

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Doctoral Thesis

Compiler Driven Soft Error Protection
Techniques for GPUs

GPU에러안정성보장을위한컴파일러기법

BY

Hongjune Kim

August 2020

Graduate School of Seoul National University
Department of Electrical Engineering & Computer Science

College of Engineering

Doctoral Thesis

Compiler Driven Soft Error Protection
Techniques for GPUs

GPU에러안정성보장을위한컴파일러기법

BY

Hongjune Kim

August 2020

Graduate School of Seoul National University
Department of Electrical Engineering & Computer Science

College of Engineering

Compiler Driven Soft Error Protection
Techniques for GPUs

GPU에러안정성보장을위한컴파일러기법

Adviser Jaejin Lee

Submitting a doctoral thesis of Electrical Engineering &
Computer Science

August 2020

Graduate School of Seoul National University

Department of Electrical Engineering & Computer Science

Hongjune Kim

Confirming the doctoral thesis written by Hongjune Kim

August 2020

Chair :
Vice Chair:
Examiner :
Examiner :
Examiner :

Abstract

Due to semiconductor technology scaling and near-threshold voltage computing,

soft error resilience has become more important. Nowadays, GPUs are widely used

in high performance computing (HPC) because of its efficient parallel processing and

modern GPUs designed for HPC use error correction code (ECC) to protect their storage

including register files. However, adopting ECC in the register file imposes high area

and energy overhead.

To replace the expensive hardware cost of ECC, we propose Penny, a lightweight

compiler-directed resilience scheme for GPU register file protection. We combine recent

advances in idempotent recovery with low-cost error detection code. Our approach

focuses on solving two important problems:

1. Can we guarantee correct error recovery using idempotent execution with error

detection code? We show that when an error detection code is used with idempotence

recovery, certain restrictions required by previous idempotent recovery schemes are no

longer needed. We also propose a software-based scheme to prevent the checkpoint

value from being overwritten before the end of the region where the value is required

for correct recovery.

2. How do we reduce the execution overhead caused by checkpointing? In GPUs

additional checkpointing store instructions inflicts considerably higher overhead com-

pared to CPUs, due to its architectural characteristics, such as lack of store buffers. We

propose a number of compiler optimizations techniques that significantly reduce the

overhead.

keywords: GPU, Resilience, ECC, Idempotence

student number: 2012-30204

i

Contents

Abstract i

Contents ii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Why is Soft Error Resilience Important in GPUs? 1

1.2 How can the ECC Overhead be Reduced? 3

1.3 What are the Challenges? . 4

1.4 How do We Solve the Challenges? 5

2 Comparison of Error Detection and Correction Coding Schemes for Reg-

ister File Protection 7

2.1 Error Correction Codes and Error Detection Codes 8

2.2 Cost of Coding Schemes . 9

2.3 Soft Error Frequency of GPUs . 11

3 Idempotent Recovery and Challenges 13

3.1 Idempotent Execution . 13

3.2 Previous Idempotent Schemes . 13

ii

3.2.1 De Kruijf’s Idempotent Translation 14

3.2.2 Bolts’s Idempotent Recovery 15

3.2.3 Comparison between Idempotent Schemes 15

3.3 Idempotent Recovery Process . 17

3.4 Idempotent Recovery Challenges for GPUs 18

3.4.1 Checkpoint Overwriting . 20

3.4.2 Performance Overhead . 20

4 Correctness of Recovery 22

4.1 Proof of Safe Recovery . 23

4.1.1 Prevention of Error Propagation 23

4.1.2 Proof of Correct State Recovery 24

4.1.3 Correctness in Multi-Threaded Execution 28

4.2 Preventing Checkpoint Overwriting 30

4.2.1 Register renaming . 31

4.2.2 Storage Alternation by Checkpoint Coloring 33

4.2.3 Automatic Algorithm Selection 38

4.2.4 Future Works . 38

5 Performance Optimizations 40

5.1 Compilation Phases of Penny . 40

5.1.1 Region Formation . 41

5.1.2 Bimodal Checkpoint Placement 41

5.1.3 Storage Alternation . 42

5.1.4 Checkpoint Pruning . 43

5.1.5 Storage Assignment . 44

5.1.6 Code Generation and Low-level Optimizations 45

5.2 Cost Estimation Model . 45

5.3 Region Formation . 46

iii

5.3.1 De Kruijf’s Heuristic Region Formation 46

5.3.2 Region splitting and Region Stitching 47

5.3.3 Checkpoint-Cost Aware Optimal Region Formation 48

5.4 Bimodal Checkpoint Placement . 52

5.5 Optimal Checkpoint Pruning . 55

5.5.1 Bolt’s Naive Pruning Algorithm and Overview of Penny’s Op-

timal Pruning Algorithm . 55

5.5.2 Phase 1: Collecting Global-Decision Independent Status . . . 56

5.5.3 Phase2: Ordering and Finalizing Renaming Decisions 60

5.5.4 Effectiveness of Eliminating the Checkpoints 63

5.6 Automatic Checkpoint Storage Assignment 69

5.7 Low-Level Optimizations and Code Generation 70

6 Evaluation 74

6.1 Test Environment . 74

6.1.1 GPU Architecture and Simulation Setup 74

6.1.2 Tested Applications . 75

6.1.3 Register Assignment . 76

6.2 Performance Evaluation . 77

6.2.1 Overall Performance Overheads 77

6.2.2 Impact of Penny’s Optimizations 78

6.2.3 Assigning Checkpoint Storage and Its Integrity 79

6.2.4 Impact of Optimal Checkpoint Pruning 80

6.2.5 Impact of Alias Analysis . 81

6.3 Repurposing the Saved ECC Area 82

6.4 Energy Impact on Execution . 83

6.5 Performance Overhead on Volta Architecture 85

6.6 Compilation Time . 85

iv

7 Related Works 87

8 Conclusion and Future Works 89

8.1 Limitation and Future Work . 90

Abstract (In Korean) 102

Acknowledgements 103

v

List of Tables

1.1 The trend of GPU register file size increase across microarchitectures

in different generations; given the ever growing trend, protecting RFs

with ECC dramatically increases both the hardware complexity and the

power consumption. 3

2.1 Coding schemes used for 32-bit error detection and correction. 8

2.2 Cost of using conventional ECC for error protection (22nm, per bank). 9

2.3 Cost of using EDC in Penny (22nm, per bank). 9

3.1 Comparison of idempotent schemes. 16

6.1 Specification of the simulated GPU. 74

6.2 Applications used for evaluation. 75

vi

List of Figures

3.1 Idempotent translation by De Kruijf. 14

3.2 Bolt’s idempotent translation. 15

3.3 Idempotent recovery. 17

3.4 Eager checkpointing. 19

4.1 Safely recovering from errors across regions 25

4.2 Handling inter-thread anti-dependence 29

4.3 Checkpoint overwriting and prevention techniques. 30

4.4 Register renaming. 32

4.5 Coloring checkpoints. 33

4.6 Merging the coloring status. 37

5.1 Compilation phases of Penny. 40

5.2 Example of region splitting and region stitching. 47

5.3 Example of decomposing the region-cut problem. 50

5.4 Joining solutions. 51

5.5 Bimodal checkpoint placement. 53

5.6 Example of a checkpoint validation. 56

5.7 Merging validation states in PDDG. 59

5.8 Decision dependence graph. 62

5.9 Maximum depth and average depth of instruction visited while pruning. 63

vii

5.10 Average number of dependence tracking paths for each checkpoint. . . 65

5.11 Maximum depth and average depth of instruction visited while pruning. 65

5.12 Average number of instructions visited for checkpoints while pruning. 66

5.13 Number of checkpoint decision finalized in each phase. 66

5.14 Relative portion of checkpoints decision finalized in each phase. . . . 67

5.15 Detailed breakdown of pruning decision. 67

5.16 Number of checkpoints removed by basic/optimal pruning. 68

5.17 Relative portion of checkpoints removed by basic/optimal pruning. . . 68

6.1 Fault-free execution time overhead. 77

6.2 Impact of Penny optimizations accumulated. 79

6.3 Storage assignment and overwrite prevention. 79

6.4 Performance impact of basic/optimal pruning. 80

6.5 Performance impact of various alias analysis. 81

6.6 Repurposing the saved HW area. 82

6.7 Energy consumption of RF. 83

6.8 Energy consumption of GPU. 84

6.9 Performance comparison on Titan V. 85

6.10 Compilation time of Penny. 86

viii

Chapter 1

Introduction

1.1 Why is Soft Error Resilience Important in GPUs?

Due to technology scaling and near-threshold computing [22, 32, 39, 77, 85], soft

error resilience has become as important as power and performance in any computing

systems. For example, when high-energy particles strike the circuit, they might cause

application crashes and even worse, silent data corruptions (SDC) which corrupt the

program output without being detected. Near-threshold voltage and process variation

makes it harder to predict the response of the circuits to a particle strike, thus making

them more susceptible to soft errors [17, 32, 39, 40, 41, 45, 68, 72, 77, 85].

HPC applications are particularly vulnerable to the outcome of undesirable soft

errors, e.g., SDC, because of their long-running nature on the large-scale systems,

such as supercomputers and datacenters, In fact, soft error resilience is one of the key

Exascale research challenges [56, 16, 80, 7, 5, 4, 73].

With the popularity of GPUs, it is becoming more important to protect them against

soft errors [36, 78]. The GPUs of all major supercomputers and data centers have already

adopted hardware support for soft error resilience. NVIDIA GPUs from Fermi onwards

use error correction code (ECC) to protect their storage structures even including

register files (RFs). However, ECC-protected RFs do not only increase the critical

1

path of instruction execution but also often lead to a longer clock cycle than ECC-free

RFs [12, 58, 59, 81], e.g., taking up to 3 times the delay of ALU operations [58, 59, 81].

Due to the increased delay and power [61], ECC-protected RF consumes significantly

more energy than ECC-free RF. More importantly, its energy consumption may become

substantially larger than that of a register access [8, 59, 58] due to the increased delay

and power [61].

Indeed, the RF experiences the largest and fastest current changes in a GPU [48].

Thus, RF accesses are often the root cause of large voltage droops [47, 48]. This implies

that ECC-free RFs can achieve a significant voltage guardband reduction [10, 9, 13],

thereby improving the GPU energy efficiency.

Another big concern for an ECC-protected RF is its area, e.g., 22% overhead for a

32-bit register. The ECC overhead becomes worse for multi-bit errors that commodity

GPUs already report. 1. Since they cannot be handled by conventional single-bit error

correction and double-bit error detection (SECDED) ECC [89], much more bits should

be paid to protect against such multi-bit errors. Along with the combinational logic for

encoding/decoding, ECC-protected RFs thus occupy a significant amount of area that

could otherwise be used to enlarge RFs/caches thereby improving the performance of

GPUs.

Table 1.1 presents the trend of the continuously increasing register file size in GPUs

as the microarchitecture evolves over generations.

Even if it is effective in decreasing undesirable soft error outcomes such as SDC,

this comes with a significant performance penalty. Disabling the ECC protection of

NVIDIA Tesla M2090 reduces the 10-hour-long simulation time of molecular dynamics

simulation to 9 hours [84, 15]. For this reason, when performing computationally

intensive calculations, the ECC is usually turned off to avoid the associated penalty [30,
1Future generations of GPUs are likely to face with the high demand for resilience against multi-bit

errors due to aggressive technology scaling (e.g., 7nm AMD Vega GPU) and near-threshold voltage (NTV)

operation which is known to increase multi-bit errors by 2.6x [68]

2

uArchi- Per SM Number Total RF

tecture RF size (KB) of SM size (KB)

GT200 Tesla 64 30 1920

GF100 Fermi 128 16 2048

GK110 Kepler 256 15 3840

GM200 Maxwell 256 24 6144

GP100 Pascal 256 56 14336

Table 1.1: The trend of GPU register file size increase across microarchitectures in dif-

ferent generations; given the ever growing trend, protecting RFs with ECC dramatically

increases both the hardware complexity and the power consumption.

66].

Given all this, there is a compelling need for lightweight GPU RF protection.

1.2 How can the ECC Overhead be Reduced?

With that in mind, we propose Penny, a new GPU RF resilience scheme that combines

recent advances in idempotent recovery [27, 28, 35, 50, 52, 53, 54, 60] with error

detection code (EDC), e.g., single or multi-bit parity checking. Compared to error

correction code (ECC) which imposes high bit-wise data redundancy, EDC [69] used

by Penny introduces less area overhead—because EDC only needs to detect errors. The

reduced bit-redundancy reduces not only the area overhead but also the access latency

and static/dynamic power consumption of RFs. Therefore, Penny achieves the same

level of resilience as ECC at a much lower cost.

Alternatively, by paying the same area overhead as ECC, Penny guarantees to detect

and correct wider multi-bit errors, thus providing stronger resilience; when a 32-bit

register uses 7-bit ECC for 1-bit correction, Penny offers 3-bit correction using the same

7-bits. Since they are used solely for detection as EDC, Penny can detect 3-bit errors.

3

Once errors are detected, Penny’s idempotent recovery can correct them no matter how

many bits are corrupted.

A region (i.e., instruction sequence) of code is idempotent if it can be re-executed

many times and still result in the same correct output [28]. Thus, the program can

recover from soft errors by simply restarting the idempotent region where they occurred.

Among the existing schemes, Bolt [53] is particularly suitable for our needs, because

it does not require the RF to be protected by ECC for correct recovery, unlike other

idempotent schemes [50, 25, 27, 29, 35, 52, 54, 60]. To achieve correct soft error

recovery without ECC, Bolt checkpoints the live-out registers of idempotent regions.

1.3 What are the Challenges?

However, naively applying Bolt to GPU faces several important challenges that must be

overcome to achieve ECC-free GPU RF protection. First, soft error detection must be

fast enough for correct recovery. The existing idempotent recovery schemes require the

enforcement of in-region detection, i.e., errors must be detected within the same region

where they occurred. However, such a short detection latency puts high pressure on the

underlying detection mechanism.

In addition to reducing the hardware cost of ECC, Penny’s EDC-based parity-

checking has a unique virtue of not requiring in-region error detection. We prove that

even if errors on registers are not detected within the region they occurred, they can

be safely recovered in any later region where they are detected by with the help of

parity-checking; a faulty register is never propagated to other registers/memory because

the error is always detected at the register access time. This obviates the need to use

expensive detectors whose latency is short enough to detect errors before a region ends.

Second, since Bolt was made for CPUs, there is no consideration of GPU archi-

tectures. For example, the existence of shared/global memories in GPUs demands the

right checkpoint storage to be chosen between them. Care must be taken to allocate

4

the resources to threads because the concurrency (i.e., the occupancy of a streaming

multiprocessor—SM) can be limited by the resource contention between the threads.

Third, GPU lacks store buffers. Unfortunately, they are required for idempotent

recovery to correct soft errors [27, 29, 35, 52, 53, 54, 60]. The problem is that check-

pointing the live-out registers of a current idempotent region may overwrite the check-

points stored at some earlier region—which are live-in registers of the current region

and thus required for its re-execution—thereby failing to recover from errors. This is

not an issue for CPUs because their store buffers can either hold checkpointing stores

of each region until its end where they are released to memory or discard them on error

detected.

Fourth, due to the lack of store buffers, GPUs cannot effectively hide the store

latency for a checkpoint, i.e., essentially a store instruction. That is, the overhead

of the checkpointing stores can be high, lengthening the critical path of the GPU’s

pipeline execution—which is not a problem for out-of-order CPUs where stores are off

the critical path most of the time. For example, binomialOptions, a benchmark in the

CUDA toolkit [67], shows a 26.7% slowdown when only 2 checkpointing stores are

added into the inner-most loop.

1.4 How do We Solve the Challenges?

To overcome the above challenges, Penny proposes a new GPU RF protection that can

achieve correct yet performant soft error resilience. As with Bolt, Penny uses compiler-

generated idempotent regions for recovery. However, unlike Bolt, Penny does not

require the in-region error detection that makes it impossible to use idempotent recovery

for lightweight RF protection. Also, we solve both the correctness and performance

problems of Bolt due to the lack of store buffers in GPUs. To ensure correct idempotent

recovery, Penny leverages register renaming and checkpoint storage coloring. They

make it possible to correctly restore all the checkpointed inputs to a faulty region

5

upon recovery. To solve the performance overhead of the checkpointing stores, Penny

carefully exploits GPU’s shared/global memories for the checkpoint storage in a way

to maintain the GPU performance. Furthermore, Penny leverages novel optimization

techniques such as optimal checkpoint pruning for unnecessary checkpoint removal

without compromising the recoverability.

The major contribution of this work is also published in a conference paper [42].

6

Chapter 2

Comparison of Error Detection and Correction Coding

Schemes for Register File Protection

GPUs are equipped with a large and highly banked RF—that can hold the contexts of

concurrently running thousands of threads in active warps—to enable fast hardware

context switching between the warps, which is a key for GPU’s long latency hiding

technique. For example, recent generations of Nvdia architecture comprises 256 KB

registers per SM, adding up to 20 MB in total for Tesla V100 GPU [1] and 18 MB for

Quadro RTX 6000 [2]. To recover from RF errors, GPUs for HPC have equipped RF

with ECC protection.

The conventional way to protect register files from soft errors is to use error

correcting codes (ECCs) and modern GPUs used for high performance computing

commonly adopt ECC in data storages including the register file. However, since

register file size in GPUs is huge, RF ECC occupies large die area and often lengthens

the clock cycle [12, 58, 59, 81]. Due to increased area, delay, and access power [61],

ECC-protected RF consumes significantly more energy than ECC-free RF.

7

Coding Data Additional Encoded Overhead Detectable Recoverable

scheme bits bits bits error bits error bits

Parity 32 1 33 3.1% 1 -

Hamming 32 6 38 18.8% 2 -

SECDED 32 7 39 21.9% 2 1

DECTED 32 23 55 71.9% 3 2

TECQED 32 28 60 87.5% 4 3

Table 2.1: Coding schemes used for 32-bit error detection and correction.

2.1 Error Correction Codes and Error Detection Codes

Error correction codes (ECC) require to correct corrupted bits in data while error de-

tecting codes (EDC) only needs to detect corruptions, so EDC requires more redundant

information in the extra parity bits.

Table 2.1 compares the capability of coding schemes used for ECC and EDC to

protect 32-bit of data. For 32-bit of original data bits, additional bits are added and

encoded into total size presented in encoded bits. Overhead is the size overhead of extra

bits. Detectable error bits are the number of error bits properly detected and recoverable

error bits are the number of error bits that can be safely recovered from. For example,

when a single bit parity is used, a single bit of error data corruption can be detected but

they cannot be corrected. This is called detected but unrecoverable errors (DUEs). To

detect up to two bits of data corruption Hamming (38, 32) code 1 can be used.

Single error correction double error detection (SECDED) [62] is a widely used ECC

coding scheme. When there is single-bit data corruption, SECDED can safely detect it

and correct it using the parity data. It can also detect double-bit errors, but it cannot

be corrected resulting in DUE. When there is a triple bit error in the data, SECDED

parity checking can detect it as an error, but it cannot be distinguished from a single

bit error, so it is mis-corrected resulting in a faulty execution. For two or three bits of
1In coding theory, (n, k) generally stands for encoding k-bits of original data with n-bits [62].

8

error recovery, ECC must use double error correction triple error detection (DECTED)

and triple error correction quadruple error detection (TECQED) respectfully, requiring

much higher bit redundancy. For TECQED, we assume a 2-dimensional encoding

scheme [3] that splits 32-bit data into 8-bit rows.

2.2 Cost of Coding Schemes

Recoverable Coding scheme Area Access latency Access energy Leakage power

error bits (mm2) (ns) (pJ) (nW)

None Base RF 0.105 1.01 9.64 4.57

1 bit SECDED (39,32) 0.150 (21.9%) 1.27 (25.6%) 11.68 (21.1%) 5.51 (20.7%)

2 bits DECTED (55,32) 0.196 (40.6%) 1.50 (49.2%) 13.43 (39.2%) 6.32 (38.4%)

3 bits TECQED (60,32) 0.335 (87.5%) 1.76 (74.3%) 17.79 (84.5%) 8.35 (82.7%)

Table 2.2: Cost of using conventional ECC for error protection (22nm, per bank).

Recoverable Coding scheme Area Access latency Access energy Leakage power

error bits (mm2) (ns) (pJ) (nW)

None Base RF 0.105 1.01 9.64 4.57

1 bit Parity (33,32) 0.111 (3.1%) 1.04 (3.5%) 9.93 (3.0%) 4.70 (3.0%)

2 bits Hamming (38,32) 0.143 (18.8%) 1.23 (21.8%) 11.39 (18.1%) 5.38 (17.7%)

3 bits SECDED (39,32) 0.150 (21.9%) 1.27 (25.6%) 11.68 (21.1%) 5.51 (20.7%)

Table 2.3: Cost of using EDC in Penny (22nm, per bank).

ECC uses more extra bits for error correction than EDC, thereby imposing high

area/latency/energy overheads. In contrast, Penny leverages idempotent recovery to

correct detected errors, thus obviating the need for the redundant information (bits)

encoded in ECC for correction. Instead, Penny uses single or multi-bit parity-checking2

to detect an error in RFs before it is propagated to other registers/memory. The error

detection coding (EDC) required for this is much cheaper than ECC. That is because

the number of error-bits ECC can correct is smaller than what it can detect. That is, with
2Parity-check is a general term used to signify the process of validating the encoded data, regardless of

the used coding scheme [62].

9

the same bit-redundancy budget, the number of error-bits ECC can detect is smaller

than what EDC can do.

To protect RF using ECC, each 32-bit register can be encoded in SECDED (39, 32),

DECTED (55, 32), and TECQED (39, 32) to guarantee safe recovery from 1-bit, 2-bit,

and 3-bit of register corruption. Again, notation (n, k) in a encoding scheme means

n-bits are required for encoding k-bits of data [62]. In our approach, EDC only has

to detect register corruption and the following idempotent recovery can safely restore

correct values. Thus, we can safely use single bit parity (33, 32), Hamming (38, 32),

and SECDED (39, 32) for 1 to 3 bits of error detection.

