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Due to the development of the digital economy, personalized pricing is getting a

lot of attention from both companies and academia. Unlike the past, development

of data collection environment, advanced data analysis algorithms, and hardware

have made it easier to comprehend the preference of individual consumers, giving

the opportunity to companies to predict reservation price of customers and set per-

sonalized price to them. Companies are interested in personalized pricing to expand

their markets and gain more profit. However, it is impossible to accurately pre-

dict the reservation price, and it could cause adverse effects if incorrect prices are

presented to consumers due to inaccurate reservation price prediction.

Within this context, this study establishes an agent-based model to examine the

effect of the personalized pricing strategy according to the prediction accuracy of the

reservation price. First of all, the utility function of the consumer including the price

is constructed by collecting web data including price, consumer purchase decision,
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and behavior data. Next, the reservation price of the consumer is derived using the

constructed utility function. Finally, an agent-based model considering prediction

performance under a personalized pricing strategy is constructed and simulated.

The agent-based model is adopted since it has the ability to investigate the effects

of prediction performance, reflect customer heterogeneity and interactions under

personalized pricing situation.

This study offers some important insights into product diffusion under the per-

sonalized pricing strategy. First, it provides insights on companies to maximize prof-

its by analyzing the effects of inaccurate prediction situation. Second, it contributes

to the existing diffusion research by constructing an agent-based model that in-

cludes social influence about personalized prices that were not considered under the

existing uniform pricing strategy but should be considered under the personalized

pricing strategy. Third, it covers the entire process including data preprocessing,

utility function derivation, model establishment, and strategic analysis using actual

web data.

Keywords: Personalized pricing, Reservation price, Prediction performance, Diffu-

sion, Agent-based model
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Chapter 1

Introduction

With the advent of the digital age, new business opportunities are emerging. In

addition to the information provided by consumers, companies are able to collect

more data about consumers by tracing their digital footprint on the Internet (Koen,

2014). With these changes, advanced algorithms and hardware were developed to an-

alyze the collected data. In this context, companies are trying to gain insights about

consumers by analyzing the data and link it to their business. For example, web

analytics tools such as Google Analytics help firms categorize their customers and

increase marketing effectiveness through automatized reports about characteristics

of the users who visit their website and observed behavior within the site.

Given the advancement in customer data analysis, personalized pricing has re-

ceived great attention in both academia and practice. Personalized pricing is a pric-

ing strategy that charges different prices for the same product/service according to

the preferences of individual consumers. In the past, it was difficult to grasp the

preference of individual customers because of the difficulty in obtaining and ana-

lyzing data about consumers. Nowadays, with the development of data collection

and analysis, it becomes easy to draw the preference of individual customers which

makes personalized pricing possible. As an example, Uber charges their consumers
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by introducing a machine learning model that takes into account a number of vari-

ables such as the consumer’s boarding history, weather, holidays, time zone, and

traffic (Martin, 2019). Personalized pricing is an important topic that attracts at-

tention from companies, consumers, and policy researchers because it has multiple

effects like the potential to profit maximization, market size expansion, consumer

trust decline, and privacy infringement.

The key to this personalized pricing strategy is utilizing data to identify con-

sumers’ heterogeneous preferences for goods and services, enabling firms to identify

the highest price that an individual consumer would like to pay for the product and

present the price to the consumer. However, the problem is that it is impossible to

accurately predict the reservation price because of the limitations to the customer

data accessibility, analysis technique, and consumer privacy protection behavior.

Conventional approaches that deal with the effects of personalized pricing strat-

egy have been subject to mathematical models, not considering the interaction

of heterogeneous consumers under the personalized pricing strategy and assuming

reservation price is able to be identified under the availability of consumer data

(Chen, Choe, & Matsushima, 2020; Montes, Sand-Zantman, & Valletti, 2019). Con-

sumer interaction is one of the main factors that forms consumers’ perception which

is the biggest obstacle to the introduction of personalized pricing strategies. There-

fore, including the consumers’ interaction process is crucial to clearly understand the

ripple effects of the strategy. Moreover, it is important to consider the prediction

performance of reservation prices because companies have to consider the impact of

inaccurately determined reservation prices and take different actions based on it. For

example, in the case of inaccurate reservation price prediction, one of the possible
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strategies is pricing lower than the expected reservation price to prevent consumer

churn.

