

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Optimizing GPU System for Efficient

Resource Utilization of General Purpose GPU

Applications in a Multitasking Environment

멀티 태스킹 환경에서 GPU를 사용한 범용적 계산 응용의

효율적인 시스템 자원 활용을 위한 GPU 시스템 최적화

August 2020

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Qichen Chen

Ph.D. DISSERTATION

Optimizing GPU System for Efficient

Resource Utilization of General Purpose GPU

Applications in a Multitasking Environment

멀티 태스킹 환경에서 GPU를 사용한 범용적 계산 응용의

효율적인 시스템 자원 활용을 위한 GPU 시스템 최적화

August 2020

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Qichen Chen

Optimizing GPU System for Efficient Resource

Utilization of General Purpose GPU Applications in a

Multitasking Environment

멀티 태스킹 환경에서 GPU를 사용한 범용적 계산

응용의 효율적인 시스템 자원 활용을 위한 GPU 시스템

최적화

지도교수 염헌영

이 논문을 공학박사 학위논문으로 제출함

2020 년 7 월

서울대학교 대학원

전기·컴퓨터 공학부

진계신

진계신의 공학박사 학위논문을 인준함

2020 년 6 월

위 원 장 엄 현 상 (인)

부위원장 염 헌 영 (인)

위 원 김 진 수 (인)

위 원 이 재 욱 (인)

위 원 손 용 석 (인)

Abstract

Recently, General Purpose GPU (GPGPU) applications are playing key roles in

many different research fields, such as high-performance computing (HPC) and

deep learning (DL). The common feature exists in these applications is that all

of them require massive computation power, which follows the high parallelism

characteristics of the graphics processing unit (GPU). However, because of the

resource usage pattern of each GPGPU application varies, a single application

cannot fully exploit the GPU system’s resources to achieve the best performance

of the GPU since the GPU system is designed to provide system-level fairness

to all applications instead of optimizing for a specific type. GPU multitasking

can address the issue by co-locating multiple kernels with diverse resource usage

patterns to share the GPU resource in parallel. However, the current GPU mul-

titasking scheme focuses just on co-launching the kernels rather than making

them execute more efficiently. Besides, the current GPU multitasking scheme

is not open-sourced, which makes it more difficult to be optimized, since the

GPGPU applications and the GPU system are unaware of the feature of each

other. In this dissertation, we claim that using the support from framework

between the GPU system and the GPGPU applications without modifying the

application can yield better performance. We design and implement the frame-

work while addressing two issues in GPGPU applications. First, we introduce a

GPU memory checkpointing approach between the host memory and the device

memory to address the problem that GPU memory cannot be over-subscripted

in a multitasking environment. Second, we present a fine-grained GPU kernel

management scheme to avoid the GPU resource under-utilization problem in a

i

multitasking environment. We implement and evaluate our schemes on a real

GPU systems. The experimental results show that our proposed approaches can

solve the problems related to GPGPU applications than the existing approaches

while delivering better performance.

Keywords: GPU System, Multitasking, Memory Management, Checkpointing,

GPU Resource Utilization

Student Number: 2011-24087

ii

Contents

Abstract i

Contents iii

List of Figures vi

List of Tables ix

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 7

1.3 Outline . 8

Chapter 2 Background 10

2.1 Graphics Processing Unit (GPU) and CUDA 10

2.2 Checkpoint and Restart . 11

2.3 Resource Sharing Model . 11

2.4 CUDA Context . 12

2.5 GPU Thread Block Scheduling 13

2.6 Multi-Process Service with Hyper-Q 13

iii

Chapter 3 Checkpoint based solution for GPU memory over-

subscription problem 16

3.1 Motivation . 16

3.2 Related Work . 18

3.3 Design and Implementation . 20

3.3.1 System Design . 21

3.3.2 CUDA API wrapping module 22

3.3.3 Scheduler . 28

3.4 Evaluation . 31

3.4.1 Evaluation setup . 31

3.4.2 Overhead of FlexGPU . 32

3.4.3 Performance with GPU Benchmark Suits 34

3.4.4 Performance with Real-world Workloads 36

3.4.5 Performance of workloads composed of multiple applica-

tions . 39

3.5 Summary . 42

Chapter 4 A Workload-aware Fine-grained Resource Manage-

ment Framework for GPGPUs 43

4.1 Motivation . 43

4.2 Related Work . 45

4.2.1 GPU resource sharing . 45

4.2.2 GPU scheduling . 46

4.3 Design and Implementation . 47

4.3.1 System Architecture . 47

4.3.2 CUDA API Wrapping Module 49

4.3.3 smCompactor Runtime 50

iv

4.3.4 Implementation Details 57

4.4 Analysis on the relation between performance and workload us-

age pattern . 60

4.4.1 Workload Definition . 60

4.4.2 Analysis on performance saturation 60

4.4.3 Predict the necessary SMs and thread blocks for best per-

formance . 64

4.5 Evaluation . 69

4.5.1 Evaluation Methodology 70

4.5.2 Overhead of smCompactor 71

4.5.3 Performance with Different Thread Block Counts on Dif-

ferent Number of SMs . 72

4.5.4 Performance with Concurrent Kernel and Resource Sharing 74

4.6 Summary . 79

Chapter 5 Conclusion 81

요약 92

v

List of Figures

Figure 1.1 Out-of-Memory error when multiple applications share

the GPU. 3

Figure 1.2 GPU & GPU memory utilization of MUMmergpu. . . . 4

Figure 1.3 Kernel execution time varies with launched thread block

per SM and active SM. 7

Figure 2.1 Performance varies when launch sequence changes. . . . 14

Figure 3.1 GPU memory allocation deadlock and breakdown on 4

MUMmergpu instances 17

Figure 3.2 Breaking down of the deadlock situation 18

Figure 3.3 Overall system design. 21

Figure 3.4 System architecture and control flow of FlexGPU 24

Figure 3.5 Example of GPU memory contents checkpoint 26

Figure 3.6 Scheduling procedure . 29

Figure 3.7 Breakdown of overhead in FlexGPU life cycle 32

Figure 3.8 Overall overhead of FlexGPU 33

Figure 3.9 Average Latency of running 8 instances of benchmarks

selected from Rodinia . 34

vi

Figure 3.10 Latency of running up to 8 instances of MUMmergpu . . 36

Figure 3.11 Latency of running up to 8 instances of GPU-BLAST . 37

Figure 3.12 Running 3 MUMmerGPU and 3 GPU-Blast sequentially

with OOM occurs . 39

Figure 3.13 Running 3 MUMmerGPU and 3 GPU-Blast Concur-

rently with delayed kernel launch 40

Figure 3.14 Running 3 MUMmerGPU and 3 GPU-Blast Concur-

rently with FlexGPU . 40

Figure 4.1 System architecture and control flow of smCompactor . . 48

Figure 4.2 Kernel transformation. 55

Figure 4.3 Runtime compiler module. 56

Figure 4.4 Details of fulfill and retreat mechanisms 58

Figure 4.5 MummerGPU kernel execution time with different re-

source allocated. 61

Figure 4.6 MummerGPU gld throughput with different resource al-

located. 62

Figure 4.7 MummerGPU achieved occupancy with different resource

allocated. 62

Figure 4.8 lavaMD kernel execution time with different resource al-

located. 63

Figure 4.9 lavaMD gld throughput with different resource allocated. 63

Figure 4.10 lavaMD achieved occupancy with different resource al-

located. 64

Figure 4.11 Comparison on memory intensive workload and compu-

tational intensive workload 65

vii

Figure 4.12 memory bandwidth with different number of Warps on

1 SM . 66

Figure 4.13 memory bandwidth with different number of Warps on

5 SMs . 66

Figure 4.14 memory bandwidth with different number of Warps on

10 SMs . 67

Figure 4.15 memory bandwidth with 1 thread block on different num-

ber of SMs . 68

Figure 4.16 Execute time normalized to original CUDA. 71

Figure 4.17 Execution time of BlackScholes with the different num-

ber of thread blocks (TBs) on the different number of

SMs. 72

Figure 4.18 Execution time of FDTD3d with different number of

thread blocks (TBs) on different number of SMs. 73

Figure 4.19 Execution time and active SM counts of running in dif-

ferent scenarios. 75

Figure 4.20 Execution time of co-locating three workloads with dif-

ferent strategies . 76

Figure 4.21 Execution time of CNN with different strategy. 77

Figure 4.22 Execution time of CNN and lavaMD with different strat-

egy. 78

viii

List of Tables

Table 3.1 Scheduling information . 28

Table 3.2 Maximum GPU memory requirement and number of con-

current instance in compact mode 35

Table 3.3 Maximum GPU memory requirement and number of con-

current instance in compact scenario 38

Table 4.1 Dispatching information 52

Table 4.2 Target Evaluation Workloads 69

Table 4.3 Number of thread blocks on each SM 75

Table 4.4 Number of thread blocks on each SM 77

ix

Chapter 1

Introduction

Graphics processing unit (GPU) is originally designed for efficiently manipulat-

ing computer graphics and image processing, which are mostly depending on

fast geometry computing powers. Rather than general computing operations,

geometry computing prefers more parallel performance, thus leading to the cur-

rent GPU architecture that within extremely high parallelism. Besides, its high

parallelism also can be applied to general purpose computing, thus the concept

of general purpose computing on graphics processing unit (GPGPU) has been

put forward. Recently, GPGPU has been widely adopted in several fields where

exascale computational power [1] is needed. Among those domains that GPU

has been widely used, high-performance computing (HPC) and deep learning

(DL) are the ones that draw the most attention. Besides, within the increase of

problem complexity and input scale for HPC and DL applications, GPUs are

widely used in large-scale computing environments, such as cloud computing

environment [2–4], supercomputers, and clusters. As introduced in the top 500

list released in November 2019 [5], the world’s most powerful supercomputer

1

Summit [6] also uses the CPU/GPU cluster structure.

However, according to [7], Summit can only achieve 65% of designed perfor-

mance when running GPU-friendly benchmarks. The performance could even

be much worse when executing general applications. For example, Summit can

only achieve 1.5% of the designed performance when running high performance

conjugate gradients (HPCG) benchmark [8]. Therefore, efficient utilization of

GPU resources becomes more important than ever, especially current GPGPU

applications can not exploit GPU resources. Our goal is to optimize the GPU

system to allow multiple GPGPU applications to efficiently utilize GPU re-

sources while achieving the best performance.

1.1 Motivation

GPGPU workloads are designed to monopolize the whole GPU, thus the intra-

GPU resources, such as the registers, shared memory, stream processors, and

device memory bandwidth are usually under-utilized in such an environment [9–

18]. One solution to improve resource utilization is to enable GPU multitasking,

where multiple GPGPU workloads with different resource utilization patterns

can share the GPU resources. However, there are several problems when GPU

multitasking is enabled. We address the following problems in this disserta-

tion, which are all related to GPU resource utilization under a multitasking

environment.

GPU Memory Cannot be Over-subscripted To handle HPC and DL

problems, tens of thousands of GPUs are deployed in clusters. However, the

state-of-the-art cluster management systems, such as Kubernetes [19], Slurm [20],

and Torque [21] are incapable of scheduling various applications to share a sin-

gle GPU. Particularly, applications must acquire an exclusive lock before their

2

Figure 1.1 Out-of-Memory error when multiple applications share the GPU.

execution to ensure safety, which results in a decrement of GPU utilization. One

reason that most cluster management systems cannot handle multiple concur-

rent executions on the same GPU is that GPU memory oversubscription can

cause applications to unexpectedly fail.

Unlike CPU memory that can be swapped into the disk, GPU memory is

a type of resource that cannot be oversubscribed, if the instant GPU memory

requirement of all the GPU workloads exceeds the physical capacity, an out-of-

memory(OOM) error will occur and cause the application to fail. In addition,

the GPU device driver will not track the GPU memory usage of each workload,

making OOM occurs easier under a multitasking environment. Figure 1.1 shows

an example of how OOM error occurs when multiple GPU workloads execute

in parallel. GPU memory request of workload 2 exceeds the physical can cause

itself to be terminated with a failure.

One key observation regarding HPC workloads is that they do not always

utilize the GPU resources fully during its execution time. Figure 1.2 demon-

strates the GPU utilization and GPU memory usage of MUMmerGPU [22]1

1MUMmerGPU is an open-source high-throughput parallel pair-wise local sequence align-

3

Figure 1.2 GPU & GPU memory utilization of MUMmergpu.

during its execution time, we track the variation of GPU memory usage and

GPU utilization every 100 millisecond. From Figure 1.2, we have noticed that

both GPU utilization and GPU memory usage are not always maintained at

a high level during its lifetime. Instead, it periodically spikes rapidly and then

falls down to reach a steady level for a relatively long period in this procedure.

We have also observed that HPC workloads are not originally designed for

sharing the GPU with other workloads. For example, GPU memory will not be

deallocated until the entire application is finished, even if the CPU and GPU

computations are interleaved. Figure 1.2 also reveals this fact by depicting that

a certain amount of GPU memory is always being occupied even though the

kernels are not being executed. This is reasonable when the workload is executed

on the GPU alone, because maintaining data in GPU memory can avoid freeing,

allocating, and copying data between the host memory and the device memory,

ment program that runs on commodity GPUs

4

which will introduce overhead and downgrade the performance. However, when

the GPU is shared among multiple workloads, as the GPU memory is a resource

that cannot be oversubscribed, always maintaining the data in the GPU memory

will result in fewer workloads sharing the GPU, leading to low GPU utilization.

Currently, GPU cluster management systems do not schedule the applications

according to runtime GPU memory utilization; Instead, each application is

executed with a pre-defined maximum GPU memory requirement value.

To handle these issues, previous studies [23–26] investigates the solution

of sharing a physical GPU among multiple applications by creating a copy

of CUDA application programming interfaces (APIs) to virtualize the GPU

and provide them to each application. [27] introduced a solution for using re-

motely located GPUs in the virtualization system. However, the performance

may be downgraded owing to the overhead. In addition, [26] introduce a new so-

lution that captures every GPU memory resource allocation/deallocation call

information from each application and schedules these applications based on

this information. Basically, it executes the maximum possible number of GPU

memory allocation calls, which can efficiently solve the GPU memory over-

subscription problem, unless the total allocation amount exceeds the physical

capacity. However, it has a potential deadlock issue when GPU memory allo-

cation/deallocation occurs frequently. In this dissertation, we claim that GPU

memory oversubscription problem can be handled by a checkpoint based mecha-

nism efficiently, it also can solve the deadlock problem remained by the previous

research.