To estimate the cost of coding schemes to protect register file, we designed each

of them using 22nm in CACTI 6.5 [86]. To model the encoder/decoder overhead, we

implemented the designs based on the specifications in Lattice [71] where the 256KB

RF is divided into 16 banks. We also used Synopsys design compiler [75] to synthesize

the built designs for their evaluation.

Table 2.2 and Table 2.2 is the result of our modeling each coding schemes required

for using ECC and EDC in Penny. The first row on each table shows a base RF setting

with no encoding scheme and the following rows show the result of coding schemes

required to recover from 1 to 3 bits of error. Ratios in the parenthesis show the additional

overhead of each value compared to the base RF.

For recover from a single-bit error, SECDED ECC requires 21.9% of additional

die area cost, while the single-bit parity EDC used in Penny only adds 3.1% more.

For a more error-prone environment that uses smaller manufacturing technology—e.g.,

AMD uses a 7nm process for recent Vega GPUs—or near-threshold computing3, the

demands for multi-bit error correction grow fast in the semiconductor industry. For ECC

to correctly recover from 2-bit errors, it must use DECTEC (55,32) [62] coding that

requires 23 additional bits for every 32-bit chunk of data. In contrast, Penny can detect

2-bit errors with 6-bit Hamming code and correct them by re-executing the idempotent
3Multi-bit errors increase by 2.6X under near-threshold operations [68].

10

region where they occurred. For 3-bit error correction, ECC must use TECQED (60,32)

coding that requires 28 additional bits, while Penny can use SECDED (39,32) coding

paying only 7 bits to achieve the same correction.

Since SECDED has a Hamming distance of 4 [62], we can re-use it as EDC to

detect three-bits of errors. In SECDED ECC, this could not be utilized because three-bit

errors cannot be distinguished from a single bit error, so they are mis-corrected as a

single-bit error leading to faulty execution. So only single-bit errors (corrected) and

two-bit errors (DUE) are handled and more than three-bit errors are assumed not to

happen.

We observe that access latency/energy and leakage power show similar trends as

the area. Note that in ECC, the overhead costs grow rapidly for protecting from wider

cardinality of multi-bit errors, Likewise, the cost difference between ECC and EDC

gets much larger.

By utilizing the lightweight EDC in Penny, the system designer can select a proper

level of encoding scheme to balance between two goals that are in a tradeoff relation:

reducing the hardware cost or providing higher resilience. For example, if only single-

bit error resilience is required, SECDED ECC with 21.9% of area overhead can be

replaced with single-bit parity with much reduced 3.1% overhead for the same level

of resilience. Alternatively, by paying the same hardware cost, Penny can guarantee

much stronger resilience, i.e. correct from wider multi-bit errors. In conventional ECC,

SECDED can only safely recover from 1-bit errors, but Penny can use the same coding

scheme to safely recover from 3-bits of errors.

2.3 Soft Error Frequency of GPUs

To select the right coding scheme for error protection it is important to estimate how

frequently soft error occurs on a GPU. Oak Ridge National Laboratory has reported the

error characteristics of the Titan supercomputer [79], which consists of 18,688 Tesla

11

K20X GPUs.

The mean time between failure (MTBF) of single-bit errors (SBE) is 9.04 seconds,

meaning that 9558 errors occur every day. When divided by the number of GPUs MTBF

is 47 hours, which can be translated to approximately 0.5 errors per day.

Double bit errors (DBE) are much rare compared. MTBF for the full system is

160 hours, meaning approximately 1 error occurs every weak. One interesting thing is

register file errors account for 14% of the double bit errors, which is particularly large

considering the relative size of the register file compared to the device memory. The

authors speculate that this is because the register file using a less effective interleaving

technique, in order to reduce area and access-latency overhead. This implies that in

environments where multi-bit error resilience is required, register file inflicts higher

ECC costs compared to other storages and notably more vulnerable to errors, so it is

the best candidate that can be replaced with a light-weight compiler-directed scheme.

12

Chapter 3

Idempotent Recovery and Challenges

3.1 Idempotent Execution

An idempotent region is a part of the program code that can be freely re-executed and

still generate the same correct output. Thus, a program can recover from errors simply by

restarting the idempotent region where they occurred. For this reason, researchers have

used the side-effect-free re-execution of idempotent regions for many different types of

recovery—including misspeculation handling, nonvolatile memory crash consistency,

context switching, and power failure recovery [43, 50, 53, 57, 60, 21, 83].

3.2 Previous Idempotent Schemes

Penny is built upon some ideas from a number of previous idempotent processing

techniques. De Kruijf et al. presented a technique to transform a program into a

sequence of natural idempotent regions [29]. But this technique, like other idempotent

recovery schemes [52, 54, 27, 35], requires RFs to be protected by ECCs. For soft error

recovery, Bolt [53] is the state-of-the-art idempotent recovery scheme. Unlike others,

Bolt does not require an ECC protected register file for correct recovery. As with Penny,

Bolt divides a program into a series of idempotent regions.

13

3.2.1 De Kruijf’s Idempotent Translation

ld r1, M

r2 = r2 + r1

st M, 8

r3 = r2 + 2

ld r4, M

r2 = r4 + 4

r3 = r2 + 6

WAR

ld r1, M

r2 = r2 + r1

st M, 8

r3 = r2 + 2

ld r4, M

r2 = r4 + 4

r3 = r2 + 6

ld r1, M

r2 = r2 + r1

st M, 8

r3 = r2 + 2

ld r4, M

r5 = r4 + 4

r3 = r5 + 6

WAR

Region boundary

Live-in

(a) Original Code (b) Region Split (c) Register Renaming

Figure 3.1: Idempotent translation by De Kruijf.

Figure 3.1 shows how De Kruijf’s scheme is used to translate a code into idempotent

regions. In the original code (a), there is a memory anti-dependence. This prevents from

re-executing the code. If the code is restarted as the curved arrow, the overwritten value

8 will be read at the first load, different from the original value.

We cut the anti-dependence into separate regions as in (b), so the memory write will

overwrite the loaded value on re-execution. Value of r2 from the first region is live-in

into the second region, but after the use, there is a write on the register (e.g. register

anti-dependence). In such a case, the algorithm renames the overwriting register and

its later uses into an unused register. In (c) the overwriting r2 and its references are

renamed to r5. Now, both the first region and the second region can be re-executed

from any point in the execution.

14

ld r1, M

r2 = r2 + r1

st M, 8

r3 = r2 + 2

ld r4, M

r2 = r4 + 4

r3 = r2 + 6

WAR

ld r1, M

r2 = r2 + r1

st M, 8

r3 = r2 + 2

ld r4, M

r2 = r4 + 4

r3 = r2 + 6

ld r1, M

r2 = r2 + r1

cp r2

st M, 8

r3 = r2 + 2

ld r4, M

r2 = r4 + 4

r3 = r2 + 6

WAR

Region boundary

Live-in

(a) Original Code (b) Region Split (c) Eager Checkpointing

Figure 3.2: Bolt’s idempotent translation.

3.2.2 Bolts’s Idempotent Recovery

Figure 3.2 is the example of how Bolt translates a code into a safe eager-checkpointing

based code. The first step to handle the memory anti-dependence is the same as De

Kruijf’s algorithm. But for register anti-dependences, the live-in values are checkpointed

before entering the region. For example, r2 is the live-in value of the second region. The

last updated point of the live-in value is found and the value is checkpointed right after

the update. This value is stored into an ECC protected storage, so when the re-execution

is triggered in the second region, the saved value is read from the checkpoint to restore

the live-in register value.

3.2.3 Comparison between Idempotent Schemes

Table 3.1 compares Penny and the idempotent scheme it is closely related to. To

handle memory anti-dependences, De Kruijf separates the anti-dependence into separate

regions. Bolt and Penny adopt this technique to handle memory anti-dependence. Penny

15

Idempotence

scheme

De Kruijf Bolt Penny

Memory Anti-

dependence

Heuristic region cut Heuristic region cut Heuristic region cut,

Cost-aware region cut

Register Anti-

dependence

Register renaming Eager checkpointing Bimodal checkpoint

placement

Checkpoint Over-

write Prevention

- Gated store buffer Storage alternation,

Register renaming

Checkpoint Pruning - Brute-force algorithm Optimal algorithm

Register Corruption

Recovery

No Yes Yes

Table 3.1: Comparison of idempotent schemes.

also introduces a new checkpoint cost-aware algorithm. While De Kruijf renames the

anti-dependences on live-in registers to transform the region idempotent, Bolt and

Penny checkpoints the live-out registers. Bolt checkpoints the register right after the

last update point, but Penny selectively delays the checkpoint to the end of the region

when profitable. While Bolt uses a hardware gated store buffer to delay the checkpoints

in order not to overwrite checkpointed values that are live-ins of the current region,

Penny introduces two software techniques since GPUs generally do not consist of store

buffers.

Most importantly, merely translating code into idempotent regions using De Krujif’s

algorithm does not provide a way to recover from register corruptions. Some of the

following work uses this translation in GPU exception handling and speculation [60],

simplifying in-order processor [26], and concurrency bug recovery [90]. On the con-

trary, Bolt suggests an efficient way to recover from register corruptions using eager

checkpointing and idempotent re-execution.

16

3.3 Idempotent Recovery Process

1: r1 = 3

2: ld …, [0x10]
. . .

3: st [0x10], …
4: r2 = r1 + 5

5: r1 = 7

. . .

6: ld …, [0x10]

1: r1 = 3

1C: cp r1

2: ld …, [0x10]

3: st [0x10], …
4: r2 = r1 + 5

5: r1 = 7

. . .

6: ld …, [0x10]

ld r1, …
. . .

R2

Recovery

R1

(a) Original Code (b) Transformed Idempotent Code

Flow dependence Anti-dependence Error detected

Figure 3.3: Idempotent recovery.

For a region of code to be idempotent, the inputs of the region must not be over-

written, i.e., no anti-dependence [63] on the inputs during the region execution; both

memory and register inputs must be preserved to assure the side-effect-free re-execution.

Figure 3.3 shows how idempotent recovery works: (a) is a non-idempotent code that

encounters a soft error, and (b) is the transformed idempotent regions. Suppose an input

value is passed via memory location 0x10, which is overwritten at line 3 (memory

anti-dependence), and the error is detected between lines 5 and 6. One could try to

correct it by restarting the code (a) as if it were idempotent, but the value being loaded

at line 2 would be different from the original input value. As shown in Figure 3.3(b),

we thus split the code into 2 regions to break every memory anti-dependence, ensuring

that memory inputs are never overwritten [29].

Not only that, to guarantee correct re-execution from the beginning of a region R2

where the error is detected, but we should also preserve its input registers, e.g., r1 is a

17

live-in register of R2 in Figure 3.3(b). Bolt uses eager checkpointing to save live-out

registers of each region, which are basically live-ins of some following regions. All

last update points (LUP) of live-out registers in each region are identified—e.g., line 1

for r1 in Figure 3.3(b)—and their corresponding checkpoint instructions are inserted

right after LUPs (line 1C). As such, eager checkpointing ensures that for each region

being executed, its live-in registers have already been checkpointed. The checkpoint

instruction ‘cp r1’ in the figure is essentially a store instruction that saves the register r1

to a dedicated checkpoint storage assigned for each register. When an error is detected

in the region R2, our recovery runtime first restores the register from the checkpoint

storage and then redirects the program control to the beginning of the region1. That

way, correct recovery is assured though r1 is overwritten at line 5 in the figure.

Figure 3.4 shows how the eager checkpointing works in the presence of control

divergence. As shown in the shaded part of the figure, an idempotent region can include

a conditional branch. Note that a live-in register can have multiple LUPs depending on

the control path taken, e.g., r4’s values updated at lines 3 and 4 both reach the same

region boundary (entry) RB2 in Figure 3.4. Similarly, an updated value at a point can

be live-out to multiple region entries, e.g., r3 in the figure.

3.4 Idempotent Recovery Challenges for GPUs

Unfortunately, all prior works including Bolt [53] cannot be used for GPUs due to

correctness/performance problems.

• Lack of store buffer exposes checkpointing store costs on the critical path.
1More precisely for Penny, when parity mismatch is detected in the region, the exception must be

thrown and caught by Penny’s recovery runtime; this is another requirement with EDC (parity checking)

in GPU’s register file. The runtime (1) executes the recovery block that restores live-in registers of the

region from checkpoint storage or recovery slice if their checkpoints are pruned (Section 5.1), and (2)

jumps back to the beginning of the region.

18

1: r1 = …; cp r1
2: r3 = …; cp r3
3: r4 = …; cp r4

4: r4 =…; cp r4 5: … = r1
6: r1 = r3; cp r1

7: … = r3
8: … = r4

RB1

L

L

L

L

L

RB2

r = … : write to r
… = r : read of r

L : LUP

…

…

Figure 3.4: Eager checkpointing.

• Simple in-order architecture of GPU is not efficient for scheduling memory

operations. Instead, they rely on context switching. But still, for memory-intensive

applications, the store latency may not be hidden.

• While compiler optimizations for CPU balance for performance between register

usage and stack spill, GPU resource usage management is more complicated.

GPUs not only have separate share and global memory with different capacity

and latency, but a shared resource such as register file and shared memory are

also closely related to the occupancy (degree of parallelism) of the GPU. Using

more register of shared memory may save the spill to the global memory but may

also degrade the occupancy.

• While CPUs can use store buffers to hold the store being committed to cache,

GPU must use a software approach to prevent register overwriting. The soft-

ware solution must both achieve the correctness of recovery and low execution

19

overhead.

3.4.1 Checkpoint Overwriting

One issue with Bolt’s eager checkpointing is that a checkpoint (i.e., store instruction)

in a region can overwrite previously saved checkpoint value while it is still required

until the end of the region. In Figure 3.4, the checkpoint of r1 at line 1 is an input to

the region beginning with a region boundary RB1, but r1 is overwritten (at line 6)

during the region execution. If an error is detected after line 6 and before the region

finishes at RB2, the re-execution starting from RB1 cannot correct the error. That

is because the original value of the region input r1—previously checkpointed at line

1—was overwritten and cannot be restored.

To prevent checkpoint overwriting, Bolt relies on hardware called a gated store

buffer (GSB) that can hold the checkpointing stores of each region until it finishes; they

are eventually merged to checkpoint storage in memory at the region end, provided

no error has been detected within the region. Since GPUs lack store buffers, Penny

proposes 2 software schemes, i.e., register renaming and storage coloring.

3.4.2 Performance Overhead

The lack of store buffers also has a significant impact on performance overhead of

checkpoints that are essentially stores for saving live-out registers. Unlike the CPU

where stores are off the critical path in general, they can easily slow down the GPU

when the warp-level parallelism is not sufficient to hide the memory latency. This often

occurs due to resource limitations on register file and shared memory, suppressing the

number of active warps, i.e., occupancy. In reality, merely executing a few more stores

can significantly hurt the GPU performance. For example, Bolt’s unvarnished adaptation

to GPU, for which we only use Penny’s automatic assignment of checkpoint storage

between shared and global memories shows 39.0% run-time overhead on average and

up to 943.5% (Section 6.2.1).

20

Given that soft errors rarely occur (0.5/day in Titan GPU, Chapter 2.3), users are

reluctant to adopt Bolt for such rare error correction at the cost of paying the high-

performance overhead all day. The implication is two-fold from the perspective of

Amdahl’s law [6]: (1) Penny’s optimization should focus on minimizing the fault-free

execution time overhead, and (2) the impact of the recovery procedure on the total

execution time is negligible due to the low error rate. Unlike Bolt, Penny can effectively

shift the run-time overhead of fault-free execution to that of fault-recovery procedure.

21

Chapter 4

Correctness of Recovery

In this chapter, we first prove how Penny correctly recovers from register file errors

combining error detection codes (EDCs) with idempotent recovery. Then we provide

software schemes to prevent checkpoint overwriting for correct recovery.

22

4.1 Proof of Safe Recovery

All prior idempotent recovery schemes require that errors must be detected within the

same region where they occur; due to error propagation behaviors [49, 34], re-executing

some later region, where an error is detected, would fail—because the region inputs

might have been corrupted by the error. In general, the in-region detection requirement

imposes the high cost of implementing the detector that offers such a short detection

latency, e.g., expensive software- and hardware-based dual modulo redundancy [70].

However, we found out that when parity-based detection is used for idempotent

recovery, the in-region detection requirement is unnecessary. Faulty execution can be

safely recovered by re-executing the region where the error is detected, no matter how

far the region is from the error occurrence. The reason is two-fold: (1) when parity-

checking is used, the corrupted register can never be propagated before it is detected

on the first access after corruption. (2) eager checkpointing correctly saves the live-ins

required for re-executing the region, even in the presence of errors Note that the error

detection and recovery do not rely on any distinct feature of GPUs, i.e., our proposed

technique can be applied to other types of processors to protect their RF.

4.1.1 Prevention of Error Propagation

We first show that when EDC is used to detect errors in RF, they are never propagated

to any other location (register/memory) before their register corruption is first detected.

Axiom 1. Given instruction execution, if register is corrupted, parity error is detected

at the moment of the register access.

Following two theorems are to prove the impossibility of error propagation for a

single error and multiple errors, respectively, in the presence of parity checking.

Theorem 4.1.1. If register r is corrupted and then detected at a point P for the first

time, the corrupted value has not yet been propagated to other locations before P .

23

Proof. We use proof by contradiction. Suppose the argument is false, meaning that the

corruption had been propagated since some point before P . For r’s corrupted value to be

propagated, r must be first read as a source operand of an instruction. At the point of the

instruction execution, r’s corruption must be detected by its parity checking (Axiom 1).

This contradicts the fact that P is the first point to recognize that r is corrupted.

Theorem 4.1.2. If r’s corruption is detected at a point P for the first time and other

corrupted registers have not been detected before P , then they have not been propagated

to other locations.

Proof. We use proof by contradiction. Suppose the argument is false, e.g., some other

corrupted register r2 had been propagated since some point before P . For r2’s corrupted

value to be propagated, r2 must be first read in which case the corruption must be

detected momentarily (Axiom 1). This is another contradiction from the premise that P

is the first point to detect r’s corruption.

The lack of error propagation implies that at the point of the parity error detection

in a region R, we can trust all register values saved in Penny’s checkpoint storages that

are protected by ECC in GPU cache/memory.

4.1.2 Proof of Correct State Recovery

This section shows that Penny correctly recovers the required memory and RF state—

even in the presence of multiple corrupted registers. Let’s define V al,Reg, and Loc as a

set of values, registers, and memory locations, respectively. To describe program execu-

tion states at a given program point P , we use a 3-tuple 〈RF (P),MEM(P), CP (P)〉

where RF (P) : Reg → V al corresponds to the state of the register file while

MEM(P) : Loc → V al to the memory state excluding the checkpoint storage

state that is described by CP (P) : Reg → V al.

We introduce a few functions to be used in our proof: MEM(P1)|live(R) and

RF (P1)|live(R) signify the subset of memory and register states (values) at a pro-

24

gram point P1 which consists of only the locations and registers live at the begin-

ning of a region R. Similarly, CP (P)|livein(R) gives the subset of checkpoint stor-

ages at a point P which consists of only the live-in registers of a region R. Also,

RF (P)[CP (P)|livein(R)] represents updating the register file state RF (P) with the

checkpointed values of R’s live-in registers at a point P , i.e., restoring input registers

of the region using its checkpointed live-in registers for recovery.

At the core of our proof, we compare two execution scenarios shown as n and e in

Figure 4.1—normal execution with no error (n) and errant one (e) where errors can be

detected and corrected by Penny—and show both executions result in the same program

execution states.

r1 = 1; cp r1;

r2 = 4; cp r2;

r1 <- err

r4 = 2; cp r4;

r4 <- err

r4 = r4 + 5;

R

Ex. w/o

error (n)

Ex. with

error (e)

Pb.n Pb’.n Pb.e Pb’.e

Pd.n Pd.e

. . .

. . .

Pd

Pb

Pc

Pc’

Figure 4.1: Safely recovering from errors across regions

For errant execution (e), an error occurred in Pc and it is detected at Pd within

region R—the 2 points can be far apart separated by multiple regions while undetected

errors could exist (e.g., Pc′) if they have not been read yet. Pb depicts the entry point of

the region R; we also use Pb′ to represent the re-execution of the entry after the error

detection.

For normal execution (n), at Pd, we trigger the re-execution of the region R which

is preceded by the restoration of live-in registers, for comparison to errant execution

25

(e). To differentiate program execution states between the 2 executions, their program

points use 2 suffixes .e and .n, respectively.

To show both executions (n and e) generate the same program state, i.e., 〈RF (P),

MEM(P), CP (P)〉, we first prove that live register values at R’s entry in n are

identical to those in e when Penny restarts R.

Lemma 4.1.3. Live register values at Pb in normal execution n are the same as the

restored register values at Pb′ , i.e., when the region R is re-executed for error recovery.

Proof.

RF (Pb.n)|live(R) = RF (Pd.n)[CP (Pd.n)|livein(R)]|live(R) (4.1)

= RF (Pd.e)[CP (Pd.e)|livein(R)]|live(R) (4.2)

= RF (Pb′.e)|live(R) (4.3)

Equation 4.1 implies that live register values at the region entry point Pb.n can

be safely restored at Pd.n by loading the checkpointed values corresponding to live-

in registers of R. This must be true because of 2 reasons: (1) Penny’s checkpoint

scheduling ensures that all live-out registers of a region are checkpointed before the

region ends, thus all live register values at Pb have already been checkpointed before

entering the region R, and (2) Penny’s overwriting prevention technique preserves the

checkpointed register values until the end of the region R. Equation 4.2 states that

although registers are corrupted in errant execution (e), the restored live register values

must be the same as those in normal execution (n). This is true because corrupted

register values can never be propagated to anywhere else, thus checkpoint storages

remain intact (Theorem 4.1.1, 4.1.2). Lastly, Equation 4.3 tells that these restored

register values are used in R’s re-execution for error recovery. This is true by the

definition of idempotent recovery (Section 3.3).