In this context, this study aims to analyze the adoption behavior of consumers

by creating an agent-based model for personalized pricing considering the inaccu-

rate reservation price prediction situation. Agent-based modeling is a methodology

that is widely used in the field of technology diffusion, which has the advantage of

considering the heterogeneity and interaction of consumers. In particular, consid-

ering the fact that personalized prices are formed from individual preferences, this

agent-based modeling method is suitable because it is able to model heterogeneous

customer characteristics and their interaction. The procedure for creating the agent-

based model of personalized pricing is as follows. First, the utility function of the

consumer which shows the relationship between price, customer behavior, and pur-

chase action is constructed by utilizing web data. Next, the reservation price of the

consumer is derived using the established utility function. At last, we create and sim-

ulate an agent-based model that includes a decision-making process for individual

consumers.

The contribution of this study is as follows. First, the utility function of the

consumer is constructed and the reservation price for the product is derived by using

real data generated on the web. Second, an agent-based model is constructed that

includes social influence about individual consumer prices that were not considered

in the existing uniform pricing strategy but should be considered in the personalized

pricing situation. Third, the concept of prediction performance is subdivided into

accuracy and precision to examine the impact and provided insight into the behavior

of companies to maximize profits.
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The remainder of this paper is organized as below. First, the concepts and

methodologies from the proposed approach are introduced in Chapter 2. Next, Chap-

ter 3 describes the proposed model to consider prediction performance in the per-

sonalized pricing strategy. Then, Chapter 4 explains a case study that utilizes real

e-commerce data. Chapter 5 provides the experiment design and simulation results.

Finally, in Chapter 6, the paper ends with discussions and conclusion implications

and limitations of the study.
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Chapter 2

Literature Review

2.1 Personalized pricing

While a wide variety of definitions of the term personalized pricing have been sug-

gested, this study uses the term personalized pricing as a price discrimination ap-

proach that price is decided according to the customers’ willingness to pay which

is the characteristics of the consumer (OECD, 2018). An indispensable condition

for this personalized pricing to take place is to employ data to measure consumer

preferences (OFT, 2013; Bourreau, De Streel, & Graef, 2017). Companies need to

have a system that collects and processes large amounts of data about consumers,

which is associated with the high feasibility of personalized pricing in areas where

data are easily gathered. In particular, in the case of online platforms, it is possi-

ble to collect data using their market power and use the collected data to increase

market power again to create an entry barrier (Schepp & Wambach, 2016). Due to

these characteristics, several attempts have been made for personalized pricing in

e-commerce websites (Hannak, Soeller, Lazer, Mislove, & Wilson, 2014; Rafi, 2017).

Personalized pricing has received great attention because the concept of it is

increasing revenue by finding consumers who can pay more than previous uniform

prices and setting higher prices to them (Elmachtoub, Gupta, & Hamilton, 2018;
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Shiller, 2014). In addition, this has an effect of expanding the market size by setting

customized prices to consumers who want to pay less than the existing uniform price

but are willing to pay more than the cost (OECD, 2016). However, personalized pric-

ing has not only positive aspects but also negative aspects. Consumers may have a

perception that the price given to them is unfair, which reduces the purchase proba-

bility and damage the brand image (Rayna, Darlington, & Striukova, 2015; Wagner

& Eidenmuller, 2019; Gerlick & Liozu, 2020). In addition, consumers can have side

effects such as acts of distorting data to prevent privacy infringement (Richards, Li-

aukonyte, & Streletskaya, 2016). Therefore, it is important for companies to forecast

the ripple effect of the strategy by determining the advantages and disadvantages of

personalized pricing strategy.

In this context, several studies have been conducted to implement personalized

pricing effectively. They designed a model that is beneficial to both consumers and

companies considering the advantages and disadvantages (Rayna et al., 2015), re-

searched when to adopt personalized pricing strategy or uniform pricing strategy

(Matsumura & Matsushima, 2015), examined the effects of consumer engagement

in identity management (Chen et al., 2020), and investigated the strategies to be

taken in consideration of data brokers (Montes et al., 2019).

