

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation

Deep Neural Network Training
Accelerator Architecture Design:

Acceleration of Backward Propagation
using Sparsity of Neurons

심층신경망학습가속기구조설계:뉴런의성김을
이용한역전파가속

August 2020

Department of Electrical and Computer Engineering
College of Engineering

Seoul National University

Gunhee Lee

Ph.D. Dissertation

Deep Neural Network Training
Accelerator Architecture Design:

Acceleration of Backward Propagation
using Sparsity of Neurons

심층신경망학습가속기구조설계:뉴런의성김을
이용한역전파가속

August 2020

Department of Electrical and Computer Engineering
College of Engineering

Seoul National University

Gunhee Lee

Abstract

Deep neural network has become one of the most important technologies in the

various fields in computer science which tried to follow the human sense. In some

fields, their performance defeats that of human sense with the help of the deep neural

network. Since the fact that general purpose GPU can speed up deep neural network,

GPU became the main device used for deep neural network. As the complexity of

deep neural network becomes high that deep neural network requires more and more

computing resources. However, general-purpose GPU consumes a lot of energy that

the needs of specific hardware for deep neural network are rising. And nowadays,

the specific hardwares are focusing on inference. With complicated network models,

training a model consumes enormous time and energy using conventional devices. So

there are increasing needs specific hardwares for DNN training.

The dissertation exploits deep neural network training accelerator architecture.

The training process of a deep neural network (DNN) consists of three phases: for-

ward propagation, backward propagation, and weight update. Among these, backward

propagation for calculating gradients of activations is the most time consuming phase.

The dissertation proposes hardware architectures to accelerate DNN training, focus-

ing on the backward propagation phase. The dissertation makes use of the sparsity

of the neurons incurred by ReLU layer or dropout layer to accelerate the backward

propagation.

The first part of the dissertation proposes a hardware architecture to accelerate

DNN backward propagation for convolutional layer. We assume using rectified linear

unit (ReLU), which is the most widely used activation function. Since the output as

well as the derivative of ReLU is zero for negative inputs, the gradient for activation is

also zero for negative values. Thus, it is not needed to calculate the gradient of input

activation if the input activation value is zero. Based on this observation, we design

i

an efficient DNN accelerating hardware that skips the gradient computations for zero

activations. We show the effectiveness of the approach through experiments with our

accelerator design.

The second part of the dissertation proposes a hardware architecture for fully con-

nected layer. Similar to ReLU layer, dropoout layer has explicit zero gradient for the

dropped activation without gradient computation. Dropout is one of the regulariza-

tion techniques which can solve the overfitting problem. During the DNN training, the

dropout disconnect connections between neurons. Since the error does not propagated

through the disconnected connections, we can detect zero gradient becomre computa-

tion. Making use of this characteristics, the dissertation proposes a hardware which can

accelerate the backward propagation of fully connected layer. Further, the dissertation

showed the effectiveness of the approach through simulation.

keywords: Deep Neural Network Training, Sparsity of Neurons, Selective Gradient

Computation

student number: 2014-21649

ii

Contents

Abstract i

Contents iii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Deep Neural Network Training . 4

1.2 Convolutional Neural Network . 5

1.2.1 Forward propagation . 5

1.2.2 Backward propagation . 6

1.2.3 Weight update . 6

1.3 Rectified Linear Unit . 7

1.4 Dropout . 8

1.5 Previous Works . 9

2 Acceleration of DNN Backward Propagation on CNN layer 12

2.1 Motivation . 12

2.2 Selective Gradient Computation for Zero Activations 17

2.2.1 Baseline Architecture . 17

2.2.2 Bit-Vector for Selective Gradient Computation 20

iii

2.2.3 Filter Collector . 23

2.2.4 Zero-Gradient Insertion in Write DMA 26

2.3 Overall Architecture . 27

2.4 SRAM Buffer . 28

2.4.1 Motivation . 28

2.4.2 Selective Gradient Computation and SRAM Buffer 29

2.5 Experimental Results . 32

2.5.1 Performance Simulator . 32

2.5.2 RTL Implementation . 33

2.5.3 Performance Improvement 35

2.5.4 Energy Reduction . 37

2.5.5 Impacts of SRAM Buffer . 39

2.6 Summary . 45

3 Acceleration of DNN Backward Propagation on Fully Connected Layer 46

3.1 Motivation . 46

3.1.1 Dropout . 46

3.1.2 Conventional Dropout Layer Implementations 46

3.1.3 Applications of Dropout . 47

3.2 Selective Gradient Computation for Dropped Activations 50

3.2.1 Baseline Architecture . 50

3.2.2 Filter Dropper . 50

3.3 Overall Architecture . 54

3.4 Experimental Results . 55

3.4.1 Simulator and Benchmark 55

3.4.2 Results . 55

3.5 Summary . 56

4 Conclusion 57

iv

63Abstract (In Korean)

v

List of Tables

2.1 The Number of DRAM Accesses for Selective Gradient Computation

Comparision on AlexNet . 20

2.2 The Number of DRAM Accesses for Selective Gradient Computation

Comparision on VGG-16 . 21

2.3 The Layer of AlexNet . 33

2.4 The Layer of VGG-16 . 34

2.5 Synthesis results of the baseline and the proposed architecture 34

3.1 Simulation results for dropout accelerator architecture 56

vi

List of Figures

1.1 Input-side activation gradient (left) and output-side activation Gradient

& Rearranged filters (right) . 3

1.2 Ratio of zero output activations for ReLU layers of VGG-16 3

1.3 Filter rearrangement . 7

1.4 ReLU activation function . 8

2.1 Sparsity of AlexNet Layers. 14

2.2 Sparsity of VGG-16 layers . 15

2.3 Varying sparsity of AlexNet during the training 16

2.4 Varying sparsity of VGG-16 during the training 16

2.5 Selective gradient computation . 17

2.6 Overall architecture of DianNao . 18

2.7 The bit-vector line . 22

2.8 Filter collecting scheme . 23

2.9 Filter collector flow chart . 25

2.10 Zero gradient insertion . 26

2.11 Overall architecture and example operation scenario for the proposed

architecture. 27

2.12 Data reuse example . 29

2.13 Neighboring bit-vector and their selected filters 30

2.14 Dimention of bit-vector line . 31

vii

2.15 Filter selecting scheme for Filter Collector 31

2.16 Performance improvement on AlexNet 36

2.17 Performance improvement on VGG-16 36

2.18 DRAM energy reduction on AlexNet 38

2.19 DRAM energy reduction on VGG-16 38

2.20 Comparison of the execution cycles for DNN training accelerator on

AlexNet without SRAM buffers and with SRAM buffers 40

2.21 Comparison of the DRAM energy for DNN training accelerator on

AlexNet without SRAM buffers and with SRAM buffers 40

2.22 Comparison of the execution cycles for DNN training accelerator on

VGG-16 without SRAM buffers and with SRAM buffers 41

2.23 Comparison of the DRAM Energy for DNN training accelerator on

VGG-16 without SRAM buffers and with SRAM buffers 41

2.24 Performance improvement on AlexNet with SRAM Buffer 43

2.25 Performance improvement on VGG-16 with SRAM Buffer 43

2.26 DRAM energy reduction on AlexNet with SRAM Buffer 44

2.27 DRAM energy reduction on VGG-16 with SRAM Buffer 44

3.1 The recurrent neural network . 48

3.2 The unfoleded recurrent neural network 49

3.3 The backward propagation through time for the unfoleded recurrent

neural network . 49

3.4 Filter dropper architecture . 50

3.5 Random number genetator generates the same mask for both forward

and backward propagation . 51

3.6 Overall architecture for the dropout accelerator 55

viii

Chapter 1

Introduction

Deep neural networks (DNNs) are taking an important role in many fields including

computer vision [1, 2], speech recognition [3], and natural language processing [4],

where artificial intelligence has been considered hard to defeat human senses. As the

applications of DNNs are growing, their capacity and scale are also growing. In or-

der to make DNNs work properly, it is typically required to train them with a big

dataset to fit the networks to specific applications. Such a training takes days if not

weeks or even longer. Therefore, there are high demands for accelerating the DNN

training process through the development of new algorithms and/or specialized ac-

celerator architectures. However, there are not many accelerators for DNN training

yet, and most of the existing DNN accelerator architectures focus on inference. Di-

anNao [5] is one of the representative DNN accelerator architecture. It implements

multiply-accumulate (MAC) operations and activation functions in a pipelined man-

ner. Its operation mapping scheme enables highly parallel computations, resulting in

large speedup compared to conventional x86 core with SIMD unit. We set this work

as the baseline of our idea. Its successor, DaDianNao [6] is a multi-node version of

DianNao that employs eDRAM. It shows significantly high performance and energy

efficiency than GPUs for both DNN training and inference.

Skipping unnecessary operations is one of the most effective ways of reducing

1

the amount of computation. A representative example of unnecessary operations is

multiplication with zero, which it typically abundant in DNNs because of many zero-

valued activations and/or weights. DNN accelerator architectures that exploits this

zero-skipping scheme have been already proposed in previous researches [7, 8, 9, 10].

By skipping multiplications and following accumulations when either of the multipli-

cand is zero, they can achieve a significant speedup. However, they are mostly focusing

only on forward propagations for inference.

The dissertation proposes a DNN accelerator architecture that makes use of zero

activation values to skip unnecessary computations in training. We focus on backward

propagation (BP) among the three phases of DNN training: forward propagation (FP),

backward propagation (BP), and weight update (WU). Our approach exploits the back-

ward propagation characteristics of ReLU layer, which makes backpropagated gradient

zero when the corresponding neuron has zero output activation in FP. That means that

all the operations for calculating that neuron’s activation gradient (as a function of the

gradient values that have been backpropagated through the next layer1) can be skipped.

