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Abstract

Acoustic Waveform Inversion Strategy with
Horizontal Pressure Difference of Ocean-

Bottom Common-Receiver Gather

Jongha Hwang
Department of Energy Systems Engineering
The Graduate School

Seoul National University

Full waveform inversion is one of the most powerful seismic data processing
techniques to image subsurface geological structures. By solving a local
optimization problem that matches observed data with modeled data, the FWI
reconstructs quantitative subsurface physical models. These days, FWI has been
used for the characterization of hydrocarbon reservoirs. However, there are several
challenges that make FWI less attractive, such as nonlinearity problem and its huge

computational cost.

In this thesis, an acoustic FWI strategy is proposed that matches observed pseudo-
AX data obtained from the common-receiver gathers (CRG) of observed pressure
data with modeled pseudo-Ax data obtained from the common-shot gathers (CSG)
of modeled pressure data in source-receiver switched geometry. The pseudo-Ax

data are the horizontal spatial differentiation of pressure data. Compared to the



classical CSG FWI that requires wave simulations twice the number of sources at
each iteration, the proposed CRG-based scheme requires the number of wave
simulations as twice the number of receivers at each iteration. Therefore, CRG
FWI1 largely reduces the computational cost when the number of sources largely
exceeds the number of receivers, such as ocean-bottom seismic data. In addition,
due to the characteristic of weak near-offset PP and PS reflections at pseudo-Ax
data, acoustic FWI with pseudo-Ax data focuses on the reconstruction of long-
wavelength features of the model, therefore alleviates the nonlinearity problem of

FWI.

With the synthetic and real data examples for the Volve oilfield at the North Sea,
the performance enhancement of proposed acoustic FWI strategy is demonstrated.
Because the number of sources is larger than the number of receivers, both the
examples show that the proposed CRG-based scheme lowers the total
computational cost of FWI, while resulting in reconstructed velocity model similar
to that obtained from the classical CSG FWI. They also show that acoustic FWI
with pseudo-Ax data constrains the update of short-wavelength features of given
models and converges better to the real P-wave velocity model compared to the

conventional acoustic FWI with pressure data.

Keyword: Full waveform inversion (FWI), Acoustic, Ocean-bottom seismic,

Common-receiver gather (CRG), Horizontal particle acceleration

Student Number: 2016-21314
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Chapter 1. Introduction

1.1. Background of the study

Seismic exploration is one of the key techniques in discovering the oil and gas
deposits due to its remarkable ability to describe and map subsurface boundaries.
During the seismic exploration, seismic signals generated from source positions are
transmitted through subsurface media and recorded at receivers carrying
information of subsurface structures and physical properties. Accordingly, various
seismic imaging techniques, such as tomography (Wu and Toksoz, 1987;
Woodward, 1992), migration (Claerbout and Doherty, 1972; Schneider, 1978;
Gazdag, 1978; Stolt, 1978) and inversion, have been developed and applied to
extract this subsurface information from recorded seismic traces. Among these
techniques, full waveform inversion (FWI; Lailly, 1983; Tarantola; 1984; Pratt et
al., 1998; Virieux and Operto, 2009) uses full waveforms of seismic data and
solves a local optimization problem of matching observed and modeled seismic
data to reconstruct quantitative subsurface physical models with the resolution up
to half the local wavelength (Virieux and Operto, 2009). These days, FWI has been

an important seismic data processing step in reservoir exploration.

The majority of recent studies on FWI in literature have been devoted to
resolving the challenges that make FW1 less attractive. One of the main challenges
in FWI is the nonlinearity of objective function with respect to the model
parameter perturbations. Due to this nonlinearity, FWI often gets stuck into the
local minima and fails to reconstruct reliable subsurface physical models. Several
methods have been proposed to mitigate this nonlinearity problem of FWI. Bunks
et al. (1995) proposed a multiscale strategy that sequentially increases the
frequency range of data in FWI. Shin and Cha (2008; 2009) introduced Laplace-

1 S



domain and Laplace-Fourier-domain waveform inversion to utilize extremely low-
frequency data components in FWI to obtain an appropriate starting model. Xu et
al. (2012) and Wu and Alkalifah (2015) applied reflection waveform inversion
(RWI) to smoothly update deeper parts of models using the rabbit-ear shaped
kernels, and Ramos-Martinez et al. (2016; 2019) used dynamic weighting
technique to constrain the update of short-wavelength features related to the
migration isochrones. All these methods, however, share the same concept to
mitigate the nonlinearity problem. The concept is that long-wavelength, smooth
features of the model should be reconstructed in the early iterations of FWI to

guide objective function close to the global minimum.

Another challenge of FWI is its excessive computational cost, particularly for
large-scale problems. To reduce the computational burden of FWI, the encoded
simultaneous-source method (Krebs et al., 2009; Symes 2010; Ben-Hadj-Ali et al.,
2011; Jeong et al., 2013), which matches encoded common-shot gathers (CSG)
with modeled CSGs from simultaneously encoded source signatures, and plane-
wave approach (Vigh and Starr, 2008; Tao and Sen, 2013; Kwon et al., 2015),
which matches observed and modeled plane-wave gathers originated from the
time-delayed multiple sources, have been proposed. Unlike the classical CSG-
based FWI that requires wave simulations as twice the number of utilized sources
to compute local descent directions in each iteration (Gauthier et al., 1986), the
encoded simultaneous-source and plane-wave approaches reduce the number of
wave simulations to the number of encoded source pairs and to the number of ray

parameters, respectively, which plays a role in speeding up FWI.

Using the acoustic approximation for FWI of marine seismic data is also a
method of alleviating both the challenges. Because the nonlinearity problem

becomes severe and the computational cost of wave simulation tends to increase as

2 ]



more types of physical parameters are considered and the nature of wave
propagation becomes complex, acoustic FWI has been widely used in the industry,
despite the elastic and anisotropic nature of the Earth. Accordingly, enhancing the
performance of acoustic FWI remains to be an important issue and several studies
have been recently introduced for this purpose. Agudo et al. (2018; 2020) used the
matching filter technique to transform the elastic data into the acoustic data and
successfully resulted in better resolved P-wave velocity model by mitigating the
elastic effects of the recorded seismic data. However, their approach needs
additional elastic wave simulations based on the rough estimate of Vp/Vs ratio,
therefore the computational cost increases compared to conventional acoustic FWI.
Additionally, Akrami (2017) and Zhong and Liu (2019) proposed vector-acoustic
FWI that simultaneously uses all pressure and particle velocity wavefields recorded
at the ocean-bottom to use the full directivity and dynamic information contained
in data. With synthetic data examples, their method seems to yield inverted velocity
models with higher resolution compared to the conventional acoustic FWI.
However, because this approach uses all different types of wavefields at the same
time, it has limitations to be applied to field data where the qualities of recorded
pressure and particle acceleration data might differ and amplitude relationships
between those data components could be destroyed during the preprocessing stage

(Szydlik et al., 2007).



1.2. Research Objective

In this thesis, an inversion strategy is proposed to enhance the performance of
acoustic FWI in the aspects of mitigating the nonlinearity and reducing the
computational burden, particularly for ocean-bottom seismic data. These days, in
marine seismic exploration, data acquisition at the ocean-bottom through ocean-
bottom cable (OBC), ocean-bottom node (OBN) or ocean-bottom seismometer
(OBS), has been common due to its several advantages over the conventional
streamer system, such as easier acquisition of far-offset data, direct recording of PS
reflections and flexibility in designing a survey. However, because increasing the
number of airgun sources near the ocean surface is easier and cheaper than
increasing the number of deployed receivers at the ocean bottom, ocean-bottom
seismic data often contain numerous sources with the limited number of receivers.
Due to the large number of sources, the classical CSG-based FWI of ocean-bottom
data requires huge computational cost if all recorded seismic traces are used in
inversion. Therefore, a strategy to reduce the computational cost of FWI for ocean-

bottom seismic data is required.

Based on the seismic reciprocity theorem, an inversion scheme is proposed
that matches common-receiver gathers (CRG) of observed data with CSGs of
modeled data obtained in the source-receiver switched geometry. This approach is
referred to as CRG FWI. Following this approach, the number of wave simulations
in each iteration reduces to twice the number of receivers, which is usually much
smaller than the number of sources for ocean-bottom seismic data. Because the
computational cost of wave simulation takes up most of the computation burden in
FWI, this approach has the potential to speed up FWI, proportional to the ratio
between the numbers of sources and receivers.

Additionally, to mitigate the nonlinearity problem, an acoustic Fyv.ll strategy .,



that uses horizontal spatial difference of pressure data rather than pressure data
themselves is proposed. The horizontal spatial differentiation of pressure data is
referred to as the pseudo-Ax data. Because PP and PS reflections at small reflection
angles have extremely small amplitudes at pseudo-Ax data compared to those at
pressure and horizontal particle acceleration (AX) data, the acoustic FWI with
pseudo-Ax data helps reconstruct long-wavelength features of the given models.
Finally, both the approaches for acoustic FWI of ocean-bottom seismic data are
combined and enhanced performance of this proposed strategy is demonstrated

with synthetic and real data examples.



1.3. Outline

This thesis is organized as follows: In chapter 2, the nature of wave
propagation is briefly reviewed and the methods of numerical wave simulation and
local optimization for FWI are explained. Then, in chapter 3, the seismic
reciprocity theorem and the concept of CRG FWI are discussed. Comparing
inversion results and computational time of the proposed CRG FWI to those of the
classical CSG FWI, it is demonstrated that CRG FWI reconstructs subsurface
velocity models preserving the quality, but with less computational cost. In chapter
4, the acoustic FWI strategy of matching modeled and observed pseudo-Ax data
rather than pressure data is proposed. Characteristics of each type of wavefield are
analyzed by investigating their CSGs and sensitivity kernels, and the effect of using
pseudo-Ax data in acoustic FWI is shown with synthetic data example. Finally,
both the approaches are combined to reconstruct long-wavelength features of the
velocity model and to achieve computational speed-up in acoustic FWI. In chapter
5, the enhanced performance of proposed strategy is demonstrated with real data

set acquired at the Volve oilfield of the North Sea.



Chapter 2. Methodology

2.1. Forward wave simulation

The two-dimensional acoustic wave equation is formulated using the

Newton’s equation of motion and stress-strain relationship as follows:

pa(x,t)=VP(x,t) , (1)
1 P(xt) o
Pk T =V-a(xt) , 2

where P is the pressure wavefield and a=(ax,az) is the particle acceleration

wavefield; v, and p are the P-wave velocity and density parameters,

respectively; x= (x,z) and t stand for the location vector and time, respectively.

