted max height,

intensity, density(the number of the points in a voxel or grid) for the network

input feature's channel. This selection is intuitive and simple to process.

However, it is not easy to learn feature characteristics in the local area of the

voxel unit.

 Next, we apply a simplified PointNet to each point to extract the feature

characteristics of the voxel. PointNet is consists of a linear layer followed by

Batch Normalization [Ioffe’15] and ReLU to generate a tensor with the size of

(C, P, N). After passes the simplified PointNet, a max operation is applied over

the channels to generate a (C, P) sized output feature tensor. If the feature

extraction process is ended, the extracted features present values of

corresponding voxel channels. We can get pseudo-image after applying this

process over the whole voxels. The feature extraction process is shown in

Figure 3.3.

 25

Figure 3.3. Feature Extraction Network

3.2. Backbone Network

 As one of the basic components in object detectors, the region proposal

network serves as an important module to decode the input feature maps and

transform them into candidate boxes. The backbone structure is shown in

Figure 3.4.

The backbone is consists of two sub-networks. The first sub-network has a

form of top-down Feature Pyramid Network (FPN) design that produces

features at increasingly small spatial resolution. The second sub-network takes

features from the first network and performs upsampling. Upsampled features

are concatenated at the end of the network.

 26

The top-down network is a series of convolution layers followed by Batch

Normalization and a ReLU. The feature passed a first top-down layer are

combined with a non-ground mask created by the non-ground extraction

process, then the combined feature passes a top-down network again. The final

features from each block of first sub-network pass upsampling layer, then Batch

Norm and a ReLU is applied to each upsampled feature. The final upsampled

features are concatenated.

 27

Figure 3.4. Backbone Network of object detector

 28

3.3. Detection Head & Loss Function Design

 Essentially, the trouble in object detection problem with LiDAR point cloud

comes from the difference between image and point cloud’s data form. RGB

image data are 2D pixel-wise data and they are filled with meaningful data

without emptiness. However, the point cloud is 3D physical data having

distance and orientations. Even though we convert the point cloud point to

voxel-wise data, there are only a few voxels filled with point cloud and the most

voxels are empty and these voxels are out of our interests, and this imbalance

between foreground voxels and background voxels results in degradation of

detection performance while training.

LiDAR sparsity

 On the other hand, most cells of voxelized will be empty due to sparsity of

the point cloud, and the non-empty voxels will, in general, have few points in

them. For example, despite the description in it’s user manual that the LiDAR

model used in KITTI, HDL-64E Velodyne LiDAR, generates 1,300,000 points

per second in single return mode and 2,200,000 points per second in dual return

mode, at
2 20.16 m bins the point cloud from the LiDAR has 6k-9k non-empty

voxels in the range typically used in KITTI for ~ 97% sparsity.

 29

Class Imbalance Problem

 Although the major driving force of progress in object detection has been

the incorporation of deep neural networks, imbalance problems in object

detection at several levels have also received significant attention because this

imbalance can result in performance degradation.

 The balanced distribution of the inputs is the key property affecting the

performance. When the distribution imbalance is not addressed, an imbalance

problem has adverse effects on the final detection performance. The most

commonly known imbalance problem in object detection is the foreground-to-

background imbalance which means the extreme inequality between the

number of positive examples versus the number of negatives. In that imbalance

case, if a given image, while there are typically a few positive examples, one

can extract millions of negative examples. If not addressed, this imbalance

greatly impairs detection accuracy.

Detection head

 We found that this imbalance problem occurs in object detection using the

LiDAR point cloud because of the aforementioned problems. To take a one-

stage structure for efficient detection speed with mitigating the class imbalance

problem, we adopt the focal loss as a loss function for class classification and

the detection head of Single Shot Detector (SSD) because the structure’s

performance of SSD already verified in 2D object detection on the image.

Similar to SSD, we set the anchor boxes and match the anchors to the ground

truth using 2D Intersection over Union (IoU). The matching processed on the

 30

Bird’s Eye View (BEV), which means bounding box height and elevation were

not used for matching. The height and elevation become additional regression

targets.

3.4. Loss Function Design

Because we divide the range as equal-sized voxels, the objects to be detected

are of an approximately fixed size. Thus, we use two fixed-size anchors

determined based on the means of the size and center locations of all ground

truths in the KITTI training set with a rotation of 0 and / 2 . In the case of

cars, we define an anchor with dimensions of (1.6 Ⅹ 3.9 Ⅹ 1.56m), centered

at z = -1.0m. In a voxel, we can describe the relation between anchors and

ground truth as shown in Figure 3.5. Similar to [Yan’18], we set the residuals

between ground truth and anchors to be encoded with the following equations:

 

,

log , log

sin

g a g a

a a

g g

a a

g a

x x y y
x y

d d

l
l

l




  

 
   

   

  

 (3.1)

Where x , y, z are the center coordinates and  , l ,h are the width, length,

and height of the 3D bounding boxes respectively.  is the heading angle, and

 31

2 2d l   is the diagonal of the base of the anchor box. Subscripts ‘g’ and

‘a’ indicate the ground truth and anchor boxes respectively. The total

localization loss is given by:

 * , , , , , ,

1(*)loc
x y z l h

L SmoothL
 

  (3.2)

According to SECOND [Yan’18], the angle loss form has two advantages.

First, the adversarial problem occurs between orientations of 0 and  can be

solved because 0 and  have the same orientation of the box, but they generate

a large loss in the loss function. Secondly, it naturally models the IoU against

the angle offset function. Because this angle function treats boxes with opposite

directions as being the same, this approach can converge the angle loss

regardless of direction problem.

Figure 3.5. The relation between ground truth and anchors

g

gl
g

al

a

g ay y

g ax x

 32

 As aforementioned, there is a class imbalance between non-object proposals

and object proposals. For example, there are usually only a few voxels

including points belong to ground truths even though our network usually

generates about ~70k anchors within a KITTI dataset. So the most voxels in the

input features are not related to the object. This lead to a considerable class

imbalance between the foreground and background classes, which there are

only a few foreground gird comparing to the background grid. To handle the

imbalance problem, we use the focal loss for the object classification introduced

by the authors of RetinaNet [Lin’17], thus the classification loss has the

following form:

 () 1 log()a a
tFL p p p


   (3.3)

where
ap is the estimated probability of an anchor to be a positive sample

and  and  are the tuning parameters of the focal loss. We use the settings

of  = 0.25 and = 2 according to original paper [Lin’17] in our training

process. Therefore, by combining the losses discussed earlier, the total loss

function is defined as follows:

 1
loc loc cls cls

pos

L L L
N

   (3.4)

 33

Where is the classification loss and is the regression loss for location and

object dimension. posN stands for a total number of positives, loc and

loc are the constant coefficients of our loss function. To optimize the loss

function we use Adam optimizer with an initial learning rate of
42 10 and

decay the learning rate by a factor of 0.8 every 15 epochs, and we set total

training epochs as 160.

3.5. Data Augmentation

Figure 3.6. Data Augmentation Example

The neural networks based on supervised learning heavily depend on big data

to avoid overfitting. Overfitting refers to the phenomenon when a network has

 34

high variance with respect to other datasets because it is intensively trained on

specific data. Data Augmentation encompasses a set of techniques that apply a

transformation on the size or quality of training datasets for better Deep

Learning models to be built by using them. For this reason, data augmentation

is a critical component of training deep neural network models. Data

augmentation involves the process of creating new data by manipulating the

original data by various methods as shown in Figure 3.6. The smaller the

amount of data to train, the more effective this augmentation process can be for

model training. In addition, overfitting also can be mitigated by data

augmentation. In this dissertation, we apply basic augmentation such as global

flip and rotation, translation on pseudo-image. Furthermore, we apply

additional augmentation proposed by [Yan’18].

Global Translation and Global Rotation

 We applied global translation and rotation to the whole point cloud and to

all ground truth boxes. The translation is randomly applied from the uniform

distribution [-30, 30] in x-direction and y-direction, and rotation augmentation

is also randomly applied and the rotation angle range of [− π/4, π/4] is used.

 We tested our network via real vehicle test using 32 channel LiDAR, it will

be introduced in later. The test LiDAR is mounted at the front of the test

vehicle's bumper, and this position is different from the mount position of

KITTI test vehicle. The difference in the sensor mounting position causes a

change in the appearance of the scenes produced by the lasers emitted from the

 35

LiDAR, and when the trained network is applied, the performance of the

network is sensitive to the vertical position calibration.

To mitigate the sensitive performance change according to vertical

calibration, vertical translation augmentation is applied to train the model as

shown in Figure 3.7.

Figure 3.7. Vertical Translation augmentation

Global Flip & Scaling

The LiDAR product used in KITTI dataset is Velodyne’s HDL-64E and this

is mounted on the roof of the test vehicle to cover 360 degrees around the test

vehicle. Even though all the point cloud around the test vehicle is served, the

KITTI dataset offers ground truth's annotation only limited to objects within

the front camera’s field of view. In actual driving situations, however, the

network may also need to detect vehicles in the rear. In order to train the model

to cope with obstacles coming from the rear, the image created by LiDAR laser

on the obstacle is needed to be similar to what of when the object is behind it.

So we applied global vertical flip and horizontal flip to the whole point cloud

and to all ground truth boxes.

 36

Finally, we perform two kinds of global augmentations, which are

scaling[Zhou’18, Yan’18] and noise addition that is jointly applied to the point

cloud and ground truth information. When applying a noise augmentation to

the point cloud, we randomly add or subtract the number of points from original

point cloud data.

Ground Truths Scattering from the Database

 As mentioned earlier, we encountered the imbalance problem during

training. There are usually only a few ground truths even though our network

usually generates about 70k anchors within a KITTI point cloud.

So the most voxels in the input features are not related to the object. This

imbalance significantly limited the convergence speed and final performance

of the network. As shown in Figure 3.8, the KITTI dataset used for training

shows that there are less than 5 cars in most frames.

To solve this problem, we adopt a data augmentation approach similar to

[Yan’18]. As shown in Figure 3.9, we construct a database containing the labels

of all ground truths and their associated point cloud data from the training

dataset. The associated point cloud data is filtered by extracting the points

inside the 3D bounding boxes of the ground truths.

 37

Figure 3.8. Number of car and image

 Then, during training, as shown in Figure 3.9, we randomly selected several

ground truths from this database and scattered them into the current training

point cloud with translation and rotation augmentation. When the additional

ground truth points from the database are scattered, we checked whether the

points are overlapped with existing ground truth points to avoid an unnatural

scene that the objects are overlapped. If there is overlapping, we re-scattered

the points until the overlapping does not occur.

 However, the method introduced in SECOND [Yan’18] did not care about

the overlapping with the non-ground points, which are wall, flower bed, traffic

sign, and tree, etc. In addition, when the additional points are scattered, they

preserve their vertical positions. This results in an unnatural vertical position.

