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Abstract 

 

Photoluminescence quantum-dot (PL-QD) displays have attracted 

great interest in next-generation emissive-type displays owing to their high 

color purity, narrow bandwidth, and color tunable emission. Recently, QD 

color filters with blue organic light-emitting diode (OLED) backlights have 

been studied, improving color gamut and contrast ratio. However, these 

structures have low light extraction efficiency due to total internal reflection 

by the characteristics of QDs emitting light in all directions. Surface 

engineering and internal grating patterns, which are commonly used 

techniques to reduce total internal reflection, lack device uniformity and 

patterning accuracy required to be applied to large-area processes. In addition, 

light-recycling method using multilayer optical filters has also been 

introduced, but the cost of the fabrication process is expected to be high. Thus, 

it is desirable to search for a new concept of the PL-QD display for the 

improvement of the light extraction efficiency with better device uniformity 
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in large-area processing. 

 This thesis presents a helical photonic crystal based PL-QD display 

for enhancing the light extraction efficiency. The helical photonic crystal 

array which selectively reflects circularly polarized light within the specific 

wavelength range is located between the emissive QD array and the backlight, 

resulting in the enhancement of the light extraction efficiency by reflecting 

half of the downward emitted light in the QD array. From the spectroscopic 

analysis, it was shown that the light extraction efficiency of our device was 

greatly improved compared with the conventional PL-QD display. Also, it 

was confirmed that the color purity of the QD array was stably maintained 

even with the multiple photo-polymerization patterning processes. Our 

helical photonic crystal based PL-QD display will provide a firm basis for the 

next generation PL-QD displays with high light extraction efficiency and low 

process cost. 
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Chapter 1. Introduction 

 

1.1. Photoluminescence Quantum-Dot Display 

 

In recent years, colloidal quantum dots (QDs) have attracted great 

attention in photoluminescence quantum-dot (PL-QD) displays due to their 

high color purity, narrow bandwidth, and color tunable emission [1-5]. QDs 

are nano-sized semiconductor particles having PL properties. When the QDs 

absorb the ultra-violet (UV) photons, an electron-hole pair in the QD can be 

excited to the upper state, like the electron transition through the energy 

bandgap in the semiconductor. Then, the electron-hole pair recombination 

process can occur, leading to the emission of light. The wavelength of the 

emitted light is determined by the particle size of QDs. The QDs also have 

electroluminescent (EL) properties like organic light-emitting diodes 

(OLEDs), but EL-QD devices are currently difficult to commercialize due to 
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their low quantum efficiency and lifetime compared with PL-QD devices. 

A widely used commercial application of QDs in display industries 

is quantum-dot enhancement film (QDEF) layer which is a composite of red 

and green QDs [6, 7]. The QDEF layer is usually located directly in front of 

the blue light source of the liquid crystal display (LCD). Since light from the 

backlight is converted to relatively pure red and green by the QDEF, the color 

gamut of the QDEF-LCD is much better than the conventional LCD. However, 

its viewing angle and contrast ratio are still insufficient compared with OLED 

due to the limitations of the spatial light modulation [8]. Recently, QD-OLED 

using blue OLED backlight and QD color filter array has attracted attention 

as an alternative to QDEF-LCD [9, 10]. It has the high contrast ratio like the 

OLED panel because each pixel can be turned off. Also, the QD color filter 

array performs color conversion without filtering of the light source, resulting 

in low light loss and high color gamut. Hence, QD-OLEDs are viewed as a 

potential application for the next-generation emissive-type display.  



 

 3 

1.2. Light Extraction Techniques in Quantum-Dot Devices 

 

 In general, it is known that the light extraction efficiency, which is 

also called the out-coupling efficiency, is about 20 % in emissive displays 

based on OLED devices or QD devices [11, 12]. Light generated from the 

emissive layer is mostly lost due to total internal reflection and wave-guiding 

effect, as represented in Fig. 1.1. There have been several approaches to the 

enhancement of the light extraction efficiency. Recently, surface roughened 

substrates [13] and internal grating patterns [14] have been proposed to 

suppress total internal reflection. However, such systems usually lack device 

uniformity and have relatively low patterning accuracy, so that large area 

processes are not suitable for applying the above approaches. Also, optical 

recycling methods using long pass filter [15] or short pass filter [16] have 

been provided, but the fabrication process is expected to be complicated and 

expensive due to multiple vacuum deposition for fabricating the optical filter 

with inorganic multilayer films. Thus, it is desirable to find a new practicable 
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way for enhancing the light extraction efficiency capable of large-area 

processing with device uniformity. 