GPU Computational Resource Under-Utilization

There rarely exists a GPU kernel that can use all the GPU resources at a

high level during its whole execution time [28], while currently most of the GPU

workloads are designed to monopolize the GPU. NVIDIA provides Hyper-Q [29]

5

and MPS [30] technology to enable GPU multitasking, however, MPS cannot

exploit GPU resource efficiently either, since it is still unaware of the relation

between resource usage pattern and the performance of each kernel. Apart from

this, kernels run with MPS are not preempted-able, which makes small kernels

have to wait for large ones to finish if they are launched later, downgrading

the quality of service (QoS). To handle these issues, previous studies [31–33]

proposed both hardware and software based strategies to improve the perfor-

mance when multiple kernels run in parallel with or without MPS. Among

those, slate [34] introduced a workload-aware kernel based scheduling system

to improve performance when multiple workloads share the GPU. It efficiently

avoids the interference caused by co-locating kernels by isolating them into sep-

arate SMs. However, improving the GPU resource usage by supporting as many

kernels running in parallel as possible while maintaining the performance is not

taken into consideration.

Besides, we observed the fact that the best performance of GPU workloads

may be achieved even when only a part of the SMs are used, thus monopoliz-

ing the whole GPU can lead to a waste of resources. We explore this issue by

evaluating the kernel execution time variation as the number of thread blocks

launched per SM and the number of active SMs changes on an NVIDIA Titan

Xp GPU [35]. The target workloads are BlackScholes (BS), lavaMD (LM), and

FDTD3d (FT), which belongs to NVIDIA CUDA samples and Rodinia bench-

mark [36] respectively. Figure 1.3 shows the details that are compared to use all

30 SMs, both BlackScholes and FDTD3d achieve their best performance where

15 SMs are activated with up to 12 thread blocks and 1 thread block per SM,

respectively; Meanwhile, lavaMD also can achieve 95% of its best performance

when 20 SMs are activated with up to 8 thread blocks launched on each of

them. In this dissertation, we claim that GPU computational resources under-

6

Figure 1.3 Kernel execution time varies with launched thread block per SM
and active SM.

utilization issues in the multitask environment can be solved by designating a

specific number of thread blocks to particular SMs, meanwhile the performance

can be improved.

1.2 Contribution

The contributions are summarized as follows:

• We present a new GPU multitasking framework to show that GPU uti-

lization can be improved by tailoring the scheduling framework to the

features of GPU workload. It introduces GPU memory checkpoint tech-

niques to migrate the temporarily irrelevant GPU memory contents to the

host memory to create space for more kernels running at the same time. It

also solves the GPU memory allocation deadlock problem by introducing

a temporary checkpoint for the occupied GPU memory.

• We introduce a new GPU multiprocessing framework that shows GPU

utilization can be improved by tailoring the scheduling framework to

the intra-SM resource consumption features of the GPU workloads. In

7

particular, our work focuses on the interference and complementarity of

intra-SM resource usage of each kernel. Our proposed mechanism aims at

making full use of all computational resources, including the shared mem-

ory, registers, and stream processors, to improve the system throughput

by supporting as many workloads as possible that can share the GPU

at the same time. Meanwhile, the performance of each workload will be

maintained at a reasonable level

• We implement and evaluate both of the framework prototypes on a real

NVIDIA Titan Xp-based system. The evaluation result shows that our

proposed framework can efficiently solve GPU memory oversubscription

problems. It also improves the GPU computational resource utilization

while improving performance compared to state-of-the-art technologies.

1.3 Outline

This dissertation is structured as follows:

• Chapter 2 covers the background about GPU memory management sys-

tem, GPU computational resource management system and system sup-

port GPU multitasking to improve the resource utilization.

• Chapter 3 introduces FlexGPU, our checkpoint-based scheme that solves

GPU memory over-subscription problem under the multitask environ-

ment. We first explain the problems of existing GPU memory management

mechanisms under multitask environment. Then we describe the details of

design and implementation of our proposed new scheme and evaluate it on

the real GPU system with GPGPU benchmark and real-world workload.

• Chapter 4 introduces smCompactor, our thread block based fine-grained

GPU multitasking scheme. We start by explaining the problems of GPU

8

computational resources under-utilization under existing multitask envi-

ronments. Then we propose the details of our scheme. Finally, we evaluate

our scheme on a real GPU system with GPGPU workloads.

• Chapter 5summarizes and concludes the dissertation. It also points out

the directions for future work.

9

Chapter 2

Background

Our approaches heavily rely on many functions support by the NVIDIA GPU

device driver. In this chapter, we explain the background of GPU system and the

functionality that supported by the device driver for efficient resource utilization

to help understand the rest of the dissertation.

2.1 Graphics Processing Unit (GPU) and CUDA

Initially, the GPU was developed for graphics work, such as 3D rendering, which

is required for parallel computing [37] so that the GPU can achieve parallel

execution. However, as the investigations from several studies demonstrated

the general-purpose utilization of GPUs, it has been optimized to accelerate

various HPC applications, such as deep learning (DL) and big data analysis in

cloud environments.

NVIDIA CUDA [38] was released in February 2007, which is an extensively

used parallel computing platform, which provides APIs for GPGPUs. CUDA

extents ANSI C language and provides APIs for easy using. It allows us to access

10

the parallel computation elements of the GPU directly. There are two kinds of

programming interferes, which are Driver API and Runtime API. The Runtime

API is a high-level API that is implemented on top of the low-level Driver API.

The Runtime API is easy to use because it does not need explicit initialization

and management. However, The Driver API can perform better performance

since it supports fine-grained CUDA context control and module loading. In

CUDA, the host is the CPU and its memory and the device is the GPU and its

memory. The code running on the host can manage the memory on both the

host and the device and launches kernels, which are functions executed on the

device. These kernels are executed by several GPU threads in parallel [38]. GPU

utilization can be measured using the NVIDIA system management interface

and nvprof [39], which are both profiling tools provided by NVIDIA.

2.2 Checkpoint and Restart

Checkpoint and restart [40] is a classic strategy that works when the contents

are permanently lost. At certain firms and super computing centers, it is a

common practice to break up long-running computational programs into sev-

eral batches. When these long-running programs are intentionally stopped after

a checkpoint, it can restart from the previous checkpoint. Traditional checkpoint

and restart methods save the checkpoints in underlying storage systems. How-

ever, in our research, we apply the checkpoint and restart theory in our design

such that checkpoint saves the contents of applications running in the GPU in

the host memory and restarts them when it is necessary.

2.3 Resource Sharing Model

There are two resource sharing models when using the NVIDIA GPU, the time-

sharing and spatial-sharing model. Originally, multiple kernels that run on the

11

same GPU but without different CUDA streams are scheduled using the time-

sharing model. In the time-sharing model, time budgets are assigned to each

GPU kernel. Each kernel can utilize GPU resources only when both of its time

budget and required resources are available. After its time budget expired, other

kernels will be executed through context switching.

On the other hand, the spatial-sharing model is used by exploiting NVIDIA

Hyper-Q and MPS technology. In this model, kernels launched on the same

GPU are scheduled depending only on their resource usage, rather than their

time budgets. In this way, multiple independent kernels can be simultaneously

executed on different SMs and SPs, as long as their resource requirements are

satisfied.

2.4 CUDA Context

The CUDA context [41] holds all the management data to control and use the

device, such as list of allocated memory, loaded modules that contain devices

code, etc. There are two ways to handle CUDA context during kernel execution,

which are described in detail as follows.

Context Switching

Each host instance will create its own CUDA context when accessing a GPU

device. All resources and actions performed within the CUDA driver API are

encapsulated inside this CUDA context. When the warp scheduler selects the

running threads from one warp to another, it leads to a context switch. GPU

architectures use context switch to hide the memory latency between the warps.

However, since contexts are private to each control host, it is impossible to share

resources among different contexts even though they belong to the same device.

12

Context Funneling

Unlike context switching, context funneling is implemented as a client-server

structure. The server thread creates a GPU context and shares it with other

client threads. Specifically, NVIDIA MPS is an implementation of context fun-

neling. In this case, since only one context exists, per-context objects, which

include device memory objects, now can be shared among different application

threads. Meanwhile, kernels originally launched from different host threads can

be executed in parallel. However, the performance gain of concurrent kernel exe-

cution still varies depending on the features of resource consumption of different

kernels.

2.5 GPU Thread Block Scheduling

On existed NVIDIA Fermi [42] and Kepler [43] GPUs, a GigaThread Engine

is responsible for thread block scheduling. Since there is very little public in-

formation available about the detail of thread block scheduling, [28] reveals

the details through sophisticated experiments. It uses a round-robin thread

block scheduling where the thread blocks are assigned to each SM in a round-

robin manner and assign the maximum number of thread blocks. The maximum

number depends on resource usage of each workload, including the amount of

registers, shared memory, etc. Once a thread block finishes its execution, the

hardware thread block scheduler assigns another thread block to that particular

SM, until all thread blocks have been assigned.

2.6 Multi-Process Service with Hyper-Q

The NVIDIA MPS [30] is a binary-compatible client-server runtime implemen-

tation of the CUDA API. It is designed to enable cooperative multi-process

13

Figure 2.1 Performance varies when launch sequence changes.

CUDA applications in a concurrent manner using Hyper-Q. Starting from Fermi

architecture [42], Hyper-Q enables multiple CPU threads or processes to launch

work on a single GPU simultaneously, therefore allowing the connections for

both CUDA streams [44] and MPI processes. Hyper-Q allows CUDA kernels to

be processed concurrently on the same GPU, which can improve performance

when GPU resources are underutilized.

While the concurrent scheduling of Hyper-Q is limited to a single CUDA

context, MPS with Hyper-Q could collect the contexts from different applica-

tions and map them into a single one. In the Pascal architecture [45], MPS

works in a client-server architecture. The control daemon of MPS acts as the

server that coordinates connections between the clients and the server. MPS

client runtime is built into the CUDA driver library and can be used transpar-

ently by any CUDA applications. The client passes its kernel and its CUDA

context to the server, and the server merges them together.

14

However, since the design concept of MPS is merging CUDA contexts from

different applications into a single one, to exploit concurrent scheduling fea-

tures of Hyper-Q; the relation between performance and resource usage pattern

of each kernel is not taken into consideration, let alone with resource utiliza-

tion. In addition, MPS does not support dynamic parallelism [46], which is

currently widely used due to its additional parallelism that can be exposed to

GPU scheduler and load balancer. Besides, MPS client processes may allocate

memory from different partitions of the same GPU virtual address space, caus-

ing an out-of-range write or triggering an error [30]. It may even block the

later launched kernel until the previously launched one finishes its execution,

decreasing the QoS and resource utilization severely if the previous kernel is

not resource intensive with a long execution time. We designed an experiment

to verify this property by staggering the launch time of two workloads with a

huge difference in their kernel execution time. The workloads we chose in this

experiment are FDTD3d and lavaMD, which are from the CUDA sample and

the Rodinia benchmark [36] respectively. Figure 2.1 demonstrates the details

of this experiment. When FDTD3d is launched before lavaMD, both of their

kernel execution time is similar to the solo run cases; however, when lavaMD

is launched first, the execution time of FDTD3d extends to 8000 milliseconds,

which is 460 times longer than the solo run case, since MPS does not start

FDTD3d immediately while lavaMD is running.

15

Chapter 3

Checkpoint based solution for
GPU memory oversubscription
problem

3.1 Motivation

Currently, HPC workloads are designed to monopolize GPU resources to achieve

good performance. However, according to our profiling result which is presented

in Figure 1.2, the GPU resources are not fully used during the workloads’ life-

time, meanwhile, the GPU memory management strategy of each workload is

not suit for the multitasking environment. Previous study addressed the GPU

memory oversubscription issues can be solved by making the GPU memory al-

location request wait until the physical capacity becomes available, however we

observed that it will cause a deadlock situation. Figure 3.1 demonstrates how

GPU memory allocation deadlock appears on a NVIDIA TITIAN Xp GPU

when four instances of MUMmerGPU were executed simultaneously by follow-

ing the scheduling mechanism proposed in [26], we track the GPU memory

16

Figure 3.1 GPU memory allocation deadlock and breakdown on 4 MUMmergpu
instances

usage every 100 milliseconds. The performance remains the same when up to

a maximum of three instances are executed simultaneously; However, a dead-

lock occurs when four instances are executed in parallel. From Figure 3.1, we

can observe that at the final phase of the execution, each instance falls into a

situation where their memory usages become stagnant.

We have clearly illustrated this deadlock situation in Figure 3.2. At the

final phase, instances one to four occupied 3.61 GB, 1.36 GB, 1.88 GB, and

3.88 GB, respectively. As the GPU we used contains a total memory of 12 GB,

the free space at that moment is 1.27 GB. Then, these instances request a GPU

memory allocation of 3.36 GB, 3.09 GB, 3.51 GB, and 2.51 GB, respectively.

However, as the free space cannot be allocated to any of the instances and each

instance requires the requested GPU memory space to continue its execution,

the system falls into a deadlock state.

Inspired by this observation, we propose FlexGPU, which can rearrange the

17

Figure 3.2 Breaking down of the deadlock situation

issue time of each kernel as well as its related GPU memory allocation according

to their computational requirements.

3.2 Related Work

GPU scheduling and GPU resource sharing under a multitasking environment

recently has been researched in several works.

GPU scheduling: GPU scheduling techniques can usually classified into

1) concepts within hardware modification that implemented with simulation.

2) concepts that using verified GPU/CUDA features to schedule the execution

of application within software middle-ware.

Hardware modification can enable various of scheduling policies in the low

level. [9] proposed a solution to enable concurrent CUDA application running

by using persistent kernel method to re-shape the CUDA grids. [32] and [47]

also evaluated the persistent kernel methods by using the simulation, since some

of them needs kernel preemption, which is still not available in current GPU

model.

On the other hand, [48] provided a scheduling mechanism for loading con-

18

current applications on to the nodes of the cluster. The throughput was im-

proved; however, the intra-node scheduling of jobs was not considered. [49, 50]

provide a load-balancing-based finer-grained job scheduling in multiple GPUs-

based environment. However, they only focused on the uniform distribution of

the workload to the CPU instead of improving GPU utilization. Slate [34] pre-

sented a solution that scheduled the GPU kernel according to their features.