Now we prove that memory values are identical in n, e.

26

Lemma 4.1.4. Live memory values at Pb in normal execution n are the same as those

at Pb′ , i.e., when the region R is re-executed for error recovery.

Proof.

MEM(Pb.n)|live(R) = MEM(Pd.n)|live(R) (4.4)

= MEM(Pd.e)|live(R) (4.5)

= MEM(Pb′.e)|live(R) (4.6)

Equation 4.4 states that in normal execution n, live memory values at region entry

Pb.n are not overwritten at Pd.n, which is true because idempotent region formation

ensures no memory anti-dependences in each region. Equation 4.5 then tells that

despite the errors, live memory values at Pd in errant execution e is the same as

those in normal execution. This must be true because, due to the error propagation

prevention of parity checking (Theorem 4.1.1, 4.1.2), all memory values remain intact,

i.e., MEM(Pd.n) = MEM(Pd.e), regardless of errors. Finally, Equation 4.6, i.e., the

live memory values remain the same between the error detection and R’s re-execution,

must be true since Penny’s recovery block never updates memory.

Finally, we prove checkpoint storages are identical in n, e.

Lemma 4.1.5. Checkpointed values of R’s live-in registers at Pb in normal execution

n are the same as those at Pb′ , i.e., when the region R is re-executed for error recovery.

Proof. Penny’s checkpoint overwriting prevention ensures that CP (Pb.n)|livein(R)

should remain the same during R’s execution. Due to Theorem 4.1.1, 4.1.2, an er-

ror cannot change any of checkpointed values. In addition, since Penny’s recov-

ery block on an error does not change them, it is true that CP (Pb.n)|livein(R) =

CP (Pb′.e)|livein(R).

We have proven that all live memory/register/checkpoint states of errant execution

(e) upon recovery are equivalent to those of normal execution (n). Consequently,

27

Penny’s recovery is correct though it does not enforce the in-region detection. Note

that other undetected errors in RF, e.g., one at P ′c, are spontaneously corrected at the

same recovery time at which all live-in register values are restored by loading their

checkpointed values. Corruptions in non-live-in registers may remain but do not affect

program correctness because they will never be read before being written.

4.1.3 Correctness in Multi-Threaded Execution

Penny guarantees safe recovery for concurrent multi-threaded executions, for race-

condition-free programs.

The error propagation limit also indicates that RF errors of one thread cannot be

propagated to others through shared caches before they are detected and corrected.

So Penny do not have to worry about RF errors propagating across threads in multi-

threaded execution.

However, the validity of the memory idempotency—used in Equation 4.4 of the

safeness proof—can be violated in multi-threaded execution. This can happen in the

case that after thread T1 in region R loads from a memory address A which is a live-in

of the region, another thread T2 stores and overwrites the value at the same address

before T1 finishes the region R. If an error is detected in T1 before the end of the

region R, the region must be re-executed, but the re-execution will be incorrect since

the live-in value of address A entering R has been overwritten. So these load and store

access to the same address from different threads can be seen as an inter-thread memory

anti-dependence, which may cause a violation in memory idempotency.

For a race-condition-free program, the programmer is responsible for using synchro-

nization instructions, such as barriers, memory fences, and locks, to prevent data-races.

Penny places additional region boundary at these instructions to cut inter-thread anti-

dependences.

Figure 4.2 shows two example of inter-thread anti-dependence. In (1.a), a store

in thread T1 happens after a load from the same address in T0, but before the region

28

load [tid+1]

store [tid]

load [2]

store [1]

load [1]

store [0]

T1T0

...

fence

store [1]

load [1]

fence

...

T1T0

lock

load [1]

unlock

...

T1T0

...

lock

store [1]

unlock

(1.a) Load-Store inter-thread anti-dependence (1.b) Barrier/Fence protection (1.c) Lock protection

store [tid]

load [tid+1]

store [1]

store [2]

store [0]

load [1]

T1T0

store [1]

fence

...

...

fence

load [1]

T1T0

...

lock

load [1]

unlock

T1T0

lock

store [1]

Unlock

...

(2.a) Store-Load inter-thread anti-dependence (2.b) Barrier/Fence protection (2.c) Lock protection

Inter-thread anti-dependence Store visible in T0Region boundary

Figure 4.2: Handling inter-thread anti-dependence

ends, overwriting the value that was stored before starting the region. So, if T0 tries

to recover from an error and re-execute the region, the idempotency is violated. If two

threads are placed in different warps, this can also happen even if the store proceeds the

load, such as in (2.a), or the store is in a different region.

To prevent such data-races, programmers are expected to put barriers or memory

fences or ensure mutual exclusion by using locks or atomic instructions. Penny places

additional region boundary at all of these synchronization instructions to protect idempo-

tency. (1.b) and (2.b) explains how the additional boundary at the fence/barrier ensures

idempotency: because the region is split at the fence, the store in T1 cannot pass across

the boundary. In case of using a lock as in (1.c) and (2.c), the critical section becomes

a separate region, and the execution of two regions including load and store becomes

mutually exclusive. As a result, the store in T2 is prohibited from being executed during

the region including load in T0.

29

4.2 Preventing Checkpoint Overwriting

1 : r1 = 5

1C: ckpt r1

2 : r2 = 0xc000

2C: cp r2

3 : ld r3, [r2]

8 : st [r2+4], r1

4: r4 = 7

5 : st [r2], r1

6 : r1 = r1 + r4

6C: cp r1

7 : ld r4, [r2+4]

1 : r1 = 5

1C: cp r1, K0

2 : r2 = 0xc000

2C: ckpt r2, K0

3 : ld r3, [r2]

8 : st [r2+4], r1

4 : r4 = 7

5 : st [r2], r1

6 : r1 = r1 + r4

6C: cp r1, K1

7 : ld r4, [r2+4]

(d) Register renaming(a) Example with overwriting (c) Checkpoint storage alternation

R1 R1

R2

R3

R2

R3

12

5

r1’s
ckpt

12

5

K0 K1 1 : r1 = 5

1C: ckpt r1

2 : r2 = 0xc000

2C: cp r2

3 : ld r3, [r2]

8 : st [r2+4], r5

4: r4 = 7

5 : st [r2], r1

6 : r5 = r1 + r4

6C: cp r5

7 : ld r4, [r2+4]

R1

R2

R3

r1’s
ckpt

1 : r1 = 5

1C: ckpt r1

2 : r2 = 0xc000

2C: cp r2

3 : ld r3, [r2]

8 : st [r2+4], r1

4: r4 = 7

5 : st [r2], r1

6 : r1 = r1 + r4

6C: cp r1

7 : ld r4, [r2+4]

(b) Naive double buffering

R1

R2

R3

12

5

r1’s
ckpt

K0 K1

5

12

Register anti-dependence Copy Renamed registerr

Live-range

of r1

Original

Extended

Figure 4.3: Checkpoint overwriting and prevention techniques.

Due to the lack of store buffers in GPUs, a checkpoint storage can be overwritten

leading to incorrect recovery. For the example code in Figure 4.3(a), the value stored in

r1 at line 1 is a live-in to region R2—since it is used at line 5—thus being checkpointed

at line 1C. However, the checkpointed value 5 is overwritten by a new checkpoint value

12 at 6C. Thus, if an error occurs between line 6C and the end of R2, the original live-in

value of r1, which is required for restarting R2 from its beginning, cannot be restored.

This happens because the live-in value for the current region must be preserved

until the end of the region, but live-out values of the current region—that are required

for the following regions—are required to be checkpointed. Bolt solved this problem

by modifying the hardware store buffer to a gated store buffer (GSB). The gated store

buffer the checkpointing stores and delays them being committed to cache until the end

of the region. The compiler is responsible to guarantee the GSB is not overflowed at

runtime by limiting the region size. However, GPUs do not comprise store buffers so we

suggest several software mechanisms prevent the checkpoints from being overwritten.

The first naive approach one can think of is to imitate the gates store buffers in

software using two checkpoint storages. Figure 4.3(b) shows the example of such a

30

double buffering algorithm. Two checkpoint storages K0 and K1 are allocated. While

executing a region, all checkpoints are stored to the front storage K0 and at the end

of each region, the buffered checkpoint values stored at K0 are copied to the back

storage K1. While an error happens within a region, checkpoints from K1 can be

used for recovery. This naive double-buffering imposes a significant overhead due

to a high number of unnecessary copies since the store costs are the main factor of

performance overhead in Penny. For each checkpoint occurrence two stores are required:

one checkpoint store to the front storage and one copy from front to back storage.

To reduce the checkpointing cost, we suggest two optimized overwrite prevention

technique called checkpoint storage alternation and register renaming. The storage

alternation uses two storage spaces as in naive double buffering but minimizes the

number of stores by alternatively storing checkpoints to every two storages to elimi-

nating unnecessary copies. Figure 4.3(c) shows an example of storage alternation. All

checkpoints of r1 in region R1 are saved to storage K0 while those in R2 are stored to

the other storage K1, i.e., the value in K0 is not overwritten until the end of R2. Penny

also provides storage optimization to reduce the total checkpoint storage, considering

that not every checkpointed register requires two storages.

Figure 4.3(d) shows an example of register renaming. To prevent the values being

checkpointed into a same storage, the register name r1 at line 6 can be renamed to

an unused register r5. The following register references that use the value (i.e. line 8)

should also be renamed to r5.

4.2.1 Register renaming

The register renaming to prevent checkpoint overwrite similar to register renaming in the

idempotent translation scheme of De Kruijf et al. [29]. However, targeted registers for

renaming differs. In De Kruijf’s algorithm, all live-in registers with anti-dependences

are renamed. But Penny only needs to rename the registers that actually have their

checkpointed value overwritten. For example, in Figure 4.4, both r1 and r2 values

31

1 : r1 = …
1C: cp r1

2 : r2 = …
2C: cp r2

7 : … = r2

3 : … = r1
4 : r1 = …
5 : … = r2
6 : r2 = …
6C: cp r2

R1

R2

R3

Live-out

Anti-dependence

Figure 4.4: Register renaming.

updated in R1 is live-in to R2. The checkpoints in 1C, 2C, and 6C are only used

for Penny and not for De Kruijf’s idempotent translation. The De Kruijf’s algorithm

does not rely on checkpoints, register writes which overwrites the live-in values must

be renamed. For example, in R2, both r1 and r2 have live-in values and they are

overwritten (e.g. have anti-dependence) so the registers in live 4 and 6 and their

references must be all renamed. On the contrary, Penny only requires renaming for r2

in R2. This is because the value of r1 in line 4 is not a live-out of the regions so not

checkpointed. The value of r2 in live 6 is used at R3, so it is checkpointed at line 6C

and may overwrite the checkpointed value at line 2C.

The register renaming is applied by modifying the live-range of the logical registers

before register allocation. In the example of Figure 4.3(d), the original live range of r1

is artificially extended. The register allocator respects the extended range and assigns

an exclusive physical register to the renamed registers. However, renaming is likely to

increase the register pressure, leading to performance degradation if the register usage

becomes the limiting resource of GPU’s warp occupancy.

32

4.2.2 Storage Alternation by Checkpoint Coloring

Assigning checkpoint storage at runtime causes unrequited overhead for management,

so Penny’s compiler statically allocates storages to each checkpoint on compiler time.

Assigning storages to each checkpoint can be seen as a simple 2-coloring algorithm.

Also, applying storage alternation on all registers causes unnecessary storage and run-

time overheads. Thus, our compiler first identifies the registers that have at least one

checkpoint overwriting and feed them as inputs to 2-coloring. If there is no overwrite

of live-in in any region, the register can be omitted from storage alternation and can

be stored to a single checkpoint without altering. This helps to reduce the checkpoint

storage size, which can be a limiting feature for the performance if it is stored on a

limited resource such as shared memory. The compiler visits basic blocks in topological

order and colors the checkpoint storages of the input registers.

If there is no overwrite of live-in in any region, the register can be omitted from

storage alternation and can be stored to the same checkpoint every time. This helps to

reduce the checkpoint storage size, which can be a limiting feature for the performance

if it is stored on a limited resource such as shared memory.

cp r1, K0

cp r2, K0

cp r1, K0

cp r1, K1

cp r1, K0

cp r2, K1

BB1

BB2 BB3

BB4

BB5

cp r1, K0

cp r2, K0

cp r2, K1cp r1, K1

cp r1, K0

cp r2, K1

cp r1, K1

cp r2, K0

BB1

BB2 BB3

BB4

BB5

cp r1, K0

cp r2, K0

cp r2, K1
cp r1, K1

cp r1, ?

cp r2, K1

BB1

BB2 BB3

BB4

Conflict

(a) Altering between storages (b) Coloring conflict for r1 (c) Resolving the conflict

R1

R2

R3

K0 K1

Region boundary

00 00

01 00

01 01

status (r1 r2)

01 01

10 10

11 10

00 10

01 10

01 11

00 00

01 00

01 01

status (r1 r2)

10 10

11 10

00 10
10 11

00 00

01 00

01 01

status (r1 r2)

10 10

11 10

00 10
10 11

10 00

11 00

11 01

00 10

01 10

01 11

Figure 4.5: Coloring checkpoints.

33

Basic Coloring Rules

First, we define conditions that the coloring result must satisfy to not overwrite the

checkpointed values required for recovery. Figure 4.5(a) shows the example of two

register r1 and r2 being colored.

• Checkpoints of a register in a region must be assigned to a same storage. Because

of the control divergence, there can be multiple last update points of a register in

the same region, and they must be colored in the same color. In the example, two

checkpoints of r1 in BB1 and BB2 are labeled in the same storage K0, because

they are in the same region R1. Thanks to the unified coloring, when a recovery

is required in the following regions, the value can be restored from K0 regardless

of the execution path (BB2 or BB3) taken without additional path tracking.

• For neighboring regions checkpoint must be stored into alternate storage not to

overwrite the previous ones. For example, r1 was store in K0 for R1, so for R2

it is stored in K1 and K0 for R3.

• However, if there are no checkpoints in the region, the storage must not alternate.

For r2 in the example, checkpoints are stored to K0 for R1, and the next region

must checkpoint to K1. However, since there is no checkpoint of r2 in R2,

the next region R3 must not alternate back to K0, but still checkpoint to K1.

Otherwise, e.g. if the R3 checkpoints r2 to K0, it may overwrite the live-in

checkpointed value fromR1 which is required for recovery when an error happens

before the end of R3.

To satisfy these conditions, when the compiler colors the checkpoints in the code

sequentially, it must remember if there a register has been checkpointed in a region as

well as the last labeled storage. Thus, Penny uses a two-bit representation to remember

to current coloring status for each colored register: storage bit (S) and flip bit (F). The

storage bit Sr tells which storage the upcoming checkpoint of r must be stored and

34

the flip bit Fr presents if the register r has been checkpointed in this region. When

a checkpoint or a region boundary is met during coloring following rules are used to

color the checkpoint and update the coloring status:

• On a checkpoint of r: Label the checkpoint with Sr and set 1 on the flip bit Fr

to notify the next region must alternate the storage. cp r, Sr;Fr ← 1.

• On a region boundary: If the flip bit Fr is set, alternate the storage for next

region by flipping Sr and reset Fr to 0. The xor operation (⊕) can be used to flip

the storage bit. Sr ← Sr ⊕ Fr;Fr ← 0.

In Figure 4.5, we mark the coloring status of each register in the order of SF on the

right of the basic blocks. For the example in (a), both registers start with an initial status

of 00. When checkpoint of r1 and r2 are met in BB1, the checkpoint is labeled with

current storage value 0 in S and F bit for each register is set. In BB2, the checkpoint

r1 is labeled with the same storage as with the checkpoint in BB1. On the region

boundary after BB2 and BB3, since both F bit of two registers are 1, the S bit value

is alternated from 0 to 1. In BB4, r1’s checkpoint is assigned to storage K1 and F bit

is set. Since only r1 is checkpointed in R2, e.g. only the F bit of r1 is set, only the

S bit of r1 is altered at the end of R2. Thus, in R3, r1 is checkpointed to 0 and r2 is

checkpointed to 1.

Resolving a Coloring Conflict

Due to a control-flow divergence, the coloring status may differ over multiple incoming

paths at a convergence point. Figure 4.5(b) shows such an example; r1’s colors in the

2 paths coming to BB4 differ. This causes a coloring conflict. That is, if a left path

(BB2 to BB4) is taken, r1’s checkpoint in BB4 must be colored with K0 since BB2

already used K1 for r1. However, taking the other path (BB3 to BB4) demands r1’s

checkpoint in BB4 to be colored with K1, since K0 was used for r1 in BB1. Thus,

the coloring solutions of the 2 paths do not agree with each other. Note that not only

35

the storage status S but also the flip status F must be unified to the same status to

guarantee the following checkpoints to not overwrite required values. For the left path,

the coloring status for two registers was 0010 and 1011 for the right, and these values

must be unified to the same status value.

To ensure the same color at the convergence point no matter which path is taken,

Penny inserts a new adjustment block, that has a dummy checkpoint and region bound-

aries for a conflicting register, over one or more paths to the point. The dummy check-

points simply checkpoint the current live-out value of the region to the opposite storage

of the latest storage used to match status between paths. As shown in Figure 4.5(c),

due to a new block BB5, the colors in the 2 paths to BB4 are both K1. Depending on

the coloring status, new region boundaries must also be inserted. These inserted region

boundaries affect all colored registers, so Penny must consider the status of all live

registers at once when unifying the status and inserting adjustment block. For example,

in the original application code in Figure 4.5(b), only the status of r1 had a conflict, but

when the adjustment block is inserted as (c), the r2 also requires a dummy checkpoint.

After the adjustment block insertion, the coloring status for both paths becomes 0010.

In Figure 4.6, execution path from three basic block BB1, BB2, and BB3 are

converged into BB4. Output coloring status of each converging path for register r1

to r4 are 01100011, 01001101, and 01100000 respectively. Let’s assume we want to

unify the merged coloring status into 01100000. In such a case, one region boundary is

needed to be inserted to the convergence path from BB1 and an adjustment block with

checkpoints to r2 and r4 interposed by two new region boundaries. By applying the

coloring status transition rules, it could be seen that the output status from BB1 and

BB2 are translated into unified status after passing the inserted region boundaries and

checkpoints.

In order to reduce the overhead of inserted checkpoints for adjustment block, Penny

tries to choose the unifying status that produces the minimum number of checkpoints.

For all possible merged coloring status, the total number of added checkpoints for all

36

R1
ckpt r2

r1(01), r2(10), r4(11)

R2

r2(01), r3(11), r4(01)

R3

r1(10), r3(00), r4(00)

R4

r1(10), r2(10), r3(00), r4(00)

ckpt r4, K1

. . .

Newly added

ckpt by b1

b1 b2

Output status:

Input status:

Figure 4.6: Merging the coloring status.

paths are calculated, and the coloring status with minimal cost is selected.

In some rare cases, due to the added region boundary, additional live-out value has

to be checkpointed. For example in the given code, because of the newly added RB1,

another value of r2 has to be checkpointed in BB1. We call this a collateral checkpoint

added by the adjustment code. The newly added collateral checkpoint may change the

original coloring status of its path, i.e. the output status of BB1, and current coloring

status may be invalidated, i.e. current coloring is no more a safe solution.

In such a case, Penny re-colors the graph from the beginning with the added

adjustment codes and collateral checkpoints. However, naively applying re-coloring

whenever the coloring safeness is violated may result in unterminated iteration: the

coloring status may oscillate between a number of statuses endlessly. To prevent this, the

merging algorithm of coloring status must guarantee convergence. So when the graph is

re-colored, the unification status at a conflict point is selected in a non-regressional way:

previously added adjustment codes are not removed and new boundaries are added for

status merging.

37

Note that added adjustment checkpoints have a high chance of getting safely

removed in the pruning phase (Section 5.5), and therefore the resulting overhead is not

significant in the majority of applications we tested (Section 6.2.3).

The Comprehensive Coloring Algorithm

Each labeled register has its labeling status bits and the labeling algorithm labels all

the registers in the same pass. The labeling algorithm traverses over the CFG blocks in

a reverse post order and labels checkpoints in each block at a time. Labeling a block

is done in three steps; first, merge labeling status from the output of the parent block

into an input status. Only non-back-edges are merged. Second, the body of the block is

labeled following the basic labeling rules. For the last, if there are outgoing back-edges

from the block, their statuses are merged back into child blocks. After the first and third

steps, if Penny decides there are inconsistencies brought by new adjustment region

boundary, labeling is re-done from the beginning.

4.2.3 Automatic Algorithm Selection

It is not a trivial task to select between the two overwrite prevention techniques. The

register renaming may increase the register pressure and diminish the occupancy, while

the storage alternation may increase the checkpointing cost.

Thus we provide an automatic optimization selection module to choose the better

between the two. Penny compiler the code using both techniques and estimate the final

cost of the generated code in a similar way to the one in Section 5.2 to pick the best.

For the generated code, load and store instructions are given higher cost than arithmetic

instructions and they are weighted depending on the depth of the loop they are placed.

4.2.4 Future Works

Currently, either of register renaming and storage alternation is selected for compil-

ing each kernel. In the future, we can suggest techniques that selectively apply both

38

techniques in a more fine-grained manner: some checkpoints are renamed and some

checkpoints use storage alternation for optimal performance.

Another idea is that instead of the two-coloring algorithm, we can use a more gener-

alized coloring algorithm similar to that used in the register allocation in compilers [18].

The main challenge is how to properly set the interfering edges of the graph since the

interference semantics for overwriting case is different from the register allocation and

decide when to coalesce and spill the graph.

39

Chapter 5

Performance Optimizations

5.1 Compilation Phases of Penny

(a) Region formation (b) Bimodal checkpoint placement (c) Storage alternation

RB3
c3: cp r1

RB2
c2: cp r1

p1: r1 = ...

c1: cp r1

BB1

BB2

BB3

BB6

BB4

BB5

p3: r1 = ...

RB1

p2: r1 = ...