 

 

Figure 1.1. Schematic illustration of light propagation through various 

modes in the emissive display structure [17]. 

 

1.3. Helical Photonic Crystal Layers for High Light Extraction 

Efficiency 

 

Throughout this thesis, we present a novel concept of the helical 

photonic crystal based PL-QD display for enhancing the light extraction 
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efficiency. Fig. 1.2 shows the schematic illustration of our helical photonic 

crystal based PL-QD display compared with the conventional PL-QD display. 

In general, only the upward emitted light can be extracted since QDs emit 

unpolarized light in all directions, as shown in Fig. 1.2(a). This means that 

half of the photoluminescence quantum yield of the QDs is lost. 

In this work, we used the helical photonic crystal array to extract half 

of the downward emitted light in the emissive QD array, as shown in Fig. 

1.2(b). The helical photonic crystal is a kind of twisted structure in which rod-

like shaped molecules aligned in each layer rotate periodically around the 

vertical axis. Because of its twisted shape, the helical photonic crystal has 

unique optical properties that selectively reflect circularly polarized light 

within the specific wavelength range [18-23]. That is, half of the unpolarized 

emitted light is reflected from the helical photonic crystal layer and becomes 

reusable as a light source. The detailed operating mechanism and fabrication 

process of our helical photonic crystal based PL-QD display with high light 

extraction efficiency will be discussed in the following chapters. 
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Figure 1.2. Schematic illustration of (a) the conventional PL-QD display 

(QD-LED) and (b) the helical photonic crystal based PL-QD display. 
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1.4. Outline of Thesis 

 

This thesis consists of five chapters from Introduction to Conclusion. 

In Chapter 1, a general overview of the PL-QD display is provided. The brief 

description of several light extraction techniques in QD devices and our novel 

approach with helical photonic crystal layers for high light extraction 

efficiency are also introduced in this chapter. Chapter 2 covers the theoretical 

background for understanding the reactive mesogens and the selective 

reflection effect of the helical structure. The finite-difference time-domain 

method, which is one of the famous numerical analysis, is also discussed in 

this chapter. Chapter 3 presents the experimental procedures of this research. 

The fabrication process through the multiple photo-polymerization patterning 

and the measurement method of the fabricated device are provided as well in 

this chapter. In Chapter 4, the results of experiments are presented and 

discussed. Finally, in Chapter 5, some concluding remarks are made. 

  



 

 8 

Chapter 2. Theoretical Background 

 

2.1. Reactive Mesogens 

 

Mesogen is a material for inducing LC properties that have both 

flexibility and regularity. The mesogen structure consists of rigid parts and 

flexible parts which characterize order and fluidity. The rigid component of 

the mesogen structure makes it easy to align itself in a specific direction due 

to its rod-like shape, and the flexible component leads to the effect of 

preventing crystallization to some extent. 

Reactive mesogens (RMs) are chemical compounds having 

functional groups located on the tail of mesogen materials that can be 

polymerized in response to UV light or heat. The schematic diagram of the 

photo-polymerization process of the RMs is depicted in Fig. 2.1. As shown 

Fig. 2.1(a), the RMs have rod-shaped molecules as a core group and have 
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mono-acrylate or di-acrylate tails which causes photo-polymerization 

reaction when exposed to UV light. After photo-polymerization process, the 

RMs form liquid crystalline polymers (LCPs) as shown in Fig. 2.1(b). The 

LCPs, which have high thermal stability and low chemical reactivity, have a 

permanently fixed LC phase when aligned in a specific direction before the 

photo-polymerization process. 

 

 

Figure 2.1. Schematic diagram of (a) the RMs and (b) the LCPs formed by 

the photo-polymerization of the RMs. 
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 In addition, The RMs can be easily dissolved in organic solvents, so 

the LCP films are usually made by solution process such as spin-coating or 

dip-coating using the RM solution (RMS). Since it is possible to form stable 

and large-scale aligned polymer films in the simple fabrication process, the 

RMS has great potential in various fields where optical technology is applied, 

including displays. 