Approach of the dissertation is similar with the previous approaches in the sense

that zero activations lead to skipping unnecessary operations. However, their ways of

exploiting the zero activations are very different. The previous approaches rely on the

arithmetic property of zeros in the multiplication operations for inference, whereas our

approach relies on the backward propagation property of the ReLU layer. Our approach

makes better use of zero activations than the previous ones, because in our approach,

a zero activation leads to skipping many operations for calculating the corresponding

gradient rather than only a single MAC operation. Note also that our approach can be

independently applied with the previous zero-skipping schemes.
1By next layer, we mean the layer that takes the output of the current layer in forward propagation

2

Figure 1.1: Input-side activation gradient (left) and output-side activation Gradient &

Rearranged filters (right)

2 4 6 8 10 12 14 16

Epoch

0

0.2

0.4

0.6

0.8

1

R
a
ti
o

Figure 1.2: Ratio of zero output activations for ReLU layers of VGG-16

3

1.1 Deep Neural Network Training

In general, training of a DNN for a given task and a training dataset is adjusting the

network parameters to maximize the accuracy of the given task. For a classification

task, for example, the input from the dataset is propagated through the layers of the

network. At the end of the network, the classification result is generated. Comparing

the result with the ground truth (label of the input in the case of supervised learning),

the error between the classification result and the ground truth is propagated backward

to adjust the network parameters (mainly synaptic weights) in the direction of error

reduction.

The DNN training process consists of three key phases:

• Forward propagation (FP): In this phase, the input is applied to the network’s

first layer. From the input, the layer generates the output activation. The output

activation becomes an input activation for the next layer. This step is repeated

until the propagation reaches the last layer of the network where the final clas-

sification output of the network is generated.

• Backward propagation (BP): The classification output generated by the FP phase

is compared with the ground truth to calculate the error (or the difference). The

error is propagated backward to the previous layer in the form of gradient. The

gradient value represents the direction and slope toward the ground truth.

• Weight update (WU): To reduce the error, the weights should be adjusted in

the direction to move the output toward the ground truth. To adjust a weight,

the gradient of the weight is generated from the gradient of activation so that

adjusting the weight in the direction of the weight gradient moves the activation

in the direction of the activation gradient. And then the weight is updated with

the gradient of the weight.

However, executing the above three phases only for one input may incur overfitting

for that specific input. So, to generalize the network, whole input data go through the

4

DNN training process and this is called an epoch. To train the network well, the epoch

is repeated until the training result reaches some criteria. It is the main reason that

DNN training takes a lot of time compared to DNN inference

1.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is a kind of DNN that is widely used for image

classification. Each convolutional layer has filters, collections of weight elements, to

extract meaningful features from input activations. The filters are trained through the

training process as explained above with the three phases. Details of the training phases

in the convolutional layers are explained in this section

1.2.1 Forward propagation

FP through the convolutional layers takes two input tensors, one for input activations

and the other for weights. The formula for FP is given by

O(x, y, n) =

Fx−1∑
i=0

Fy−1∑
j=0

Fz−1∑
k=0

I(x+ i, y + j, k) × F (i, j, k, n) (1.1)

where I(x, y, z) andO(x, y, n) are an input activation and an output activation respec-

tively, and F (x, y, z, n) is a weight of n-th filter. An input activation map is a set of 3D

data of size Ix × Iy × Iz and a set of weights forms a 3D filters of size Fx × Fy × Fz

(usually Iz = Fz). The filter window slides on the input activation map and their sum

of element-wise multiplication results (Hadamard product) becomes an element in the

output activation map. Because the filter window slides on the input activation map,

the output activation map becomes a 2D data of size (Ix − Fx + 1) × (Iy − Fy + 1).

We consider Fn such filters operating on the same input activation map, generating a

final 3D output activation map of size (Ix − Fx + 1) × (Iy − Fy + 1) × Fn.

5

1.2.2 Backward propagation

BP through the convolutional layers takes the weight (F (x, y, n, z)) and the gradient of

activation (∆O(x, y, n)) from the next layer in order to calculate gradient of activation

(∆I(x, y, z)).in the current layer. BP can be formulated as

∆I(x, y, z) =

Fx−1∑
i=0

Fy−1∑
j=0

Fn−1∑
k=0

∆O
′
(x+ i, y + j, k) × F (i, j, z,k) (1.2)

where ∆O
′
(x, y, n) is ∆O(x, y, n) with zero-padding. Unlike FP, the weight’s are

rearranged to form Fz new 3D filters of size Fx × Fy × Fn as shown in Figure 1.3.

Thus, BP calculates the gradient map of the input activations from the gradient map

of the output activations and the k-th filter forms error propagating paths from the

gradient map the output activations (i.e., the gradient map of the input activations of

the next layer) to the k-th plane inn the gradient map of the input activations. And

for the generated gradient map of the input activations to have the same dimension as

the input activation map, the gradient map of the output activations should be padded

with (Fx − 1) and (Fy − 1) zeros in the direction of x, and y, respectively. So BP is

convolution operations of Fz filters of size Fx × Fy × Fn on gradient map of output

activations of size (Ix + Fx − 1) × (Iy + Fy − 1) × Fn to compute the gradient map

of input activations of size Ix × Iy × Iz .

1.2.3 Weight update

WU in convolutional layers takes the input activation (I(x, y, z)) and the gradient of

output activation (∆O(x, y, n)) to calculate the gradient of a weights (∆W (x, y, z, n)).

∆W (x, y, z, n) =

Ox−1∑
i=0

Oy−1∑
j=0

∆O
′
(x+ i, y + j, n) × I(i, j, z) (1.3)

However, unlike FP and BP, which perform the convolution operations on 3D data,

WU performs the convolution operations on 2D data. Since the input activation map

has 3D data of size Ix×Iy×Iz and the gradient map of output activations has 3D data

6

Figure 1.3: Filter rearrangement

of size Ox ×Oy ×On which corresponds to (Ix −Fx + 1)× (Iy −Fy + 1)×Fz , the

2D convolution of (Ix × Iy) ∗ (Ox × Oy) is executed Iz × On times. Consider using

the number of multiplications as the metric for the computational complexity of the

three phases. While FP and WU have the same number of multiplications, BP requires

more multiplications due to the zero− padding of the gradient map. However, recent

DNNs have relatively small size of Fx and Fy compared to Ix and Iy, and thus the

zero− padding does not incur significant computational overhead.

1.3 Rectified Linear Unit

Rectified Linear Unit (ReLU) [11] is a kind of DNN activation functions which is

proven to solve vanishing gradient problem efficiently for back-propagation. Thus, it

is most widely used in many latest DNN architectures. The ReLU function is defined

as below:

f(x) =

 x for x > 0

0 for x ≤ 0
(1.4)

7

Figure 1.4: ReLU activation function

Fig. 1.4 shows the ReLU activation function. Unlike conventional activation functions

such as sigmoid and tanh, ReLU outputs zero for negative inputs. Further the rea-

son why ReLU is widely used is that it can prevent gradients from vanishing - since

its derivative is one for any positive inputs. Note that in the sigmoid or tanh activa-

tion function, the derivative is smaller than 1, and thus, as the backward propagation

proceeds with the application of the chain rule, gradient values tend to become very

small making ∆weight also very small. Thus, the weights in the frontend layers are

hardly updated. Also, the characteristics of ReLU activation function makes DNN ac-

tivations sparse because it generates many zero outputs. We can make use of the sparse

activation map to optimize the DNN operations.

1.4 Dropout

Dropout [12] is a kind of regularization techniques for DNN training to prevent trained

network from overfitting. Usually model combination works best for DNN regulariza-

tion. However, due to the limited resources, it is inefficient using various models to

regularize DNN model. By cutting connections of neurons between two layers the net-

work is found that has similar effect on averaging various models. The cut connection

is cut only during the training. The connection is recovered at inference. Procedure for

8

dropout during the DNN training is shown below.

During the forward propagation, dropout layer picks activations randomly with

dropout rate. The connections for picked activations are disconnected. Note that we

need to know connections before applying dropout because the connections must be

recovered for the DNN inference. For implementation, the values for the picked acti-

vations are considered zero.

During the backward propagation, the error cannot be propagated through the dis-

connected activations. By making the gradients which correspond to the disconnected

activations zero, the error is not propagated.

After the DNN trainig, the disconnected connection must be recovered for the

DNN inference. To recover the connections, dropout layer must keep the information

of these connections.

1.5 Previous Works

DianNao [5] is the first developed DNN accelerator architecture. It focuses on acceler-

ating convolutional layer. It consists of 16 neural functional unit (NFU) and each NFU

can perform 16 MAC operations. It can perform 256 MAC operations simultaneously.

The results of multiplication is accumulated by adder tree. And it merged convolu-

tional layer and activation function that before the output activation written back to

DRAM it goes through the activation function as soon as the output of convolutional

layer is generated. The datatype for the architecture is 16-bit fixed point. For DNN

inference, 16-bit fixed point shows almost no accuracy drop, DianNao adopt it. Since

the DianNao, various techniques are developed that even 1-bit datatype is feasible for

DNN inference. It has SRAM buffers to save the time to access DRAM. Total 34KB

of SRAM buffer for input activations (2KB), filter weights (16times2KB), and out-

put activations (2KB).

DaDianNao [6] is the first DNN accelerator architecture which is feasible to DNN

9

training. It concists of 16 DianNaos and SRAM buffers are alternated to eDRAM

due to the area. Because eDRAM has higher latency than SRAM, it splits eDRAM

into 4 banks and interlreaves DRAM accesses to compensate higher latency. Unlike

DianNao, it adopts 32-bit fixed point as a datapath. For DNN training, same phase is

feasible for lower data precisions. However, some phase such as weight update requires

high-precision data type with no special techiniques [13, 14, 15, 16], . So DaDianNao

adopts 32-bit fixed point instread of 16-bit fixed point.

Cambricon-X [10] is further developed version of DianNao that can skip unnecces-

sary MAC operation by making use of sparsity of neurons. It adds Buffer Controller to

check whether the activation is zero or not and get the information of needed neurons

for efficient convolutional operation.