Similarly, the two-dimensional elastic wave equation is formulated as follows:
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where 7,, and 7, indicate the normal stresses in horizontal and vertical



directions, respectively; and z,, is the shear stress and v, is the S-wave velocity.

In this thesis, the elastic wave equation is used to synthesize observed elastic
wavefields at fluid-solid coupled media and the average of normal stresses at each

nodal point corresponds to pressure wavefield.

The staggered-grid finite-difference method (SGFDM; Virieux, 1986;
Levander, 1988; Graves, 1996) is employed to numerically simulate the wave
propagation. Rather than directly solving a second-order differential wave equation,
SGFDM uses the first-order differential wave equations expressed in egs. (1) to
(4). Because the centered finite-difference scheme is used to approximate the
differential operators in space, the staggered-grid stencil as shown in Fig. 2-1 is
needed. Compared to the conventional finite-difference method (FDM), SGFDM is
easy to apply the fourth-order accurate scheme in space, therefore requires a
smaller number of grids per wavelength to satisfy the same degree of numerical
dispersion (Levander, 1988). In addition, wave propagation through the coupled
media is easily simulated with SGFDM because this scheme does not need any
additional boundary condition for the fluid-solid interface. Fig. 2-2b shows the
comparison of seismic traces, one from the analytic solution of Ewing et al. (1957)
and the other from the numerical simulation with SGFDM in the source-receiver
geometry of Fig. 2-2a (Choi, 2007). Just by setting the S-wave velocity to be zero
for the water layer, the SGFDM properly simulates the wave propagation through

the coupled media.

Additionally, an absorbing boundary condition is needed for numerical wave
simulation to remove spurious reflections occurring at the outer boundaries of the
computational domain. One of the most widely used techniques to suppress these
spurious reflections is the perfectly matched layer (PML; Berenger, 1994; Collino

and Tsogka, 2001), which gradually damps the wavefields inside the PML region

8 ]



by stretching the space variable into the complex domain as:
~ | X
X=X——|d,(s)ds
ALI0
, (5)

Z

7= Z_ledz (s)ds

0

where x and z are the new space variables defined in the complex domain; @
is the angular frequency and d, and d, are the damping profiles that have zero

values inside the modeling domain and gradually increase inside the PML region as

shown in Fig. 2-3. In case of 1D harmonic wave with this new space variable,

Aexp(—i (kx X— a)tj] = Aexp(—i (kx— cot))exp(—k—aj_[dX (s)ds) . (8

it is noticed that the complex part of the space variable plays a role in decaying the
wavefields. To implement the PML boundary condition, the space differential
operator is changed as:
0 io 0 120
=== . )

5y 10+, X s,

Eqg. (7) notated in the frequency domain is changed into the time domain as

follows:

o _af1).0 @ .
—=F 1[S_J —=&—dXH(t)exp(—dXt) o (8)

o_90
Ox Ox
where H is the Heaviside unit step function and * stands for the convolution

operator in time. Following Komatitsch and Martin (2007), there is a recursive

relationship for ¢, as:



a n+1/2
o =ep(aaa+(eo() (5] @

Therefore, PML is easily implemented along with time-domain SGFDM just by
changing the spatial differential operator as in eq. (8) and introducing a memory

variable for ¢, to be updated by eq. (9) at each time step.

1 _-' '-..':_1'
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Fig. 2-1. Two-dimensional staggered-grid stencil indicating the locations of the
wavefields and model parameters for acoustic and elastic wave
simulations.
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Fig. 2-2. (a) Schematic diagram showing the geometry of wave simulation and (b)
comparison of seismic traces recorded at the receiver position (indicated
by the triangle symbol in (a)): The green line shows the analytic solution
and the red line shows the numerical solution with staggered-grid finite
difference method (SGFDM).
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Fig. 2-3. Schematic diagram showing both the modeling domain and perfectly
matched layer (PML) region. Note that the damping profiles (dx, d)

gradually increase as they move farther from the modeling domain.
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2.2. Inverse problem

FWI solves a local optimization problem of matching modeled and observed
data to reconstruct reliable subsurface physical models. Therefore, for FWI, we
first need to define an objective function to be minimized. One of the most widely

used objective functions is based on the least-squares (l,) norm of data residual

(Tarantola, 1984; Pratt et al., 1998) as:

ns nr

FEINI

i=1 ]—l

Pu (;5%) =Ps (x;: ')Hi ! (10)

where p, and p, indicate the time-series of modeled and observed wavefields,

respectively; X

i and x; are the source and receiver location vectors,

respectively; ns and nr indicate the number of sources and receivers,
respectively. By taking the partial derivative with respect to the model parameter
vector (m) at the k™ nodal point, local ascent direction of the objective

function is calculated as:

mGELZ_iiM'(pu( Xis .) pd( i’ |)) : (11)

i1 omy

However, because the explicit calculation of partial derivative wavefield
(6pu/6mk) is computationally heavy, the adjoint-state method is commonly used

(Lailly, 1983; Tarantola, 1984; Plessix, 2006). Following the adjoint-state method,

eqg. (11) is rearranged as:

ns r 59 ” '
mk L2 ZZ pu Xy X | )“ (kaxi) ' (12)

i=1 J—l



where S is the modeling operator matrix, A indicates the time-series of adjoint
wavefield, and the superscript — indicates the sequence of array backward in time.
The adjoint wavefield is calculated from the following adjoint-state equation (refer

to Appendix A):

nr

(12w A =B ey Ton) - mle-x) 9

=1

where T indicates the total recording time. Then, with this local gradient
direction, model parameters are iteratively updated to minimize the objective

function following the steepest-descent method.

However, because the least-squares norm matches both the amplitudes and
phases of modeled and observed waveforms, highly accurate information of source
signature is essential. To avoid estimating accurate source signatures during FWI,
different types of objective functions have been proposed. One of them is the
global-correlation-norm objective function (Routh et al., 2011; Choi and Alkhalifah,

2012), which is defined as:

ns nr A

GC_ZZpu( i |) (XJ’XI) ' (14)

i=l j=1

where the hat notation indicates the normalized vector as p=p/||p| . By taking the

partial derivative with respect to the model parameter, eq. (14) is written as:

ns or 0 u A BAu 1A 1A
V EGC—Zlé p g:\ix) p ( qu()J’pld)( i ) , (15)

N

where B=pu(xj;xi)-pd(xj,x,). Compared to the gradient of least-squares
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objective function in eq. (11), the only difference occurs in the residual term.
Therefore, just by changing the data residual term as in eq. (15) during the
calculation of adjoint wavefields, FWI with the global-correlation-norm objective
function is easily performed. As addressed by Choi and Alkhalifah (2012), this
global-correlation norm is theoretically the same as the least-squares norm of the
normalized wavefields. Accordingly, FWI with the global-correlation norm is
insensitive to the source amplitude difference between the modeled and observed

data and thus behaves similar to the phase inversion.



2.3. Conjugate-gradient method

Several local optimization methods, such as the Gauss-Newton, Quasi-
Newton and conjugate-gradient methods, are used rather than the steepest-descent
method to enhance the convergence of FWI. Throughout the thesis, the
preconditioned conjugate gradient (PCG) method with the pseudo-Hessian matrix

(Shin et al., 2001a) preconditioner is used as a local optimization method of FWI.

The conjugate gradient (CG) method is a type of conjugate direction method
(Nocedal and Wright, 1999) that was originally developed to solve a large linear
system of equations. Because the CG method automatically generates a linearly
independent set of solution vectors, n-dimensional linear system can be solved in at
most n iterations. These days, the CG method is also used to solve the nonlinear
optimization problem, such as FWI, following the work of Fletcher and Reeves
(1964). In this chapter, | only focus on the application of CG method in FWI and a

detailed explanation of the CG method is shown in Appendix B.

The purpose of FWI is to seek the model parameters that minimize the

objective function, and therefore, mathematically expressed as:

mni]n E(m) . (16)

Using the second-order Taylor series, the objective function is written as:

E(m)

E(m, +Am)

= E(M;) + V(M) Am -+~ Am” Ham 7
= 0 m 0 2

where m and m, indicate the true and initial model parameter vectors,

respectively; H:Vm(VmE(mO)) is the Hessian matrix and m-m,=
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niter
Am = ZociAmi is the model update vector where ¢; and Am; are the step-
i=1
length and model update direction at each iteration, respectively; niter denotes
the total number of iterations. Notice that this approximation makes sense only
when the initial model is sufficiently close to the true model (local optimization).

Because the objective function has the minimum value at the true model, the

minimization problem in eq. (16) is changed into a linear system as follows:
VnE(Mm)=0=V_E(m,)+H(m-m,) (18)
Hm=Hm, -V E(m,)=b . (19)

To solve eq. (19) with the CG method (refer to Appendix B), the model update
directions at each iteration are defined as a linear combination of the previous

model update direction and the current residue vector as:

where 1, =b—Hm, is the residue vector of current iteration and

(rk — I 1)T I
p, = ——=——— following the study of Polak and Ribiere (1969). Due to the

-
M1 N

following relationship between the gradient and Hessian matrix,
-V.E(m)=H(m-m,)=b-Hm, (21)

it is noticed that the residue vector corresponds to the local descent direction. In
FWI, the CG method is applied just by linearly combining the previous and current
local descent directions with an appropriate coefficient. Fig. 2-4a shows the

workflow of computing the model update directions using the CG method. To

accelerate the convergence of the CG method, preconditioners whose inverse are a
18 Al = TH



rough estimate of the Hessian matrix are often used. This is referred to as the PCG
method and Fig. 2-4b shows the workflow of the PCG method. For FWI with PCG
method, either the inverse of pseudo-Hessian (Shin et al., 2001a) matrix or the
inverse of approximate-Hessian (Shin et al., 2001b) matrix is often used as a

preconditioner.

1 _-' '-..':_1'
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(a) (b)

Conjugate-gradient method Preconditioned conjugate-gradient method

m,;.: model parameter M: preconditioner
g(my): gradient direction

Amy,: model update direction

a;: step-length

Given m, Given m,,
Amgy = —g(my) ; m; = m, + apAm, Am, = —Mg(m,) ; m; = m; + apAm,
Repeat Repeat
B = (g0mi0)—g(my—)) g (mi) B = (Mg(my)-Mg(my_,))"g(my)
X g(my—)Tg(my—1) & Mg(my_,)Tg(my_,)
Amy = —g(my) + frAmy_y Amy = —Mg(my) + frAmy_y
My = My + aAmy My = My + aAmy
ay: from the line-search method ay: from the line-search method
(Wolfe condition) (Wolfe condition)

Fig. 2-4. Workflows showing the process of (a) conjugate-gradient (CG) method
and (b) preconditioned conjugate-gradient (PCG) method.
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2.4. Step-length calculation

Until now, the method to obtain the model update direction that minimizes the
objective function is explained. For a proper update of the model parameters, a
step-length which determines how much the model parameters are updated should
be decided. Among the various conditions used for the determination of step-length,
the strong Wolfe condition that consists of the sufficient decrease and curvature

conditions (Nocedal and Wright, 1999) is employed.