 

 

2.2. Selective Reflection of Helical Structure 

 

 Chiral nematic phase is one of the LC phases which is made by 

mixing chiral dopants with LCs in nematic phase. When chiral dopants are 

mixed with nematic LCs, the director axis of each layer of nematic LCs is 

formed to rotate periodically about the vertical axis in which the twist rate of 

the director is uniform. As the spiral structure repeats, it becomes a helical 

photonic crystal, as shown in Fig. 2.2. 
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Figure 2.2. Schematic diagram of the helical photonic crystal. 

 

The helical photonic crystal exhibits several unique optical properties, 

such as optical rotatory power and selective reflection of circularly polarized 

light. Because of the periodically rotational directors of the helical structure, 

circular birefringence occurs when a linearly polarized light passes through 

the structure. Furthermore, the helical photonic crystal reflects a circularly 

polarized light within a specific wavelength range, which is called selective 

reflection. The selective reflection effect is a result of the periodic variation 

of the dielectric constant along the helical axis, and the fundamental principle 
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is based on Bragg reflection. 

When light propagates parallel to the helical axis, Bragg reflection 

occurs within the following wavelength range [24]. 

 𝑛𝑜𝑝 < λ < 𝑛𝑒𝑝 (2.1) 

 λ𝑝𝑒𝑎𝑘 = √
𝑛𝑒

2 + 𝑛𝑜
2

2
 ⋅ 𝑝 (2.2) 

The wavelength range and the peak wavelength (λ𝑝𝑒𝑎𝑘) of the reflection are 

determined by the helical pitch (p) and the principal refractive indices of the 

medium (𝑛𝑜: ordinary refractive index, 𝑛𝑒: extraordinary refractive index). 

The reflected light is circularly polarized with same handedness of the helical 

structure. If the structure is twisted in a right-handed direction, only the right-

handed polarized light within the wavelength range is strongly reflected, 

whereas the left-handed polarized light is transmitted. On the other hand, the 

left-handed polarized light is strongly reflected in the left-handed helical 

structure. Therefore, 50 % of the power of the unpolarized light satisfying 

Bragg’s condition is selectively reflected and the remaining component is 
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transmitted through the helical structure, as depicted in Fig. 2.3. 

 

      

Figure 2.3. Schematic diagram of the selective reflection of the helical 

structure satisfying Bragg’s condition in the red wavelength range. 

 

 As we can see from the Eqs. (2.1) and (2.2), the wavelength range 

and the peak wavelength depend on the pitch of the helical structure which is 

determined by the amount of chiral dopant in the LC medium. That is, as the 
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shorter the pitch, the more blue-shifted reflected light is obtained. Conversely, 

the longer the pitch, the more red-shifted reflected light is obtained. In 

addition, the bandwidth of the reflectance spectrum is determined by the 

difference of the principal refractive indices. 

 Chiral RMs with the chiral nematic phase are blends of the chiral 

dopants and RMs. Also, any pitch length of the chiral RMs can be obtained 

by adjusting the ratio of the chiral dopants in the solution. Since the chiral 

RMs are also photo-polymerizable and easily dissoluble in organic solvents, 

it is possible to create a stable and large-scale helical photonic crystal by 

solution process [25-27]. 

 

 

2.3. Finite-Difference Time-Domain Method 

 

Finite-difference time-domain (FDTD) method is one of the famous 

numerical analysis techniques used in computational electrodynamics 
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proposed by K. Yee in 1966 [28]. Since it is time-domain method, a wide 

range of frequency responses can be calculated with a single simulation run. 

Also, it can be applied in any electrodynamics problems related to the 

Maxwell’s equations. 

The basic idea of the FDTD method is to apply central difference 

approximation to the time and spatial derivatives of the Maxwell’s equations. 