Eyeriss [9] is reconfigurable DNN accelerator architecture. It consists of 168 pro-

cessing elements which has a multiplier and an adder. But it can reconfigure dataflow

that can handle data movement between off-chip and on-chip efficient for high through-

put and energy efficiency. Further eyeriss can skip unnecessary operation invoked by

sparse neurons.

TPU [17] is a DNN accelerator developed by Google. It focuses on accelerating

general matrix multiplication, which is used for convolutional operation on conven-

tional devices like CPU or GPU. The big difference between TPU and conventional

devices are TPU use systolic array for general matrix multiplication. Matrix multipli-

cation consists of inner products of a row and a column. Systolic array does not need to

store immediate values of multiplication. So TPU can save energy and execution time

for storing and loading the immediate values. However, convolutional operation using

general matrix multiplication must waste memory usage due to the im2col and im2row

operation. These operations make general matrix multiplication to convolutional oper-

ation. Each inner product of a row and a column exactly corresponds to a convolutional

operation that the result of matrix multiplication exactly matches the output activation

map. But im2col and im2row operation duplicate input activation map that required

10

memory must be increased upto 6 times.

11

Chapter 2

Acceleration of DNN Backward Propagation on CNN

layer

2.1 Motivation

Rectified linear unit (ReLU) [11] is the most popular DNN activation function. It alle-

viates the vanishing gradient problem in BP, and thus, it is widely used in many latest

DNNs ([1, 2, 18]). The ReLU function is defined as follows:

aout = f(ain) =


ain, ain > 0

0, ain ≤ 0

(2.1)

where aout is output activation and ain is input activation.

The BP formula for ReLU layer can be derived using the chain rule as follows:

dE

dain
=

dE

daout
· daout
dain

(2.2)

where

daout
dain

=


1, ain > 0

0, ain ≤ 0

(2.3)

12

Here E represents the error. In BP phase, dE/daout is calculated by the back-

ward propagation. We call δRout = dE/daout output-side activation gradient, and call

δRin = dE/dain input-side activation gradient. Based on the formula above, as soon

as we observe ain ≤ 0 (or aout = 0) that has been obtained during FP in a ReLU layer,

we can immediately set the corresponding δin = 0 without any BP.

At first glance, it may look like there is little potential of operation skipping, be-

cause the operations involved in the BP of a ReLU layer are very simple and there are

not so many of them. However, if we take the layer that immediately follows the ReLU

layer into account, the potential widely broadens.

To explain this point more clearly, we show the BP for the 2nd convolutional layer

of LeNet-5 in Figure 1.1. It shows how the BP for a convolutional layer can be inter-

preted as a convolution between δout map and rearranged filters (or BP filters). The

BP for the convolutional layer starts with rearranging the filters used in FP as shown

in Figure 1.3. It shows how the rearrangement is done for the first BP filter. Generally

speaking, n-th BP filter is formed by gathering and mirroring the n-th channel planes

of FP filters.

Figure 1.1 show the calculation of the first δCin pixel using the δCout map and the

first BP filter. Zero-padding of 4 pixels in both x− and y− directions on the δCout

map are necessary to match convolution dimensions. Since this convolutional layer

immediately follows a ReLU layer in LeNet-5, the dimensions of the δCin map shown

in the figure exactly matches those of the output activation map of the ReLU layer.

Now let’s assume that the output activation pixel of the ReLU layer that corre-

sponds to the first δCin pixel shown in the figure is zero. Then not only the ReLU

layer’s BP operation, but also the whole convolution operation for the convolutional

layer in Figure 1.1 can be skipped. In this specific example, we can skip 5 × 5 × 50

multiplications and 5 × 5 × 50 − 1 accumulations for the single zero activation.

Considering the fact that there are a lot of zero-valued activations at the output of a

ReLU layer, this gradient computation skipping scheme has a big potential speeding up

13

Figure 2.1: Sparsity of AlexNet Layers.

BP phase. For example, Figure 1.2 shows that more than half of the output activations

of ReLU layers are zero in VGG-16. The application of batch normalization [19] in

recent DNNs further broadens the applicability of our scheme by assuring about half

of the output activations to be zero.

To show the ReLU layer makes the network sparse, we analyze the sparsity of

AlexNet and VGG-16 during the whole training. Figure 2.1 and 2.2 show sparsity of

each layer during the training. x-axis shows the layers consisting each networks and

y-axis shows non-zero ratio for the output activation of each layer. The blue and red

bar shows non-zero ratio for elements of the output activation and the orange line

shows non-zero ratio for planes of the output activation. The non-zero ratio for planes

will be discussed later in Section 2.4.2. ReLU layer follows by convolutional layer

on AlexNet and convolutional layer and batch normalization layer on VGG-16. ReLU

layer makes non-positive inputs into zero, output activation of ReLU layer has many

zero activations. For AlexNet, non-zero ratio of the output activation of ReLU layer

becomes quite small (less then 0.5). For VGG-16, non-zero ratio of the output activa-

tion of ReLU layer is about 0.5. This is because batch normalization normalizes mean

14

Figure 2.2: Sparsity of VGG-16 layers

of the output activation of convolutional layer to zero that about half of the output

activation becomes zero.

To show that the sparsity is being changed during the training, we need to show

the non-zero ratio of each network during the whole training. Figure 2.3 and 2.4 show

the varying non-zero ratio of each layer during the DNN training. y-axis shows non-

zero ratio for the output activation of each layer and x-axis shows layer-wise sparsity

changing as the network being trained.

To apply the proposed computation skipping, we need to consider the BP through

ReLU layer together with that through the next convolution layer. We can think of this

scheme as a layer fusion technique applied to BP. One of the layer fusion techniques

that is commonly used in DNN FP HW accelerators is the fusion of a ReLU layer

with the preceding convolutional or fully connected layer [5]. In this scheme, when an

output activation pixel is calculated, before writing it back to DRAM, ReLU operation

is applied. This scheme saves the memory bandwidth otherwise spent on writing the

output activation and reading it back to perform ReLU operations. When the proposed

15

Figure 2.3: Varying sparsity of AlexNet during the training

Figure 2.4: Varying sparsity of VGG-16 during the training

16

Figure 2.5: Selective gradient computation

scheme is applied to BP HW accelerators, BP for ReLU layer is fused with BP of the

next layer, thus saving memory bandwidth.

In addition to that, we can save more memory bandwidth by skipping BP opera-

tions through the convolution layer next to the ReLU layer. For example, in Figure 2.5,

if the third output activation pixel of the ReLU layer that corresponds to the first δin

pixel is zero, then the corresponding filter weight for the convolution need not be read

from the memory, further saving the memory bandwidth.

2.2 Selective Gradient Computation for Zero Activations

2.2.1 Baseline Architecture

Our approach is general enough to be applied to any DNN training accelerators. Among

the existing DNN training accelerators, we select DianNao [5] as our baseline architec-

ture, because it is simple, yet very powerful. Figure 2.6 shows the overall architecture

of DianNao. it consists of 16 NFUs, each performing a MAC operation of 16 input

activations and 16 weights and a non-linear activation function. NFUs consist of three

pipeline states, which are in charge of multiplications, accumulations, and activation

functions, respectively. Therefore, it provides its peak throughput of 256 MACs per

17

Figure 2.6: Overall architecture of DianNao

cycle. The 16 NFUs generate 16 partial sums of the output feature map per cycle.

When processing a convolutional layer, the throughput of 16 partial sums per cycle is

allocated to the calculating of 16 partial sums of 16 consecutive filters.

For a single filter position on the input feature map, the convolutions for the 16

consecutive filters are completed before performing the convolutions for the next 16

consecutive filters at the same filter position on the input feature map. After completing

the convolutions for all the filters, the filter position on the input feature map is shifted

in raster-scan order.

DianNao has on-chip buffers for input activations (NBin), output activations (NBout),

and filters (SB), each of which has the size of 2KiB, 2KiB, and 32KiB. These buffers

are used for data reuse in order to reduce memory bandwidth consumption. However,

if the operation order for a convolutional layer described in the preceding paragraph is

employed, these buffers are not so useful in terms of data reuse especially when a layer

18

with many channels is to be processed. Following is the explanation of the reason.

One can consider two sources of data reuse: input activations and filters. The input

activation reuse occurs when the convolution operation for a 16 consecutive filters has

ended and the next 16 consecutive filters are to be processed. The filter reuse occurs

when the convolution operation for a filter position on the input feature map has ended

and the filter position is to be shifted in raster-scan order. However, the buffers (NBin

and SB) for them should be much bigger than those of DianNao. For example, let’s

consider conv3-512, a convolutional layer of VGG-16, where 512 filters of 3×3×512

weights are applied on the input feature map with 512 channels. In this case, for the

input activation reuse, NBin of 3 × 3 × 512 input activations is required. On the other

hand, for the filter reuse, the entire filter weights should be stored in SB. In other

words, when 16-bit fixed-point operations are assumed, we need NBin of 9KiB and/or

SB of 2MiB, which are much bigger than the amount DianNao has.

Since we do not deal with toy examples such as LeNet in this paper, we eliminated

the on-chip buffers from the proposed architecture. In some cases, the elimination of

the on-chip buffers might make BP through a layer a memory-bound process while it

would has been computation-bound with the on-chip buffers. However, the proposed

architecture still keeps its advantage in performance and energy consumption over

DianNao in those cases, because as shown in Section 2.1, our approach reduces the

computation as well as memory bandwidth. When BP is computation bound, skipping

gradient calculation contributes to the improvement. On the other hand, when BP is

memory bound, selective loading of filters provides the contribution.

Finally, DianNao employs 16-bit fixed-point datapath for performing only FP whereas

we need an architecture that can perform DNN training. The follow-up work of Dian-

Nao, DaDianNao, mentions that simply expanding the width of the datapath to 32

bits enables the architecture to perform DNN training. We validated this statement by

performing the training of AlexNet and VGG-16 with 32-bit datapath on ImageNet

dataset.