RB3
s3: st [8], r5

RB2
s2: st [8], r3

BB1

BB2

BB3

BB6

BB4

BB5

l3: ld r2, [8]

RB1
l2: ld r4, [0]

s1: st [0], r5

l1: ld r1, [8]

(d) Checkpoint pruning

… = r1

RB2

RB3
c3: cp r1, K1

c1: cp r1, K0

BB1

BB2

BB3

BB6

BB4

RB1

RB4

u1: ... = r1

c4: cp r1, K0 BB7

Newly

Inserted

c2: cp r1, K1

BB5

i1: r3 = 5

i2: r1 = r3 + 8

c1: cp r1, K0

b1: r4 == 0?

RB3
c3: cp r1, K1

RB2
c2: cp r1, K1

BB1

BB2

BB3

BB6

BB4

BB5

RB1

i3: r2 = 4

i4: r1 = r2 + 5

b2: r3 < 20?

i5: ld r1, [8]

b4: r2 == 1?

RB4

c4: cp r1, K0 BB7

b3: r3 > 10?

i1: r3 = 5

i2: r1 = r3 + 8

Recovery

slice for c1

Figure 5.1: Compilation phases of Penny.

This section provides a high-level overview of Penny’s compilation workflow for

generating the final checkpoint-enabled code. Penny takes GPU program in the form of

PTX code, that is a basis for necessary transformations, and performs several analyses

and optimization phases in the following order. The goal of the compiler is to produce

correct yet low-overhead code.

Figure 5.1 demonstrates the main phases in the compilation.

40

5.1.1 Region Formation

Penny first partitions the entire program into idempotent regions by breaking every

memory anti-dependence to prevent their memory inputs from being overwritten.

Figure 5.1(a) shows 4 memory anti-dependences in the code, i.e., (l1, s3), (l2, s2),

(l3, s2), and (l3, s3) where l and s form the load-store pair. There can be multiple region

formation solutions for cutting all anti-dependence paths in the code. Figure 5.1(a)

shows one solution with 3 region boundaries of RB1, RB2 and RB3.

To minimize the number of region cuts, De Kruijf et al. [29] uses a heuristic

algorithm to minimize the number of cuts. This algorithm is both heuristic and not

aware of checkpoint costs, i.e. does not minimize the number or cost of the checkpoints

being inserted. So we provide an optimal checkpoint-aware algorithm to minimize the

checkpointing cost.

Once region boundary is determined, last update points (LUPs) of each region’s

live-out [63] registers are discovered as the candidate of values to be checkpointed.

5.1.2 Bimodal Checkpoint Placement

While Bolt [53] forces a checkpoint to be placed right after the last update point (LUP)

of a register to save it, we found out that the restriction can be relaxed without compro-

mising the recoverability (Section 5.4). With that in mind, we perform a checkpoint

scheduling to reduce the estimated cost of inserted checkpoints.

For example, in figure 3.4, there are two checkpoints for r1 in R1, and if the left

path is taken at the branch, unnecessarily two checkpoint instructions for r1 transpire.

However, we relax it by exploiting the fact that each checkpoint can be delayed until

the end of the region. That is because the checkpointed registers in a region are used as

inputs to some later regions, not the region itself. This insight allows Penny to schedule

checkpoints to minimize the run-time overhead.

We achieve this in 2 steps: one after region formation and the other in code gener-

ation. First, we conduct bimodal checkpoint placement; a checkpoint is placed either

41

immediately after the LUP or right before the region end (boundary). The later local

checkpoint scheduling step tunes the bimodal schedule for better performance in the

code generation phase.

For each region boundary in Figure 5.1(b), all LUPs for r1 can be found by

backward-traversing all execution paths until the update on r1 is found. We focus

on region boundaries instead of the range of regions, because the latter can dynamically

change depending on the execution path. Point p1 is the LUP for boundary RB1, and

p3 is forRB2.RB3 has two LUP p2 and p3. The bimodal placement places checkpoint

at either end-point of these mappings. For example, checkpoints are placed either at

RB3 or both at p2 and p3. Checkpoints c1, c2 and c3 in Figure 5.1(b) is the result of

bimodal placement. For the region boundary RB1, checkpoint is placed at p1 instead

of RB1, because it is expensive to place the checkpoint inside the loop whose body

is a basic block BB3. In contrast, for regions ending at RB3, checkpoint is placed at

RB3 to avoid checkpoint insertion at the LUP p2 inside the loop (BB2). Note that c3

servers for checkpointing r1’s values from both p2 and p3.

5.1.3 Storage Alternation

Penny also provides an auto-selection mechanism, that can choose the better of the two

for a given GPU kernel, by using an instruction-level cost estimation model; Section 4.2

provides the details.

Due to the lack of store buffers in GPU, a checkpoint value can be overwritten

before it is used for recovery. To ensure that no necessary checkpoint is overwritten, we

introduce two techniques in Section 4.2: register renaming and 2-coloring for storage

alternation. The storage alternation must be applied before checkpoint pruning.

Figure 5.1(c) shows such an example in the shaded region that starts from RB1 and

ends at RB2. For an execution passing through this region, r1’s value is checkpointed

at c1 and subsequently overwritten by another checkpoint at c2. If an error then occurs

before RB2, i.e., the end of the region, its re-execution starting from RB1 will lead

42

to incorrect recovery. That is because the input of the region, i.e., live-in register r1

checkpointed at c1, has already been overwritten.

With that in mind, we use two storages K0 and K1 alternatively to checkpoint

r1 in each region to avoid overwriting the previously-checkpointed value that will

be used for the recovery of the region. For some region, if its input register, that has

been checkpointed in K0, is updated and live-out in the region, Penny avoids using the

storage K0, where the input exists, and checkpoints the register in the other storage

K1. Interestingly, this checkpoint storage alternation can be reduced to a 2-coloring

problem. Coloring the storage for each checkpoint can be easily achieved by performing

a pre-order depth-first search during which either K0 or K1 is determined as a color.

However, the coloring might fail at a control flow convergence point if the colors of

a checkpoint on incoming paths differ from each other. In Figure 5.1(c), 3 execution

paths converge to BB6, i.e., BB2 → BB6, BB4 → BB6, and BB5 → BB6. For

the first two paths, r1’s last checkpoint is c1 that uses K0 as a storage. So the next

checkpoint in BB6 must store r1 to K1 to avoid overwriting the previous value in

K0. However, on the 3rd path (BB5→ BB6), r1 was checkpointed at c2 using K1

as a storage. This implies that the next checkpoint in BB6 should be stored at K0.

This conflicts with K1, the storage that must be used for the checkpoint when BB6 is

reached through other two paths BB2→ BB6 and BB4→ BB6.

To resolve the conflict, Penny creates a new region (BB7) between the conflicting

regions and inserts a compensation checkpoint (c4) as shown in Figure 5.1(c). In c4,

Penny simply copies the checkpointed value of r1, which is available in K1, into K0.

Consequently, the next checkpoint in BB6 uses the same storage K1 no matter which

path is taken to reach BB6.

5.1.4 Checkpoint Pruning

It is possible to remove a checkpoint provided its value can be recomputed by using

other checkpointed values. This phase is to prune such an unnecessary checkpoint

43

whose values can be reconstructed at recovery time by executing a series of other

instructions, i.e., so-called recovery slice. In a sense, the problem of checkpoint pruning

can be formulated as that of finding the recovery slice that can recompute the value of

the pruned checkpoints. We propose a near-linear-time optimal pruning algorithm that

significantly improves both the pruning quality and the solution search time over Bolt’s

basic pruning algorithm.

Whether or not a checkpoint is prunable is determined by tracing back both data-

and control-dependence values from the checkpoint and by verifying if the values can

be recomputed at recovery time. If all dependent values can be reconstructed, Penny

regards the checkpoint as prunable. In Figure 5.1(d) the data dependences tracked from

checkpoints are shown in dotted arrow-lines. Consider c3, which has multiple paths

to track the dependences. If all the data dependence can be safely restored by using

constant (e.g., i3) or memory value that is not overwritten before the use of the loaded

register (e.g., i5), then the checkpoint can be safely pruned. In addition to the data

dependences, control dependences should be tracked and verified to be reconstructible

at recovery time. For example, in case of soft error detected, to decide which path has

been taken, branch condition values (b1, b2, b3, and b4) and their dependent values have

to be reconstructible as well to correctly execute the recovery slice along the path. An

example recovery slice that can recompute the value of r1 for the pruned checkpoint c1

is shown in the figure.

5.1.5 Storage Assignment

By default, Penny uses two checkpoint storage spaces, that are protected by ECC, to

save checkpoints: shared and global memories of GPU. Its available non-ECC registers

can be optionally used as checkpoint storage to improve performance at the cost of

compromised reliability. Care must be taken for the storage assignment. Since low-

latency GPU caches have limited size and thus assigning too many checkpoints there

can reduce the occupancy. In light of this, Penny carefully distributes checkpoints to

44

the storage spaces thereby reducing the run-time overhead. Also, Penny leverages an

appropriate storage layout with coalesced memory accesses in mind.

5.1.6 Code Generation and Low-level Optimizations

As a final step, during the code generation, Penny performs several compiler optimiza-

tions to minimize the added instruction cost due to checkpoint stores and their address

calculation. The optimizations include local instruction scheduling, redundant code

elimination, and loop invariant code motion, etc.

5.2 Cost Estimation Model

Several numbers of Penny’s optimization rely on cost models to estimate and compare

the quality of the code resulting from an optimization decision. We define the checkpoint-

cost by weighting each checkpoint based on the nested loop-depth the checkpoint is

placed. Specifically, we use 2K·d as the cost of a checkpoint at loop-depth d where

K is a large enough constant value to prioritize checkpoint in inner loops. We also

define a instruction-cost for instructions added after the code generation phase, This

metric can more accurately estimate the overhead because each checkpoint can be

translated into an arbitrary type and a number of instructions. We define the cost of

each instruction adding an additional type based weight Wt to the loop-depth based

weight: Wt · 2K·d. Load and store instructions have a larger constant weight compared

to arithmetic instructions.

The most commonly used metric is a checkpoint-level weight-accumulated cost

that accumulates the cost of all checkpoints, where each checkpoint cost is weighted

based on its nested loop-depth. This is because checkpointing instruction added inside

a deeply nested loop is the most significant source of overhead. This is formulated as∑
c∈C Wd(c), where C is all checkpoints in the code andWd() is a weight function that

gives higher cost for instructions in deeper loop-depths. We also introduce a instruction-

45

level weight-accumulated cost to estimate the cost of all additional instruction I added

after code generation. This can be more accurate than the checkpoint-level estimation

because each checkpoint is translated into a series of instructions that can be in variable

lengths depending on the context. We add an additional instruction-type-based weight

Wt() that gives higher cost for load and store instructions:
∑

i∈I Wt(i) ·Wd(i).

5.3 Region Formation

To translate a code into idempotent regions, the most common way to handle mem-

ory anti-dependences is to separate the load and store of the anti-dependences into

different regions. There are multiple memory anti-dependences in the code and each

anti-dependence has a multiple execution paths and they are all required to be cut by

region boundary. All execution paths from the load to the store must include at least

one region boundary. The region boundary can be placed in anywhere on the paths and

region boundary placed in a common interleaving path can be shared among multiple

paths of anti-dependences. This makes the search space extremely complicated, so it is

not easy to use an optimal search.

We first introduce the heuristic algorithm from De Kruijf et al. [29] and its limita-

tions. Then we introduce our optimal region partitioning algorithm that is aware of the

checkpoint costs. Additionally, we introduce a region stitching that saves the loaded

memory load value instead of cutting the region to handle the memory anti-dependence,

and how the stitching is combined into the optimal pruning.

5.3.1 De Kruijf’s Heuristic Region Formation

De Kruijf et al. [29] uses an approximate algorithm to minimize the number of anti-

dependence cut to form maximal regions. The region cut problem is translated into a

vertex multicut problem which is NP-complete [37]. The problem is again reduced to a

hitting set problem and an approximated algorithm [24] is used to solve it. iGPU [60]

46

uses a slightly modified version of this algorithm for GPU, which puts the region

boundary at the location with a “relatively” little live-in states.

However, this algorithm is not only an approximated algorithm but also no checkpoint-

aware, i.e., it does not try to minimize the number of checkpoints being inserted.

5.3.2 Region splitting and Region Stitching

Sld_0 : r3 = MEM[r2 + 4]

Sst_0 : MEM[r2] = r1

Sld_0 : r3 = MEM[r2 + 4]
Smv_0: MVS[0] = r3
Sma_0: MAS[0] = r2 + 4

. . .

Sst_0 : MEM[r2] = r1

(a) Region splitting (b) Region stitching

R1 R1

R2

Figure 5.2: Example of region splitting and region stitching.

In prior idempotent recovery schemes, all memory anti-dependences have to be cut,

resulting in no anti-dependences to remain in the same region (Figure 5.2(a)). Penny

proposes another technique to safely handle memory anti-dependences for recovery; a

region stitching. Region stitching prevents region splitting by saving loaded memory

values in a separate storage for recovery. For certain anti-dependences, split region

boundary may produce too many checkpoints, so stitching up the region into a bigger

one may lead to better performance.

Figure 5.2(b) is an example of how the anti-dependence memory value is preserved.

Memory values are stored eagerly after the load instruction 1. The loaded values from
1We chose eager saving instead of lazily saving it right before the store. The lazy scheme may result in

avoiding unnecessary memory-value saving instructions, but reconstructing load addresses at the time of

47

memory are saved to memory value storage (MVS). The compiler assigns storage indies

for each load with anti-dependences. The current implementation only stitches load

instructions out of the loop, because the saved instruction might be overwritten in loops.

Unlike previous work [35], Penny does not store the memory address of the load

instruction. Instead, it is computed at recovery time using either of the two techniques

we propose. The compiler can generate a recovery slice that only consist of instruction

dependent to compute the memory address of the required load instruction. At recovery

time, this recovery slice is executed to compute the memory address value, and from the

address and memory value of MVS, the memory value is restored. Then the program

can be safely executed starting from the beginning of the region. The second method

is an exception handling can be used if there is hardware support for this. At recovery

time an exception is placed right before the load instruction Sld, and the execution is

re-started from the beginning of the region. When the execution hits the exception, the

exception handler can get the value of the calculated memory address (i.e. r2 + 4). The

memory value is restored from MVS and the execution can be safely resumed.

5.3.3 Checkpoint-Cost Aware Optimal Region Formation

There can be an excessive number of region formation decisions considering which

anti-dependence to handle with region stitching and where to put region boundaries.

Multiple regions can share common checkpoints as their live-ins, so checkpoint cost

cannot simply be computed for each region-cut and accumulated.

Penny provides an efficient algorithm that finds a minimum cost region formation

combining both region splitting and region stitching.

the store is usually difficult or impossible. Note that due to limitation of alias analysis, actual load and

store address of an anti-dependence might be different.

48

Algorithm Overview

We found that using a greedy algorithm or finding each boundary using a local min-

imum does not lead to a sufficient global solution. Unlike register renaming, which

is hard to estimate the exact spilling cost, the number of checkpoints can be precisely

computed from the boundary decision, which directly translates into the overhead cost.

So aggressive optimization to minimize the checkpoints is expected to give an evident

improvement in performance.

Search space for comparing all possible combinations of region stitching and

boundary placement can be exceedingly large. Penny provides a technique to decompose

the region formation problem into multiple levels to reduce this computation. For each

divided sub-section, only the best T solutions are picked and merged into the upper

level in order to limit the number of merging computations.

Problem Decomposition

First the partitioner decomposes the problem, as in example presented in Figure 5.3. Fig-

ure (a) shows a CFG with all anti-dependences (ldA, stA1), (ldA, stA2), (ldB, stB),

(ldC, stC) and (ldD, stD). For convenience, basic blocks are split by load and store

instructions of anti-dependences and divided into segments (e.g. E0 to E15). Then all

possible paths for each anti-dependence are discovered. In figure (b), all possible paths

for each anti-dependence in enumerated from P0 to P5 labeled using a sequence of

segments.

Now all the paths are clustered into groups. If a path intersects with another, i.e.

has a common segment, they are put into the same group. In this example, paths are

grouped into two groups G1 and G2. Each group does not have an intersecting path, so

region splitting can be solved individually for each group.

For each group, all possible region stitching is applied, and after removing the

stitched anti-dependence all possible region splitting solutions are computed in segment-

level. In other words, the decision is made in an abstract form that on which segments

49

ld A

st A1 ld B

st A2

st B

ld C

st D

ld D

st C

A : P0 [E1,E2]
P1 [E1,E4,E5]

B : P2 [E5,E6,E7]

C : P3 [E9,E10,E14]
P4 [E9,E11,E12,E13,E14]

D : P5 [E13,E11]

G1

G2

G1

G2

{}: {E1,E5}, {E1,E6}, {E1,E7},
{E2,E5}, {E2,E4,E6},
{E2,E4,E7}

{A}: {E5}, {E6}, {E7}
{B}: {E1}, {E2,E4}
{A,B}: {}

{}: {E9,E11}, {E9,E13}, {E10,E11},
{E10,E13}, {E11,E14}, {E13,E14}

{C}: {E11}, {E13}

G1

G2

(a) Anti-dependences on a control
flow graph

(b) Anti-dependence paths

(c) Segment-level region-formation
solutions

E0

E1

E2

E3

E4

E5

E6

E8

E7

E9

E11

E10 E12

E13

E15

E14

Figure 5.3: Example of decomposing the region-cut problem.

the regions-cuts are placed, and the actual instruction-level position is not considered in

this step.

Figure (c) shows the region formation result for G1 and G2. The left part of the

list shows a set of loads instructions that stitching is applied. The right part is the

list of all possible region-cut solutions. Let’s articulate solution with T stitching set

and region-cuts C as (T : C) For example, (B : E2, E4) in figure (c) presents that

after anti-dependence B is stitched, remaining paths P0 and P1 can be cut by placing

region-cut at E2 and E4. All possible cutting set solutions are computed and only the

minimum set is kept. To get a minimum solution set, all solutions A = (SA : CA) can

be eliminated iff, there exists another solution B = (SB : CB) such that SB ⊆ SA,

CB ⊆ CA and A 6= B

50

RBS CKPTS Cost

s25 s11,s13 13

s30 s9,s11 15

s22 s11,s16,s21 18

s28 s9,s16,s27 25

RBS CKPTS Cost

s7 s5 11

s3 s2,s9 14

s9 s7,s13 15

s11 s5,s7 18

SL RBS CKPTS Cost

B s3,s30 s2,s9,s11 28

B s7,s25 s5,s11,s13 32

B s7,s30 s5,s9,s11 34

B s3,s25 s2,s9,s11,s13 35

E2 E4

({B}, {E2, E4})

product join E2 X E4

SL RBS CKPTS Cost

A s17,s34,s63 s5,s20,s34 27

A s13,s38,s55 s19,s28,s40 30

A s17,s41,s50 s5,s32,s47 33

A s17,s34,s72 s5,s20,s45 35

({B}, {E2, E4}), ({A}, {E5})

merge join ({B}, {E2, E4}) + ({A}, {E5})

({A}, {E5})

SL RBS CKPTS Cost

A s17,s34,s63 s5,s20,s34 27

B s3,s30 s2,s9,s11 28

A s13,s38,s55 s19,s28,s40 30

B s7,s25 s5,s11,s13 32

Figure 5.4: Joining solutions.

Joining Partial Solutions into a Global Solution

The globally minimum solution can be computed by finding the best region cut posi-

tions for each segment and merging them into a final solution, in the reverse order of

decomposition. Figure 5.4 shows an example of merging.

In the first step, for each segment in the segment-level solution, all region boundary

placements are tried to compute the best checkpointing resultCheckpointing cost is

computed by checkpoints produced by each boundary placement. Checkpoints are

weighted by loop depth it belongs and summed into a score. With these checkpoints

inside loops are more likely avoided than the ones outside loops. Penny uses a sorted

table to keep the best T results. Each item in the table consists of fields including

stitched loads (SL), region boundaries (RBS), checkpoints (CKPTS), and the cost value.

Each component results are merged into a global solution in multiple steps. For each

51

step, Penny keeps the best T results in a sorted table. Two kinds of joining operations

are used for joining partial solutions into a larger composition. A product join operation

combines two tables by generating items from all possible pairs of items from each table.

Stitched loads, region boundaries, and checkpoints are merged with union operation for

each pair, and the cost is recomputed with the combined checkpoint set. A merge join

is simply merging two lists by keeping only T best results from both lists.

The first merging step is to merge each segment into a segment-level solution by

product join. Left bottom part of figure 5.4 shows merging result from E2 and E4

by a product join. After merging, region stitching cost for B are added to compute

final costs for solution (B,E2, E4). The cost of stitching is computed similarly to the

checkpointing cost. For the second step, all possible solution inside a group is merged

joined to concentrate into the best T result for the group. In this example, best results

from (, E1, E5) to (A,B,) are sorted and selected. For the last step, results from each

group are joined with the product join.

Instead of keeping just one best item for each step, Penny keep multiple best

items. This is because there are set operations is involved in checkpoint merging,

so a combination of the minimum results from each sub-results may not lead to a

combined minimum. However, keeping only a few best T results at each step is enough

to generate optimal or near-optimal solutions in most cases, so the merging operation

time is ignorable.

5.4 Bimodal Checkpoint Placement

Bolt’s eager checkpointing imposes the restriction that all live-out registers of a region

must be checkpointed right after their LUPs. However, we found that such a restriction

can be safely relaxed, i.e., each checkpoint can be delayed—without compromising

the recoverability guarantee—until the region end (boundary). That is because the

checkpointed registers in a region are used as inputs to some later regions, not the

52

region itself. This insight allows Penny to schedule checkpoints to minimize the run-

time overhead.

However, due to many such possible points in diverse execution paths between

LUP and the region boundary, it is indeed a complex problem to achieve the optimal

checkpoint scheduling. In light of this, Penny simplifies the scheduling problem with

two separate phases. First, for a given live-out register, Penny’s bimodal checkpoint

placement determines where to place each checkpoint, i.e., either the LUP or the region

boundary. The goal of this phase is to identify those checkpoints, that exist inside a loop,

and pick them out of the loop. The other phase is performed during code generation to

fine-tune the bimodal checkpoint schedule within a basic block level that includes the

LUP or the region boundary. This local scheduling considers optimization objectives

such as increasing instruction reuse and reducing register usage.