To do this, it is necessary to define a system called Yee grid that discretizes 

time and space. Fig. 2.4 shows the schematic diagram of the Yee grid for the 

one-dimensional FDTD method. As we can see, the electric field and the 

magnetic field have shifted each other in the spatial domain by half of the unit 

length. In the same way, they have also shifted each other in the time domain 

by half of the unit time. This grid system that lags in half is directly connected 

to the central difference approximation of the Maxwell’s curl equations. 
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Figure 2.4. Schematic diagram of the Yee grid for the one-dimensional 

FDTD method. 

 

 Let us assume the light propagates through some dielectric medium 

in free space. The Maxwell’s curl equations can be written as 

 −𝜇0

𝜕𝐻

𝜕𝑡
= ∇ × 𝐸 (2.3) 

 
𝜕𝐷

𝜕𝑡
= 𝜀

𝜕𝐸

𝜕𝑡
= ∇ × 𝐻 (2.4) 

In the one-dimensional case, only the 𝐸𝑥 and 𝐻𝑦 components need to be 

considered. Then, the modified equations by applying the central difference 

approximation are as follows 
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−μ0

𝐻𝑦
𝑛+1/2(𝑘 + 1/2) − 𝐻𝑦

𝑛−1/2(𝑘 + 1/2)

Δ𝑡
=

𝐸𝑥
𝑛(𝑘 + 1) − 𝐸𝑥

𝑛(𝑘)

Δ𝑧
 (2.5) 

𝜀
𝐸𝑥

𝑛+1(𝑘) − 𝐸𝑥
𝑛(𝑘)

Δ𝑡
= −

𝐻𝑦
𝑛+1/2(𝑘 + 1/2) − 𝐻𝑦

𝑛+1/2(𝑘 − 1/2)

Δ𝑧
 (2.6) 

As shown in Fig. 2.4 and Eq. (2.5), H((k+1/2)Δ𝑧) at the time step n+1/2 is 

derived by E((k+1)Δ𝑧) at the time n, E(kΔ𝑧) at the time n, and H((k+1/2)Δ𝑧) 

at time n-1/2. Also, Eq. (2.6) depicts that E(k) at the time step n+1 is obtained 

by E(k) at the time n, H((k+1/2)Δ𝑧) at the time n+1/2, and H((k-1/2)Δ𝑧) at 

the time n+1/2. Therefore, by combining these two processes, the 

electromagnetic field of the future time step can be calculated by the 

electromagnetic field of the current time step. 

 Each layer of the helical photonic crystal with the chiral nematic 

phase has the uniaxial anisotropic behavior. In order to apply FDTD method 

in the helical photonic crystal medium, the dielectric constant of Eq. (2.6) 

must be represented as a tensor. The dielectric tensor of the helical photonic 

crystal is simply defined as the following [29] 
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 𝜀(𝑧) = 𝜀0 (

𝛽 + 𝛼𝑐𝑜𝑠 (2𝑞𝑧) 𝛼𝑠𝑖𝑛 (2𝑞𝑧) 0
𝛼𝑠𝑖𝑛 (2𝑞𝑧) 𝛽 − 𝛼𝑐𝑜𝑠 (2𝑞𝑧) 0

0 0 𝑛𝑜
2

) (2.7) 

 𝛽 =
1

2
(𝑛𝑒

2 + 𝑛𝑜
2) (2.8) 

 𝛼 =
1

2
(𝑛𝑒

2 − 𝑛𝑜
2) (2.9) 

 𝑞 =
2𝜋𝑧

𝑝
 (2.10) 

where 𝑛𝑜 𝑎𝑛𝑑  𝑛𝑒  are the principal refractive indices and p is the helical 

pitch. 
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Chapter 3. Experiments 

 

3.1. Preparation of Chiral Reactive Mesogen Layers 

 

 For verifying our proposed helical photonic crystal based PL-QD 

display, it is necessary to obtain the optimized chiral RM layers that 

selectively reflect the emitted light from the QD patterns. The materials for 

fabricating the layers were acrylate-based chiral RM mixtures dispersed in 

toluene (RMS11-067, RMS11-068; Merck). The peak wavelengths of the 

maximum selective reflection of RMS11-067 and RMS11-068 are 520 nm 

and 620 nm, respectively. The RMS11-068 was used directly to fabricate the 

red colored chiral RM layer. For the green colored chiral RM layer with 540 

nm peak wavelength, the mixture of the RMS11-067 and RMS11-068 at 8:2 

weight ratio was prepared. Since these RMS are composed of the same kind 

of RMs with different chiral dopant concentrations, various helical pitches 
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can be obtained by simply mixing the above solutions. 