 38

Figure 3.9. Construct Ground Truth Database

An unnatural scene means situations that cannot occur while real vehicle

tests. For example, the scene that the objects are overlapped and the scene that

cars are under the ground or placed off the ground. In addition, the situation

that the closer object has sparse point cloud density than a distant object is can

not occur physically. We wanted our model to learn more natural scenes

because the unnatural scenes can degrade the final performance.

As shown in Figure 3.10, to avoid physically impossible outcomes, we take

a step further from the proposed method in SECOND [Yan’18] by exploiting

the aforementioned ground estimation. By estimating the ground points, we

distinguish non-ground points from the point cloud. Thus, we additionally

checked the scattering points overlapping with non-ground points, and move

their vertical position to be placed on the ground points. Scattering positions

 39

are also constrained in a specific range for the relation between point number

and its distance.

 Using this augmentation approach, we could increase the number of ground

truths per point cloud and simulate objects existing in different environments.

Figure 3.10. Random data scattering augmentation from database

3.6. Post Process

In detection, adjacent grids produce multiple prediction results for one object.

In general, by applying non maximum suppression (NMS), prediction with the

highest confidence is picked as a representative prediction, and the other

 40

predictions overlapping with the highest confident prediction are judged as

predictions for the same object and they are erased. As an example, there are

five predictions in Figure 3.11 and their confidence scores are shown in Figure

3.12 (a). From the definition of NMS, the number 3 prediction is selected as a

result predictio. The confidence score is the probability that a prediction

contains an object. However, the confidence score is just a value calculated by

the object detector trained by dataset, not a strictly mathematically and

physically derived value. Thus it cannot be convinced that the prediction with

higher confidence leads to a more accurate results.

Therefore, there is a question that the existing NMS, which simply sorts

predictions in order of confidence and determines the prediction with the

highest confidence as the final prediction, is the most reasonable method. To

compensate for these shortcomings of NMS, the polygon detection results

covered in Chapter 4 are used.

Figure 3.11. Polygon and predictions with confidence

 41

However, the number 2 prediction predicted fitted to the point cloud seems

to be a more suitable prediction when viewed in intuitively. In this case, we use

the polygon to predict the unknown object covered in Chapter 4 to induce the

final prediction to be changed from 3 to 2. First, predictions are not sorted in

the order of confidence score, but instead, they are sorted based on IoU with

the polygon. At this time, the IoU with the polygon is defined as the ratio of the

area of the polygon to the denominator and the overlapping area of the Polygon

and the prediction to the denominator as defined in equation 3.5.

1prediction polygon

polygon

Area Area
IoU

Area
 


 (3.5)

The IoU results are shown in Figure 3.12 (b). In this case, the number 2

prediction has the highest IoU with the polygon. The IoU value with the

polygon has a maximum of 1, and finally, predictions are sorted based on the

multiplication of the confidence score and the IoU. The prediction with the

highest value of the multiplication is picked as the result prediction. If the area

of the polygon is not defined, the IoU is not considered and the final selection

is made by sorting in confidence score order according to the existing NMS

method.

 42

(a) Predictions and their confidence scores

(b) Predictions and IoU with polygon

Figure 3.12. Confidence scores and IoU of predictions

Chapter 4 Non-Ground Point Clustering

 In the classic rule-based method using the existing 2D LiDAR, erasing the

ground was a basic task. This approach is based on the assumption that objects

above a certain height above the ground are obstacles. This is a fairly

appropriate assumption, and since it was a useful approach, ground removal

was a very important process in performance. Following this manner, previous

researches using 2D LiDAR have been used as a method of finding an object

by fitting the features of an object that was supposed for the remaining points

 43

after deleting the points belonging to the ground. However, the neural network-

based method is a method of learning the feature characteristics of an object

from the position of point clouds and recognizing the object through their

characteristics, so it is not necessary to remove a point belonging to the ground.

This seems to be a very efficient and sophisticated task. Actually, object

detection using the LiDAR point cloud has been shown relatively high

performance and many researches have been conducted on various datasets.

Most of the detectors that show good performance in the benchmark of object

detection are developed based on supervised learning. The detector based on

supervised learning has a methodological limitation that it can only find the

object learned in the learning process. Detectors that show good performance

in most studies also show limited performance for specific objects. Since such

performance considers only the detection results of every scene, detection

continuity between scenes and scenes is not considered. Even though the

detector has a very fast detection speed, it often fails to detect even a learned

object due to the nature of the object detector.

 In the actual driving process, objects that are not included in the dataset are

often encountered. In this paper, we studied the method of detecting non-ground

points and detecting them as unknown objects by clustering them in order to

respond to these unlearned objects and objects that have been learned.

 44

4.1. Previous Researches for Ground Removal

 It is not an easy task to filter out points belonging to the ground in a 3D point

cloud. There have been many attempts to solve this problem, and these can be

broadly divided into three categories.

 First, based on the specification of LiDAR and mount location, a method of

finding based on the degree and height change of the locations where laser

beams are formed. [Chu’17, Choi’13] However, this method is not robust to

changes in the specifications and installation position of LiDAR, and is not

efficient in terms of calculation since it extracts ground points for each beam

individually. As mentioned earlier, this method is not appropriate because the

real-time guarantee is very important in autonomous driving.

The second method is a ground plane estimation. [Asvadi’16, Zermas’17] In

this method, planes representing ground are obtained through multiple

iterations, and points coming within a certain distance are regarded as ground.

However, in many cases, the road surface of the road we facing while driving

is actually not neatly flat even though they look perfectly flat. The above

method attempts to compensate for this by using multiple planes, but the

number of planes must be fixed in advance, and multiple iterations are not

efficient in terms of computation. Also, the method of filtering a point with a

distance threshold from a plane does not completely perform ground removal.

 45

 Finally, ground point classification through segmentation using a neural

network. [Velas’17, Dabbiru’20] This is the most attempted method in recent

years by the universal application of neural networks.

Recently, even if not used in the ground removal method, this method is used

in attempts to use confidence information about whether each point belongs to

the ground to improve the detection performance of the network. [Shi’19,

Yang’19] However, because the KITTI dataset used in this study does not

provide annotations of ground points, the task of creating ground points

annotations must be preceded in order to train such a network. This work is

quite a time consuming and needs a hand-craft partially.

 When a point belonging to the ground is mistaken for a non-ground point, it

is recognized ground as an obstacle, so incorrect route planning and braking are

executed, which can create incorrect behavior from the perspective of

autonomous driving planning and control. For these reasons, we had to devise

an effective rule-based method in this dissertation to secure both efficiency and

performance.

4.2. Non-Ground Estimation using Voxelization

 It is not easy to filter out the points belonging to the ground through the 3D

point cloud. This requires a lot of complex computation, and these

computations must work properly for various ground conditions. Estimating a

specific ground plane or estimating whether it is a point belonging to the ground

 46

with height and angle differences between points does not produce an

appropriate result for various situations.

In order to cope with these shortcomings and to produce appropriate results,

we propose a simple method. In the object detector section, the point cloud is

allocated in the 2D array through the voxelization divided into a certain size.

Before the feature extraction, we calculate the height difference between the

highest point as shown in Figure 4.1 and the lowest point for the point clouds

in the voxel.

Figure 4.1. Vertical distance in a voxel for non-ground point extraction

If this height difference exceeds a certain value, it can be classified as an

object. That is, the points belonging to this voxel are regarded as points

belonging to a non-ground object or obstacle. Conversely, if the height

difference is smaller than a certain value, the points belonging to this voxel are

regarded as points belonging to the ground.

 47

 However, there is a case when the height difference is ambiguous, which

is the case that the height is laid between two threshold values. [Wang’18]

analyzed the variance of the point cloud of KITTI dataset, and found a tendency

that the variance of the point cloud's reflectance on the ground is higher than

that of other points. If the value of this variance is more than a certain point, the

points in the voxel belong to the ground, and in the opposite case, it is

considered to belong to the non-ground. By doing this, it is possible to

distinguish non-ground points from ground points in a simple way, and it is

computationally efficient because it uses voxelization used in the object

detection process.

Before on-ground points extraction

After non-ground points extraction

Figure 4.2. Non-ground point extraction result on KITTI dataset. Red points

in the right figure are non-ground points, and grey points are grounds.

 48

In addition, since this method produces results according to the relative

distance of the point cloud along the z-axis, it is relatively robust for the

specification and installation location of LiDAR. Figure 4.2 shows the result of

non-ground point extraction is applied to KITTI dataset.

Table 1. Comparison of average processing time per frame for ground

estimation

Method
Average processing

time per frame (ms)

Fast ground segmentation [Chu,’17] 4.7

Sloped Terrain Segmentation [Cho,’14] 19.31

Loopy belief propagation based ground segmentation

[Zhang,’15]
1000

Ground plane detection with RANSAC [Asvadi,’16] 15.4

Local convexity criterion [Moosmann,’09] 602

Proposed Method 8.3

Figure 4.3 and Figure 4.4 show the real vehicle test result. The LiDAR used

in the vehicle test is 32 channels and installed in front of the vehicle. The driving

course of the vehicle test is the road leading from Seoul National University

Entrance Station to the main gate of Seoul National University. This road

 49

consists of uphill and downhill roads. As a result of the qualitative evaluation,

it was observed that the ground points and the non-ground points were properly

classified even on the uphill and downhill roads. Table 1 shows the comparison

of average processing time with other algorithms. As shown in the comparison

result, Fast ground segmentation method is the fastest method followed by the

proposed method. However, the proposed method is more efficient in this

dissertation even though it has relatively low processing speed for the reason

that the proposed network takes the voxelized feature as input. The main

advantage of the proposed method is that it uses voxelization with high

processing speed.

Figure 4.3. Bird’s eye view of non-ground point extraction result on real

vehicle test

 50

Figure 4.4. 3D view of non-ground point extraction result on real vehicle test

4.3. Non-ground Object Segmentation

In the methods of using the neural network, it is not necessary to distinguish

which object each point belongs to, because they find objects directly through

the point cloud raw data. Finding object detection without any pre-processing

for point cloud input is the biggest advantage of neural networks. However, as

mentioned above, such a supervised learning-based neural network has a

disadvantage that it cannot detect objects except for the object the detector has

learned.

Conversely, previous studies not using the neural network method used a

model-free method, such as fitting objects for a certain size by segmenting the

 51

remaining points after first removing the ground, or matching cluster by

considering dynamic information of the subject vehicle.

 There are many clustering according to its manner, and hierarchical

clustering, Centroid-based clustering, Distribution-based clustering, and

Density-based clustering are the representative methods.

 Hierarchical clustering is based on the idea that close points are more related

than distant ones. It is divided into several types according to the way of

calculating the distance, and in general, the complexity is
3()O n for

agglomerative clustering and
1(2)nO 

 for divisive clustering, which makes

them too slow for large datasets.

 The most well-known algorithm of centroid-based clustering is k-means

algorithms. It finds the k cluster centers and assigns the objects to the nearest

cluster center, which the distances from the cluster are minimized. However the

most -k-means algorithms require the number of clusters to be specified in

advance, and this is considered as one of the biggest drawbacks because the

cluster number can be varied in every time.