However, there exist two major limitations in previous research. Firstly, most of

the existing studies assume full observability of the reservation price of consumers

when data are given. Considering the fact that it is impossible for a company to

accurately determine the reservation price for all consumers and the company have

to take actions based on the incorrectly predicted reservation price, it is necessary

to focus on prediction performance. The study that estimates reservation price ac-
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cording to the characteristics of consumers and examines the effect of tailored price

by using actual data is close to this study, but it also includes the above limitation

(Shiller, 2014). Secondly, previous studies lack consumer interactions under person-

alized pricing strategies. One of the major concerns about personalized pricing is

that consumers exchange information about their price and recognize their price

given by the company is unfair. Therefore, consumers’ interaction with price infor-

mation is an important part. Accordingly, this study aimed to provide insights to

companies about prediction performance by creating a personalized pricing model

that takes consumer interactions into account

2.2 Agent-based models of innovation diffusion

Technology diffusion refers to the process by which the achievements of technological

innovation are distributed to members through channels over time (Rogers, 2003).

To model this diffusion process, aggregate models such as the Bass model have

been used in the past, but it exists several problems. First, this method is not

able to reflect the customer heterogeneity of individual preferences or behaviors.

Second, it is difficult to reflect decision variables that enable what-if analysis which

limits the use of the method. Third, it is impossible to consider interactions between

consumers (H. Zhang & Vorobeychik, 2019; Ballot, Mandel, & Vignes, 2015). As a

result, an agent-based modeling method that can observe emerging patterns based

on individual decision-making processes has been risen.

Utility-based approach has been frequently used for modeling technology diffu-

sion in the agent-based modeling technique. This method approaches that consumers

make a decision by judging their utility for each alternative considering various fac-
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tors. Agent-based models that reflect pricing strategy consider factors such as indi-

vidual consumer characteristics, product quality, price, social impact, and promotion

in their utility function (Delre, Jager, Bijmolt, & Janssen, 2007; Diao, Zhu, & Gao,

2011; Nejad, 2013; Karakaya, Badur, & Aytekin, 2011; Khouja, Hadzikadic, & Zaf-

far, 2008). In particular, in the case of personalized pricing, which is the subject of

this study, the quality of products recognized by individuals can be replaced as a

reservation price (Kowalska-Pyzalska, Ćwika, Jedrzejewski, & Sznajd-Weron, 2016).

In this study, an agent-based modeling technique is used to examine the diffu-

sion process in the context of personalized pricing. The reason for using agent-based

modeling is as follows. First, it is important to reflect the heterogeneity of consumers

in the model because the personalized pricing strategy is based on individual prefer-

ences for products. Second, agent-based models can consider consumers’ information

exchanging behavior. Third, it is possible to change the value of the parameter and

examine the impact in order to consider the effect of prediction performance. De-

tailed processes of constructing an agent-based model are covered in Chapter 3.
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Chapter 3

Proposed procedure

3.1 Overview

In this chapter, we build an agent-based model from customer characteristics and

purchasing behavior data, and examine how the personalized pricing strategy con-

sidering prediction performance affects the adoption behavior of consumers using

the built model. We suggest a three-stage process as shown in figure 3.1.

Figure 3.1: Overall process

The first step is to find a utility function that is the relationship between con-

sumer characteristics and purchasing behavior. In this step, logistic regression anal-
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ysis is performed using consumer characteristics as an input value and purchase or

non-purchase as an output value. The first reason to use the logistic model is that

the target variable in this model, adoption or non-adoption, is a binary value and

input variable, input variables can be values with an infinite range. The second rea-

son is that the target variable can be easily interpreted as a purchase probability in

the logistic model and linear combination of the input variables can be interpreted

as a utility

In the second step, the reservation price of the consumer is derived from the

utility function obtained in the first step. This process is based on the fact that

the purchase probability should be 0.5 when the purchase factor is the same as the

non-purchase factor, and the utility is 0 in the logistic model. From this condition,

it is possible to derive the price to make the utility zero, as the reservation price.