First, glass substrates were cleaned using acetone in an ultrasonic 

cleaner for about 15 min and using water for about 10 min in the same way. 

Next, the glass substrates were fully dried with nitrogen gas. In order to 

control the orientation of the chiral RMS, the homogeneous alignment layer 

(SE-6514H; Nissan Chemical Industries) was spin-coated on the cleaned 

glass substrate at the rate of 3000 rpm for 30 s and post-annealed at 180 ℃ 

for 1 h. Then, the alignment layer was rubbed in the horizontal direction. The 

red colored chiral RMS with 620 nm peak wavelength and the green colored 

chiral RMS with 540 nm peak wavelength were independently spin-coated on 

the alignment layer at the rate of 3500 rpm for 30 s. These substrates were 

softly annealed at 55 ℃ for 1 min to remove the solvent and cooled at room 

temperature for 1 min. The coated layers were photo-polymerized under the 

UV exposure at the intensity of 20 mW/cm2 for 1 min. After resting at room 

temperature for about 1 min, the chiral RM layers with selective reflection 

were constructed. 



 

 21 

3.2. Fabrication of Helical Photonic Crystal Based Quantum-

Dot Devices 

 

 The polymerizable groups at tails of the chiral RMs form cross-links 

in areas exposed to the UV light. The cross-links have chemical non-reactivity, 

high thermal resistance, good reliability against moisture, and insolubility in 

most solvents, unlike in areas without the UV exposure. Since these photo-

polymerization process of the chiral RMs is similar to the photo-lithography 

process of the negative photoresists, the helical photonic crystal patterns can 

be easily obtained using the photomask. 

For the patterning of the color separated QD arrays, the red and green 

QDs (CZO-620T, CZO-530T; ZEUS Co., Ltd.) dispersed uniformly in the 

homeotropic RMS (RMS16-088; Merck) at volume ratio of 1:1 were prepared, 

respectively. These QD hybrid patterns were constructed by the photo-

polymerization process like the helical photonic crystal patterns. It was also 

found that the molecular ordering of photo-polymerized RMs prevented the 
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aggregation of the QDs, which resulted in the improved absorption of the 

excitation light in the QD hybrid patterns. 

 The detailed fabrication process of the helical photonic crystal based 

QD devices is shown in Fig. 3.1. First, the homogeneous alignment layer was 

prepared on the cleaned glass substrate at the spin-coating rate of 3000 rpm 

for 30 s as shown in Fig. 3.1(a). After post-annealing process of the alignment 

layer at 180 ℃ for 1 h followed by rubbing in the horizontal direction, the red 

chiral RMS were spin-coated on the substrates at 3500 rpm for 30 s, and softly 

annealed at 55 ℃ for 1 min as shown in Fig. 3.1(b). The red chiral RM layer 

was photo-polymerized with the photomask by the exposure of the UV lamp 

at the intensity of the 20 mW/cm2 for 1 min, as depicted in Fig. 3.1(c). The 

un-polymerized RMs were removed by toluene, and fully dried at 60 ℃. After 

that, the red chiral RM patterns were formed as shown in Fig. 3.1(d). The 

same fabrication process was applied to the green chiral RMS as shown in 

Figs. 3.1(e) and (f). 

 Next, the UV ozone (UVO) treatment was performed for 10 min to 
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increase wettability and adherence of the QD-RM mixtures on the chiral RM 

layer surface. Then, the solution with red QDs dispersed in the homeotropic 

RMS was spin-coated on the chiral RM patterns at the rate of 2500 rpm for 

30 s. The substrate was softly annealed at 55 ℃ for 1 min to remove the 

residual solvent. The red QD-RM mixture was photo-polymerized with the 

photomask under the UV lamp at the intensity of the 20 mW/cm2 for 1 min, 

as depicted in Fig. 3.1(g). The un-polymerized QD-RM mixture was washed 

by toluene, and the substate was fully dried at 60 ℃, resulting in Fig. 3.1(h). 