Density-based clustering separates high-density points into clusters, and

objects in low-density areas are generally considered noise or boundaries. In

density-based clustering, the most popular method is DBSCAN. (Density-

based spatial clustering of applications with noise) It is based on connecting

points within a certain distance range and it only includes points that satisfy a

density criterion. This method has an advantage in that it is not necessary to

determine the number of clusters in advance and can respond to various types

 52

of clusters. In this process, we cluster the non-ground points filtered in non-

ground extraction process and create bounding polygon like bounding box

detected by object detector. The total process of clustering and convex hull

polygon with non-ground points are shown in Figure 4.5.

Figure 4.5. Point Clustering Sequence

4.3.1. Object Clustering

In this point clustering operation, specifying the number of clusters is not

appropriate for situations in which various cluster numbers may occur while

driving. In addition, in the case of the k-means algorithm, since an incorrect

result is created for an arbitrary cluster type, a clustering technique showing an

appropriate shape for an arbitrary cluster type is required. Also, an algorithm

that can cluster points appropriately for any number of clusters is required.

DBSCAN (Density-based spatial clustering of applications with noise) can

be the most appropriate algorithm for this task. DBSCAN does not require one

 53

to specify the number of clusters in the data a priori, as opposed to k-means

clustering. In addition, it can find arbitrarily shaped clusters. It can even find a

cluster completely surrounded by (but not connected to) a different cluster, and it

is robust to outliers. This algorithm requires just two tuning parameters and is

mostly insensitive to the ordering of the points in the database.

In general, it is ideal to apply DBSCAN to non-ground points, but when

applying clustering to all non-ground points, too much of iteration is applied to

points with only different z values for similar x and y positions. In Bird's eye

view, these calculations along the z-axis have little significance for the

clustering result. This calculation results in a computational load and affects the

overall processing time.

When the total number of non-ground points is N and the number of voxels

where non-ground points exist is M, generally N >> M is satisfied. Therefore,

clustering based on the non-ground mask can reduce the calculation time

without significant difference. This phenomenon is expected to reduce the total

calculation time because the number of grids to be calculated decreases as the

voxel size increases. About the scene shown in Figure 4.6, there are many

differences in the number of points to be calculated between raw point cloud

and voxelization. The total number of calculation leads to a large difference in

calculation time.

Table 2 shows the calculation time comparison according to the clustering

method for the scene shown in Figure 4.6. When the voxelization is performed,

the number of data to be calculated is reduced to more than one-tenth, and it is

greatly reduced from the calculation time.

 54

Therefore, as the voxel size increases, the efficiency of the calculation time

increases. However, large voxel size may lead to inappropriate clustering

results because the points belonging to different objects can be grouped together

during clustering.

 Therefore, it is important to cluster through the voxelization to maximize the

speed without significant difference in clustering results, and to select voxel-

size of the appropriate size empirically in the process

Table 2. Calculation time according to clustering methods and voxelsize

Method No. of Data Cal. Time [ms] note

Raw Point Cloud Data (11714, 4) 147.14 -

Voxleized

Data

(1292, 2) 6.78 Voxelsize = 0.1

(747, 2) 3.42 Voxelsize = 0.2

(551, 2) 2.28 Voxelsize = 0.3

(418, 2) 2.01 Voxelsize = 0.4

 55

(a) Original point cloud data

(b) After clustering

Figure 4.6. Clustering result on KITTI dataset

4.3.2. Bounding Polygon

In the case of object detection in this paper, detection is performed on a car,

pedestrian, and cyclist. In the case of the object found by the object detector,

the boundary of the object is defined through the bounding box, which

includes the information such as object center position, width, length, the

height of the box, and heading angle.

 56

 In the case of other obstacles, it is found as an unknown object through

clustering. In this case, if a bounding box is defined with only the maximum

and minimum x and y position of the cluster points, inefficient and

unreasonable cases may occur as shown in Figure 4.7.

In order to solve this problem, this study defines the bounding polygon in

the form of the polygon by finding the outer shell of an unknown object by

using a convex-hull polygon.

(a)

(b)

Figure 4.7. Two cases according to boundary of unknown object clustering

 57

Chapter 5 . Object Tracking

Multi-object tracking (MOT) is an essential function for many applications

not only autonomous driving. By applying the tracking function, the detection

performance can be enhanced by maintaining detection continuously even if

detection is missed. A lot of research on multi-object tracking has been

conducted, and in the last 2 or 3 years, the car class on the KITTI MOT

benchmark, the MOTA (multi-object tracking accuracy) has advanced from

57.03 [Yoon’18] to 84.24 [Sharma’18]. Despite the significant increase in

MOTA score, the complexity and computational cost of the system also

increased accordingly.

[Weng’19] proposed a simple but accurate 3D MOT system, which ensures

a computational speed that can be utilized in real-time. We utilized the 3D MOT

system architecture, and modify its inputs as object detection results and

clustering for unknown objects, and its architecture is shown in Figure 5.1. The

architecture of the tracking system is shown in Figure 5.1. Each tracking

component has an associated Extended Kalman Filter that is used for prediction

and estimation of the object state over time. Even if the objects go out of the

detecting range and the detector lost the object, the tracking solution keeps track

of detected objects until specified frames. Because the tracker predicts the

movement of objects within the scene and to infer semantic information

between frames, it can aid the object detection process.

 58

Figure 5.1. Multi Object Tracking Architecture

5.1. State Prediction and Update

In order to predict the state of the object in the next frame, a simple kinematic

model using constant velocity is defined as shown in Figure 5.2.

As suggested in [Weng’19], even with a simple point model with a constant

velocity assumption, there was no significant difference in model prediction

results. But the model based on minimal kinematic is used for future works that

to predict the possible dynamic behavior of objects using the ego vehicle’s

dynamic information. Because overlaps between object is physically

impossible, we project the object behavior onto 2D image feature and define

the state of the object as a 7-dimensional vector

Objet
Detector

points

Associated
Trajectories

tD

tC

D
at

a
M

at
ch

in
g

A
ss

oc
ia

tio
n

unmatch
tD

unmatch
tT Birth /

Death
Memory
Manage

,new lostT T

Kalman
Filter

,match match
t tD T

estT

Update

predicti
on

tT1tT 

Cluster
Trackers ,new lostT T

 59

(7 1)[, , , , , ,]Tx yp p L W V   x   , where xp , yp , L, W,  ,  , V

means object x, y position, length and width of the bounding box, heading angle,

and yaw rate, velocity respectively. The object’s next position with respect to

the current state can be defined in Equation (5.1) to (5.3).

Figure 5.2. Vehicle model defined in object tracking

(7 1)[, , , , , ,]Tx yp p L W V   x   (5.1)

(5 1)[, , , ,]T
x yp p L W   z  (5.2)

 

[, , , , , ,]

cos() sin() 0 0 0

T
x y

T

d d
p p L W V

dt dt

V V

 

  





x 


 (5.3)

 60

After state prediction, objects in the previous frame and the objects of the

current state are compared and matched. This is described in detailed in the next

section 5.2. At this stage, the objects are divided into matched and unmatched

objects. Matched objects are considered to be the same object in the previous

frame and the current frame, and unmatched objects are objects that were newly

detected or existed in the previous frame but disappeared in the current frame.

We update the state space to account for uncertainty for matched objects based

on the measurements. Following the Bayes rule, the updated state is the

weighted average between the prediction and the measurement. The weights

are determined by the uncertainty of the prediction and measurement, and this

is referred to Kalman filter [Kalman’1960] in detail.

5.2. Data Matching Association

The Multi-Object Tracking (MOT) solution creates and deletes object IDs

constantly as objects enter and exit the scene. The memory director is

responsible for the creation/deletion process based on the data association at

the update step. At first, the detection results come from detection network

and their corresponding Extended Kalman Filters are being calculated through

their prediction step. Based on the predicted states of each EKF, an associated

cost is being computed for each observation at the validation step a stored as a

matrix. This matrix is based on the Intersection of Union (IoU) used to match

the observations and the predictions. Since the detection speed is relatively very

high than point cloud data update, the time gap between the two frames is very

 61

short. This means that the distance between data update is very short comparing

to vehicle size. In this aspect, IoU is a suitable metric to use for the prediction-

to-observation association.

To match the detections with prediction trajectories, we apply the Hungarian

algorithm. The affinity matrix with a dimension of 1t tn n is computed using

the IoU between every pair of detection and prediction. Then the matching

problems can be solved in polynomial time with the Hungarian algorithm. In

addition, we reject the matching when the IoU is less than the threshold value.

The outputs of the data association module are a set of detections matched with

predictions along with the unmatched predictions and unmatched detections.

As shown in Figure 5.3, there are sequential predictions along time T to time

T+1. If IoU between the predictions of time T and T+1 is larger than threshold,

we regard the predictions are for the same object.

Figure 5.3. Prediction and detection matching with IoU

 62

Chapter 6 Test result for KITTI dataset

We evaluate our proposed object detector by using the KITTI 3D/BEV object

detection benchmark dataset, which contains 7,481 training samples and 7,518

testing samples. We divide the training samples into a training set with 3,712

samples and a validation set with 3,769 samples following the common manner.

We trained the model with the divided training samples and compared it with

other networks on validation samples. Since ground truth information provided

by KITTI dataset is limited to those that exist inside the camera image view, it

is necessary to evaluate only the objects that laid inside the camera image field

of view. So we only used the LiDAR point clouds which can be projected onto

the image for training. We conduct experiments on the car category, which is

the most commonly used for network performance comparison. Average

precision (AP) with an IoU threshold 0.7 was used as an evaluation metric to

compare the results.

6.1. Quantitative Analysis

Network performance comparison proceeded for both Birds Eye View and

3D. In the case of birds-eye-view, the detection result is projected on the x-y

plane by removing the z-axis information of the detection result. In the case of

3D detection, even if the x, y, and heading of detection are matched with ground

 63

truth, IoU between detection and ground truth can be lower than 0.7 because of

the height difference. The 3D object detection performance is generally lower

than birds-eye-view because IoU threshold 0.7 is more difficult in 3D detection

considering height information additionally.

We compare the model to other approaches by using validation samples. The

KITTI dataset is stratified into three difficulty levels: easy, moderate, and hard.

These difficulties are divided based on the point cloud number on object and

obscurity, object distance, and so on.

Table 3 shows a comparison result of our model and the different methods

for BEV. As shown here, our detector achieved the highest AP score for hard.

Although our method did not get the highest score for other difficulties, it got

a high AP score for the remaining difficulties, which are easy, moderate. In

addition, despite using only the Lidar point cloud, it scored a higher AP score

than other networks such as the ones using fusion except for Frustum ConvNet

and AVOD in Easy difficulty.

Table 4 shows a comparison result of our model and the different methods

for 3D detection. Unlike BEV, our network did not achieve the best AP score

in 3D detection. From this result, we can deduce that our network gives good

detection for the object's center position, heading angle and length, and width

of bounding box except for height.