The sufficient decrease condition is written as follows:
E(m, +oAm ) <E(m)-caV, E(m,)-Am, , (22)

meaning that the step-length should be determined to satisfy a sufficiently smaller

objective function value compared to the previous one. ¢, is an arbitrary
coefficient in the range from 0 to 1 and the term V,_E(m,)-Am, indicates the

slope of the objective function at m,. With this condition, the optimization
process will iteratively make reasonable progress. However, only with this
condition, all sufficiently small ¢, are accepted as a step-length and FWI may
require a large number of iterations until it meets the convergence criterion. To

exclude extremely small step-length, the strong Wolfe condition contains a

curvature condition written as:
|VmE(mk+akAmk)-Amk|scZ|VmE(mk)-Amk| , (23)

where ¢, is also an arbitrary coefficient in the range from 0 to 1. Schematic
diagram of Fig. 2-5 shows the ranges of acceptable step-length of the sufficient
decrease, curvature and strong Wolfe conditions.

21 S



To determine the step-length with the strong Wolfe condition, the total range

of possible step-length needs to be set as (pyin: &max ) - Then, the trial step-length

is the median value in this range as & =ty — &y )/2 and four different cases
would exist for this trial step-length.
(i) The strong Wolfe condition is satisfied.

(ii) The sufficient decrease condition is violated.

(iii) The curvature condition is violated when the slope at trial step-length is

positive.

(iv) The curvature condition is violated when the slope at trial step-length is

negative.

If the strong Wolfe condition is satisfied (i), then the trial step-length is used as the
current iteration step-length. If the sufficient decrease condition is violated (ii) or

the curvature condition is violated with positive slope (iii), step-length is

recalculated within the range of (amm,a*). If the curvature condition is violated

with negative slope (iv), step-length is recalculated within the range of (a*,amax).

Additionally, FWI terminates when the calculated step-length becomes smaller

than a given threshold.
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Fig. 2-5. Schematic diagram showing the ranges of acceptable step-length for the
sufficient decrease, curvature and strong Wolfe conditions. The gray solid
line indicates the objective function curve and the black dashed-arrow
shows the criterion of sufficient decrease condition. The curvature

condition is shown with the black solid-arrows.
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2.5. Time-frequency-domain FWI

In seismic exploration, the early studies on FWI have been mainly performed
in the time domain due to its computational convenience of wave simulations
(Lailly, 1983; Tarantola, 1984; Gauthier et al., 1986; Mora, 1987; Pica et al., 1990).
However, to perform convolution between the source and adjoint wavefields for the
calculation of gradient, massive computer memory is required to store full
information of source wavefields at each time step. The boundary saving technique
(Gauthier et al., 1986) has been proposed to avoid this massive storage of
wavefields, but its computational cost increases due to the reconstruction of

wavefields from the boundaries.

In the 1990s, frequency-domain FWI using the direct matrix solver has been
proposed by Pratt and his colleagues (Pratt, 1990; Pratt & Worthington, 1990; Pratt
et al., 1998; Pratt, 1999). Because only the wavefields at selected frequencies are
used for the calculation of gradients, smaller storage space is needed to store
wavefields. In addition, by storing the LU factors of modeling operator matrix,
frequency-domain FWI requires only a single matrix decomposition for the whole
source position and greatly enhances the computational efficiency of FWI.
However, for large-scale problems, frequency-domain FWI using the direct solver
appears to be challenging because it requires too much memory to store the LU

factors of the modeling operator matrix (Operto et al., 2007; Plessix, 2009).

In this study, to avoid the drawbacks of time- and frequency-domain FWI,
time-frequency-domain FWI is performed, where wave simulations are conducted
in the time domain and the gradients are calculated in the frequency domain by
extracting certain frequency components of the wavefields with the discrete
Laplace-Fourier-transform (Sirgue et al., 2008; Jun, 2014; Butzer, 2015; Oh and
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Alkhalifah, 2018; Oh and Alkhalifah, 2019). Due to the time-domain wave
simulation, which uses smaller computer memory than frequency-domain wave
simulation, time-frequency-domain FWI can handle large-scale problems.
Additionally, because the gradients are calculated in the frequency domain, only
the selected frequency components of the wavefields need to be stored in time-
frequency-domain FWI. Moreover, because the gradients at each frequency are
explicitly obtained in time-frequency-domain FWI, the frequency-marching
approach (Bunks et al., 1995) is easily implemented. Fig. 2-6 shows the process of

time-frequency-domain FWI at each iteration.
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Fig. 2-6. Flowchart showing the process of time-frequency-domain FWI at each

iteration.
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Chapter 3. CRG-based FWI

CRG-based FWI was described in the study of Hwang et al. (2020a). In this
chapter, | explain the concept of CRG FWI and prove that CRG FWI and classical
CSG FWI share the same inversion results when using the Gauss-Newton method.
Additionally, even in the case of using the pseudo-Hessian matrices as the
preconditioners, the inversion results obtained from CRG-based scheme have small
difference with those obtained from the classical CSG FWI, while greatly reducing
the computational cost. This is demonstrated by implementing both the CSG FWI

and CRG FWI for synthetic data for the Marmousi-11 model.

3.1. The concept of CRG FWI

According to the seismic reciprocity theorem, interchange of source and
receiver locations does not alter the recorded seismic traces (Knopoff and Gangi
1959; Ikelle and Amundsen 2005). This is easily shown using the Helmholtz-type
acoustic wave equation (refer to Appendix C). Here, the equivalence of seismic
wavefields between the CRG and CSG of source-receiver switched geometry is
shown. Based on the Marmousi-Il model (Martin et al. 2002), Fig. 3-1a shows a
simplified geometry for OBC survey, where sources are located near the water
surface and a single receiver is located in the middle of the ocean-bottom. By
applying the same source signature at the whole source position, a CRG as shown
in Fig. 3-1b is obtained. Figs. 3-1c and 3-1d show the source-receiver switched
geometry and a CSG obtained in this switched geometry, respectively. Comparison
of Figs. 3-1b and 3-1d demonstrates that CRGs of OBC survey data can be

regarded as CSGs in the source-receiver switched geometry (refer to Fig. 3-1e).
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Based on this observation, a CRG-based scheme, which matches observed
CRG of OBC data with the modeled CSG in source-receiver switched geometry, is
proposed. Compared to the classical CSG-based scheme, the number of wave
simulations needed to compute the gradients at each iteration reduces to twice the
number of receivers in CRG FWI. For instance, assuming a seismic survey whose
numbers of sources and receivers are ns and nr, respectively, the classical CSG-
based scheme needs CSGs with the number of ns (each CSG consists of nr traces)
while the proposed CRG-based scheme needs CSGs with the number of nr (each
CSG consists of ns traces) in source-receiver switched geometry (refer to Fig. 3-2).
This contributes to greatly reducing the computational cost of FWI, particularly for
ocean-bottom seismic data where the number of receivers is much smaller than the
number of sources. It is expected that the computational speed-up of CRG FWI to

CSG FWI would be ns/nr.
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Fig. 3-1. (a) OBC acquisition geometry with 240 sources (the red stars) and a single
receiver (the yellow triangle) overlain on the P-wave velocity of the
Marmousi-Il model and (c) its source-receiver switched geometry; (b)
and (d) are the common-receiver gather obtained in the acquisition
geometry of (a) and the common-shot gather obtained in the source-
receiver switched geometry of (c), respectively; (e) shows the difference
between (b) and (d).
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Fig. 3-2. Schematic diagrams showing the required common-shot gathers for (a)
CSG FWI and (b) CRG FWI: ns and nr are the numbers of sources and
receivers, respectively.
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3.2. Comparison of CRG FWI with CSG FWI

Before using the CRG-based scheme in FWI, it is important to know whether
this scheme offers similar inversion result to that obtained from the classical CSG-

based FWI. The local gradient of the least-squares objective function with respect

to a single model perturbation at the k™ nodal point has been derived in eq. (11)

with the classical CSG-based scheme. The term pd( ) for the whole receiver

J"

. -th ap (X]’XI)
position (x j) denotes the observed CSG for the i" source and ————~

om,
indicates the partial derivative wavefield propagated from the i source to the
th

j™ receiver due to the model parameter perturbation at the k™ nodal point as

shown in Fig. 3-3a.

On the other hand, because observed CRG is matched with modeled CSG of
the source-receiver switched geometry in CRG FWI, the gradient is calculated as

follows:

v, ECR = iiap”( & ')( S (x5%;) =pa (x55%))) - (24)

i=1i=1 om,

Therefore, observed seismic traces are sorted to form CRG and sources are applied

6pu(xi;xj)

at the original receiver positions during the forward wave simulation. 5
My

is the partial derivative wavefield in the source-receiver switched geometry that

propagates from the j™ source to the i receiver due to the model parameter

perturbation at the k™ nodal point as shown in Fig. 3-3b. According to the



seismic reciprocity theorem, pu(xi;xj)=pu(xj;xi) and %mlkw)_

b, (%)
6—] when the same source signature is used for wave simulation.
My

Therefore, eq. (24) becomes identical to eq. (11). Furthermore, the approximate-

Hessian matrices in each scheme are written as follows:

(=g Pl Blin) g

i=1l j=1 arnq

(H,)® =i§6pU(X~XJ) o (X%, , (26)

Fig. 3-4 describes the full ray-paths of approximate-Hessian matrices in both the
CSG FWI and CRG FWI. For both the schemes, it is noticed that they share the

same ray-path, therefore they are the same.

Fig. 3-5 shows the P-wave velocity of the Marmousi-1I model and the initial
velocity model used for the inversion test of CRG FWI. Modeling parameters used
to synthesize the acoustic pressure data are shown in Table 3-1. Figs. 3-6, 3-7 and
3-8 are the gradients, diagonal components of the approximate-Hessian matrices
and model update directions calculated at the first iteration, respectively. Because
the gradients and approximate-Hessian matrices of CRG FWI and CSG FWI are
identical, respectively, the model update directions calculated from the gradients
and approximate-Hessian matrices will also be the same for both the schemes.
However, when using the approximate-Hessian matrices as the preconditioners, the
total computational costs of CRG FWI and CSG FWI are identical because
additional number of wave simulations, which is twice the number of receivers (for
CRG FWI, twice the number of sources), is needed during the calcglation of
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approximate-Hessian matrices (Shin et al., 2001b).