Our work is in line with this method; however, we also considered the GPU

memory oversubscription issue, which was not included in [34]

GPU resource sharing: Park et al [51] proposed a solution to dynami-

cally allocate the computational resources in a GPU and evaluated with sim-

ulation. [52] proposed a solution to maintain the latency for latency sensitive

kernels when launching with batched kernels by ensuring the computational

resource for latency sensitive kernels with higher priority. ConVGPU [26] is

a solution designed for sharing GPU memory among Docker containers and

GaiaGPU [23] is a solution that considers GPU computing resources as well as

memory. Our study is in line with these works in terms of the investigation of the

technique considering GPU resources in a GPU-virtualized environment. The

previous studies focused on sharing GPU resources on the environment; how-

ever, there are certain differences between our study and the previous studies.

Firstly, in ConVGPU [26], when the scheduler receives a request that exceeds

the GPU memory capacity from the container, it denies the request or pauses

the container. In contrast, we handle the same request in a more flexible way

with checkpointing and ensure better performance in terms of overall through-

put and response time. We also prevent the potential GPU memory allocation

deadlock situation, which can occur in ConVGPU [26]. GaiaGPU [23] is based

on the device plugins in existing resource management software; however, we

have implemented our solution without any software installation. Further, the

19

target applications of [23] are neural network algorithm workloads (e.g., Mod-

ified National Institute of Standards and Technology database, Alexnet) on a

DL framework. Conversely, we evaluate our solution with workloads on other

HPC frameworks.

3.3 Design and Implementation

There are two goals in our design of FlexGPU. First, FlexGPU supports ef-

ficient CUDA kernel level multitasking and resource sharing among multiple

workloads. Second, FlexGPU can track the GPU memory requirements dy-

namically and solve the GPU memory oversubscription problem among several

multiple applications; then, the kernels can be executed simultaneously. Our

approach is based on a client-server structure, where the communication is im-

plemented by using a UNIX socket. The CUDA API wrapping module captures

each GPU memory allocation call and kernel launch call from the application,

while a scheduler module acts as a server to decide the scheduling result. The

wrapping module is also responsible for reclaiming the GPU memory temporar-

ily by copying the corresponding content to the host memory and restoring them

when it is necessary.

Meanwhile, the scheduler continues to monitor the GPU memory usage and

the kernels being executed while accepting the memory allocation, deallocation,

and kernel launch information from each application. It decides when the kernel

should be issued and the related GPU memory should be allocated according to

the profiling result. In addition, when the kernel requires more GPU memory,

which is beyond the physical capacity, the scheduler also can decide whether

to postpone the issue or to trigger the GPU memory checkpointing. In the rest

of this section, we present the details of the design and implementation of each

module.

20

Figure 3.3 Overall system design.

3.3.1 System Design

The overall system architecture is as described in Figure 3.3. The wrapping

module is loaded as an LD PRELOAD [53] library when the application starts

its execution. It partially intercepts the CUDA GPU memory allocation and

kernel launch calls. After the calls are intercepted, it analyzes them and ex-

tracts the corresponding information then forwarding them to the scheduler.

Meanwhile, the intercepted calls will be on hold until receiving a reply from the

scheduler.

The scheduler continues to track the information of all the running kernels

and the kernels that must be launched, and decides whether a kernel can be

issued or which part of the allocated memory should be checkpointed to the

temporary memory for making space for other kernels.

When the wrapping module receives the reply, it continues the operations of

either allocating the necessary memory and launching a kernel or checkpointing

21

some of its GPU contents directly through the original CUDA driver APIs to

the GPU.

3.3.2 CUDA API wrapping module

An HPC application uses the CUDA runtime and driver APIs to communicate

and control the NVIDIA GPU. These APIs achieve multiple functionalities

from the launch of CUDA kernels to the allocation of resources in the GPU

and the transfer of data between the device and the host. Among these APIs,

cuMemAlloc, cudaMalloc, cudaFree, and cuMemFree are used to allocate device

memory, and cuMemcpyDtoH, cuMemcpyHtoD, and cudaMemcpy are used to

transfer the data between the CPU memory and the GPU memory; further,

cudaLaunch is used to launch a CUDA kernel function. As the CUDA API is

not an open source, we cannot modify the function itself. Instead, we develop the

CUDA API wrapping module to capture the CUDA API calls and replace them

with our own implementation. This CUDA API wrapping module intercepts

a part of the CUDA API calls, which are mostly GPU memory allocation,

deallocation and kernel launch calls. To make sure all the kernels from different

application run in parallel, the wrapping module also issues the kernels with

different CUDA streams [44]. Since the NVIDIA GPU with Hyper-Q can only

schedule streams in the same CUDA context concurrently, we also merge the

contexts from different application into one context in the FlexGPU runtime.

The basic concept of implementing such an interception module is the pro-

cess of adding the module name into the LD PRELOAD [53] environment vari-

able. LD PRELOAD is a list of additional, user-specified, executable and link-

able format-based shared objects, which are loaded before all other objects.

This feature can be used to selectively override functions in other shared ob-

jects and the objects are searched for and added to the link map according to

22

the left-to-right order specified in the list.

Figure 4.1(a) demonstrates the architecture of FlexGPU. Each application

is bound to a specific wrapping module, which contains a wait queue inside.

Each wrapping module sends related information to the scheduler and waits for

a reply. Figure 4.1(b) shows the control flow of FlexGPU. When an application

allocates a GPU memory and launches a kernel through the wrapping module,

it intercepts both of them and encapsulates them into one wrapped kernel

launch call. We group the GPU kernel launch and GPU memory allocation

calls together because if we consider them separately, the preceding allocated

memory and a delayed kernel launch will decrease the GPU utilization as other

kernels may not be launched owing to the exceeding GPU memory physical

capacity. There is a wait queue in each of the wrapping modules; the grouped

kernels that have not been issued wait in the queue. It should be noted that

even though interleaved execution can be performed on kernels from different

applications, the launch sequence of kernels from the same application must be

preserved; thus we design this queue to maintain the launch sequence.

In detail, when the applications try to allocate GPU memory, launch a

kernel or free GPU memory, the wrapping module automatically captures the

allocating size, GPU device pointer, kernel name and its process id.

When the applications are attempting to allocate GPU memory, launch a

kernel, or free the GPU memory (1○), the wrapping module automatically cap-

tures the allocating size, GPU device pointer, kernel name, kernel parameters

as well as its process ID, encapsulate them into a grouped kernel and pushes it

into its wait queue (2○). This information is then forwarded to the scheduler

(3○). Then the scheduler makes a decision according to the current state of the

system and sends replies to each wrapping module of those decisions.

The replies from the scheduler indicate 3 kinds of cases, kernel launch ap-

23

(a) Overview of FlexGPU architecture

(b) Control flow of FlexGPU

Figure 3.4 System architecture and control flow of FlexGPU

24

proved, kernel launch denied, and checkpointing the previous allocated GPU

memory by the wrapping module (4○). In the first case, the wrapping module

will allocate GPU memory and launch a kernel by using the original CUDA

APIs (5○-(a)). In the second case, grouped kernel will be on hold in the waiting

queue for the next launch opportunity (5○-(b)). In the third case, part of the

previously allocated GPU memory would be check-pointed to make space for

subsequent kernel launching. The reply is forwarded back to the wrapping mod-

ule and makes the wrapping module start the checkpoint procedure (5○-(c)).

Algorithm 3.1: Checkpoint Algorithm
Variable: vectorgpu and vectorcpu which type is pair(start, size)
Output: out
1: function record gpu usage info(start, size);
2: pair = make pair(start, size)
3: vectorgpu.push(pair)
4: end function

5: function checkpoint data(void);
6: while (!vectorgpu.is empty()) do
7: pairgpu = vectorgpu.pop()
8: size = pairgpu.size
9: start = cpu mem alloc(size)

10: copy data gpu to cpu(start, size)
11: paircpu = make pair(start, size)
12: vectorcpu.push(paircpu)
13: gpu mem free(size)
14: end while
15: end function

16: function restore checkpointed data(void);
17: while (!vectorcpu.is empty()) do
18: pair = vectorcpu.pop()
19: copy data cpu to gpu(pair.start, pair.size)
20: end while
21: end function

The wrapping module is also responsible for temporarily checkpointing pre-

vious allocated GPU memory contents into the host memory and emptying

the space for the subsequent running kernels. Details of how checkpoint proce-

25

Figure 3.5 Example of GPU memory contents checkpoint

dure works are as follows. When it receives the checkpointing reply, it initially

allocates a new memory address in the host memory; then, it transfers the cor-

responding contents stored in the GPU memory to the host memory by calling

cuMemcpyDtoH. Meanwhile, to maintain consistency, we also store the infor-

mation regarding the source and destination addresses as well as the process ID

of the target kernel for each content movement individually. Finally, the wrap-

ping module frees the occupied GPU memory of certain applications by calling

the original cuMemFree. Then, when certain kernels from the checkpointed ap-

plication are required to be issued, it initially checks whether all its necessary

parameters have already been allocated; if some of them were checkpointed to

the host memory, then the wrapping module brings them back to the GPU

memory by calling the original cuMemcpyHtoD APIs and then the kernel is

launched. Later, when the environment becomes suitable for suspended kernel

to execute again, they will be awakened and continues their execution after the

checkpoint module brings their transferred data back to the GPU memory by

26

calling the original cuMemcpyHtoD API (line 16 to 18).

When the application is required to release its GPU memory, because the

wrapping module has stored the start address, allocated size, and device pointer

of each allocation, it sends the size of the GPU memory that is going to be freed

to the scheduler and calls the original cuMemFree to complete the deallocation

when it gets a confirmed reply. In addition, when the application has finished

its entire execution, the checkpointed module detects this fact as its destruction

function is called. Then, it sends the information to the scheduler to deallocate

the GPU memory used by the current application.

Figure 3.5 illustrates how GPU memory contents checkpointing works when

several kernels try to allocate their own contents. In Figure 3.5(a), K1, K2 and

K3 are three running kernels. K1 has already allocated its contents on GPU

memory, while the GPU memory allocation requests of K2 comprise two sep-

arate parts. The remaining size of GPU memory after K1 allocates its own

request can only satisfy the first GPU allocation request of K2. As a result, the

second GPU memory allocation request is denied and a GPU memory check-

point procedure should be started according to the decision of the scheduler.

In Figure 3.5(b), the wrapping module checkpoints K2’s 1st allocated contents

to the host memory and makes free space for K3 to fulfill its GPU memory

request. In Figure 3.5(c), K3 has finished its execution and freed its occupied

GPU memory, however, since the remaining GPU memory cannot afford both

of the 1st and 2nd GPU memory request for K2, the scheduler decides to wait

without any action. Finally, in Figure 3.5(d), after K1 finished its execution,

there are sufficient GPU memory space for both of the GPU memory request

of K2, and then the wrapping module restores previous checkpointed contents

and make the kernel execute again.

27

Label GPU utilization(%) execution time Device pointer1 Device pointer2 etc.

Kernel 1 20 30ms 0x10000000 0x110000000 NULL

Kernel 2 30 10ms 0x10120000 0x112000000 0x1410000

Kernel 3 50 5ms 0x10140000 0x114000000 0x1530000

Table 3.1 Scheduling information

3.3.3 Scheduler

The scheduler schedules kernels according to the maximum available GPU mem-

ory of the system, current GPU core utilization, GPU core occupancy of each

kernel, and GPU memory requirements of each kernel. Before each application

starts running, the scheduler requires a unique ID for each wrapping module

that is embedded in each application. The scheduler decides whether each kernel

should be launched, each GPU memory allocation request should be executed,

rejected, or delayed. It also decides whether previously allocated GPU memory

contents should be checkpointed to the host memory or not.

The scheduler traces all GPU memory allocations of each kernel as well

as the current GPU memory utilization. It also tracks the current GPU core

utilization of the system at each kernel launching time and the GPU utilization

of each kernel. We use nvProf [39] to profile each achieved occupancy of the

kernel before executing the application. Meanwhile, the scheduler also tracks

the size of the GPU memory that each launching kernel requires by storing the

corresponding parameters that are transferred by the wrapping module during

its launching time. Table 4.1 shows an example of the related information that

the scheduler uses to schedule the kernels. This table is maintained by the

scheduler and stored in the host memory. By referencing the table, the scheduler

is aware of how much free GPU memory can be allocated and whether the kernel

can be picked to run concurrently with other kernels.

Figure 3.6 demonstrates the entire procedure of the scheduling mechanism.

28

Figure 3.6 Scheduling procedure

The scheduler is triggered when any of the applications attempt to launch a

kernel or when the launched kernel is finished. The kernel launching call as well

as the related GPU memory allocation requests are intercepted by the wrapping

module and forwarded to the scheduler. The scheduler initially checks whether

the achieved occupancy of the system will exceed 100% or if the kernel will

demonstrate a negative impact on the existing running kernel when the current

kernel is launched. Demonstrating a negative impact implies that the running

time while executing the kernels together is even longer than while executing

them sequentially.

29

If the current kernel requires a large amount of computational resources

or if it will demonstrate a negative impact on the current running kernels,

the scheduler will delay its launch for a retry at the subsequent time slot.

Conversely, the scheduler will check its GPU memory requirements to verify

whether the GPU memory would be oversubscribed if the kernel is launched.

If the GPU memory oversubscription occurs, the scheduler will crosscheck the

reference table of current running kernels to see if there are any checkpointable

contents.

We define “checkpointable contents” as the GPU memory contents that are

not currently used by any of the running kernels. If there are no checkpointable

contents currently, the scheduler will deny the kernel issue request and the

request is on hold until the subsequent time slot. However, if checkpointable

contents exist, then the scheduler checks the size of all these candidates and

calculates the transfer time for their migration. The transfer latency can be

tested by using the bandwidth test utilities provided by the NVIDIA CUDA.

Within the estimated migration time of each target kernel, the scheduler

checks whether there is any kernel that has a shorter estimated migration time

than the minimum execution time of the current running kernels. If some check-

point candidates match this condition, then the scheduler finally selects the least

frequently used contents as the final checkpoint target. The least frequently used

contents are selected as the target because we considered the overhead when

these contents are restored from the host memory. After the checkpoint target

is selected, the scheduler sends a reply to the corresponding wrapping mod-

ule. Then, the wrapping module executes the checkpoint procedure, which was

introduced in the previous sections. When the target content is safely check-

pointed to the host memory, the scheduler checks whether the free GPU mem-

ory size is sufficient for the execution request of the target kernel; If the freed

30

GPU memory size is still smaller than the required size, the scheduler repeats

the procedure mentioned above. When enough GPU memory is available, the

scheduler can allocate the memory and launch the kernel.