The final step is to construct an agent-based model in the context of personalized

pricing. The constructed agent-based model reflects the process in which the con-

sumer recognizes the product and calculates the utility to make a purchase decision

when the purchase intention to the product arises. The factors affecting each step

and the mathematical process of expressing them are described in Section 3.2.

3.2 Agent-based model

This agent-based model reflects the process in which a product is adopted by con-

sumer agents when only a single product exists. The consumer decision-making

process consists of the following steps: knowledge, occurrence and decision. This is

in accordance with the existing consumer purchase decision model, where the con-

sumer recognizes the need, acquires information and evaluates the utility value to

10



Figure 3.2: Decision-making process of individual customers

make a purchase decision (Rogers, 2003; T. Zhang & Zhang, 2007).

The first step is knowledge, the recognition of the existence of a product. There

are two factors influencing this process: advertisement and word of mouth effect.

The consumer recognizes the product through the company’s marketing campaign

or neighbors’ word of mouth. Social sensitivity of each person is different depending

on the heterogeneity of the individual consumer, so the parameter is set as a random

variable that follows a uniform distribution [0,1].

The second step is the occurrence, the occurrence of need events. This step

exists due to the fact that even if the consumer recognizes the product, in order

to purchase the product, the consumer must have the need for the product. This

process is modeled as using the Poisson distribution, which is a distribution that is

frequently used when an existing event occurs.

The final step is the decision, the evaluation of the needed product. Consumers

who recognize and demand the product calculate the utility of the product and
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determine the purchasing probability according to the calculated utility. The utility

function is a linear combination of independent variables including price, and it is

substituted into a logistic function to calculate the probability of purchase. Social

influence, which is one of the important factors influencing consumer’s purchasing

decisions, is modified in consideration of personalized pricing situations and utility

function can be derived from data on the web.

3.3 Prediction performance

This paper is based on the fact that it is difficult for companies to accurately predict

the reservation price of consumers. In order to examine the effects of prediction

performance, it is necessary to model how close the estimated reservation price is

to the consumer’s true reservation price. In this study, the concept of accuracy

and precision, which are commonly used to analyze prediction performance, are

introduced. As shown in Figure 3.3, accuracy is a criterion indicating how close the

predicted value is to the actual value, and precision is a criterion indicating how

close the results of multiple predicted values are to each other.

In response, two parameters, Mean and Variance, are introduced from the con-

cept of accuracy and precision. Mean indicates the difference between the predicted

value and the actual value and Variance indicates the variance of the predicted val-

ues. If a company uses a personalized pricing strategy, the price will be different for

each consumer and the differentiated price will be applied to the price term of the

utility function mentioned in the above step. Accordingly, in this model, prediction

performance is expressed as follows:
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Figure 3.3: Concept of accuracy and precision

Price ∼ Uniform[Reservation price + Mean –
V ariance

2
,

Reservation price + Mean +
V ariance

2
]

For instance, if the reservation price of the consumer is 0, the Mean is 0.2,

and the Variance is 0.2, the consumer’s price is randomly decided from a Uniform

distribution [0.1, 0.3]. The most accurate situation is when Mean is 0 and Variance

is 0. At this time, the price that the company charges are the same as the reservation

price of the consumer. If the Mean is far from 0 and the Variance is greater than 0,

the set price is inconsistent with the reservation price of the consumer.
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Chapter 4

Case study

A case study is conducted using e-commerce behavior data from a large multi-

category online store published on Kaggle, the most popular data science compe-

tition platform. E-commerce is the field with the highest interest in personalized

pricing and there are some practical application examples. Especially, given data

is a form of e-commerce data set acquired by real companies, so it can be widely

applied. This dataset is provided by the REES46 Marketing Platform and uses data

from October 2019. Based on whether there is enough data to be analyzed, whether

there is a difference in reservation price for each individual, and whether there exists

multi-price data, Samsung Notebook with 43,071 rows was selected. The contents of

the collected data are shown in the following table 4.1.