To reduce this cost, the pseudo-Hessian matrix (Shin et al., 2001a) is used as a
preconditioner. However, in case of using the pseudo-Hessian matrix as a
preconditioner, the resulting model update directions of CSG FWI and CRG FWI
are different from each other. This is because only the virtual source term, which is
related to the incident wavefield from the source to the perturbation point (Fig. 3-9),
is considered during the calculation of the pseudo-Hessian matrix. This means that
the virtual sources in CSG FWI and CRG FW!I represent the incident and scattered
wavefields (i.e., incident wavefields in the source-receiver switched geometry),
respectively. Accordingly, the pseudo-Hessian matrices in CSG FWI and CRG FWI
approximate the approximate-Hessian matrix in different ways. As shown in Figs.
3-10 and 3-11, the pseudo-Hessian matrix and the gradient preconditioned with the
pseudo-Hessian matrix in CSG FWI are different from those of CRG FWI.
Comparing Figs. 3-11a and 3-11b with Figs. 3-8a and 3-8b, it is observed that the
model update direction preconditioned by the pseudo-Hessian matrix in CRG FWI
(Fig. 3-11b) looks more similar to the directions preconditioned by the
approximate-Hessian matrix (Figs. 3-8a or 3-8b) compared to the direction
preconditioned by the pseudo-Hessian matrix in CSG FWI (Fig. 3-11a). This is
attributed to the common geometry of OBC survey whose receivers are deployed
covering a limited area compared to sources. Based on this geometry, the
approximate-Hessian matrices that account for the whole raypath from source to
receiver show large value near the receivers due to the dense raypath around the
receivers (Figs. 3-7a and 3-7b) and become more similar to the pseudo-Hessian
matrix in CRG FWI (Fig. 3-10b) that also has large value near the receivers. Note
that this does not mean that the pseudo-Hessian matrix of CRG FWI is a more
accurate approximation of the approximate-Hessian matrix than that of CSG FWI.

However, these results support that the pseudo-Hessian matrix in CRG FWI is still
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a reasonable approximation of the Hessian matrix, therefore CRG FWI would
result in a reconstructed velocity model whose quality is as good as the classical

CSG FWI even if the pseudo-Hessian matrix is used as a preconditioner.

35 .':l'\._g ';:'1..5



Fig. 3-3. Schematic diagrams showing the ray-paths to compute the gradients in (a)
CSG FWI and (b) CRG FWI: The solid-arrows indicate the ray-paths of
the incident wavefields and the dashed-arrows denote the ray-paths of the
scattered wavefields; i and j denote the original source and receiver nodes,

respectively, and k indicates the model perturbation node.
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Fig. 3-4. Schematic diagrams showing the ray-paths to compute the approximate-
Hessian matrices in (a) CSG FWI and (b) CRG FWI: The solid-arrows
indicate the ray-paths of the incident wavefields and the dashed-arrows
denote the ray-paths of the scattered wavefields; i and j denote the

original source and receiver nodes, respectively, and p and q indicate the
model perturbation nodes.
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the red-dashed line near the water surface and 40 receivers located at the
ocean bottom along the yellow dotted-line. (b) A smoothed version of the
Marmousi-1I velocity model used for an initial model in FWI.
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Table 3-1. Modeling parameters for synthetic data for the Marmousi-11 model.

Model
Size 9.6 km x 3.2 km
Grid interval 0.02 km
Source
The first derivative of Gaussian function
Wavelet .
(maximum frequency of 12 Hz)
Total number 240
Interval 0.04 km
Receiver
Total number 40
Interval 0.1 km
Depth 0.18 km
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Fig. 3-7. The first approximate-Hessian matrices (only the diagonal components) of

(a) CSG FWI and (b) CRG FWI.
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Fig. 3-8. The first normalized model update directions obtained from the Gauss-
Newton method: (a) CSG FWI and (b) CRG FWI.
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(a)

Fig. 3-9. Schematic diagrams showing the ray-paths to compute the pseudo-Hessian
matrices in (a) CSG FWI and (b) CRG FWI: The solid-arrows indicate

the ray-paths of the incident wavefields.
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3.3. Synthetic data example: Marmousi-11 model

For further investigation of CRG FWI, the synthetic pressure data obtained by
assuming the OBC acquisition geometry for the P-wave velocity of the Marmousi-
Il model (refer to source and receiver positions in Fig. 3-5a and modeling
parameters in Table 3-1) are used. Unlike the previous examples of comparing the
gradients, approximate-Hessian matrices and pseudo-Hessian matrices of CSG
FWI and CRG FWI, slightly different source wavelets over the source positions are
applied. This is because the phase and amplitude of source wavelet may slightly
change over the source positions during the seismic acquisition (Badiey et al.,
2002). Accordingly, the first derivative of Gaussian function, whose amplitude and
maximum frequency change from 0.2 to 1 and 12 Hz to 14 Hz, respectively, is used
for source wavelets. A representative CSG and CRG are displayed in Fig. 3-12.
Due to the differences in source wavelets from one source position to another, the
representative CRG in Fig. 3-12b shows some discontinuity from trace to trace

unlike the CSG in Fig. 3-12a.

For time-frequency-domain FWI, the data components at frequencies from 2
Hz to 8.8 Hz with an interval of 0.4 Hz are used. Fig. 3-13 shows inversion results
obtained from CSG FWI and CRG FWI. Comparing these inversion results, it is
observed that some differences exist at the sides of the model (i.e., the part beyond
the receiver locations). This is attributed to the differences in the pseudo-Hessian
matrices used in CSG FWI and CRG FWI. However, by focusing within the
horizontal range where the receivers cover, the inversion results obtained by CSG
FWI and CRG FW!I seem to show similar inverted structures (refer to Fig. 3-13c).
Additionally, Table 3-2 shows the comparison of computational time between CSG
FWI and CRG FWI when a single CPU is used to conduct a single iteration.

Because the wave simulations are the most computationally intensive process
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during FWI, CSG FWI that requires the number of wave simulations as twice the
number of sources would require more computational time than CRG FWI,
proportional to the ratio between the number of sources and receivers. Therefore,
for ocean-bottom seismic data where the number of sources is commonly larger
than the number of receivers, it is noticed that the CRG-based FWI achieves
enhanced computational efficiency and similar inversion result compared to the

classical CSG-based scheme.
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Fig. 3-12. Representative (a) common-shot gather (CSG) and (b) common-receiver
gather (CRG) obtained with varying source functions for the Marmousi-11

model.
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Table 3-2. Comparison of computation time per iteration for CSG FWI (Tcsc) and
CRG FWI (Tcre) in the time-frequency domain for P-wave velocity of
Marmousi-lIl model: ns and nr indicate the number of sources and

receivers, respectively.

Tcsc (sec) Tcre (S€C) Tcse/ Tcre %
68542.5 11309.6 6.06 6




3.4. Discussions

In this thesis, the CSG FWI is compared with the CRG FWI only in the time-
frequency domain, but the proposed CRG-based scheme can also speed up FWI in
the frequency domain when using the direct solver (Hwang et al., 2020a). Although
the frequency-domain FWI with the direct solver requires only a single matrix
decomposition for all source positions, the forward and backward substitutions by
twice the number of sources and frequencies are still needed to calculate the
gradients at each iteration of CSG FWI. Therefore, using CRG as the observed data
can speed up FWI even in the frequency domain due to the reduced number of
forward and backward substitutions. For the same case, frequency-domain CRG
FWI was about 4 times faster (less than the time reduction ratio of time-frequency-

domain FWI) than frequency-domain CSG FWI.

In the synthetic inversion test, the model update directions are preconditioned
with the pseudo-Hessian matrices, which are one of the simplest ways to
compensate for the geometrical spreading effects. However, the model update
directions preconditioned with the pseudo-Hessian matrices in CSG FWI and CRG
FWI are slightly different due to the differences in approximating the Hessian
matrix. Therefore, if some different methods that enable better approximation of
the Hessian matrix are used, such as the L-BFGS, the preconditioned model update
directions and final inversion results of CSG FWI and CRG FWI would be more

similar to each other.

Additionally, the inversion test was performed only for 2D case. However, the
ratio between the number of sources and receivers becomes much larger in 3D
cases. For instance, the 3D OBC data acquired at the Volve oilfield of the North
Sea has 37,603 airgun sources at the ocean surface and 3,840 receivers at the
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ocean-bottom. Another OBC data set acquired at the Valhall oilfield, which has
been popularly used in the studies of seismic inversion and migration, comprises
49954 airgun sources and 2302 receivers (Operto et al., 2015). Therefore, under the
assumption that all traces of those two OBC survey data are used, the reduction
ratios of computational cost by using CRG FWI instead of CSG FWI would be
about 9.8 for the Volve data and 21.7 for the Valhall data, respectively. As a result,
it is expected that the proposed CRG-based inversion scheme will be even more

effective in the case of 3D FWI of ocean-bottom seismic data.



Chapter 4. Acoustic FWI with pseudo-Ax data

In acoustic FWI, pressure data are commonly used to reconstruct the P-wave
velocity model. In this chapter, an acoustic FWI strategy is proposed that uses
horizontal spatial differentiation of pressure data. These data are referred to as the
pseudo-Ax data. Because narrow-angle PP and PS reflections at the pseudo-Ax
data have smaller amplitudes than those at the pressure and horizontal particle
acceleration (Ax) data, it is expected that the acoustic FWI with pseudo-Ax data
would focus on reconstructing long-wavelength features of the models and
constrain the update of short-wavelength features related to the narrow-angle

reflections.

4.1. Characteristics of each data component

4.1.1. Comparison of common-shot gathers

To observe the characteristics of each data component, acoustic and elastic
wave simulations are performed with the P- and S-wave velocity models given in
Fig. 4-1. The P-wave velocity model in Fig. 4-1a consists of water layer, linearly
increasing velocity layer and consolidated high-velocity layer. Fig. 4-1b shows the
S-wave velocity model estimated from the P-wave velocity model using the

empirical relationships proposed by Castagna et al. (1985) and Christensen (1996):

0 for v, <15
v, =4(v,—-136)/1.16 for 15<v, <35 . 27)
0.53v, for 3.5<v,

In Fig. 4-2, CSGs of pressure, Ax and vertical particle acceleration (Az) data
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obtained from acoustic and elastic wave simulations are compared with each other.

Note that the elastic CSGs are horizontally flipped in this figure.

First, by comparing the acoustic CSGs (right panels of Fig. 4-2) of pressure,
Ax and Az, it is noticed that the Ax data show strong amplitudes of the direct and
diving waves but weak amplitudes of the PP reflections, particularly at near offsets,
compared to the pressure data. These near-offset PP reflections strongly appear at
the Az data. This is attributed to the ray-paths of PP reflections as shown in Fig. 4-3.
PP reflections at near offsets enter receivers in an almost vertical direction and their
particle motions are parallel to this propagation direction (i.e., vertical direction).
Therefore, near-offset PP reflections cause strong vertical particle motions at the

receivers and distinctly recorded at Az data rather than at Ax data.