19

Table 2.1: The Number of DRAM Accesses for Selective Gradient Computation Com-

parision on AlexNet

of DRAM accesses

Layer Omap activation bit-vector

CONV1 55x55x96 18150 568

CONV2 27x27x256 23328 365

CONV3 13x13x384 8112 127

CONV4 13x13x384 8112 127

CONV5 13x13x256 5408 85

2.2.2 Bit-Vector for Selective Gradient Computation

The operands of convolutional BP are δCout map and filters. Note that the output acti-

vation of FP is not necessary here. However, as shown in Section 2.1, in order to apply

our approach, the information of whether the output activation of the preceding ReLU

layer is zero or not is required. If the entire output activation map of the ReLU layer

is read for this purpose in BP phase, this might be a significant overhead in terms of

performance as well as energy consumption.

Fortunately, the information can be stored in a bit-vector format instead. By stor-

ing 0 for zero output activations and 1 for positive output activations, we can reduce

required memory bandwidth by 1/32 (since as mentioned in Section 2.2.1, we employ

32-bit wide datapath). The bit-vector is generated during the FP phase and written to

DRAM together with the corresponding output activations. Table 2.1 and 2.2 shows

the number of DRAM accesses when we use activation and bit-vector to get the infor-

mation of the output activation.

Note that even the bit-vector for a layer takes a large memory space, and thus it

is burdensome to store the entire bit-vector of a layer in the on-chip buffer during its

BP. Therefore, we decided to store the bit-vector in the unit of n bits, which is called a

bit-vector line, where n is the number of channels in δCin map. Thus, a bit-vector line

20

Table 2.2: The Number of DRAM Accesses for Selective Gradient Computation Com-

parision on VGG-16

of DRAM accesses

Layer Omap activation bit-vector

CONV1 224x224x64 200,704 6,272

CONV2 224x224x64 200,704 6,272

CONV3 112x112x128 100,352 3,136

CONV4 112x112x128 100,352 3,136

CONV5 56x56x256 50,176 1,568

CONV6 56x56x256 50,176 1,568

CONV7 56x56x256 50,176 1,568

CONV8 28x28x512 25,088 784

CONV9 28x28x512 25,088 784

CONV10 28x28x512 25,088 784

CONV11 14x14x512 6,272 196

CONV12 14x14x512 6,272 196

CONV13 14x14x512 6,272 196

21

Figure 2.7: The bit-vector line

covers all the corresponding output activations of the ReLU layer for a given (x, y)

coordinates. Figure 2.7 shows in detail.

As mentioned in Section 2.2.1, DianNao calculates the 16 partial sums for 16 con-

secutive filters per cycle. This means that in the proposed architecture, we need to

gather 16 filters that correspond to the 1s in the bit-vector line and thus should not be

skipped. We feed them to NFUs per cycle. Consider the case where the bit-vector line

is shorter than the number of channels of δCin map. Then there might be the cases

where NFUs are underutilized not because there remains no filters not to be skipped,

but because the required bitvector has not yet been read from DRAM. This leads to

inefficient use of NFUs compared to DianNao, which might cause performance degra-

dation. In this sense, the longer the bit-vector is, the better is the efficiency.

On the other hand, the bit-vector line need not be longer than the number of chan-

nels of δCin map. This is because of DianNao’s limitation on the MAC operation

scheduling. DianNao can perform MAC operations on 16 δCin pixels on the same

(x, y) coordinates, not on different (x, y) coordinates. The proposed architecture has

the same limitation on the MAC operation scheduling. Therefore, even if the proposed

architecture employs longer bit-vector line than the number of channels of δCin map,

the residual bit-vector values cannot be utilized effectively in terms of performance.

22

Figure 2.8: Filter collecting scheme

Therefore, we set the upper bound for the length of the bit-vector line to the number

of channels of δCin map.

2.2.3 Filter Collector

In its simplest form, the proposed architecture could be designed so that BP operation

is skipped only when there is 16 consecutive 0s in a bit-vector line. If so, the mod-

ification made to DianNao for the proposed architecture is minimal, because in this

case, filters are skipped and read from DRAM at the granularity of 16 filters, which

is the same as that of DianNao. We could just modify the addressing logic to con-

sider the skipping of gradient computation. However, when we profiled several DNNs,

we found out that the case of 16 consecutive 0s in a bit-vector line is very rare. With

this setting, although we could achieve energy saving by power-gating the NFUs with

zero bit-vector value, there is absolutely no performance gain, because in this case, the

same amount of filters should be read from DRAM, and the computation throughput

that corresponds to the 0s in the bit-vector line is wasted.

To solve this problem, we add a module called filter collector that can identify non-

consecutive filters corresponding to non-zero bit-vector value. For a clear description

of the filter collector function, Figure 2.9 shows an example of the filter collector

operation using a bit-vector line. The bit-vector line is from the first convolutional layer

of VGG-16 [2], and represented by the blue bars. The triplet in the figure represents the

23

(x, y, z) coordinates of each bit-vector value on the δCin map. As shown in the figure,

the length of the bit-vector line is 64, which is the same as the number of channels in

the δin map. Also shown in the figure is that the bitvector line is for calculating the

δin pixels whose (x, y) coordinates are (0, 0).

Starting from the bit position of (0, 0, 0), the filter collector first identifies 16 non-

skippable filters by finding out the bit positions of 16 non-zero bit-vector values. In the

figure, the 16th non-zero bit-vector value is located at (0, 0, 27), and the filter collector

sends the identification results to the read DMA module. Here we can derive the fact

that there are 12 zeros in the sub bit-vector from (0, 0, 0) to (0, 0, 27), because there

are 16 ones in the 28 bits long sub bitvector. For the next step, the filter collector

starts from (0, 0, 28) and again identifies the bit positions of 16 non-zero bit-vector

values. At this time, the 16th non-zero bit-vector value is located at (0, 0, 53) and this

information is sent to the read DMA module. Finally, for the last step for this bit-vector

line, the filter collector tries to collect 16 non-zero bit-vector value positions from

(0, 0, 54), but terminates before reaching the 16 positions, because there are only 3

non-zero bit-vector values before reaching the end of the bit-vector line. As mentioned

in Section 2.2.2, instead of moving to the next bit-vector line for more non-zero valued

bit-vector positions, it terminates here, and sends the 3 identified non-zero valued bit-

vector positions to the read DMA module.

The identified non-zero valued bit-vector positions are used to read corresponding

filters from DRAM and they are fed into the appropriate NFUs. By employing the filter

collector, we can make efficient use of the NFUs’ computation throughput.

In order to fully utilize the peak computation throughput of the NFUs, the filter

collector should be able to identify at least one set of 16 non-zero valued bit-vector

positions per cycle. We implemented the filter collector in a pipelined manner so that

this throughput can be achieved.

24

Figure 2.9: Filter collector flow chart

25

Figure 2.10: Zero gradient insertion

2.2.4 Zero-Gradient Insertion in Write DMA

When a convolution operation for a filter position on input feature map is completed,

the results are written back to DRAM by the write DMA module. In DianNao, this is

a simple process of just writing back the 16 δCin pixels to DRAM. However, in the

proposed architecture, this is not the case, because the resultant δCin pixels are for the

collected filters, thus they might not be consecutive in the δCin map.

Here it is obvious that the write DMA module should receive the bit-vector that

was used for collecting filters. According to the bit-vector, the write DMA module

interleaves the resultant δCin pixels with zero-gradients and then write them to DRAM

to continue BP towards the previous layer. Therefore, the bit-vector used by the filter

collector flows through the pipeline to be conveyed to the write DMA.

26

Figure 2.11: Overall architecture and example operation scenario for the proposed

architecture.

2.3 Overall Architecture

In this subsection, the overall architecture and an example scenario are presented for

better understanding of our scheme. As shown in Figure 2.11 for the proposed archi-

tecture, we have added/modified modules in DianNao including filter collector, read

DMA, and write DMA modules. The filter collector reads the bit-vector line from

DRAM and sends the list of filters that should not be skipped to the read DMA mod-

ule. The read DMA module in DianNao is only capable of loading 16 consecutive

filters from DRAM, but the read DMA module in the proposed architecture can seam-

lessly read non-consecutive filters from DRAM to feed the NFUs. The write DMA

module in the proposed architecture can interleave the resultant δCin pixels with zero

gradients to store them to proper memory locations.

In the example scenario of Figure 2.11, the filter collector reads the bit-vector

27

line from DRAM and processes it for the first 16 nonzero valued bit-vector positions.

Those are 0th - 16th bits except the 15th bit. The read DMA reads the corresponding

filters and δCout pixels from DRAM and feeds them to NFUs. Along with them, the

bit-vector used by the filter collector flows through the pipeline. When the convolution

operation for a filter position is completed, the write DMA module writes back the

resultant δCin pixels to DRAM, interleaving them with zero gradients, according to

the bitvector that has been delivered. For this specific example, one zero gradient is

inserted between the δCin pixels generated by NFU14 and NFU15.

2.4 SRAM Buffer

2.4.1 Motivation

The accelerator architecture proposed before does not have buffers for neurons and

synapses. Without any buffers, all of the data must be fetched directly from DRAM.

The proposed accelerator architecture takes less than 10 cycles for a MAC operation.

However, DRAM access takes more than 30 cycles that the DRAM access becomes a

bottleneck for performance improvement. Because a DRAM access takes longer than

a MAC operation, NFU always waits for neurons and synapses to be read. So reusing

neurons and synapses used for MAC operations by fetching them in the SRAM buffers,

NFU does not need to waits for them once they are fetched to the SRAM buffers and

further it reduces the number of DRAM accesses. Quantifying the number of DRAM

accesses (DRAMaccess) for with / without SRAM buffer is shown below.