4.1 Utility function acquisition

Figure 4.1 presents the process of obtaining a utility function from an e-commerce

dataset. The left half of the figure shows the process of converting the data into a

form that can be inputted into the machine learning model, and the right half of the

figure illustrates the process of assigning the processed input data to the Logistic

14



Table 4.1: File structure

Feature Meaning

event time Time when event happened at (in UTC)

event type Events can be: view - a user viewed a product, cart - a
user added a product to shopping cart, purchase - a user
purchased a product

product id ID of a product

category id Product’s category ID

category code Product’s category taxonomy (code name)

brand Downcased string of brand name

price Float price of a product

user id Permanent user ID

user session Temporary user’s session ID

regression model to learn and evaluate the performance.

To begin this procedure, we perform preprocessing on the given data. It checks

whether missing values exist, and appropriately fill or delete missing values. Also,

dummy variables are introduced and categorical data converted to numerical types

depending on the characteristics of variables because categorical data cannot be used

as input values. Unlike most variables that have values between 0 and 1, the price

variable has a value between 669 and 720. It indicates that there exists a possibility

to learn the importance of the variable incorrectly and min-max scaling is applied

to the price variable to prevent the problem.

Next, feature engineering is conducted. For product id, category id, category

code, and brand variables, all rows in the dataset have the same values, so the

corresponding columns are dropped. the user id and user session columns are deleted

after their usage as an index disappears. Event time is an important column that

includes useful information about customer behavior. New features are created to

inform which time zone and which day of the week customer was visited by dividing

15



Figure 4.1: Utility function acquisition process

the column.

The processed data is converted so that each row represents each user’s charac-

teristics, and as a result, 19,119 rows are obtained. These data are unbalanced data

with a probability of purchase of 3.049%, and oversampling is performed to adjust

them. The calibrated data are separated by random sampling of train data: test data

at a ratio of 80:20, and train data was inputted for the logistic regression model to

train the model.

Table 4.2: Model evaluation result

Accuracy Precision Recall F1 Score AUC Confusion matrix

0.9786 0.9892 0.9023 0.9437 0.9833

[
3669 9
89 822

]

The evaluation results for the trained model are presented in table 4.2. The
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trained model predicts customers’ adoption choice with 97.86% accuracy. From the

confusion matrix, it is found that the false-negative value is higher than the false

positive value. It means that the model tends to misjudge customers’ decisions as

non-adoption. This result is consistent with results where precision value is higher

than the recall value.

utility = 5.42− 10.05× Price scaled+ 1.88× Event cart+ 0.11× Event view

+ 0.25×Day 1 + 0.55×Day 2 + 0.14×Day 3 + 0.14×Day 4

− 0.15×Mon− 0.47× Tue− 0.27×Wed+ 0.11× Thu

− 0.36× Fri− 0.46× Sat− 0.49× Sun

The result of the utility function from the trained model is as above. A total of 14

features are used as an input, and the importance of the features and the correlation

can be known from the sign and size of the coefficients. The most remarkable feature

is Price scaled, which indicates that it has a great influence on the utility because

it has the largest coefficient value and negative correlation between price and utility

is revealed from sign of the coefficient.

4.2 Reservation price derivation

Reservation price means the highest price that a buyer is willing to pay. If the price

is the same as the reservation price, the adoption probability will be 0.5 due to the

fact that motivation to adopt is the same as motivation to disadopt. The utility is 0

when the probability is 0.5, and the reservation price for each customer is driven by
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substituting this condition into the utility function obtained above. The reservation

price result derived by applying the above utility model to each consumer’s profile is

as shown below, and it can be seen that the result follows a lognormal distribution.

This is consistent with economic variables such as personal income or wealth follow

lognormal distributions (Cantono & Silverberg, 2009). As a result of fitting the

Price scaled variable to the lognormal distribution, is as follows: ln(Price scaled)

∼ N(−0.564, 0.126)

Figure 4.2: Reservation price result

4.3 Agent-based modeling

An agent-based model is constructed on the above results. Netlogo 6.0.4 software is

employed for implementation and the parameters included in the model are summa-

rized in Table 4.3. Based on these parameters, the consumer recognizes the product,

evaluates the utility when a purchase need occurs, and makes a purchase decision.
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Environmental and agents’ parameters are set before performing the simulation.