Then, by investigating the elastic CSGs (left panels of Fig. 4-2) of pressure,
Ax and Az, it is noticed that the Ax data contain strong PS reflections at near
offsets compared to the pressure and Az data. Similar to the case of PP reflections,
the near-offset PS reflections enter receivers in an almost vertical direction and
result in particle motion normal to this propagation direction (i.e., horizontal
direction; refer to Fig. 4-4). Therefore, narrow-angle PS reflections cause strong
horizontal particle motions at the receivers and distinctly recorded at the Ax data.
However, because these PS reflections need to be converted into P-wave to be
recorded at the pressure data, the amplitudes of these PS reflections are weak at the
pressure data. Sears et al. (2008) also observed these characteristics of data
components and used elastic Ax data in the final stage of elastic FWI to reconstruct

short-wavelength features of the S-wave velocity model.

To focus on the reconstruction of long-wavelength features of the velocity
model, it is important to suppress the updates of short-wavelength features related

to the near-offset PP and PS reflections. For this purpose, the horizontal spatial
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differentiation of recorded pressure data, which is referred to as pseudo-Ax data, is
used in FWI. As shown in Fig. 4-5, the pseudo-Ax data maintain the characteristic
of acoustic Ax data in the aspect of strong direct and diving waves and weak near-
offset PP reflections. In addition, because the PS reflections are weak at pressure
data, this pseudo-Ax data that originate from pressure data also show weak near-

offset PS reflections.

Following the studies of Wu and Toksoz (1987) and Woodward (1992), there
is a relationship between the local wavenumber of model update direction and

opening angle as follows (refer to Appendix D):

20

k=—cos(€]n , (28)
v 2

where Kk is the local wavenumber (i.e., inverse of wavelength) vector; @, v, 6
denote the angular frequency, velocity of the local media, opening angle between
the source and receiver wavefields, respectively; n is the unit vector showing the
direction of slowness (Virieux and Operto, 2009; Alkhalifah, 2015). From eq. (28),
it is noticed that the narrow-angle reflections are related to the reconstruction of
short-wavelength features of the models. Therefore, acoustic FWI with pseudo-Ax
data, which are free from the narrow-angle reflections, would help primarily

reconstruct long-wavelength features of the given models.
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Fig. 4-1. (a) P-wave velocity model and (b) S-wave velocity model estimated from
the empirical relationships: The red star indicates the source position and

the yellow dotted line shows the receiver line at the ocean-bottom.
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0

Fig. 4-2. Acoustic and elastic common-shot gathers of (a) pressure, (b) horizontal
and (c) vertical particle acceleration wavefields: PP and PS denote the
types of reflections.
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PP reflection

Fig. 4-3. Schematic diagram showing the ray-paths (the one-sided white arrows)
and particle motions (the double-sided blue arrows) of PP reflections. At

near offsets, PP reflections cause particle motions in an almost vertical
direction.
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PS reflection

Fig. 4-4. Schematic diagram showing the ray-paths (the one-sided white arrows)
and particle motions (the double-sided red arrows) of PS reflections. At

near offsets, PS reflections cause particle motions in an almost horizontal
direction.
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Offset (km) Offset (km)
0

Fig. 4-5. Acoustic common-shot gather (CSG) of horizontal particle acceleration
(Ax) wavefields (right panel) and elastic CSG of pseudo-Ax wavefields

(left panel). Note that PS reflections are weaker at pseudo-Ax data than
those at Ax data (refer to Fig. 4-2Db).
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4.1.2. Sensitivity kernel analysis

To visually observe the effect of using the pressure, Ax, Az and pseudo-Ax
data in acoustic FWI, sensitivity kernel analysis, which computes a single shot-
receiver gradient, is performed. Fig. 4-6 shows the sensitivity kernels when using
the acoustic pressure, Ax and Az data at an offset of 1 km. For this near-offset case,
sensitivity kernel with the Ax data (Fig. 4-6b) shows weak PP migration isochrone
compared to that of pressure (Fig. 4-6a) due to the weak near-offset PP reflections
of Ax data. This migration isochrone distinctly appears at the sensitivity kernel of
Az data (Fig. 4-6¢). This means that the FWI with the acoustic Ax data limits the
reconstruction of short-wavelength features of the models. However, for sensitivity
kernel with elastic Ax data, additional migration isochrone (black arrows in Fig. 4-
7b) appears. Because the strong PS reflections at elastic Ax data are regarded as
acoustic wavefields during the back-propagation of recorded data in acoustic FWI
and because these PS reflections are recorded at later time than PP reflections, the
convolution between the source and receiver wavefields generates outer PS
migration isochrone. Therefore, for acoustic FWI with elastic Ax data, it is
expected that short-wavelength features related to the near-offset PS reflections
would appear and degrade the quality of reconstructed P-wave velocity model. On
the other hand, in case of using pseudo-Ax data (Fig. 4-7d), which show small
amplitudes of both near-offset PP and PS reflections, the resulting sensitivity kernel
no longer shows both the PP and PS migration isochrones and only the smooth

kernel remains.

Until now, it is shown that acoustic FWI with pseudo-Ax data would focus on
reconstructing the long-wavelength features of the models. However, because
direct and diving waves are much stronger than the far-offset PP reflections at

pseudo-Ax data (refer to Fig. 4-5), FWI with pseudo-Ax data mainly focuses on
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reconstructing the shallow part of a given model up to the depth that diving waves
reach. Therefore, additional preconditioning is needed to strengthen the update of
deeper part of the model when using the pseudo-Ax data in acoustic FWI. Here, a

depth-related damping term is applied to the pseudo-Hessian matrix as follows:

Fo(x2) = H, (62)— (29)

(2

where H, is the original pseudo-Hessian matrix calculated at the whole nodal

point; z is the depth and c¢ is an arbitrary coefficient used to determine the
order of damping. Due to this damping term, the pseudo-Hessian matrix becomes
smaller as the depth increases, therefore the preconditioned model update direction

becomes larger with depth and enhances the update of deeper part of the model.
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Fig. 4-6. Sensitivity kernels for the acoustic wavefields: (a) pressure, (b) horizontal
and (c) vertical particle acceleration wavefields.
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4.2. Usage of pseudo-Ax data in CRG FWI

To constrain short-wavelength features in the gradients, acoustic FWI that
uses pseudo-Ax data rather than pressure data is proposed. Because it is noticed
that both the CSG FWI and CRG FWI result in the same gradients for acoustic
FWI with pressure data (chapter 3), using the pseudo-Ax data instead of pressure
data can also be done with CRG-based scheme. In other words, observed pseudo-
AXx data is obtained from the observed pressure CRGs and is matched with the
modeled pseudo-Ax data in source-receiver switched geometry. It should be noted
that CRG FWI with pseudo-Ax data results in different gradient with that from
CSG FWI with pseudo-Ax data, because the seismic reciprocity theorem is no

longer satisfied for pseudo-Ax data.

An advantage of using pseudo-Ax data in CRG-based scheme is that the
difficulty of calculating observed pseudo-Ax data at fluctuating ocean-bottom
surface is resolved. Because the pseudo-Ax data are the horizontal spatial
differentiations of pressure data, the whole pressure wavefield should be recorded
at the same depth (assuming flat ocean-bottom surface) to properly obtain pseudo-
Ax data. If the pressure data are recorded at the fluctuating ocean-bottom surface,
therefore the depth of receivers largely varies, proper processing techniques to
adjust the depth of receivers must be employed before the calculation of pseudo-Ax

data.

One may ignore the ocean-bottom topography and just take the pressure
difference between the horizontally adjacent receiver positions as shown in Fig. 4-8,
but the calculated pressure difference would not guarantee the characteristic of
pseudo-Ax data, such as extremely weak near-offset PP reflections. Fig. 4-9 shows
the case of dipping ocean-bottom surface. By performing an acoustic wave
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simulation for the P-wave velocity model shown in Fig. 4-9a, pressure and Ax
CSGs are obtained as in Figs. 4-9b and 4-9c. Despite the dipping ocean-bottom
surface, it is noticed that Ax CSG would show weak near-offset PP reflections.
However, ignoring the ocean-bottom topography, horizontal pressure difference
from the pressure CSG is calculated as in Fig. 4-9d and shows quite strong near-
offset PP reflections. This is because particle motions in the vertical direction
would also be included in the calculated pressure difference. Therefore, CSG FWI

with this pressure difference would show short-wavelength features in the gradients.

On the other hand, because the depths of source positions are quite constant
for ocean-bottom seismic data, pseudo-Ax data inversion with CRG-based scheme
properly calculates pseudo-Ax data, resolving the issue of ocean-bottom
topography (refer to Fig. 4-10). Because CRG FWI assumes source-receiver
switched geometry for recorded pressure data (Fig. 4-11a), the observed pseudo-Ax
data are computed following the ocean surface and represent the pressure
difference only due to the horizontal change of receiver positions (original source
positions in the acquisition geometry of Fig. 4-9a). Therefore, as shown in Fig. 4-
11d, calculated horizontal pressure difference would show weak short-angle PP
reflections. Additionally, the computation cost of FWI of ocean-bottom seismic

data would be reduced due to the smaller number of wave simulations in CRG FW!I.
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Fig. 4-8. Schematic diagram showing that the horizontal pressure difference with
ocean-bottom topography is affected by both the horizontal and vertical

particle motions: p,, p; are the pressure wavefields at the selected
receiver positions, (x,z) and (X+AXx,z—Az), respectively; p, is the

pressure wavefield at (x, z- Az) :
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Fig. 4-9. (a) P-wave velocity model for acoustic wave simulation and common-shot
gathers (CSG) of (b) pressure, (c) horizontal particle acceleration and (d)
horizontal pressure difference: the red-solid and yellow-dotted lines in (a)
indicate the source and receiver lines, respectively; the red star in (a)
shows the source position for the representative CSGs in (b, ¢, and d); the
red circles show that near-offset PP reflections are strong at the horizontal

pressure difference in the source-receiver geometry of (a).
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Fig. 4-10. Schematic diagram showing that the horizontal pressure difference in
source-receiver switched geometry (CRG FWI) comes only from the

horizontal particle motion: p,, p, are the pressure data at the selected

receiver positions, (x,z) and (X+Ax,z—Az), respectively.
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Fig. 4-11. (a) P-wave velocity model for acoustic wave simulation and common-
shot gathers (CSG) of (b) pressure, (c) horizontal particle acceleration
and (d) horizontal pressure difference: the red-solid and yellow-dotted
lines in (a) indicate the source and receiver lines, respectively; the red star
in (a) shows the source position for the representative CSGs in (b, ¢, and
d); the red circles show that near-offset PP reflections are weak at the

horizontal pressure difference in the source-receiver geometry of (a).
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4.3. Synthetic data example: Volve tomography model

To demonstrate the effect of using pseudo-Ax data in acoustic FWI, observed
pressure data are obtained with P- and S-wave velocity models shown in Fig. 4-12.
These P- and S-wave velocity models are obtained from reflection tomography and
released along with the OBC data of the Volve oilfield. Modeling parameters are
listed in Table 4-1. Ricker wavelet with the maximum frequency of 18 Hz was used
as a source signature. To avoid the numerical dispersion of S-waves during the
elastic wave simulation, a grid interval of 6.25 m is employed to synthesize the
observed data. Fig. 4-13 shows the representative CSGs of pressure, Ax and
pseudo-Ax data. As expected, the CSG of pseudo-Ax data shows smaller
amplitudes of PP and PS reflections at near offsets compared to those of pressure

and Ax data.