As mentioned earlier, recent researches in the field of object detection for

autonomous driving focus more on improving AP performance. However, the

perception module works with other systems such as planning and control

modules in actual autonomous driving. This results in a much larger

 64

computational load than when only the perception module is operated.

Even if a perception module has very good performance, it cannot be used in

actual driving situations if it cannot guarantee real-time performance. For most

LiDARs, the data update period can be set to 0.1 sec as default and can be

adjusted more quickly to 0.05 sec, 0.025 sec. Depending on the setting.

Therefore, it can be seen that the minimum real-time performance can be

guaranteed only when the processing speed of the network is 10 Hz or higher.

In this aspect, the network proposed in this dissertation guarantees real-time

better than other methods. We run our model in a desktop equipped with an

Intel i7 CPU and a NVIDIA RTX2070 GPU. The overall pipeline consists of

following steps: 1) read the LiDAR point cloud data file and extract the points

inside the range of interest, 2) encode the point clouds into a voxelized map, 3)

extract the non-ground voxels, 4) extract the feature characteristics and

generate a feature map, 5) processing by the backbone and detection heads, 6)

application of NMS on the CPU. As shown in the comparison results, our

network shows good processing speed, although the performance of the

network does not superior to other networks with high differences.

The comparison results indicate that some networks may perform slightly

better than our network, but our approach shows better detection speed than

other approaches. Complex YOLO has a processing speed of 50 frames per

second, but in terms of AP score, it is much less than other networks. It can be

seen that the network proposed in this study guarantees good detection speed

with relatively high detection performance.

 65

Figure 6.1. Performance comparison about car on BEV

Figure 6.2. Performance comparison about car on 3D detection

 66

Table 3. Results comparison on the KITTI test BEV detection benchmark

Method Modality

Car (BEV)

Time

Easy Mod. Hard

MV3D [Chen,’17] LiDAR + RGB 86.02 76.90 68.49 0.36

AVOD [Ku,’18] LiDAR + RGB 88.53 83.79 77.90 0.1

Fast PointRCNN [Chen’19] LiDAR 88.03 86.10 78.17 0.065

PIXOR [Yang,’18] LiDAR 84.44 80.04 74.31 0.1

HDNET [Yang’18] LiDAR + Map 89.14 86.57 78.32 0.05

RoarNet [Shin’18] LiDAR + RGB 88.20 79.41 70.02 0.1

IPOD [Yang’18] LiDAR + RGB 86.93 83.98 77.85 0.2

F-ConvNet [Wang’19] LiDAR + RGB 89.69 83.08 74.56 0.47

VoxelNet [Zhou,’18] LiDAR 89.35 79.26 77.39 0.5

PointRCNN [Shi,’19] LiDAR 89.47 85.68 79.10 0.1

SECOND [Yan,’18] LiDAR 88.07 79.37 77.95 0.05

Complex YOLO [Simon,’18] LiDAR 85.89 77.40 77.33 0.02

MMF [Liang,’19] LiDAR + RGB 89.49 87.47 79.10 0.08

Proposed LiDAR 88.25 85.80 79.66 0.028

 67

Table 4. Results comparison on the KITTI test 3D detection benchmark

Method Modality

Car (3D)

Time

Easy Mod. Hard

MV3D [Chen,’17] LiDAR + RGB 71.09 62.35 55.12 0.36

AVOD [Ku,’18] LiDAR + RGB 73.59 65.78 58.38 0.1

Fast PointRCNN [Chen’19] LiDAR 84.28 75.73 67.39 0.065

PIXOR [Yang’18] LiDAR - - - 0.1

HDNET [Yang’18] LiDAR + Map - - - 0.05

RoarNet [Shin’18] LiDAR + RGB 83.71 73.04 59.16 0.1

IPOD [Yang’18] LiDAR + RGB 79.75 72.57 66.33 0.2

F-ConvNet [Wang’19] LiDAR + RGB 85.88 76.51 68.08 0.47

VoxelNet [Zhou,’18] LiDAR 77.47 65.11 57.73 0.5

PointRCNN [Shi,’19] LiDAR 85.94 75.76 68.32 0.1

SECOND [Yan,’18] LiDAR 83.13 73.66 66.20 0.05

Complex YOLO [Simon,’18] LiDAR 67.72 64.00 63.01 0.02

MMF [Liang,’19] LiDAR + RGB 86.81 76.75 68.41 0.08

Proposed LiDAR 78.85 74.92 68.10 0.028

 68

Table 5. Results comparison on the KITTI test BEV detection benchmark

Method Modality

Pedestrian (BEV)

FPS

Easy Mod. Hard

MV3D [Chen,’17] LiDAR + RGB - - - 0.36

AVOD [Ku,’18] LiDAR + RGB 58.75 51.05 47.54 0.1

Fast PointRCNN [Chen’19] LiDAR - - - 0.065

PIXOR [Yang’18] LiDAR - - - 0.1

HDNET [Yang’18] LiDAR + Map - - - 0.05

RoarNet [Shin’18] LiDAR + RGB - - - 0.1

IPOD [Yang’18] LiDAR + RGB 60.83 51.24 45.40 0.2

F-ConvNet [Wang’19] LiDAR + RGB 58.90 50.48 46.72 0.47

VoxelNet [Zhou,’18] LiDAR 46.13 40.74 38.11 0.5

PointRCNN [Shi,’19] LiDAR 55.92 47.53 44.67 0.1

SECOND [Yan,’18] LiDAR 55.10 46.27 44.76 0.05

Complex YOLO [Simon,’18] LiDAR 46.08 45.90 44.20 0.02

MMF [Liang,’19] LiDAR + RGB - - - 0.08

Proposed LiDAR 56.84 50.20 46.90 0.028

 69

Table 6. Results comparison on the KITTI test 3D detection benchmark

Method Modality

Pedestrian (3D)

FPS

Easy Mod. Hard

MV3D [Chen,’17] LiDAR + RGB - - - 0.36

AVOD [Ku,’18] LiDAR + RGB 50.80 42.81 40.88 0.1

Fast PointRCNN [Chen’19] LiDAR - - - 0.065

PIXOR [Yang’18] LiDAR - - - 0.1

HDNET [Yang’18] LiDAR + Map - - - 0.05

RoarNet [Shin’18] LiDAR + RGB - - - 0.1

IPOD [Yang’18] LiDAR + RGB 56.92 44.68 42.39 0.2

F-ConvNet [Wang’19] LiDAR + RGB 52.37 45.61 41.49 0.47

VoxelNet [Zhou,’18] LiDAR 39.48 33.69 31.5 0.5

PointRCNN [Shi,’19] LiDAR 49.43 41.78 38.63 0.1

SECOND [Yan,’18] LiDAR 51.07 42.56 37.29 0.05

Complex YOLO [Simon,’18] LiDAR 56.66 49.01 45.66 0.02

MMF [Liang,’19] LiDAR + RGB - - - 0.08

Proposed LiDAR 50.92 43.48 41.45 0.028

 70

Table 7. Results comparison on the KITTI test BEV detection benchmark

Method Modality

Cyclist (BEV)

FPS

Easy Mod. Hard

MV3D [Chen,’17] LiDAR + RGB - - - 0.36

AVOD [Ku,’18] LiDAR + RGB 68.06 57.48 50.77 0.1

Fast PointRCNN [Chen’19] LiDAR - - - 0.065

PIXOR [Yang’18] LiDAR - - - 0.1

HDNET [Yang’18] LiDAR + Map - - - 0.05

RoarNet [Shin’18] LiDAR + RGB - - - 0.1

IPOD [Yang’18] LiDAR + RGB 56.92 44.68 42.39 0.2

F-ConvNet [Wang’19] LiDAR + RGB 82.59 68.62 60.62 0.47

VoxelNet [Zhou,’18] LiDAR 66.70 54.76 50.55 0.5

PointRCNN [Shi,’19] LiDAR 81.52 66.77 60.78 0.1

SECOND [Yan,’18] LiDAR 73.67 56.04 48.78 0.05

Complex YOLO [Simon,’18] LiDAR 66.70 54.76 50.55 0.02

MMF [Liang,’19] LiDAR + RGB - - - 0.08

Proposed LiDAR 78.51 62.22 55.81 0.028

 71

Table 8. Results comparison on the KITTI test 3D detection benchmark

Method Modality

Cyclist (3D)

FPS

Easy Mod. Hard

MV3D [Chen,’17] LiDAR + RGB - - - 0.36

AVOD [Ku,’18] LiDAR + RGB 64.00 52.18 46.61 0.1

Fast PointRCNN [Chen’19] LiDAR - - - 0.065

PIXOR [Yang’18] LiDAR - - - 0.1

HDNET [Yang’18] LiDAR + Map - - - 0.05

RoarNet [Shin’18] LiDAR + RGB - - - 0.1

IPOD [Yang’18] LiDAR + RGB 71.40 53.46 48.34 0.2

F-ConvNet [Wang’19] LiDAR + RGB 79.58 64.68 57.03 0.47

VoxelNet [Zhou,’18] LiDAR 61.22 48.36 44.37 0.5

PointRCNN [Shi,’19] LiDAR 73.93 59.60 53.59 0.1

SECOND [Yan,’18] LiDAR 70.51 53.85 46.90 0.05

Complex YOLO [Simon,’18] LiDAR 68.17 58.32 54.30 0.02

MMF [Liang,’19] LiDAR + RGB - - - 0.08

Proposed LiDAR 74.95 59.01 52.85 0.028

 72

6.2. Qualitative Analysis

The qualitative results are shown in Figure 6.3 and 6.4. Despite we trained

our model only on LiDAR point clouds, we visualize the 3D predictions on

BEV and image perspective. Figure 6.3 shows the vehicle prediction results. As

can be seen in the figure, the prediction of the vehicle is particularly accurate

compared to pedestrian and cyclist. In most cases, prediction about the object

is accurate about the size and orientation.

In particular, the prediction of the vehicle is very accurate. Even when several

vehicles are parked and several of them are occluded, it predicts well with

looking at parts of their shapes. In addition, it finds the vehicle well even when

it is relatively far away. This is because, unlike pedestrians and cyclists, the size

of the car is larger, so the number of point clouds is higher than the pedestrian

and cyclist even when it is far away. The detector also finds pedestrians and

cyclists well. Especially when two pedestrians are close together, the detector

predicts they as two pedestrian not one person or cyclist. However, if two close

pedestrians are farther away, it can be predicted incorrectly, as shown in Figure

6.4.

As shown in Figure 6.4, however, there are some failures in some cases, which

includes false negative and false positive. For false negative, the prediction may

be missed if there are few points on the object, which is the case that the object

is partially occluded or far away. Especially, this phenomenon is easy to occur

 73

about pedestrian and cyclist.