DRAMaccess =


(Fx × Fy × Fn ÷Dn)2 × Fz × (Ix × Iy × Iz ÷Dn), DRAMonly

(Fz × Fy × Fn ÷Dn) × Fz + (Ix × Iy × Iz ÷Dn), withSRAMbuffer

(2.4)

where Dn is the number of elements read by a DRAM access. Here is an example

for the reduced number of DRAM accesses. As shown in 2.12, it has 8 × 8 × 16 input

28

Figure 2.12: Data reuse example

activation map and 3 × 3 × 16 filter weight. If input activations in yellow window

(6× 5) are fetched to SRAM buffer, once they are fetched, they do not need to be read

again from DRAM. The numbers written in the 2.12 indicates how many times the

activations are used for MAC operations. Without SRAM buffer, the numbers indicate

the number of DRAM accesss for the activations exactly. With SRAM buffer, activa-

tions in the yellow window are fetched to SRAM buffer, they are read from DRAM

just once.

2.4.2 Selective Gradient Computation and SRAM Buffer

As mentioned in 2.2.3, the order of bits in bit-vector corresponds to the order of the

rearranged filters. The values of these bits select the rearranged filters for selective gra-

dient computation. For data reuse using SRAM buffer, output-side activation gradients

in a window are fetched to SRAM buffer. And the window determines a window for

the input-side activation gradients. The window for the input-side activation gradients

The issue for selective gradient computation with SRAM buffer is neighboring bit-

vectors are not coincide that the selected filters for each bit-vector are not same. Here

is an example of the issue.

29

Figure 2.13: Neighboring bit-vector and their selected filters

Among two neighboring bit-vectors, first bit-vector selects 1, 2, ... th rearranged

filters. However, second bit-vector does not select 2nd rearranged filter but 3rd rear-

ranged filter. For data reuse of output-side activation gradients and filter weights, if

one of rearranged filters of 2nd and 3rd filter is not fetched into SRAM buffer it cannot

compute gradients precisely. Select both 2nd and 3rd rearranged filters can solve this

issue.

To solve this issue, data mapping for bit-vector loaded to the filter collector must

be changed and filter selecting scheme also must be changed.

Without SRAM buffer, dimension of the bit-vector line in the filter collector is

1×1×512. It selects rearrange filters bit-by-bit by sweeping the bit-vector. But to reuse

data with SRAM buffer, the dimension of the bit-vector line must be changed to plane-

by-plane way. 2.14 shows how the dimension of the bit-vector line is changed. To keep

the capacity of registers in the filter collector same and make it possible to reuse data

corresponds to the neighboring bit-vector, the dimension is changed to 4×4×32. The

length of the bit-vector line must exceed 16, which is the number of MAC units in the

accelerator, to skip selecting unneccesary rearranged filters. Then to reserve enough

window size, the window size becomes 4 × 4.

With SRAM buffer, due to the change of bit-vector line dimension, the granularity

30

Figure 2.14: Dimention of bit-vector line

Figure 2.15: Filter selecting scheme for Filter Collector

31

of selecting rerarranged filter is also changed. Instead of bit-by-bit selection, filter

collector selects rearranged filters by checking plane-by-plane. On a plane, if all of bits

are zero, gradient computation using the corresponding rearranged filter is unneccesary

that the filter collector does not need to select the filter. However eventhrough there

are just one bits are non-zero, the corresponding rearranged filter must be selected for

gradient computation.

2.5 Experimental Results

2.5.1 Performance Simulator

We build an in-house cycle accurate DNN accelerator simulator for both the base-

line architecture (DianNao), and the proposed architecture. For the proposed archi-

tecture, the simulation model of the filter collector is implemented and integrated to

the simulator in order to show the effectiveness of our scheme. DRAMSim2 [20] is

attached to estimate access latency and energy consumption of DRAM traffic. We use

DDR3 micron 32M 8B x8 sg15 as a DRAM model for DRAMSim2. The simulator

measures the execution time of BP in cycles, including DRAM access time. We com-

pare the execution time of the baseline and our work and analyze it using the ratio of

zero output activations of ReLU layer to see the effectiveness of our approach. Also we

compare the DRAM energy consumption and analyze it using the ratio of zero output

activations of ReLU layer.

We use AlexNet [1] and VGG-16 [2] networks on ImageNet dataset to demonstrate

our work. Table 2.3 and 2.4 shows the layer configuration of AlexNet and VGg-16, re-

spectively. For the performance simulation, we need to generate bit-vectors from the

DNNs. Thus, we perform the whole training of AlexNet and VGG-16 using MatCon-

vNet toolbox [21] on MATLAB. Because the portion of zero output activations of

ReLU layer changes as training goes [22], we recorded bit-vectors at each ReLU layer

at each epoch. The ratios of zero-activations observed for AlexNet and VGG-16 are

32

Table 2.3: The Layer of AlexNet

Layer Imap Filter # of filters Omap

CONV1 224x224x3 11x11x3 96 55x55x96

CONV2 55x55x96 5x5x96 256 27x27x256

CONV3 27x27x256 3x3x256 384 13x13x384

CONV4 13x13x384 3x3x384 384 13x13x384

CONV5 13x13x384 3x3x384 256 13x13x256

FC1 13x13x256 13x13x256 4096 1x1x4096

FC2 1x1x4096 1x1x4096 4096 1x1x4096

FC3 1x1x4096 1x1x4096 1000 1x1x1000

0.66 and 0.62, respectively.

2.5.2 RTL Implementation

We implement the synthesizable RTL models of DianNao [5] and the proposed archi-

tecture. They are functionally verified with constrained random test vectors. Synopsys

Design Compiler is used for the syntheses with TSMC 45nm Logic Generic-Superb

standard cell library (TCBN45GSBWP). The Synopsys Reference Methodology (RM-

gen) is used for proper tool applications. The target operation frequency of both of

the architecture is set to 500MHz, which is about half that of the original DianNao

(0.98GHz). We simply halved the operation frequency because the proposed archi-

tecture uses the doubled datapath bitwidth (32-bit fixed-point) compared to that of

DianNao (16-bit fixed-point). Table 2.5 shows the area and power profile of the two

architectures. Power values are found out by using the default toggle rate of 0.1. Note

that, as mentioned in Section 2.2.1, we eliminated SRAMs from both DianNao and

the proposed architecture.

33

Table 2.4: The Layer of VGG-16

Layer Imap Filter # of filters Omap

CONV1 224x224x3 3x3x3 64 224x224x64

CONV2 224x224x64 3x3x64 64 224x224x64

CONV3 112x112x64 3x3x64 128 112x112x128

CONV4 112x112x128 3x3x128 128 112x112x128

CONV5 56x56x128 3x3x128 256 56x56x256

CONV6 56x56x256 3x3x256 256 56x56x256

CONV7 56x56x256 3x3x256 256 56x56x256

CONV8 28x28x256 3x3x256 512 28x28x512

CONV9 28x28x512 3x3x512 512 28x28x512

CONV10 28x28x512 3x3x512 512 28x28x512

CONV11 14x14x512 3x3x512 512 14x14x512

CONV12 14x14x512 3x3x512 512 14x14x512

CONV13 14x14x512 3x3x512 512 14x14x512

FC1 7x7x512 7x7x512 4096 1x1x4096

FC2 1x1x4096 1x1x4096 4096 1x1x4096

FC3 1x1x4096 1x1x4096 1000 1x1x1000

Table 2.5: Synthesis results of the baseline and the proposed architecture

DianNao Proposed

Cell area (µm2) 1,084,915 1,214,180

Power(mW)
Dynamic 59.91 90.41

Leakage 23.58 26.28

34

2.5.3 Performance Improvement

Figure 2.16 shows performance improvement of convolutional layers on AlexNet. x-

axis is separated by each convolutional layer. And on each convolutional layer, the

figure shows performance improvement on each epoch, i.e. it shows layer-wise, epoch-

wise performance improvement when training AlexNet on ImageNet dataset. Blue bar

shows the performance improvement and red line shows the ratio of non-zero activa-

tions. During the training of AlexNet, our work can save 68% of the backward prop-

agation execution time. Figure 2.17 shows the result on VGG-16. During its training,

our work can save 62% of the backward propagation execution time.

The performance improvement is closely related to the ratio of nonzero activations

and it is mainly because the BPs of the target DNNs are memory-bound. The acceler-

ator cannot read all the needed data in a cycle since DRAM can provide only 64 bytes

(64bits × 8banks) of data per access. Thus, a DRAM access only returns 16 δCout

pixels of 16 weights in 32-bit fixed point format. Therefore, to feed all the 16 NFUs,

the read DMA module first accesses DRAM 17 times (1 access for 16 δCout pixels and

16 accesses for 256 weights). DianNao has a sequential memory access pattern when

it reads filter weights from DRAM. Although the memory access pattern of our work

is not always sequential because it selectively reads non-skippable filters, our work can

reduce the number of DRAM accesses so that the performance is improved.

35

Fi
gu

re
2.

16
:P

er
fo

rm
an

ce
im

pr
ov

em
en

to
n

A
le

xN
et

Fi
gu

re
2.

17
:P

er
fo

rm
an

ce
im

pr
ov

em
en

to
n

V
G

G
-1

6

36

2.5.4 Energy Reduction

Figure 2.18 shows energy reduction results on AlexNet. This figure also shows layer-

wise, epoch-wise energy reduction. The energy reduction is very closely related to

the ratio of non-zero activations even more closely than performance improvement,

because DRAM energy consumption is directly related to the number of DRAM ac-

cesses. During the training of AlexNet, our work can save 66% of the backward prop-

agation energy consumption. Figure 2.19 shows the results on VGG-16. During the

training, our work can save 62% of the backward propagation energy consumption.

The results do not include logic and buffer energy because the simulator we have

implemented focuses on performance simulation. However, we can estimate the logic

power consumption based on the synthesis results shown in Table 2.5. This is justi-

fied since the number of cycles consumed to compute gradient on an accelerator is

deterministic. The only variation is due to DRAM access time. Leakage power is con-

sidered constant during the entire operation cycles, and dynamic power is consumed

only when the logic is working. Then we can estimate energy reduction on the logic

using the following equation.

Energy = Powerleakage × Cyclestotal simulation

+ Powerdynamic × CyclesNFU simulation (2.5)

According to the estimation based on this, our work can save energy consumption

on logic by 53% on AlexNet and 44% on VGG-16.

