

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Optimizing Memory Subsystem for Efficient

Resource Utilization of Data-intensive

Applications

데이터 집약적 응용의 효율적인 시스템 자원 활용을 위한

메모리 서브시스템 최적화

August 2020

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Jiwoong Park

Ph.D. DISSERTATION

Optimizing Memory Subsystem for Efficient

Resource Utilization of Data-intensive

Applications

데이터 집약적 응용의 효율적인 시스템 자원 활용을 위한

메모리 서브시스템 최적화

August 2020

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Jiwoong Park

Optimizing Memory Subsystem for Efficient Resource

Utilization of Data-intensive Applications

데이터 집약적 응용의 효율적인 시스템 자원 활용을

위한 메모리 서브시스템 최적화

지도교수 염헌영

이 논문을 공학박사 학위논문으로 제출함

2020 년 6 월

서울대학교 대학원

전기·컴퓨터 공학부

박지웅

박지웅의 공학박사 학위논문을 인준함

2020 년 6 월

위 원 장 김 진 수 (인)

부위원장 염 헌 영 (인)

위 원 이 재 욱 (인)

위 원 전 병 곤 (인)

위 원 손 용 석 (인)

Abstract

With explosive data growth, data-intensive applications, such as relational

database and key-value storage, have been increasingly popular in a variety

of domains in recent years. To meet the growing performance demands of data-

intensive applications, it is crucial to efficiently and fully utilize memory re-

sources for the best possible performance.

However, general-purpose operating systems (OSs) are designed to provide

system resources to applications running on a system in a fair manner at system-

level. A single application may find it difficult to fully exploit the system’s best

performance due to this system-level fairness. For performance reasons, many

data-intensive applications implement their own mechanisms that OSs already

provide, under the assumption that they know better about the data than OSs.

They can be greedily optimized for performance but this may result in inefficient

use of system resources.

In this dissertation, we claim that simple OS support with minor application

modification can yield even higher application performance without sacrificing

system-level resource utilization. We optimize and extend OS memory subsys-

tem for better supporting applications while addressing three memory-related

issues in data-intensive applications. First, we introduce a memory-efficient co-

operative caching approach between application and kernel buffer to address

double caching problem where the same data resides in multiple layers. Second,

we present a memory-efficient, transparent zero-copy read I/O scheme to avoid

performance interference problem caused by memory copy behavior during I/O.

Third, we propose a memory efficient fork-based checkpointing mechanism for

i

in-memory database systems to mitigate the memory footprint problem of ex-

isting fork-based checkpointing scheme; memory usage increases incrementally

(up to 2x) during checkpointing for update-intensive workloads.

To show the effectiveness of our approach, we implement and evaluate our

schemes on real multi-core systems. The experimental results demonstrate that

our cooperative approach can more effectively address the above issues related

to data-intensive applications than existing non-cooperative approaches while

delivering better performance (in terms of transaction processing speed, I/O

throughput, or memory footprint).

Keywords: Operating System, Database, Memory Management, Double Caching,

Zero-Copy, TLB Shootdown, Copy-on-Write, Checkpointing

Student Number: 2013-20794

ii

Contents

Abstract i

Contents iii

List of Figures vii

List of Tables ix

Chapter 1 Introduction 1

1.1 Motivation . 1

1.1.1 Importance of Memory Resources 1

1.1.2 Problems . 2

1.2 Contributions . 5

1.3 Outline . 6

Chapter 2 Background 7

2.1 Linux Kernel Memory Management 7

2.1.1 Page Cache . 7

2.1.2 Page Reclamation . 8

2.1.3 Page Table and TLB Shootdown 9

iii

2.1.4 Copy-on-Write . 10

2.2 Linux Support for Applications 11

2.2.1 fork . 11

2.2.2 madvise . 11

2.2.3 Direct I/O . 12

2.2.4 mmap . 13

Chapter 3 Memory Efficient Cooperative Caching 14

3.1 Motivation . 14

3.1.1 Problems of Existing Datastore Architecture 14

3.1.2 Proposed Architecture . 17

3.2 Related Work . 17

3.3 Design and Implementation . 19

3.3.1 Overview . 19

3.3.2 Kernel Support . 24

3.3.3 Migration to DBIO . 25

3.4 Evaluation . 27

3.4.1 System Configuration . 27

3.4.2 Methodology . 28

3.4.3 TPC-C Benchmarks . 30

3.4.4 YCSB Benchmarks . 32

3.5 Summary . 37

Chapter 4 Memory Efficient Zero-copy I/O 38

4.1 Motivation . 38

4.1.1 The Problems of Copy-Based I/O 38

4.2 Related Work . 40

4.2.1 Zero Copy I/O . 40

iv

4.2.2 TLB Shootdown . 42

4.2.3 Copy-on-Write . 43

4.3 Design and Implementation . 44

4.3.1 Prerequisites for z-READ 44

4.3.2 Overview of z-READ . 45

4.3.3 TLB Shootdown Optimization 48

4.3.4 Copy-on-Write Optimization 52

4.3.5 Implementation . 55

4.4 Evaluation . 55

4.4.1 System Configurations . 56

4.4.2 Effectiveness of the TLB Shootdown Optimization 57

4.4.3 Effectiveness of CoW Optimization 59

4.4.4 Analysis of the Performance Improvement 62

4.4.5 Performance Interference Intensity 63

4.4.6 Effectiveness of z-READ in Macrobenchmarks 65

4.5 Summary . 67

Chapter 5 Memory Efficient Fork-based Checkpointing 69

5.1 Motivation . 69

5.1.1 Fork-based Checkpointing 69

5.1.2 Approach . 71

5.2 Related Work . 73

5.3 Design and Implementation . 74

5.3.1 Overview . 74

5.3.2 OS Support . 78

5.3.3 Implementation . 79

5.4 Evaluation . 80

v

5.4.1 Experimental Setup . 80

5.4.2 Performance . 81

5.5 Summary . 86

Chapter 6 Conclusion 87

요약 100

vi

List of Figures

Figure 3.1 Existing datastore architecture and our proposed archi-

tecture . 15

Figure 3.2 Overview of DBIO . 19

Figure 3.3 TPC-C Benchmark Results 31

Figure 3.4 YCSB Benchmark Results for Update-intensive Work-

load A . 35

Figure 3.5 YCSB Benchmark Results for Read-intensive Workload B 36

Figure 4.1 Existing file I/O interfaces and the proposed scheme . . 39

Figure 4.2 The effectiveness of the TLB shootdown optimization . . 58

Figure 4.3 The effectiveness of CoW optimization 60

Figure 4.4 Relationship between the I/O throughput and the LLC

MPKI . 61

Figure 4.5 Slowdown of co-located workloads 64

Figure 4.6 Performance on macrobenchmarks 66

Figure 5.1 The Overview of MDC 75

Figure 5.2 YCSB results with varying data size (2 instances, 0.5

update proportion) . 82

vii

Figure 5.3 YCSB results with varying the number of Redis instances

(13M records, 0.5 update proportion) 82

Figure 5.4 YCSB results for varying update proportion (13M records,

2 instances) . 83

Figure 5.5 Memory footprint over time (13M records, 0.5 update

proportion) . 84

Figure 5.6 Checkpointing Time . 84

Figure 5.7 Restoring Time . 84

Figure 5.8 Checkpointing File Size 84

viii

List of Tables

Table 3.1 Relationship between Buffer Pool Size and RSS for MySQL/Inn-

oDB . 17

Table 4.1 Latency breakdown of a 4 KB READ for a cache hit 39

Table 4.2 The measured average latencies (ns) for our performance

loss model . 53

Table 4.3 SPEC CPU 2006 benchmarks 63

Table 4.4 Mixed workloads . 63

Table 4.5 Parameters for the Filebench workloads 65

Table 5.1 Parameters of YCSB workloads 81

ix

Chapter 1

Introduction

1.1 Motivation

1.1.1 Importance of Memory Resources

Memory is an invaluable system resource for application performance, although

the extremely large performance gap between memory and storage has become

narrow with the rapid advance of non-volatile memory (NVM) technologies [1];

memory is still orders of magnitude faster than disk (HDD or SSD). However,

due to the cost effectiveness reason, DRAM has become a critical bottleneck

for scaling data centers [2].

There are two trends that make it cost ineffective. First, with the advent

of the big data era, there are growing memory demands from applications [2–

4]. For example, many big data workloads, such as big data analysis, real-

time graph processing, and machine learning, require in-memory computing to

quickly respond to rapidly changing environments. Second, DRAM scaling is

slowing down in terms of capacity growth [2,4,5] while current processor trends

1

show an increasing number of cores in each node [6, 7]. These result in less

memory per core, which aggravates the memory demand. In recent years, these

two trends have caused a global DRAM supply shortage and have resulted in

rise in the price of DRAM [4, 8, 9]. These trends seem to be continuing owing

to the increasing smart devices in the 5G era [10].

Therefore, efficient utilization of memory resources is more important than

ever. In line with this trend, our goal is to optimize the OS memory subsystem so

that it allows data-intensive applications to efficiently utilize memory resources

while achieving the best performance from a single server.

1.1.2 Problems

Due to current lack of OS support, data-intensive applications, such as Database

Management System (DBMS) and In-Memory Database (IMDB), cannot achieve

both high performance and efficient resource utilization. The following is the

three problems to be addressed in this dissertation. They are different but all

related to memory efficiency.

Double Caching. Due to its high performance, memory is often used as a

caching layer for slower secondary storage such as hard disk drives (HDDs). For

example, many modern operating systems take advantage of unused memory for

caching of file contents, so that the next requests to the cached contents can be

served without expensive I/O operations. Additionally, many cloud data stores

(such as MongoDB [11] and MySQL [12]) have their own user-level caching

layer that can be greedily optimized for best performance.

However, ironically, when every performance-critical software tries to retain

the data in their own layer, there can be a negative impact on performance due

to inefficiency in memory utilization. It is generally known as double caching.

It could occur when several hierarchical software layers cache the same data

2

redundantly due to the lack of coordination among them. It matters for per-

formance because it reduces the effective memory size. Unfortunately, it is a

rather common issue, mainly but not limited to, between datastore and OS.

Most datastores [13–15] try to solve this problem by skipping all caching

layers except one (either user-level or kernel-level). Having only one caching

layer for the entire system stack absolutely eliminates double caching at the

expense of losing an opportunity to utilize both strengths of each caching layers.

In this dissertation, we claim that utilizing both caching layers with appropriate

coordination can lead to higher performance than disregarding one or the other.

Copy-based I/O. Performance interference has been an important issue

for cloud computing where resource sharing is the key to yield cost bene-

fits [16–19]. In such an environment, multiple applications that demand differ-

ent system resources (e.g., CPU, memory, storage) can be co-located within a

server, under the assumption that they do not interfere with each other [20,21].

For example, memory-intensive workloads can be co-located with I/O-intensive

ones. However, in such a case, there can be serious performance interference.

This is because copy-based I/O, which modern operating systems (OSs) use by

default, involves an additional memory copy between user and kernel memory

during I/O, consuming CPU cycles and memory resources. This extra use of

memory resources for I/O can be problematic in cloud computing due to con-

tention on shared resources such as the last level cache (LLC) and memory

controller.

To address this problem, many zero copy I/O schemes have been proposed,

but none of them simultaneously provide 1) transparent copy avoidance via

read/write system calls and 2) the benefits of kernel-level caching. In this dis-

sertation, we claim that practical transparent zero-copy read I/O operation can

be realized by addressing two main challenges: 1) page remapping overhead and

3

2) Copy-on-Write (CoW) fault overhead.

Fork-base Checkpointing. Consistent checkpointing plays a crucial role

in improving fault tolerance of long-running applications. In particular, many

in-memory databases (IMDBs) exploit it to give persistence to in-memory

data [22–25]; data can be restored from the consistent point-in-time backup

in case of a crash. The process of consistent checkpointing in IMDBs involves

two steps. The first step is to take a in-memory consistent snapshot of point-

in-time data and the next step is to write them to a file for persistence. A

fork() system call can be leveraged to quickly create a virtual memory snap-

shot of the database and to allow the child process (checkpointer) to write the

records (or key-value pairs) to a file in background while the parent process

(servicer) handles client requests. Several industrial IMDBs, such as Redis [23]

and HyPer [24], use this simple fork-based checkpointing model.

However, there is a well-known problem—but unsolved—in the fork-based

checkpointing. It is the increase in the memory footprint during checkpoint-

ing [26]. As the checkpointing continues, the actual total size of memory con-

sumed by servicer (parent) and checkpointer (child) will increase with frequent

data updates on servicer -side, owing to copy-on-write (CoW) page duplication.

In checkpointer ’s point of view, there is no reason for the data that have been

written to a file to be preserved in memory. However, the duplicated pages

cannot be reclaimed until checkpointer finishes writing all data set into a file

and exits. Depending on the speed of storage device and the update inten-

sity of workloads, this behavior potentially double the memory footprint of the

IMDB during checkpointing. In this dissertation, we claim that physical mem-

ory dump-based scheme with minor OS support can effectively mitigate the

memory footprint issue.

4

1.2 Contributions

The contributions are summarized as follows:

• We present a new approach that exploits cooperative caching between

application buffer and kernel buffer for efficient memory utilization. It

utilizes OS page cache as a victim cache, which can be easily applied to

self-caching user applications with only few lines of changes (less than

500 LOCs) to the target applications. We also show that choosing the

I/O behavior when issuing I/Os has a higher opportunity for optimization

than when opening the file. There are such cases where sometimes buffered

I/O is preferred, and at other time, direct I/O is the best. With the

new read/write function call, user-level caching layer can make a smarter

decision whether it bypasses OS page cache or not.

• We introduce an efficient, transparent, and practical zero copy read I/O

for preventing memory interference caused during I/O. We propose sev-

eral optimization techniques to overcome two main challenges that other

previous studies have not addressed: 1) page remapping and 2) CoW fault

overhead.

• We propose a new fork-based checkpointing scheme that relies on mem-

ory dump and minor operating system supports to mitigate the memory

footprint problem of the existing fork-based checkpointing scheme. We

implement our scheme as an user-level library providing high-level APIs.

As a result, MDC can be applied to existing software with minimal mod-

ifications (only few tens of lines of code for Redis).

5

1.3 Outline

This dissertation is structured as follows:

• Chapter 2 covers the background about the Linux kernel memory man-

agement and Linux support for efficient resource utilization of applica-

tions.

• Chapter 3 introduces DBIO, our memory-efficient cooperative caching

scheme. We first explain the problems of existing datastore architecture

and propose our new architecture. We describe the details of design and

implementation of our scheme and evaluate our scheme on the cloud key-

value store workloads and the traditional OLTP workloads.

• Chapter 4 introduces z-READ, our memory-efficient zero-copy I/O scheme.

We start with explaining the problems of copy-based I/O and introduce

the two main challenges for zero-copy I/O. We give details of how we

can address the challenges and evaluate our scheme in a mixed workloads

scenario.

• Chapter 5 introduces MDC, our memory-efficient fork-based checkpointing

scheme. We explain the problems of existing fork-based checkpointing and

present our approach to mitigate the problem. We describe details of our

scheme for checkpointing and restoring. Then, we evaluate our scheme on

the cloud key-value store workloads.

• Chapter 6 summarizes and concludes the dissertation. It also points out

directions for future work.

6

Chapter 2

Background

Our approaches heavily rely on many functions supported by OS. In this chap-

ter, we explain the Linux kernel memory management and the current Linux

support for efficient resource utilization of applications to help understand the

rest of the dissertation.

2.1 Linux Kernel Memory Management

The basic unit of memory Linux kernel handles is page [27]. There are two types

of pages in Linux. File pages are backed by a file whereas anonymous pages are

not. An example of the latter is pages in the heap or stack of a user process

while the page cache is an example of the former.

2.1.1 Page Cache

The page cache plays the role of the kernel-level caching layer to hide the

slowness of the underlying non-volatile secondary storage such as HDDs, giving

7

user applications an illusion that underlying storage is as fast as memory. As

long as there is enough memory available, kernel aggressively tries to use the

remaining memory to store the file contents in a page unit as page cache.

Whenever there is memory pressure, page cache is more preferable to be selected

as a victim page for reclamation.

2.1.2 Page Reclamation

When memory is full, some pages should be evicted to make a room to deal

with the new memory allocation requests. In order to determine which page is

evicted first, Linux kernel uses a simplified Least Recently Used (LRU)-based

algorithm as a page reclamation policy [27]. For the simplified LRU, Linux

kernel maintains four linked lists of pages: active/inactive lists for anonymous

pages and file pages respectively.

When the page is allocated, it is first placed in the inactive list. It is moved to

the active list when accessed again. Only pages in the inactive lists are selected

as candidates for eviction. Active lists shrink when the number of pages in

inactive lists is lower than the number of pages in active lists. In that case,

a certain number of pages in active lists are moved to inactive lists. Some of

them will remain in active lists if they have been accessed more than once after

being inserted in active lists. When kernel chooses an anonymous page as a

victim, the page cannot be discarded without storing its contents somewhere

else (swap area) unlike a file page that can be discarded either, immediately

for clean pages or after being flushed to disk for dirty pages. Kernel also can

deactivate a file page to make it a good reclaim candidate by moving it to the

inactive list.

Swapping out anonymous pages is a more expensive operation than evict-

ing file pages because swapping always requires one I/O to write the page to

8

disk(swap device) and another I/O to read the page from disk at next access.

Although this cost seems similar to the cost of evicting dirty file page, user-

perceived latency can be very different because user applications do not expect

disk-level latency when accessing those pages swapped out. In the other hand,

user applications already assume that it takes some time for their explicit I/O

requests to finish. In this case, even though there are no cached pages in mem-

ory, user-perceived latency is the same as expected, thus no problem arises.