For the environmental parameter, the total population is 1000, the simulation time

is set to 300 days, and the need event follows Poisson (0.05). These values are set to

trial and error. A small-world network is used to describe the agent’s social network

which is widely applied as the agent’s social network (Watts, 2004). For the agent’s

parameter, social sensitivity, WOM coefficient, and promotion sensitivity exist. Their

detailed values were also obtained through trials and errors. In particular, social

sensitivity is specified in positive and negative impact cases to reflect the customers’

perception. If the social sensitivity has a negative impact, the parameter value is

tripled than positive case because consumers react more on loss than gains and it

influences purchase probability more (Richards et al., 2016).
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Chapter 5

Simulation and discussion

In this section, simulation is performed utilizing the constructed personalized pricing

model. The purpose of this simulation is to understand the adoption of consumers

according to each pricing strategy from the perspective of companies making inac-

curate reservation price predictions.

To identify the impact of personalized strategy, we compared the uniform pric-

ing strategy which sets the same price for all customers and the personalized pricing

strategy which sets different prices for each consumer by predicting the reservation

price. In the personalized pricing strategy, the company sets the price as the esti-

mated reservation price when the estimated reservation price was higher than the

production cost, and sets the price as the production cost when it is lower than the

production cost. This is formulated as follows:

Price =
{ Pu, if a company is using uniform pricing

{Pri, if a company is using personalized pricing and Pri ≥ Pp

Pp, if a company is using personalized pricing and Pri < Pp

where,

Pu : price under uniform pricing strategy

Pri : reservation price of consumer i under personalized pricing

Pp : production cost under personalized pricing

21



Four scenarios are examined: the impact of production cost, social sensitivity,

reservation price mean difference, and reservation price variance. The first scenario

investigated the impact of production cost to identify net profit, not revenue. The

second scenario considered the effect of word of mouth for the price, which is a major

obstacle to the implementation of personalized pricing strategy. Third and fourth

scenarios are both for examining prediction performance in perspective of how close

the predicted reservation price is to the real value and how close the prediction

values are to each other.

5.1 Impact of production cost

Figure 5.1: Number of adopters under each strategy

Figure 5.1 compares the number of adopters in the uniform pricing strategy

and the personalized pricing strategy when the production cost changes from 0 to
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Figure 5.2: Net profit under each strategy

1. Figure 5.2 shows the change in profit in the same situation. The first interesting

result is the correlation between production cost and the number of adopters and the

correlation between production cost and profit. In the case of uniform pricing, there

is no significant change in the number of adopters and profit when the production

cost changes, but in the case of personalized pricing, it can be seen that the number

and profile of the adaptors decrease rapidly as the production cost increases. In

addition, personalized pricing case always shows a considerably larger number of

adopters than the uniform pricing case. The reason is that the personalized pricing

strategy can capture a broad range of customers. It is able to target customers who

have reservation price lower than the uniform price, but higher than the production

cost. However, in the perspective of profit, personalized pricing does not always

benefit from uniform pricing. In Figure 5.2, it can be seen that the profit reduction

due to the increase in production cost is greater in personalized pricing than in

uniform pricing. This is because as production cost increases, customers with lower
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reservation prices are priced at higher to the production cost, reducing the likelihood

of their adoption.

5.2 Impact of social influence

Figure 5.3: Number of adopters and net profit from social influence change

Figure 5.3 illustrates changes in the number of adopters and profits under the

personalized pricing strategy as social sensitivity increases. From the previous utility

function, social influence was described as a social sensitivity * (average price of

neighbors – own price). This is based on the fact that, unlike the uniform pricing

strategy, consumers can exchange information about the price they receive under the

personalized pricing strategy. This part is modeled to have zero value in the uniform

pricing strategy, positive value when the average price of neighbors is higher than

their own in the personalized pricing strategy, and a negative value when the average

price of neighbors is lower than their received price. As mentioned in Section 3.2, if
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the average price is lower than its own price, the weight of the coefficient increase

because consumers respond more to negative word of mouth. Consequently, both

the number of adopters and the net profit decrease as the social influence coefficient

increases. This means that when using the personalized pricing strategy, companies

should check whether consumers have a high or low social influence on price.