37

Fi
gu

re
2.

18
:D

R
A

M
en

er
gy

re
du

ct
io

n
on

A
le

xN
et

Fi
gu

re
2.

19
:D

R
A

M
en

er
gy

re
du

ct
io

n
on

V
G

G
-1

6

38

2.5.5 Impacts of SRAM Buffer

Absolute Improvements on Performance and DRAM Energy Consumption

With SRAM buffers for neurons and synapses, we can expect the reduced number of

DRAM accesses and it can reduce absolute execution time.

Figure 2.24 shows the results of execution time comparisons for the proposed DNN

training accelerator architectures with and without SRAM buffers on AlexNet. The

gray bar shows the execution cycles of the accelerator without SRAM buffers and the

orange bar shows the execution cycles of the accelerator with SRAM buffers. The

yellow line shows speedup when the accelerator use SRAM buffers for neurons and

synapses. It achieves 7.35x speedup (86.4% reduction) by using SRAM buffers. Figure

2.25 shows the results on VGG-16. It achieves 8.62x speedup (88.4% reduction) by

using SRAM buffers.

Figure 2.26 shows the results of DRAM energy reduction comparisons for the

proposed accelerator architectures with and without SRAM buffers on AlexNet. The

gray bar shows the DRAM energy consumption of the accelerator without SRAM

buffers and the orange bar shows that of with SRAM buffers. The yellow line shows the

relative DRAM energy consumptions with SRAM buffers comared to that of without

SRAM buffers. SRAM buffers for neurons and synapses can reduce DRAM energy

consumption by 87%. Figure 2.25 shows the results on VGG-16. With SRAM buffers,

DRAM energy consumption is reduced by 88.7%.

Using SRAM buffers for neurons and synapses, SRAM buffer can keep upto 32

elements of input feature map and 512 (32 × 16) elements of filter weight. SRAM

buffer can keep filter weight up to 5 × 5 and keep input feature map upto 32 elements

by forming rectangular window. When filter weight sweeps the window, there are no

DRAM accesses. By this way, neurons and synapses are reused. Assuming 3×3 filter,

each element of input feature map can be reused upto 9 times and it can reduces the

number of DRAM accesses 1÷9. Input feature map elements located near the edge of

39

Fi
gu

re
2.

20
:C

om
pa

ri
so

n
of

th
e

ex
ec

ut
io

n
cy

cl
es

fo
rD

N
N

tr
ai

ni
ng

ac
ce

le
ra

to
ro

n
A

le
xN

et
w

ith
ou

tS
R

A
M

bu
ff

er
s

an
d

w
ith

SR
A

M

bu
ff

er
s

Fi
gu

re
2.

21
:C

om
pa

ri
so

n
of

th
e

D
R

A
M

en
er

gy
fo

r
D

N
N

tr
ai

ni
ng

ac
ce

le
ra

to
r

on
A

le
xN

et
w

ith
ou

tS
R

A
M

bu
ff

er
s

an
d

w
ith

SR
A

M

bu
ff

er
s

40

Fi
gu

re
2.

22
:C

om
pa

ri
so

n
of

th
e

ex
ec

ut
io

n
cy

cl
es

fo
rD

N
N

tr
ai

ni
ng

ac
ce

le
ra

to
ro

n
V

G
G

-1
6

w
ith

ou
tS

R
A

M
bu

ff
er

s
an

d
w

ith
SR

A
M

bu
ff

er
s

Fi
gu

re
2.

23
:C

om
pa

ri
so

n
of

th
e

D
R

A
M

E
ne

rg
y

fo
r

D
N

N
tr

ai
ni

ng
ac

ce
le

ra
to

r
on

V
G

G
-1

6
w

ith
ou

tS
R

A
M

bu
ff

er
s

an
d

w
ith

SR
A

M

bu
ff

er
s

41

rectangular has lower chance of reuse due to the characteristics of convolutional oper-

ation that theoretical speedup from input feature map reuse is smaller then 9. However,

unlike input feature map, filter weight can be reused more than input feture map el-

ements because it sweeps whole input feature map. A filter weight elements can be

reused (Ix−Fx + 1)× (Iy −Fy + 1) times. For AlexNet and VGG-16 network, width

of input feature map varies from 224 to 13, 14 that more data reuse is expected from

filter weight. However, the size of SRAM buffer constrains unlimited data reuse and

the scheme for data reuse affects the number of data reuse.

Improvements on Bit-Vector Plane

To maximize data reuse with SRAM buffers, bit-by-bit bit-vector checking cannot

make use of data reuse. So instead of bit-by-bit, we adopts plane-by-plane bit-vector

checking methods which can make use of data reuse. But, plane-by-plane is expected

to be reduced the zero plane ratio compared to the zero bit ratio that relative improve-

ments compared to the baseline also be expected to be reduced. However, the zero

plane ratio is still quite large that plane-by-plane bit-vector checking still shows supe-

rior to the baseline with SRAM buffer.

Figure 2.24 shows performance improvement of convolutional layers on AlexNet.

x-axis shows convolutional layers in the AlexNet. And the figures in each convo-

lutional layer show epoch-wise performance improvements. The blue bar shows the

relative performance improvement when both the baseline and the proposed acceler-

ator architecture have SRAM buffers for neurons and synapses. The blue line shows

the ratio of non-zero activations and the red line shows the ratio of non-zero planes.

It saves 48.9% of execution time (corresponds to 1.96x speedup). Compared to the

result shown in Section 2.5.3, relative performance improvement on plane-by-plane

bit-vector checking is lower than bit-by-bit bit-vector checking (68% reduction) due

to reduced zero ratio. Figure 2.25 shows the results on VGG-16. It saves 43.3% of ex-

ecution time (corresponds to 1.76x speedup). Comparing to the result in Section 2.5.3,

42

Fi
gu

re
2.

24
:P

er
fo

rm
an

ce
im

pr
ov

em
en

to
n

A
le

xN
et

w
ith

SR
A

M
B

uf
fe

r

Fi
gu

re
2.

25
:P

er
fo

rm
an

ce
im

pr
ov

em
en

to
n

V
G

G
-1

6
w

ith
SR

A
M

B
uf

fe
r

43

Fi
gu

re
2.

26
:D

R
A

M
en

er
gy

re
du

ct
io

n
on

A
le

xN
et

w
ith

SR
A

M
B

uf
fe

r

Fi
gu

re
2.

27
:D

R
A

M
en

er
gy

re
du

ct
io

n
on

V
G

G
-1

6
w

ith
SR

A
M

B
uf

fe
r

44

relative performance improvement is lower (62% reduction).

Plane-by-plane bit-vector checking reduces the relative performance improvement

due to the reduced zero-ratio. But ReLU layer still makes about half of the plane sparse

that our work can save the execution time of backward propagation during the DNN

training.

Figure 2.26 shows DRAM energy reduction results of convolutional layer on AlexNet.

Similar to that of performance improvement, the figure shows layer-wise, epoch-wise

DRAM energy reduction. The zero-ratio of plane reduces the number of DRAM ac-

cesses, it can reduces DRAM energy during the backward propagation of DNN train-

ing by 46.2%. Figure 2.27 shows DRAM energy reduction results on VGG-16. It re-

duces 43.3% of DRAM energy consumption during the backward propagation of DNN

training.

2.6 Summary

To the best of our knowledge, our work is the first attempt to make use of the char-

acteristics of ReLU activation function on backward propagation to skip the unnec-

essary operations. We build a simulator and RTL model of the proposed architecture

which exploits the skipping scheme and ported to DianNao architecture. We show

that the scheme which utilizes the sparsity of δCin significantly improves performance

and reduces energy consumption. Our work can achieve 3.13x and 2.63x speedup of

backward propagation on AlexNet and VGG-16, respectively. And our work can save

energy consumed on backward propagation for AlexNet and VGG-16 by 66% and 62

%, respectively. And further use SRAM buffers for neurons and synapse that abso-

lute performance improvement and DRAM energy reduction also shown. With SRAM

buffers, our work achieves 1.96x and 1.76x speedup for AlexNet and VGG-16 and

46.2% and 43.3% DRAM energy reduction for AlexNet and VGG-16, respectively.

45

Chapter 3

Acceleration of DNN Backward Propagation on Fully

Connected Layer

3.1 Motivation

3.1.1 Dropout

Dropout [12] is one of the well-known DNN regularization techniques to solve the

over-fitting problem for fully connected layer. The dropout layer picks activations ran-

domly and dropped them out during the forward propagation. During the backward

propagation, the values of gradients correspond to the dropped activations are deter-

mined to zero because the error does not propagated through the dropped activations.

Here, the values of gradients are determined before gradient computation that their

gradient computation becomes unnecessary computations.

3.1.2 Conventional Dropout Layer Implementations

Conventional implementation of dropout using CPU or GPU consists of two phases.

First, for each layer in the forward propagation, dropout layer generates randomly

masked activation map. The masked activations are dropped out that their connection

to the next layer is disconnected. Second, during the backward propagation, gradi-

46

ents correspond to the dropped activations become zeros after gradient computations

because their connection is disconnected, the error from the next layer does not prop-

agated through them. It is usually implemented as element-wise multiplications of

gradients, the dropout masks, and the scale factor in this phase.

Conventional random dropout should solve some implementation issues to achieve

both energy efficiency and its accuracy. Since masked activations should be saved, it

requires additional memory space and memory acceses as well. Further, conventional

implementations compute gradients, and then multiply by masks to drop gradients

out rather than skipping the computations since parallelism in the used architectures

should be maximized. [23] proposes an idea to accelerate dropout layer using GPGPU.

Due to the characteristics of GPU architecture, dropout cannot be applied to element-

wise but coarse-grained way to avoid control-flow divergence for better performance

efficiency. On an activation map, dropout is applied to its split tile-wise that it incurs

accuracy drop by losing randomness.

But my work in this dissertation implements dropout as same as how dropout

works, it accelerates dropout layer in the DNN accelerator architecture with no ac-

curacy drop.