Last Update Points

Region Boundaries

L1 r = …

L2 r = …

… = r

… = r

RB1 RB2

RB3

L1(1) L2(4) L3(2)

RB1(2) RB2(2) RB3(1)

(a) Example program

(b) Relation between LUPs

and region boundaries

… = r
L3 r = …

Figure 5.5: Bimodal checkpoint placement.

In a sense, the bimodal placement is global scheduling in that it picks the checkpoint

location between the LUP and the region boundary that can exist across basic blocks.

53

The placement algorithm covers all live-paths—where the checkpoint is used—within

the region and minimizes the estimated total cost of the checkpoint to be placed.

Figure 5.5(a) shows how this works with an example control flow graph where a single

register r is used for simplicity. Here, r is last updated in 3 different LUPs, L1, L2 and

L3.

Note that LUPs and region boundaries have a many-to-many relationship, and thus

a checkpoint can be shared between them. For example, if a checkpoint is placed at

L1, neither RB1 nor RB2 needs a checkpoint there. Similarly, a checkpoint placed at

RB3 can obviate both LUPs L2 and L3. The relation between an LUP and a region

boundary can be modeled as a graph where they are represented as vertices. As shown

in Figure 5.5(b), each vertex is labeled by the cost of the corresponding checkpoint.

Penny calculates the cost by 2d, where d is the loop depth. If a register is lastly updated

at some LUP, then an edge is introduced from the LUP to the beginning (boundary) of

the region to which the register is used as an input.

For each edge in the graph, at least one of the incident vertices must be chosen for

checkpoint placement, and Penny tries to minimize the total cost of the checkpoints

chosen; as shown in Figure 5.5(b), choosing L1, RB1 and RB3 gives the minimum

cost of 4. This problem can be modeled as a weighted version of the vertex cover

problem that is NP-hard [24] in general cases. However, the problem can be solved in

polynomial time in case of a bipartite graph—where vertices can be divided into two

disjoint sets and all edges connect a vertex from one set to another—as with graphs in

our problem. Interestingly, König’s theorem [31, 44, 23] shows that the vertex cover

problem for a bipartite graph is equivalent to solving the maximum matching of the

graph. According to the weighted version of the theorem, Penny uses a maximum-flow

algorithm to solve our checkpoint placement in polynomial time.

54

5.5 Optimal Checkpoint Pruning

5.5.1 Bolt’s Naive Pruning Algorithm and Overview of Penny’s Optimal

Pruning Algorithm

Bolt [53] introduced checkpoint pruning. The insight is that a large number of check-

points can be safely pruned (removed) without compromising the recoverability guar-

antee if they can be reconstructed from other checkpointed values available at recovery

time. In light of this, Bolt builds the recovery slice (i.e., a series of instructions) of each

region to reconstruct its live-in registers whose checkpoints are pruned. Bolt uses a

random search to find a possible pruning solution—that tells which checkpoints can be

removed. However, the search space dramatically increases as the number of checkpoint

increases; the number of possible solutions for n checkpoints is 2n, i.e., there are 2n

n-bit strings where each bit tells if the corresponding checkpoint can be pruned or

not. Thus, instead of validating all possible solutions, Bolt simply finds any first valid

solution encountered during the random searches, each of which preconceives a random

n-bit string solution. The valid solution found is not necessarily optimal in that it is

validated as long as the checkpoints corresponding to its set-bit positions can be all

pruned. In fact, Bolt ends up leaving many unnecessary checkpoints committed, thus

causing a significant slowdown in GPUs.

To this end, Penny proposes a novel pruning algorithm that can find an optimal

solution with the least estimated cost in polynomial time. Unlike Bolt’s search-based

approach, Penny validates individual checkpoints by analyzing their dependence from

scratch without preconceiving their pruning eligibility, meaning that Penny does not

require all pruning decisions to be fixed before validation. Overall, Penny’s pruning

takes 2 phases. The first phase filters out trivial (obvious) checkpoints whose pruning

decision turns out to be either valid or invalid without referring to others. The pruning

decision here holds during the entire algorithm, so the next phase simply focuses on the

remaining checkpoints whose pruning decision is not finalized by the first phase; we call

55

them non-trivial checkpoints. In the second phase, Penny figures out their dependence

order, i.e., which checkpoint must be decided before others’ pruning decisions due to

the dependence. Penny validates the non-trivial checkpoints in the order imposed by

the decision dependence to finalize their pruning decisions.

5.5.2 Phase 1: Collecting Global-Decision Independent Status

2: r4 = 8

3: rp = …
4: br rp, …

5: r5 = r3 + 2

6: r1 = r5 * 4

7: ld r3, [A]

8: r1 = r3 + r4

9: r5 = …
10: r2 = r1 + 5c10

data dep

pred dep

c5

11: r5 = r2 + …

c9

12: st [A], …
13: … = r2 + …c11

live-in

RB1

RB2
RB3

RB4 RB5

c6

Cn
Checkpoint

after line n

1: r3 = r3 + 1

cv

Figure 5.6: Example of a checkpoint validation.

To identify trivial checkpoints, Penny should validate them first. We use the cv to

refer to a checkpoint being validated and the following rule for its validation.

Rule 1. For cv to be valid (removable), all the values it depends on must remain the

56

same at the endpoints of all the regions where cv is used no matter which path is taken

to reach the endpoints.

That is because the values must be used for the regions’ recovery slice to recompute

the value of cv if it is pruned. In a sense, validating cv can be understood as building

its recovery slice. The validation process requires tracking the necessary dependences

over the program’s control flow graph. In addition to data dependences [63], Penny

considers a new type of dependence called predicate dependence. This is necessary

when the value on which cv depends is differently recomputed at control flow paths,

e.g., in Figure 5.6, cv depends on r1 whose value differs across the paths of the branch.

Hence, cv’s recovery slice has to include the branch and its predicate, e.g., rp at line

4 in the figure where we say r1 is predicate-dependent on rp. More precisely, for a

value that is defined on multiple paths, it is predicate-dependent on the predicates of the

branches on which its definitions are control-dependent [63]. We represent predicate

and data dependences in a graph and call it PDDG (predicate/data dependence graph).

As shown in Figure 5.7, Penny validates each checkpoint (cv) by traversing the

PDDG starting from cv in depth-first search (DFS). The DFS continues by following

the dependence chain over the PDDG and terminates at the node whose value can be

either safely used at recovery time or dangerous to be used; we call the node a terminal.

For example, if a register is assigned a constant loaded from GPU’s read-only memory,

the recovery slice can safely use not only the value by reloading it2 but also others that

only depend on such a valid value. Thus, the validation state of a PDDG node, i.e.,

whether its value can be used at recovery time, is determined by those that it depends

and their validation state.

With that in mind, on the way back to cv where DFS is started, Penny determines

the validation state of the PDDG nodes visited marking them with one of 3 labels:

valid (φV), invalid (φI), and undecided (φU). That is, once terminal nodes are marked
2GPU memory is protected by ECC, and Penny ensures that register file errors never propagate to

memory (See Appendix 4.1).

57

with either φV or φI , the validation state is propagated to their dependent nodes, if

necessary, being merged with other states as shown in Figure 5.7. In particular, when

φI is propagated to a checkpoint node, Penny changes the state to φU (i.e., undecided).

That is because we do not know the pruning decision of the checkpoint yet—if it is

committed, the recovery slice could use it. Thus, we simply defer its validation state

determination to the next phase and mark it and its dependents with φU .

Algorithm 1 details the validation state propagation process. MARKVALIDATIONSTATES

takes a PDDG node cv as input and calls MARK which performs the depth-first search

(DFS) of the PDDG starting from cv.

DFS terminal condition: The traversal stops at a terminal node and starts to back-

track toward cv. There are 3 types of terminals: First, the value of the node is constant,

i.e., literal or what is loaded from GPU’s read-only memory (line 9 in the algorithm).

Since it can be retrieved safely, it is marked φV . Second, any node found in a cyclic

dependence chain (line 7), e.g., a loop carried dependence, is terminal, and it is marked

φI due to the difficulty of recomputing the value. Third, a value loaded from memory

is also terminal (lines 11-12), and it is valid if it satisfies Rule 1; if the memory value

can be used for the recovery of the region where cv’s checkpointed register is used, to

reconstruct it, then the PDDG node is marked φV which is otherwise marked φI . For

example, in Figure 5.6, cv checkpoints r2 at line 10, and it depends on the memory

value loaded from address A at line 7 through the data dependence chain. Here, the

memory value must not be overwritten until RB4 and RB5 because r2 is used in

the regions ending with these boundaries. However, the intervening store at line 12

overwrites the memory value due to the alias in the address A, and thus the PDDG node

of the memory value is marked φI .

DFS backtracking and state merging: Once terminal nodes are encountered (lines

7-12 in the algorithm), DFS triggers the backtracking to propagate the validation state of

non-terminal nodes being visited to their descendant (lines 13-17). For a non-terminal

58

cv: φV

φV

φV
φV

φV

cd: φV

φV φV

cv: φI

φI

φV φI

φV

cd: φV

φV φV

cv: φU

φU

φV

φU

cd2: φU

φU

cd1: φU

φI

Non-Checkpoint

Checkpoint

(a) Prunable

checkpoint

(b) Committed

checkpoint

(c) Undecided

checkpoint

Predicate/data

dependence

τP τC τU

Examples of

validation state

propagation

P1

P2

Figure 5.7: Merging validation states in PDDG.

node, Penny collects all nodes it depends on (line 14) and visits them (lines 15-17). The

validation state of the dependent node is determined by merging the state it depends on

(line 17), i.e., picking the highest with the precedence of φI > φU > φV . The intuition

is that for a PDDG node to be valid, all the nodes it depends must be valid (Rule 1) as

shown in Figure 5.7(a). In contrast, propagation path P1 in Figure 5.7(b) shows that the

decision of cv is dictated by a single terminal node with φI .

Finally, for a checkpoint node visited, line 18 of the algorithm checks if its input state

is φI ; if so, the state is lowered to φU (line 19). Figure 5.7(c) shows such an example;

on the propagation path P2, φI becomes φU through the intervening checkpoint Cd1. A

more concrete example is found in the control flow graph of Figure 5.6. Although r3 in

line 1 is invalid (φI) due to the loop-carried dependence, Penny marks the state of its

dependent r5 (at line 5) with φU . In this way, Penny leaves a chance for r5’s checkpoint,

if committed, to be used to reconstruct cv rather than giving it up by marking the state

with φI .

Once all validation states are merged backed to cv, Penny uses the resulting state

of cv to decide its pruning decision as one of three: τP (pruned) if it is in φV , τC

(committed) if it is in φI , and τU (undecided) if it is in φU . The pruning decisions of

τP and τC are final, and thus only undecided (τU) checkpoints move onto the next

59

phase. Our evaluation shows that the first phase can finalize the pruning decisions of the

majority of checkpoints, so the second phase only needs to deal with a small number of

the remaining undecided checkpoints.

5.5.3 Phase2: Ordering and Finalizing Renaming Decisions

Collecting Decision Dependence between Checkpoints

Penny first discovers the dependence between undecided (τU) checkpoints. If the

pruning decision of one checkpoint is subject to that of another, we say they have

decision dependence and call its graph representation a decision dependence graph

(DDG). Then, Penny visits each DDG node (i.e., τU checkpoint) in a topological order,

finalizing their pruning decision.

Note that the decision dependence naturally imposes an order on the pruning

decision between the checkpoints. To guarantee all prerequisite decision results are

available before validating a checkpoint, Penny follows the order imposed by the

decision dependence to validate and determine the pruning decisions of the remaining

checkpoints—starting from the node that only depends on trivial checkpoints whose

pruning decisions are already made.

Analyzing Decision Dependence Suppose the register value stored by cd can be used

for the reconstruction of checkpoint cv. To realize such a dependence, the 2 conditions

have to be satisfied: (1) cd is committed and (2) all checkpoints that can possibly

overwrite cd until the endpoints of all the regions where cv’s register value is used must

be all pruned; see Rule 1. For example, in Figure 5.6, for c10, that depends on c5, to

be safely pruned, c5 must be committed, and c9 and c11, that overwrite c5, must be

pruned. That is, in order to validate cv, the pruning decisions of c5, c9, and c11 must be

computed beforehand.

Algorithm 2 details the dependence analysis. COLLECT-DECISIONDEPS collects

all decision dependences of cv by traversing the PDDG by following the dependence

60

chain until a committed (τC) checkpoint is encountered (lines 8-9). For each committed

(τC) checkpoint cd, Penny adds to F (cv’s dependence set) all the checkpoints possibly

overwriting cd until the endpoints of the regions where cv is used (OWCKPTS in

the algorithm), according to Rule 1. Note that cd does not have to be included in

the decision dependence because its pruning decision (τC) is already made. Pruned

checkpoints (τP) do not have checkpointed values to use, so they are ignored and

Penny advances to the next PDDG dependence. For undecided (τU) checkpoints cd,

Penny conservatively considers decision dependence for either case of the checkpoint

being pruned/committed. Penny adds the undecided checkpoint cd and the checkpoints

overwriting it (OWCKPTS) to cv’s dependence set F at line 12 and continues the

depth-first search to encounter a committed checkpoint.

Ordering and Finalizing Pruning Decision

Penny now navigates the decision dependence graph (DDG) obtained from Algorithm 2

in a topological order. Figure 5.8 shows an example DDG; the colored nodes represent

trivial checkpoints, whose pruning decision is already decided in the first phase, and

therefore they do not have decision dependence on others.

Except for the nodes with a cyclic dependence, Penny can determine the pruning

decisions of all the other nodes by following the reverse order of the decision depen-

dence. Penny uses Tarjan’s algorithm [76] to sort the DDG in a topological order along

with identifying strongly connected components (SCCs) in a traversal. As shown in

Figure 5.8, Penny then visits and validates DDG nodes in the resulting topological order

(i.e., shown as increasing numbers in the figure) to determine their pruning decision;

again, such a decision-order-preserving traversal ensures that when each checkpoint cv

is visited, all the necessary validation states of other checkpoints on which cv depends

have already been available.

To validate each checkpoint, Algorithm 1 can be used to traverse the checkpoint’s

PDDG and obtain a final decision. However, Penny skips the redundant validations by

61

SCC A (7)

3

65

4

13

SCC B (10)

9 11

2

16

8

14

151

12

Decision dependence

CP w/o decision dep.

CP with decision dep.

Figure 5.8: Decision dependence graph.

only checking the validity of the nodes in the dependence set of the checkpoint (i.e., F

of Algorithm 2).

For an SCC that has a cyclic dependence, which makes the dependence-order-

preserving traversal improper, Penny treats all the nodes within each SCC as a single

DDG node. This implies that Penny needs to make a pruning decision for all the nodes

within an SCC before moving to the next DDG node in the topological order. To find

the best combination of the pruning decisions for the nodes within an SCC, Penny

performs a brute-force search using the cost model (Section 5.2); we found no SCC in

our evaluation. In the absence of SCCs, our overall pruning algorithm has O(mn) time

complexity where m is the code size and n is the number of checkpoints in the code.

62

5.5.4 Effectiveness of Eliminating the Checkpoints

In this section, we analyze how effectively the pruning algorithm reduces the checkpoint

by analyzing the compilation statistics. Performance evaluation on how the eliminated

checkpoints reduce the overhead can be found in Section 6.2.4.

Statistics on Verification Path Tracking

r2 = r1 + r5

r3 = r3 + r4

r1 = r2 + r3

cp r1

… r5 = r4 + 2

r3 = 4

r4 = r4 + r2

…

r1 = 4

r2 = r1 + 3

r4 = r1 + 5

Tracking path 1

Depth of path 1: 6

Depth of path 2: 4

…
Depth of path 10: 3

Number of paths: 10

Average depth: 3.6

Max depth: 6

Cv

Figure 5.9: Maximum depth and average depth of instruction visited while pruning.

In this section, we analyze how deep and broadly the verification process recursively

tracks down the data- and predicate- dependence in our optimized pruning algorithm.

Figure 5.9 shows how the collected statistic values are defined. The verification starts

from Cv and data- and predicate- dependences are tracked down recursively. The

dependence tracking diverges into multiple paths because 1) there can be multiple

operands in an instruction to track (i.e. for r1 = r2 + r3 two operands r2 and r3 must

be tracked), and 2) control flow divergence may exists on the tracking path. In the given

example the dependence tracking beginning from Cv diverges into various paths. Let’s

63

assume there are 10 divergent paths from path 1 to path 10. We measure the tracking

depth of each path by the number of instructions it has visited. Path 1 is shown in the

code is the longest path among all. Here we define the statistics measured for each

verified checkpoints:

• Number of paths: Total number of paths. This shows the divergence of code

tracking required for verification. Total 10 paths are tracked in this example.

• Max depth: The depth of the longest path. This means the maximum limit of

recursion for dependence tracking. In this example path 1 has the longest depth

of 6:

• Average depth: Average depth of all paths. In this example, the average depth of

10 paths is 6.

• Total instructions visited: This is the total number of instructions visited for all

the recursion. This can be used to measure the execution time required for the

recursion and also an approximated estimation of the recovery slice code size.

For each checkpoint, we measure these 4 statistics and computed average of each

value for checkpoints in a kernel. Note that in the optimal pruning algorithm unnecessary

dependence tracking paths are skipped (short-circuited), i.e. if a validation state is unsafe

for a certain path a PDDG node depends on, other dependences can be ignored. This

significantly reduces the portion of the dependence tracking tree the verification must

be visited.

Figure 5.10 shows the average number of paths for each checkpoints. This indicates

how broad the verification must recursively track the dependence. On average, 3.0

paths must be verified for each checkpoint. Kernel named GPU laplace3d in the LPS

application had the maximum 68 number of paths. Without short-circuit optimization,

the checkpoints have 29.0 paths on average and 849 in maximum. This shows that

the pruning algorithm efficiently avoids unnecessary visits of dependence paths on

verification.

64

CP
_Z

7
LI

B_
Z2

8
LI

B_
Z2

9
LP

S_
Z1

3
NN

_Z
17

NN
_Z

18
NQ

U_
Z2

4
SG

EM
M

_Z
9

SP
M

V_
Z2

4
SP

M
V_

Z9
ST

C_
Z2

4
TP

AC
F_

Z9
BP

_Z
22

BP
_Z

24
BF

SR
D_

Z6
BF

SR
D_

Z7
GA

U_
Z4

HS
_Z

14
M

D_
Z1

5
LU

D_
Z1

2
LU

D_
Z1

3
LU

D_
Z1

2
NW

_Z
20

NW
_Z

20
PF

_Z
14

SR
AD

_Z
11

SR
AD

_Z
11

SC
_Z

19
BS

_Z
15

SQ
_Z

15
BO

_Z
21

CS
_Z

21
CS

_Z
24

FW
_Z

15
FW

_Z
15

FW
_Z

14
SP

_Z
13

M
T_

Z4
M

T_
Z1

3
M

T_
Z1

4
M

T_
Z1

8
M

T_
Z2

4
M

T_
Z1

7
M

T_
Z2

0
M

T_
Z2

2
av

er
ag

e

Kernel

0

2

4

6

8

10

12

14

of

 tr
ac

ki
ng

 p
at

hs

Figure 5.10: Average number of dependence tracking paths for each checkpoint.

CP
_Z
7

LI
B_
Z2

8
LI
B_
Z2

9
LP
S_
Z1

3
NN

_Z
17

NN
_Z
18

NQ
U_

Z2
4

SG
EM

M
_Z
9

SP
M
V_
Z2

4
SP

M
V_
Z9

ST
C_
Z2

4
TP

AC
F_
Z9

BP
_Z
22

BP
_Z
24

BF
SR

D_
Z6

BF
SR

D_
Z7

GA
U_

Z4
HS

_Z
14

M
D_

Z1
5

LU
D_

Z1
2

LU
D_

Z1
3

LU
D_

Z1
2

NW
_Z
20

NW
_Z
20

PF
_Z
14

SR
AD

_Z
11

SR
AD

_Z
11

SC
_Z
19

BS
_Z
15

SQ
_Z
15

BO
_Z
21

CS
_Z
21

CS
_Z
24

FW
_Z
15

FW
_Z
15

FW
_Z
14

SP
_Z
13

M
T_
Z4

M
T_
Z1

3
M
T_
Z1

4
M
T_
Z1

8
M
T_
Z2

4
M
T_
Z1

7
M
T_
Z2

0
M
T_
Z2

2
av

er
ag

e

Kernel

0

1

2

3

4

5

6

De
pt
h

max_depth
avg_depth

Figure 5.11: Maximum depth and average depth of instruction visited while pruning.

Figure 5.11 presents the maximum and average depth of the dependence tracking.

The total average for all kernels is 2.9 for maximum depth and 2.2 for average depth.

The checkpoint in executeSecondLayer kernel in SGEMM has the maximum depth

of 21. The original tracking path without short-circuiting has an average depth of 3.4

and a maximum depth of 36.

Figure 5.11 shows the total number of instructions visited in the dependence tracking

tree. This could be used as an estimated measure of the pruning execution time or

the generated size of the recovery slice. On average 6.2 instructions are visited for

verification per checkpoint and maximum of 188. Without short-circuit optimization,

65

CP
_Z

7
LI

B_
Z2

8
LI

B_
Z2

9
LP

S_
Z1

3
NN

_Z
17

NN
_Z

18
NQ

U_
Z2

4
SG

EM
M

_Z
9

SP
M

V_
Z2

4
SP

M
V_

Z9
ST

C_
Z2

4
TP

AC
F_

Z9
BP

_Z
22

BP
_Z

24
BF

SR
D_

Z6
BF

SR
D_

Z7
GA

U_
Z4

HS
_Z

14
M

D_
Z1

5
LU

D_
Z1

2
LU

D_
Z1

3
LU

D_
Z1

2
NW

_Z
20

NW
_Z

20
PF

_Z
14

SR
AD

_Z
11

SR
AD

_Z
11

SC
_Z

19
BS

_Z
15

SQ
_Z

15
BO

_Z
21

CS
_Z

21
CS

_Z
24

FW
_Z

15
FW

_Z
15

FW
_Z

14
SP

_Z
13

M
T_

Z4
M

T_
Z1

3
M

T_
Z1

4
M

T_
Z1

8
M

T_
Z2

4
M

T_
Z1

7
M

T_
Z2

0
M

T_
Z2

2
av

er
ag

e

Kernel

0

5

10

15

20

25

30

of

 V
isi

te
d

In
st

ru
ct

io
ns

Figure 5.12: Average number of instructions visited for checkpoints while pruning.

this would be 76.6 on average and a maximum of 2393.