Furthermore, kernel might swap out the clean pages that have not been mod-

ified in the user buffer, generating unnecessary I/Os, which can be avoided if

user applications could just discard them.

Linux provides a manual configuration of vm swappiness that determines

how aggressively the kernel swaps out anonymous pages. While swappiness

ranges from 0 to 100, the default value is 60, which is reasonable for desktop

machines. Setting this value to 0 for server machine allows user applications

to experience no unexpected performance degradation by preventing swapping.

However, it could result in the forced termination of the applications by kernel

Out-Of-Memory(OOM) killer in case of memory pressure.

2.1.3 Page Table and TLB Shootdown

A page table is a kernel data structure that holds page table entries (PTEs),

each of which stores the mapping between a virtual address and a physical

address. Because a CPU uses a virtual address for all instruction fetches and

data access, the memory management unit (MMU) on each core is tasked with

the translation of a virtual address to a physical address, which is accomplished

by traversing the hierarchical page table (a so-called page table walk). A TLB

is a per-core cache for fast virtual-to-physical address translation. Since the

coherency of TLBs is not preserved by modern CPUs, the OS must keep the

9

TLB synchronized at the software level.

TLB shootdown is an operation for this purpose, which removes stale TLB

mappings from TLBs. TLB shootdown must be performed after manipulating

the PTE mappings for the page remapping technique. However, the problem

is that TLB shootdown is known to be very costly on the latest x86 multicore

systems with several tens of cores because it involves sending inter-processor in-

terrupts (IPIs) to other cores in the system [28]. Generally, the TLB shootdown

cost becomes larger when the system has more cores.

2.1.4 Copy-on-Write

Copy-on-write (CoW) is an optimization technique that was originally designed

to defer the expensive copying of data until the first write attempts. It is a ”lazy”

optimization that becomes effective only when it can completely avoid copying

by being lazy. This technique allows the page to be safely shared by multiple

processes without worrying the shared page will be updated. Zero-copy I/O and

fork-based checkpointing both rely on the kernel CoW mechanism.

After setting a write protection bit in the PTE corresponding to the target

page, any attempt to modify the contents of the page triggers a CoW fault.

Upon a CoW fault, the kernel page fault handler allocates a new page, maps

the faulting virtual address to the physical address of the new page, copies

the contents of the old page to the new page, and performs TLB shootdowns

to invalid the stale mappings in TLB so that the application can continue

modifying the data at the faulting address. That is to say, handling a CoW

fault is apparently more costly than ”eager” page copying.

However, in Linux kernel, there is an interesting optimization that can miti-

gate this latency for a special case where the faulting page is private1. In such a

1A private page is a page that is mapped by only one process.

10

case, the CoW fault handler allows the process to in-place update the faulting

page without the page duplication process. Besides the reduced latency, this

also prevents memory usage from growing.

2.2 Linux Support for Applications

Linux kernel provides several functions to applications for efficient resource

utilization. Applications can use these functions to accelerate their performance

or to prevent wasting system resources.

2.2.1 fork

fork() is originally designed to allow a process to efficiently create a new

process. When a process (parent) calls fork(), the kernel creates copies of

all the process-related kernel data for the new process (child). For duplicating

address space, only page table entries (PTEs) are copied. As a result, the child

process has an exact copy of the parent ’s address space, mapping to the same

set of physical pages. Since the pages are shared between two processes, the

PTEs of the both processes are made write protected during fork(). The time

complexity of fork() is O(n) where n is the actual memory size of the calling

process because the number of page table entries to be copied is proportional

to the memory size. Therefore, the latency of fork() can become problematic

as the parent process uses more memory.

2.2.2 madvise

The purpose of a madvise() system call is to allow applications to give some

advice to the kernel about the pages for the given address range. Although

there are many advice types predefined in the kernel, we give details of only

two advice: MADV DONTNEED and MADV FREE. For MADV DONTNEED, the kernel im-

11

mediately releases the target pages so that they can be freed when there is no

reference to them. The kernel also updates the associated PTEs as if a physical

page frame is not yet assigned. Subsequent access to these pages results in ei-

ther a zero-filled page for anonymous private mappings or repopulating the con-

tents from the mapped file for shared mappings [29]. Similar to MADV DONTNEED,

MADV FREE is used to let the kernel know that the pages are no longer required.

However, it differs that the kernel only handles the PTEs, but delays freeing of

the pages until memory pressure happens.

2.2.3 Direct I/O

Some applications do not benefit from kernel-level file caching. For example,

self-caching applications such as DBMS manage their own memory buffer pool

to cache file contents, thus duplicating the kernel-level cache. In this case, the

caching behavior in the kernel wastes CPU and memory resources. Furthermore,

because the page cache has limited space for caching and is shared across other

applications and the kernel, this useless caching of data can cause other useful

file data to be pushed out of the page cache.

Direct I/O is designed to allow applications to avoid such inefficiency by

completely bypassing the kernel cache. When a file is exclusively opened with

the O DIRECT flag, all of the I/O of the file always results in physical disk I/O,

as it is directly served from/to the user buffer by DMA. Because direct I/O

uses the same interfaces as buffered I/O, applications can be easily converted to

use direct I/O with minor changes (e.g., the alignments of the file offset and

memory buffer). Direct I/O may help increase the overall system-wide per-

formance because the elimination of memory copy leads to the reduced CPU

utilization during I/O. However, direct I/O may not improve the I/O perfor-

mance of the calling application. For most cases, giving up kernel-level caching

12

significantly lowers the user-perceived I/O performance.

2.2.4 mmap

An mmap system call is originally designed for memory mapped I/Os. mmap

allows applications to map the region of a file into their address space. Once this

preparation process is completed, the application must access the mapped file

data through the returned address using a normal memory operation instead of

traditional read/write system calls. Upon memory access, the kernel populates

the page cache associated with the access if the related region of the file is not

yet cached. Otherwise, the application can access the data without a switch to

kernel mode as if it is in the user buffer. In this way, mmap enables applications

to utilize kernel-level caching without incurring memory copy costs.

However, mmap is not almighty. It is difficult to use correctly for performance-

critical applications because, aside from the disparate interfaces, the function-

ality of the mmap interface is quite different from what read/write interfaces

provide [30]. For example, unlike read/write calls, mmap does not guarantee

that the mapped region of a file resides in memory; this means that I/O can

occur in the middle of a critical section of applications. To avoid this, applica-

tions have to make extensive use of other system calls: mlock to pin data (page)

in memory and munlock to allow the data to be evicted from memory. Further-

more, the performance of mmap can be dramatically decreased if the working

set size of the mapped file is larger than the physical memory size owing to the

high cost of page mapping/unmapping, which are as part of kernel page recla-

mation [31]. In these regards, the application of mmap to existing applications

that use read/write system calls is difficult; it may require substantial redesign

of the applications.

13

Chapter 3

Memory Efficient Cooperative
Caching

3.1 Motivation

3.1.1 Problems of Existing Datastore Architecture

Although the detailed architecture of datastore varies, there is always a software

component responsible for in-memory data caching. In Figure 3.1, we have

classified the architectures of existing datastores into three categories according

to the caching layers that they rely on for data caching.

Both User and Kernel Firstly, Figure 3.1(a) shows the architecture that

utilizes both kernel and user caching layers (but not in an efficient way) with

buffered I/O. However, double caching problem occurs here because user buffer

and kernel buffer do not cooperate.

Kernel Only Figure 3.1(b) describes the architecture that relies on kernel

buffer only for caching persistent data and exploits the mmap system call and

the madvise system call, which gives hints about future memory access patterns

14

Application

Operating

System

Fill Flow

Evict Flow

Storage

User Buffer

Kernel Buffer

Processing Engine

In
-M
e
m
o
ry

Copy

(a) User+Kernel (Inclusive)

Storage

Kernel Buffer

Processing Engine

In
-M
e
m
o
ry

(b) Kernel Only (mmap)

Storage

User Buffer

Processing Engine

In
-M
e
m
o
ry

(c) User Only (Direct I/O)

Storage

User Buffer

Kernel Buffer

Processing Engine

In
-M
e
m
o
ry

Move

(d) User+Kernel (Exclusive)

Figure 3.1: Existing datastore architecture and our proposed architecture

to kernel.

Having a caching layer in kernel-level only, mmap eliminates the copy over-

head between user and kernel space, but requires page table manipulation whose

cost sometime exceeds the copy overhead. Moreover, in fact, mmap is easy to

use but hard to use correctly. Most applications usually expect that the target

data to compute already presents in memory. In order to satisfy the expecta-

tion, aggressive use of system calls is required; madvise with MADV WILLNEED to

prefetch the given range of data into kernel buffer, mlock to guarantee that the

data is in memory, and munlock to allow kernel to evict them if necessary. With

the appropriate use of these system calls, it can mimic the user-level buffer but

sometimes make the system design more complex than just using read/write

system calls. Furthermore, with mmap, we cannot do fancy things such as data

compression.

User Only Figure 3.1(c) shows the architecture that uses direct I/O to

maintain its own caching layer without intervention of kernel buffer. User-level

caching layer has two primary strengths compared to kernel-level caching layer.

First, with swapping disabled, data remains in memory once it is loaded

into the user buffer unless explicitly discarded by the application. This is quite

important for application side optimization. For example, with this guarantee,

we can ensure that I/O does not occur while in the middle of a critical section

15

which should be kept as short as possible.

Secondly, self-caching applications can directly manage user-level buffer

with their own replacement policy based on their explicit knowledge of data

while there is no other option for kernel buffer except simplified LRU replace-

ment policy.

However, maintaining the caching layer only in user-level has several down-

sides.

First, it is hard to fully utilize the memory resources. In order to maximize

the memory utilization, self-caching applications should allocate as much mem-

ory as possible for user-level buffer. However, it is undesirable that one user

process occupies the entire memory because some of the memory is needed to

run not only other applications in the system but also Linux kernel itself. There-

fore, in order to avoid memory pressure causing the unpredictable performance

degradation or the forced termination of the process at worst, a self-caching

application should leave enough amount of memory for the others in a con-

servative manner. For example, for a dedicated MySQL/InnoDB server, it is

recommended to use only 80% of total amount of memory.

Second, without swapping, memory allocated for user buffer can be used

solely by the application itself. When an application greadily allocates huge

memory for its own buffer then does not fully make use of them, it is such a waste

of system resources. Swapping is designed to resolve the problem, enabling the

system to steal the currently unused memory from the applications. However,

when disabling swapping for performance reasons, memory allocated for user

buffer cannot be reclaimed unless the application explicitly frees the memory.

Third, more memory might be needed to manage the user-level buffer. Self-

caching applications require extra metadata for managing their user-level buffer

while kernel reuses the page structure for page cache, which is needed anyway

16

Table 3.1: Relationship between Buffer Pool Size and RSS for MySQL/InnoDB

Buffer Pool Size(GB) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Resident Set Size(GB) 1.8 3.1 4.4 5.7 6.9 8.2 9.4 10.7

for metadata of a chunk of memory. The more complex the replacement policy

is, the more extra memory user-level buffer is likely to need for metadata. Table

3.1 shows the relationship between the buffer pool size and the resident set size

(RSS) of MySQL server, which is the real memory usage by the MySQL server.

In our system setup, we found that about 300MB of metadata is needed for

1GB of user-level buffer. Therefore, given the same memory size, kernel-level

buffer usually can hold more data than user-level buffer.

3.1.2 Proposed Architecture

To combine the strengths of both user and kernel buffer, we propose a two-tier

cache hierarchy in memory; an isolated, reserved user-level cache that is fast but

consumes more memory for the same amount of data and a shareable kernel-

level cache that is relatively slow due to the copy overhead but requires less

memory. Figure 3.1(d) shows the proposed architecture with our scheme, called

DBIO, that exploits the kernel buffer as a victim cache for user-level buffer. With

this architecture, one can expect the strengths of the user-level buffer as well

as the full utilization of system memory resources that is hard to achieve with

user-level buffer alone.

3.2 Related Work

Linux kernel VFS layer optionally provides a cleancache [32] that is a page-

granularity victim cache for kernel page cache. The mechanism of cleancache is

very similar to DBIO evict clean. However, they work at different layers; clean-

17

cache is a victim cache for kernel page cache whereas DBIO uses page cache as a

victim cache for user buffer. Moreover, cleancache works transparently with re-

spect to applications and kernel while with DBIO, applications can be explicitly

involved in cache management. Furthermore, applications that use direct I/O

do not gain the benefits of cleancache because they do not utilize page cache.

However, DBIO and cleancache can be utilized together, being complementary

with each other.

Recently, using flash storage as an extension of memory has been researched

in [33–37]. All these works target the workload whose working set is much larger

than memory. On the other hands, DBIO is not effective at all when working set

is so much larger than memory that no in-memory cache hit occurs because DBIO

only expands the memory capacity somewhat by utilizing the memory hidden

in kernel space and by keeping only one copy of data as possible. However,

memory is much faster than flash storage thus fully efficiently utilizing the

given memory resource is always valuable. Moreover, DBIO does not lower the

I/O performance even where no in-memory cache hit occurs, thus it is always

worth trying.

Li et al. [38] use write hints to minimize the memory inefficiency caused by

lack of coordination between storage client cache and storage server cache. The

intention of the write request from storage client is delivered to storage server

in the form of write hint, which is simply a tag. DBIO works similar way but

on different layers: server and client vs user and kernel. DBIO also allows clean

pages in first-tier cache (user buffer) to be moved to second-tier cache (kernel

buffer) without generating unnecessary physical I/Os.

Li et al. [39] show that providing applications with an ability to pass in-

formation to file systems, can greatly boost application performance, helping

kernel make better decisions. They utilize and extend the existing hint mech-

18

Application

Operating

System

Control Flow

Data Flow

(a) Read

Storage

User Buffer

Kernel Buffer

Processing Engine

In
-M
e
m
o
ry

miss

miss

move

Storage

User Buffer

Kernel Buffer

Processing Engine

In
-M
e
m
o
ry

(b) Write Direct

Storage

User Buffer

Kernel Buffer

Processing Engine

In
-M
e
m
o
ry

writeback

(c) Evict Dirty

Storage

User Buffer

Kernel Buffer

Processing Engine

In
-M
e
m
o
ry

(d) Evict Clean

Figure 3.2: Overview of DBIO

anism such as posix fadvise, so that applications can give kernel more infor-

mation on metadata cache control, file open/creating, and readahead. On the

other hand, DBIO integrates the hint mechanism with each read/write request,

allowing kernel handles each I/O differently depending on the page cache pol-

icy hints. Their work aims to accelerate the performance of the underlying

file system especially for Ceph [40] whereas DBIO is designed to maximize the

performance of self-caching applications such as datastore.

3.3 Design and Implementation

3.3.1 Overview

The high-level design of DBIO is shown in Figure 3.2. It supports four distinct

I/O paths, each of which is for different user context: read, write-direct, evict-

dirty, and evict-clean.

Read DBIO read is kind of a hybrid version of buffered read and direct

read, which closely resembles the buffered read for accessing the cached data

but exploits direct read for the uncached data in order to prevent the pollution

in kernel buffer.

When the application issues the read request on the file opened with DBIO

I/O mode, it firstly tries to find the requested data in kernel buffer. If succeeded,

it copies the found data into the user buffer, then deactivate the page cache in

order for the page to be preferentially evicted in case of memory pressure. Note

19

that we do not free the page cache until needed, thus there might be many

duplicate pages before page reclamation triggered by kernel evicts those pages

from memory asynchronously in batch. This relaxed design choice is advanta-

geous for performance because it excludes the task of freeing the page from the

critical path of the read and allows those tasks to be handled asynchronously

in batch only when needed. With this design, our two-tier cache does not follow

strict exclusion, behaving more like non-inclusive cache rather than exclusive

cache.

If it fails to find the data in kernel buffer, it follows the direct I/O path

to read the data directly from storage into the user buffer. Therefore, no un-

necessary copy overhead is incurred and the duplicate copy of the data, which

is deactivated right away anyway, can be avoided. Note that for self-caching

applications such as datastores when the data is in the user buffer, the request

to access the data is served from the user buffer without generating I/Os to the

storage. Keeping a copy of data in kernel buffer could reduce effective memory

size for caching especially when memory is full of useful data because some

pages containing useful data must be evicted for the new data that will not be

used after being copied into the user buffer. This results in lower kernel buffer

hit ratio and lower I/O performance.

Looking up kernel buffer for every read request will add a little overhead

especially when the data is found to be not in memory. However, the extra

lookup overhead will be hidden by the longer disk latency. On the other hand,

at success in finding the data in kernel buffer there is a chance to change the

disk-level latency to the memory-level latency thus it is always worth looking

into the kernel buffer before going to disk.

The application can use posix fadvise system call with POSIX FADV DONTNEED

to force kernel to free the cached page for the specified region. It can be used

20

with buffered I/O mode in order to imitate DBIO read by calling it once the ap-

plication reads the data from kernel buffer. However, in comparison with DBIO

read it needs unnecessary data copy between user and kernel layer when load-

ing the data from storage. Futhermore, it adds an extra system call overhead

involving context switch between user and kernel space.

Write-Direct DBIO write-direct works exactly the same as direct write.

When there is a demand of writing the data in the user buffer to persistent

storage, it is more desirable to bypass kernel buffer because the data will still

remain in the user buffer even after writing. If buffered write is used for those

data, memory inefficiency occurs as a result of two duplicate copies of the data.

One would think that when it comes to user perceived latency, buffered

write is better than direct write, because for buffered write users are notified

when the data is written to kernel buffer whereas for direct write users have to

wait for the data to be written to storage. Therefore, they might be willing to

take some memory inefficiency for better user perceived latency.