3.4 Evaluation

In this section, we initially present the evaluation of the overheads of FlexGPU.

Secondly, we present an analysis of the performance by using the popular GPU

benchmark and real-world workload. Finally, we demonstrate the performance

gain of workloads consisting of multiple applications.

3.4.1 Evaluation setup

Our evaluations are executed on a machine that consists of two Intel(R) Xeon(R)

E5-2683 CPUs and a 64 GB RAM. The GPU used was the NVIDIA Titan Xp,

which features the Pascal architecture. There are 3,840 NVIDIA CUDA cores

running at 1.6 GHz. Further, it is armed with 12 GB of graphics double data rate

5X memory. In addition, it supports NVIDIA Hyper-Q technology, which en-

ables the parallel execution of multiple kernels. We used NVIDIA driver 384.130

with CUDA 9.0.176. The operating system used was Ubuntu 16.04 with Linux

kernel 4.4.0.

The workload used includes dwt2d, gaussian, hotspot, lavaMD, nn, nw, and

leukocyte, which are from Rodinia GPU benchmark [36]. The GPU utilization

and GPU memory usage and the number of kernels launched varies among the

different workloads.

We also use two real-world applications as our use cases. The first one is

MUMmerGPU [22], which is used for aligning DNA sequences in bioinformatics.

In our experiment, the search pattern is a sequence of 4,000 base pairs, which is

matched against the reference that contains a complete genome in an alignment

31

Figure 3.7 Breakdown of overhead in FlexGPU life cycle

of 15,000,000 reads.

The second application is a GPU-basic local alignment search tool (BLAST) [54].

This application searches a database of proteins for a nucleotide; further, the

database used in our experiment is referred to as est human.

3.4.2 Overhead of FlexGPU

Overhead breakdown

Figure 3.7 compares the different stages in the life cycle of FlexGPU. As our

approach is based on the client-server structure, the client/server initialization

and shutdown stages are required. From Figure 3.7, we can observe that the

client and server initializations are relatively costly, even if they are called just

once. This is because, in our approach, the wrapping module, which acts as the

client, and the scheduler, which is referred to as the server, must manage the

necessary information that are stored in their individual memory spaces. Allo-

cating memory space for this information requires a longer time. In addition, as

our implementation is based on the UNIX socket, communication initialization

32

Figure 3.8 Overall overhead of FlexGPU

costs are also counted in this period. Besides, the pre-launch stage consists of

a CUDA API interception as well as the allocation of the client request, while

the post-launch stage contains the process of storing the relative information.

It is to be noted that both the costs of pre-launch and post-launch stages are

less than 60 us; Further, although these costs are counted every time when the

corresponding CUDA APIs are called, the overhead is still acceptable when

compared to the execution time of the application. Consequently, the overhead

of our implementation is less than one millisecond. This does not have any

impact on long-running applications.

Overall overhead

In this section, we evaluate the overall overhead including the wrapping and

communication overheads. We compare the execution time for running one in-

stance of MUMmergpu, GPU-BLAST, and leukocyte, with and without FlexGPU.

Here, we only focus on the CUDA API wrapping and communication overheads.

33

Figure 3.9 Average Latency of running 8 instances of benchmarks selected from
Rodinia

As shown in Figure 3.8, owing to the overhead mentioned in the previous sec-

tion, the overall execution time of FlexGPU is generally longer than the orig-

inal version. However, the overhead can be neglected as the largest difference

is 0.11 second when compared to the executing time of 6.02 second. From this

evaluation, we can conclude that although the wrapping and communication

overheads exists in FlexGPU, its impact is negligible.

3.4.3 Performance with GPU Benchmark Suits

Figure 3.9 shows the average execution time of six applications from Rodinia

benchmarks. The average execution time is calculated by using the total exe-

cute time divided by the number of running instances. This evaluation runs in

three different scenarios. The first scenario, which is referred as sequential, does

not execute with FlexGPU. Instead, the instance of each application is sequen-

tially executed eight times. Using this scenario in our experiment is reasonable

because currently most of the GPU applications is designed to monopolize the

34

Table 3.2 Maximum GPU memory requirement and number of concurrent in-
stance in compact mode

Workloads Maximum GPU memory(MB) # of concurrent instances

dwt2d 3757 3

gaussian 301 8

hotspot 183 8

lavaMD 2331 5

nn 171 8

nw 303 8

whole GPU without considering any sharing issues. The second scenario named

as compact, also does not use FlexGPU. In this case, we manually pack up to

eight instances of one application for concurrent execution. To make sure kernels

running in parallel, we modify kernel issue part of each application to ensure

each kernel is issued in different CUDA streams [?] and merge their CUDA

contexts into a single one, taking advantage of NVIDIA Hyper-Q technology.

However, owing to the differences in the GPU memory requirement of each ap-

plication, the number of actual concurrently running instances varies. Table 4.2

demonstrates the maximum GPU memory requirement and the number of con-

current running instances that without OOM occurs of each application in the

compact mode. In particular, as dwt2d and lavaMD require over 2,000 MB of

GPU memory, the number of concurrent running instances is limited to three

and five, respectively. The other four workloads can execute eight instances

concurrently.

The third scenario employs FlexGPU and could safely run eight instances

of all the applications even including dwt2d and lavaMD. As multiple instances

use FlexGPU to run concurrently, the average execution time of all instances is

reduced when compared to the first scenario, where eight instances are executed

sequentially. We observe that by using FlexGPU, a seven times decrease in the

35

Figure 3.10 Latency of running up to 8 instances of MUMmergpu

execution could be achieved compared to the first case. For the workloads such

as gaussian, hotspot, nn and nw, the average execution time of FlexGPU is

slightly increased compared to the compact scenario, because of the overhead

of FlexGPU itself. However, with dwt2d and lavaMD, the average execution

time of FlexGPU is decreased by 35% and 29% respectively. We analyze the

reason and determine that although the total execution time of FlexGPU is 72%

and 13% (24.06s, 61.23s) longer than the compact scenario (13.97s, 54.18s) due

to the overhead of frequent checkpoint operations, the number of concurrent

running instances also increased by 2.6 times and 1.5 times compared to the

second scenario respectively, leading to the large improvement on average exe-

cution time.

3.4.4 Performance with Real-world Workloads

We further evaluate the performance of FlexGPU on real-world workloads. We

36

Figure 3.11 Latency of running up to 8 instances of GPU-BLAST

select mummerGPU and GPU-BLAST as our target workloads. Figure 3.10

and Figure 3.11 show the execution time of executing MUMmergpu and GPU-

BLAST in four different scenarios. The first one is sequential execution, which

sequentially execute each instance one after another. The second one is compact

execution, which manually compacts multiple instances to make them run in

parallel. However, because there is no additional mechanism to make sure all

instance can fulfill their GPU memory allocation request, several instances may

suffer in OOM failure. Table 4.3 demonstrates the maximum GPU memory

requirement and the number of maximum concurrent running instances for each

workloads in this scenario. The third executing scenario is called allocation wait

scenario, which delays CUDA memory allocation call to make them wait until

there is enough free memory. This is firstly proposed in [26]. However, owing

to the deadlock issue we mentioned before, the number of instances that can

safely execute in parallel is also limited in this scenario. Finally, we run the

37

Table 3.3 Maximum GPU memory requirement and number of concurrent in-
stance in compact scenario

Workloads Max GPU memory(MB) #of concurrent instances

MUMmergpu 3985 3

GPU-BLAST 2215 5

instances with our proposed FlexGPU.

It is demonstrated in figure 3.10 and figure 3.11 that due to the lack of

necessary GPU memory management method, both MUMmerGPU and GPU-

blast experience OOM failure when the number of concurrent running instances

exceed 3 and 5 respectively in the compact scenario. Meanwhile due to the

deadlock issue, the number of safely parallel running instances is also limited

in the allocation wait scenario. When Compared to the sequentially running

scenario, our proposed FlexGPU achieved a seven times increase in speed for

MUMmerGPU and approximately five times increase for GPU-BLAST. By us-

ing our proposed FlexGPU, the system can handle at least eight instances of

both MUMmerGPU and GPU-BLAST running concurrently.

We also noticed that the execution time of running with FlexGPU rapidly

increased when the number of instances become larger than 4 and 6, respec-

tively. This is because in that case, GPU memory checkpoint is triggered and

memory transfer overhead occurs.

There is a latency increase of 15% when running eight instances of MUM-

mergpu in parallel with FlexGPU, compared to the execution of a single in-

stance at a time without FlexGPU. In case of GPU-BLAST, the increase goes

up to 51%. This is because in the case of MUMmergpu, the GPU utilization

remains 30% during most of the execution time, while it was higher for GPU-

BLAST as its kernel is computation intensive. A relatively lower GPU utiliza-

tion during kernel execution time allows FlexGPU to pack the kernels together

and take advantage of the time periods that the GPU remains under utilized,

38

Figure 3.12 Running 3 MUMmerGPU and 3 GPU-Blast sequentially with OOM
occurs

But a computation intensive kernel may limit the efficiency.

3.4.5 Performance of workloads composed of multiple applica-
tions

To observe how our proposed FlexGPU handles multiple applications executed

in parallel, we launch three MUMmergpu instances and three GPU-BLAST

instances with the following scenarios: 1) launching simultaneously, 2) delay

the kernel launching to avoid GPU memory requirements collision, 3) Using

our proposed FlexGPU.

Figure 3.12 shows the GPU memory usage. It can be observed that 601.3

s after the launch, the total amount of GPU memory exceeds the physical ca-

pacity and causes the failure of several instances with OOM error. Figure 3.13

demonstrates the delayed launching of resource-intensive kernel. It can be no-

ticed that instead of exceeding the physical capacity, the kernel launch is delayed

until the previous kernels have deallocated some of their allocated GPU memory

39

Figure 3.13 Running 3 MUMmerGPU and 3 GPU-Blast Concurrently with
delayed kernel launch

Figure 3.14 Running 3 MUMmerGPU and 3 GPU-Blast Concurrently with
FlexGPU

contents. The peak memory usage shown in Figure 3.13 is generally less than

9 GB, which is maintained for a relatively long time. Figure 3.14 shows the de-

tails of how FlexGPU handles this situation. It can be noted that 835.2 seconds

40

after the application is executed, the FlexGPU detects that the current launch-

ing kernel would cause the GPU memory to exceed the capacity; consequently,

it checkpoints certain unrelated content to the host memory and creates space

for the kernel. Subsequently, when the checkpointed part becomes necessary

again, it brings it back to the GPU memory and continues the execution of the

corresponding kernel.

Both the delayed launching and FlexGPU can prevent OOM failure; how-

ever, using delayed launching may decrease the GPU utilization when kernels

having lower GPU utilization but higher GPU memory requirements have to

be executed sequentially. The experiment shows that in terms of the execu-

tion time, FlexGPU demonstrates an improvement of 11% (9,087.9 seconds to

8,111.1 seconds)

41

3.5 Summary

Currently, GPUs can be underutilized as multiple applications cannot share the

GPU, even if some of them are not computation intensive. The primary issue is

that applications cannot oversubscribe the GPU memory. Thus, GPU memory

allocation requirements that exceed the physical capacity will cause an OOM

error. In this paper, we proposed FlexGPU, which schedules the GPU ker-

nels to improve the GPU utilization. It also allows the GPU memory content

to be checkpointed and restored to improve the availability of each applica-

tion; Consequently, it ensures that more GPU applications can share the GPU

simultaneously. The evaluation demonstrated that FlexGPU improved the per-

formances up to 7 times and enabled 2.6 times more applications to share the

GPU.

42

Chapter 4

A Workload-aware Fine-grained
Resource Management Framework
for GPGPUs

4.1 Motivation

Currently, GPGPU workloads are designed to monopolize the GPU resource to

achieve good performance, which may lead to a waste of resources. Launching

multiple workloads concurrently on GPU was thought to solve this problem.

However, NVIDIA GPUs originally only support time-sharing based schedul-

ing [55] of co-located kernels, which lead to a near sequential execution of

multiple kernels. To improve this situation, NVIDIA provides Hyper-Q [29]

and MPS [30] technology. Hyper-Q technology enables multiple CPU threads

or processes to launch work on a single GPU simultaneously. It allows mul-

tiple, simultaneous, hardware-managed connections between host and GPU,

thus increasing the number of concurrent running kernels. However, to guaran-

tee multiple kernels being scheduled in parallel, Hyper-Q technology requires

43

kernels to be issued with different CUDA streams [44] from the same CUDA

context [41]. In other words, kernels from different applications cannot take

advantage of concurrent scheduling enabled by Hyper-Q technology, since each

application will create a separate CUDA context during execution. Therefore,

NVIDIA proposed MPS to enable kernels from different CUDA context to be

concurrently scheduled through Hyper-Q technology. Basically, the MPS client

runtime is built into the CUDA Driver library and can be used transparently by

any CUDA application, and the server process is the clients’ shared connection

to the GPU, which maps context created by each client into the one that was

created by itself, thus leveraging the concurrent scheduling features of Hyper-Q

technology.

In the meantime, according to Figure 1.3, shortest kernel execution time

can be achieved when only a part of the SMs are activated as well as their

intra-SM resources are not fully occupied. Taking BlackScholes as an example,

it can achieve its best performance when 15 SMs are activated with 12 thread

blocks launched on each of them. As revealed in table 4.2, 12 thread blocks of

BlackScholes requires 35328 registers in each SM. Since NVIDIA Titan Xp has

65536 registers in each SM [35], the remaining 30208 registers can be used to

launch 4 thread blocks of lavaMD additionally on the same SM.

Inspired by these observations, we proposed smCompactor, where thread

blocks of each kernel can be intentionally launched to specific SMs to obtain a

near-optimal performance according to the profiling result while using as fewer

resources as possible, thus leaving more available resources for other workloads.

In addition, we define near-optimal performance as a range between the best

performance to a user-defined threshold. The threshold may change according

to user requirement, we define it as 90% in our current research.

44

4.2 Related Work

4.2.1 GPU resource sharing

Multitasking in GPU management was not a sudden burst. A single execution

of an application does not use up the entire GPU resources, such as register

and memory. To handle this resource under-utilization issue, concurrent kernel

execution must be supported to achieve the benefit. The research was con-

ducted from various perspectives to better utilize GPU resources: from bottom

hardware-based implementation support to top software-based support.