 In Figure 6.4 (a), the detector predicts two pedestrian as a cyclist. Since the

two pedestrians are close to each other and far away from the ego-vehicle, it

can be seen of as the size of a cyclist from the viewpoint of the detector. As

shown in (b) of Figure 6.4, the detector does not find a pedestrian that is far

away, and it mis-predicts a pedestrian as cyclist. When the cyclist is far away,

there is not enough point cloud, so it is hard to find the object or predict object's

label correctly. As shown in (c) of Figure 6.4, if the pedestrian is close to the

vehicle, the number of points belong to pedestrian are reduced because it is

occluded. This makes detector to miss the pedestrian.

The object detector based on the neural network recognizes and judges

objects through the distribution of point clouds. Because pedestrians or

bicyclists have the number of points significantly less than that of the vehicle

object, there is a high possibility that recognition may fail or be confused with

other similar objects.

 74

Fi
gu

re
 6

.3
. Q

ua
li

ta
ti

ve
 a

na
ly

si
s

of
 K

IT
T

I
re

su
lt

s.
 W

e
sh

ow
 th

e
3D

 b
ou

nd
in

g
bo

xe
s

pr
oj

ec
te

d
on

to
 th

e
im

ag
e

(t
op

),
 a

s
w

el
l a

s
3D

po
in

t c
lo

ud
 v

ie
w

 (
bo

tto
m

).
 T

he
 p

re
di

ct
ed

 b
ox

es
 f

or
 c

ar
 a

re
 ‘

pu
rp

le
’,

 f
or

 p
ed

es
tr

ia
n

ar
e

‘b
lu

e’
, f

or
 c

yc
lis

t a
re

 ‘
or

an
ge

’.

 75

Fi
gu

re
 6

.4
. F

ai
lu

re
 c

as
es

 o
n

K
IT

T
I.

 T
he

 p
re

di
ct

ed
 b

ou
nd

in
g

bo
xe

s
ar

e
sh

ow
n

in
 3

D
 p

oi
nt

 c
lo

ud
 (

to
p)

 a
nd

 th
ey

 a
re

pr
oj

ec
te

d
on

to
 R

G
B

 im
ag

e
(b

ot
to

m
).

 76

6.3. Additional Training

The KITTI dataset was obtained in the metropolitan area of Karlsruhe,

Germany and the driving course is shown in Figure 6.5 [Geiger’13]. A driving

environment consists of city, residential, campus, road, and others. KITTI

dataset provides several labels, which are car, van, truck, pedestrian, person

(sitting), cyclist, and tram. car and pedestrian occupy most of the dataset. The

KITTI dataset has been used in many studies in the past few years and is now

famous in the field of autonomous driving object detection. Many studies have

validated the performance of their approaches by using this dataset. However,

the KITTI dataset has limitations that it cannot cover all objects can show in

other countries or region.

 For example, there are some differences in the road conditions between

Karlsruhe in Germany and Seoul in Korea. First of all, in the case of cyclists

appearing in the KITTI dataset, they often appear on campus or with people,

and there are no complex situations where the cyclist is moving between

vehicles.

However, in Korea, where delivery and public transport environments are

well established, it is very common to encounter buses or motorcyclists on the

road. In the case of the bus, it is impossible to train bus because KITTI dataset

does not offer data about bus. A method that trains bus by scaling the car was

 77

considered, but this method has limitations because the appearance of a general

car and a bus is very different.

 With the same reason, it is impossible to train motorcyclists. Since supervised

learning relies heavily on the dataset, to train objects that do not exist in the

dataset is a methodological problem. Although the KITTI dataset has been used

in broad studies, there are some shortages to apply to the Korean road

environment.

Figure 6.5. Recording zone of KITTI dataset [Geiger’13].

 78

6.3.1. Additional data acquisition

The motorcyclist has a shape similar to that of cyclist. As shown in Figure

6.8, the network trained about the cyclist also detects the motorcyclist. However,

it fails to detect the bus. Usually, Bus is larger and it has a shape closer to the

cuboid box than a passenger car and van, so it can be recognized as a shape

near the edge of the wall.

To solve the problem of bus detection, we need to train the bus. In order to

acquire bus data, the KITTI dataset does not offer, driving data was collected

through our test vehicle and additional data was obtained from it. Note, as

shown in Figure 6.6, our data-collecting vehicle is equipped with a 32 channel

LiDAR in front of the vehicle, which is different from the KITTI data

acquisition vehicle that used 64 channel LiDAR mounted on the roof. While

driving, we encountered many cars and buses, their point cloud data were stored

in the form of a bag file of the robot operating system (ROS) in real-time.

Lidar
: RS-32

(Robosesne, Inc.)

1.45m

Figure 6.6. Test vehicle and sensor configuration

 79

 To make an annotation on objects that appear in every frame is handcraft

jobs. Two approaches could be considered at the making annotation stage: 1)

To annotate all existing objects including bus (car, pedestrian, cyclist), or 2) to

annotate the only bus. The second method was chosen because labeling ground

truth information for all objects in the frame, including the bus, takes a lot of

time and labor. The ground truth extraction and build database augmentation

mentioned earlier was used in this process.

 We collect as many cases as possible such as partially occluded, observed in

various angles, and create an annotation for the center, bounding box, and

heading angle information on the bus. After annotation, we crop the point cloud

related to the bus and move their center position to the origin and the heading

angle to zero through translational and rotational transformation. Cropped and

transformed point cloud is saved in the bus database, thus the database consists

of bus data with a center of origin and zero heading angle. Figure 6.7 shows

examples of saved bus data. At the training process, some buses randomly

selected from the database and then scattered onto the scene with randomly

applying translational and rotational transformation. In this way, the bus is

added to the random scattering augmentation mentioned above and learned.

 80

Figure 6.7. Bus data extraction example

 81

6.3.2. Qualitative Analysis

Qualitative results are described in this chapter. Because the KITTI dataset

does not serve bus data, we extracted the point cloud data about the bus from

our driving data. We train the network by adding random scattering

augmentation about the bus on training. As shown in Figure 6.8, two networks

(a model trained including bus and a model only trained about the car) are

compared on the same driving data. After the network is trained about the bus,

it is able to find the bus it could not find before training the bus. The detection

results on the various situations after training about the bus are shown in Figure

6.9. As shown in the figure, after learning about the bus, the network finds a

parked bus or an approaching bus in the opposite lane.

However, the fluctuate prediction about the bus's size occurs sometimes. As

shown in Figure 6.10 (a), the prediction of the size of the bus changed in the

case that the bus is occluded at first and gradually appeared by approaching

closer. At first, the size of the bus is predicted to be small when the bus is

partially occluded, and if the bus is gradually revealed, the size prediction of

the bus gradually changes to be large. By training the bus, it seems that the

accuracy of the size prediction about cars decreased. This means that the

variance of the prediction for the size of the passenger car was increased

compared to the case where only the passenger car was trained. In addition, as

shown in Figure 6.10 (b), there are some false positive cases where the wall or

the object having a similar shape is mispredicted as a bus. Because, unlike a car

or a van, the bus's height is very high, and it has a shape closer to the cuboid

than a car when it viewed in the rear and side view.

 82

(a) After training about the bus, the network detect bus on the right side.

(b) After training about the bus, the network detects parked buses

Figure 6.8. The detection results after training about the bus. The detection

results are shown as 3D bounding boxes on the point cloud view. The

predicted boxes for car are ‘pink’, for bus are ‘red’, for cyclist are ‘orange’

 83

Fi
gu

re
 6

.9
. Q

ua
li

ta
ti

ve
 a

na
ly

si
s

of
 a

dd
it

io
na

l t
ra

in
in

g
re

su
lts

 o
n

re
al

-t
im

e
te

st
. W

e
sh

ow
 th

e
3D

 b
ou

nd
in

g
bo

xe
s

on
 th

e

po
in

t c
lo

ud
 v

ie
w

. T
he

 p
re

di
ct

ed
 b

ox
es

 f
or

 c
ar

 a
re

 ‘
pi

nk
’,

 f
or

 b
us

 a
re

 ‘
re

d’
, f

or
 c

yc
lis

t a
re

 ‘
or

an
ge

’

 84

(a
)

Si
ze

 p
re

di
ct

io
n

ch
an

ge
 a

cc
or

di
ng

 to
 o

ve
r

tim
e

(b
)

T
he

 w
ro

ng
-p

re
di

ct
io

n
ca

se
s

of
 n

on
-b

us
 o

bj
ec

ts
 a

s
bu

se
s

Fi
gu

re
 6

.1
0.

 F
ai

lu
re

 c
as

es
 o

n
re

al
-t

im
e

te
st

 w
it

h
ad

di
tio

na
l t

ra
in

in
g.

 I
t s

ho
w

s
pr

ed
ic

te
d

bo
xe

s
fo

r
ca

r
(p

in
k)

, b
us

 (
re

d)
,

un
kn

ow
n

ob
je

ct
 (

gr
ee

n)
.

 85

Chapter 7 Performance Evaluation

In this chapter, we introduce average precision (AP), which is the most

widely used evaluation metric in the object detection field, and discuss its

limitations to be used as an effective evaluation metric of practical object

detection performance. Furthermore, we propose a new metric in measuring the

practical performance of the perception module by considering detection

priority and detection continuity.

7.1. Current Evaluation Metrics

Average precision (AP) has been a popular metric for measuring the accuracy

used in the object detection field. Calculate recall and precision for each frame

and sort the detection results for total frames in order of high confidence.

Precision means how accurate are the predictions, and recall represents how

good the detector finds all the positives.

detections
Precision

Whole detections

detected
Recall

Total number of

TP TRUE

TP FP

TP TRUE

TP FN TRUE

 


 


 (5.4)

 86

Mathematical definitions of precision and recall are shown in equation 5.4.

As shown in Table 8, there are four cases in object detection results, which are

true positive, true negative, false positive and false negative. Because positive,

and negative means object we want to find, object we are not interested in

respectively, true positive denotes the case we correctly find the object we want

to find. Reversely, true negative is a case we do not find what we want to find.

False-negative and false positive are can be defined in the same manner. In the

case of true positive, the success of detection is determined by the Intersection

of union (IoU). If IoU between object and prediction is larger than the threshold,

the prediction is regarded as a success.

Table 9. Four cases of object detection

Actual

Positive Negative

Prediction

Positive True Positive False Positive

Negative False Negative True Negative

 87

7.2. Limitations of Evaluation Metrics

The object classification and detection fields have been actively researched

for the last few years, and the performance comparison of each network has

been constantly performed. In order to compare performance between

algorithms, there should be a reference dataset. PASCAL VOC and MS’s

COCO datasets [Lin,’14] have been used as a reference dataset in the

performance evaluation of the aforementioned research area, and mAP (Mean

Average Precision) has been broadly used as a representative performance

index to present the network’s performance. In the object classification and

detection studies using the LiDAR point cloud, many researchers use KITTI

benchmark as a standard dataset and mAP as a performance index to show the

performance of the detection networks they proposed. It looks as a natural flow

as the dimension of object detection increases from 2D to 3D. However, there

is a question whether the AP is a suitable performance index in 3D object

detection as it does in 2D object detection.