This is, however, not the case in production-level system. Many production-

level systems have a hardware RAID controller to aggregate the multiple in-

expensive disks into a single logical disk for either performance, reliability, or

capacity. H/W RAID controller usually has caching capability with battery

backup unit(BBU), so that in the case of power failure the data in RAID cache

has enough time to be safely written back to the disks. Moreover, solid state

drive (SSD) also has a DRAM cache for write buffer and read cache. With the

existence of fast cache, storage layer also could lie to kernel as if the data is

persistently written to the underlying disk but in fact the data only succeeds

in being buffered in a physical cache of the underlying disk. Therefore, there is

no difference in performance between buffered and direct write as long as the

cache of the disk is capable of buffering all the incomming data while doing

21

writeback. In fact, many applications such as DBMS explicitly call the fsync or

fdatasync system call whenever it needs to make sure that their data is really

persistent, thus disk-level latency cannot be avoidable both for buffered and

direct write anyway. Besides, buffered write always incurs the small overhead

for copying the data to kernel buffer.

Evict-Dirty In order to benefit from using the kernel buffer as a victim

cache, we need to insert something useful into it. DBIO evict-dirty and DBIO

evict-clean play this role.

We reused the existing buffered write I/O path for DBIO evict-dirty I/O

path. It can be used when the victim page, which is chosen for evicition in the

user buffer, needs writeback due to changes in its content.

Although a 4KB buffered write might contribute to one page cache eviction

in kernel buffer for buffering the write in memory pressure, it is worth more

than bypassing kernel buffer because data in higher level cache (user buffer)

is likely to be more valuable than anything in lower level cache (kernel buffer)

according to temporal locality.

Note that, in this case (unlike the previous case of DBIO write-direct) the

application will remove data in user buffer after writeback finishes, thus there

will be only one copy of data in kernel buffer throughout the whole software

stack at the end. With this copy-and-delete mechanism, the victim data is

logically moved to lower level cache, being demoted. DBIO puts the demoted

page into the active list in kernel so that it has a higher priority than any other

pages already in kernel buffer.

Evict-Clean Last but not least, in fact, DBIO evict-clean is the biggest

contributor that makes it a complete bidirectional data transfer between the

user layer and the kernel layer in our two-tier cache.

22

When a storage engine feels the necessity of vacating pages in its user buffer,

unlike dirty pages, the clean pages selected for victim are discarded immediately

in the sense that they would be able to be read from storage anytime. This is,

however, not optimal if there is spare memory in kernel buffer to store the

data. It is very common because even the storage engine utilizing a very large

user buffer leaves some memory for kernel and other applications in order to

avoid the risks of swapping and forced termination. The big problem is that

there is no such a semantic for a write into kernel buffer only, ensuring that no

writeback to storage happens. Buffered write, which is currently the only way

of utilizing kernel buffer for write, will eventually generate physical I/O even

if we know that the target data has not been modified since it was read from

storage.

To provide such a semantic, we break down buffered write I/O path into

two parts, caching (buffering) and writeback, and then write the new I/O path

that performs only caching part of buffer write. DBIO evict-clean copies the data

into the page cache then manipulates the state of the page cache as if it have

just been read from storage. Therefore, it skips unnecessary file system activity,

such as logging, metadata update, write, etc. In the case that there has already

been the page cache for the data, DBIO skips the task of copying the data as

well. Regardless of the existence of the page cache, DBIO moves the page cache

to the active list to keep the priority of the pages in memory.

By providing a way that the lowest priority page in user buffer can become

the highest priority page in kernel buffer, it allows two different caching layers

to behave like a single layer.

23

3.3.2 Kernel Support

In this section, we explain the other kernel support besides the DBIO I/O paths.

Fistly, we add new file open flag O DBIO like O DIRECT so that all the next I/O

read/write requests on the file opened with O DBIO follow the proper DBIO I/O

path.

To pass the user I/O context to the existing non-modified system call, we

utilize some bits within the request I/O size passed as input parameter. Specif-

ically, we utilize the upper four bits to encode the DBIO user contexts: read,

write-direct, evict-dirty, and evict-clean. Note that this trick does not affect

the correctness of kernel I/O behavior at least in 64-bit Linux kernel because

Linux kernel limit the I/O size to something that fits in the 32-bit signed int.

Therefore, upper 32 bits in the size parameter are ignored anyway. Moreover,

we do not think there is a need for supporting very large I/O request because

DBIO is designed for self-caching application that manages their own user buffer

in a unit of multiple pages (4KB, 8KB, 16KB, etc), which is relatively small.

However, although our prototype of DBIO uses the trick, we could implement

the same thing in a cleaner way by utilizing ioctl.

Having received the I/O request from the application, kernel extracts the

DBIO user context from the encoded size parameter only when the target file is

opened with DBIO I/O mode so that it can follow the proper DBIO I/O path.

We also implement a user library that provides the DBIO function calls

replacing the read/write system call. These functions take the DBIO flag as

one of the input parameters and internally perform automatic encoding for the

given DBIO user context, issuing the read/write system call with the encoded

size parameter.

24

3.3.3 Migration to DBIO

In this section, we explain the application changes needed for utilizing DBIO. We

believe that DBIO fits for many self-caching applications managing their own file

contents cache in a unit of fixed-size block, and that improved performance can

be easily achieved with only minimal modification on the applications. DBIO

requires the application to implement a lock mechanism in order to ensure that

only one I/O request is issued for the same region of the same file at the same

time because mixing of direct I/O and buffered I/O might result in data loss

or corruption. However, it is not enough if other applications access the data

using buffered I/O while the self-caching application is writing the data using

DBIO write-direct. To prevent such cases, we can simply modify the kernel to

make sure that once a file is opened with the DBIO open flag, the file cannot be

opened unless the file is closed by the last opener.

To show the effectiveness of DBIO, we have analyzed and modified the Inn-

oDB storage engine, which is used for MySQL by default. The followings are

the user contexts when InnoDB issues I/O.

Open InnoDB can configure the flush method for data and log files. When

setting this option to O DIRECT, InnoDB uses O DIRECT to open only the data

files not the log files. Then, InnoDB sets the file open flag to O DIRECT using

fcntl with F SETFL just before each I/O request. This is all that InnoDB does for

O DIRECT. Kernel automatically handles the I/O request differently depending

on whether the open flag is set to O DIRECT or not. We add an extra configu-

ration parameter O DBIO, as one of the InnoDB flush method so that InnoDB

sets the file open flag to O DBIO. Note that by doing this, DBIO will work only

for DB data files.

Read In InnoDB, all accesses to the data that are not in buffer pool generate

25

I/Os to the underlying file system by issuing the read/write system calls. All

the reads for the file opened with O DBIO follow the DBIO READ I/O path in

kernel. Therefore, no modification is required on application-side for reads.

Write Flushing is the activity that writes pages from buffer pool to disk.

InnoDB maintains two lists for flushing: flush list and LRU list. The flush list is

used when the ratio of dirty pages in the buffer pool reaches innodb max dirty pages pct.

This flushing activity is triggered for making the changes durable. Therefore,

these pages do not have to be evicted from buffer pool even after flushing. In

this case, buffered write will create the unnecessary copy of the data in kernel

buffer. In order to avoid this, the application should directly write the data to

storage, bypassing the page cache. When the target file is opened with O DBIO,

kernel performs the DBIO WD I/O for the file if no DBIO flag is passed with the

DBIO write function call. Therefore, simply replacing the existing write system

call with the DBIO write function call is enough for the write user context.

Evict LRU list, another list for flushing, maintains all the used pages in

LRU order. When there is no page in free list and InnoDB needs to read data

from storage, the least recently used page is selected as a victim.

Since every victim page will be evicted from the buffer pool after ensuring

that the modified page has been synchronized with storage, we can use DBIO ED

and DBIO EC for this context. When the victim page is dirty, InnoDB calls a

write system call to writeback the modified data to storage. For this case, we

make InnoDB to call DBIO write function call with the DBIO ED flag instead.

On the other hand, InnoDB originally discards clean pages to quickly meet

the demand for new reads. To give a second life to these pages, we modified

the InnoDB to call a DBIO write function call with DBIO EC so that those pages

are copied into kernel buffer. Because as the result of DBIO evict-clean, the

26

clean data will be cached in memory without affecting the original data, we can

skip doublewrite that InnoDB provides for data integrity in case of partial page

writes. doublewrite forces innodb to write data twice for table space writes. We

chose to write the data synchronously for evict clean because we already know

that it will take only the page copy latency and that vacating the buffer pool

is very urgent job.

3.4 Evaluation

In this section, we evaluate the effectiveness of DBIO by comparing throughput

and page cache read hit ratio of DBIO with direct I/O and buffered I/O.

3.4.1 System Configuration

Hardware Setup All experimental evaluations are conducted on a server

machine with two quad-core Intel Xeon E5606 2.13GHz, 12GB of RAM, one

RAID 0 comprised of 4 1TB HDDs for DB data files, and one RAID 0 com-

prised of 2 1TB HDDs for DB log files. For our hardware RAID controller, LSI

MegaRAID SAS, we set its configuration as following: no read-ahead for read

policy, write-back for write policy, and direct I/O for cache policy. Therefore,

RAID controller does not prefetch the sequential sectors of the logical drive,

notifies the kernel of the completion of the write as soon as the data is written

to disk, and makes sure that any reads are not buffered in its cache memory.

In short, the cache of RAID controller can be used only for write cache not for

read cache.

The client machine is a DELL R715 with two 16-core AMD Opteron 6282SE

2.6GHz. The server and client machines are directly connected with 10GbE so

that the network bandwidth does not become a performance bottleneck. The

server runs the MySQL server 5.7.9 [12] with the modified InnoDB storage

27

engine on top of the modified Linux 4.1.24, in which we implemented a prototype

of DBIO whereas the client runs one of the two benchmarks at a time, remotely

accessing the database running on the server.

MySQL/InnoDB Setup We set the InnoDB page size to 4KB, which was

16KB by default, due to our current lack of support. We place the MySQL

data and MySQL log files on separate logical RAID-0 volumes to protect them

from affecting each other. Also, we make InnoDB use two log files in a circular

fashion, setting the size of each log file to 256MB, and keep the default setting

of innodb flush log at trx commit for full ACID compliance.

For each benchmark, we vary the Innodb flush method (O DBIO for DBIO,

O DIRECT for direct I/O, fsync for buffered I/O) and the buffer pool size from

1GB to 8GB. Note that we limit the maximum buffer pool size to 8GB because

we found that setting it to larger than 8GB is very likely to lead to out of

memory errors. As inferred from Table 3.1, when we set the buffer pool size

to larger than 8GB, the RSS of MySQL server exceeds the amount of the

main memory physically available in the system. Also note that buffer pool

size must be a multiple of 1GB because InnoDB automatically rounds up the

buffer pool size to a value that is a multiple of innodb buffer chunk size ×

innodb buffer pool instances, which are 128MB and 8 by default, respectively.

All the rest of the configurations are the same as defaults.

3.4.2 Methodology

We use MySQL server as a backend database system for all the benchmarks.

Before evaluation, we insert the initial data needed for all benchmarks to the

MySQL server and then do the physical backup of all databases. Before we ran

each test, we restored the databases from the physical backup to guarantee that

the experimental result is not affected by the previous test. For each test, we

28

run mysqldump [41] to warm-up the memory, then conduct the benchmark test

for 3600 seconds to obtain the stable results. mysqldump loads the structures

and contents of MySQL databases and tables into the user buffer to perform the

logical backup. It is worth mentioning that for buffered I/O and DBIO, it might

warm-up the kernel buffer along with the user buffer because they both utilize

the kernel buffer. Before each test, we drop the page cache, dentries, and inodes

so that each experiment is run under the same condition for fair comparison.

For evaluation, we compared DBIO’s throughput, which is basically provided

by the benchmarks, to direct I/O and buffered I/O. We also choose to compare

the page cache hit ratio rather than the combined hit ratio for the user buffer

and the page cache. Because when it comes to the combined hit ratio it is

hard to distinguish the difference among three I/O modes while even 1% of

the difference can significantly impact the performance. For the same workload

with the identical size of the buffer pool the user buffer hit ratios of three I/O

modes are equal, therefore comparing only the page cache hit ratio can help

explain more about the performance improvements by DBIO. However, page

cache statistics cannot be obtained without some efforts.

Page Cache Profiler We wrote a simple kernel module to collect the page

cache statistics only for the DB data file. For DBIO, we can easily achieve the

goal by counting the page cache hits and misses only on the DBIO I/O path

while for buffered I/O, it is hard to separate it from the general page cache

statistics. To step aside this problem, we create another version of kernel that

has a clone of buffered I/O path but it can be followed only when the target file

is opened with DBIO mode. As a result, we can track the page cache statistics

on the DB datafile for both buffered I/O and DBIO, making InnoDB use O DBIO

as the flush method. Note that we do not consider direct I/O for collecting page

cache statistics because it does not utilize the page cache anyway.

29

Just before we start each workload, we load the kernel module, initializing

the page cache statistics and enforcing the kernel to start counting the page

cache events. When the workload ends, we unload the kernel module after

printing out the summary of the page cache statistics including the page cache

references, hits, misses, hit ratio, and miss ratio for read and write I/O requests.

3.4.3 TPC-C Benchmarks

TPC-C benchmark [42] is an industry standard OLTP benchmark that sim-

ulates an order-processing environment where a population of users execute

various transactions against a database. It uses nine different tables and five

distinct transactions. The transactions are New-order, Payment, Order-Status,

Delivery, and Stock-Level, each of which involves a combination of select, up-

date, insert, and delete operations. The scaling factor of TPC-C benchmark is

warehouse, which is directly related to the data size. TPC-C benchmark reports

the performance in new-order transactions per minute.

We use the tpcc-mysql [43], which is one of the TPC-C implementations

provided by Percona. While running the transactions of 128 clients, we conduct

the experiments for two scaling factors: 50 and 150 warehouses whose database

sizes are approximately 5GB and 15GB, respectively.

Results Figure 3.3 shows the throughput and the page cache read hit ratio

according to the varying size of InnoDB buffer pool.

When we use 50 warehouses for the dataset, it can be in-memory workload

depending on the buffer pool size. In left of Figure 3.3a, we can see that the

performance is saturated when the buffer pool size is equal or larger than the

dataset size. However, when all data cannot reside in the buffer pool, DBIO

performs slightly better than buffered I/O, given the same size of the buffer

pool.

30

0

5K

10K

15K

20K

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

tp
u

t
(t

p
m

C
)

Buffer Pool Size (GB)

Direct I/O Buffered I/O DBIO I/O

0

20

40

60

80

100

1 2 3 4 5 6 7 8

P
a

g
e

 C
a

ch
e

 H
it

 R
a

ti
o

(%
)

Buffer Pool Size (GB)

Buffered I/O DBIO I/O

(a) 50 Warehouses, 5GB

0

1K

2K

3K

4K

5K

6K

7K

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

tp
u

t
(t

p
m

C
)

Buffer Pool Size (GB)

Direct I/O Buffered I/O DBIO I/O

0

20

40

60

80

100

1 2 3 4 5 6 7 8

P
a

g
e

 C
a

ch
e

 H
it

 R
a

ti
o

(%
)

Buffer Pool Size (GB)

Buffered I/O DBIO I/O

(b) 150 Warehouses, 15GB

Figure 3.3: TPC-C Benchmark Results

Looking at the page cache read hit ratio as shown in right of Figure 3.3a, we

found that the page cache read hit ratio of DBIO is actually slightly lower than

that of buffered I/O despite higher throughput. After deep investigation, we

found that higher read miss latency occurs for buffered I/O, which means that

buffered I/O makes the disks too busy to handle the actual user requests, doing

read-ahead. It might be due to lack of parallelism in HDDs even though we use

RAID-0 to provide some sort of parallelism. However, we do not think that the

result would change even when using SSDs because buffered I/O provides only

slightly higher page cache hit ratio in spite of the aggressive read-ahead. Note

that when the buffer pool size is large enough to hold all the dataset all data

31

is served in user buffer thus there is no page cache reference for such cases.

In left of Figure 3.3b, performance gap between buffered I/O and DBIO

becomes the widest in the 4GB buffer pool. With buffered I/O, the effective

memory size becomes minimum when using half of system memory as the buffer

pool because all data are duplicated across the buffer pool and the kernel buffer.

The ideal buffer pool size for DBIO is hard to predict without testing because

there is a trade-off between the size of buffer pool and the size of kernel buffer;

the larger the buffer pool, the smaller the kernel buffer. Since each of DBIO two-

tier cache has own strengths (one is fast but consumes more memory for the

same data and another is relatively slow but consumes less memory), the best

ratio between them can differ depending on the workload. In this case, using

DBIO with the 4GB buffer pool shows the best performance among all results.

Compared to buffered I/O and direct I/O, DBIO improves the throughput of

TPC-C, for the same buffer pool size by up to 24% and 128% respectively, for the

best result regardless of the buffer pool size by up to 12% and 14% respectively.

Right of Figure 3.3b demonstrates that DBIO achieves significantly higher page

cache read hit ratio than buffered I/O, effectively maintaining exclusiveness of

data.

3.4.4 YCSB Benchmarks

Yahoo! Cloud System Benchmark (YCSB) [44] includes a common set of work-

loads for evaluating the performance of different key-value cloud stores. We

choose two representative workloads for our evaluation. Workload A is an up-

date heavy workload consisting of 50% reads and 50% updates while workload

B is a read heavy workload consisting of 95% reads and 5% updates. For both

workloads, the popularity of data follows the zipfian distribution with zipfian

constant 0.99, which generates an obviously skewed workload. Each workload is

32

tested with 128 client threads and unthrottled operations per second. For each

workload, we have tested on three different datasets: 2000k, 5000k, and 10000k

records (4GB, 10GB, and 20GB, respectively).