Then, employing a grid interval of 25 m in acoustic FWI, the model update
directions are calculated at the first iteration and are displayed in Fig. 4-14.
Frequencies ranging from 3 Hz to 10 Hz with an interval of 0.4 Hz are used and the
classical CSG-based scheme is employed for FWI. From Figs. 4-14a and 4-14c, it
is noticed that the first model update direction obtained from pseudo-Ax data
inversion shows smoother update of P-wave velocity model than that obtained
from the pressure data inversion. On the other hand, the model update direction
obtained from Ax data (Fig. 4-14b) shows additional short-wavelength features,
which are irrelevant to the true P-wave velocity structures. Final inversion results
for the P-wave velocity are shown in Fig. 4-15. In this figure, it is shown that the
acoustic FWI with elastic Ax data (Fig. 4-15b) degrades the quality of inverted P-
wave velocity due to the effect of strong PS reflections of the observed Ax data
(Fig. 4-13b). Additionally in Fig. 4-15a, it is observed that short-wavelength

features of the velocity model are excessively updated when using the p]re§sure data .
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in acoustic FWI (particularly at the boundaries of distinct reflector near the depth
of 3 km). This is attributed to the effect of strong PP reflections at the observed

pressure data (Fig. 4-13a).

Fig. 4-16 shows the relative model misfit curves for inversion results obtained

from pressure and pseudo-Ax data inversion, which are calculated from

m

true

2
model misfit=\/ﬁ[M] , (30)

where m,, and m,, indicate the inverted and true P-wave velocity parameter

true
vectors, respectively; N is the total number of nodal points (Prieux et al., 2013;
Jeong et al., 2017; Zhong and Liu, 2019). For pressure data inversion, short-
wavelength structures, such as reflector surfaces, are over-estimated to primarily
match the strong PP reflections at near offsets, therefore the model misfit increases
at later iterations. On the other hand, due to the characteristic of long-wavelength
structure update, the model misfit tends to stably converge in case of pseudo-Ax

data inversion.
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Fig. 4-12. Tomographic velocity models at the Volve oilfield of the North Sea: (a)
P-wave velocity model, (b) S-wave velocity model, and (c) smoothed P-
wave velocity model as an initial model for FWI; the red-dashed and
yellow-dotted lines indicate the source and receiver positions,
respectively.
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Table 4-1. Modeling parameters for synthetic data for Volve oilfield tomographic

velocity models.

Model
Size 11.25 km x 4.525 km
Grid interval 0.00625 km
Source
The first derivative of Gaussian function
Wavelet .
(maximum frequency of 18 Hz)
Total number 443
Interval 0.025 km
Receiver
Total number 235
Interval 0.025 km
Depth 0.1 km
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Fig. 4-13. Representative common-shot gathers of (a) pressure, (b) horizontal
particle acceleration and (c) pseudo-Ax. Both the PP and PS reflections at
near offsets are weak at pseudo-Ax data.
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Fig. 4-16. Model error curves for acoustic FWI with pressure and pseudo-Ax data.
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4.4. Discussion

In this chapter, acoustic FWI strategy that matches modeled and observed
pseudo-Ax data is proposed to focus on the reconstruction of long-wavelength
structures of the velocity models. However, in mathematical point of view, this
approach is the same as taking the second-order horizontal spatial derivative to the
pressure data residuals (refer to Appendix E). To further investigate the meaning of
acoustic FWI with pseudo-Ax data, the radiation pattern of the second-order
horizontal differentiation of pressure data with respect to the velocity perturbation

is investigated.

With respect to the velocity perturbation, the partial derivative pressure

wavefield (8p,/dm) shows an isotropic pattern as shown in Fig. 4-17a. This

means that regardless of the opening angle between the source, perturbation point
and receiver, scattered pressure wavefields propagate to receivers with the same

amplitude. On the other hand, the partial derivative of second-order horizontal

differentiation of pressure wavefield, 6(62pu /axz)/am, shows an anisotropic

radiation pattern as shown in Fig. 4-17b. From this figure, it is observed that the
scattered wavefields with large opening angles would be stronger than those with
small opening angles. Therefore, it is demonstrated that the acoustic FWI with
pseudo-Ax data would enhance the reconstruction of long-wavelength features of

the models.



(@) (b)

Fig. 4-17. Radiation pattern analysis with (a) pressure data and (b) second-order
horizontal differentiation of pressure data: The black star denotes the
source position and white rectangles represent the velocity perturbation
points; the widths of black arrows show the relative amplitude of
scattered wavefields.



Chapter 5. Real data example: Volve oilfield data in

the North Sea

5.1. Data preprocessing

To mitigate the nonlinearity problem and to reduce the computational cost of
acoustic FWI of ocean-bottom seismic data, the acoustic FWI strategy with
pseudo-Ax data obtained from the pressure CRGs is proposed. For further
demonstration of this inversion strategy, ocean-bottom 3D seismic data set
acquired at Volve oilfield of North Sea (refer to Fig. 5-1) is used. This 3D data set
was acquired with 16 ocean-bottom cables in 2010, and has officially been released
by Equinor and its former Volve license partners since Oct. 2018. Total numbers of
airgun sources and 4-component receivers per cable are 37,603 and 240,
respectively. For 2D FWI, data recorded through a single receiver cable (No.
40195-1252860) with sources positioned along the same line (refer to Fig. 5-2) are
selected. The total number of selected sources is 443 and the average depth of sea
bottom is about 100 m. For preprocessing, several steps are carried out, such as
trace-editing and trace-interpolation (which relocates all the receivers on the
modeling nodes with the grid interval of 25 m for both the horizontal and vertical
directions). The total number of relocated receivers is 235. Several additional
preprocessing steps are conducted, such as 3D-to-2D conversion (Crase et al. 1990;
Huang and Schuster 2018) and convolving the synthetic source wavelet to recorded
seismic traces to remove high-frequency data components (which is important to
avoid numerical dispersion during the backpropagation of the residual wavefields).
The P-wave velocity model obtained from reflection tomography has also been
released along with the 3D OBC data set (shown in Fig. 4-12a). As shown in Fig.

5-3, geological information of survey area is denoted along with the tomographic
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P-wave velocity model (Jackson and Lewis, 2016), and a smoothed version of this
model (refer to Fig. 4-10c) is used for an initial guess of the P-wave velocity model.
The source and receiver locations are the same as the synthetic inversion example

in chapter 4.

In Fig. 5-4, the representative CSGs of pressure, Ax and pseudo-Ax after the
preprocessing stage are displayed. Similar to the synthetic CSGs in Fig. 4-13,
distinct PP reflections at pressure CSG, distinct PS reflections at Ax CSG (indicated
with the white arrows) and smaller amplitude of both PP and PS reflections,
particularly at near offsets, at pseudo-Ax CSG are observed. To implement CRG
FWI, pressure data traces are sorted into CRG as shown in Fig. 5-5a. Pseudo-Ax

data obtained from this representative pressure CRG is shown in Fig. 5-5b.
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Fig. 5-1. The location of Volve oilfield at North Sea.
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52860)

Fig. 5-2. Source-receiver geometries of selected receiver cable of OBC data
acquired at Volve oilfield of North Sea. The black line indicates the target
receiver cable (No. 40195-1252860) and the gray dots show the plane
view of all applied source positions related to this receiver cable. For 2D
FWI, only the seismic traces whose source positions are located along

this receiver cable line are selected and used.
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Fig. 5-3. P-wave velocity model of the survey area obtained from the reflection
tomography. Geological information of survey area is given by Jackson

and Lewis (2016).
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Fig. 5-4. Representative common-shot gathers of (a) pressure, (b) horizontal

particle acceleration and (c) pseudo-Ax data.
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Fig. 5-5. Representative common-receiver gathers of (a) pressure and (b) pseudo-
Ax data.
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5.2. Inversion results

The model update directions at the first iteration and the final inversion results
using the CSG- and CRG-based schemes are shown in Figs. 5-4 and 5-5. For
acoustic FWI, frequencies in the range of 3.4 Hz to 10 Hz with an interval of 0.4
Hz are used. As in the synthetic example of chapter 3, some differences between
the CSG FWI and CRG FWI with pressure data are observed due to the differences
of pseudo-Hessian matrices (Figs. 5-7a and 5-7d). However, the difference of
pseudo-Hessian matrices only affect the scaling of the gradients, therefore overall

updated structures seem to be similar to each other.

For acoustic FWI with pseudo-Ax data, both the CSG- and CRG-based
schemes seem to offer similar inversion results (Figs. 5-7c and 5-7e), but note that
the gradients of each scheme is not the same. Both the CSG FWI and CRG FWI
with pseudo-Ax data seem to be successful for this Volve oilfield data, but this is
because the ocean-bottom surface of survey area is quite flat. If the ocean-bottom
surface largely fluctuates, inversion results of each scheme with pseudo-Ax data
would be quite different and CRG FWI with pseudo-Ax data would show smoother
inverted P-wave velocity model compared to that from CSG FWI with pseudo-Ax

data.

The comparison of required computational time between CSG FWI and CRG
FWI is shown in Table 5-1, for both the pressure and pseudo-Ax data inversion.
Because the computational cost in time-frequency-domain FWI is proportional to
the number of used sources, it is observed that the computational speedup between
CSG FWI and CRG FWI is about the same as the ratio of the number of sources to

the number of receivers.
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Fig. 5-6. Model update directions at the first iteration when using (a, d) pressure,
(b) horizontal particle acceleration and (c, €) pseudo-Ax data in (a, b, c)
CSG FWI and (d, ) CRG FWI.
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Fig. 5-6. (Continued)
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Fig. 5-7. Inverted P-wave velocity models obtained from acoustic FWI with (a, d)
pressure, (b) horizontal particle acceleration and (c, ) pseudo-Ax data in
(a, b, c) CSG FWI and (d, e) CRG FWI.
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Table 5-1. Comparison of computational time per iteration for CSG FWI (Tcsg) and

CRG FWI (Tcrg) in the time-frequency domain for real data example of

the Wolve oilfield: ns and nr indicate the number of sources and

receivers, respectively.