In terms of the hardware level approaches, attempts to apply Stream, Hyper-

Q, and MPS to simulations and models were suggested to support kernel pre-

emption and scheduling [9, 32, 51, 56, 57]. Park et al. proposed a preemption

based approach [32] to control the overhead of multitasking on GPU. This ap-

proach is based on the flush operation that can preempt a SM with a new

kernel. However, preemption can only occur when the thread blocks are at an

idempotent state, which limits the functionality. They also proposed a dynamic

resource management strategy [51] for efficient utilization of multitasking GPU,

it uses SM as its scheduling unit and implemented with a simulator. However,

since the functionality needed to implement these strategies are not provided

by the real-world GPU, these researches are implemented with the simulator,

which may have different features with the real-world GPUs. Simulations were

also performed for process-in-memory capabilities on GPUs [58]. Xu et al. pro-

posed [31], a dynamic intra-SM slicing strategy to maximize the performance

of concurrent kernels running. This strategy uses an analytical method for cal-

culating resource partitioning across different kernels and assigns the thread

blocks of each kernel to the target SM. Concurrent kernel also have been pro-

posed for embedded systems. Effisha [59,60] proposed software technologies to

45

enable kernel preempt, however, their approaches are especially for embedded

systems, which are not available on real GPU systems.

On the other hand, most of the software support studies are based on the

persistent thread model [61,62], where thread blocks are treated as tasks issued

by a persistent running thread. Bo et al. [33] firstly proposed the technology

to circumvent the limitations of hardware scheduler and to allow a flexible

program-level control scheduling. Slate [34] handles concurrent kernels from ar-

bitrary applications at runtime and integrates workload-awareness into schedul-

ing decisions, however, it focused on avoiding interference between different

kernels and was scheduled based on SM unit.

4.2.2 GPU scheduling

As GPU multitasking has been in great demand, many studies start to focus on

scheduling policies for task scheduling on GPUs. Mystic [63] circumvents the

limitation that MPS does not support other scheduling policies by proposing

an MPS-like context funneling system for GPU clusters but does not for a sin-

gle GPU. Free launch used compiler techniques to statically combine a kernel

with child kernels [64]. Wang et al. developed Kernel Fusion [65], a source-to-

source compiler that can combine certain kernels for specific archetypes. Re-

searches [28,66,67] proposed two aspects of thread block based scheduling, first,

the lazy CTA scheduling (LCS) can restrict the maximum number of thread

blocks allocated to the SM, second, Block CTA scheduling (BCS) policy assigns

consecutive thread blocks to the same SM. Currently, the NVIDIA does not sup-

port the preemption of thread blocks of kernels. FLEP [68] pointed out that the

lack of kernel preemption on commodity GPUs can lead to performance and

priority inversion problems in multitasking environments. After FLEP trans-

forms kernels into preempt-able forms, programs can be interrupted and yield

46

all or parts of SMs. Experiments show flexible preemption policy can enhance

overall performance.

4.3 Design and Implementation

There are several goals in our design of the smCompactor. First, the smCom-

pactor supports multiple kernels running concurrently without using NVIDIA

MPS; second, the smCompactor supports efficient thread block level multipro-

cessing and resource sharing among multiple concurrent kernels, exploiting the

GPU resources while maintaining the performance of each individual kernel

execution; Third, the smCompactor provides a GPU kernel execution environ-

ment that is transparent to the users. Users can write GPU kernels with general

CUDA APIs without additional modifications. To achieve our design goal, the

smCompactor needs to automatically extract the kernel function and its param-

eters from the source code, transparently converting the original kernel function

into a manually controllable version, profiling the kernel information, including

the resource consumption, merging CUDA contexts into a single one, and finally

managing the concurrent kernel scheduling according to that information.

4.3.1 System Architecture

Our approach is a client-server structure, based on the persistent thread mode [61].

Figure 4.1(a) demonstrates the architecture of the smCompactor. Each appli-

cation is bound to a separate CUDA API wrapping module, which acts as

the client. The CUDA API wrapper module intercepts the original CUDA ker-

nel functions and their parameter lists for the future scheduling and resource

management and transfer these intercepted contents to the server process. The

server process runs smCompactor runtime on the host side, modifying the re-

ceived kernel function body by adding scheduling and resource management

47

(a) Overview of smCompactor architecture

(b) Control flow of smCompactor

Figure 4.1 System architecture and control flow of smCompactor

48

related code. Then it uses the NVIDIA runtime compiler (NVRTC) to dy-

namically compile the revised kernel into ptx files [69], meanwhile merging

CUDA contexts created by each client into a single one to exploit the concurrent

scheduling feature of NVIDIA Hyper-Q technology. Finally, the smCompactor

runtime launches the revised kernels to the GPU hardware queue.

4.3.2 CUDA API Wrapping Module

Originally, CUDA applications use the CUDA runtime and driver APIs to com-

municate and control the NVIDIA GPU. These APIs achieve multiple function-

alities from the launch of CUDA kernels to the allocation of resources in the

GPU and transferring of data between the device and the host. Among these

APIs, cuMemAlloc, cudaMalloc, cudaFree, and cuMemFree are used to allo-

cate and deallocate device memory, and cuMemcpyDtoH, cuMemcpyHtoD, and

cudaMemcpy are used to transfer the data between the CPU and the GPU;

further, cudaLaunch is used to launch a CUDA kernel function. Since in our

proposed design, the smCompactor runtime is in charge of transforming the

original CUDA kernel functions received from each client into the modified ver-

sion that can be scheduled, the kernel functions and their parameters should

be separated in advance before being transferred to the runtime.

However, as the CUDA API is not open source, we cannot modify the CUDA

function itself; instead, we develop the CUDA API wrapping module to cap-

ture the APIs mentioned above and implement our design to derive the kernel

function from the source code transparently. Particularly, we intercepted the

cudaLaunch call to get the kernel function body as characters by parsing the

entry parameter used in the cudaLaunch function. Besides, for the input and

output parameters of the CUDA kernel, we firstly extract them by parsing

the entry, then we obtain the size needed to be allocated for each parameter

49

by intercepting CUDA memory allocation functions, such as cuMemAlloc, cu-

daMalloc. Finally, we transfer the kernel function source and their parameter

list, as well as their sizes, to the smCompactor runtime.

Unlike either the MPS, where device memory allocation occurs in each con-

text and is then mapped to a single one, or recent researches such as [34], where

device memory is allocated by the client, in our proposed design; clients only

capture the contents and transfer them to the smCompactor runtime daemon.

Device memory is allocated in the unique context that the smCompactor run-

time daemon created. Since every device memory allocation is executed in the

same context, physical addresses represented by device pointers and obtained

by these allocation calls will not be in conflict, eliminating the potential GPU

memory modification contentions.

4.3.3 smCompactor Runtime

The smCompactor runtime executes as a daemon process. As illustrated in

Figure 4.1(a), it consists of a kernel profiler, dispatch module, kernel trans-

form module, and runtime compiler module. Figure 4.1(b) shows the control

flow of the smCompactor runtime. When the application calls CUDA API to

allocate device memory and launch a kernel, the CUDA API wrapping mod-

ule intercepts the kernel function body and parameter lists and forwards them

to the dispatch module in the smCompactor runtime (1○). The kernel profiler

begins profiling the kernel when it is firstly executed or its dispatch informa-

tion changes, and it forwards the profiling result to the dispatch module (2○).

The dispatch module adds dispatching related information to the kernel func-

tion body and keeps forwarding them to the kernel transform module (3○-b);

however, if the dispatch information of a specific kernel changes, it sends mod-

ified dispatch information back to the kernel profiler and triggers a new profile

50

(3○-a). The kernel transform module converts the original kernel function body

with dispatching information into a transformed kernel, which can be adopted

in the persistent thread model. Then, it forwards the transformed kernel to the

NVIDIA runtime compiler module (4○). The runtime compiler module compiles

the transformed kernel source into a ptx file, and it launches the modified kernel

function through the ptx file (5○). After the transformed kernel launched on

the GPU side, a persistent thread will be generated, and then it will dispatch

the tasks (6○) to the specific SMs (7○) according to the implanted dispatching

information. The smCompactor runtime serves an important role in realizing re-

source utilization and managing current kernel scheduling. We will discuss each

module in the smCompactor runtime in detail in the following subsections.

Kernel Profiler

The kernel profiler is in charge of profiling static and runtime features of each

kernel. There are two models work with the kernel profiler, offline and online.

Offline profiling obtains the static features of the kernel, while online profiling

captures dynamic information. The static information includes the degree of

parallelism, number of registers, and shared memory size used in each thread,

and it is collected for the first time when each kernel is launched. The dynamic

runtime features include the kernel execution time, instructions per cycle (IPC),

device memory bandwidth, and L2 cache bandwidth. The profiler maintains

a table to record the relation between runtime features and the number of

activated SMs and thread blocks launched on each SM. The profiler profiles

the dynamic information whenever the thread block and assigned SM number

changes.

The reason that the smCompactor collects these features is because we

use them to calculate how many resources remain in each SM and decide how

51

Label SM0 SM1 SM2 ... SM30

Kernel 1 12 12 12 ... 0

Kernel 2 5 5 5 ... 5

Kernel 3 2 2 2 ... 8

Table 4.1 Dispatching information

many more thread blocks can be issued to each SM. The profiler obtains the

static features by utilizing NVIDIA CUDA Compiler (NVCC) [70] options while

profiling the runtime information via NVProf [39]. Finally, the profiled result

will be forwarded to the dispatch module.

Dispatch Module

The dispatch module injects the dispatching information into the users’ kernel

sources according to the obtained profiling information from the kernel profiler.

The dispatch information will be a guideline for how to dispatch thread blocks

of different kernels to each SM to maximize resource utilization while achieving

near-optimal performance.

Particularly, it is created by considering all related features such as profiling

result, current resource usage of each SM and the resource consumption of target

kernels. The details are shown as follows; first, the dispatch module decides the

number of SMs should be activated and thread blocks should be launched on

those SMs for the first kernel according to its profiling result, considering the

principle of achieving a near-optimal performance with consuming as fewer

resources as possible. In the meanwhile, the dispatch module keeps track of the

resource usage of each SM, recording available resources of each SM separately.

Then, the dispatch module decides other kernels’ dispatching information by

preferring to consume resources remained by the previously decided kernel. Our

thread block dispatching strategy refers to [71] since every intra-resource can

52

be treated as a vector and the whole dispatching problem can be transferred

into a multi-dimensional bin packing problem. As mentioned in the previous

section, every time creation of new dispatch information will lead to re-profile

dynamic features of the new combination. The dispatch module can keep tuning

the dispatch information according to the feedback from the kernel proflier, for

example, activating new SM one at a time after remained resources are used

up until all workloads achieve their near-optimal performance. It should be

noted that the dispatch information only acts as a guideline for thread block

dispatching, thus only a near-optimal performance can be achieved while the

best performance cannot be guaranteed. How to schedule the thread blocks more

efficiently based on our proposed framework is taken into the consideration as

our future work.

The dispatching information contains the thread block & SM mapping data.

As shown in Table 4.1, for any kernels coming into the system, the dispatch

module provides the number of thread blocks that are supposed to be dispatched

on each SM. We should also note that this dispatching information is not fixed;

it varies depending on the current co-locating kernels since each kernel has its

resource usage feature. Finally, it forwards this dispatching information with

the user kernel function body and the parameter list to the kernel transform

module.

Kernel Transform Module

As is well known, computations on GPUs are achieved by the kernel function. A

kernel function is executed by GPU threads in parallel. Generally, GPU threads

are scheduled depending on the hardware scheduler; they are dispatched to each

SM in the thread block unit, totally beyond the programmer’s control. Thus,

improving the resource utilization according to each kernel’s feature by manu-

53

ally controlling the dispatch of GPU threads is difficult to implement. However,

[61] proposed the concept of persistent thread model, which is based on the

dynamic parallelism mechanism provided by NVIDIA. In this programming

model, thread blocks are treated as tasks, meanwhile, a persistent thread run-

ning permanently, picking up tasks from the task queue, and launching the

tasks asynchronously.

We adopt this concept in our proposed smCompactor. In particular, the

kernel transform module modifies the original kernel into a revised version that

can be used in the persistent thread model. To fulfill the transformation, three

kinds of modifications are needed. First, the kernel transform module replaces

the built-in CUDA variables, such as the blockIdx and gridIdx, with the per-

sistent thread model related code segments to implement its functionality. Fig-

ure 4.2 illustrates how the general user kernel is transformed into a persistent

thread aware version. A general CUDA kernel with multi-dimension grid will be

first converted into a one-dimension grid, where the size of the grid is equal to

the product of the size of each dimension in the original grid. Each thread block

in the converted dimension is treated as a task. A persistent thread, which is

also running on the device side, sequentially extracts tasks and launches them

to SM asynchronously. Second, dispatching information obtained from the dis-

patch module should be integrated into the revised kernel; therefore, thread

blocks of certain kernels can run on the designated SM. Finally, to exploit the

concurrent scheduling features of the hardware scheduler, the revised kernel

should be launched with different CUDA streams [44]; therefore, a separated

CUDA stream should be created and injected into the kernel launch part by

the kernel transform module.

54

Figure 4.2 Kernel transformation.

Runtime compiler module

The revised kernels converted by the kernel transform module are presented

as the source code of the function contents. To launch and execute those ker-

nels, the source code has to be compiled into an executable form. The runtime

compiler module works in four stages, first, it creates a unique CUDA context;

second, it compiles the source code into ptx form; third, it allocates device mem-

ory for each kernel in that CUDA context; and fourth it launches the kernels

on the GPU. As mentioned above, NVIDIA Hyper-Q technology enables con-

current scheduling only in the streams where the kernels issued belong to the

same CUDA context. Besides, device memory allocation from different CUDA

contexts will cause potential memory address conflicts, since different contexts

are unaware of each other.

Figure 4.3 demonstrates the details of the runtime compiler module. This

module contains one main thread and several child threads. The main thread

creates the unique CUDA context and receives the revised kernel source from

the previous module. For each child thread, it obtains the main context and

55

Figure 4.3 Runtime compiler module.

56

corresponding kernel source from the main thread, then compiles the source

into ptx file, allocating device memory and launching the kernel under the

main context.