7.2.1. Detection Continuity

An autonomous driving vehicle should react to its surroundings in real-time,

so it detects objects every single frame. Because actual driving is a sequence

consists of frames, the detection results has relation previous frame’s result.

From this point of view, AP has a limitation that it focuses only on how many

objects are detected for the entire dataset. First, there is no meaningful

 88

relationship between the previous scene and current scene when calculate the

AP using KITTI dataset because the dataset scenes are randomly shuffled.

Contrary to the way of calculation AP using KITTI dataset, every scene has a

relation with its previous scene in actual real-time autonomous driving.

To ensure safe driving, it is necessary to keep detect objects continuously in

the actual driving because detection fail may lead to traffic accident. Figure 7.1

shows the detection results of two detectors over time. Detector A detected

more objects for both frames than detector B. However, the detection is not

continuously performed and the object detected in time k is missed at time k+1.

On the other hand, in the case of detector B, the number of detected objects is

less than A, but it shows continuity for the detected objects. From the AP's point

of view, detector A is considered a better detector than detector B because it

succeeded in detecting more objects for the entire frame. However, from an

actual driving perspective, it is important to maintain object detection around

the vehicle.

Figure 7.1. Object detection continuity

 89

7.2.2. Detection Priority

 Basically, recall and precision have a trade-off relation and they include all

objects detection results in the current scene. However, from the point of view

of autonomous driving control and planning, if the object is far from the subject

vehicle or not within the drivable area of the subject vehicle, the detection result

of the object becomes less important or does not matter at all.

 In the respect of self-driving control and planning, the performance of the

perception module is enough if it can detect all objects in the ROI even if it

does not detect the objects outside the ROI. In other words, if all objects

outside the ROI are detected but cannot detect a significant object in the ROI

(for example, the vehicle in front of the subject vehicle in highway or the

approaching vehicle from right-behind in case of right lane change), then the

detector should be considered to perform worse than the reverse case.

In an aspect of mAP, it is a better detector to detect more objects regardless

of the importance of the objects. This means that mAP has a blind point that it

does not sufficiently consider the detector’s performance in the practical point

of view.

 90

Figure 7.2. Detection priority of two cases

In actual driving, it is not a big problem even if you cannot find the object on

the opposite lane. Rather, it is serious that I cannot find vehicles near the subject

vehicle. It does not show how well the scene-to-scene detection continues. As

such, the AP does not consider detection priority and detection continuity.

Figure 7.2 shows two object detectors. Detector A finds more objects than

detector B, but it finds only half of the objects in the lane where ego vehicle

exists. On the other hand, even though detector B finds no objects on opposite

lanes, it finds all objects around the ego vehicle. In the actual driving situation,

it is more important to find objects existing in the lanes around the ego vehicle

than the other lane. The behaviors and existence of the objects around subject

vehicles affect the ego vehicle's motion planning. For this reason, it is not

important to simply find many objects in real driving, but it is more important

to detect objects in and around the region of interest (ROI). Contrary to the

calculation manner of AP on the object detection field, detection priority is

considered in actual driving.

 91

7.3. Criteria for Performance Index

In defining the performance index, criteria for determining whether or not a

detector has found an object for an object should be established first. This can

be defined through the Euclidean distance from the center position of the object

to the detection position, but this has the disadvantage that the size and heading

angle of the object cannot be considered. If only the distance is considered, even

if the heading angle is detected in the opposite direction, the result is the same,

so only the irrational result is obtained. Also, if the size of the object is small

and large, the results are different even if they have the same Euclidean

distance. Therefore, the size, heading angle, and center distance of the object

should be considered as indicators for determining whether the detector has

found the object. IoU is very suitable as an index of object detection

correspondence that satisfies all three.

Figure 7.3. Object detection and failure

IoU = 0.9 IoU = 0.6 IoU = 0.3Polygon
Overlap

Miss

 92

The KITTI benchmark is based on the IoU 0.7, but it can be regarded as a

very strict standard for actual driving. In actual driving, a slight position error

does not lead to a critical issue such as car accident. Nevertheless, the KITTI

benchmark is set to a high standard of IoU 0.7, which is more strict because it

considers height in the 3D detection. In fact, the criterion in the object detection

field using RGB image is set to IoU 0.5 [Annotation, annotation, annotation,

annotation, annotation]. Based on KITTI dataset , some researches shows the

performance of their approaches by using IoU 0.5 as well as 0.7. Therefore, in

a bird's eye view that does not consider height, the indicator IoU 0.5 is relatively

reasonable, and it is assumed that detection failure occurs when IoU is lower

than 0.5, and detection success when it is higher than 0.5. It is also regarded

that object detection is successful even when it is found as an unknown object

by Polygon.

In addition, when the detector detects the location where the object does not

exist, it is a false positive and is deducted.

Figure 7.4. Example of false positive

 93

In the process of object tracking, the detector continues tracking without

missing the object. In this process, if the IoU exceeds 0.5, it is regarded as

detection failure. Also, if an object is missed during the tracking process, it is

considered a detection failure. However, if detection is detected as an unknown

object through polygons while detection tracking is broken, it is considered that

tracking is continuously performed.

Figure 7.5. Continuous object detection

Also, it is necessary to define the detection priority. Missing an object at a

short distance is a more critical miss than missing an object at a distance.

Therefore, if a short-range object is missed in the process of calculating

performance, more points should be deducted. That is, in the case of missing

an object, the importance of missing the object is inversely proportional to the

distance.

 94

Figure 7.6. Detection priority

Finally, the closer the detection result is to the ground truth, the closer the

result is to 1. The following equation is a performance index that satisfies the

above criteria, and the vehicle test is verified through this performance index.

1

1

1

1

1
1

1

j

j

N
j j j

i i ijN
i i

N
j

j
i i

m fp ids

wMOTA
N











 
    

  
 
 
 





 (5.5)

 95

Chapter 8 Vehicle Tests based

Performance Evaluation

In this chapter, we introduce average precision (AP), which is the most

widely used evaluation index in the object detection field, and discuss its

limitations to be used as a practical evaluation metric of practical object

detection performance. Furthermore, we propose a new metric in measuring the

8.1. Configuration of Vehicle Tests

Industrial
Computer
: Nuvo-6108GC
(Neousys, Inc.)

Lidar
: RS-32
(Robosesne, Inc.)

GPU
: GTX-1080ti
(NVIDIA, Inc.)

Figure 8.1. Test vehicle and Experimental setup

 96

The above figure shows a test vehicle which is used in this study. The test

vehicle is a B-segment SUV model of KIA motors (NIRO-hybrid). The vehicle

tests have been conducted at the urban and inner circular road in Seoul National

University, Korea. The network used in this dissertation was trained with point

cloud data from the KITTI dataset, and the KITTI dataset provides point cloud

gathered from Velodyne's HDL-64E products. 32 channel LiDAR was used in

real vehicle test, and the product is RS-32 from Robosense. Since the actual

driving test uses 32-channel LiDAR and off-line learning is done with 64-

channel LiDAR, it is worth noting how much performance is achieved when

using a LiDAR product with fewer channels than learning.

(a) KITTI data acquisition vehicle

(b) Test Vehicle used in this dissertation

Figure 8.2. LiDAR mount positions of KITT and test vehicle

 97

For acceleration of the network with cuda, GTX-1080ti GPU from NVIDIA

is used. This is the same product used in most of the studies ranked on the

KITTI benchmark. NIRO-hybrid of KIA motors used in this experiment has

different specifications with Passat of Volkswagen, the vehicle used in

acquiring the KITTI dataset. Besides, in the case of the KITTI dataset, LiDAR

is installed on the roof of the vehicle, while the 32-channel LiDAR is installed

on the front bumper of the test vehicle. The specifications of the two vehicles

and the sensors are shown in Table 9.

Table 10. Comparison of LiDAR sensors used in training and test

Specifications Training Test

Manufacturer Velodyne Robosense

Model HDL-64E RS-32

Channel 64 32

Field of view (Horizontal) 360 ° 360 °

Field of view (Vertical)
26.9°

(+2.0° to -24.9°)

40°

 (+15.0° to -25°)

Angular resolution (Horizontal) 0.09° to 0.18° 0.09° to 0.36°

Angular resolution (Vertical) 0.4° Min 0.33°

Field of view update 10-20Hz 5-20Hz

 98

Figure 8.3 shows the test driving course. The course is an urban driving

environment starting from the intersection of Seoul National University Station.

This leads to hills and downhill roads, leading to the main gate of Seoul

National University. It is a course that leads to the back gate toward

Nakseongdae Station after passing through the circular road on the campus of

Seoul National University. Because passenger cars and city buses enter Seoul

National University, we can face various buses and vehicles while driving

through the inner ring road. The total driving distance is about 7.1km.

 99

Figure 8.3. Driving course

 100

8.2. Qualitative Analysis

The proposed perception model and reference object detector are compared

through Robot operating system (ROS) bag file achieved by test driving. Figure

8.4 shows the effect of object tracking over time. As shown in the figure, the

proposed method detects cars and motorcyclists and keeps track of them over

time.

On the other hand, in the reference model, both the car and the motorcyclist

were detected in time T, but the motorcyclist is missed in T + 1. In the next

frame, which time T+2, the reference detector missed the car as well as the

motorcyclist.

Because of the methodological characteristics of the object detector, the

object detection result may vary depending on the confidence level even if

objects have a similar shape. Thus, object detection can not be guaranteed even

if it is found in the previous frame, the object may be missed in the next frame.

The tracking function compensates the frames where object detection is

failed by maintaining the detection result. If a tracking function exists, even if

the measurement is not received, the prediction is performed through a Kalman

filter for a certain frame so that the object can be maintained without missing.

If measurement information, which is detection result from the detector, is

renewed during the tracking process, object tracking can be continuously

performed without detection discontinuity.

 101

Fi

gu
re

 8
.4

. Q
ua

li
ta

ti
ve

 a
na

ly
si

s
of

 o
bj

ec
t t

ra
ck

in
g

ef
fe

ct

 102

Figure 8.5 shows a scene of experimental results of the proposed approach

and the reference detector when the bus is not trained. In this scene, the effect

of unknown object detection through non-ground point extraction and

clustering can be seen.

As shown in the left of the figure, the proposed approach finds points that

are considered to belong to obstacles on the road by using ground extraction.

after that, boundary polygons of unknown objects are obtained through

clustering using these non-ground points.

In the figure, in addition to the bus, other unknown objects or areas where

ego vehicle should detour such as the flower beds, trees, and the poles are exist.

On the other hand, in the case of the reference detector, it was not able to

detect a bus because it is not trained about the bus. Unlike a car or van, the bus

has a very large size and a shape closer to a cuboid box, so it is very difficult to

recognize the bus as a car or van. Even if, the bus is luckily recognized as a

vehicle, it will fail by losing detection continuity for the reason mentioned

above because it lacks the tracking function.