Results Figure 3.4 and Figure 3.5 show the throughput and the page cache

read hit ratio varying the buffer pool size for YCSB workload A and B which

are update-heavy and read-heavy, respectively. Not surprisingly, for all datasets

DBIO is more effective for workload B because DBIO is designed for read opti-

mization. In Figure 3.4a and 3.5a, two YCSB workloads with 2000K records

both have similar trends to TPC-C benchmark with 50 warehouses in Sec-

tion 3.4.3 although DBIO has more meaningful impact on performance until the

workload becomes in-memory.

However, when the data size is slightly larger than system memory size we

could see substantial performance improvements with DBIO in YCSB workloads

with 5000K records, which are shown in in Figure 3.4b and 3.5b. In left of

figure 3.4b and 3.5b, we find the interesting thing that when using buffered

I/O, throughput drops as the buffer pool size grows and gets closer to 5GB.

Throughput increases again after the 5GB buffer pool. The drop in throughput

is due to the reduced effective memory size as we mentioned in Section 3.4.3.

In contrast, DBIO works incredibly well for all the size of the buffer pool

because DBIO effectively utilizes the system memory, eliminating double caching

problem. For the workload A with 5000K records, compared to buffered I/O

and direct I/O, DBIO improves the throughput, for the same buffer pool size by

up to 75% and 168% respectively, for the best result regardless of the buffer pool

size by up to 17% and 7% respectively. For the workload B with 5000K records,

compared to buffered I/O and direct I/O, DBIO improves the throughput, for

the same buffer pool size by up to 335% and 1065% respectively, for the best

result regardless of the buffer pool size by up to 33% and 44% respectively.

33

Right of Figure 3.4b and 3.5b indicate that the page cache read hit ratio is

greatly improved on DBIO in comparison with buffered I/O.

For the workloads with 10000K records in Figure 3.4c and 3.5c, the amount

of performance improvement with DBIO becomes smaller but still considerable.

It also shows that the throughput of DBIO decreases monotonically with the

increase of buffer pool size. The reason of this is because when the data size is

much larger than the system memory, retaining more data in memory becomes

more important than having slightly better latency for data access.

For the workload A with 10000K records, compared to buffered I/O and

direct I/O, DBIO improves the throughput, for the same buffer pool size by up

to 25% and 72% respectively, for the best result regardless of the buffer pool size

by up to 10% and 8% respectively. For the workload B with 10000K records,

compared to buffered I/O and direct I/O, DBIO improves the throughput, for

the same buffer pool size by up to 64% and 171% respectively, for the best

result regardless of the buffer pool size by up to 28% and 27% respectively.

34

0

2K

4K

6K

8K

10K

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Buffer Pool Size (GB)

0

25

50

75

100

1 2 3 4 5 6 7 8P
a

g
e

 C
a

ch
e

 H
it

 R
a

ti
o

(%
)

Buffer Pool Size (GB)

Direct I/O Buffered I/O DBIO I/O Buffered I/O DBIO I/O

(a) 2000k records(4GB)

0

1K

2K

3K

4K

5K

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Buffer Pool Size (GB)

0

25

50

75

100

1 2 3 4 5 6 7 8P
a

g
e

 C
a

ch
e

 H
it

 R
a

ti
o

(%
)

Buffer Pool Size (GB)

Direct I/O Buffered I/O DBIO I/O Buffered I/O DBIO I/O

(b) 5000k records(10GB)

0

1K

2K

2.5K

1.5K

0.5K

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Buffer Pool Size (GB)

0

25

50

75

100

1 2 3 4 5 6 7 8P
a

g
e

 C
a

ch
e

 H
it

 R
a

ti
o

(%
)

Buffer Pool Size (GB)

Direct I/O Buffered I/O DBIO I/O Buffered I/O DBIO I/O

(c) 10000k records(20GB)

Figure 3.4: YCSB Benchmark Results for Update-intensive Workload A

35

0

10K

20K

30K

40K

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Buffer Pool Size (GB)

0

25

50

75

100

1 2 3 4 5 6 7 8P
a

g
e

 C
a

ch
e

 H
it

 R
a

ti
o

(%
)

Buffer Pool Size (GB)

Direct I/O Buffered I/O DBIO I/O Buffered I/O DBIO I/O

(a) Workload B, Read-Intensive, 2000k records(4GB)

0

5K

10K

15K

20K

25K

30K

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Buffer Pool Size (GB)

0

25

50

75

100

1 2 3 4 5 6 7 8P
a

g
e

 C
a

ch
e

 H
it

 R
a

ti
o

(%
)

Buffer Pool Size (GB)

Direct I/O Buffered I/O DBIO I/O Buffered I/O DBIO I/O

(b) Workload B, Read-Intensive, 5000k records(10GB)

0

1K

2K

3K

4K

5K

1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(o

p
s/

se
c)

Buffer Pool Size (GB)

0

25

50

75

100

1 2 3 4 5 6 7 8P
a

g
e

 C
a

ch
e

 H
it

 R
a

ti
o

(%
)

Buffer Pool Size (GB)

Direct I/O Buffered I/O DBIO I/O Buffered I/O DBIO I/O

(c) Workload B, Read-Intensive, 10000k records(20GB)

Figure 3.5: YCSB Benchmark Results for Read-intensive Workload B

36

3.5 Summary

In this chapter, we present DBIO, a new file I/O mode for efficient user-level

caching with the help of kernel page cache. DBIO utilizes OS page cache as a

victim cache for user-level file content cache, constructing a two-tier cache hi-

erarchy in memory. Using various OLTP benchmarks with a diversity of work-

loads, we demonstrate that utilizing both user and kernel caching layer could

achieve better performance and higher in-memory cache hit ratio for the given

system memory. We believe DBIO can be applicable to various system layers

suffering from double caching, which we leave for future work.

37

Chapter 4

Memory Efficient Zero-copy I/O

4.1 Motivation

4.1.1 The Problems of Copy-Based I/O

Traditionally, read/write system calls have been used to access files. By default,

the Linux kernel uses buffered I/O (copy-based I/O) for read/write system

calls [27]. For simplicity, the term “READ” will be used throughout this chapter

to refer to a read system call with buffered I/O.

Figure 4.1(a) shows the caching behavior of READ. When handling read

requests, the kernel first reads a section of a file in the page cache and then

copies the data from the page cache to the application buffer. At the expense

of a single memory copy, this caching behavior can realize substantial gains

in the user-perceived I/O performance for subsequent access; it helps to hide

the relative slowness of the underlying storage. For this reason, buffered I/O

is usually the default I/O mode enabled by most operating systems, and it is

great choice in most cases. However, there are some pitfalls.

38

Control Flow
Data Flow
Mapping

① read() ① read() ① mmap() ① read()② Memory access

User

Kernel

Storage

User
Buffer

User
Buffer

User
Buffer

Page
Cache

Page
Cache

Page
Cache

Page
Cache

Mapped
Buffer

Mapped
Buffer

Mapped
Buffer

(a) Copy-based I/O (b) Direct I/O (c) Memory-mapped I/O (d) Proposed Scheme

miss I/O

copy

I/O

miss I/O miss I/O

Page

Remapping

Figure 4.1: Existing file I/O interfaces and the proposed scheme

Table 4.1: Latency breakdown of a 4 KB READ for a cache hit

Type Page Copy Page Search Etc. Total

Latency (ns) 7815 (68%) 1322 (11%) 2422 (21%) 11559

First, a memory copy during buffered I/O adds latency overhead. In terms

of the latency, the memory copy overhead may be negligible compared with

the disk I/O time for a page cache miss. However, the situation is different for

a page cache hit. We study the average latency of a read I/O operation for a

page cache hit, measuring the time for each function in the kernel read path.

Table 4.1 provides a detailed breakdown of the latency for a 4 KB read in our

system (see §4.4 for detailed system configuration information). As shown in the

table, the memory copy overhead is significant; it accounts for over two-thirds

of the total read time.

Second, a memory copy between the user and kernel buffers consumes mem-

ory bandwidth. For modern systems that support high I/O bandwidth, copy-

based I/O can consume significant fraction of total memory bandwidth [45].

For example, a four-lane interface speed of PCIe 4.0 NVMe SSD can reach up

to 8 GB/s. By RAID-zeroing four SSDs, the aggregate bandwidth can be up to

32 GB/s, which is comparable to the bandwidth of a two-channel DDR4-2133

memory system (17 GB/s x 2 channels = 34 GB/s). Moreover, when all data

39

are cached in the kernel page cache, the I/O performance can be bottlenecked

by the memory bandwidth. In our system, the measured peak I/O bandwidth is

about 25 GB/s, which is in agreement with the sustainable memory bandwidth

measured by using the STREAM benchmark [46]. In other words, in such a case,

a memory copy for every I/O request leads to the saturation of the memory

bandwidth.

4.2 Related Work

4.2.1 Zero Copy I/O

For decades, many studies related to zero copy [47–52] have been carried out

to reduce the data transfer overhead in various areas in computer systems.

Although each study targets different layers, they can fall into two categories.

Direct I/O Schemes. There are zero copy schemes that support direct

user-level access to devices for user applications, removing the kernel from the

critical I/O path. EMP [51] is a zero copy message passing layer, completely

implemented on the programmable Alteon NIC. Thanks to their MPI support,

a user application can directly access the NIC through the MPI. Kesavan et

al. [52] explored the application of zero copy NIC DMA to in-memory databases.

These works rely on the device’s DMA capabilities, which allow the device to

directly access the host memory. Our study is in line with these works in terms

of eliminating memory copy overhead. However, in contrast to their focus on

networking, where the processing time is dominated by the copying of packet

data from the NIC to the host memory, we focus on storage I/O. In storage I/O,

the total read time is dominated by the time required to read the data from

storage device, not the memory copy overhead, which is negligible. In other

words, in terms of latency, there is no real performance gain from removing

memory copy if data is served from disk. In fact, it could worsen the user-

40

perceived I/O performance because every I/O request always goes to storage

(no page cache hit).

Memory-Mapped I/O Schemes. There are other approaches that pro-

vide applications with the ability of accessing the shared buffer. Druschel et

al. [47] presented fbufs, a fast buffer for a network subsystem based on im-

mutable buffers that can be shared across a domain. Thadani and Khalidi’s

work [48] and IO-Lite [49] both extended fbufs from the network to the file

system for general-purpose OSs (UNIX). While our work is also based on the

memory-mapped I/O scheme, the main difference from above is the applica-

tion transparency. Their non-transparent approaches may provide higher I/O

performance than transparent approaches including ours, by skipping the tasks

required for application transparency. However, a major disadvantage of the

non-transparent approaches is that applications have to be modified to use new

APIs and programming models, which may significantly burden developers.

Unlike the aforementioned studies, Chu [50] presented a transparent zero

copy scheme based on page remapping and CoW techniques. It only required

minimal changes (e.g., buffer alignment) to an application, keeping existing in-

terfaces unchanged. However, it targeted network subsystem, which have several

different characteristics from our target, storage I/O subsystem. For example,

his zero copy read scheme could completely eliminate the CoW fault overhead

by allowing an application to take the ownership of the kernel page, rather than

to share them. By ensuring no sharing of pages, there is no write protection

needed. This was possible because by semantics the same network data is not

read again by applications. However, in contrast to network data, storage data

can be read many times even by different applications. To benefit from kernel-

level caching, the kernel page needs to be shared with applications but be write

protected using the CoW technique. Therefore, for storage I/O, the CoW fault

41

overhead is inevitable. Moreover, his scheme was evaluated in the UltraSPARC

system, where the benefits of zero copy, which were realized by preventing cache

thrashing, could exceed the costs of page remapping. In the latest x86 server

that has a few tens of cores, the cost of page remapping can be higher than that

of page copy due to the increased TLB shootdown cost explained in §2.1.3.

4.2.2 TLB Shootdown

Many efforts have been devoted to TLB shootdown mitigation [28,53–55]. Linux

kernel tracks the address space that is active on each core and only sends TLB

shootdown IPIs to the cores that currently use the address space to which

the target TLB mapping belongs. By reducing the number of the cores that

are involved in a TLB shootdown operation, this optimization helps to avoid

some unnecessary shootdowns. For instance, for single-threaded applications,

no remote TLB shootdowns are required for TLB synchronization, only local

TLB flushes. However, for multi-threaded applications, the kernel still must

send IPIs to all of the cores that share the same address space.

Villavieja et al. [53] presented DiDi, a new hardware architecture with a

shared second-level TLB. This second-level TLB contains all of the information

about which TLBs hold which PTEs, thus allowing lightweight TLB invalida-

tion. Awad et al. [54] proposed the concept of self-invalidating TLB entries that

allow the OS to skip TLB shootdown operations for the expired TLB entries.

However, both studies require hardware changes.

LATR [55] is a lazy TLB shootdown approach for virtual memory operations

such as free and page migration. Its key idea is to defer TLB invalidation until

a context switch and to prevent the reuse of virtual and physical memory in

the meantime. However, unlike the case of LATR, TLB shootdown cannot be

deferred in a transparent zero copy file I/O scheme. To keep the semantics of

42

READ, TLB synchronization has to be handled before READ returns to the user

mode. Otherwise, other cores might use the stale mapping when accessing the

shared user memory.

Amit [28] presented a TLB shootdown optimization that detects the private

mappings by tracking an accessed bit in a PTE. It leveraged the fact that when

the page is accessed, the access bit of its PTE is set by hardware. His work also

introduced a software-based direct TLB insertion technique that allows the

direct insertion of a mapping into a TLB of a core without the access bit set.

With the access bit tracking and direct TLB insertion techniques, the kernel can

determine if the mapping is private to the current core. However, his approach

can introduce non-negligible overheads (up to 9%) for general applications that

do not frequently change memory mappings because direct TLB insertion is

performed for every demand paging request. Therefore, only few applications

could take advantage of the optimizations. On the other hand, we create a new

application area (storage I/O) for his optimization techniques. Our scheme is

more effective and practical, because 1) storage I/O is more repeatedly used for

many applications than memory mapping operations, and 2) in z-READ, direct

TLB insertion is performed only for read I/O requests, rather than demand

paging requests, thus no performance penalty for other normal applications.

4.2.3 Copy-on-Write

The CoW technique has been used in many studies to improve system per-

formance and resource utilization [56–58]. However, it is reasonable to assume

that the reason why the CoW optimization helps to improve performance in

these studies is because CoW faults occur relatively rarely (compared to the

number of copy operations avoided). If CoW faults frequently occur, eager copy

is better choice than lazy copy (CoW). Our focus is to anticipate the likelihood

43

of occurrence of CoW faults and to dynamically determine whether or not to

perform zero copy.

4.3 Design and Implementation

Our goal is to tackle two main challenges for a transparent zero copy scheme

to be applied in storage system in modern x86 server: 1) page remapping and

2) CoW fault overheads. In this section, we describe the design and imple-

mentation of z-READ that provides transparent zero copy read file I/O while

maintaining the benefit of kernel-level caching. Figure 4.1(d) shows an overview

of our proposed scheme. Note that the term ”kernel page” is used to refer to

a page of the page cache, while ”user page” is used to refer to an anonymous

page allocated by the user.

4.3.1 Prerequisites for z-READ

Because page remapping is performed with page granularity, z-READ requires

that both the user buffer and requested file offset are page-aligned. Note that

even if they are not aligned, z-READ can fall back to READ without error.

However, the requested I/O size and file size do not need to be page-sized if

and only if the user buffer and file offset are page-aligned. When the requested

I/O size is not page-sized, the kernel performs READ for the last user page that

will be partially filled. For example, if the requested I/O size is 9 KB and the

file size is sufficiently large, the first two 4 KB user pages are remapped to

kernel pages using z-READ, while the remaining 1 KB of data is copied from the

associated page cache to the user buffer. This method is implemented in this

way because page remapping for the last partial user page may result in the

unintended overwriting of data next to the user buffer.

Unlike the requested I/O size, the file size does not affect the feasibility of

44

Algorithm 4.1: z-READ Main Procedure
Input: file offset, user buf, buf len
Output: bytes read

1 if user buf 6= page aligned or file offset 6= page aligned then
2 fall back to READ for all pages;

3 else
4 idx = 0;
5 foreach offset in a page unit (start from file offset) do
6 page = find page cache(offset);
7 if page == NULL then perform disk I/O and goto 6;
8 else
9 target pages[idx++] = page;

10 page→ref count++;
11 if idx == BATCH SIZE then
12 idx = 0;
13 Batching Procedure();

14 if idx != 0 /* Dealing with unhandled pages */

15 then
16 Batching Procedure();

z-READ. If the end of the file is reached before the requested size of the I/O is

handled, the kernel can still perform z-READ even for the partial kernel page at

the end of the file. This makes sense because the rest of the last kernel page is

filled with zeros, and the application issuing I/O already assumes that the data

in the user buffer can be fully overwritten.

4.3.2 Overview of z-READ

Read. For z-READ requests, the kernel first checks the alignment of the

user buffer and file offset and then continues to search the page cache for the

requested blocks (Algorithm 4.1, lines 1–6). After finding the kernel page con-

taining the requested data, the kernel stores their pointers in the page array to

handle page remapping and TLB flushing in a batched manner (lines 8–9). It

also increases the reference count of the target pages by one to prevent them

from being evicted from the page cache while they are still mapped (line 10).