4.3.4 Implementation Details

As mentioned above, the smCompactor adopts the concepts of persistent thread

model to manually control the execution of the thread blocks of particular

kernels on SMs. This concept shows us the possibility that the launch of thread

blocks on the GPU can be handled by the programmer. However, how to assign

a certain number of thread blocks of a kernel to specific SMs is still under

research.

In our proposed smCompactor, we use a ”fulfill and retreat” strategy to

reach this target. The NVIDIA hardware thread block scheduler may dispatch

thread blocks to any of the SMs according to its resource usage. Since the

details of the NVIDIA hardware scheduler are not available to the public, the

distribution of thread blocks is random to the users. However, the ”fulfill and

retreat” strategy takes advantage of the persistent kernel model where thread

blocks are treated as tasks to use an alternative means to solve the problem.

The persistent thread will keep trying to dispatch the task (thread block) until

it locates the specific SM and until the number of thread blocks satisfies the

dispatching information.

Figure 4.4 illustrates the details of the ”fulfill and retreat” mechanism in

our proposed smCompactor. As shown in Figure 4.4(a), the persistent thread

starts to dispatch tasks to the SMs according to the dispatching information.

Currently, two tasks need to be dispatched to SM0 and SM1, respectively. In

the beginning, as shown in Figure 4.4(b), the persistent thread dispatches one

task, successfully to SM0 by the hardware scheduler. In this case, the persistent

57

Figure 4.4 Details of fulfill and retreat mechanisms

thread pops this task from the queue and continues to dispatch the next one.

However, as shown in Figure 4.4(c), the persistent thread dispatches the next

task to SM2, which violates the dispatch information. As a result, the task needs

to retreat and the persistent thread causes it to dispatch again. This time, the

task is located on SM0, which makes the count of thread blocks running on

SM0 exceeds the threshold. This should also be treated as a failed dispatch and

the task needs to retreat again. Finally, as Figure 4.4(d) demonstrates, the task

is successfully dispatched to SM1, and the persistent thread pops the task from

the queue and prepares to dispatch the next one until the queue is empty.

To implement the retreat functionality, we inject related code segments

into each user kernel by the kernel transform module. Algorithm 4.1 reveals

the details of these code segment. As shown in line 4, the first thread of the

current thread block sequentially checks whether current SM is the target SM

(Line 5) and current thread block count exceeds the threshold (Line 7). Any

dissatisfaction with these conditions will lead to thread block retreats (Line 19).

58

Algorithm 4.1: Fulfill and Retreat
1: function gpu kernel function(parameter1, parameter2, ...)
2: retreat = false
3:
4: if current thread = first thread of the thread block then
5: if current SM = target SM then
6: add thread block count by 1 atomically
7: if thread block count = threshold then
8: retreat = true
9: end if

10: else
11: retreat = true
12: end if
13: else
14: sync threads
15: end if
16:
17: if retreat = true then
18: sub thread block count by 1 atomically
19: return
20: else
21: do computation parts
22: sub thread block count by 1 atomically
23: return
24: end if
25: end function

59

When both of the conditions are satisfied, the computation is executed (Line

21).

4.4 Analysis on the relation between performance and
workload usage pattern

As mentioned in previous sections, the execution time of GPU kennels can varies

depends on the resources that be allocated to each kernel. In this section, we

analysis the relation between the kernel execution time and intra-GPU resources

that allocated to each kernel.

4.4.1 Workload Definition

We firstly definite the GPU workloads into two groups, the computational in-

tensive workloads and the memory intensive workloads. According to [72], Em-

pirical Criteras can be used to characterize the workloads. The definition of

Empirical Criteras is as follow shows.

EmpiricalCriteras = (flopcount sp + flopcount dp + flopcount sp+

instinteger + instbit convert + instcontrol)/

(gldtransactions + gsttransactions)

(4.1)

A large Empirical Criteras value indicates the workload is relatively compu-

tational intensive while a small Empirical Criteras value shows the workload is

relatively memory intensive. In our work, we use the Empirical Criteras value

as one of the matrices to classify GPU workloads.

4.4.2 Analysis on performance saturation

Figure 4.5 shows the kernel execution time of mummerGPU, whose EC value

equals to 49.5, on different cases of resource allocation. As the figure shows,

the kernel execution time becomes saturated when 15 SMs are used. Since

60

Figure 4.5 MummerGPU kernel execution time with different resource allo-
cated.

the kernel execution time saturation is usually relate to memory bandwidth

and parallelism bandwidth, we also profiles the gld throughput, gst throught,

and achieved occupancy on different cases of resource allocation. Figure 4.6

and Figure 4.7 show the gld throughput and achieved occupancy with different

number of thread blocks allocated on different number of SMs, respectively.

Compared the Figure 4.6, Figure 4.7 with Figure 4.5, we can tell that the

change of kernel execution time of mummerGPU is highly related to memory

bandwidth rather than the parallelism. Particularly, the kernel execution time

saturated when 15 SMs are used, while the memory bandwidth shows the same

tendency.

We also profile the computational workload to analysis the relation between

performance and resource usage pattern. As Figure 4.8, Figure 4.9, and Fig-

ure 4.10 show, the kernel execution time of computational intensive workload

is also highly related to the memory bandwidth rather than the parallelism.

Thus, we can use the memory bandwidth as a metrics to predict the best ker-

nel execution time.

61

Figure 4.6 MummerGPU gld throughput with different resource allocated.

Figure 4.7 MummerGPU achieved occupancy with different resource allocated.

62

Figure 4.8 lavaMD kernel execution time with different resource allocated.

Figure 4.9 lavaMD gld throughput with different resource allocated.

63

Figure 4.10 lavaMD achieved occupancy with different resource allocated.

Another observation is the resource usage on best kernel execution time of

computational workload and memory intensive workload is really different. As

Figure 4.6 shows, the memory intensive workload achieves its best performance

when part of the SMs are used with large amount of thread blocks issued on each

SM. However, As Figure 4.9 shows, computational intensive workload achieves

its best performance when all the SMs are used with small amount of thread

blocks issued on each SM. Figure 4.11 shows the two situations, and we call the

case of memory intensive workload that compact horizontally while the case of

computation intensive workload compact vertically

4.4.3 Predict the necessary SMs and thread blocks for best
performance

As mentioned in previous sections, the kernel execution time of memory in-

tensive workload and computation intensive workload is highly related to the

memory bandwidth. Thus, prediction of the need SMs and thread blocks for

64

Figure 4.11 Comparison on memory intensive workload and computational
intensive workload

achieving best kernel execution time can be transformed into predicting the

necessary SMs and thread blocks to get the saturated memory bandwidth.

Figure 4.12, Figure 4.13, and Figure 4.14 show the memory bandwidth of

mummerGPU when 1SM, 5SMs, and 10SMs are used, meanwhile, the X-axis in

those figures shows the launched number of warps for each cases. From those

figures, we can tell that before the memory bandwidth saturates, the tendency

of memory bandwidth increase for each cases are similar.

Figure 4.15 demonstrates the increase of memory bandwidth when 1 thread

block issued on different number of SMs. From the Figure, we can find that

the memory bandwidth increase linearly with the number of SMs increase. As

a result, we can use the memory bandwidth profiled in 1SM, and the saturated

memory bandwidth to predict necessary SMs and thread blocks per SM.

saturated throughput = SM NUM∗

start throughput ∗ TB NUM improve factor
(4.2)

We use Equation 4.2 to describe how to calculate the necessary number of SMs

and thread blocks launched on each SM. The saturated throughput means the

memory bandwidth when best performance is achieved, the start throughput

65

Figure 4.12 memory bandwidth with different number of Warps on 1 SM

Figure 4.13 memory bandwidth with different number of Warps on 5 SMs

66

Figure 4.14 memory bandwidth with different number of Warps on 10 SMs

67

Figure 4.15 memory bandwidth with 1 thread block on different number of
SMs

means the memory bandwidth of one thread block issued on 1 SM, and the

improve factor indicts the increase tendency that shows in Figure 4.12. All

of those metrics can be achieved by profiling workload when all resource are

allocated and only 1 SMs are allocated. In addition, the SM count on GPU is

limited, for example there are 30 SMs on NVIDIA Titan Xp, and the thread

blocks that can be launched is also limited due to the resource usage. As a

result, we can use those conditions to predict the necessary number of SMs and

thread blocks for each SM that can achieve the best performance.

We also found that the memory bandwidth can be distributed to differ-

ent number of SMs with different number of thread blocks launched. Taking

BlackScholes as example, the saturated bandwidth is 266GB/s, which can be

achieved when 15 SMs are activated with 10 TBs launched on each SM. Since

266GB/s can be divided into 96GB/s + 170GB/s, according to our Equa-

68

Workloads #ThreadBlock #Threads/Block Registers/Block Shared Memory (byte)
FDTD3d (FT) 288 512 57344 3840

nn (NN) 32768 256 4608 0
BlackScholes (BS) 2343750 128 2944 0

QuasiRandom Generator (QG) 128 384 15360 0
lavaMD (LM) 1000 128 7168 7200

Table 4.2 Target Evaluation Workloads

tion 4.2, the necessary SMs for 96GB/s and 170GB/s are 5 SMs with 8 TBs

and 10SMs with 8TBs, respectively. The real memory bandwidth of 5SMs and

10SMs activated individually (No.0-4, No.20-29), is 262GBs, which is similar to

the saturated bandwidth.

Thus, according to our observations, we can flexibly compact the resource

space of each workload while maintain their performance, and the profiling

effort can be limit to an acceptable level

4.5 Evaluation

In this section, we evaluate the performance of the smCompactor on several

real-world applications with different scenarios. The evaluations are executed

on a real GPU system, which consists of an NVIDIA Titan Xp GPU card,

Intel Xeon E5-2683 CPU with 14 physical cores and 64GB DDR3 memory. The

NVIDIA Titan Xp GPU belongs to Pascal architecture, which consists of 30

SMs, with 65536 registers and 64KB shared memory in each SM. The whole

system runs on the Ubuntu 16.04 operating system, with Linux kernel 4.4.180.

The NVIDIA device driver version we used is 384.130, with the NVIDIA CUDA

toolkit 9.1.

69

4.5.1 Evaluation Methodology

Target Evaluation Applications

Table 4.2 shows the target evaluation workloads. They are from the NVIDIA

CUDA 9.0 Samples and Rodinia GPU benchmark suite [36]. Each application

varies in its degree of parallelism, number of registers and shared memory us-

ages. For each application, we run evaluations on its original CUDA version,

MPS version, slate [34] version, and our proposed smCompactor version. Since

the slate is not an open source framework, we implement it according to the

details introduces in that paper.

Evaluation Metrics

We evaluate our proposed smCompactor using the following performance met-

rics. 1) real & normalized kernel execution time, 2) resource utilization in terms

of a number of active SMs for each workload.

The original CUDA version uses time-sharing as its scheduling policy. In

this instance, one kernel occupies the whole GPU resources during its time

slice and switches its control of resources to another kernel at the next time

slice. Both MPS and slate enable spatial sharing policy; However, in the case of

MPS, it only allows kernels running when there are available resources near the

end of the previous kernel’s execution if their launch time is slightly staggered,

its execution also totally depends on the hardware scheduler, which is beyond

the control of users. Slate enables selecting complementary kernels according

to the profiled information, and it isolates each kernel on specific SMs. Our

proposed smCompactor also enables spatial sharing among the concurrent ker-

nels, in addition, it provides a fine-grained scheduling mechanism, which can

control the number of thread blocks on the specific SM to find out the optimal

combination of thread block and SM pairs, increasing the resource utilization

70

Figure 4.16 Execute time normalized to original CUDA.

while maintaining the performance.

4.5.2 Overhead of smCompactor

We first evaluate the overhead of the proposed system by executing a single ap-

plication with the original CUDA, MPS, slate, and smCompactor. We measure

the kernel execution time instead of the whole application execution time due

to that for some applications, the part running on the host side costs thousands

of times more than the kernel execution, which interferes with the accuracy of

the evaluation. Besides, to make an appropriate comparison, we also configure

the slate to use all the SMs and configure smCompactor as not limiting the

number of thread blocks running on each SM.

Figure 4.16 shows the execution time of each benchmark running solo in dif-

ferent situations. The result is normalized to the execution time of running the

original CUDA. Generally, the smCompactor has up to 7% overhead compared

to the original CUDA case, which is similar to the slate. The overhead is due

to the persistent thread model, where the user kernels nested in the dispatcher

71

Figure 4.17 Execution time of BlackScholes with the different number of thread
blocks (TBs) on the different number of SMs.

kernel (persistent thread), and both the smCompactor and slate adopt this

concept. However, the case of NN is an exception, where the overhead is about

1.75 times of the baseline. This is due to NN’s extremely small kernel execution

time. Compared to the kernel execution time of tens of millisecond for other

workloads, the execution time of NN is only 0.33 millisecond, which increases

the overhead proportion. As a result, our proposed smCompactor has a tiny

impact on those kernels with relatively longer kernel execution time; however,

with small kernels, the impact could be notable.

4.5.3 Performance with Different Thread Block Counts on Dif-
ferent Number of SMs

In this section, we evaluate smCompactor by running a single workload with

different number of thread block counts on different number of SMs. We choose

FDTD3d and BlackScholes as the evaluation targets in this section since each

of them represents a different resource usage pattern. As shown in Table 4.2,

FDTD3d consumes a large amount of registers and shared memory with a small

72

Figure 4.18 Execution time of FDTD3d with different number of thread blocks
(TBs) on different number of SMs.

number of thread blocks, while BlackScholes has low resource usage but a large

number of thread blocks.

Figure 4.17 illustrates the execution time of BlackScholes when launching

different number of thread blocks on different numbers of SMs. From the figure,

we can tell that the execution time varies according to the change of the count of

thread block and active SMs. The best performance (27.6 ms) can be achieved

when 30 SMs were activated and launching 8 TBs on each of them, and the

second-best performance (28.02 ms) is achieved when 15 SMs were activated

with 16 TBs on each of them. In this case, the kernel execution time is almost

the same as the execution time on the original CUDA (27.31 ms). We can also

tell that the performance can be almost saturated when only half of the whole

SMs were activated with appropriate number of thread blocks launched on each

of them, leaving ample room for improvement in resource utilization.

Figure 4.18 shows the case of executing FDTD3d with different number of

thread blocks on different number of SMs. The performance was also saturated

73

when 15 SMs are activated. However, different from the case of BlackScholes,

the performance variation is small when the number of thread blocks launched

on each SM increased from 1 to 4. This is because of its large resource usage of

each thread block since the thread blocks are actually scheduled by the hardware

scheduler, which allows thread blocks to be executed only when the resource is

available.