The same fabrication process was applied to the green QD-RM mixture as 

shown in Fig. 3.1(i). As a result, the helical photonic crystal based QD hybrid 

patterns were fabricated, as shown in Fig. 3.1(j). 
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Figure 3.1. Illustration of fabrication process of the helical photonic crystal 

based QD hybrid patterns. 
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3.3. Measurements of Optical and Photoluminescence 

Characteristics 

 

The red and green chiral RM film thickness were observed by the 

surface profiler (DektakXT; Bruker Corporation). The optical characteristics 

of the chiral RM layer including reflectance and transmittance were measured 

using the UV-VIS-NIR light source (DH-mini; Ocean Optics) and the fiber 

optic spectrometer (USB2000+; Ocean Optics). The UV LED light source 

(LLS-365; Ocean Optics) was used for emitting the helical photonic crystal 

based QD hybrid patterns, and the photoluminescence properties were carried 

out using the fiber optic spectrometer. 
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Chapter 4. Results and Discussion 

 

4.1. Optimization of Helical Photonic Crystal Film Using 

Finite-Difference Time-Domain Method 

 

In order to achieve the improved light extraction efficiency of the PL-

QD display using selective reflection, it is important to find out the optimized 

thickness of the helical photonic crystal film. The FDTD simulation was 

performed to determine the adequate thickness that guarantees the reflectance 

greater than 40%. In the simulation, ordinary and extraordinary refractive 

indices were 1.45 and 1.59, respectively, which were the same as the values 

of RMS11-068. For the purpose of obtaining visible light frequency responses 

in one simulation, we used the broadband Gaussian pulse as the input source 

wave, which is described in Eq. (4.1), where the pulse duration τ  is 

5.8374 × 10−16 s. 
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 𝐸𝑖𝑛𝑝𝑢𝑡(𝑡) = 𝑒𝑥𝑝(−(𝑡 − 6τ)2/τ2) (4.1) 

Fig. 4.1 shows the FDTD simulation results of the reflectance spectra 

of the red, green, and blue colored chiral RM layers with different thicknesses. 

The peak wavelengths and helical pitches for each chiral RM layer are shown 

in Table 4.1. As shown in Fig. 4.1(a), which describes the reflectance spectra 

of the red chiral RM layer with the peak wavelength of 620 nm, the maximum 

reflectance rises from about 4.5 % to 40 % when the film thickness increases 

from 1 to 5 times the red helical pitch. Also, the full width at half maximum 

(FWHM) of the reflectance spectra decreases, so that the chiral RM layer 

reflects selectively and precisely within the suggested wavelength range. As 

shown in Fig. 4.1(b) and (c), It has been obtained the same results in the green 

and blue chiral RM layer with the peak wavelength of 540 nm and 460nm, 

respectively. 

The above result means that the maximum selective reflectance for 

the enhancement of the light extraction efficiency is proportional to the film 

thickness. In other words, the chiral RM layer having the thickness of at least 
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5 times its helical pitch is required to obtain high light extraction efficiency 

over 30 %. Under these conditions, the optimized thicknesses of the red, green, 

and blue helical photonic crystal layers are 2.04 μm, 1.78 μm, and 1.51 μm, 

respectively. 

 

 

 Red chiral Green chiral Blue chiral 

λ𝑝𝑒𝑎𝑘 620 nm 540 nm 460 nm 

pitch (Px x = R, G, B) 408 nm 355 nm 302 nm 

Table 4.1. The helical pitches corresponding to the peak wavelengths for 

each chiral RM layer. 
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Figure 4.1. FDTD simulation results of the reflectance spectra of (a) the red 

chiral RM layer, (b) the green chiral RM layer, and (c) the blue chiral RM 

layer with different thicknesses. 
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4.2. Reflectance and Transmittance of Chiral Reactive 

Mesogen Layers 

 

 Fig. 4.2 shows the comparison of the experimental results with the 

simulation of the red chiral RM layer with the peak wavelength of 620 nm 

and the green chiral RM layer with the peak wavelength of 540 nm. These 

optical characteristics of the chiral RM layers were measured using the fiber 

optic spectrometer. It was found that the thickness of the red chiral RM layer 

was 2.04 μm, which corresponds to 5 times the red helical pitch, by 

performing the measurement with the surface profiler. In the same way, the 

thickness of the green chiral RM layer was measured to be 2.30 μm 

corresponding to 6.5 times the green helical pitch. 