 103

(a) Does not detect unknown object

(b) Detect unknown object as polygon

Figure 8.5. Qualitative analysis of unknown object detection

Both tracking and unknown object detection appear simultaneously in Figure

8.6. For pedestrians, the reference detector finds one at time T, and detects all

three pedestrians in the next frame. However, it fails to secure detection

continuity by loosing one pedestrian again at T + 2. On the contrary, in the case

of the proposed approach, the detection was continuously maintained for the

first two frames by keeping detecting two pedestrians, and the remaining one is

additionally detected in time T + 2.

In the figure, a bus on the left approaches over time, and the distance between

 104

the bus and ego vehicle is gradually closer.

 As mentioned above, because the reference detector is not trained about the

bus, it was not detected even though the bus is close.

The proposed algorithm is also not trained about the bus. On the other hand,

the method proposed in this paper detects the bus as an unknown object and

finds boundary information in the form of a polygon.

 The poles are lined up on either side of the road in this driving course.

Unlike the reference detector, the perception algorithm in this paper also finds

them. Furthermore, the current road is an uphill road, and if a point belonging

to the ground is incorrectly filtered as a non-ground point in the process of

ground extraction, it may be detected as an unknown object, and false positives

may be generated. But, as shown in the figure, there is no false-positive result

because non-ground extraction goes well even on the slope.

 105

Figure 8.6. Qualitative analysis of test driving

8.3. Quantitative Analysis

Test results are analyzed through the weighted multi-object tracking

accuracy defined above. The performance comparison of the proposed method

and reference detector is calculated based on wMOTA. Both networks are

trained on cars, pedestrians, and cyclists. Object detection is considered

successful if they find the object and classify them as anything among the three

categories. In case that they classify it as an unknown object, detection is also

considered successful. In addition, the effect of false negative is included in the

score to reflect the role of continuous detection. The more false negatives occur,

 106

the greater the deduction

Table 11 shows a quantitative comparison of the two networks. The proposed

method scored higher than the reference model when it comes to wMOTA. This

is a penalty for missing objects in the middle because the reference model lacks

the tracking function, while the proposed method can maintain detection

without detection missing between frames even when detection measurement

information is not renewed through tracking. Also, in the case of buses, both

models were not trained. In the reference model, not only the bus was not

detected, but sometimes it is limited to a few frames when it is detected as a car.

On the other hand, in the proposed model, the bus can be detected as unknown

object detection, so it scored higher than the reference model in wMOTA.

 For the maximum detection range, the reference model has a longer detection

range, and it is related to the tracking function. When the object is tracked, the

maximum detection distance may be shorter than the reference model that

detects immediately because the object is not immediately assigned an ID when

an object is detected, and an ID is assigned when more than a certain frame is

continuously detected.

Table 11. Comparison of approaches based on proposed performance metric

Specifications Proposed Method Ref Detector

wMOTA 0.9311 0.8508

Maximum detection range 62 m 66 m

 107

Chapter 9 Conclusions and Future

Works

This dissertation has proposed a LiDAR-based autnomous driving

perception module based on a neural network method and point cloud

clustering method. The proposed module is a kind of hybrid object detector

and tracker using neural network and point clustering simultaneously. In

addition, a new performance index was proposed by supplementing the

unpractical part of the performance index of the existing object detection, and

the vehicle test result was validated via this index.

Most object detection studies using the existing lidar point cloud have

utilized supervised learning techniques. This has a methodological limitation

that objects not learned in the learning process cannot be found in the actual

infer process because the network learns from the data set. Also, since these

datasets have different characteristics for each country and region, it is

impossible to prepare and learn appropriate datasets for all situations.

 In addition, in the actual driving process, there are many obstacles that have

not been learned on the road, so it is impossible to cope with infinite cases with

the learning method through the dataset. In other words, we needed to overcome

the data-dependent limitations of supervised learning.

Therefore, in this dissertation, through the non-ground point extraction, the

points considered as objects can be selected and clustered to find the unknown

 108

objects in the form of unknown objects. In addition, continuous object detection

was performed through clustering and object tracking for objects that could be

missed during the object detection process. Through these methods, we have

succeeded in detecting various objects that can be encountered in actual driving

than the existing object detector.

 In addition, the items evaluating the performance of the existing object

detector did not consider the detection priority and continuity, so they could not

show practical performance. In this study, we proposed a new performance

index considering these, and the performance of the perception module of this

study was verified through this performance index and vehicle test.

For the future works, More rigorous performance index can be proposed by

selecting the ROI that should be more important in the driving process. In

addition, it will be possible to examine how much the performance index can

guarantee the reliability of actual autonomous driving through interworking

with control and planning modules.

 109

Bibliography

LIU, W., ANGUELOV, D., ERHAN, D., SZEGEDY, C., REED, S., FU, C.-Y., BERG,

A. C. 2016. SSD: single shot multibox detector. European conferecne on

computer Vision (ECCV), 21-37.

GIRSHICK, R, B. 2015. Fast R-CNN. International conference on computer vision

(ICCV), 1440-1448.

REN, S., HE, K., GIRSHICK, R, B. & SUN, J. 2015, Faster R-CNN: towards real-time

object detection with region proposal networks. Neural information

processing systems (NIPS), 91-99.

REDMON, J., DIVVALA, S., GIRSHICK, R. & FARHADI, A. 2015. You only look

once: Unified, real-time object detection, Computer vision and pattern

recognition (CVPR), IEEE, 779-788

REDMON, J., FARHADI, A. 2016. YOLO9000: better, faster, stronger. Computer

vision and pattern recognition (CVPR), IEEE, 6517-6525

CHEN, X., MA, H., WAN, J., LI, B., XIA, T. 2017, Multi-view 3d object detection

network for autonomous driving, Computer vision and pattern recognition

(CVPR), IEEE, 1, 2, 5, 6.

KU, J., MOZILFIAN, M., LEE, J., HARAKEH, A., WASLANDER, S. 2018, Joint 3d

proposal generation and object detection from view aggregation, International

conference on intelligent robots and systems (IROS), IEEE/RSJ, 1, 2, 5, 6.

LI, B., ZHANG, T., XIA, T., 2016, Vehicle detection from 3d lidar using fully

convolutional network, Computer vision and pattern recognition (CVPR),

IEEE, 2.

SIMON, M., MILZ, S., AMENDE, K., GROSS, H. 2018, Complex-YOLO: Real-time

3d object detection on point clouds, arXiv:1803.06199, 1, 2, 8.

YANG, B., LUO, W., URTASUN, R. 2018, PIXOR: Real-time 3d object detection

from point clouds, Computer vision and pattern recognition (CVPR), IEEE, 1,

2, 6, 8.

 110

ENGELCKE, M., RAO, D., WANG, D., TONG, C., POSNER, I., 2017, Vote3deep:

Fast object detection in 3d poin tclouds using efficient convolutional neural

networks, International conference on robotics and automation (ICRA), IEEE,

2.

QI, C., SU, H., MO, K., GUIBAS, L. 2017, Pointnet: Deep learning on point sets for

3d classification and segmentation, Computer vision and pattern recognition

(CVPR), IEEE, 2, 3.

ZHOU, Y., TUZEL, O. 2018, Voxelnet: End-to-end learning for point cloud based 3d

object detection, Computer vision and pattern recognition (CVPR), IEEE, 1-

8.

QI, C., LIU, W., WU, C., SU, H., GUIBAS, L. 2018, Frustum pointnets for 3d object

detection from rgb-d data, Computer vision and pattern recognition (CVPR),

IEEE

LEHNER, J., Nessler, B., Hochreiter, S., 2019, Patch refinement - localized 3d object

detection, CoRR, abs/1910.04093.

SHI, S., WANG, X., LI, H., 2019, Pointrcnn: 3d object proposal generation and

detection from point cloud, Computer vision and pattern recognition (CVPR),

IEEE, 770-779.

TIPALDI, C., DEWAN, G., Burgard, W. 2016, Motion-based detection and tracking in

3d lidar scans, International conference on robotics and automation (ICRA),

IEEE, 4508-4513.

WENG, X., KITANI, K., 2019, A baseline for 3d multi-object tracking,

arXiv:1907.03961, 1-3.

WANG, Z., JIA, K. 2019, Frustum convnet: Sliding frustums to aggregate local point-

wise features for amodal 3d object detection, International conference on

intelligent robots and systems (IROS), IEEE/RSJ, 3-6.

CHEN, Y., LIU, S., SHEN, X., JIA, J. 2019, Fast point r-cnn, International conference

on computer vision (ICCV), IEEE, 2-6.

 111

YANG, Z., SUN, Y., LIU, S., SHEN, X., JIA, J. 2019, STD: sparse-to-dense 3d object

detector for point cloud, International conference on computer vision (ICCV),

IEEE, 2-8

SHI, S., WANG, Z., WANG, X., LI, H., 2019, Part-a^2 net: 3d part-aware and

aggregation neural network for object detection from point cloud,

arXiv:1907.03670, 2, 3.

LANG, A., VORA, S., CAESAR, H., ZHOU, L., YANG, J., BEIJBOM, O. 2019,

Pointpillars: Fast encoders for object detection from point clouds, Computer

vision and pattern recognition (CVPR), IEEE, 1-7.

YAN, Y., MAO, Y., LI, B. 2018, Second: Sparsely embedded convolutional detection,

18(10), 1, 2, 3, 5, 6, 7, 8.

LIN, T., GOYAL, P., GIRSHICK, R., HE, K., DOllAR, P, 2017, Focal Loss for Dense

Object Detection, , Computer vision and pattern recognition (CVPR), IEEE,

2.

REDMON, J., FARHADI, A., 2018, YOLOv3: An Incremental Imrpovement, 2, 4

IANDOLA, F., HAN, S., MOSKEWICZ, M., ASHRAF, K., DALLY, W., KEUTZER,

K., 2016, SqueezNet: AlexNet-level accuracy with 50x fewer parameters and

<0.5MB model size, 2

ALI, W., ABDELKARIM, S., ZIDAN, M., ZAHRAN, M., SALLAB, A. 2018, Yolo3d:

End-to-end real-time 3d oriented object bounding box detection from lidar

point cloud, European conference on computer vision (ECCV).

BELTRAN, J., GUINDL, C., MORENO, F. 2018, BirdNet: a 3d object detection

framework from lidar information, International conference on intelligent

transportation systems (ITSC).

IOFFE, S., SZEGEDY, C. 2015, Batch Normalization: Aceelrationg deep network

training by reducing internal covariate shift, arXiv:1502.03167.

CHU, P., CHO, S., SIM, S., KWAK, K., CHO, K. 2017, A Fast ground segmentation

method for 3d point cloud, Journal of information processing system (JIPS).

 112

ZERMAS, D., IZZAT, I., PAPANIKOLOPOULOS, N. 2017, Fast segmentation of 3d

point clouds: a paradigm on lidar data for autonmous vehicle applications,

International conference on robotics and automation (ICRA), IEEE.