In summary, for either the workload that has a large or small resource usage,

its near-optimal performance can be achieved without all SMs are activated

when an appropriate combination of the number of thread blocks and the active

SM counts are found. However, compared to resource consumption intensive

kernels, those small kernels have a higher possibility to find the near-optimal

performance with less active SMs since their performance varies greatly when

the number of thread blocks launched on each SMs changes.

4.5.4 Performance with Concurrent Kernel and Resource Shar-
ing

In this section, we present the kernel execution time of co-launching two appli-

cations on the system concurrently with different strategies. We select FDTD3d,

BlackScholes, and lavaMD as our target workloads, since their execution times

are similar among themselves. The evaluation is conducted with original CUDA,

MPS, slate and our proposed smCompactor. We evaluated 8 combinations

among all the workloads. In the case of slate, we configure it to use all SMs for

the workloads and each workload occupies a multiple of five number of SMs,

then we choose the best performance among all the combinations. For example,

workload A is dispatched to five SMs, while workload B is dispatched to the

remaining 25 SMs and so on.

Figure 4.19 demonstrates the kernel execution time and number of active

SMs on all eight cases. The time presented in Figure 4.19 is the execution

74

Figure 4.19 Execution time and active SM counts of running in different sce-
narios.

SM 0 - SM 14 SM 15 - SM 19 SM 19 - SM 24 SM 25 - SM 29

FT-LM FT:1,LM:1 FT:0,LM:8 FT:0,LM:8 FT:0,LM:0

LM-BS BS:12,LM:4 BS:12,LM:4 BS:0,LM:4 BS:0,LM:0

Table 4.3 Number of thread blocks on each SM

time of the last finished workload. The original CUDA provides the baseline

for the comparison. As Figure 4.19 shows, MPS can efficiently schedule two

concurrent kernels, outperforming the original CUDA version. In that case, the

improvements can be 17% and 24% for the FT-LM and BS-LM, respectively.

The slate also outperforms the original CUDA in both cases; however, it suffers

performance downgrades of 14.8% and 22.5% compared to MPS in the case of

FT-LM, and BS-LM respectively.

Our proposed smCompactor also outperforms the baseline in both cases.

It can enhance the performance against slate by 10% and 16% when concur-

75

(a) Wall execution time

(b) The execution time of each workload

Figure 4.20 Execution time of co-locating three workloads with different strate-
gies

76

Figure 4.21 Execution time of CNN with different strategy.

SM 0 - SM 14 SM 15 - SM 19 SM 19 - SM 24 SM 25 - SM 29

FT-LM+BS FT:1,LM:1 FT:0,LM:2,BS:12 FT:0 LM:2,BS:12 FT:0,LM:0,BS:16

LM-BS+FT BS:12,LM:4 BS:12,LM:4 BS:0,LM:1,FT:1 BS:0,LM:1,FT:1

Table 4.4 Number of thread blocks on each SM

rently running FT-LM and BS-LM respectively. It should be noted that resource

utilization can be increased when the workloads running with our proposed sm-

Compactor. Even though the execution time of the FT-SM and BS-LM com-

bination is slightly longer than the MPS cases, it only uses 83% of the whole

SMs to achieve this performance, saving the SMs for the upcoming workloads.

The number of thread blocks launched for each SM is shown in Table 4.3.

To demonstrate that those saved SMs by using our proposed smCompactor

can also be used to execute other kernels without introducing performance

degradation, we launch a third workload on those unused SMs for both the

FT-LM and BS-LM cases. Particularly, we additionally launch thread blocks

77

Figure 4.22 Execution time of CNN and lavaMD with different strategy.

of BS mainly on the remaining 5 SMs for the FT-LM case, and thread blocks

of FT on the remaining 10 SMs for the BS-LM cases. Table 4.4 depicts the

details of the thread block distribution on every SM. Compared to the previous

experiment configuration as shown in Table 4.3, we slightly tune up the thread

block number of LM to achieve an overall better performance.

Figure 4.20 shows the detailed result of the evaluation. Figure 4.20(a)

demonstrates the wall time of executing all three workloads, which is the kernel

execution time of the last finished workload. In the case of co-launching BS

on the SMs remained by FT and LM with our proposed smCompactor, the

execution time can be decreased with 26% and 18% compared to CUDA and

MPS, respectively. The performance gain can be even larger in the case of co-

launching FT on the SMs remained by BS and SM, which is 33% and 26%

compared to the CUDA and MPS.

We analyze the results by presenting the kernel execution time of each kernel

78

in different cases in Figure 4.20(b). In the CUDA case, since the kernels are

scheduled in a time-sharing manner, kernels are executed sequentially, leading

to the longest wall time. In the MPS case, BS is blocked by FT and LM, leading

to a longer execution time(84.5 ms) compared to its solo run case (27.1 ms).

Compared to the result of MPS shown in Figure 4.19, we can tell that as more

kernels are launched in parallel, the possibility increases that one or some of

them can be blocked.

On the other hand, the wall time of smCompactor, which depends on the

execution time of LM, is slightly increased in the case of smCompactor(FT, LM

+ BS) compared to the case of smCompactor(BS, LM + FT). This is because

of the reduction of thread block count of LM on several SMs, for providing more

resources to the BS. However, the wall time of smCompactor in both cases still

outperforms the case of CUDA and MPS, since the kernels can be executing in

parallel without blocking.

We also test our smCompactor with MPS and the original CUDA case on

the CNN workload. Figure 4.21 shows the result. From the Figure, our proposed

smCompactor outperform MPS 24% when running 2 instances. In addition, we

run the third workload: lavaMD on the remained resources, and Figure 4.22

shows the result, where our proposed smCompactor outperform MPS 61% in

terms of CNN and 5% in terms of lavaMD.

4.6 Summary

Currently, GPU resources can be underutilized even when multiple kernels run

in parallel. The main issue is that the scheduling of thread blocks depends

on the hardware scheduler, which is beyond the control of the users. Besides,

the GPU hardware scheduler cannot detect the relation between performance

and resource usage, making it difficult to improve resource utilization while

79

maintaining the performance.

In this paper. we proposed the smCompactor, a fine-grained thread block

scheduling framework, which can improve the resource utilization while main-

taining the performance by dispatching an arbitrary number of thread blocks

to specific SMs. It adopts the concept of the persistent thread model, using a

CUDA API wrapping module, dispatching module, kernel transform module,

and runtime compiler module to transparently and automatically modify the

original user kernel to the revised version.

The evaluation results demonstrate that our proposed smCompactor has

minimal overheads. Moreover, near-optimal performance is obtained with fewer

SMs by managing the number of thread blocks launched to each SM. For the

multiprocessing cases we looked at, the performance gain against the original

CUDA and MPS are up to 33% and 26%, respectively.

80

Chapter 5

Conclusion

Efficient utilization of GPU resources under multitasking environment is becom-

ing ever more significant. However, the exist GPU management system is not

transparent to the users and provides limited support for GPGPU workloads

to efficiently exploit the GPU resources.

In this dissertation, we have researched two GPU resource-related problems

in the multitasking environment with GPGPU workloads in current GPU man-

agement system and solved them by designing and implementing a GPU task

management framework.

In Chapter 3, we first explore the problems that GPU memory cannot be

oversubscribed limited the resource usage under GPU multitasking environ-

ment. We also found that researches aiming at solving this problem may cause

a GPU memory allocation deadlock situation.

Therefore, we proposed a GPU memory checkpoint based approach that

can temporarily migrate unused GPU memory contents to the host memory for

maximize the GPU memory utilization.

81

The evaluation results show that our proposed approach can improve the

GPU memory utilization in a multitasking environment and efficiently solve the

deadlock problems.

In Chapter 4, We explore the problems that intra-GPU resources cannot

be fully exploited when multiple workloads share the GPU in parallel. We also

found that the current mechanism for GPU multitasking is not perfect yet.

As a result, we proposed a thread block based fine-grained GPU task man-

agement framework. Our proposed framework enables GPU multitasking by

merging the GPU context, which is different with the current strategy. It also

can designate particular thread blocks to specific SMs thus make the GPU task

distribution on SMs become controllable.

Experiment results shows that our scheme can improve the intra-GPU re-

source utilization by support more workloads running in parallel compared to

current mechanism and their performance is also guaranteed.

In the future work, we will merge the two separate schemes into a general

framework, which can handle both GPU memory and computational resource at

the same time. We also plan to design a task scheduling algorithm for handling

GPU tasks more efficiently.

82

Bibliography

[1] Q. Z. Fan, F, “Gpu cluster for high perforamnce computing,” in 2004

IEEE/ACM conference on Supercomputing 2004, p. 47, ACM, 2004.

[2] “Amazon AWS.” https://aws.amazon.com/cn/nvidia/.

[3] “Microsoft Azure.” https://www.nvidia.com/en-us/data-center/

gpu-cloud-computing/microsoft-azure/.

[4] “Google Cloud.” https://cloud.google.com/gpu.

[5] “Top 500 list at Nov 2019.” https://www.top500.org/lists/2019/11/.

[6] “Summit.” https://www.olcf.ornl.gov/summit.

[7] C. Chen, Y. Du, H. Jiang, K. Zuo, and C. Yang, “Hpcg: Preliminary eval-

uation and optimization on tianhe-2 cpu-only nodes,” in 2014 IEEE 26th

International Symposium on Computer Architecture and High Performance

Computing, pp. 41–48, Oct 2014.

[8] “HPCG Benchmark.” https://www.hpcg-benchmark.org/.

[9] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu

concurrency with elastic kernels,” ACM SIGARCH Computer Architecture

News, vol. 41, no. 1, pp. 407–418, 2013.

83

[10] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, “Fine-grained resource

sharing for concurrent gpgpu kernels,” in Proceedings of the 4th USENIX

Conference on Hot Topics in Parallelism, (USA), p. 10, USENIX Associ-

ation, 2012.

[11] Q. Jiao, M. Lu, H. P. Huynh, and T. Mitra, “Improving gpgpu energy-

efficiency through concurrent kernel execution and dvfs,” in Proceedings of

the 13th Annual IEEE/ACM International Symposium on Code Genera-

tion and Optimization, CGO ’15, (USA), p. 1–11, IEEE Computer Society,

2015.

[12] J. Zhong and B. He, “Kernelet: High-throughput gpu kernel executions

with dynamic slicing and scheduling,” IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 6, pp. 1522–1532, 2014.

[13] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte, “The case for

gpgpu spatial multitasking,” in IEEE International Symposium on High-

Performance Comp Architecture, pp. 1–12, 2012.

[14] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and D. Chen, “Efficient

gpu spatial-temporal multitasking,” IEEE Transactions on Parallel and

Distributed Systems, vol. 26, no. 3, pp. 748–760, 2015.

[15] P. Xiang, Y. Yang, and H. Zhou, “Warp-level divergence in gpus: Charac-

terization, impact, and mitigation,” in 2014 IEEE 20th International Sym-

posium on High Performance Computer Architecture (HPCA), pp. 284–

295, 2014.

[16] Q. Xu and M. Annavaram, “Pats: Pattern aware scheduling and power

gating for gpgpus,” in 2014 23rd International Conference on Parallel Ar-

chitecture and Compilation Techniques (PACT), pp. 225–236, 2014.

84

[17] Q. Xu, H. Jeon, and M. Annavaram, “Graph processing on gpus: Where

are the bottlenecks?,” in 2014 IEEE International Symposium on Workload

Characterization (IISWC), pp. 140–149, 2014.

[18] H. Jeon and M. Annavaram, “Warped-dmr: Light-weight error detection

for gpgpu,” in 2012 45th Annual IEEE/ACM International Symposium on

Microarchitecture, pp. 37–47, 2012.

[19] “Kubernetes.” https://kubernetes.io.

[20] “Slurm.” https://www.schedmd.com/index.php.

[21] “Torque.” http://www.adaptivecomputing.com/products/torque/.

[22] A. L. D. . A. V. Michael C Schatz, Cole Trapnell, “High-throughput se-

quence alignment using graphics processing units.,” in BMC Bioinformat-

icsvolume 8, Article number: 474, 2007.

[23] J. Gu, S. Song, Y. Li, and H. Luo, “Gaiagpu: Sharing gpus in container

clouds,” in 2018 IEEE Intl Conf on Parallel Distributed Processing with

Applications, pp. 469–476, Dec 2018.

[24] L. Shi, H. Chen, J. Sun, and K. Li, “vcuda: Gpu-accelerated high-

performance computing in virtual machines,” IEEE Transactions on Com-

puters, vol. 61, no. 6, pp. 804–816, 2012.

[25] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Virtualization for

high-performance computing,” SIGOPS Oper. Syst. Rev., vol. 40, p. 8–11,

Apr. 2006.

[26] D. Kang, “Convgpu: Gpu management middleware in container based vir-

tualized environment.,” in 2017 IEEE International Conference on Cluster

Computing (CLUSTER), IEEE, 2017.

85

[27] J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S. Quintana-Ort́ı, “rcuda:

Reducing the number of gpu-based accelerators in high performance clus-

ters,” in 2010 International Conference on High Performance Computing

Simulation, pp. 224–231, June 2010.

[28] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Improving

gpgpu resource utilization through alternative thread block scheduling,” in

2014 IEEE 20th International Symposium on High Performance Computer

Architecture (HPCA), pp. 260–271, IEEE, 2014.

[29] “NVIDIA Hyper-Q.” http://developer.download.nvidia.com/

compute/DevZone/C/html_x64/6_Advanced/simpleHyperQ/doc/

HyperQ.pdf.

[30] “NVIDIA MPS.” https://docs.nvidia.com/deploy/mps/index.html.

[31] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-slicer:

efficient intra-sm slicing through dynamic resource partitioning for gpu

multiprogramming,” in 2016 ACM/IEEE 43rd Annual International Sym-

posium on Computer Architecture (ISCA), pp. 230–242, IEEE, 2016.

[32] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative preemption

for multitasking on a shared gpu,” ACM SIGARCH Computer Architecture

News, vol. 43, no. 1, pp. 593–606, 2015.

[33] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter, “Enabling and exploiting

flexible task assignment on gpu through sm-centric program transforma-

tions,” in Proceedings of the 29th ACM on International Conference on

Supercomputing, pp. 119–130, 2015.