Breakdown of Checkpoint Pruning Result

CP
_Z

7
LI

B_
Z2

8
LI

B_
Z2

9
LP

S_
Z1

3
NN

_Z
17

NN
_Z

18
NQ

U_
Z2

4
SG

EM
M

_Z
9

SP
M

V_
Z2

4
SP

M
V_

Z9
ST

C_
Z2

4
TP

AC
F_

Z9
BP

_Z
22

BP
_Z

24
BF

SR
D_

Z6
BF

SR
D_

Z7
GA

U_
Z4

HS
_Z

14
M

D_
Z1

5
NW

_Z
20

NW
_Z

20
PF

_Z
14

SR
AD

_Z
11

SR
AD

_Z
11

SC
_Z

19
BS

_Z
15

SQ
_Z

15
BO

_Z
21

CS
_Z

21
CS

_Z
24

FW
_Z

15
FW

_Z
15

FW
_Z

14
SP

_Z
13

M
T_

Z4
M

T_
Z1

3
M

T_
Z1

4
M

T_
Z1

8
M

T_
Z2

4
M

T_
Z1

7
M

T_
Z2

0
M

T_
Z2

2
av

er
ag

e

Kernel

0

50

100

150

200

250

of

 C
he

ck
po

in
ts

P1 Pruned
P1 Committed
P2 Pruned
P2 Committed

Figure 5.13: Number of checkpoint decision finalized in each phase.

Penny’s optimal pruning algorithm efficiently finalizes most of the checkpoints in

linear time, and the majority of them are finalized after the first phase which requires

less computation compared to the second phase. Figure 5.13 and Figure 5.14 shows

the number of checkpoint decisions finalized in each stage and their relative portions.

P1 Pruned and P1 Committed are the checkpoints finalized as pruned or committed

66

CP
_Z

7
LI

B_
Z2

8
LI

B_
Z2

9
LP

S_
Z1

3
NN

_Z
17

NN
_Z

18
NQ

U_
Z2

4
SG

EM
M

_Z
9

SP
M

V_
Z2

4
SP

M
V_

Z9
ST

C_
Z2

4
TP

AC
F_

Z9
BP

_Z
22

BP
_Z

24
BF

SR
D_

Z6
BF

SR
D_

Z7
GA

U_
Z4

HS
_Z

14
M

D_
Z1

5
NW

_Z
20

NW
_Z

20
PF

_Z
14

SR
AD

_Z
11

SR
AD

_Z
11

SC
_Z

19
BS

_Z
15

SQ
_Z

15
BO

_Z
21

CS
_Z

21
CS

_Z
24

FW
_Z

15
FW

_Z
15

FW
_Z

14
SP

_Z
13

M
T_

Z4
M

T_
Z1

3
M

T_
Z1

4
M

T_
Z1

8
M

T_
Z2

4
M

T_
Z1

7
M

T_
Z2

0
M

T_
Z2

2
av

er
ag

e

Kernel

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

P1 Pruned
P1 Committed
P2 Pruned
P2 Committed

Figure 5.14: Relative portion of checkpoints decision finalized in each phase.

at the first phase. Remaining checkpoints are decided to pruned or committed in the

second phase which is presented as P2 Pruned and P2 Committed. On average 88.6%

of the checkpoints are finalized to either state after phase 1, thus an only a small portion

of checkpoints requires the time-consuming phase 2.

CP
_Z
7

LI
B_
Z2

8
LI
B_
Z2

9
LP
S_
Z1

3
NN

_Z
17

NN
_Z
18

NQ
U_

Z2
4

SG
EM

M
_Z
9

SP
M
V_
Z2

4
SP

M
V_
Z9

ST
C_
Z2

4
TP

AC
F_
Z9

BP
_Z
22

BP
_Z
24

BF
SR

D_
Z6

BF
SR

D_
Z7

GA
U_

Z4
HS

_Z
14

M
D_

Z1
5

LU
D_

Z1
2

LU
D_

Z1
3

LU
D_

Z1
2

NW
_Z
20

NW
_Z
20

PF
_Z
14

SR
AD

_Z
11

SR
AD

_Z
11

SC
_Z
19

BS
_Z
15

SQ
_Z
15

BO
_Z
21

CS
_Z
21

CS
_Z
24

FW
_Z
15

FW
_Z
15

FW
_Z
14

SP
_Z
13

M
T_
Z4

M
T_
Z1

3
M
T_
Z1

4
M
T_
Z1

8
M
T_
Z2

4
M
T_
Z1

7
M
T_
Z2

0
M
T_
Z2

2
av

er
ag

e

Kernel

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

P
C_MemOv
C_CyclicDep
D_C
D_P

Figure 5.15: Detailed breakdown of pruning decision.

Figure 5.15 shows the detailed breakdown of how checkpoints are classified on

each pruning phase. P is the portion of checkpoints being pruned at the first phase.

68.8% of the checkpoints are pruned on average. C MemOv is the checkpoint being

committed after the first phase due to violation of memory overwrite verification, which

67

is 11.1% on average. C CyclicDep is the portion committed after the fist phase due

to cyclic dependence in the verification dependence tracking, accounting for 9.3% on

average. For the remaining checkpoints, the second phase collects decision dependence

and orders the verification. After the second phase, 5.3% are committed (D C) and

6.0% is pruned (D P).

Portion of Checkpoints Eliminated

CP
_Z

7
LI

B_
Z2

8
LI

B_
Z2

9
LP

S_
Z1

3
NN

_Z
17

NN
_Z

18
NQ

U_
Z2

4
SG

EM
M

_Z
9

SP
M

V_
Z2

4
SP

M
V_

Z9
ST

C_
Z2

4
TP

AC
F_

Z9
BP

_Z
22

BP
_Z

24
BF

SR
D_

Z6
BF

SR
D_

Z7
GA

U_
Z4

HS
_Z

14
M

D_
Z1

5
NW

_Z
20

NW
_Z

20
PF

_Z
14

SR
AD

_Z
11

SR
AD

_Z
11

SC
_Z

19
BS

_Z
15

SQ
_Z

15
BO

_Z
21

CS
_Z

21
CS

_Z
24

FW
_Z

14
FW

_Z
15

FW
_Z

15
SP

_Z
13

M
T_

Z1
3

M
T_

Z1
4

M
T_

Z1
7

M
T_

Z1
8

M
T_

Z2
0

M
T_

Z2
2

M
T_

Z2
4

M
T_

Z4
av

er
ag

e

Kernel

0

50

100

150

200

250

of

 C
he

ck
po

in
ts

Committed
Additional
Basic

Figure 5.16: Number of checkpoints removed by basic/optimal pruning.

CP
_Z
7

LI
B_
Z2

8
LI
B_
Z2

9
LP
S_
Z1

3
NN

_Z
17

NN
_Z
18

NQ
U_

Z2
4

SG
EM

M
_Z
9

SP
M
V_
Z2

4
SP

M
V_
Z9

ST
C_
Z2

4
TP

AC
F_
Z9

BP
_Z
22

BP
_Z
24

BF
SR

D_
Z6

BF
SR

D_
Z7

GA
U_

Z4
HS

_Z
14

M
D_

Z1
5

NW
_Z
20

NW
_Z
20

PF
_Z
14

SR
AD

_Z
11

SR
AD

_Z
11

SC
_Z
19

BS
_Z
15

SQ
_Z
15

BO
_Z
21

CS
_Z
21

CS
_Z
24

FW
_Z
14

FW
_Z
15

FW
_Z
15

SP
_Z
13

M
T_
Z1

3
M
T_
Z1

4
M
T_
Z1

7
M
T_
Z1

8
M
T_
Z2

0
M
T_
Z2

2
M
T_
Z2

4
M
T_
Z4

av
er
ag

e

Kernel

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Committed Additional Basic

Figure 5.17: Relative portion of checkpoints removed by basic/optimal pruning.

This section studies the statistics of our optimal checkpoint pruning—that can

68

significantly reduce Penny’s run-time overhead, as shown in Section 6.2.2 in comparison

to Bolt’s naive pruning. Figure 5.16 compares the number of checkpoints pruned

using each pruning algorithm and Figure 5.17 is the relative portion of the pruned

checkpoints normalized to total checkpoints. (1) Basic corresponds to the checkpoints

eliminated by Bolt’s basic pruning while (2) Additional to those checkpoints that can

further be eliminated only by Penny’s optimal pruning. Finally, (3) Committed is the

remaining checkpoints after Penny performs the optimal pruning. On average, basic

and optimal pruning schemes eliminate the total number of checkpoints by 30% and

75%, respectively.

5.6 Automatic Checkpoint Storage Assignment

To achieve better performance, Penny automatically assigns committed checkpoints to

storages by considering both memory access latency and thread-level parallelism in a

balanced manner.

Only the registers that have one or more committing checkpoint remaining after

pruning, have storage unit assigned. If a storage alternation is applied to a register and

checkpoints colored with both storages remain, the register gets two units of storage

assigned. For other checkpoints, a single unit of storage is assigned.

For checkpoint storages, Penny uses shared memory (in SRAM) and global memory

(in DRAM but cached) that are both protected by ECC in GPUs [65]. Shared memory

is shared between threads in a thread block and has a limited size. Although shared

memory has a significantly lower latency compared to global memory, allocating shared

memory over a certain limit can hurt the performance due to diminished warp-level

parallelism, i.e., low occupancy [65]. With that in mind, Penny first figures out how

much shared memory can be used without reducing the occupancy.

Then, Penny scores the live-out registers—whose checkpoints are committed—with

the sum of all their checkpoint costs over the entire program (Section 5.2). By taking

69

into account the resulting cost, Penny can prioritize a frequently accessed register

over others to allocate it into the low-latency shared memory. That is, Penny tries

to assign as many registers as possible to the shared memory before it reaches the

occupancy-preserving limit, and then the rest of the registers are assigned to the global

memory.

It is important to note that Penny’s 2-coloring based storage alternation does not sig-

nificantly increase memory footprint. The reason is two-fold. First, Penny’s 2-coloring

only assigns additional storage into those checkpoints that are overwritten; only a

small number of registers (25% on average) require the storage alternation, and it is

further reduced by checkpoint pruning. Second, Penny allocates storages only for those

registers whose checkpoints are committed at least once. As a result, the average storage

size required for each register is only 0.75. That is because Penny’s optimal pruning

removes the vast majority of checkpoints.

Penny also provides an option to use free occupancy-preserving registers for check-

point storage. With a sacrifice of some resilience, checkpointing cost can be mitigated

by the low-latency storage. A DUE may happen when a program register and its

corresponding duplicate are corrupted simultaneously, but the chance is inconspicuous.

5.7 Low-Level Optimizations and Code Generation

After the checkpoint pruning, Penny performs several low-level optimizations to further

reduce the run-time overhead of committed checkpoints. In GPUs, calculating the

effective address of the checkpoint storage requires multiple instructions. To reduce the

instruction count, Penny conducts a variant of common subexpression elimination, loop

invariant code motion (LICM), and induction variable optimization. So, the checkpoint

70

storage address for shared memory can be computed as:

checkpoint address = storage base + thread id × reg size︸ ︷︷ ︸
reused thread base

+ storage index × reg size × threads per SM︸ ︷︷ ︸
computed at compile time

The computation is split in two parts. The first storage base can be computed once for

each thread and reused for all checkpoints. So, the register that the result is stored is

remembered and reused if possible. The second part should be computed individually

for each checkpoint, because it requires a storage index that is assigned for each

checkpointed unit. However, this can be done in compilation time, so in the optimal

case, the final address can be calculated in just one addition. If the computation for

storage base is inside a loop, Penny tries to hoist it out of the loop by LICM if there is

a free register throughout the loop to store the computed value.

Finally, Penny performs local checkpoint scheduling to improve the decision made

by the bimodal checkpoint scheduling (Section 5.4). The local scheduling works in a

basic block level by pushing down the LUP checkpoints toward the region boundary

and pushing up the region boundary checkpoints toward LUP. That is, LUP checkpoints

can be placed between their LUP and the end of their corresponding basic block, while

region boundary checkpoints can be inserted at any point from their region boundary

up to the beginning of the basic block that includes the boundary. In particular, Penny

evaluates each possible point to find the best that can maximize the reuse of previously

calculated checkpoint address and minimize the register usage.

71

Algorithm 1 Marking validation states
1: Φ(s): Validation state of a PDDG node s.

2: MAXPRIORITY(φa, φb): Higher priority in the order of φI > φU > φV .

3: CHECKMEMOW(s, cv): φI if s is overwritten until the endpoints of regions where

cv is used, otherwise φV .

4: function MARKVALIDATIONSTATES(cv)

5: return MARKING(cv, {cv}, cv)

6: function MARKING(cv, V isited, s)

7: if s ∈ V isited then . Cyclic dependence found

8: return Φ(s)← φI

9: if s is a constant value then

10: return Φ(s)← φV

11: if s is a load from read/write memory then

12: return Φ(s)← CHECKMEMOW(s, cv)

13: φmerged ← φV . Initialize validation state before merging

14: D ← GETPREDDATADEPS(s) . For all predicate/data dependences

15: for ∀sd ∈ D do

16: φdep ← MARKING(cv, V isited ∪ {s}, sd)

17: φmerged ← MAXPRIORITY(φmerged, φdep) . Merge validation states

18: if φmerged = φI and s ∈ C then . C: set of all checkpoints

19: φmerged ← φU

20: return Φ(s)← φmerged

21: function GETPREDDATADEPS(s) . s Collect dependences on control flow graph

22: Ddata ← {sd|s
data−−→ sd} . s has a data dependence on sd

23: Dpred ← {sp|s
pred−−−→ sp} . s has a predicate dependence on sd

24: return Ddata ∪Dpred

72

Algorithm 2 Computing decision dependences
1: T (c): Pruning decision of a checkpoint c.

2: OWCKPTS(c, cv): Checkpoints possibly overwriting c until the endpoints of regions

where cv is used.

3: function COLLECTDECISIONDEPS(cv)

4: return GETDECISIONDEPS(cv, {cv}, cv)

5: function GETDECISIONDEPS(cv, V isited, s)

6: if s ∈ V isited then

7: return ∅ . Stop if a cyclic dependence is found

8: if s ∈ C and T (s) = τC then . For a committed (τC) checkpoint

9: return OWCKPTS(s, Expend(cv))

10: F ← ∅ . Set of nodes cv has decision dependences on

11: if s ∈ C and T (s) = τU then . For an undecided (τU) checkpoint

12: F ← F ∪ {s}∪ OWCKPTS(s, Expend(cv))

13: D ← GETPREDDATADEPS(s) . From Algorithm 1

14: for ∀sd ∈ D do

15: F ← F∪ GETDECISIONDEPS(cv, V isited ∪ {s}, sd)

16: return F

73

Chapter 6

Evaluation

6.1 Test Environment

6.1.1 GPU Architecture and Simulation Setup

Model Nvidia Tesla C2050

SM Count 14

Shading Units 448

Register 512KB / SM

L1 Cache 16KB/SM

Shared Mem 48KB/SM

L2 Cache 768 KB

Device Memory 3GB

Table 6.1: Specification of the simulated GPU.

The idempotent recovery should be aware of physical register names to ensure

the live-in values of regions are safely preserved. Unfortunately, there is no publicly

available CUDA toolchain for modifying the register-allocated assembly code and

executing it on real GPUs. Thus, simulators such as GPGPU-Sim [11] use PTX code

74

as a basis for the cycle-level simulation, and tools such as CRAT [88] conduct register

allocation on PTX code and run it on GPGPU-Sim to study the performance impact

of allocated registers. As with CRAT, we allocate physical registers on the PTX code

and then apply Penny’s transformations on the code. The resulting PTX code is then

executed on top of GPGPU-Sim that complies with our register allocation. As the target

simulation model, we use Tesla C2050 GPU based on Fermi architecture; the GPU is

equipped with ECCs in the RF/cache/memory. Detailed specification of the GPU is in

Table 6.1. Note that the L1 cache is interchangeable with shared memory, so the L1

cache can be increased by configuration when shared memory is not used.

6.1.2 Tested Applications

Suite Application Abbr. Suite Application Abbr.

GPGPU-
Sim
bench
[11]

Coulombic potential CP
Parboil

2-point angular
TPACF

Libor Monte Carlo LIB correlation

Laplace transform LPS

Rodinia
[19]

SP Matrix
SGEMM

Neural network NN multiplication

N Queen NQU Back propagation BP

CUDA
toolkit
samples
[67]

Binomial options BO Breadth-first search BFS

Black-Scholes BS Gaussian Elimination GAU

Convolution separable CS Hotspot HS

Scalar product SP Molecular Dynamics MD

Sobol filter SQ Needleman-Wunsch NW

Fast Walsh transform FW Pathfinder PF

Matrix transpose MT Speckle reducing
SRAD

Parboil
[74]

Sparse matrix-vector mult. SPMV anisotropic diffusion

Jacobi stencil STC stream cluster SC

Table 6.2: Applications used for evaluation.

75

We used various CUDA applications from multiple benchmark suites: the bench-

marks included in the GPGPU-Sim [11], sample codes bundled with CUDA toolkit [67],

Parboil benchmark suite [74], and Rodinia benchmark suite [19]. Table 6.2 shows

benchmark applications used in our simulations. Some applications were not able to

be executed due to: 1) CUDA version incompatibility between the original version the

application is targeting and the version supported by GPGPU-sim. 2) Unimplemented

CUDA features that are less frequently used such as special instructions to access tex-

ture memory. And from the applications that were possible to be executed, we excluded

the applications with no memory anti-dependence, i.e. the kernel can be idempotently

re-executed from the beginning. In this case, there are no execution overheads compared

to original code, so we excluded them for a more fair comparison.

6.1.3 Register Assignment

In a GPGPU program, the number of registers each thread uses is one of the decision

factors of GPU occupancy. Decreasing the number may cause register spills into global

memory, but more threads can be concurrently run, and increasing it has an opposite

effect up to a certain point. Most of the known GPU programming system compilers

use the minimum register number that does induce spill, and this is commonly used for

programming.

A user can specify the number of registers to the compiler, but this is hard to decide

other than profiling it empirically, and it does not translate across different hardwares

or other compiler setting changes.

So we follow the common practice of choosing the minimum number of registers

not spilling in our experiments. As a result, the evaluation results in the following

number of registers used for each thread and the number of blocks assigned for each

SM can be different between different settings.

76

6.2 Performance Evaluation

6.2.1 Overall Performance Overheads

This section highlights Penny’s low-performance overhead compared to prior works.

We only show the fault-free execution time overhead since the low soft error rate renders

the impact of the recovery procedure on total execution time negligible (see Section 3.4).

The following schemes are tested.

• iGPU This is De Kruijf et al. [29]’s iGPU [60] that uses anti-dependent register

renaming instead of live-out register checkpointing. Note that iGPU requires full

ECC-protection for correct recovery.

• Bolt This is our GPU adoption of Bolt [53] with the original checkpoint pruning

based on a random search. Although most of Penny’s optimizations are disabled, Bolt

uses our storage alternation to ensure correct recovery without a store buffer. Two

versions of Bolt are tested with or without Penny’s automatic checkpoint storage

assignment.

• Penny This is the fully optimized execution of Penny. Checkpoint storages are

automatically distributed to shared and global memories by default.

CP LI
B

LP
S

NN NQ
U

SG
EM

M
SP

M
V

ST
C

TP
AC

F BP BF
S

GA
U HS M
D

NW PF
SR

AD SC BS SQ BO CS FW SP M
T

gm
ea

n

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e 9.50 3.25 3.989.44

iGPU Bolt/Global Bolt/Auto_storage Penny

Figure 6.1: Fault-free execution time overhead.

Figure 6.1 represents the normalized fault-free execution time overheads of Penny

77

and others compared to the baseline that is the original program with no modification.

iGPU shows 2.3% of overhead on average, and up to 26.6%. The slowdown originates

from increased register pressure from register renaming, leading to register spills to

memory or diminished occupancy. Nevertheless, it would be a mistake to take this to

mean that iGPU can be used to replace ECC. Again, unlike Penny, iGPU requires both

ECC protection and en(de)coding logic hardening for correct recovery, and therefore

such a lower overhead can only be achieved at the cost of the considerable hardware

complexity.

We tested 2 versions of Bolt; Bolt/Global stores all checkpoints to global memory

while Bolt/Auto storage distributes the checkpoints to shared/global memories by

using Penny’s automatic checkpoint storage assignment. Both versions show significant

overhead. That is because unpruned (i.e., committed) checkpointing stores in a loop

stall the GPU pipeline significantly. Meanwhile, Bolt/Auto storage (38.5% overhead)

outperforms Bolt/Global (66.5%), which highlights the benefit of Penny’s automatic

storage assignment.

Finally, Penny reduces Bolt’s overhead to 3.3% on average. Most of the appli-

cations incur less than 8%; the only exception is STC (19.0%) where loop-carried

data-dependences in inner-most loops prevent the checkpoints from being pruned.

This is inevitable since the dependencies are originated from program semantics that

prohibits Penny’s checkpoint pruning and bimodal checkpoint placement.