3.1.3 Applications of Dropout

For convolutional layer, dropout is applied to regularize the output activations of fully

connected layers. The amount of time spending on dropout layer is small because

the fully connected layer is found at the late order of network that the number of

input and output activation is small compared to the convolutional layer in prior layers.

Further, dropout has been replaced to batch normalization [24] for convolutional neural

networks. Many latest network adopt batch normalization instead of dropout because

batch normalization reduces overall training time for convolutional neural network.

But, dropout is still used for recurrent neural network models. Applying dropout

technique as the convolutional neural network does not work on recurrent neural net-

47

Figure 3.1: The recurrent neural network

work [25]. However, there are many researches which try to apply dropout on recur-

rent neural networks. There are many works [26, 27, 28] apply dropout to the recurrent

neural networks.

For recurrent neural networks, their main operation is fully connected layer. Figure

3.1 shows a recurrent neural network model. If we unfold the model, the model is

shown in Figure 3.2. Each black arrow represents matrix-vector multiplication. The

matrix-vector multiplication corresponds to the fully connected layer operation.

And during the training of recurrent neural network, it computes gradient using

the backward propagation through time (BPTT) algorithm. The red arrows in Figure

3.3 show the error propagation paths for the BPTT algorithm. The operation for each

arrow is fully connected layer and the dropout can be applied to all the red arrows.

So, applying selective gradient computation for dropout is expected to be used on the

recurrent neural network and expected to accelerate BPTT during the training.

48

Figure 3.2: The unfoleded recurrent neural network

Figure 3.3: The backward propagation through time for the unfoleded recurrent neural

network

49

Figure 3.4: Filter dropper architecture

3.2 Selective Gradient Computation for Dropped Activations

3.2.1 Baseline Architecture

As same as the previous chapter, DianNao is selectd as a baseline architecture. It still

does not have SRAM buffers for neurons and synapses. It consists of 16 MAC units and

each MAC unit has 16 multipliers and the results of multiplications are accumulated

using adder tree. So each MAC unit has 16 multipliers and 15 adders. With 16 MAC

units, the baseline architecture can perform 256 MAC operations simultaneously. And

the baseline architecture is assumed that the dropout procedure in the backward propa-

gation is done just after the gradient computation. Similar to the merging convolutional

layer and ReLU layer, masking gradients before they are written back to DRAM can

save the DRAM accesses.

3.2.2 Filter Dropper

On the baseline architecture, a small logic called filter dropper is added to compute

gradient selectively while keeping utilization of MAC units as high as possible.

3.5 shows the architecture of filter dropper.

50

Figure 3.5: Random number genetator generates the same mask for both forward and

backward propagation

Filter dropper consists of random number generator, comparator which compares

random number generated by RNG and dropout rate, dropout mask, and table to keep

unitization of MAC units high.

Random Number Generator

To dropout activations randomly, random number generator (RNG) generates random

number for each activation to pick the dropped activations randomly. Because dropout

rate is a tuning parameter for dropout that it is neccesary parameter for filter dropper.

Further, random number generator seed (RNG seed) is also an important parameter for

filter dropper. Unlike conventional dropout implementations, the proposed architec-

ture does not need to store either dropout mask or masked activations. For a layer, if

both the forward propagation and the backward propagation use the same RNG seed,

random number generated by RNG is exactly the same that masks for both the forward

and backward propagations are proven to be coincide without additional memory us-

age.

Comparator

Comparator compares random number generated by RNG and dropout rate to deter-

mine whether an activation is dropped or not. And the result is expressed as a bit.

If the bit is ’1’, the corresponding activation is not dropped and if the bit is ’0’, the

corresponding activation is a dropped activation.

51

For the forward propagation, 16 output activations are computed simultaneously by

the fully connected layer because the number of MAC units is 16. So 16 bits are gath-

ered to form a bit-vector. Generating a bit-vector takes only 16 cycles. The bit-vector

generating cycles can be hidden to fully connected layer computation time. Because

fully connected layer computation requires associate all input activations and weights

for all output activations, computing fully connected layer is hard to be finished in 16

cycles.

For the backward propagation, a bit generated by comparator determines whether

gradient computations for the corresponding activation is skippable or not. Similar to

the filter collector in 2.2.3, to keep utilization of MAC units high, the bit is collected

to table.

Dropout Mask

Dropout mask logic masks output activations using bit-vector. When output activa-

tions are about to written back to DRAM, they pass through dropout mask logic to

be masked. The masking procedure is simple. Just multiplying output activations, bit-

vector, and the scale factor. Then the masked outputs are written back to DRAM.

Table

Table is collecting ’1’ bits generated by RNG and comparator. When collecting ’1’

bits, the corresponding index for the activation is recorded into the table. The table can

record up to 16 indexed that gradient computations for upto 16 non-dropped activations

are done simultaneously to maximize the utilization of the accelerator.

When the table ends filling indexes, DMA requests for the corresponding weights

of the recorded index are sent to the DRAM.

The pseudo code for the filter dropper is shown in Algorithm 1 and 2.

52

Algorithm 1: Pseudo code of filter dropper for forward propagation
1: Input: DropoutRate, RandomNumberSeed

2: Output: MaskedOutput[16]

3: // At the beginning of the computing NBout[16],

4: // Filter Dropper begin to generate bit-vector for masking NBout[16];

5: for i = 0 to 15 do

Probability = rand() / RANDMAX ;

if Probability < DropoutRate then
bitvector[i] = 0;

else
bitvector[i] = 1;

6: // When NBout[16] are computed, then mask them using bitvector[16];

7: for i = 0 to 15 do

if bitvector[i] == 0 then
MaskedOutput[i] = 0;

else
MaskedOutput[i] = NBout[i];

8: // Write MaskedOutput[16] back to the DRAM

9: for i=0 to 15 do
DRAMWriteRequest(MaskedOutput[i]);

53

Algorithm 2: Pseudo code of filter dropper for backward propagation
1: Input: DropoutRate, RandomNumberSeed

2: Output: Table[16]

3: TableIndex;

4: NeuronIndex = 0;

5: while NeuronIndex < NumberOfNeurons do

TableIndex = 0;

6: // Find 16 non-masked activations

7: // and then recored their index (NeuronIndex) on the Table[16];

8: while TableIndex < 16 do

Probability = rand() / RANDMAX ;

if Probability < DropoutRate then
Table[TableIndex] = NeuronIndex; TableIndex++;

NeuronIndex++;
9: // Send DRAM read requests for corresponding filters of

NeuronIndexes on Table;

10: for i=0 to 15 do
DRAMReadRequest(Table[i]);

3.3 Overall Architecture

Overall architecture is shown in Figure 3.6. Filter dropper is added to the baseline

architecture. It also does not have input SRAM buffers. Due to the characteristics of

the fully connected layer, weights are used exactly once that there are no chance for

data reuse.

54

Figure 3.6: Overall architecture for the dropout accelerator

3.4 Experimental Results

3.4.1 Simulator and Benchmark

A cycle accurate DNN accelerator simulators both for the baseline and the proposed

architectures are build to show the effective of the proposed approach. DRAMSim2

[20] is attached in the simulator that the simulator can measure the execution time

including DRAM access time and the DRAM energy consumption. The experimental

results are analyzed in related with the dropout rate.

As a benchmark, MLP network which has 2 hidden layers (800×800×10) is used

and varying size of fully connected layer with varying dropout rate is used as a micro

benchmark.

3.4.2 Results

3.1 shows the results for the effectiveness of the proposed architecture. To compare

the results from the baseline and the proposed architecture, the normalized execution

55

Table 3.1: Simulation results for dropout accelerator architecture

Network Size Dropout rate Normalized execution time Normalized DRAM energy

800 × 800 × 10 (MLP) 0.5 0.514 0.495

0.3 0.697 0.698

4096 × 1024 (MLP) 0.5 0.479 0.499

0.7 0.309 0.308

0.3 0.398 0.699

4096 × 4096 (MLP) 0.5 0.494 0.495

0.7 0.312 0.312

time and the normalized DRAM energy consumptioin is used. The results show that

the performance and the DRAM energy consumption are proportional to the ratio of

non-dropped activations. Because reduced DRAM accesses dominates.

3.5 Summary

This part of the dissertation proposes an idae of DNN accelerator architecture which

can accelerate the dropout layer. We show both speedup and DRAM energy reduction

on the dropout layer by simulation. The improvement is closely related to the dropout

rate.

56

Chapter 4

Conclusion

This dissertation researches hardware architectures which can accelerate deep neural

network training making use of the sparsity of neurons. Observing some layers where

the sparsity is occured, we designed hardwares to accelerate theses layers during the

DNN backward propagation.

First part of the dissertation focuses on convolutional layer. With the ReLU acti-

vation function, output neurons become sparse that explicit zero neurons are found.

And the characteristics of backward propagation computation make is possible to skip

many MAC operations with a zero neuron. The first hardware architecture is designed

without SRAM buffer that it takes too long time due to the enoumous DRAM access.

So solve this problem, the second hardware includes SRAM buffers for neurons and

synapse to reuse these data. It improves absolute execution time and DRAM energy

consumptions due to the reduced DRAM accesses. However it is still on a memory-

bound that resizing SRAM buffer size is left as a future work.

Second part of the dissertation accelerates fully connected layer during the DNN

training. Similar to ReLU layer, dropout layer can make use of sparsity of neurons.

The sparsity is determined during the forward propagation that computing gradients

for zero neurons are clearly waste of computing resources. Simulation results shows

the effectiveness of hardware design. Due to the characteristics of the fully connected

57

layer, there a few rooms to improve performance and energy efficiency using SRAM

buffer, applying SRAM buffer is left as a future work and combining the first part and

this part also left as a future works.

58

Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing

systems, 2012, pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger,

S. Satheesh, S. Sengupta, A. Coates et al., “Deep speech: Scaling up end-to-end

speech recognition,” arXiv preprint arXiv:1412.5567, 2014.