As a result of comparison with the simulation performed according 

to the above pitch length and thickness, the experimental results are consistent 

with the reflectance spectra expected in the simulation within the wavelength 

range satisfying the Bragg condition. The maximum reflectance 
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measurements of the red chiral RM layer and the green chiral RM layer are 

found to be about 39.0% and 44.7%, respectively, as shown in Fig. 4.2. In 

addition, the sum of reflectance and transmittance is almost 100 % in the 

entire visible wavelength range, which means there is no energy loss in the 

chiral layer. These chiral layers have 10 % reflectance outside their selective 

reflection wavelength range unlike the theoretical results. However, the above 

error does not actually affect the light extraction efficiency, due to the wider 

FWHM of the chiral layers compared with that of the QDs. 
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Figure 4.2. Simulated (dashed line) and measured (solid line) reflectance 

and transmittance spectra of (a) the red chiral RM layer and (b) the green 

chiral RM layer. The upper part of each graph is the transmittance and the 

lower part is the reflectance.  
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4.3. Photoluminescence Characteristics of Helical Photonic 

Crystal Based Quantum-Dot Devices 

 

Our helical photonic crystal based QD films and the conventional QD 

films were fabricated to demonstrate the enhancement of the light extraction 

efficiency. The emission characteristics of these devices were measured using 

the fiber optic spectrometer under the UV excitation light of 365 nm 

wavelength. 

Fig. 4.3 shows the comparison of the emission spectra of QD films 

with or without the helical photonic crystal layers. As shown in Fig. 4.3(a), 

the light extraction efficiency of the red QD film with the red chiral RM layer 

is improved by 40 % at the peak wavelength and 31 % on average compared 

with the conventional red QD film. Also, as shown in Fig. 4.3(b), the light 

extraction efficiency of the green QD film with the green chiral RM layer is 

improved by 44 % at the peak wavelength and 40 % on average. The dashed 

line in each graph represents the estimate obtained by adding the QD 
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spectrum without the chiral RM layer to the selective reflection ratio of Fig. 

4.2. Since the measured emission spectra of our helical photonic crystal based 

QD devices coincide with their estimated spectra, it is clearly proved that the 

improvement of the light extraction efficiency was caused by the selective 

reflection effect. 

Fig. 4.4 shows the measured emission spectra of our helical photonic 

crystal based red QD device compared with the conventional device by 

changing the power of the UV excitation light. As the backlight power 

increases, the irradiance increases while the light extraction efficiency 

improved by 40 % at the peak wavelength is maintained every moment. In 

other words, it is observed that the improved light extraction efficiency is 

maintained stably regardless of the input power. 
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Figure 4.3. Estimated (dashed line) and measured (colored solid line) 

emission properties of our helical photonic crystal based (a) red QD device 

and (b) green QD device under the UV excitation light compared with the 

emission spectrum of the conventional QD devices (black solid line). 
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Figure 4.4. Measured emission characteristics of (a) the conventional red 

QD device and (b) our helical photonic crystal based red QD device by 

changing the backlight power. 
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4.4. Microscopic Images of Helical Photonic Crystal Based 

Photoluminescence Quantum-Dot Display 

 

 For the purpose of showing that our patterning process is practicable, 

the color pixel array of our helical photonic crystal based QD display was 

fabricated. Fig. 4.5 shows the emission characteristics with the microscopic 

images of the helical photonic crystal based monochromatic QD patterns 

compared with un-patterned films. The emission characteristics of the red QD 

pattern with the red chiral RM pattern and the green QD pattern with the green 

chiral RM pattern are maintained within the range where the FWHM 

increased by about 1.5% and 0.9%, respectively. This means that the color 

purity of the QDs remains stable during our pattering process. 