45

Algorithm 4.2: Batching Procedure
Input: start addr, end addr, target pages[], nr target pages

1 preempt disable();
2 Page Remapping Procedure();
3 if IPIALL bitmap 6= 0 then
4 bitmap = IPIALL bitmap;
5 cpu = -1;
6 Bitmap-based Flush(bitmap, IPIALL, cpu);

7 foreach set bit i in zREAD CPU bitmap do
8 if OTHER bitmap[i] 6= 0 then
9 bitmap = OTHER bitmap[i];

10 cpu = i;
11 if i == current cpu then
12 Bitmap-based Flush(bitmap, LOCAL, cpu);

13 else
14 Bitmap-based Flush(bitmap, SINGLE, cpu);

15 Direct TLB Insertion(); /* Please refer to [28] */

16 preempt enable();

When the number of the stored page pointers reaches BATCH SIZE, which will

be detailed in §4.3.3, or the system call is about to return to the user with the

unhandled pages, the kernel starts the batching operation (lines 11–16).

A single batch consists of two main jobs: page remapping and TLB flushing.

For page remapping, the kernel first obtains the PTE of each user page by a page

table walk and then checks if the user page is already mapped to the kernel page

(Algorithm 4.3, lines 3–7). If so, the kernel just decreases the reference count

of the kernel page pointed by the PTE to allow the page to be reclaimed in

the case of memory pressure (line 11). Otherwise, to avoid unnecessary memory

consumption, the user page that was originally pointed by the PTE is marked

to be lazily freed by the kernel page reclamation mechanism later (line 9).

Regardless of whether or not the page is mapped, the kernel then manipulates

the PTE mapping to point to the kernel page and sets the write protection bit

in the PTE to prevent the kernel page from unintended modification by the

46

Algorithm 4.3: Page Remapping Procedure
Input: start addr, end addr, target pages[], nr target pages
Output: zREAD CPU bitmap, IPIALL bitmap, OTHER bitmap[], pte ptrs[]

1 foreach addr in a page unit from start addr to end addr do
2 idx = calculate from address(addr);
3 pte = page table walk(addr);
4 pte ptrs[idx] = pte;
5 user page = pte to page(*pte);
6 zread cpu = get zread cpu(*pte);
7 if zread cpu == -1 /* Not mapped yet */

8 then
9 mark the user page to be lazily freed;

10 else
11 user page→ref count--;

12 manipulate PTE to point the target pages[idx];
13 set write protection bit in the PTE;
14 set zread cpu(pte, current cpu);
15 if access bit == 1 then
16 set the idx-th bit in IPIALL bitmap;

17 else
18 if zread cpu != -1 then
19 set the idx-th bit in zREAD CPU bitmap;
20 set the idx-th bit in OTHER bitmap[zread cpu];

21 else
22 set the idx-th bit in IPIALL bitmap;

user (lines 12–13). The kernel also updates z-READ CPU, which is the CPU

core ID where the previous z-READ was performed and which is stored in the

unused six bits (52–57) of the corresponding PTE (line 14).

After page remapping, the kernel performs TLB flushing for the manipulated

PTEs. In our scheme, we minimize the number of remote TLB shootdown

operations by several optimization techniques, which will be explained in §4.3.3.

After synchronously waiting for the remote CPUs to invalidate the stale PTEs

for the requested range, the kernel returns to the user space. Note that we

disable preemption during the batching operation for accurate private PTE

detection (Algorithm 4.2, line 1). Inaccurate detection results can allow cores

47

to access the incorrect page using stale PTEs cached in their TLBs.

Write. Since our zero copy I/O scheme focuses on read file I/O, the kernel

behavior on write has not been altered. Note that even if the application issues

a write request with the user buffer already mapped to kernel pages, the kernel

can copy the data from the buffer to the target page cache; the copy is actually

performed between kernel pages.

Modify. When an application attempts to modify the user buffer that is

mapped to a kernel page, a CoW fault occurs owing to the protection bit in

the PTE set by the previous z-READ operation. The kernel CoW fault handler

then checks if z-READ CPU is set. If so, it allocates a new page and modifies

the PTE mapping to point to the new page. This is followed by shooting down

TLB entries, whose cost can be reduced by private PTE detection optimization.

After TLB flushing, the kernel decreases the reference count of the old page that

was pointed by the PTE and then returns to the user.

Free. When an application terminates or frees the user buffer, the remapped

page must be properly handled. When this occurs, the kernel checks z-READ

CPU for each PTE. If z-READ CPU is set, this means that the page to be freed

is a kernel page. Since the reference count of the kernel page has been increased

owing to page remapping in z-READ, the kernel decreases it by one for these

pages in a batched manner. Only the pages whose reference counts reach zero

are freed. Note that since the pages are about to be freed, the kernel does not

have to roll back the pages to the exact state in which they were before page

remapping.

4.3.3 TLB Shootdown Optimization

The TLB shootdown overhead occupies the majority of the page remapping

time. To minimize the overhead of TLB shootdown, we present several tech-

48

niques including private PTE detection and batching TLB shootdown opera-

tions.

Private PTE Detection. As discussed in §4.2.2, the direct TLB insertion

technique plays a significant role in the detection of private mappings. In this

work, we fully implement the direct TLB insertion scheme in Amit’s work [28],

unlike in our previous study [59] where we simplified the implementation under

the assumption that the user buffer is not accessed by other cores during I/O.

In contrast to our prior work, we can directly insert a PTE into the local

TLB without setting the access bit of the PTE. Thus, there is no need to

manually clear the access bits. We refer the reader to [28] for the details of the

implementation of this technique.

With help of this technique, we can utilize the PTE’s access bit to deter-

mine if the PTE has been cached by any remote TLBs. After page remapping

and TLB flushing, the kernel performs direct TLB insertion for private PTE

detection (Algorithm 4.2, line 15). Until the PTE is evicted from the TLB, local

access to the virtual address is possible without setting the access bit owing to

the cached PTE in the local TLB. In contrast, access to the address by the

remote cores will trigger the hardware page table walk, resulting in setting the

corresponding PTE’s access bit.

The kernel can utilize these facts to eliminate unnecessary remote TLB

shootdowns. For example, on the next z-READ request with the same user buffer,

the kernel checks the access bit of the corresponding PTE (Algorithm 4.3, line

15). If set, it means that some remote cores have accessed the page and may

have the PTE cached in their TLBs. In this case, the kernel must send TLB

flush IPIs to all of the remote cores sharing the same address space while per-

forming a local TLB flush (line 16); this is the same behavior as default Linux.

When referring to this type of TLB flush, IPI ALL FLUSH is used. If clear, the

49

kernel checks if the previous core that performs z-READ on the page is equiva-

lent to the current core (Algorithm 4.2, line 11). If so, a local TLB flush (LOCAL

FLUSH) is sufficient to guarantee that no TLBs contain stale mappings for the

addresses corresponding to the user buffer (line 12). Otherwise, it performs a

single remote TLB shootdown (SINGLE FLUSH) for the previous z-READ CPU

without the need for a local TLB flush (line 14). Note that for the first z-READ

request with the user pages that are not remapped, the kernel cannot exploit

this optimization because the access bits are probably set when applications

initialize the user pages prior to use (Algorithm 4.3, line 22). With this opti-

mization, the kernel can replace some remote TLB shootdown operations (IPI

ALL FLUSH) with either LOCAL FLUSH or SINGLE FLUSH. For single-threaded ap-

plications, we disable direct TLB insertion because even without it, the native

kernel carries out only LOCAL FLUSH as we explained in §4.2.2. In this case, our

private PTE detection only adds overhead.

Batching TLB Shootdowns. For a multiple page-sized z-READ request,

we can reduce the number of TLB flushes by batching them rather than per-

forming TLB flushes on every page remapping. z-READ applies batched page

remapping and TLB flushing with a batch size of 32.

In terms of the latency, flushing the entire TLB (GLOBAL FLUSH) is preferred

to performing too many individual flushes (INDIV FLUSH). GLOBAL FLUSH re-

quires two instructions that read and write from/to the CR3 register, while

every individual flush needs an invlpg instruction to invalidate a single page at

a time. GLOBAL FLUSH is fast at the expense of more TLB misses that would not

have been incurred if non-target TLB entries were not invalidated. After GLOBAL

FLUSH, the TLB must be filled from the page table by hardware on every access

to memory. To balance the TLB flush latency and the TLB miss penalty, Linux

uses a tunable threshold called tlb single page flush ceiling whose default value

50

is 33. When the address range to be invalidated is larger than 33 pages, the

native kernel performs GLOBAL FLUSH.

Similarly, we choose the default BATCH SIZE to be 32 in order to limit

the TLB flush latency. In z-READ, when the requested I/O size is larger than

128 KB (32 4 KB pages), the kernel performs either GLOBAL IPI ALL FLUSH,

GLOBAL LOCAL FLUSH, or GLOBAL SINGLE FLUSH. Even in this case, we still

exploit private PTE detection to minimize the number of remote cores that

are involved in TLB shootdown operations. Note that the GLOBAL and INDIV

prefixes are used to indicate how many TLB entries are invalidated at once

in the local TLB, while the IPI ALL, LOCAL, and SINGLE prefixes are used to

denote where TLB flushing has to be performed. After the first batch is done,

there is no need for any other TLB flushes on the cores whose TLBs are entirely

flushed in the first batch. The kernel tracks these cores to prevent unnecessary

TLB flushes.

We implement a bitmap-based ranged TLB flush technique because the

native Linux kernel only supports a ranged TLB flush with contiguous addresses

from the start address to the end address. For batching, two types of bitmaps

are used: an IPIALL bitmap for IPI ALL FLUSH and several OTHER bitmaps for

LOCAL FLUSH and SINGLE FLUSH. The number of OTHER bitmaps matches the

number of cores in the system. Each bit in the bitmap represents a page in

the range starting from the base address. With the bitmaps and base address,

the receiver of a TLB shootdown IPI can calculate the virtual addresses of the

pages that need to be invalidated in the local TLB. In this way, the remote

cores that are involved in a TLB flush receive an IPI only once per batch (once

per I/O request for GLOBAL FLUSH).

During batched page remapping, the kernel checks the access bit, z-READ

CPU, and the current core ID for each page to determine the type of TLB flush

51

to use. The result determined for each page is recorded in either the IPIALL

bitmap or one of the OTHER bitmaps corresponding to the z-READ CPU. These

bitmaps are used for TLB flushing in a batch.

4.3.4 Copy-on-Write Optimization

Our prior version of z-READ [59] does not provide the performance guaran-

tee that z-READ achieves at least as much performance as READ; it actually

performed worse under mixed read/write workloads that can cause numerous

CoW faults. In this work, we resolve this problem by anticipating when the

performance gain of z-READ is offset by the CoW overhead and by dynamically

changing the I/O mode between READ and z-READ.

Performance Loss Model. There is a trade-off between READ and z-READ.

With READ, there is no need to worry about the CoW overhead since the ap-

plication has its own copy of the data. However, owing to the copy overhead,

there might be a performance loss compared to that when using z-READ if no

CoW faults occur.

If we can calculate the expected performance losses for READ and z-READ, we

can choose the one whose performance loss is likely to be lower. The expected

performance losses for READ (E(Lossread)) and z-READ (E(Losszread)) are given

by

E(Lossread) = (LATread − LATzread) ∗ (1− P (cow)), (4.1)

E(Losszread) = LATcow ∗ P (cow), (4.2)

where LATread and LATzread are the latencies of READ and z-READ, respectively;

P (cow) is the probability of the occurrence of a CoW fault; and LATcow is the

52

Table 4.2: The measured average latencies (ns) for our performance loss model

LAT read
read

+mod
zread

zread

+mod

+cow

read

−zread
cow

4 KB 1781 1926 1547 3972 234 2279

8 KB 3255 3557 2387 7054 869 4366

· ·
16 KB 5601 6766 3946 12367 1655 7257

· ·
32 KB 12910 13670 6578 28059 6331 20720

CoW overhead, which can be calculated by

LATcow = (LATzread+mod+cow − LATzread)

− (LATread+mod − LATread), (4.3)

where LATzread+mod+cow and LATread+mod are the respective latencies of z-READ

and READ that are followed by modification of the buffer. Note that CoW fault

overhead is included in LATzread+mod+cow.

To build a performance loss model, we need LATread, LATzread, LATread+mod,

and LATzread+mod+cow. We write a simple user application that measures the

read I/O latencies of z-READ and READ for varying I/O sizes. The results in our

system are listed in Table 4.2. Note that building the model is a one-time offline

task and this model can be updated by our simple kernel module written for

this purpose.

Historical Statistics. We can infer the probability of the occurrence of

a CoW fault if we understand its causes and maintain a history of related

kernel events. In z-READ, a CoW fault occurs when an application attempts to

change the contents of the I/O buffer that is mapped to the kernel pages. This

application’s behavior is usually caused by either 1) data characteristics or 2)

53

application characteristics.

One data characteristic that is highly related to CoW faults is the frequency

of data updates. For instance, some data in a file tend to be frequently updated.

For such data, READ is preferred to avoid CoW fault overhead.

However, although tracking CoW faults is easy, it is difficult to relate this

information to the data in a file. At the time of a CoW fault, the kernel only

knows the user page to which the application wants to write the new data; the

kernel does not know the data in a file that the application is about to update

at that time.

The read/write ratio for each file page can be used instead to infer the

probability of the occurrence of a CoW fault. After reading the data from a

file to user pages, an application may want to update the data permanently.

Note that the same data reside in kernel pages at this point. For permanent

updates, the application first updates the data in user pages, which will cause

CoW faults and then issues a write system call to effect the changes to kernel

pages. From this, we can find the correlation between the write system call and

the modification of the buffer.

Since z-READ is performed in units of pages, we can count the number of read

and write I/Os for each kernel page while sacrificing little accuracy compared

to object-level tracking. To record the I/O event history, we add two counters

for the read and write I/Os in the page structure of the page cache. Whenever

I/O occurs, the kernel increases the corresponding count for each I/O event

(read/write) on the kernel pages.

Given the performance loss model and the read/write ratio of the target

kernel page, the kernel can calculate E(Lossread) and E(Losszread) online. If

E(Losszread) is higher than E(Losszread), the kernel chooses READ over z-READ,

and vice versa.

54

There can be some CoW faults whose cause is not related to data but the

application itself. For instance, an application may initialize the I/O buffer

for reuse. This behavior has no relationship with the data. We can estimate

P (cow) for each user page by simply tracking 1) how many CoW faults have

been occurred on the page and 2) the number of read system calls with the

page. However, this type of CoW fault can easily be eliminated by minor appli-

cation changes (no initialization for reuse); we have chosen to leave this problem

unsolved in this work.

4.3.5 Implementation

We implement a z-READ prototype in Linux kernel 4.12.9. We have modified or

added less than 1000 lines of code across the read I/O path, CoW fault handler,

and page unmapping handler in the kernel. For implementation and debugging

convenience, we have also added a new file open flag, O ZREAD. Similar to the

O DIRECT flag, z-READ is used only when a file is opened with the O ZREAD flag.

4.4 Evaluation

This section presents the evaluation results of our prototype. The evaluation

covers the individual effectiveness of each of the two major optimization tech-

niques presented in this article and the overall effectiveness and performance

interference intensity of z-READ. We compare several variants of our scheme to

READ. The variants of our scheme are as follows:

• z-READ(Earlier). This is the earlier version of z-READ from our previous

work [59].

• z-READ. This is the enhanced version of z-READ that includes the full

implementation of direct TLB insertion and the CoW optimization.

55

• z-READ(NoTLB). This is a variant of z-READ for which private TLB de-

tection is disabled.

• z-READ(NoCoW). This differs from z-READ in that the CoW optimization

is disabled.

• z-READ(Optimal). This represents the optimal performance of z-READ if

we know which core caches which PTEs without the private PTE detec-

tion overhead. To emulate it, we force the kernel to perform a local TLB

flush only, having each job running on a dedicated core.

4.4.1 System Configurations

Experiments are performed on an NUMA system with two nodes, each of which

is equipped with an Intel Xeon Processor E5-2650 v4 running at 2.2 GHz (12

cores/24 threads) supporting four memory channels and 128 GB (32 GB × 4)

DDR4 memory running at 2133 MHz. Two 375 GB Intel Optane DC P4800X

SSDs are configured in RAID-0 for the underlying storage device.

Since we do not have a sufficient number of storage devices to saturate

the entire memory bandwidth, we choose to use only two memory channels to

limit the maximum memory bandwidth, by installing memory into four DIMM

slots associated with two memory channels in a node. However, the sustainable

memory bandwidth of our system is not significantly different from when it uses

four memory channels (25 GB/s vs. 28 GB/s).

All of the benchmarks used in the evaluations are either run until the stable

experimental results are obtained or executed 10 times for the average results.

We omit error bars from these results since the observed variances are negligible.

In order to isolate our results from NUMA effects, we use only one node with

help of the numactl command.

56

Our evaluations were conducted where swapping is disabled because our

prototype currently does not support page reclamation for the remapped pages.

We also disable transparent huge pages (THP) owing to the lack of support for

our prototype. In practice, we can simply enforce the kernel to use READ for

huge pages.

4.4.2 Effectiveness of the TLB Shootdown Optimization

We first evaluate the effectiveness of our TLB shootdown optimization using

FIO, a Flexible I/O tester synthetic benchmark [60]. We run FIO with the

4 KB/16 KB random read workload, varying the number of jobs from 1 to

24. Each job involves reading from the 128-MB-sized file allocated for the job.

We always perform a dummy run with the invalidate flag clear before every

experiment, fully warming up the page cache. Note that our main memory

capacity is sufficiently large to hold all of the file contents in memory so that

all I/Os result in a page cache hit.

We also use the pthread/thread model instead of the default fork/process

model. As we described in §4.2.2, in the fork/process model, where each job has

its own address space, even the native kernel can minimize the number of remote

TLB shootdowns, only performing a local TLB flush on the core running the job.

In other words, the results of FIO with the default fork/process model cannot

show how much our TLB shootdown optimization affects the I/O performance.