86

[34] T. Allen, X. Feng, and R. Ge, “Slate: Enabling workload-aware efficient

multiprocessing for modern gpgpus,” in 2019 IEEE International Parallel

and Distributed Processing Symposium (IPDPS), pp. 252–261, May 2019.

[35] “NVIDIA TITAN Xp.” https://www.nvidia.com/en-us/titan/

titan-xp/.

[36] “Rodinia.” https://rodinia.cs.virginia.edu/doku.php.

[37] B. Varghese, C. Reaño, and F. Silla, “Accelerator virtualization in fog

computing: Moving from the cloud to the edge,” IEEE Cloud Computing,

vol. 5, pp. 28–37, Nov 2018.

[38] “NVIDIA CUDA.” https://docs.nvidia.com/cuda/.

[39] “NVProf.” https://docs.nvidia.com/cuda/profiler-users-guide/

index.html.

[40] M. Bozyigit and M. Wasiq, “User-level process checkpoint and restore for

migration,” SIGOPS Oper. Syst. Rev., vol. 35, pp. 86–96, Apr. 2001.

[41] “CUDA Context.” https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html#contex.

[42] “NVIDIA Fermi Architecture.” https://www.nvidia.com/content/

PDF/fermi_white_papers/P.Glaskowsky_NVIDIA’s_Fermi-The_First_

Complete_GPU_Architecture.pdf.

[43] “NVIDIA Kepler Architecture.” https://www.nvidia.com/content/

dam/en-zz/Solutions/Data-Center/tesla-product-literature/

NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf.

87

[44] “CUDA stream.” https://docs.nvidia.com/cuda/cuda-runtime-api/

group_CUDART_STREAM.html.

[45] “NVIDIA Pascal Architecture.” https://www.nvidia.com/en-us/

data-center/pascal-gpu-architecture/.

[46] “Dynamic Parallelism.” https://devblogs.nvidia.com/

cuda-dynamic-parallelism-api-principles/.

[47] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo, “Si-

multaneous multikernel gpu: Multi-tasking throughput processors via fine-

grained sharing,” in 2016 IEEE International Symposium on High Perfor-

mance Computer Architecture (HPCA), pp. 358–369, IEEE, 2016.

[48] V. T. Ravi, M. Becchi, W. Jiang, G. Agrawal, and S. Chakradhar,

“Scheduling concurrent applications on a cluster of cpu-gpu nodes,” in

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (ccgrid 2012), pp. 140–147, May 2012.

[49] J. I. Agulleiro, F. V’zquez, E. M. Garzón, and J. J. Fern’ndez, “Dynamic

load scheduling on cpu-gpu for iterative tomographic reconstruction,” in

2012 IEEE 10th International Symposium on Parallel and Distributed Pro-

cessing with Applications, pp. 603–608, July 2012.

[50] L. Chen, O. Villa, and G. R. Gao, “Exploring fine-grained task-based exe-

cution on multi-gpu systems,” in 2011 IEEE International Conference on

Cluster Computing, pp. 386–394, Sep. 2011.

[51] J. J. K. Park, Y. Park, and S. Mahlke, “Dynamic resource management for

efficient utilization of multitasking gpus,” in Proceedings of the Twenty-

88

Second International Conference on Architectural Support for Program-

ming Languages and Operating Systems, pp. 527–540, 2017.

[52] C. Yu, Y. Bai, H. Yang, K. Cheng, Y. Gu, Z. Luan, and D. Qian, “Sm-

guard: A flexible and fine-grained resource management framework for

gpus,” IEEE Transactions on Parallel and Distributed Systems, vol. 29,

no. 12, pp. 2849–2862, 2018.

[53] “LD PRELOAD.” http://man7.org/linux/man-pages/man8/ld.so.8.

html.

[54] “GPU-BLAST.” http://archimedes.cheme.cmu.edu/?q=gpublast.

[55] “NVIDIA Fermi White Paper.” https://www.nvidia.com/content/

PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_

Whitepaper.pdf.

[56] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,

“Enabling preemptive multiprogramming on gpus,” ACM SIGARCH Com-

puter Architecture News, vol. 42, no. 3, pp. 193–204, 2014.

[57] T. Sorensen, H. Evrard, and A. F. Donaldson, “Cooperative kernels: Gpu

multitasking for blocking algorithms,” in Proceedings of the 2017 11th Joint

Meeting on Foundations of Software Engineering, ESEC/FSE 2017, (New

York, NY, USA), p. 431–441, Association for Computing Machinery, 2017.

[58] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir,

O. Mutlu, and C. R. Das, “Scheduling techniques for gpu architectures

with processing-in-memory capabilities,” in 2016 International Conference

on Parallel Architecture and Compilation Techniques (PACT), pp. 31–44,

2016.

89

[59] G. Chen, Y. Zhao, X. Shen, and H. Zhou, “Effisha: A software frame-

work for enabling effficient preemptive scheduling of gpu,” SIGPLAN Not.,

vol. 52, p. 3–16, Jan. 2017.

[60] G. Chen, Y. Zhao, X. Shen, and H. Zhou, “Effisha: A software framework

for enabling effficient preemptive scheduling of gpu,” in Proceedings of the

22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’17, (New York, NY, USA), p. 3–16, Association for

Computing Machinery, 2017.

[61] K. Gupta, J. A. Stuart, and J. D. Owens, A study of persistent threads

style GPU programming for GPGPU workloads. IEEE, 2012.

[62] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and

Y. N. Patt, “Improving gpu performance via large warps and two-level warp

scheduling,” in Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 308–317, 2011.

[63] Y. Ukidave, X. Li, and D. Kaeli, “Mystic: Predictive scheduling for gpu

based cloud servers using machine learning,” in 2016 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), pp. 353–362,

2016.

[64] G. Chen and X. Shen, “Free launch: Optimizing gpu dynamic kernel

launches through thread reuse,” in 2015 48th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO), pp. 407–419, 2015.

[65] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An effective method for

better power efficiency on multithreaded gpu,” in Proceedings of the 2010

IEEE/ACM Int’l Conference on Green Computing and Communications

90

Int’l Conference on Cyber, Physical and Social Computing, GREENCOM-

CPSCOM ’10, (USA), p. 344–350, IEEE Computer Society, 2010.

[66] Y. Yu, W. Xiao, X. He, H. Guo, Y. Wang, and X. Chen, “A stall-aware warp

scheduling for dynamically optimizing thread-level parallelism in gpgpus,”

in Proceedings of the 29th ACM on International Conference on Supercom-

puting, pp. 15–24, 2015.

[67] Y. Yu, X. He, H. Guo, Y. Wang, and X. Chen, “A credit-based load-

balance-aware cta scheduling optimization scheme in gpgpu,” International

Journal of Parallel Programming, vol. 44, no. 1, pp. 109–129, 2016.

[68] B. Wu, X. Liu, X. Zhou, and C. Jiang, “Flep: Enabling flexible and efficient

preemption on gpus,” ACM SIGPLAN Notices, vol. 52, no. 4, pp. 483–496,

2017.

[69] “NVIDIA Parallel Thread Execution.” ttps://docs.nvidia.com/cuda/

parallel-thread-execution/index.html//.

[70] “NVIDIA NVCC.” https://docs.nvidia.com/cuda/

cuda-compiler-driver-nvcc/index.html.

[71] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector

bin packing.” January 2011.

[72] S. S. N. H. e. a. Beheshti Roui, M., “Efficient scheduling of streams on

gpgpus.,” in BJ Supercomput (2020). https://doi.org/10.1007/s11227-020-

03209-x, 2020.

91

요약

최근 범용 GPU (GPGPU) 응용 프로그램은 고성능 컴퓨팅 (HPC) 및 딥 러닝

(DL)과 같은 다양한 연구 분야에서 핵심적인 역할을 수행하고 있다. 이러한 응

용 분야의 공통적인 특성은 거대한 계산 성능이 필요한 것이며 그래픽 처리 장치

(GPU)의 높은 병렬 처리 특성과 매우 적합하다. 그러나 GPU 시스템은 특정 유

형의 응용 프로그램에 최저화하는 대신 모든 응용 프로그램에 시스템 수준의 공정

성을 제공하도록 설계되어 있으며 각 GPGPU 응용 프로그램의 자원 사용 패턴이

다양하기 때문에 단일 응용 프로그램이 GPU 시스템의 리소스를 완전히 활용하여

GPU의 최고 성능을 달성 할 수는 없다.

따라서 GPU멀티태스킹은다양한리소스사용패턴을가진여러응용프로그

램을 함께 배치하여 GPU 리소스를 공유함으로써 GPU 자원 사용률 저하 문제를

해결할 수 있다. 그러나 기존 GPU 멀티 태스킹 기술은 자원 사용률 관점에서 응

용 프로그램의 효율적인 실행보다 공동으로 실행하는 데 중점을 둔다. 또한 현재

GPU 멀티 태스킹 기술은 오픈 소스가 아니므로 응용 프로그램과 GPU 시스템이

서로의 기능을 인식하지 못하기 때문에 최적화하기가 더 어려울 수도 있다.

본 논문에서는 응용 프로그램을 수정 없이 GPU 시스템과 GPGPU 응용 사

이의 프레임워크를 통해 사용하면 보다 높은 응용성능과 자원 사용을 보일 수

있음을 증명하고자 한다. 그러기 위해 GPU 태스크 관리 프레임워크를 개발하여

GPU 멀티 태스킹 환경에서 발생하는 두 가지 문제를 해결하였다. 첫째, 멀티 태

스킹 환경에서 GPU 메모리 초과 할당할 수 없는 문제를 해결하기 위해 호스트

메모리와디바이스메모리에체크포인트방식을도입하였다.둘째,멀티태스킹환

경에서 GPU 자원 사용율 저하 문제를 해결하기 위해 더욱 세분화 된 GPU 커널

관리 시스템을 제시하였다.

본 논문에서는 제안한 방법들의 효과를 증명하기 위해 실제 GPU 시스템에

92

구현하고 그 성능을 평가하였다. 제안한 접근방식이 기존 접근 방식보다 GPGPU

응용프로그램과관련된문제를해결할수있으며더높은성능을제공할수있음을

확인할 수 있었다.

주요어: GPU 시스템, 멀티 테스킹, 메모리 관리, GPU 자원 관리, 체크포인팅

학번: 2011-24087

93

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Contribution .
	1.3 Outline

	Chapter 2 Background
	2.1 GraphicsProcessingUnit(GPU) and CUDA
	2.2 CheckpointandRestart .
	2.3 ResourceSharingModel.
	2.4 CUDAContext
	2.5 GPUThreadBlockScheduling .
	2.6 Multi-ProcessServicewithHyper-Q

	Chapter 3 Checkpoint based solution for GPU memory over- subscription problem
	3.1 Motivation
	3.2 RelatedWork.
	3.3 DesignandImplementation .
	3.3.1 System Design
	3.3.2 CUDAAPIwrappingmodule
	3.3.3 Scheduler .

	3.4 Evaluation.
	3.4.1 Evaluationsetup .
	3.4.2 OverheadofFlexGPU
	3.4.3 Performance with GPU Benchmark Suits
	3.4.4 Performance with Real-world Workloads
	3.4.5 Performance of workloads composed of multiple applications

	3.5 Summary

	Chapter 4 A Workload-aware Fine-grained Resource Manage- ment Framework for GPGPUs
	4.1 Motivation
	4.2 RelatedWork.
	4.2.1 GPUresourcesharing
	4.2.2 GPUscheduling .

	4.3 DesignandImplementation .
	4.3.1 SystemArchitecture .
	4.3.2 CUDAAPIWrappingModule .
	4.3.3 smCompactorRuntime .
	4.3.4 ImplementationDetails .

	4.4 Analysis on the relation between performance and workload usage pattern
	4.4.1 WorkloadDefinition .
	4.4.2 Analysisonperformancesaturation
	4.4.3 Predict the necessary SMs and thread blocks for best performance .

	4.5 Evaluation.
	4.5.1 EvaluationMethodology.
	4.5.2 OverheadofsmCompactor .
	4.5.3 Performance with Different Thread Block Counts on Dif- ferentNumberofSMs
	4.5.4 Performance with Concurrent Kernel and Resource Sharing

	4.6 Summary .

	Chapter 5 Conclusion.
	요약.

<startpage>14
Chapter 1 Introduction 1
 1.1 Motivation 2
 1.2 Contribution . 7
 1.3 Outline 8
Chapter 2 Background 10
 2.1 GraphicsProcessingUnit(GPU) and CUDA 10
 2.2 CheckpointandRestart . 11
 2.3 ResourceSharingModel. 11
 2.4 CUDAContext 12
 2.5 GPUThreadBlockScheduling . 13
 2.6 Multi-ProcessServicewithHyper-Q 13
Chapter 3 Checkpoint based solution for GPU memory over- subscription problem 16
 3.1 Motivation 16
 3.2 RelatedWork. 18
 3.3 DesignandImplementation . 20
 3.3.1 System Design 21
 3.3.2 CUDAAPIwrappingmodule 22
 3.3.3 Scheduler . 28
 3.4 Evaluation. 31
 3.4.1 Evaluationsetup . 31
 3.4.2 OverheadofFlexGPU 32
 3.4.3 Performance with GPU Benchmark Suits 34
 3.4.4 Performance with Real-world Workloads 36
 3.4.5 Performance of workloads composed of multiple applications 39
 3.5 Summary 42
Chapter 4 A Workload-aware Fine-grained Resource Manage- ment Framework for GPGPUs 43
 4.1 Motivation 43
 4.2 RelatedWork. 45
 4.2.1 GPUresourcesharing 45
 4.2.2 GPUscheduling . 46
 4.3 DesignandImplementation . 47
 4.3.1 SystemArchitecture . 47
 4.3.2 CUDAAPIWrappingModule . 49
 4.3.3 smCompactorRuntime . 50
 4.3.4 ImplementationDetails . 57
 4.4 Analysis on the relation between performance and workload usage pattern 60
 4.4.1 WorkloadDefinition . 60
 4.4.2 Analysisonperformancesaturation 60
 4.4.3 Predict the necessary SMs and thread blocks for best performance . 64
 4.5 Evaluation. 69
 4.5.1 EvaluationMethodology. 70
 4.5.2 OverheadofsmCompactor . 71
 4.5.3 Performance with Different Thread Block Counts on Dif- ferentNumberofSMs 72
 4.5.4 Performance with Concurrent Kernel and Resource Sharing 74
 4.6 Summary . 79
Chapter 5 Conclusion. 81
요약. 92
</body>