5.3 Impact of reservation price prediction performance

Figure 5.4: Number of adopters and net profit from mean change

Figure 5.4 presents the change in the number of adopters and profit according to

the degree to which the average of the estimated reservation price deviates from the

true reservation price. Figure 5.5 presents the change in the number of adopters and

profit according to the variance of the estimated reservation price. As mentioned

in Section 3.3, the most accurately predicted situation is a situation where the

Mean is set as zero and the Variance is set as zero, which is an ideal situation
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Figure 5.5: Number of adopters and net profit from variance change

where reservation price is perfectly predicted. The Mean variable can have a negative

value because the average of the predicted values can be lower or higher than the

reservation price, and the Variance variable always has a positive value because it

means the variance of the predicted value.

From the data in Figure 5.4, it is apparent that the number of adaptors decreases

as the mean increases from negative to positive. The reason is that a lower estima-

tion of the reservation price leads to a higher adoption probability of consumers

and a higher estimation of reservation price leads to lower adoption probability of

consumers. Closer inspection of the profit shows the setting price as a reservation

price might not be an optimal strategy for companies. It is seen that the profit is

similar or rather slightly higher when the Mean is 0.2 than the Mean is 0 because

even if the number of adopters decreases, the profit from each adopter increases. In

addition, the value of the profit rapidly decreases in the range other than when the

forecast mean is between 0 and 0.2, indicating that the application of the personal-
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ized pricing strategy may result in a lower profit if the accuracy of the mean is not

guaranteed to some extent.

From the data in Figure 5.5, an increase in the variance of the predicted value

is negatively correlated with the number of adopters and profits. Considering that

Price is randomly charged from Uniform [reservation price + mean – variance/2,

reservation price + mean + variance/2], the Mean have a greater impact on the

adoption process when the values of variance and mean change. This means that

the accuracy of the Mean variable is important than the accuracy of the Variance

variable when predicting reservation price.
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Chapter 6

Conclusion

The aim of the present research is to propose a personalized pricing agent-based

model considering prediction performance that was not considered in the existing

research. It is impossible to perfectly predict customer’s reservation price and reser-

vation price prediction performance is directly related to the company’s profits, it is

important to determine the effects of prediction performance. Also, the main obsta-

cle for implementing personalized pricing strategy is the customer’s perception which

is formed by social interaction. Therefore, this study modeled the decision-making

behavior of consumers under a personalized price strategy in consideration of social

influence on prices and prediction performance. Then, an agent-based model was

constructed using e-commerce data. Finally, simulations are conducted to identify

the impact of the pricing strategy, and the results are discussed.

As a result of the case study, a personalized pricing strategy is not always su-

perior to a uniform pricing strategy. Investigation on production cost reveals that

personalized pricing strategy has the effect of expanding the market compared to

a uniform pricing strategy, but it does not always result in more profit. Analysis

of the social influence shows that social influence about price has a negative effect

on actual adoption, companies need to analyze consumers’ social characteristics. In
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the case of prediction performance, the mean difference is an important factor that

significantly affects the number of adopters and profit, and when it is slightly higher

than the actual reservation price, the number of adopters decreases, but profit in-

creases slightly. In addition, the mean difference value more than a certain degree

results in a rapid decrease in profit. In the case of the variance of the predicted

values, the variance is negatively correlated to both the number of adopters and the

profit. These results indicate that it is meaningful to apply a personalized pricing

strategy when the predicted performance is above a certain level.

This study exists several limitations. First, this study assumes the monopoly

market situation, but a notebook case, a competitive market product, is selected

and analyzed. The selection reason is that although most of the products sold in

e-commerce are products in the competitive market, e-commerce is still a platform

to acquire and utilize large amounts of data about consumers. Second, the valida-

tion issue of research results exists. In this study, the reservation price is derived

using the data and a personalized model simulation is conducted based on the re-

sult. Derived reservation price distribution shows a lognormal distribution like the

existing economic variable, but simulation results are not verified with the actual

personalized pricing results. In many cases, companies try to hide the fact that they

are using personalized pricing strategy to customers because of consumer resistance.

Therefore, it is hard to collect real data for validation. Accordingly, the proposed

agent-based model is established based on the existing research results to reflect the

validation issue.

29



References

Ballot, G., Mandel, A., & Vignes, A. (2015). Agent-based modeling and economic

theory: where do we stand? Journal of Economic Interaction and Coordina-

tion, 10 (2), 199–220.