Fig. 4.6 shows the microscopic image and emission spectrum of color 

pixel array of our proposed helical photonic crystal based QD display. As 

shown in Fig. 4.6(a), it is observed that the color pixel array is formed 

uniformly without any defects. Also, it has been shown that the QD hybrid 
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patterns are coated directly above the underlying chiral RM patterns without 

any alignment issues. In addition, the emission spectrum remains constant 

without significant changes even with the multiple photo-polymerization 

patterning processes for fabricating the emissive patterns on the reflective 

patterns, as shown in Fig. 4.6(b).  
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Figure 4.5. Microscopic images and emission characteristics (solid line) of 

our helical photonic crystal based (a) red QD pattern and (b) green QD 

pattern, compared with the un-patterned QD films (dashed line). Scale bars 

represent 300 μm.  
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Figure 4.6. Microscopic image and emission spectrum (solid line) of color 

pixel array of our helical photonic crystal based QD display compared with 

the unpatterned film (dashed line). Scale bars in the inset are 300 μm. 
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Chapter 5. Conclusion 

 

 In this thesis, a novel concept of a PL-QD display with enhanced light 

extraction efficiency by using helical photonic crystal was proposed. To 

improve the light extraction efficiency of the device, the helical photonic 

crystal layers with the selective reflection characteristics within the 

wavelength range satisfying the Bragg condition were applied as reflectors 

under the emissive QD layers. It has been shown that our device has more 

than 40% improvement in the light extraction efficiency at the peak 

wavelength compared with the conventional device. In addition, it has been 

observed that the improved light extraction efficiency remains constant 

regardless of the backlight intensity. For the fabrication of our device, the 

multiple photo-polymerization patterning processes were performed without 

any defects and alignment issues. It has also been demonstrated that the 

emission spectra of QD hybrid patterns are stably maintained during the 

fabrication processes. Our helical photonic crystal based PL-QD display is 
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expected to provide a practicable solution for the fabrication of next 

generation PL-QD displays with high light extraction efficiency. 
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초록 

 

광발광 양자점 디스플레이는 높은 색순도, 좁은 선폭, 색상 

가변성으로 인해 차세대 발광형 디스플레이로 주목을 받고 있다. 

최근 청색 발광 다이오드를 백라이트로 하고 양자점 컬러필터 

어레이를 사용하여 색순도뿐 아니라 명암비도 개선시키는 연구가 

진행되어 왔다. 그러나 양자점의 사방으로 발광하는 특성에 의한 

내부 전반사 효과 때문에 광 추출 효율이 낮은 문제가 있었다. 

이러한 문제점을 극복하기 위해, 기판 표면을 거칠게 하거나 기판 

내부에 격자 패턴을 만들어 내부전반사 효과를 줄이는 연구가 

진행되어왔으나, 소자 균일성 및 패턴 정확성이 낮아 대면적 

공정에 적용하기 어려운 문제를 지닌다. 또한 다층 광학 필터를 

추가한 광 재사용 방식이 제안되었으나 공정 단가가 높은 단점이 

있다. 따라서 소자 균일성을 유지하면서 광 추출 효율이 뛰어난 
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새로운 방식의 광발광 양자점 디스플레이 구조가 필수적이다. 

본 연구에서는 나선 광결정을 이용하여 향상된 광 추출 

효율을 갖는 광발광 양자점 디스플레이를 제안한다. 구체적으로, 

특정 파장대의 원형 편광 빛을 선택적으로 반사하는 나선 광결정 

패턴을 양자점 발광층 하부에 생성하여, 그 효과로 

양자점으로부터 발광 된 하부로 향하는 빛 중 약 절반을 상부로 

향하도록 반사하여 광 추출 효율을 향상시켰다. 발광 스펙트럼 

분석 결과로부터 기존 광발광 양자점 디스플레이에 비해 광 

효율이 크게 향상된 것을 보였다. 또한 다중 광경화 패터닝 

공정을 수행하여도 양자점의 색 순도가 안정적으로 유지됨을 

확인하였다. 우리의 나선 광결정 기반 광발광 양자점 

디스플레이는 저비용의 용액공정 및 높은 광 추출 효율을 갖는 

장점을 통해 차세대 발광형 디스플레이의 실용적인 해법을 제공할 

수 있을 것으로 기대된다. 
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주요어: 나선 광결정, 반응성 메조겐, 광발광 양자점 디스플레이, 

광 추출 효율 
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