CHO, S., KIM, J., IKRAM, W., CHO, K., JEONG, Y., UM, K., SIM, S. 2014, Sloped

terrain segmentation for autonomous drive using sparse 3D point cloud, Sci

World, 1-10.

ZHANG, M., MPRRIS, DD., FU, R., 2015, Ground segmentation based on loopy belief

propagation for sparse 3d point clouds, International conference on 3D vision,

615-622.

ASVADI, A., PREMEBIDA, C., PEIXOTO, P., NUNES, U. 2016, 3D lidar-based

static and moving obstacle detection in driving environments: an approach

based on voxels and multi-region ground planes, robotics and autonomoys

system, Elsevier, 299-311.

MOOSMANN, F., PINK, O., STILLER, C. 2009, Segmentation of 3D lidar data in

non-flat urban environments using a local convexity criterion, Intelligent

vehicle symposium, IEEE, 215-220.

VELAS, M., SPANEL, M., HRADIS, M., HEROUT, A., 2017, CNN for very fast

ground segmentation in velodyne lidar data, arXiv: 1709.02128.

CHOI, J., ULBRICH, S., LICHTE, B., MAURER, M., 2013, Multi-target tracking

using a 3d-lidar sensor for autonomous vehicles, Conference on intelligent

transportation systems, IEEE, 881-886.

DABBIRU, L., GOODIN, C., SCHERRER, N., CARRUTH, D. 2020, Lidar data

segmentation in off-road environment using convolutional neural network,

SAE world congress, IEEE.

WANG, H., LOU, X., CAI, Y., CHEN, L. 2018, A 64-line lidar-based road obstacle

sensing algorithm for intelligent vehicles, Scientific programming, Hindawi.

YOO, J., LEE, C., YANG, M., YOON, K. 2016, Online multi-object tracking via

structural contraint event aggregation, Computer vision and pattern

recognition (CVPR), IEEE.

 113

SHARMA, S., ANSARI, J., MURTHY, J., KRISHNA, K. 2018, Beyond Pixels:

leveraging geometry and shape cues for online multi-object tracking,

International conference on robotics and automation (ICRA), IEEE.

Kalman, R., 1960, A new approach to linear filtering and prediction problems, Journal

of basic engineering.

GEIGER, A., LENZ, P., STILLER, C., URTASUN, R. 2013, Vision meets robotics:

the kitti dataset, International journal of robotics research (IJRR),

32(11):1231-1237.

LIN, T., MAIRE, M., HAYS, B., PERONA, P., RAMANAN, D., DOLLAR, P.,

ZITNICK, C. 2014, Microsoft COCO: common objects in context, European

conferecne on computer Vision (ECCV), 2.

YANG, B., LIANG, M., URTASUN, R. 2018, HDNET: Exploting HD maps for 3d

object detection, Conference on robot learing (CoRL), 1, 6.

SHIN, K., KWON, Y., TOMIZUKA, M. 2018, Roarnet: A robust 3d object detection

based on region approximation refinement, arXiv: 1803.06199, 1, 2, 8.

YANG, Z., SUN, Y., LIU, S., SHEN, X., JIA, J. 2018, IPOD: intensive point-based

object detector for point cloud, arXiv: 1812.05276.

LIANG, M,, YANG, B., WANG, S., URTASN, R. 2018, Deep continuous

fusion for multi-sensor 3d object detection, European conferecne on

computer Vision (ECCV).

ROSIQUE, F., NAVARRO, P., FERNANDEZ, C. & PADILLA, A. 2019, A

systematic review of perception system and simnulators for

autonomous vehicles research, Sensors, vol. 19, no. 3, p. 648.

MEYER, G., LADDHA, A., KEE, E., VALLESPI-GONZALEZ, C.,

WELLIGNTON, C. 2019, Lasernet: An efficient probabilitic 3d object

detector for autonomous driving, Computer vision and pattern recognition

(CVPR), IEEE.

LIANG, M., Yang, B., CHEN, Y., HU, R., URTASUN, R., 2019, Multi-task multi

sensor fusion for 3d object detection, Computer vision and pattern recognition

(CVPR), IEEE.

 114

초 록

실시간 자율주행 인지 시스템을 위한
신경망 네트워크와 군집화 기반
미학습 물체 감지기 통합

최근 몇 년간, 센서 기술의 발전과 컴퓨터 공학 분야의 성과들로

인하여 자율주행 연구가 더욱 활발해지고 있다. 자율주행 시스템에

있어서 차량 주변 환경을 인식하는 것은 안전 및 신뢰성 있는

주행을 하기 위해 필요한 가장 중요한 기능이다. 자율주행 시스템은

크게 인지, 판단, 제어로 구성되어 있는데, 인지 모듈은 자율주행

차량이 경로를 설정하고 판단, 제어를 함에 앞서 주변 물체의

위치와 움직임을 파악해야하기 때문에 중요한 정보를 제공한다.

자율주행 인지 모듈은 주행 환경을 파악하기 위해 다양한 센서가

사용된다. 그 중에서도 LiDAR은 현재 많은 자율주행 연구에서 가장

널리 사용되는 센서 중 하나로, 물체의 거리 정보 획득에 있어서

매우 유용하다.

본 논문에서는 LiDAR에서 생성되는 포인트 클라우드 raw

데이터를 활용하여 장애물의 3D 정보를 파악하고 이들을 추적하는

인지 모듈을 제안한다. 인지 모듈의 전체 프레임워크는 크게 세

 115

단계로 구성된다. 1단계는 비지면 포인트 추정을 위한 마스크 생성,

2단계는 특징 추출 및 장애물 감지, 3단계는 장애물 추적으로

구성된다.

현재 대부분의 신경망 기반의 물체 탐지기는 지도학습을 통해

학습된다. 그러나 지도학습 기반 장애물 탐지기는 학습한 장애물을

찾는다는 방법론적 한계를 지니고 있다. 그러나 실제 주행

상황에서는 미처 학습하지 못한 물체를 마주하거나 심지어 학습한

물체도 놓칠 수 있다. 인지 모듈의 1단계에서 이러한 지도학습의

방법론적 한계에 대처하기 위해 포인트 클라우드를 일정한

간격으로 구성된 3D 복셀(voxel)로 분할하고, 이로부터 비접지

점들을 추출한 뒤 미지의 물체(Unknown object)를 탐지한다.

2단계에서는 각 복셀의 특성을 추출 및 학습하고 네트워크를

학습시킴으로써 객체 감지기를 구성한다. 마지막 3단계에서는 칼만

필터와 헝가리안 알고리즘을 활용한 다중 객체 탐지기를 제안한다.

이렇게 구성된 인지 모듈은 비지면 점들을 추출하여 학습하지 않은

물체에 대해서도 미지의 물체(Unknown object)로 감지하여

실시간으로 장애물 탐지기를 보완한다.

최근 라이다를 활용한 자율주행 용 객체 탐지기에 대한 연구가

활발히 진행되고 있으나 대부분의 연구들은 단일 프레임의 물체

인식에 대해 집중하여 정확도를 올리는 데 집중하고 있다. 그러나

이러한 연구는 감지 중요도와 프레임 간의 감지 연속성 등에 대한

고려가 되어있지 않다는 한계점이 존재한다. 본 논문에서는 실시간

성능을 얻기 위해 이러한 부분을 고려한 성능 지수를 제안하고,

실차 실험을 통해 제안한 인지 모듈을 테스트, 제안한 성능 지수를

 116

통해 평가하였다.

주요어: 자율 주행, 라이다 센서, 인공 신경망, 객체 감지, 다중 객체

추적

학 번: 2013-20687

	Chapter 1 Introduction
	1.1. Background and Motivation
	1.2. Overview and Previous Researches
	1.3. Thesis Objectives
	1.4. Thesis Outline

	Chapter 2 Overview of a Perception in Automated Driving
	Chapter 3 Object Detector
	3.1. Voxelization & Feature Extraction
	3.2. Backbone Network
	3.3. Detection Head & Loss Function Design
	3.4. Loss Function Design
	3.5. Data Augmentation
	3.6. Post Process

	Chapter 4 Non-Ground Point Clustering
	4.1. Previous Researches for Ground Removal
	4.2. Non-Ground Estimation using Voxelization
	4.3. Non-ground Object Segmentation
	4.3.1. Object Clustering
	4.3.2. Bounding Polygon

	Chapter 5 . Object Tracking
	5.1. State Prediction and Update
	5.2. Data Matching Association

	Chapter 6 Test result for KITTI dataset
	6.1. Quantitative Analysis
	6.2. Qualitative Analysis
	6.3. Additional Training
	6.3.1. Additional data acquisition
	6.3.2. Qualitative Analysis

	Chapter 7 Performance Evaluation
	7.1. Current Evaluation Metrics
	7.2. Limitations of Evaluation Metrics
	7.2.1. Detection Continuity
	7.2.2. Detection Priority

	7.3. Criteria for Performance Index

	Chapter 8 Vehicle Tests based Performance Evaluation
	8.1. Configuration of Vehicle Tests
	8.2. Qualitative Analysis
	8.3. Quantitative Analysis

	Chapter 9 Conclusions and Future Works
	Bibliography
	국문 초록

<startpage>10
Chapter 1 Introduction 1
 1.1. Background and Motivation 1
 1.2. Overview and Previous Researches 4
 1.3. Thesis Objectives 12
 1.4. Thesis Outline 14
Chapter 2 Overview of a Perception in Automated Driving 15
Chapter 3 Object Detector 18
 3.1. Voxelization & Feature Extraction 22
 3.2. Backbone Network 25
 3.3. Detection Head & Loss Function Design 28
 3.4. Loss Function Design 30
 3.5. Data Augmentation 33
 3.6. Post Process 39
Chapter 4 Non-Ground Point Clustering 42
 4.1. Previous Researches for Ground Removal 44
 4.2. Non-Ground Estimation using Voxelization 45
 4.3. Non-ground Object Segmentation 50
 4.3.1. Object Clustering 52
 4.3.2. Bounding Polygon 55
Chapter 5 . Object Tracking 57
 5.1. State Prediction and Update 58
 5.2. Data Matching Association 60
Chapter 6 Test result for KITTI dataset 62
 6.1. Quantitative Analysis 62
 6.2. Qualitative Analysis 72
 6.3. Additional Training 76
 6.3.1. Additional data acquisition 78
 6.3.2. Qualitative Analysis 81
Chapter 7 Performance Evaluation 85
 7.1. Current Evaluation Metrics 85
 7.2. Limitations of Evaluation Metrics 87
 7.2.1. Detection Continuity 87
 7.2.2. Detection Priority 89
 7.3. Criteria for Performance Index 91
Chapter 8 Vehicle Tests based Performance Evaluation 95
 8.1. Configuration of Vehicle Tests 95
 8.2. Qualitative Analysis 100
 8.3. Quantitative Analysis 105
Chapter 9 Conclusions and Future Works 107
Bibliography 109
국문 초록 114
</body>