Bourreau, M., De Streel, A., & Graef, I. (2017). Big data and competition pol-

icy: Market power, personalised pricing and advertising (Project Report).

CERRE.

Cantono, S., & Silverberg, G. (2009). A percolation model of eco-innovation dif-

fusion: the relationship between diffusion, learning economies and subsidies.

Technological forecasting and social change, 76 (4), 487–496.

Chen, Z., Choe, C., & Matsushima, N. (2020). Competitive personalized pricing.

Management Science.

Delre, S. A., Jager, W., Bijmolt, T. H., & Janssen, M. A. (2007). Targeting and

timing promotional activities: An agent-based model for the takeoff of new

products. Journal of business research, 60 (8), 826–835.

Diao, J., Zhu, K., & Gao, Y. (2011). Agent-based simulation of durables dynamic

pricing. Systems Engineering Procedia, 2 , 205–212.

Elmachtoub, A. N., Gupta, V., & Hamilton, M. (2018). The value of personalized

pricing. Available at SSRN 3127719 .

Gerlick, J. A., & Liozu, S. M. (2020). Ethical and legal considerations of artificial

30



intelligence and algorithmic decision-making in personalized pricing. Journal

of Revenue and Pricing Management , 1–14.

Hannak, A., Soeller, G., Lazer, D., Mislove, A., & Wilson, C. (2014). Measuring

price discrimination and steering on e-commerce web sites. In Proceedings of

the 2014 conference on internet measurement conference (pp. 305–318).
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국문초록

디지털환경의발달로인해개인화된가격전략 (personalized pricing)이많은관심을받

고있다.과거와는달리오늘날에는데이터수집환경,분석알고리즘과하드웨어발달로

개별 소비자들의 선호를 점점 파악하기 용이해지면서 소비자의 유보 가격 (reservation

price)을 예측해서 가격을 매기는 개인화 된 가격 전략이 실행 가능한 환경이 되었다.

기업들은 이 전략을 이용해서 시장을 넓히고 더 많은 수익을 얻고자 이 주제에 많은

관심을 가지고 있다. 그러나 유보 가격을 정확히 예측하는 것이 불가능하고, 부정확한

유보 가격 예측으로 인해 소비자들에게 잘못된 가격을 제시하게 된다면 결국 역효과를

발생시킬 수 있다.

이에 따라 본 연구에서는 행위자 기반 모형 (agent-based model)을 세워 유보 가격

예측 정확성에 따른 개인화된 가격 전략에 따른 효과를 살펴본다. 먼저, 가격과 소비

자의 구매 여부, 행동 데이터가 포함된 웹 데이터를 수집하여 가격을 포함한 소비자의

효용 함수를 구축한다. 다음으로 구축된 효용 함수를 이용해 소비자의 유보 가격을

도출한다. 그리고 이를 개별 소비자들의 의사결정 과정으로 하는 행위자 기반 모형을

만들어 시뮬레이션을 해본다. 행위자 기반 모형은 예측 정확성에 따른 효과를 조사할

수 있으며개인화된가격전략아래에서소비자의이질성과상호작용을고려할수있기

때문이다.

본 연구는 개인화된 가격 전략 아래에서 제품 확산에 대한 몇가지 중요한 통찰력을

제공한다. 첫째로, 이는 부정확한 유보 가격 예측에 따른 효과를 분석하여 기업들이 수

익을최대화하기위한통찰력을제공한다.둘째로,기존의단일화된가격전략 (uniform

pricing)에서는 고려하지 않았지만 개인화된 가격 전력 상황에서는 고려해야하는 개별

소비자가격에대한사회적영향력을포함한행위자기반모형을구축하여기존의확산
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연구에 기여한다. 셋째로, 이는 실제 웹 상에서 발생되는 데이터를 활용하여 데이터

전처리, 효용 함수 도출, 모델 설립 및 전략 분석까지 전체 프로세스를 보여준다.

주요어: 개인화된 가격 전략 (Personalized pricing), 유보 가격 (Reservation price),

예측 성능, 확산, 행위자 기반 모형 (Agent-based model)

학번: 2017-28225
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