Tcsc (Sec) Tcre (S€C) Tcse /Tcre ?
Pressure 10314.382 5392.954 1.913 1.885
Pseudo-Ax 10320.218 5399.369 1.911 1.885




5.3. Quality Control

Comeparing the results of pressure, Ax and pseudo-Ax data inversion, it is
noticed that acoustic FWI with Ax data shows short-wavelength structure updates
that seem to be due to the strong PS reflections and fails to reconstruct reasonable
P-wave velocity model. On the other hand, acoustic FWI with pressure data or
pseudo-Ax data converges to reliable velocity models and shows distinct reflector
at the depth of around 3 km. However, unlike the pseudo-Ax data inversion,
acoustic FWI with pressure data is mainly focused on the update of reflector
boundaries (i.e., short-wavelength features of the model) and the distinct reflector

appear to be incontinuous.

Fig. 5-8 shows the migration images obtained from the velocity model of
pressure data inversion (Fig. 5-7d) and that of pseudo-Ax data inversion (Fig. 5-7e).
Note that both the images show the distinct-continuous reflectors at the depth of
around 3 km. In this Volve oilfield, the target oil reservoir is known to be located
beneath the carbonate caprock, which is at the depth of around 3 km (refer to Fig.
5-3). With this a-priori information of caprock, result of pseudo-Ax data inversion,
which clearly delineates the caprock of the reservoir, seems to be more reasonable
compared to the result of pressure data inversion. Fig. 5-9 shows the velocity
models of each data inversion (pressure data inversion and pseudo-Ax data

inversion) overlapped with the corresponding migration images.

Additionally, several methods are used for further investigation of the quality
of each reconstructed velocity model. The first method is to compare the modeled
CSG of inverted velocity model with the observed CSG used in FWI. Fig. 5-10
shows the modeled and observed pressure CSGs with the P-wave velocity models
shown in Figs. 5-7d and 5-7e. Both the modeled CSGs show the distinct reflection
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hyperbola at around 3 seconds as observed CSG. However, for far-offset PP
reflections, the modeled CSG using the inverted velocity model of Fig. 5-7e (the
result of pseudo-Ax data inversion) fits well with the observed CSG compared to
that using the inverted velocity model of Fig. 5-7d (the result of pressure data
inversion). This is attributed to the characteristic of pseudo-Ax data. Because only
the far-offset PP reflections distinctly appear at pseudo-Ax data, acoustic FWI with
pseudo-Ax data preferentially matches the traveltime of far-offset PP reflections

rather than that of near-offset PP reflections.

Secondly, the angle-domain common-image gathers (ADCIG) are obtained to
investigate the quality of inverted P-wave velocity models. Because ADCIGs are
computed at certain horizontal locations by extending the aperture between the
source and receiver wavefields, correct velocity model would result in flattened
reflectors at each gather (Sava and Fomel, 2003). Comparing the ADCIGs shown
in Fig. 5-11, it is observed that the reflectors (indicated with red arrows) in Fig. 5-
11b (obtained from the reconstructed velocity of pseudo-Ax data inversion; Fig. 5-
7e) are more flattened than those in Fig. 5-11a (obtained from the reconstructed
velocity of pressure data inversion; Fig. 5-7d). These observations show that the
acoustic FWI with pseudo-Ax data gives more reliable P-wave velocity model than

that with pressure data.
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Fig. 5-8. Migration images for the P-wave velocity models inverted using (a)
pressure data (Fig. 5-7d) and (b) pseudo-Ax data (Fig. 5-7¢).
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Fig. 5-9. Inverted P-wave velocity models overlapped with the migration images:
(a) pressure data inversion (Fig. 5-7d) and (b) pseudo-Ax data inversion
(Fig.5-7e).
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(a) Distance (km) Distance (km)  Distance (km)
8.1 5.2 2.2 5.2 8.1

5.2 2.2

Modeled CSG Observed CSG Modeled CSG

(b) Distance (km) Distance (km)  Distance (km)
8.1 5.2 22 5.2 8.1 5.2 22

Time (s)

Modeled CSG Observed CSG Modeled CSG

Fig. 5-10. Modeled and observed pressure CSGs for the P-wave velocity models
inverted using (a) pressure data (Fig. 5-7d) and (b) pseudo-Ax data (Fig.
5-7e): The red circles indicate that the far-offset PP reflection better
matches in case of pseudo-Ax data inversion compared to the case of
pressure data inversion; note that modeled CSGs are horizontally flipped.
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(a) Location (km)

Depth (km)
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Fig. 5-11. Angle-domain common-image gathers (ADCIG) for the P-wave velocity
models inverted using (a) pressure data (Fig. 5-7d) and (b) pseudo-Ax
data (Fig. 5-7e): The red arrows show that reflectors appear to be more
flattened when using the velocity of pseudo-Ax data inversion compared

to those when using the velocity of pressure data inversion.
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Chapter 6. Conclusions

These days, studies on FWI consider more complex nature of the Earth, such
as elasticity, anisotropy and attenuation, for more sophisticated simulation of
seismic wave propagation. However, acoustic FWI based on the simple acoustic
wave equation is still widely used in the industry due to its small computational
cost and less suffering from the local minima problem. In this thesis, | proposed an
acoustic FWI strategy using pseudo-Ax data that are obtained from the pressure

CRG to enhance the performance of acoustic FWI of ocean-bottom seismic data.

Because ocean-bottom seismic data commonly contain numerous sources and
limited number of receivers, the classical CSG-based FWI requires huge
computational cost. To reduce the computational burden of FWI for ocean-bottom
seismic data, | tried to reduce the required number of wave simulations in FWI and
proposed to match observed CRG with modeled CSG in source-receiver switched
geometry when the number of sources largely exceeds the number of receivers.
Thanks to the seismic reciprocity theorem, CRG FWI shares the same gradients
and approximate-Hessian matrices as CSG FWI. However, because there is no
computational speed-up for CRG FWI with Gauss-Newton method, the pseudo-
Hessian matrix is used as a preconditioner of the gradient. For synthetic example of
the Marmousi-Il model, the CRG FWI resulted in similar inverted velocity model

to that obtained from the CSG FWI, but with reduced computational burden.

In addition, the method of using pseudo-Ax data, which are the horizontal
spatial differentiation of pressure data, rather than pressure data themselves in
acoustic FWI was proposed. From the CSGs of pressure, Ax, Az and pseudo-Ax
data, it was observed that the pseudo-Ax data show relatively weak PP and PS

reflections at near offsets. Due to this characteristic of pseudo-Ax data, the
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sensitivity kernel with pseudo-Ax data showed only the smooth kernel and the
gradient of pseudo-Ax data inversion was smoother than those of pressure and Ax
data inversion. As a result, acoustic FWI with pseudo-Ax data helped alleviate the

nonlinearity problem of FWI.

In this thesis, the CRG-based scheme was combined with the pseudo-Ax data
inversion. In other words, observed pseudo-Ax data are calculated from the
pressure CRGs and matched with modeled pseudo-Ax data that are simulated in
source-receiver switched geometry. Through this strategy, the difficulty of
obtaining pseudo-Ax data for uneven ocean-bottom surface is resolved. With real
OBC data set acquired at the Volve oilfield of North Sea, | demonstrated that the
proposed strategy reduces total computational cost of FWI by reducing the number
of wave simulations. Additionally, modeled CSGs and ADCIGs with inverted
velocity models showed that the velocity model from pseudo-Ax data inversion is

more reliable than that from conventional pressure data inversion.
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Appendix A. Derivation of gradient in FWI

The second-order acoustic wave equation with pressure source is written as:

1 0°P(x.t) 1
v ZVP(xt) |+ f
Ty (2ve(en e,
'P(x,0)=0

<6P(x,t) 0

a |,

limP(x,t)=0

LX—>00

(A—1)

where f, represents the pressure source and additional equations represent the

initial and radiation boundary conditions. Then, add an additional term to least-

squares norm objective function as:

E.,= %”[Pu (xt)-P, (x,t)]gé(x— X; Javdt
—Hq(x,t)[pvipzm—v-[%wu (x,t)]— fp]dth

(A-2)

ot?

Because the second term at the right-hand-side of eq. (A-2) is always zero for any

wavefield q, the objective function is exactly the same as that of eq. (10). Then,

each part of the second term is rearranged using the integration by parts and Gauss

divergence theorem as follows:
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”q ( ! a;—(z)(t)Jdth
=I{q(x,t) 1 R ( xt)% jaq (xt) 1 oP,(xt)

s dt L dv
PV, t ot ,ovp ot

=I_{aq(x,t) 1 6Pu(x,t)%T (2 p\:/L 2 Pu(x’t)dt}dv

ot pv,’ ot ot?

=”62q(x’t) LB (x.t)dvet

2
ot PV

is satisfied if a termination condition for q is applied as follows:

q(xT)=0
aq(x,t) (A—4)
at t=T
where T is the total recording time. Moreover,
[fa(xt)v [ VP, (xt)]dth
- jjv[ vp (xt)j va(xt)1VR, (xt)dvdt ,  (A—5)
yo)
=”—Vq(x,t)—VPu (x.t)dvdt
Yo
by imposing the radiation boundary condition as:
limg(x,t)=0 . (A-6)

X—>»0

Therefore, eq. (A-2) isrearranged as:
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E., :%”[Pu (xt)-P, (x,t)]i&(x—xj)dth
—H[P( L Falx t)]dth . (A=T)

_J'J'[Vq (x.t)- ( VR, (%, t)DdVdejqu (x,t)dvdt

Eqg. (A-7) is then rearranged by taking the variance operator as follows:

SE, = [[oR, (x )[R (x.t) =Py (X,t)]ié‘(x—xj Javat

j=1
2
L9 li?’t)dvm
1
+ || 6P, (x,t)V-| =Vq(x,t) |dVdt .(A-8)
ff R, (x) [p a(x)
+Ha‘p[P< s (%Vq(x,t)-vpu(x,o]]dvm
o
q(x,t
+”5vp( u 6&2 )]dth
The adjoint-wavefield is then defined as:
A(xt)=q(x,T-t) . (A—9)

In conclusion, if the adjoint wavefield satisfies the following relation:

%M—V-[EVA(XJ)]

ot?