Results. We present the performance results in Figure 4.2. We evalu-

ate READ, z-READ(Earlier), z-READ(NoTLB), z-READ, and z-READ(Optimal).

Compared to READ, z-READ improves the I/O performance by up to 1.79 times

for the 4 KB random read (up to 4.07 times for the 16 KB random read). The

performance of READ only scales until it saturates the memory bandwidth (about

25 GB/s), while both z-READ(Earlier) and z-READ scale linearly, even surpass-

57

READ z-READ(Earlier) z-READ(NoTLB) z-READ z-READ(Optimal)

0

5

10

15

20

25

30

35

40

45

1 2 4 6 8 10 12 24

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of Threads

(a) FIO 4 KB Random Read

0
10
20
30
40
50
60
70
80
90
100
110
120

1 2 4 6 8 10 12 24

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

of Threads

(b) FIO 16 KB Random Read

Figure 4.2: The effectiveness of the TLB shootdown optimization

ing the maximum theoretical memory bandwidth. This is possible because they

do not consume memory bandwidth until the data is actually accessed.

The full implementation of the direct TLB insertion scheme in z-READ helps

achieve a further improvement over z-READ(Earlier). This is because emulated

direct TLB insertion in our previous work [59] uses a PTE lock, which is shared

by 512 pages in the native kernel, when clearing the access bit of each PTE.

This limits the scalability when other cores access the pages among the 512

pages that share the same PTE lock. In contrast, z-READ can insert the PTE

into the local TLB without setting the access bit ; thus, no clearing process is

needed.

A comparison of z-READ(NoTLB) with z-READ and z-READ(Earlier) shows

the effectiveness of private PTE detection. Without it, the performance of

z-READ severely decreases because every page remapping requires a remote

TLB shootdown to all cores sharing the same address space. The performance

of z-READ(NoTLB) does not scale at all. It is inferior to READ in every respect,

except for single-threaded applications.

As shown in Figure 4.2a, even with our TLB shootdown optimization, the

58

I/O latency of z-READ can be slightly worse than that of READ for 4 KB read

I/O when the memory bandwidth is not saturated. This means that the costs

of page remapping and TLB flushing for each page is higher than the page copy

overhead. The performance gap between READ and z-READ becomes wider when

the I/O size is increased from 4 KB to 16 KB. This result demonstrates that the

TLB shootdown batching technique enhances the I/O performance for multiple-

page-sized I/O requests, reducing the number of remote TLB shootdowns. We

can conclude that z-READ becomes effective in terms of the latency when the

I/O size is larger than 8 KB.

There is still a room for improvement in reducing the private PTE detection

overhead, which can be inferred from a comparison of the increased performance

of z-READ(Optimal) relative to that of z-READ. Aligned with the conclusion

of Amit’s work [28], the most overhead can be avoided by simple hardware

enhancements.

4.4.3 Effectiveness of CoW Optimization

In order to demonstrate the effectiveness of CoW optimization, we run FIO

with almost the same configuration as the previous evaluation, but a mixed

random read/write workload is used instead. We vary the read/write ratio of

the workload while fixing the number of jobs to 24. Please be advised that for

the write workload, FIO writes random data to the user buffer before issuing a

write system call; thus, every write results in a CoW fault. We evaluate READ,

z-READ(NoCoW), and z-READ.

Results. Figure 4.3 shows the read and write I/O throughputs for various

read/write ratios. For z-READ(NoCoW), when the read/write ratio is 95:5, the

read performance increases by 325% compared to that of READ. However, its

performance becomes worse than that of READ as the ratio of writes increases

59

0

2

4

6

8

10

12

14

16

0
10
20
30
40
50
60
70
80
90
100
110

100:0 95:5 90:10 80:20 70:30 60:40 50:50 40:60 30:70 20:80 10:90 5:95 0:100

W
ri

te
 T

h
ro

u
g

h
p

u
t

(G
B

/s
)

R
ea

d
 T

h
ro

u
g

h
p

u
t

(G
B

/s
)

Read/Write Ratio (Read:Write)

READ z-READ(NoCoW) z-READ READ z-READ(NoCoW) z-READWriteRead

Figure 4.3: The effectiveness of CoW optimization

(a slowdown of 15% for a 50:50 ratio compared to READ). The reason for this

is due to the CoW fault overhead, which is relatively large compared to the

performance gain from z-READ.

Our CoW optimization resolves this problem. For z-READ, the read perfor-

mance and write performance are better than or equal to those of READ for all

read/write ratios. Its performance is preserved even under dynamic workloads

because z-READ changes the I/O mode between z-READ and READ for each page

on the basis of the read/write history. Owing to the decision overhead, z-READ

performs slightly worse than z-READ(NoCoW) for read-heavy workloads (100:0,

95:5).

Since a CoW fault occurs only after performing z-READ, there is less chance

for CoW faults for a write-intensive workload. Consequently, the performance

gap between READ and z-READ becomes narrow after a ratio of 40:60.

60

1

1

2

4

8

16

32

64

1

2

4

8

16

32

64

128

256

L
L

C
 M

is
se

s
P

er
 1

K

In
st

ru
ct

io
n

s
(M

P
K

I)

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

I/O Size (KB)

READ z-READ READ z-READ

(a) 0% of data accessed

1

2

4

8

16

32

64

1

2

4

8

16

32

64

128

L
L

C
 M

is
se

s
P

er
 1

K

In
st

ru
ct

io
n

s
(M

P
K

I)

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

I/O Size (KB)

READ z-READ READ z-READ

(b) 25% of data accessed

1

2

4

8

16

32

64

1

2

4

8

16

32

64

L
L

C
 M

is
se

s
P

er
 1

K

In
st

ru
ct

io
n

s
(M

P
K

I)

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

I/O Size (KB)

READ z-READ READ z-READ

(c) 50% of data accessed

1

2

4

8

16

32

64

1

2

4

8

16

32

L
L

C
 M

is
se

s
P

er
 1

K

In
st

ru
ct

io
n

s
(M

P
K

I)

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

I/O Size (KB)

READ z-READ READ z-READ

(d) 75% of data accessed

1

2

4

8

16

32

64

1

2

4

8

16

32

L
L

C
 M

is
se

s
P

er
 1

K

In
st

ru
ct

io
n

s
(M

P
K

I)

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

I/O Size (KB)

READ z-READ READ z-READ

(e) 100% of data accessed

Figure 4.4: Relationship between the I/O throughput and the LLC MPKI

61

4.4.4 Analysis of the Performance Improvement

The key contributing factor to the improved performance of z-READ is the lazy

cache misses. In z-READ, cache misses for the requested data can be deferred

until the data are actually accessed. On the other hand, READ incurs cache

misses during a page copy. This eager cache miss might be beneficial if and

only if an application accesses all of the data right after a read. However, some

applications may access only part of the data or access the data at a later time

after it is evicted from the LLC.

To determine the relationship between the amount of data accessed after

a read and the performance, we use a modified version of FIO that copies a

certain amount of data from the I/O buffer to another buffer after reading data

from a file. We vary the amount of copied data and the I/O size while keeping

the number of jobs fixed to 24.

Results. The results are plotted on a logarithmic scale with base 2 in Fig-

ure 4.4, where the primary y axis is the I/O throughput and the secondary y

axis is the number of LLC MPKI (misses per kilo instructions). As expected,

the performance is inversely proportional to the number of LLC MPKI regard-

less of the amount of data copied. As the amount of copied data increases, the

performance gap between READ and z-READ becomes narrow owing to the in-

creased number of cache misses in z-READ. When all of the data is copied, the

performance of z-READ is marginally lower than that of READ, except for large

I/O sizes.

For large I/O sizes (512 KB and 1 MB), the performance of READ decreases

because the 30 MB of LLC in our system cannot retain the data between the

time of I/O and the time of data access; cores compete for the LLC. There-

fore, copying more than 50% of the data with READ shows a similar tendency.

62

Table 4.3: SPEC CPU 2006 benchmarks

Memory Intensity Benchmark

High 470.lbm, 462.libquantum

Medium 403.gcc, 401.bzip2

Low 481.wrf, 453.povray

Table 4.4: Mixed workloads

Workloads

mix1 lbm + lbm + gcc + gcc + wrf + wrf

mix2 libquantum + libquantum + bzip2 + bzip2 + povray + povray

mix3 lbm + libquantum + gcc + bzip2 + wrf + povray

However, owing to the lazy cache misses, even with the full data copy, z-READ

maintains better I/O performance than READ, avoiding some unnecessary cache

misses. This characteristic is favorable for the other applications running on the

server.

4.4.5 Performance Interference Intensity

To demonstrate that an I/O-intensive workload can cause harmful interference

to co-located workloads, we run a mixture of several applications from SPEC

CPU 2006 [61] in the foreground while running the 16 KB random read workload

from the FIO benchmark on the other cores on the same node in the background

indefinitely. We repeatedly run the foreground applications until all of them are

finished at least once and then measure the execution time of each of them for

the first run. To minimize the effects of other sources of interference caused

by resource sharing, we allocate six physical cores to FIO while allocating the

other six cores in a node to the foreground applications. For this evaluation,

we set the number of jobs to 12 for FIO. Comparing the execution times of

the co-located applications for each respective read I/O scheme, we indirectly

63

0.00

0.50

1.00

1.50

2.00

2.50

lbm x 6 libquantum x 6 gcc x 6 bzip2 x 6 wrf x 6 povray x 6 mix 1 mix 2 mix 3 geomean

S
lo
w
d
o
w
n

Workload

READ(MEM) z-READ(MEM) READ(DISK) z-READ(DISK)

Figure 4.5: Slowdown of co-located workloads

evaluate the performance interference intensity of READ and z-READ under two

circumstances: in-memory and on-disk.

For the on-disk configuration, we use cgroup to limit the memory available

to FIO to 1 GB while forcing each job read from its own 10-GB-sized file (total

120 GB for 12 threads). Note that the configured memory limit also applies to

the amount of page cache used by FIO; thus, most read requests have to go to

the disk.

According to the memory intensity, we choose six benchmarks from SPEC

CPU 2006 on the basis of the benchmark classification results from [62,63]. The

benchmarks used in this evaluation are listed in Table 4.3. For the foreground

workloads, we run either six identical benchmarks or a mixed workload that

consists of several benchmarks. Three mixed workloads are summarized in Table

4.4. We use ref as the input for SPEC CPU 2006.

Results. The slowdown of the foreground workloads when running with the

I/O-intensive background workloads are shown in Figure 4.5. Note that we use

the geometric mean to compute the average slowdown of the foreground applica-

tions. In the in-memory I/O configuration in Figure 4.5, z-READ scarcely affects

the execution time of the co-located workloads (only a slowdown of 11%) while

the workloads with READ suffer up to a slowdown of 144%. Figure 4.5 demon-

64

Table 4.5: Parameters for the Filebench workloads

Workload Configuration

webserver
filesize=16k, 32k, 64k, 128k
iosize=1m

varmail
meanappendsize=16k, 32k, 64k, 128k
filesize=16k, 32k, 64k, 128k
iosize=1m

fileserver
filesize=128k, 256k, 512k, 1m
iosize=1m
meanappendsize=16k

videoserver
readiosize=128k, 256k, 512k, 1m
writeiosize=1m
filesize=500m

strates that even in the on-disk I/O configuration, copy-based I/O (READ) can

severely interference with the performance of co-running applications, incurring

a slowdown of 31% on average. For the same case, the co-located workloads are

18% slower on average with z-READ. Interestingly, with z-READ, the on-disk

I/O configuration causes more slowdown than the in-memory configuration.

This originates from the zeroing out of the new page cache before reading the

data from disk, which costs memory bandwidth. By avoiding memory copy and

saving memory bandwidth, z-READ can outperform READ by up to 2.1×.

4.4.6 Effectiveness of z-READ in Macrobenchmarks

We use four macroworkloads from the Filebench benchmark [64]: webserver,

varmail, fileserver, and videoserver. We run them with the parameter settings

listed in Table 4.5. For the videoserver workload, we eliminate the bwlimit

workflow to measure the peak I/O performance. For each workload, we vary

different parameters that affect the actual I/O size for a single read system

call. For example, for webserver and fileserver, we change the file size while

keeping the I/O size fixed to 1 MB because the actual I/O size is the same as

65

0

5

10

15

20

25

30

35

40

45

16 32 64 128

I/O
 T

h
ro

u
g

h
p

u
t

(G
B

/s
)

Actual Read I/O Size (KB)

READ z-READ

(a) webserver

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

16 32 64 128

I/O
 T

h
ro

u
g

h
p

u
t

(G
B

/s
)

Actual Read I/O Size (KB)

READ z-READ

(b) varmail

0

2

4

6

8

10

12

14

16

18

128 256 512 1024

I/O
 T

h
ro

u
g

h
p

u
t

(G
B

/s
)

Actual Read I/O Size (KB)

READ z-READ

(c) fileserver

0

50

100

150

200

250

128 256 512 1024

I/O
 T

h
ro

u
g

h
p

u
t

(G
B

/s
)

Actual Read I/O Size (KB)

READ z-READ

(d) videoserver

Figure 4.6: Performance on macrobenchmarks

the file size when the file size is shorter than the requested I/O size. On the

other hand, varmail uses meanappendsize when writing data to a newly created

file. Since it reads the entire file after that, meanappendsize is directly related

to the actual I/O size and the file size.

Results. We evaluate READ and z-READ in the in-memory configuration

where all data are in memory. We present the performance results from Filebench

in Figure 4.6.

For the webserver workload in Figure 4.6a, which emulates a web server that

performs open-read-close operations, the improvement in performance obtained

66

by z-READ is not noticeable (about 5%) when the file size is small (16 KB).

However, it improves the throughput by up to 3.8 times as the file size increases.

Because of the in-memory configuration, the overheads for opening and closing

a file are considerable, while these overheads are consistent regardless of the file

size. Therefore, for a larger file size, the read performance more greatly affects

the overall performance.

For the varmail workload in Figure 4.6b, there is only small performance

gain with z-READ (less than 3%). The workload emulates a mail server that per-

forms open-create-append-sync-close, open-read-append-sync-close, open-read-

close, and delete operations. As a result, the read I/O contributes only a small

fraction of the application runtime; thus, the read performance has little impact

on the overall performance.

In Figure 4.6c, although the fileserver workload performs create-delete-

append-read-write-stat operations, z-READ improves the throughput by up to

68% compared to READ. This is due to the relatively large file size. A perfor-

mance gain is realized when an entire file is read.

For the videoserver workload in Figure 4.6d, which performs delete-create-

write-close and read operations, z-READ outperforms READ by 12.7–23.3 times.

As expected, since videoserver is the most read-intensive workload, it can con-

siderably benefit from the use of z-READ.

4.5 Summary

In this chapter, we have presented z-READ, an efficient, transparent, and practi-

cal zero copy read file I/O scheme, and several optimization techniques that re-

duces two major sources of overhead: page remapping and CoW faults. z-READ

provides better I/O performance, even for mixed read/write workloads that

incur CoW faults, while significantly reducing the interference with the per-

67

formance of co-located workloads in data-center-like environments. In future

work, we will apply z-READ to existing persistent datastores and explore the

feasibility of transparent zero copy write file I/O.

68

Chapter 5

Memory Efficient Fork-based
Checkpointing

5.1 Motivation

5.1.1 Fork-based Checkpointing

Fork-based checkpointing is simple yet effective scheme that is used for many

popular IMDBs [23,24]. Algorithm 5.1 shows the simple fork-based checkpoint-

ing model. It works as follows. When an IMDB wants to create a backup of

consistent data in background, fork() is used to create a child process (check-

pointer) that shares the same physical pages with the parent process (servicer).

After fork(), servicer can continue to handle the requests from clients while

checkpointer traverses and writes all the point-in-time data to a file. For update

requests from clients during checkpointing, servicer may try to overwrite the

contents of the shared pages. Owing to the CoW technique on which fork()

relies, this overwriting does not affect the point-in-time data on checkpointer.

However, this can lead to the increase in the memory footprint during check-

69

Algorithm 5.1: Simple Fork-based Checkpointing Model

1 if (checkpointer = fork()) == 0 then
2 foreach objects in IMDB do
3 fwrite(obj type, size, count, fp);
4 fwrite(obj len, size, count, fp);
5 fwrite(obj data, size, count, fp);

6 else
7 servicer continues to service clients’ requests

pointing [26,65–67]. At worst, updates (even single bit modifications) on every

page can result in using up to two times the memory needed for the data set. The

problem is that this increased memory cannot be reclaimed until checkpointer

terminates; this will be discussed in more detail in the following section. In fact,

the time it takes before the checkpointer ’s memory is released is dependent on

the checkpointing speed, which turns on the speed of storage device. That is,

the slower the storage device, the longer the checkpointing time, thus the higher

the chance of the memory being doubled for update-intensive workloads.

For this reason, many IMDB vendors [26] recommend users provision mem-

ory based on their peak memory usage, leaving a sufficient amount of memory

available for the OS to be used for page duplication on CoW faults; because, in

case of memory pressure, IMDBs will either be killed by the OS’s out-of-memory

killer or be severely slowed down due to swap. However, this conservative ap-

proach results in wastage of memory that can be utilized for storing more data

in memory, especially where the peak memory usage is rarely reached.

On the other hand, fork-based checkpointing may incur high latency spike

on servicer, owing to fork() [66–68]. Since fork() is a blocking operation,

the calling process (servicer) must wait for it to finish. Meanwhile, servicer

cannot respond to the request from clients. Although copying the page table

entries takes shorter time than copying the pages, it may cause a noticeable

70

latency spike for client requests during fork() when data set size is huge, due

to fork()’s O(n) time complexity. However, because this latency, in practice,

can be alleviated by restraining the data set size of a single IMDB instance

and running multiple instances within a single machine, we focus solely on the

memory footprint issue in this work.