6.2.2 Impact of Penny’s Optimizations

This section investigates the performance impact of Penny’s optimizations. To see if

they are synergistic, we applied Penny’s optimizations one at a time incrementally. That

is, each bar of Figure 6.2 shows the run-time overhead of accumulated optimizations

without those in the next bars. For example, the +BCP bar depicts the overhead

of applying bimodal checkpoint placement (BCP) along with the prior automatic

storage assignment optimization (ASAO), the overhead of which is represented in the

78

CP LI
B

LP
S

NN NQ
U

SG
EM

M
SP

M
V

ST
C

TP
AC

F BP BF
S

GA
U HS M
D

NW PF
SR

AD SC BS SQ BO CS FW SP M
T

gm
ea

n

1

2

3

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e 9.50 3.989.44

No_opt +Auto_storage +BCP +Opt_pruning +Low_opts

Figure 6.2: Impact of Penny optimizations accumulated.

+Auto storage bar. Similarly, the +Opt pruning bar depicts the overhead of applying

optimal checkpoint pruning in combination with prior optimizations (i.e., BCP and

ASAO), while the +Low opts bar shows the overhead of fully-optimized Penny when

combining low-level optimizations (Section 5.7) such as LICM with all other prior

optimizations. We found out that although individual optimization is sometimes not

beneficial by itself, e.g., enabling BCP in PF and FW, its combinations with other

optimizations have a synergistic effect. For example, enabling all optimizations (3.3%

on average) always outperforms all other combinations of the optimizations.

6.2.3 Assigning Checkpoint Storage and Its Integrity

CP LI
B

LP
S

NN NQ
U

SG
EM

M
SP

M
V

ST
C

TP
AC

F BP BF
S

GA
U HS M
D

NW PF
SR

AD SC BS SQ BO CS FW SP M
T

gm
ea

n

1.00

1.25

1.50

1.75

2.00

2.25

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

3.08
Shared/RR
Shared/SA

Global/RR
Global/SA

Auto_storage/Auto_select
Auto_storage/No_protection

Figure 6.3: Storage assignment and overwrite prevention.

This section provides sensitivity analysis results on different checkpoint storage

79

assignment schemes and checkpoint overwriting prevention schemes. In Figure 6.3, the

first 4 bars describe the run-time overhead of possible combinations of bimodal storage

assignment (Shared/Global) and overwriting prevention, i.e., RR (register renaming)

and SA (storage alternation). In the next bar (5th), Auto storage/Auto select corre-

sponds to the use of both Penny’s automatic storage assignment—that distributes the

storages to shared and global memories in a way to maintain the GPU occupancy—and

automatic selection of the best between RR and SA. In particular, the 6th bar of the

figure shows the overhead of Auto storage without protecting the checkpoint storage.

As shown, the heights of the last 2 bars are almost the same except for LIB and LPS.

Thus, Penny’s checkpoint overwriting prevention does not incur a noticeable run-time

overhead.

6.2.4 Impact of Optimal Checkpoint Pruning

CP LI
B

LP
S

NN NQ
U

SG
EM

M
SP

M
V

ST
C

TP
AC

F BP BF
S

GA
U HS M
D

NW PF
SR

AD SC BS SQ BO CS FW SP M
T

gm
ea

n
1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

3.63 3.74
No_pruning Basic_pruning Opt_pruning

Figure 6.4: Performance impact of basic/optimal pruning.

In Section 5.5.4 we have shown the effect of basic and optimal pruning by analyzing

the compiler statistics. Here we evaluate how the eliminated checkpoints translate to

the run-time overhead reduction. As shown in Figure 6.4, when no pruning is enabled,

the average overhead becomes 56.2% with a 3.8x slowdown in the worst case. Bolt’s

basic pruning reduces the overhead down to 29.5%. However, applications like LPS,

SGEMM, STC, PF, and FW still cause a large slowdown (up to 274.3% overhead). In

80

contrast, Penny’s optimal pruning can handle the applications by removing a checkpoint

in their loops, achieving a 5.7% run-time overhead on average.

6.2.5 Impact of Alias Analysis

CP LP
S

NN NQ
U

SG
EM

M

SP
M

V

ST
C

TP
AC

F BP BF
S

GA
U HS M
D

NW PF

SR
AD SC BS SQ BO CS FW SP M

T

gm
ea

n

1.0

1.1

1.2

1.3

1.4

1.5

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

No AA TypeAA TypeAA+ValueAA TypeAA+ValueAA+ArrayAA

Figure 6.5: Performance impact of various alias analysis.

Penny uses alias analysis to identify alias in memory addresses. The analysis result

is mainly used in two transformation phases: 1) in the region formation phase, the region

formation algorithm find maximal regions that separate memory anti-dependences and

2) in the checkpoint pruning phase, memory overwrite is tested with the alias result.

Even with the simplest alias analysis, Penny guarantees safe recovery by conservatively

handling may-aliases though the performance may not be optimal due to the false-

positive aliases.

We implemented a few alias analysis algorithms for the GPU. Since CUDA does

not have general pointer variables, simple alias analysis schemes were efficient enough

for most cases. Here is the explanation of the analysis schemes we have used:

• No AA: No alias analysis scheme used and all addresses are identified as an alias.

• TypeAA: Simple type-based alias analysis. Compare the instruction operand type

specifier.

81

• ValueAA: If the constant offset matches and the register value is unchanged

between two points return must alias.

• ArrayAA: Backtrack the address value and find where the base value of the

address (e.g. base of an array) comes from. If the base does not match, two

addresses are no alias.

Figure 6.4 shows the result of using different combinations of aliases. The first

setting does not use any alias analysis and the following settings turn on the alias

analysis schemes one by one. Note that using multiple schemes gives a more accurate

result because the analysis results from each scheme complement each other. Not using

any alias analysis (No AA) gives 14.3% of overhead on average. Applications including

LPS, SGEMM, BP, PF, CS, and FW shows significant slowdown. Using simple type-

based analysis (TypeAA) significantly improves performance in many cases reducing

the average overhead to 5.0%. Adding the value-based analysis slightly reduces the

average overhead to 4.9%. Array base analysis shows a noticeable improvement in

applications such as LPS and BO. The average overhead is reduced to 3.1%.

6.3 Repurposing the Saved ECC Area

CP LI
B

LP
S

NN NQ
U

SG
EM

M
SP

M
V

ST
C

TP
AC

F BP BF
S

GA
U HS M
D

NW PF
SR

AD SC BS SQ BO CS FW SP M
T

gm
ea

n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Penny Extra_reg Extra_cache

Figure 6.6: Repurposing the saved HW area.

Figure 6.6 is the performance result of repurposing the save area by replacing

82

SECDED ECC into single-bit parity for Penny, into additional RFs or L1 cache/shared

memory (L1 and shared memories are interchangeable by configuration in Fermi GPUs).

Penny is the execution of Penny without adding additional HW components. Extra reg

is the result of repurposing the saved area into additional RF. Our estimation based

on the synthesis result shows that 93.1kB of registers can be added to the original

512kB/SM of Tesla C2050, by using the saved area. This area can also be translated into

89.6kB of L1 cache/shared memory. We add additional 16kB/73.6kB to the original

16kB/48kB of L1 cache/shared memory for Extra cache. SGEMM and SRAD show

noticeable performance improvement for adding extra registers reducing the execution

time up to 21.5% compared to non-checkpointed execution. For extra cache, BFS and

SP show improvement, reducing the execution up to 22.8%.

6.4 Energy Impact on Execution

CP LI
B

LP
S

NN NQ
U

SG
EM

M
SP

M
V

ST
C

TP
AC

F BP BF
S

GA
U HS M
D

NW PF
SR

AD SC BS SQ BO CS FW SP M
T

gm
ea

n
0.0

0.5

1.0

En
er

gy
 c

on
su

m
pt

io
n

ECC Parity/Penny

Figure 6.7: Energy consumption of RF.

In addition to the hardware synthesis (Section 2.2), we evaluated Penny’s RF energy

benefit over SECDED-ECC using simulation. To measure the actual energy savings on

RF for the single-bit error protection, we applied the synthesis data in Table 2.2 and

Table 2.3 to GPGPU-Sim’s power simulator, i.e., GPUWatch[46]. Figure 6.7 shows

the resulting RF energy consumption for each benchmark. It turns out that Penny only

consumes 7.0% more energy compared to the baseline RF that has no protection, while

the SECDED-ECC RF consumes 22.4% more energy.

83

CP LI
B

LP
S

NN NQ
U

SG
EM

M
SP

M
V

ST
C

TP
AC

F BP BF
S

GA
U HS M
D

NW PF
SR

AD SC BS SQ BO CS FW SP M
T

gm
ea

n

0.00

0.25

0.50

0.75

1.00

1.25

En
er

gy
 c

on
su

m
pt

io
n

ECC Parity/Penny

Figure 6.8: Energy consumption of GPU.

Figure 6.8 presents the energy consumed by entire GPU. Though RF is one of

the most energy-consuming modules on the core, the portion is not dominant among

all components in the chip, and also off-chip modules such as device memory take

up a large portion of GPU energy consumption. Thus, the RF energy savings has a

minor impact on the total energy consumption, while the additional energy used by the

extended execution time generally renders a significant effect. In applications such as

in LIB the execution time if increased for checkpointing, so the energy consumption is

increased. The ECC protected GPU consumed 2.4% of more energy wile Penny used

3.7% more.

Since RF’s portion in the total GPU energy consumption might not be dominant,

Penny could increase the total energy consumption. Thus, we save the claim on Penny’s

benefits of the total energy reduction for our future work which will conduct more

design space exploration and performance optimization to fully realize the benefits.

Apart from that, it is still critical to reducing RF energy itself. The reason is that a

register file (RF) determines the GPU’s nominal voltage (Vdd) which must be set high

enough to handle the worse-case voltage demand [47]. In fact, RF’s burst accesses

originated by GPU’s massive parallelism often cause large voltage swings in the power

delivery, which must be guarded by sufficiently-high Vdd. If Penny is used to reduce the

RF energy, GPU architects can lower the operating voltage thereby improving the entire

84

GPU’s energy-efficiency. Additional discussions on the total GPU energy consumption

are deferred to Section 8.1.

6.5 Performance Overhead on Volta Architecture

CP NN NQ
U

SG
EM

M

SP
M

V

TP
AC

F BP BF
S

GA
U HS PF

SR
AD SC BS BO CS FW SP M

T

gm
ea

n

1

2

3

4

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e 23.07 4.1922.84

iGPU Bolt/Global Bolt/Auto_storage Penny

Figure 6.9: Performance comparison on Titan V.

For an architecture sensitivity analysis, this section provides additional simulation

results of running Penny on the modern Volta [1] architecture based Titan V GPU. For

this purpose, we used an experimental version of GPGPU-sim. However, due to the

version incompatibility of CUDA SDK required for the new architecture, we were

not able to run a few applications on the GPGPU-sim. Figure 6.9 shows the fault-free

execution time overheads of iGPU, Bolt, and Penny. Although Volta architecture is

equipped with much larger caches, it shows almost the same trend observed in the

results of old architecture (see Figure 6.1). Overall, the run-time overhead of Penny is

only 3.6% on average.

6.6 Compilation Time

The translation algorithm suggested Penny is also efficient in terms of compilation time.

Figure 6.10 shows the compilation time spent for each kernel broken down into region

formation, checkpoint coloring, checkpoint pruning, code generation, and others. Intel

85

CP
_Z

7
LI

B_
Z2

8
LI

B_
Z2

9
LP

S_
Z1

3
NN

_Z
17

NN
_Z

18
NN

_Z
17

NN
_Z

18
NQ

U_
Z2

4
SG

EM
M

_Z
9

SP
M

V_
Z8

SP
M

V_
Z2

4
SP

M
V_

Z9
ST

C_
Z2

4
TP

AC
F_

Z9
BP

_Z
22

BP
_Z

24
BF

SR
D_

Z6
BF

SR
D_

Z7
GA

U_
Z4

GA
U_

Z4
HS

_Z
14

M
D_

Z1
5

LU
D_

Z1
2

LU
D_

Z1
3

LU
D_

Z1
2

NW
_Z

20
NW

_Z
20

PF
_Z

14
SR

AD
_Z

11
SR

AD
_Z

11
SC

_Z
19

BS
_Z

15
SQ

_Z
15

BO
_Z

21
CS

_Z
21

CS
_Z

24
FW

_Z
15

FW
_Z

15
FW

_Z
14

SP
_Z

13
M

T_
Z4

M
T_

Z1
3

M
T_

Z1
4

M
T_

Z1
8

M
T_

Z2
4

M
T_

Z1
7

M
T_

Z2
0

M
T_

Z2
2

av
er

ag
e

Kernel

0

1

2

3

4

Co
m

pi
la

tio
n

Ti
m

e
(S

ec
)

Region Formation
Checkpoint Coloring
Checkpoint Pruning
Code Generation
Other

Figure 6.10: Compilation time of Penny.

Core i7-9700 CPU was used for compilation. It shows that the average of the total

compilation time is 425 milliseconds and 4.39 seconds at maximum. The average time

spent for region formation, checkpoint coloring, checkpoint pruning, code generation,

and others is 11, 198, 82, 128, and 6 milliseconds respectively.

Note that this result is a compilation time measured for a single full compilation.

The automatic optimization module may produce multiple versions of code to compare

and select the best optimization policy, thus the compilation can be repeated a few

times.

86

Chapter 7

Related Works

Over the years, many researchers have leveraged idempotence for various purposes.

Mahlke et al. were the first to exploit the idea, which they used to recover from

exceptions during speculative execution in a VLIW processor [57]. Around the same

time, Bershad et al. proposed restartable atomic sequences for a uniprocessor based on

idempotence [14]. Kim et al. leveraged idempotence to reduce the hardware storage

required to buffer data in their compiler-assisted speculative execution model [43].

Hampton et al. used idempotence to support fast and precise exceptions in a vector

processor with virtual memory [38]. Tseng et al. used idempotent regions for data-

triggered thread execution [82]. Since then, it has been used for various applications,

such as reducing the speculative storage overflow [43], supporting exceptions in a vector

processor with virtual memory [38] and data-triggered thread execution [82].

Recently, researchers have leveraged idempotence for recovery from soft errors [35,

29]. Also, Liu et al. [53] advanced the state of the art with checkpoint pruning, which

serves to remove checkpoint operations that can be reconstructed from other check-

points in the event of a soft error. Liu et al. [54, 55, 52] also extend the original

idempotent processing in the context of sensor-based soft error detectors to ensure

complete recovery.

More recently, the energy-harvesting systems [20, 21] have started using idempotent

87

processing to recover from the frequent power failures that occur in systems without

batteries [87, 83, 51].

Xie et al. [87] use idempotence-based recovery and heuristics to approximate

minimal checkpoints (logs) to survive power failures. Their design revolves around the

idea of severing anti-dependences by placing a checkpoint between a load-store pair, in

a manner reminiscent of Feng et al. [35] and de Kruijf et al. [29]. Lately, their techniques

were used by Woude et al. [83] to highlight both the promise and the limitations of using

idempotence to ensure forward progress when multiple power failures occur within

a span of microseconds. In a similar vein, Liu et al. [51] highlight the limitations of

anti-dependence based idempotence analysis in terms of additional power consumption

due to unnecessary checkpoints. Significantly, all of these projects target CPUs, where

store buffers exist.

For GPUs, error resilience studies have focused on systematically evaluating and

understanding the impact of errors in GPGPU applications [33, 49, 34, 64]. The most

closely-related work is iGPU that leverages idempotent recovery for exception handling,

context switching, and timing speculation [60]. However, since iGPU requires the ECC-

protected registers and their hardened en(de)coding logic to ensure correct recovery, it

cannot be used for achieving ECC-free register file (RF) protection in GPUs.

Despite this wealth of related work, Penny is, to the best of our knowledge, the first

system to use idempotence to achieve lightweight RF protection without the cost of full

ECC-protection.

88

Chapter 8

Conclusion and Future Works

Given the large GPU register file (RF) size and the ever-growing trend, protecting

RFs with ECC at the cost of increasing hardware complexity and power consumption

poses significant challenges for GPU architects. Furthermore, near-threshold-voltage

computing systems should be able to handle wider-cardinality multi-bit errors, which

requires more expensive ECC protection.

We presented Penny, a compiler-directed resilience scheme for protecting GPU

register files against soft errors. To avoid the hardware cost of conventional ECC protec-

tion, Penny uses cheaper error detection code (EDC) and idempotent recovery. Penny

guarantees correct recovery by preventing checkpoints from being overwritten and

significantly reduces their overhead by removing many of them without compromising

the recoverability. Across 25 benchmarks, Penny only causes ≈3% run-time overhead

on average. The upshot is that Penny allows GPU architects to design their register file

(RF) without the ECC cost for equal resilience or achieve stronger resilience using the

same ECC cost.

89

8.1 Limitation and Future Work

Since RF’s portion in the total GPU energy consumption might not be dominant, Penny

could increase the total energy consumption. Thus, we save the claim on Penny’s

benefits of the total energy reduction for our future work that will conduct more design

space exploration and performance optimization to fully realize the benefits. Apart

from that, it is still critical to reduce the RF energy itself. The reason is that a register

file (RF) determines the GPU’s nominal voltage (Vdd) that must be set high enough

to handle the worse-case voltage demand [47]. In fact, RF’s burst accesses originated

by GPU’s massive parallelism often cause large voltage swings in the power delivery,

which must be guarded by sufficiently-high Vdd. If Penny is used to reduce the RF

energy, GPU architects can lower the operating voltage, thereby improving the entire

GPU’s energy-efficiency.

90

Bibliography

[1] Nvidia tesla v100 gpu architecture. Technical report, Nvidia, 2017.

[2] Nvidia truring gpu architecture. Technical report, Nvidia, 2018.

[3] F. Alzahrani and T. Chen. On-chip tec-qed ecc for ultra-large, single-chip memory

systems. In ICCD’94. IEEE, 1994.

[4] Saman Amarasinghe, Dan Campbell, William Carlson, Andrew Chien, William

Dally, Elmootazbellah Elnohazy, Robert Harrison, William Harrod, Jon Hiller,

Sherman Karp, Charles Koelbel, David Koester, Peter Kogge, John Levesque,

Daniel Reed, Robert Schreiber, Mark Richards, Al Scarpelli, John Shalf, Allan

Snavely, and Thomas Sterling. Exascale software study: Software challenges in

extreme scale systems, 2009.

[5] Saman Amarasinghe, Mary Hall, Richard Lethin, Keshav Pingali, Dan Quinlan,

Vivek Sarkar, John Shalf, Robert Lucas, Katherine Yelick, Pavan Balanji, Pedro C.

Diniz, Alice Koniges, and Marc Snir. Exascale programming challenges. In

Proceedings of the Workshop on Exascale Programming Challenges, Marina del

Rey, CA, USA. U.S Department of Energy, Office of Science, Office of Advanced

Scientific Computing Research (ASCR), Jul 2011.

[6] Gene M Amdahl. Computer architecture and amdahl’s law. Computer, 46(12):38–

46, 2013.

91

[7] Jim Ang, Brian Carnes, Patrick Chiang, Doug Doerfler, Sudip Dosanjh, Parks

Fields, Ken Koch, Jim Laros, Matt Leininger, John Noe, Terri Quinn, Josep

Torrellas, Jeff Vetter, Cheryl Wampler, and Andy White. Exascale hardware

architectures working group. Technical report, Lawrence Livermore National

Laboratory, 2011.

[8] ARM. Developer suite, 2003. Version 1.2.

[9] Todd Austin and Valeria Bertacco. Deployment of better than worst-case design:

Solutions and needs. In ICCD’05, 2005.

[10] Todd Austin, Valeria Bertacco, David Blaauw, and Trevor Mudge. Opportunities

and challenges for better than worst-case design. In ASP-DAC’05, 2005.

[11] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.

Analyzing cuda workloads using a detailed gpu simulator. In ISPASS’09, 2009.

[12] Rajeev Balasubramonian, Sandhya Dwarkadas, and David H Albonesi. Reducing

the complexity of the register file in dynamic superscalar processors. In MICRO

34, 2001.

[13] Salomon Beer, Marco Cannizzaro, Jordi Cortadella, Ran Ginosar, and Luciano

Lavagno. Metastability in better-than-worst-case designs. In ASYNC’14, 2014.

[14] Brian N. Bershad, David D. Redell, and John R. Ellis. Fast mutual exclusion for

uniprocessors. In ASPLOS V, 1992.

[15] Robin M Betz, Nathan A DeBardeleben, and Ross C Walker. An investigation

of the effects of hard and soft errors on graphics processing unit-accelerated

molecular dynamics simulations. Concurrency and Computation: Practice and

Experience, 26(13):2134–2140, 2014.

[16] Shekhar Borka. The exascale challenge. In International Symposium on VLSI

Design Automation and Test, 2010.

92

[17] Shekhar Borkar. Exascale computer-a fact or a fiction. Keynote address: IEEE

International Parallel and Distributed Processing Symposium, 2013.

[18] Preston Briggs, Keith D Cooper, and Linda Torczon. Improvements to graph

coloring register allocation. ACM Transactions on Programming Languages and

Systems (TOPLAS), 16(3):428–455, 1994.

[19] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,

Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous

computing. In IISWC 2009, 2009.

[20] Jongouk Choi, Hyunwoo Joe, Yongjoo Kim, and Changhee Jung. Achieving

stagnation-free intermittent computation with boundary-free adaptive execution.

In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium

(RTAS), pages 331–344. IEEE, 2019.

[21] Jongouk Choi, Qingrui Liu, and Changhee Jung. Cospec: Compiler directed spec-

ulative intermittent computation. In Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, pages 399–412, 2019.

[22] Cristian Constantinescu. Trends and challenges in vlsi circuit reliability. In

MICRO 36, 2003.

[23] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver. Combinatorial

Optimization. Wiley Series in Discrete Mathematics and Optimization. Wiley,

2011.

[24] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[25] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax: An

architectural framework for software recovery of hardware faults. In ISCA’10,

2010.

93

[26] Marc de Kruijf and Karthikeyan Sankaralingam. Idempotent processor architec-

ture. In Proceedings of the 44th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 140–151. ACM, 2011.