[4] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning

based natural language processing,” ieee Computational intelligenCe magazine,

vol. 13, no. 3, pp. 55–75, 2018.

[5] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao:

A small-footprint high-throughput accelerator for ubiquitous machine-learning,”

ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284, 2014.

[6] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun

et al., “Dadiannao: A machine-learning supercomputer,” in Proceedings of the

47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE

Computer Society, 2014, pp. 609–622.

59

[7] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos,

“Cnvlutin: Ineffectual-neuron-free deep neural network computing,” in ACM

SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE Press, 2016, pp.

1–13.

[8] D. Kim, J. Ahn, and S. Yoo, “Zena: Zero-aware neural network accelerator,”

IEEE Design & Test, vol. 35, no. 1, pp. 39–46, 2018.

[9] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient re-

configurable accelerator for deep convolutional neural networks,” IEEE Journal

of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[10] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen,

“Cambricon-x: An accelerator for sparse neural networks,” in The 49th Annual

IEEE/ACM International Symposium on Microarchitecture. IEEE Press, 2016,

p. 20.

[11] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” in Proceedings of the 27th international conference on machine

learning (ICML-10), 2010, pp. 807–814.

[12] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The journal

of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[13] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neu-

ral networks with binary weights during propagations,” in Advances in neural

information processing systems, 2015, pp. 3123–3131.

[14] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks: Training deep neural networks with weights and activations

constrained to+ 1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

60

[15] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods for 8-bit train-

ing of neural networks,” in Advances in neural information processing systems,

2018, pp. 5145–5153.

[16] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan, “Training deep

neural networks with 8-bit floating point numbers,” in Advances in neural infor-

mation processing systems, 2018, pp. 7675–7684.

[17] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of

a tensor processing unit,” in Proceedings of the 44th Annual International Sym-

posium on Computer Architecture, 2017, pp. 1–12.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” in International Conference on Machine

Learning, 2015, pp. 448–456.

[20] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate mem-

ory system simulator,” IEEE Computer Architecture Letters, vol. 10, no. 1, pp.

16–19, 2011.

[21] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks for mat-

lab,” in Proceedings of the 23rd ACM international conference on Multimedia.

ACM, 2015, pp. 689–692.

[22] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and S. W. Keckler, “Com-

pressing dma engine: Leveraging activation sparsity for training deep neural net-

works,” in 2018 IEEE International Symposium on High Performance Computer

Architecture (HPCA). IEEE, 2018, pp. 78–91.

61

[23] Z. Song, R. Wang, D. Ru, Z. Peng, H. Huang, H. Zhao, X. Liang, and L. Jiang,

“Approximate random dropout for dnn training acceleration in gpgpu,” in 2019

Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,

2019, pp. 108–113.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[25] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regulariza-

tion,” arXiv preprint arXiv:1409.2329, 2014.

[26] T. Moon, H. Choi, H. Lee, and I. Song, “Rnndrop: A novel dropout for rnns in

asr,” in 2015 IEEE Workshop on Automatic Speech Recognition and Understand-

ing (ASRU). IEEE, 2015, pp. 65–70.

[27] S. Semeniuta, A. Severyn, and E. Barth, “Recurrent dropout without memory

loss,” arXiv preprint arXiv:1603.05118, 2016.

[28] Y. Gal and Z. Ghahramani, “A theoretically grounded application of dropout in

recurrent neural networks,” in Advances in neural information processing sys-

tems, 2016, pp. 1019–1027.

62

초록

심층신경망은컴퓨터과학의다양한분야중인간의감각을쫓는분야에서가장

중요한 기술이 되어왔다. 몇몇 분야에서는 이미 심층신경망의 도움으로 인간의 감

각을뛰어넘은분야도존재한다. GPGPU를이용한심층신경망의가속이가능해진

이후, GPU는 심층신경망에 있어 가장 주요한 장치로 사용되고 있다. 심층신경망

의 복잡도가 높아짐에 따라 연산에 더 많은 컴퓨팅 자원을 요구하고 있다. 그러나

GPGPU는에너지소모가크기에효율적인심층신경망전용하드웨어개발에대한

요구가 증가하고 있다. 현재까지 이러한 전용 하드웨어는 주로 심층신경망 추론에

집중되어왔다.복잡한심층신경망모델은학습에긴시간이들고많은에너지를소

모한다.이에심층신경망학습을위한전용하드웨어에대한요구가늘어가고있다.

본학위논문은심층신경망학습가속기구조를탐색하였다.심층신경망의학습

은 순전파, 역전파, 가중치 갱신 이렇게 세 단계로 이루어져 있다. 이 중 액티베이

션의 그래디언트를 구하는 역전파 단계가 가장 시간이 오래 걸리는 단계이다. 본

학위논문에서는 역전파 단계에 중점을 둔 심층신경망 학습을 가속하는 하드웨어

구조를 제안한다. ReLU 레이어 혹은 dropout 레이어로 인해 생긴 뉴론의 성김을

이용하여심층신경망학습의역전파를가속한다.

학위논문의첫부분은합성곱신경망의역전파를가속하는심층신경망학습하

드웨어이다.가장많이쓰이는활성화함수인 ReLU를이용하는신경망을가정했다.

음수입력값에대한 ReLU활성화함수의도함수가 0이되어해당액티베이션의그

래디언트 또한 0이 된다. 이 경우 그래디언트 값에 대한 계산 없이도 그래디언트

값이 0이 되는 것을 알 수 있기에 해당 그래디언트는 계산하지 않아도 된다. 이러

63

한 특성을 이용하여 0값인 액티베이션에 대한 그래디언트 계산을 건너 뛸 수 있는

효율적인 심층신경망 가속 하드웨어를 설계했다. 또한 실험을 통해 본 하드웨어의

효율성을검증했다.

학위논문의 두번째 부분은 완전연결 신경망의 학습을 가속하는 하드웨어 구조

제안이다. ReLU 레이어와 비슷하게 dropout 레이어 또한 그래디언트 계산 없이도

그 결과가 0임을 알 수 있다. Dropout은 심층신경망의 과적합을 해결하는 일반화

기법 중 하나로, 심층신경망 학습 과정 동안에만 무작위로 신경망의 연결을 끊어

놓는다. 신경망이 끊어진 경로로는 역전파 단계에서 에러가 전파되지 않기에 해당

그래디언트값또한 0임을미리알수있다.이특성을이용하여완전연결신경망의

역전파를가속할수있는하드웨어를설계했다.또한시뮬레이션을통해본하드웨

어의효율성을검증했다.

주요어:심층신경망학습,뉴론의성김,선택적그래디언트계산

학번: 2014-21649

64

	1 Introduction
	1.1 Deep Neural Network Training
	1.2 Convolutional Neural Network
	1.2.1 Forward propagation
	1.2.2 Backward propagation
	1.2.3 Weight update

	1.3 Rectified Linear Unit
	1.4 Dropout
	1.5 Previous Works

	2 Acceleration of DNN Backward Propagation on CNN layer
	2.1 Motivation
	2.2 Selective Gradient Computation for Zero Activations
	2.2.1 Baseline Architecture
	2.2.2 Bit-Vector for Selective Gradient Computation
	2.2.3 Filter Collector
	2.2.4 Zero-Gradient Insertion in Write DMA

	2.3 Overall Architecture
	2.4 SRAM Buffer
	2.4.1 Motivation
	2.4.2 Selective Gradient Computation and SRAM Buffer

	2.5 Experimental Results
	2.5.1 Performance Simulator
	2.5.2 RTL Implementation
	2.5.3 Performance Improvement
	2.5.4 Energy Reduction
	2.5.5 Impacts of SRAM Buffer

	2.6 Summary

	3 Acceleration of DNN Backward Propagation on Fully Connected Layer
	3.1 Motivation
	3.1.1 Dropout
	3.1.2 Conventional Dropout Layer Implementations
	3.1.3 Applications of Dropout

	3.2 Selective Gradient Computation for Dropped Activations
	3.2.1 Baseline Architecture
	3.2.2 Filter Dropper

	3.3 Overall Architecture
	3.4 Experimental Results
	3.4.1 Simulator and Benchmark
	3.4.2 Results

	3.5 Summary

	4 Conclusion

<startpage>13
1 Introduction 1
 1.1 Deep Neural Network Training 4
 1.2 Convolutional Neural Network 5
 1.2.1 Forward propagation 5
 1.2.2 Backward propagation 6
 1.2.3 Weight update 6
 1.3 Rectified Linear Unit 7
 1.4 Dropout 8
 1.5 Previous Works 9
2 Acceleration of DNN Backward Propagation on CNN layer 12
 2.1 Motivation 12
 2.2 Selective Gradient Computation for Zero Activations 17
 2.2.1 Baseline Architecture 17
 2.2.2 Bit-Vector for Selective Gradient Computation 20
 2.2.3 Filter Collector 23
 2.2.4 Zero-Gradient Insertion in Write DMA 26
 2.3 Overall Architecture 27
 2.4 SRAM Buffer 28
 2.4.1 Motivation 28
 2.4.2 Selective Gradient Computation and SRAM Buffer 29
 2.5 Experimental Results 32
 2.5.1 Performance Simulator 32
 2.5.2 RTL Implementation 33
 2.5.3 Performance Improvement 35
 2.5.4 Energy Reduction 37
 2.5.5 Impacts of SRAM Buffer 39
 2.6 Summary 45
3 Acceleration of DNN Backward Propagation on Fully Connected Layer 46
 3.1 Motivation 46
 3.1.1 Dropout 46
 3.1.2 Conventional Dropout Layer Implementations 46
 3.1.3 Applications of Dropout 47
 3.2 Selective Gradient Computation for Dropped Activations 50
 3.2.1 Baseline Architecture 50
 3.2.2 Filter Dropper 50
 3.3 Overall Architecture 54
 3.4 Experimental Results 55
 3.4.1 Simulator and Benchmark 55
 3.4.2 Results 55
 3.5 Summary 56
4 Conclusion 57
</body>