5.1.2 Approach

Our basic idea is simple but powerful: returning to the OS the pages that

has been checkpointed by checkpointer as soon as possible, so that updates

on servicer do not lead to memory duplication. One may think that freeing

logical objects already checkpointed is enough to reduce the memory footprint

during checkpointing. However, this is not the case for the fork-based one. After

fork(), initially, all the pages are shared between servicer and checkpointer.

As explained in §2.1.4, in order to prevent a CoW page from being duplicated,

the page need to be private. The way to make these pages private without

incurring a CoW fault is to let either servicer or checkpointer voluntarily return

the memory of these page to the OS; then the OS can unmap these page from

their address space.

However, this is not easily achievable due to the semantic gap between ap-

plication (IMDB) and OS in the context of memory allocation/deallocation.

The existence of user-level memory allocators (UMAs) [69], such as GNU libc

allocator and jemalloc [70], is the cause of the gap. UMA helps applications

to efficiently allocate and deallocate memory at object granularity while mini-

mizing the OS’s involvement. For instance, the memory of the freed objects is

not immediately returned to the OS but is recycled for the application’s other

memory allocation requests to avoid excessive system call overhead. In fact,

UMA keeps the memory once allocated from the OS until the associated pro-

71

cess terminates. Although OS can reclaim this allocated memory using swap

in case of memory pressure, it is done transparently to applications. Therefore,

there needs to be an explicit way for applications to return the pages to the

OS. As explained in §2.2.2, the madvise() system call with the proper hint can

do the job.

On the other hand, a new challenge arises from the fact that madvise()

works only at page-level granularity while IMDB performs checkpointing at

object-level (record or key-value pair). Since multiple objects can be stored in a

single page, it is not allowed for the page to be returned to the OS until all the

objects within the page are checkpointed. A naive approach to address this is

to track the checkpointed objects within a page using a bitmap data structure.

However, this will require the bitmap management costs, in terms of memory

usage and CPU cycles. Moreover, because the objects are allocated and deallo-

cated across address space, the order in which the objects are checkpointed is

not necessarily the logical address order; two consecutive objects within a page

can be checkpointed at two different time. Furthermore, some of the objects

may be not meant to be checkpointed (e.g., temporary data). Only one tiny

object left uncheckpointed can result in the failure of returning the page to the

OS.

Our approach is to exploit physical memory dump, which is generally used

for forensic analysis [71, 72]. By sequentially writing the contents of the pages

in logical address order, it is possible to allow the pages to be returned to the

OS once they are written to disk. However, the physical memory dump alone

is not enough for a consistent snapshot of a IMDB to be used for restoring

data because the mapping information between the virtual addresses, which

can be converted to the dump file offset, and the object is not included in the

dump file. For example, the IMDB cannot know for what object the first eight

72

bytes of the dump file represent. However, this mapping information can be

reconstructed later if checkpointer logs the virtual addresses of the objects to

be checkpointed. Therefore, for each write request for the objects, our scheme

writes the virtual address of the given buffer (object), instead of the contents

of the buffer. Given the virtual address of an object, our scheme can restore the

object from the dump file.

5.2 Related Work

The creation of consistent snapshots has been thoroughly researched in IMDBs.

Towards a fast checkpointing with low memory footprint and low latency for

clients, many checkpointing scheme has been proposed. Naive Snapshot is the

simple checkpointing technique that quiesces the system during taking a consis-

tent snapshot of data. Some studies [73,74] applied this to scientific applications

in high performance computing. However, the blocking approach is not suitable

for IMDBs that needs to continue servicing the requests while checkpointing is

done.

For non-blocking checkpointing, Copy-on-Update (COU) algorithm has been

proposed by several studies [65,75]. These studies presented the memory-efficient

consistent checkpointing scheme that supports the row-level COU rather than

the page-level COU. In theory, the smaller granularity of duplication could lead

to a smaller effect on update latency while providing slower increase in memory

usage, compared with the page-level one. However, due to the presence of row

locking, their average latency may be higher than the page-level COU [66, 67].

Our scheme is also a variant of page-level COU that relies on the OS’s CoW

support. Our study is in line with their work in terms of addressing the memory

footprint problem. In contrast to the existing COU schemes, we focus on reduc-

ing the memory footprint while using page-level COU that provides superior

73

average latency.

Cao et al. [76] proposed two checkpointing algorithms that trade extra mem-

ory usage for lower overhead and latency. Whereas our work trades restoring

speed for lower memory footprint and latency. Li et al. [66, 67] evaluated and

compared the existing consistent checkpointing algorithms. Extensive evalua-

tions revealed that the simple fork-based checkpointing could outperform the

state-of-the-arts in terms of both average latency and maximum latency. Based

on the result, they also proposed two improved algorithms that address the

latency spike problem of the fork-based checkpointing scheme while achieving

the comparable average latency. However, their average latency may be com-

parable but still lower, to that of the simple fork-based checkpointing while our

scheme provides even better average latency (higher throughput). Moreover, in

contrast to our scheme that takes full advantage of OS-level functionality, all

the above works require high effort to be implemented in IMDBs.

Sharma et al. [68] introduced a new system call vm snapshot(), which is

a fine-grained version of fork(). Owing to the smaller number of page table

entries to be copied, it allows faster snapshot creation if applications do not

need to checkpoint all the data across the whole address space. Their work

and our work have similarities in that both exploit OS supports to address

the problem of the fork-based checkpointing. However, our work focuses on the

memory footprint issue while their focus is to reduce the snapshot time.

5.3 Design and Implementation

5.3.1 Overview

On the basis of the idea discussed in §5.1.2, we present a new fork-based check-

pointing scheme, called MDC, which effectively mitigates the memory footprint

issue occurred from the existing fork-based checkpointing scheme.

74

Figure 5.1: The Overview of MDC

Checkpointing. For checkpointing, MDC involves three steps as follows:

(1) preparing, (2) logging, and (3) memory dump. In the preparation step (1),

MDC first allocates an address space table in memory and loads the process’s

VMA information into it1 (Figure 5.1-1 ¶); each row of the address space table

is associated with a VMA, containing the start address and end address of the

VMA, and a dumped flag, which indicates whether or not this VMA needs to be

memory-dumped at the end of checkpointing. Then, MDC creates and opens

three files that are intended to be used internally, transparently to applications

(Figure 5.1-1 ·); a .dump file is used for physical memory dump and a .vma file

contains the information about virtual memory areas (VMAs) while a .bitmap

file stores the bitmaps that indicate which pages in the VMA are written to the

.dump file.

After the step (1), the logging step (2) is started. For a write request of the

object during checkpointing, MDC searches for the VMA of the object’s virtual

address and marks it to be memory-dumped later by setting its dumped flag

to 1 (Figure 5.1-1 ¹). Then, MDC writes the address of the object to the file

1In Linux, the process’s VMA information can be obtained from /proc/self/maps.

75

that is explicitly given by the application (Figure 5.1-1 º). Exceptionally, for

the objects allocated in stack, MDC writes the objects themselves to the file

(Figure 5.1-1 ¸), which is the same behavior as the normal write operation.

This is because the address of the object allocated in stack can be recycled

in different function calls; due the time difference between (2) logging and (3)

memory dump, our scheme requires all the addresses of the target objects to be

unchanged until (3) memory dump is done. MDC also performs a normal write

operation for the object whose size is less than eight bytes because in such a

case, the size of the address (8 bytes in 64-bit system) becomes larger than the

object. Note that the step (2) ends very quickly compared to writing all the

objects to the file, owing to the reduced amount of writes.

At the end of checkpointing (3), MDC checks which VMAs have their

dumped set to 1 (Figure 5.1-1 »). For the target VMA, MDC first stores a

VMA entry into the .vma file (Figure 5.1-1 ¼). The VMA entry contains the

start and end addresses of the VMA and the current location of the .bitmap

file offset; they are used to find the base bitmap entry associated with the given

virtual address for restoring process.

After storing the VMA entry, MDC starts to perform memory dump at

multiple page granularity. We empirically select the default dump unit to be

64 pages (256KB) so that it enables gradual freeing of pages during memory

dump while not incurring too much system call overhead. MDC also uses direct

I/O [29] for writing memory dump to allow the I/Os to bypass page cache,

preventing servicer from being interfered with memory copy between user and

kernel. Since direct I/O requires I/O to be 512-byte aligned, taking advantage

of direct I/O for normal applications is only possible with implementing their

own buffer management. In contrast, MDC can utilize direct I/O without any

additional efforts because it already writes memory dump at page granularity.

76

To avoid unnecessary writes, MDC performs memory dump only for the

pages that page frame is assigned2. Therefore, for 64 pages, MDC checks which

pages do not have page frames assigned, with help from our OS support mincore2(),

which will be detailed soon. MDC then creates a bitmap entry that contains

the current location of the .dump file offset and a bitmap whose bit corresponds

to the pages to be dumped; they are used to find the .dump file offset associated

with the given virtual address. After storing a bitmap entry into the .bitmap

file (Figure 5.1-1 ½), MDC writes only the pages that have page frame assigned

into the .dump file (Figure 5.1-1 ¾). MDC finally closes the opened files and

frees the address space table (Figure 5.1-1 ¿).

Restoring. Similar to the checkpointing process, the restoring process re-

quires the preparation step. MDC first opens the three files (Figure 5.1-2 ¶),

allocates a VMA table and a bitmap table in memory, and fills them from .vma

and .bitmap files, respectively (Figure 5.1-2 ·). Note that they do not consume

much memory (less than 1MB for 10GB data set). MDC performs mmap to map

the .dump file into the process’s address space (Figure 5.1-2 ¸) to avoid the

excessive overhead of page copy between user and kernel memory when reading

an object from the file.

For restoring an object, our scheme performs two read operations: one for

the virtual address from the file explicitly given by applications (Figure 5.1-2

¹), the other for the content of the object from the .dump file. Given the virtual

address of the object, MDC can calculate the location of the object within the

.dump file (Figure 5.1-2 ¼) by searching for the corresponding VMA entry and

bitmap entry while walking the VMA table and the bitmap table (Figure 5.1-2

º∼»). MDC then can copy the content of the object from .dump file, using

the obtained offset and the mmapped base address (Figure 5.1-2 ½). After all

2Modern OSs use demand paging for virtual memory support [29].

77

Algorithm 5.2: MDC Checkpointing Model

1 if (childpid = fork()) == 0 then
2 mdc checkpoint start();
3 foreach objects stored in IMDB do
4 mdc fwrite(object type, size, count, fp, MDC VAL);
5 mdc fwrite(object len, size, count, fp, MDC VAL);
6 mdc fwrite(object data, size, count, fp, MDC REF);

7 mdc checkpoint end();

8 else
9 servicer continues to service clients’ requests

restoring process is done, MDC unmap the .dump file, closes the three files, and

frees the VMA table and bitmap table (Figure 5.1-2 ¾).

Checkpointing Model. The checkpointing model of MDC (Algorithm 5.2)

is very similar to the existing simple fork-based checkpointing model (Algorithm

5.1). Therefore, it is easy to port our scheme to the existing applications that

use the fork-based checkpointing model; replacing fwrite() functions with our

mdc fwrite() and using mdc checkpoint start() and mdc checkpoint end()

to wrap around the checkpointing codes is enough.

5.3.2 OS Support

Our scheme requires several minor OS supports to allow applications efficiently

but safely returning pages at user-level.

mincore2. In Linux, mincore() is used to know if pages of the calling

process’s virtual memory reside in memory [29]. Our mincore2() is a slightly

modified version of mincore() to return a vector that indicates whether pages of

the calling process’s virtual memory have ever had page frames; in other words,

it includes the pages swapped out. This allows our scheme to avoid unnecessary

writes of only the pages that contains nothing meaningful.

78

DONTNEED2. As explained in §2.2.2, madvise() with the DONTNEED hint

allows applications to return the pages to the OS. However, in the fork-based

checkpointing, returning all the pages of the checkpointer results in freeing of

its private data as well. The DONTNEED2 hint prevents this by returning only

the pages that are shared with other processes or have became private owing

to other process’s CoW faults.

PrivateCoWed. To track whether the page has become private as a result

of other process’s CoW fault, we add a PrivateCoWed flag in the flags field in the

page structure. When a CoW fault occurs, the kernel sets the PrivateCoWed flag

of the old page if the old page is no longer shared with anyone. For madvise()

with the DONTNEED2 hint, this flag can be used as a hint to the kernel that those

private pages are free to be returned to the OS.

5.3.3 Implementation

We implement MDC as an user-level library that provides simple APIs to ap-

plications. Our APIs corresponding to fread() and fwrite() are mdc fread()

and mdc fwrite(), respectively. They take one more argument, which is mdc type,

compared with the existing ones. When the value of mdc type is MDC VAL, they

behave exactly the same as the existing ones; applications can use this to check-

point and restore the objects allocated in stack while MDC REF can be used for

the objects allocated in heap. We choose this non-transparent way because ap-

plications know better than the OS where the object is allocated. Due to the

similarity of the checkpointing model and the APIs, the existing applications

can be easily modified to use our scheme. When we apply our scheme into Redis,

it only requires few tens of lines of code changes.

79

5.4 Evaluation

5.4.1 Experimental Setup

System. All the experiments are conducted on two machines, each of which

is equipped with a Intel Core i7-4790 CPU (3.6 GHz, 4 physical cores, 8 logical

cores with hyperthreading), and 32 GiB of DRAM memory: one for a server

machine and the other for a client machine. They are connected via a 10GbE

network. We use two Samsung 850 Pro SATA SSD for the server machine: one

for swap device and the other for checkpointing. In the Linux kernel configu-

ration, we set the vm.overcommit memory to 1 as guided in [26] while setting

vm.swappiness to 1 in order to prevent swap unless absolutely necessary (e.g.,

run out of memory). We also disable transparent huge page (THP), which could

degrade the performance of IMDBs [77]. Our evaluation is conducted on the

Linux kernel 4.19.61 modified for MDC.

Redis. To demonstrate the effectiveness of our scheme in real applications,

we apply MDC into Redis 5.0.5. We use the Redis’s RDB mode where Redis

generates consistent snapshots of the data set at specified intervals. We disable

RDB compression in Redis because our prototype implementation does not cur-

rently support the feature. We change the hash-max-ziplist-value to 1024 from

64 so that HASH [78] data can be inserted to Redis more memory efficiently3.

Workloads. To evaluate the performance of Redis (Redis-FORK) and MDC-

based Redis (Redis-MDC), we choose the Yahoo! Cloud Serving Benchmark

(YCSB) [79] as our target workload. Table 5.1 shows the detailed settings of

YCSB used throughout the evaluation. We use the default record size.

Methodology. After loading the YCSB data into Redis, we run the YCSB

workload while enforcing the Redis to start checkpointing in background. For

3YCSB data is stored as HASH data in Redis.

80

Table 5.1: Parameters of YCSB workloads

Parameters Setting

Record count 10M,11M,12M,13M,14M,15M,16M

Update proportion 0.25, 0.50, 0.75, 1.00

Distribution zipfian

Number of threads 128

fair comparison, we first measure the performance of MDC-based Redis (Redis-MDC)

during the checkpointing while measuring its checkpointing time. Note that we

stop the YCSB workload when the checkpointing is done. This measured check-

pointing time is used when we evaluate the performance of the Redis-FORK; we

measure the performance of Redis-FORK for this measured time so that the

YCSB workload runs longer even after the checkpointing is done. For this ex-

tended period of time, the YCSB workload is not interfered by the checkpointing

process, thus Redis-FORK can enjoy the benefit from slightly faster checkpoint-

ing. When measuring restoring time, we drop the page cache beforehand so that

we can measure the time it takes to restore the data from the storage.

We use multiple Redis instances to utilize the CPU resources available in

the system. Unless specified, we use two instances for evaluation. We run two

YCSB clients for this case. Note that the total record count and the total

number of threads are preserved regardless of the number of the YCSB clients.

For example, for two YCSB clients, 64 threads are used for each client.

5.4.2 Performance

Memory footprint. Since Redis uses the simple fork-based checkpointing,

its memory footprint can be increased by up to two times during checkpointing.

Figure 5.2a shows the memory footprint with varying data set sizes for 0.5 up-

date proportion. Redis-FORK’s memory footprint can be increased by up to 77%

81

10M 11M 12M 13M 14M 15M 16M
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

5

10

15

20

25

30

35

40

Total Record Count

In
cr

ea
se

d
 M

em
o

ry
 F

o
o

tp
ri

n
t

R
el

at
ei

ve
 t

o
 D

at
a

S
et

 S
iz

e(
%

)

M
em

o
ry

 F
o

o
tp

ri
n

t (
G

B
)

Data Set Size(GB) Redis-FORK(GB) Redis-MDC(GB)

Redis-FORK(%) Redis-MDC(%)

(a) Memory Footprint

0

50000

100000

150000

200000

250000

300000

350000

10M 11M 12M 13M 14M 15M 16M

T
h

ro
u

g
h

p
u

t (
o

p
er

at
io

n
s/

se
c)

Total Record Count

Redis-FORK Redis-MDC

(b) Throughput

Figure 5.2: YCSB results with varying data size (2 instances, 0.5 update pro-
portion)

1 2 4
0%

10%

20%

30%

40%

50%

60%

70%

0

5

10

15

20

25

30

35

of Instances

In
cr

ea
se

d
 M

em
o

ry
 F

o
o

tp
ri

n
t

R
el

at
ei

ve
 t

o
 D

at
a

S
et

 S
iz

e(
%

)

M
em

o
ry

 F
o

o
tp

ri
n

t (
G

B
)

Data Set Size(GB) Redis-FORK(GB) Redis-MDC(GB)

Redis-FORK(%) Redis-MDC(%)

(a) Memory Footprint

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

1 2 4

T
h

ro
u

g
h

p
u

t (
o

p
er

at
io

n
s/

se
c)

of Instances

Redis-FORK Redis-MDC

(b) Throughput

Figure 5.3: YCSB results with varying the number of Redis instances (13M
records, 0.5 update proportion)

while Redis-MDC’s memory footprint is increased by only up to 26% (relative to

the data set size). This gap can be wider as the number of Redis instances in-

creases (Figure 5.3a) and the update proportion is increased (Figure 5.4a). This

is because of the higher update rate; more Redis instances have more powerful

processing capability to handle updates in parallel while higher update propor-

tion increases the number of incoming update requests for each Redis instance.