PV, P
=|:Pu(x,T—t)—Pd(x,T—t)]i&(x—xj) , (A—10)
=1

[1(x,0)=
< oA(x.t)
ot t=0 B
I|m A(x,t)=0
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the partial derivative of objective function with respect to each model parameter

(p or v,)iswritten as:

_”P 10 ﬂ(;(tzT D gva
, (A-11)
+”?V/1(X,T —t)-VPu (x.t)dvdt
L2 2 O*A(xT-1)
—_HP( vt (A-12)
because the terms aP“a(X't) and 6Pl:35x,t) are ignored. By comparing the eq.
P p

(A-12) with eqg. (12), it is noticed that the partial derivative of modeling operator

2 2
36—2 and %6—2+%V-V for velocity and
PV, ot pV,Satt p

corresponds to the term

density parameters, respectively. Also, because _[ I P, (xt)A(x,T —t)dvdt is the

convolution of wavefields in the time domain, gradients are calculated in time-
frequency-domain FWI just by multipling the extracted frequency components of

wavefields.
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Appendix B. Conjugate-gradient method

The conjugate direction method is a technique to iteratively solve a large

linear problem, such as:

Ax=b . (B—1)

The key idea of this method is to construct a pair of vectors in A-conjugate relation,

because these vectors are linearly independent (Nocedal and Wright, 1999). A-

conjugate set of vectors (p;) are defined as:

p,'Ap,, =0 if)l=m . (B—2)

Due to this linearly independent characteristic of vectors in A-conjugate relation,
for the n-dimensional matrix A, at most n iterations are needed to obtain the
solution of this linear system. Conjugate gradient (CG) method is a modified
version of the conjugate direction method and determines the A-conjugate pair of

vectors as follows:

fo=b—Ax =po
X = Xea + 1Py
T
&y = pk-Tl Mo
pk—l Apk—l (B_S)
Py =Ty + BPya
T
p._, A
ﬂk =——F T k
Pyt APy

where x, is the solution of current iteration; r, is referred to as the residue

vector. Then, it is noticed that
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.
P AP, = (rk + ﬂkpk-l) AP, 4

pk_lT Ark ) (B_4)

pk—lT APy,

.
= rkTApk—l _[ ] pk—lT Ap,,=0

meaning that current and previous p vectors are in A-conjugate relation. Also, for

p, and p,_,,

.
P APy, = (rk + ﬂkpk-l) AP,
.
= (rk—l — AP + ﬂkpk—l) APy,
=l APy, _(ak—lApk—l)T Apy_s + AP AP, - (B=5)

P '
= rk—lT Apy_, _[—k}l Kl Apk—l) Apy_,
Pyt APy

=0
This A-conjugate relation can be expanded to p,, meaning that all p vectors are

naturally in A-conjugate relations and become linearly independent to each other.

However, for extremely large linear problem, such as FWI, the matrix A is
not available during the calculation of step-length (a) and combination
coefficient (ﬂ) Accordingly, to avoid the usage of matrix A during the step-

length calculation, line search method is employed as explained in chapter 2.4.

Also, several methods have been proposed to calculate S without using the

matrix A as:

.
fe—=Te) T
B = —M (Hestenes and Stiefel, 1952) , (B-6)
(rk - rk—l) M1
T
_(n) n _
B =————— (Fletcher and Reeves, 1964) , B-=7)

(rk—l) M1
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T
r.—r r
B = -w (Polak and Ribiere, 1969) . (B—8)
(rk—l) M1
Following Nocedal and Wright (1999), for nonlinear optimization problem, the
coefficient calculated following the study of Polak and Ribiere (1969) seems to be

the most robust and efficient, compared to the others.

To accelerate the convergence of CG method, preconditioner matrix that
reduces the number of distinct eigenvalues of original linear system in eq. (B-1) is
used. This is because the total number of iterations required to solve the linear

system is related to the number of eigenvalues of matrix A . Here, the

preconditioner matrix is denoted as M=CC" and then, the linear system of

equation is rewritten as:

(CTAC)(c-lx)=A§<=6=ch . (B-9)

For this rearranged linear system, the CG method is implemented as follows:

ro=b—Axo=p,
Xk = Xk-1+ Q1 Py 4

rk=6—A)~(k , (B-10)

P =Tk+ B Py g

- - T
(rk—rk—l) Ik
- T
(I’k—l] k-1

and rearranged with respect to the original solution x as:

Bi=-
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Po =Mr,

X =Xy o 9Pyy

Py =Mr + Py , (B—11)
(Mr, —Mr, 1)T r
,Hk - T
(Mrk—l) M1

due to the following relationships:

;‘k =C' r
X =Cx, . (B—12)
Py = Cpk

Note that in case of M =1, the PCG method is the same as the CG method and in

case of M =A™, the linear system is solved with a single iteration due to a single

eigenvalue of MA=1.
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Appendix C. Seismic reciprocity theorem

The seismic reciprocity theorem is easily demonstrated with the second-order
acoustic wave equation that is represented in the frequency domain as:
2 - ~

—%P(X,w;X) V. lVF’(X O Xy )= f,0(x=x) ., (C-D
P

where K =,ovp2 is the bulk modulus and X, represents the source location

vector. Following lkelle and Amundsen (2005), two different states denoted as A
and B are assumed, whose pressure wavefields are obtained from each source

location and model parameter vectors. Then, for a domain D whose surface

~ A - - B
boundary is denoted as &D, the surface integral of P iVP -P iVP
p° p*
is changed as follows by applying the Gauss theorem:
A - B
[, dsn- [P iVP _p Lvp ]
oD p p
~A l - B - B 1 ~ A
=j [VP -—VP -VP .= VP ]dv , (C-2)
b p p"

~ A 1 - B - B 1 ~ A
+| [P V[—BVP }—P V| =VP de
P P P
where the vector n denotes the normal vector to the surface oD . With the
radiation boundary condition, the surface integral at the left-hand side of the Eqg.

(C-2) vanishes. Following eq. (C-1), the term V[lV P) is replaced into
Y2,

~ 2 -

f o é‘(x—xS ) —% P and the integration over the domain D is rearranged as:
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B - B

+f ﬁA¥p5(x-xB)dv-_[DP f;\&(x—xA)dv

Therefore, if the wave propagates through the same media with the same source
signature, then the first and second terms at the right-hand side of eq. (C-3) vanish

and following equation is derived:

P(XB,a);xA)=P(xA,a);xB) ) (C—-4)

Eg. (C-4) means that the pressure wavefield generated at the location of x* and
recorded at the location of x® is the same as the pressure wavefield generated at

the location of x® and recorded at the location of x*.
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Appendix D. Local wavenumber of model update

The wavenumber of calculated gradients is derived to investigate the
maximum spatial resolution of FWI. Following the derivation of gradients in
Appendix A, it is noticed that the local gradients are calculated from the zero-lag
cross-correlation of source and receiver wavefields. For plane waves of a single

angular frequency ( @) the local wavenumber vector is written as:

k=ws , (D—-1)

where s is the slowness vector. In a geometry as shown in Fig. D-1, the slowness
vector at the perturbation point (s,) is the sum of source (s,) and receiver (s, )

slowness vectors. Then, each slowness vector is written as:

S =(_cos(¢s) _sin(qﬁs) (D—2)
s v o v ’

. - _cos(¢,) _sin(¢r) (D-3)
' v o v '

" v v v v
[COS(@ ﬂco{@ ¢r)_Sin(¢s+¢r)co{¢s—¢rn
v 2 2 2 2

where v is the velocity of the perturbation point. Assuming the unit directional

. =(_cos(czﬁs)_cos(qﬁr) _sin(¢s)_sin(¢r)]

vectorof s, as n;

S, = cos[¢s ¢’] : (D—5)
v 2

where ¢, —¢ is an opening angle between the source and receiver wavefields.
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Following egs. (D-1) and (D-5), the maximum spatial resolution obtained from
FWI is half the local wavelength when the aperture angle becomes zero.
Additionally, it is noticed that the wavelength of model update is closely related to
the frequency of wavefields and the opening angle between the source and receiver
wavefields. To reconstruct long-wavelength features of the model, smaller

frequency and larger opening angle are needed.
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Fig. D-1. Schematic diagram showing the geometry of source and receiver
wavefields: The red arrows are related to the source wavefields and the
orange arrows are related to the receiver wavefields; the blue arrow

shows the slowness vector of the gradient.
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Appendix E. Utilization of pseudo-Ax data in

pressure-based FWI

The acoustic wave equation represented in egs. (1) and (2) can be rewritten

in the frequency domain with respect to pressure wavefields as:

2 ~ -
w . _v,i P(X’w): f o, (E-1)
pv, p P

and with respect to particle acceleration wavefields as:
» 1 2 ~ :
[—a) -—Vpv, V-Ja(x,w): fa, (E-2)
Y2,

where r;l= [éx, ézj and tilde notation indicates wavefields in the frequency
domain. These equations are then represented in matrix form as follows:

S,u,=f, | (E-3)
(E—4)

where S, and S, are the modeling operator matrices representing the left-hand

side of egs. (E-1) and (E-2), respectively; f is the source function vector and

u is the modeled wavefield vector defined at the whole nodal points.

Following the equation of motion in eq. (2), the pressure and particle

acceleration wavefields have a linear relationship, which is written as:

Du =u, , (E-5)

where D represents the divergence operator with density parameter whose
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dimension is 2NxN ; N is the total number of nodal points. Objective
functions can be defined based on either the pressure wavefields or particle

acceleration wavefields and the gradients due to the perturbation at k™ model

parameter are respectively written as:

ou Y *
mGE=ZZZ[ﬁ] (u,d,) . E-6)

@ SIc rec

v, E =ZZZ[2§&;] (u,-d,)" . (E-7)

@ SIc rec

where d is the observed wavefields. From eq. (E-5),

u,=(D'D) D'u (E-8)

a

s,(D'D) D'y, =f, . (E-9)

Taking the partial derivative with respect to the velocity parameter, following

equation is obtained:

2:: =(sp(DT D) D' )_l[—g%f’(DT D)" DTua] . (E-10)
k

k

and eg. (E-7) isrearranged as:

oo 3((o.00) o) (-0 0.0

@ Src rec

-¥TYY (Sp)_l[—zzzup]]T(DTD)(up—dp)* (E-11)

@ SIC rec

ou

-5 332 (0)(u.-0,)

@ Src rec

Eq. (E-11) means that the FWI with particle acceleration wavefields can be
123 4 =-TH
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conducted just by changing the pressure data residuals. Additionally, when the

objective function is defined with only the horizontal particle acceleration data (as

the case of pseudo-Ax data inversion), D'D indicates the second-order horizontal

differentiation. Therefore, the pseudo-Ax data inversion is implemented along with

pressure-based algorithm, just by taking &2 / dx* to pressure data residuals.
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