[27] Marc de Kruijf and Karthikeyan Sankaralingam. Idempotent code generation:

Implementation, analysis, and evaluation. In CGO’13, 2013.

[28] Marc A. De Kruijf. Compiler Construction of Idempotent Regions and Applica-

tions in Architecture Design. PhD thesis, Madison, WI, USA, 2012.

[29] Marc A. de Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. Static analysis

and compiler design for idempotent processing. In PLDI 2012, 2012.

[30] Peng Du, Piotr Luszczek, and Jack Dongarra. High performance dense linear

system solver with soft error resilience. In Cluster Computing (CLUSTER), 2011

IEEE International Conference on, pages 272–280. IEEE, 2011.

[31] Jeno Egerváry. Matrixok kombinatorius tulajdonságairól. Matematikai és Fizikai

Lapok, 38(1931):16–28, 1931.

[32] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. In ISCA’11,

2011.

[33] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi. Gpu-qin: A methodol-

ogy for evaluating the error resilience of gpgpu applications. In ISPASS’14. IEEE,

2014.

[34] Bo Fang, Karthik Pattabiraman, Matei Ripeanu, and Sudhanva Gurumurthi. A

systematic methodology for evaluating the error resilience of gpgpu applications.

IEEE Transactions on Parallel and Distributed Systems, 27(12):3397–3411, 2016.

94

[35] Shuguang Feng, Shantanu Gupta, Amin Ansari, Scott A Mahlke, and David I

August. Encore: low-cost, fine-grained transient fault recovery. In MICRO 44,

2011.

[36] L Bautista Gomez, Franck Cappello, Luigi Carro, Nathan DeBardeleben, Bo Fang,

Sudhanva Gurumurthi, Karthik Pattabiraman, Paolo Rech, and M Sonza Reorda.

Gpgpus: how to combine high computational power with high reliability. In

Proceedings of the conference on Design, Automation and Test in Europe, page

341, 2014.

[37] Jiong Guo, Falk Hüffner, Erhan Kenar, Rolf Niedermeier, and Johannes Uhlmann.

Complexity and exact algorithms for vertex multicut in interval and bounded

treewidth graphs. European Journal of Operational Research, 186(2):542–553,

2008.

[38] Mark Hampton and Krste Asanović. Implementing virtual memory in a vector

processor with software restart markers. In ICS 2006, 2006.

[39] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki.

Toward dark silicon in servers. In MICRO 31, 2011.

[40] Jörg Henkel, Lars Bauer, Nikil Dutt, Puneet Gupta, Sani Nassif, Muhammad

Shafique, Mehdi Tahoori, and Norbert Wehn. Reliable on-chip systems in the

nano-era: Lessons learnt and future trends. In DAC 2013, 2013.

[41] Himanshu Kaul, Mark Anders, Steven Hsu, Amit Agarwal, Ram Krishnamurthy,

and Shekhar Borkar. Near-threshold voltage (ntv) design: Opportunities and

challenges. In DAC’12, 2012.

[42] Hongjune Kim, Jianping Zeng, Qingrui Liu, Mohammad Abdel-Majeed, Jaejin

Lee, and Changhee Jung. Compiler-directed soft error resilience for lightweight

gpu register file protection. In Proceedings of the 41st ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 989–1004, 2020.

95

[43] Seon Wook Kim, Chong-Liang Ooi, Rudolf Eigenmann, Babak Falsafi, and T. N.

Vijaykumar. Exploiting reference idempotency to reduce speculative storage

overflow. In TOPLAS’06, 2006.

[44] Denés Konig. Gráfok és mátrixok. matematikai és fizikai lapok, 1931.

[45] Lingbo Kou. Impact of process variations on soft error sensitivity of 32-nm vlsi

circuits in near-threshold region. Master’s thesis, 2014.

[46] Jingwen Leng, Tayler H. Hetherington, Ahmed ElTantawy, Syed Zohaib Gilani,

Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Reddi. Gpuwattch: enabling

energy optimizations in gpgpus. In ISCA’13, 2013.

[47] Jingwen Leng, Yazhou Zu, and Vijay Janapa Reddi. Gpu voltage noise: Char-

acterization and hierarchical smoothing of spatial and temporal voltage noise

interference in gpu architectures. In HPCA’15, 2015.

[48] Jingwen Leng, Yazhou Zu, Minsoo Rhu, Meeta Gupta, and Vijay Janapa Reddi.

Gpuvolt: Modeling and characterizing voltage noise in gpu architectures. In

ISLPED’14, 2014.

[49] Guanpeng Li, Karthik Pattabiraman, Chen-Yong Cher, and Pradip Bose. Under-

standing error propagation in gpgpu applications. In SC’16, 2016.

[50] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L Scott, Sam H Noh, and

Changhee Jung. ido: Compiler-directed failure atomicity for nonvolatile memory.

In MICRO 51, 2018.

[51] Qingrui Liu and Changhee Jung. Lightweight hardware support for transparent

consistency-aware checkpointing in intermittent energy-harvesting systems. In

NVMSA 2016, 2016.

[52] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. Clover: Com-

piler directed lightweight soft error resilience. In LCTES’15, 2015.

96

[53] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. Compiler-

directed lightweight checkpointing for fine-grained guaranteed soft error recovery.

In SC’16, Nov 2016.

[54] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. Compiler

directed soft error detection and recovery to avoid due and sdc via tail-dmr.

TECS’16, 2016.

[55] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. Low-cost soft

error resilience with unified data verification and fine-grained recovery. In MICRO

49, Oct 2016.

[56] Robert Lucas, James Ang, Keren Bergman, Shekhar Borkar, William Carlson,

Laura Carrington, George Chiu, Robert Colwell, William Dally, Jack Dongarra,

Al Geist, Gary Grider, Rud Haring, Jeffrey Hittinger, Adolfy Hoisie, Dean Klein,

Peter Kogge, Richard Lethin, Vivek Sarkar, Robert Schreiber, John Shalf, Thomas

Sterling, and Rick Stevens. Top ten exascale research challenges. Technical report,

U.S. Department of Energy ASCAC Subcommittee, Boston, MA, USA, Feburary

2014.

[57] Scott A. Mahlke, William Y. Chen, Wen-mei W. Hwu, B. Ramakrishna Rau, and

Michael S. Schlansker. Sentinel scheduling for vliw and superscalar processors.

In ASPLOS V, 1992.

[58] Gokhan Memik, Masud H Chowdhury, Arindam Mallik, and Yehea I Ismail. En-

gineering over-clocking: Reliability-performance trade-offs for high-performance

register files. In DSN’05, 2005.

[59] Gokhan Memik, Mahmut T. Kandemir, and Ozcan Ozturk. Increasing register file

immunity to transient errors. In DATE, 2005.

[60] Jaikrishnan Menon, Marc De Kruijf, and Karthikeyan Sankaralingam. igpu:

Exception support and speculative execution on gpus. In ISCA’12, 2012.

97

[61] Pablo Montesinos, Wei Liu, and Josep Torrellas. Using register lifetime predictions

to protect register files against soft errors. In DSN’07, 2007.

[62] Todd K Moon. Error correction coding: mathematical methods and algorithms.

John Wiley & Sons, 2005.

[63] S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-

mann Publishers, 1997.

[64] Bin Nie, Lishan Yang, Adwait Jog, and Evgenia Smirni. Fault site pruning for

practical reliability analysis of gpgpu applications. In MICRO 51. IEEE, 2018.

[65] Nvidia. CUDA Programming Guide, June 2007.

http://developer.download.nvidia.com/compute/cuda.

[66] NVIDIA. Cuda toolkit 3.2 math library performance, 2010.

http://developer.download.nvidia.com/compute/cuda/3 2/docs/CUDA 3.2 Math Libraries Performance.pdf.

[67] Nvidia. CUDA Toolkit 5.5, July 2013. https://developer.nvidia.com/cuda-toolkit-

55-archive.

[68] Robert Pawlowski. Measurement and Analysis of Soft Error Vulnerability of

Low-Voltage Logic and Memory Circuits. PhD thesis, Corvallis, OR, USA, 2015.

[69] William Wesley Peterson and EJ Weldon. Error-correcting codes. MIT press,

1972.

[70] George A Reis, Jonathan Chang, Neil Vachharajani, Shubhendu S Mukherjee,

Ram Rangan, and David I August. Design and evaluation of hybrid fault-detection

systems. In 32nd International Symposium on Computer Architecture (ISCA’05),

pages 148–159. IEEE, 2005.

[71] Lattice Semiconductor. Lattice ecc module reference design, 2018.

http://www.latticesemi.com.

98

[72] Muhammad Shafique, Siddharth Garg, Jörg Henkel, and Diana Marculescu. The

eda challenges in the dark silicon era: Temperature, reliability, and variability

perspectives. In DAC ’14, 2014.

[73] M. Snir, R. W. Wisniewski, J. A. Abraham, V. Adve, S. Bagchi, P. Balaji, J. Belak,

F. Cappello P. Bose, B. Carlson, A. A. Chien, P. Coteus, N. A. Debardeieben,

P. Diniz, M. Erez C. Engelmann, S. Fazzari, A. Geist, R. Gupta, F. Johnson,

Krishnamoorthy, S. Leyffer, T. Munson D. Liberty, Mitra, R. Schreiber, J. Stearley,

and E. V. Hensbergen. Addressing failures in exascale computing. ”International

Journal of High Performance Computing Applications”, 28(2), 2014.

[74] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,

Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. Parboil: A revised

benchmark suite for scientific and commercial throughput computing. Technical

Report IMPACT-12-01, 127, 2012.

[75] Synopsys. Compiler, design and user, rtl and guide, modeling. 2001. http://www.

synopsys. com.

[76] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on

computing, 1(2):146–160, 1972.

[77] Michael B. Taylor. Is dark silicon useful?: Harnessing the four horsemen of the

coming dark silicon apocalypse. In DAC’12, 2012.

[78] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai, D. Oliveira,

D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and A. Bland. Understanding

gpu errors on large-scale hpc systems and the implications for system design and

operation. In HPCA ’15. IEEE, 2015.

[79] Devesh Tiwari, Saurabh Gupta, George Gallarno, Jim Rogers, and Don Maxwell.

Reliability lessons learned from GPU experience with the titan supercomputer

99

at oak ridge leadership computing facility. In Jackie Kern and Jeffrey S. Vetter,

editors, Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis, SC 2015, Austin, TX, USA, November

15-20, 2015, pages 38:1–38:12. ACM, 2015.

[80] Josep Torrellas, Daniel Quinlan, Allan Snavely, and Wilfred Pinfold. Thrifty: An

exascale architecture for energy-proportional computing, 2013.

[81] Marc Tremblay and Yu Tamir. Support for fault tolerance in vlsi processors. In

Circuits and Systems, 1989., IEEE International Symposium on, pages 388–392.

IEEE, 1989.

[82] Hung-Wei Tseng and Dean M Tullsen. Cdtt: Compiler-generated data-triggered

threads. In HPCA’14, 2014.

[83] Joel Van Der Woude and Matthew Hicks. Intermittent computation without

hardware support or programmer intervention. In OSDI’16, 2016.

[84] Ross C Walker and Robin M Betz. An investigation of the effects of error cor-

recting code on gpu-accelerated molecular dynamics simulations. In Proceedings

of the conference on extreme science and engineering discovery environment:

Gateway to discovery, page 8. ACM, 2013.

[85] Liang Wang and Kevin Skadron. Implications of the power wall: Dim cores and

reconfigurable logic. IEEE Micro, pages 40–48, 2013.

[86] S.J.E. Wilton et al. CACTI: An enhanced cache access and cycle time model.

JSSC’96, May 1996.

[87] Mimi Xie, Mengying Zhao, Chao Pan, Jingtong Hu, Yongpan Liu, and Chun Xue.

Fixing the broken time machine: Consistency-aware checkpointing for energy

harvesting powered non-volatile processor. In DAC’15, 2015.

100

[88] Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun, Tao Wang, and

Dongrui Fan. CRAT: enabling coordinated register allocation and thread-level

parallelism optimization for gpus. TC’08, 2018.

[89] Doe Hyun Yoon and Mattan Erez. Memory mapped ecc: Low-cost error protection

for last level caches. In ISCA’09, 2009.

[90] Wei Zhang, Marc de Kruijf, Ang Li, Shan Lu, and Karthikeyan Sankaralingam.

Conair: Featherweight concurrency bug recovery via single-threaded idempotent

execution. In Proceedings of the Eighteenth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS

’13, pages 113–126, 2013.

101

초록

반도체미세공정기술이발전하고문턱전압근처컴퓨팅(near-threashold voltage

computing)이도입됨에따라서소프트에러로부터의복원이중요한과제가되었다.

강력한병렬계산성능을지닌 GPU는고성능컴퓨팅에서중요한위치를차지하게

되었고, 슈퍼 컴퓨터에서 쓰이는 GPU들은 에러 복원 코드인 ECC를 사용하여 레

지스터 파일 및 메모리 등에 저장된 데이터를 보호하게 되었다. 하지만 레지스터

파일에 ECC를사용하는것은큰하드웨어나에너지비용을필요로한다.

이런값비싼 ECC의하드웨어비용을줄이기위해본논문에서는컴파일러기반

의저비용 GPU레지스터파일복원기법인 Penny를제안한다.이는최신의멱등성

(idempotency) 기반 에러 복원 기법을 저비용의 에러 검출 코드(EDC)와 결합한 것

이다.본논문은다음두가지문제를해결하는데에집중한다.

1.에러검출코드기반으로멱등성기반에러복원을사용시소프트에러로부터

의안전한복원을보장할수있는가?본논문에서는에러검출코드가멱등성기반

복원기술과같이사용되었을경우기존의복원기법에서필요로했던조건들없이

도안전하게에러로부터복원할수있음을보인다.

2. 체크포인팅에드는 비용을 어떻게 절감할 수 있는가? GPU는 스토어 버퍼가

없는등아키텍쳐적인특성으로인해서 CPU와비교하여체크포인트값을저장하는

데에큰오버헤드가든다.이문제를해결하기위해본논문에서는다양한컴파일러

최적화기법을통하여오버헤드를줄인다.

주요어: GPU,에러복원, ECC, idempotence

학번: 2012-30204

102

Acknowledgements

First I want to thank my advisor Jaejin Lee at Seoul National University for the

guidance and patience for me over my graduate school life. I also thank Professor

Changhee Jung who had also mentored me during cooperative research. They both had

been given guidance that not only helped me grow as a researcher but also as a human.

And I also thank other committee members Professor Soo-Mook Moon, Jin-Soo

Kim, and Jae Lee for the support of my research. My research has become more sound

and complete with their guidance.

I also thank all the fellow students in the MCRL lab at SNU. I have enjoined

exchanging creative thoughts and learned a lot by them. I also appreciate the fellows I

have worked with while I was visiting Virginia Tech and Purdue. You guys have given

me a lot of help when I was in difficult situations.

Thanks to my family who has always believed in me. My parents have always given

me warm support for whatever I am doing. And thanks for my little brother for always

being there and giving me good pieces of advice. I also want to thank my new family

in Gangneung and San Fransisco. I cannot appreciate more for how much they have

welcomed me as a family and I am obliged to return all the support they have given.

Finally, for my best friend and wife Christina, thank you for being with me for

all the happy and hard moments. I couldn’t have done it without you. We have come

through difficult times and I believe the future ahead of us is bright with joy.

103

	1 Introduction
	1.1 Why is Soft Error Resilience Important in GPUs
	1.2 How can the ECC Overhead be Reduced
	1.3 What are the Challenges
	1.4 How do We Solve the Challenges

	2 Comparison of Error Detection and Correction Coding Schemes for Register File Protection
	2.1 Error Correction Codes and Error Detection Codes
	2.2 Cost of Coding Schemes
	2.3 Soft Error Frequency of GPUs

	3 Idempotent Recovery and Challenges
	3.1 Idempotent Execution
	3.2 Previous Idempotent Schemes
	3.2.1 De Kruijf's Idempotent Translation
	3.2.2 Bolts's Idempotent Recovery
	3.2.3 Comparison between Idempotent Schemes

	3.3 Idempotent Recovery Process
	3.4 Idempotent Recovery Challenges for GPUs
	3.4.1 Checkpoint Overwriting
	3.4.2 Performance Overhead

	4 Correctness of Recovery
	4.1 Proof of Safe Recovery
	4.1.1 Prevention of Error Propagation
	4.1.2 Proof of Correct State Recovery
	4.1.3 Correctness in Multi-Threaded Execution

	4.2 Preventing Checkpoint Overwriting
	4.2.1 Register renaming
	4.2.2 Storage Alternation by Checkpoint Coloring
	4.2.3 Automatic Algorithm Selection
	4.2.4 Future Works

	5 Performance Optimizations
	5.1 Compilation Phases of Penny
	5.1.1 Region Formation
	5.1.2 Bimodal Checkpoint Placement
	5.1.3 Storage Alternation
	5.1.4 Checkpoint Pruning
	5.1.5 Storage Assignment
	5.1.6 Code Generation and Low-level Optimizations

	5.2 Cost Estimation Model
	5.3 Region Formation
	5.3.1 De Kruijf's Heuristic Region Formation
	5.3.2 Region splitting and Region Stitching
	5.3.3 Checkpoint-Cost Aware Optimal Region Formation

	5.4 Bimodal Checkpoint Placement
	5.5 Optimal Checkpoint Pruning
	5.5.1 Bolt's Naive Pruning Algorithm and Overview of Penny's Optimal Pruning Algorithm
	5.5.2 Phase 1: Collecting Global-Decision Independent Status
	5.5.3 Phase2: Ordering and Finalizing Renaming Decisions
	5.5.4 Effectiveness of Eliminating the Checkpoints

	5.6 Automatic Checkpoint Storage Assignment
	5.7 Low-Level Optimizations and Code Generation

	6 Evaluation
	6.1 Test Environment
	6.1.1 GPU Architecture and Simulation Setup
	6.1.2 Tested Applications
	6.1.3 Register Assignment

	6.2 Performance Evaluation
	6.2.1 Overall Performance Overheads
	6.2.2 Impact of Penny's Optimizations
	6.2.3 Assigning Checkpoint Storage and Its Integrity
	6.2.4 Impact of Optimal Checkpoint Pruning
	6.2.5 Impact of Alias Analysis

	6.3 Repurposing the Saved ECC Area
	6.4 Energy Impact on Execution
	6.5 Performance Overhead on Volta Architecture
	6.6 Compilation Time

	7 RelatedWorks
	8 Conclusion and Future Works
	8.1 Limitation and Future Work

<startpage>13
1 Introduction 1
 1.1 Why is Soft Error Resilience Important in GPUs 1
 1.2 How can the ECC Overhead be Reduced 3
 1.3 What are the Challenges 4
 1.4 How do We Solve the Challenges 5
2 Comparison of Error Detection and Correction Coding Schemes for Register File Protection 7
 2.1 Error Correction Codes and Error Detection Codes 8
 2.2 Cost of Coding Schemes 9
 2.3 Soft Error Frequency of GPUs 11
3 Idempotent Recovery and Challenges 13
 3.1 Idempotent Execution 13
 3.2 Previous Idempotent Schemes 13
 3.2.1 De Kruijf's Idempotent Translation 14
 3.2.2 Bolts's Idempotent Recovery 15
 3.2.3 Comparison between Idempotent Schemes 15
 3.3 Idempotent Recovery Process 17
 3.4 Idempotent Recovery Challenges for GPUs 18
 3.4.1 Checkpoint Overwriting 20
 3.4.2 Performance Overhead 20
4 Correctness of Recovery 22
 4.1 Proof of Safe Recovery 23
 4.1.1 Prevention of Error Propagation 23
 4.1.2 Proof of Correct State Recovery 24
 4.1.3 Correctness in Multi-Threaded Execution 28
 4.2 Preventing Checkpoint Overwriting 30
 4.2.1 Register renaming 31
 4.2.2 Storage Alternation by Checkpoint Coloring 33
 4.2.3 Automatic Algorithm Selection 38
 4.2.4 Future Works 38
5 Performance Optimizations 40
 5.1 Compilation Phases of Penny 40
 5.1.1 Region Formation 41
 5.1.2 Bimodal Checkpoint Placement 41
 5.1.3 Storage Alternation 42
 5.1.4 Checkpoint Pruning 43
 5.1.5 Storage Assignment 44
 5.1.6 Code Generation and Low-level Optimizations 45
 5.2 Cost Estimation Model 45
 5.3 Region Formation 46
 5.3.1 De Kruijf's Heuristic Region Formation 46
 5.3.2 Region splitting and Region Stitching 47
 5.3.3 Checkpoint-Cost Aware Optimal Region Formation 48
 5.4 Bimodal Checkpoint Placement 52
 5.5 Optimal Checkpoint Pruning 55
 5.5.1 Bolt's Naive Pruning Algorithm and Overview of Penny's Optimal Pruning Algorithm 55
 5.5.2 Phase 1: Collecting Global-Decision Independent Status 56
 5.5.3 Phase2: Ordering and Finalizing Renaming Decisions 60
 5.5.4 Effectiveness of Eliminating the Checkpoints 63
 5.6 Automatic Checkpoint Storage Assignment 69
 5.7 Low-Level Optimizations and Code Generation 70
6 Evaluation 74
 6.1 Test Environment 74
 6.1.1 GPU Architecture and Simulation Setup 74
 6.1.2 Tested Applications 75
 6.1.3 Register Assignment 76
 6.2 Performance Evaluation 77
 6.2.1 Overall Performance Overheads 77
 6.2.2 Impact of Penny's Optimizations 78
 6.2.3 Assigning Checkpoint Storage and Its Integrity 79
 6.2.4 Impact of Optimal Checkpoint Pruning 80
 6.2.5 Impact of Alias Analysis 81
 6.3 Repurposing the Saved ECC Area 82
 6.4 Energy Impact on Execution 83
 6.5 Performance Overhead on Volta Architecture 85
 6.6 Compilation Time 85
7 RelatedWorks 87
8 Conclusion and Future Works 89
 8.1 Limitation and Future Work 90
</body>