To analyze how the memory footprint changes, we plot the memory footprints

of Redis-FORK and Redis-MDC over time for the data set of 13M records, which

is shown in Figure 5.5. The Redis-FORK’s memory footprint is incrementally

82

0.00 0.25 0.50 0.75 1.00
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

5

10

15

20

25

30

35

Update Proportion

In
cr

ea
se

d
 M

em
o

ry
 F

o
o

tp
ri

n
t

R
el

at
ei

ve
 t

o
 D

at
a

S
et

 S
iz

e(
%

)

M
em

o
ry

 F
o

o
tp

ri
n

t (
G

B
)

Data Set Size(GB) Redis-FORK(GB) Redis-MDC(GB)

Redis-FORK(%) Redis-MDC(%)

(a) Memory Footprint

0

50000

100000

150000

200000

250000

300000

350000

0.00 0.25 0.50 0.75 1.00

T
h

ro
u

g
h

p
u

t (
o

p
er

at
io

n
s/

se
c)

Update Proportion

Redis-FORK Redis-MDC

(b) Throughput

Figure 5.4: YCSB results for varying update proportion (13M records, 2 in-
stances)

increased over time until checkpointing finishes. On the other hand, Redis-MDC

finishes the logging step within 11 seconds after checkpointing process starts.

It then starts to perform the physical memory dump while returning the pages

to the OS. As a result, the increase in memory footprint starts to slow down

after that. The memory footprint starts to drop at 24 seconds because as the

number of pages returned to the OS increases, the chance that updates do not

result in page duplication will increase. In summary, our scheme can halve the

amount of memory increased during checkpointing.

Throughput. Figure 5.2b shows the throughput of the YCSB workloads

with varying data set size for 0.5 update proportion, while checkpointing is

being performed in background. We find that when system memory is enough,

Redis-MDC offers only a marginal performance improvement (by 1.5% on aver-

age) over Redis-FORK, avoiding some page duplication on CoW faults. However,

when the data size is larger than two-thirds of the system memory (from 15M

records), the throughput of Redis-FORK starts to drop severely due to swap.

We omit the results for the extreme case scenarios because YCSB clients stop

running while complaining slow response time. In contrary, under the same

83

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45

M
em

o
ry

 F
o

o
tp

ri
n

t (
G

B
)

Time (sec)

Redis-FORK Redis-MDC

Figure 5.5: Memory footprint over
time (13M records, 0.5 update propor-
tion)

0

20

40

60

80

100

120

140

160

10M 11M 12M 13M 14M 15M 16M

C
h

ec
kp

o
in

ti
n

g
 T

im
e

(s
ec

)

Total Record Count

Redis-FORK Redis-MDC

Figure 5.6: Checkpointing Time

0

5

10

15

20

25

30

35

40

5M 5.5M 6M 6.5M 7M 7.5M 8M

R
es

to
ri

n
g

 T
im

e
(s

ec
)

Total Record Count

Redis-FORK Redis-MDC

Figure 5.7: Restoring Time

0

5

10

15

20

25

10M 11M 12M 13M 14M 15M 16M

D
u

m
p

 F
il

e
S

iz
e

(G
B

)

Total Record Count

Redis-FORK Redis-MDC

Figure 5.8: Checkpointing File Size

condition, Redis-MDC maintains the throughput thanks to the decreased max-

imum memory footprint. As shown in Figure 5.3b, the aggregated throughput

of YCSB clients scales with the number of Redis instances. In the four Redis

instances scenario, Redis-MDC improves the throughput by 9%, compared to

Redis-FORK, even when swap does not occur. In contrast, the update propor-

tion has relatively lower impact on the throughput, which can be inferred from

Figure 5.4b. When memory is enough, the relative performance improvement

of our scheme is marginal (up to 3%). However, in the 100% updates scenario,

checkpointing of only 17.4 GB of data set (13M records) can incur swap (note

that the total system memory is 32 GB).

Checkpointing Time. We find that the checkpointing time is not affected

by other conditions such as the number of Redis instances and the update

84

proportion, thus here we show the checkpointing time with varying data set

size in Figure 5.6. Redis-MDC’s checkpointing takes up to 5% longer time to

finish than Redis-FORK’s when memory is sufficient. This slightly longer time

comes from the increased amount of writes. We will explain this later when

discussing about the file size.

Restoring Time. Figure 5.7 shows the restoring time with varying data

set size. Redis-MDC takes longer time (up to 75%) for restoring, relative to

Redis-FORK. This is because, although we use mmap to mitigate the memory

copy overhead, MDC still requires two read operations for each object. More-

over, in contrast to Redis-FORK that sequentially reads the contents of the

file, Redis-MDC rather randomly accesses the .dump file for the target objects.

Therefore, the buffering behavior of fread() greatly improves the I/O perfor-

mance of Redis-FORK but not that of Redis-MDC. However, because restoring

data may not occurs frequently, we believe that reducing memory footprint is

more preferable for IMDBs.

File Size. Figure 5.8 shows the aggregate size of the files related with

checkpointing. The aggregate file size of Redis-MDC is 20% larger relative to

that of Redis-FORK, regardless of the data set size. This is mainly due to the

increased amount of writes. Although some data in memory does not have to

be checkpointed, our scheme writes almost all pages4 of the address space to

the file, having no knowledge of the data characteristics at the memory dump

time. We find that when an application has only objects in memory to be

checkpointed, MDC increases the checkpointing file size by only 2% 5. Therefore,

the file size do not have to be sacrificed for performance if our scheme can write

4MDC excludes the pages that the physical page frame has not been assigned.
5We write a simple application that simulates servicer and checkpointer to demonstrate

this. We omit the result due to the limitation of space.

85

only the pages that need to be checkpointed. Note that even with 20% larger

file size, Redis-MDC’s checkpointing takes only 5% longer time to finish; MDC

has room to improve. Our idea to address this issue is to create two separated

memory pool in the user-level memory allocator; one for checkpointing and

the other for all other purposes. The allocator can give the OS the hint about

the memory regions so that the OS can perform memory dump only for the

checkpointing memory regions. Our current prototype does not implement this.

We leave it for future work.

5.5 Summary

The existing fork-based checkpointing scheme has been used for many popular

IMDBs due to its simplicity yet state-of-the-art performance. In this chapter, we

address the unsolved problem of the existing fork-based checkpointing scheme:

increase in memory footprint during checkpointing. Our novel approach of using

physical memory dump and cooperating with the OS, which we call MDC, can

effectively mitigate the memory footprint problem. This is desirable for IMDBs

because the memory that has to be reserved for the worst case now can be

used for storing more data. As a future work, we will extends our scheme to

an user-level memory allocator so that applications, the memory allocator, and

the OS all coordinate for more efficient checkpointing scheme.

86

Chapter 6

Conclusion

Efficient utilization of memory resource is becoming ever significant. However,

existing OS memory subsystem provides only limited support for applications to

control the memory behavior, which result in inefficient memory utilization. In

this dissertation, we have explored three memory-related problems with data-

intensive applications in current OS memory subsystem and have addressed

them by extending OS memory subsystem for better supporting applications.

In Chapter 3, we first explore the problems of existing datastore architecture

for sidestepping double caching and conclude that its inefficiency comes from

the non-cooperation between datastore and OS in terms of caching. Therefore,

we propose cooperative caching approach that utilizes OS page cache as a victim

cache for user-level file content cache, constructing a two-tier cache hierarchy in

memory. Experimental results demonstrate that utilizing both user and kernel

caching can achieve better performance and higher in-memory cache hit ratio

for the given system memory.

In Chapter 4, we examine the memory copy overhead of copy-based I/O in

87

terms of latency and performance interference. Zero-copy is a known solution to

this problem but there is no zero-copy I/O scheme that simultaneously provides

1) transparent copy avoidance via read/write system calls and 2) the benefits

of kernel-level caching. To this end, we present an efficient, transparent, and

practical zero-copy read file I/O scheme, and several optimization techniques

that reduces two major sources of overhead: page remapping and CoW faults.

Experimental results show that our scheme provides better I/O performance,

even for mixed read/write workloads that incur CoW faults, while significantly

reducing the interference with the performance of co-located workloads in data-

center-like environments.

In Chapter 5, we investigate the problem of the existing fork-based check-

pointing scheme: increase in memory footprint during checkpointing for update-

intensive workloads. Our novel approach of using physical memory dump and

cooperating with OS, which we call MDC, can effectively mitigate the memory

footprint problem. This is desirable for IMDBs because the memory that has

to be reserved for the worst case now can be used for storing more data.

In the future work, we will apply z-READ to existing persistent datastores

and explore the feasibility of transparent zero-copy write file I/O. We will also

extend DBIO to utilize zero-copy read/write I/O to eliminate memory copy

overhead when page is moved between user and kernel buffers. Finally, we will

extends MDC to an user-level memory allocator so that applications, memory

allocator, and OS all coordinate for more efficient checkpointing scheme.

88

Bibliography

[1] E. Lee and H. Bahn, “Caching strategies for high-performance storage

media,” ACM Transactions on Storage (TOS), vol. 10, no. 3, p. 11, 2014.

[2] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt,

J. Chang, A. Chaugule, N. Deng, J. Shahid, et al., “Software-defined far

memory in warehouse-scale computers,” in Proceedings of the Twenty-

Fourth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, pp. 317–330, ACM, 2019.

[3] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and

T. F. Wenisch, “Disaggregated memory for expansion and sharing in blade

servers,” in ACM SIGARCH Computer Architecture News, vol. 37, pp. 267–

278, ACM, 2009.

[4] V. Nitu, B. Teabe, A. Tchana, C. Isci, and D. Hagimont, “Welcome to zom-

bieland: Practical and energy-efficient memory disaggregation in a data-

center,” in Proceedings of the Thirteenth EuroSys Conference, p. 16, ACM,

2018.

[5] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of

the obvious,” ACM SIGARCH computer architecture news, vol. 23, no. 1,

89

pp. 20–24, 1995.

[6] S. Akram, M. Marazakis, and A. Bilas, “Numa implications for storage i/o

throughput in modern servers,” in 3rd Workshop on Computer Architecture

and Operating System co-design (CAOS’12), 2012.

[7] M. Bauer, “Big data, technology, and the changing future of medicine,”

Medicographia, vol. 38, no. 4, pp. 401–410, 2016.

[8] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and

J. S. Choi, “Co-architecting controllers and dram to enhance dram process

scaling,” in The memory forum, vol. 14, 2014.

[9] S.-H. Lee, “Technology scaling challenges and opportunities of memory

devices,” in 2016 IEEE International Electron Devices Meeting (IEDM),

pp. 1–1, IEEE, 2016.

[10] F. Al-Turjman, “5g-enabled devices and smart-spaces in social-iot: an

overview,” Future Generation Computer Systems, vol. 92, pp. 732–744,

2019.

[11] “MongoDB..” https://www.mongodb.com/.

[12] “MySQL 5.7 Reference Manual..” https://dev.mysql.com/doc/refman/

5.7/en/.

[13] “InnoDB Storage Engine..” https://dev.mysql.com/doc/refman/5.7/

en/innodb-storage-engine.html.

[14] “WiredTiger Storage Engine..” http://www.wiredtiger.com/.

[15] “MMAPv1 Storage Engine..” https://docs.mongodb.com/v3.2/core/

mmapv1/.

90

[16] G. Somani and S. Chaudhary, “Application performance isolation in virtu-

alization,” in 2009 IEEE International Conference on Cloud Computing,

pp. 41–48, IEEE, 2009.

[17] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing perfor-

mance interference effects for qos-aware clouds,” in Proceedings of the 5th

European conference on Computer systems, pp. 237–250, ACM, 2010.

[18] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,

“Cpi 2: Cpu performance isolation for shared compute clusters,” in Proceed-

ings of the 8th ACM European Conference on Computer Systems, pp. 379–

391, ACM, 2013.

[19] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and

C. A. De Rose, “Performance evaluation of container-based virtualization

for high performance computing environments,” in 2013 21st Euromicro

International Conference on Parallel, Distributed, and Network-Based Pro-

cessing, pp. 233–240, IEEE, 2013.

[20] H. Liu and B. He, “F2c: Enabling fair and fine-grained resource sharing in

multi-tenant iaas clouds,” IEEE Transactions on Parallel and Distributed

Systems, vol. 27, no. 9, pp. 2589–2602, 2015.

[21] L. Tomás, C. Vázquez, J. Tordsson, and G. Moreno, “Reducing noisy-

neighbor impact with a fuzzy affinity-aware scheduler,” in 2015 Interna-

tional Conference on Cloud and Autonomic Computing, pp. 33–44, IEEE,

2015.

[22] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-

pher, N. Verma, and M. Zwilling, “Hekaton: Sql server’s memory-optimized

91

oltp engine,” in Proceedings of the 2013 ACM SIGMOD International Con-

ference on Management of Data, pp. 1243–1254, ACM, 2013.

[23] antirez, “Redis,” 2017. [Online].

[24] A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main memory

database system based on virtual memory snapshots,” in 2011 IEEE 27th

International Conference on Data Engineering, pp. 195–206, IEEE, 2011.

[25] H. Mühe, A. Kemper, and T. Neumann, “How to efficiently snapshot trans-

actional data: Hardware or software controlled?,” in Proceedings of the

Seventh International Workshop on Data Management on New Hardware,

pp. 17–26, ACM, 2011.

[26] antirez, “Redis administration,” 2017. [Online].

[27] D. P. Bovet and M. Cesati, Understanding the Linux kernel. ” O’Reilly

Media, Inc.”, 2005.

[28] N. Amit, “Optimizing the tlb shootdown algorithm with page access track-

ing,” in Proceedings of the 2017 USENIX Annual Technical Conference

(ATC), pp. 27–39, 2017.

[29] D. P. Bovet and M. Cesati, Understanding the Linux Kernel: from I/O

ports to process management. ” O’Reilly Media, Inc.”, 2005.

[30] J. Park, C. Min, and H. Yeom, “A new file system i/o mode for efficient

user-level caching,” in 2017 17th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGRID), pp. 649–658, IEEE, 2017.

[31] N. Y. Song, Y. Son, H. Han, and H. Y. Yeom, “Efficient memory-mapped

i/o on fast storage device,” ACM Transactions on Storage (TOS), vol. 12,

no. 4, p. 19, 2016.

92

[32] D. Magenheimer, C. Mason, D. McCracken, and K. Hackel, “Transcendent

memory and linux,” in Proceedings of the Linux Symposium, pp. 191–200,

Citeseer, 2009.

[33] A. Badam and V. S. Pai, “Ssdalloc: hybrid ssd/ram memory management

made easy,” in Proceedings of the 8th USENIX conference on Networked

systems design and implementation, pp. 211–224, 2011.

[34] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A. Lang,

“Ssd bufferpool extensions for database systems,” Proceedings of the VLDB

Endowment, vol. 3, no. 1-2, pp. 1435–1446, 2010.

[35] J. C. Mogul, E. Argollo, M. A. Shah, and P. Faraboschi, “Operating system

support for nvm+ dram hybrid main memory.,” in HotOS, 2009.

[36] M. Saxena and M. M. Swift, “Flashvm: Virtual memory management on

flash.,” in USENIX Annual Technical Conference, 2010.

[37] C. Wang, S. S. Vazhkudai, X. Ma, F. Meng, Y. Kim, and C. Engelmann,

“Nvmalloc: Exposing an aggregate ssd store as a memory partition in

extreme-scale machines,” in Parallel & Distributed Processing Symposium

(IPDPS), 2012 IEEE 26th International, pp. 957–968, IEEE, 2012.

[38] X. Li, A. Aboulnaga, K. Salem, A. Sachedina, and S. Gao, “Second-tier

cache management using write hints.,” in FAST, vol. 5, pp. 9–9, 2005.

[39] L. Wang, X. Liao, J. Xue, S. Weil, Y. Wen, and X. Yang, “Enhancement

of cooperation between file systems and applications—on vfs extensions

for optimized performance,” Science China Information Sciences, vol. 58,

no. 9, pp. 1–10, 2015.

93

[40] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “Ceph:

A scalable, high-performance distributed file system,” in Proceedings of the

7th symposium on Operating systems design and implementation, pp. 307–

320, USENIX Association, 2006.

[41] “mysqldump..” http://dev.mysql.com/doc/refman/5.7/en/

mysqldump.html.

[42] “TPC-C Benchmark..” http://www.tpc.org/tpcc/.

[43] “tpcc-mysql..” https://github.com/Percona-Lab/tpcc-mysql.

[44] “Yahoo! Cloud Serving Benchmark..” https://github.com/

brianfrankcooper/YCSB.

[45] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu,

“Decoupled direct memory access: Isolating cpu and io traffic by leverag-

ing a dual-data-port dram,” in 2015 International Conference on Parallel

Architecture and Compilation (PACT), pp. 174–187, IEEE, 2015.

[46] J. D. McCalpin, “Stream: Sustainable memory bandwidth in high perfor-

mance computers.” https://www.cs.virginia.edu/stream.

[47] P. Druschel and L. L. Peterson, “Fbufs: A high-bandwidth cross-domain

transfer facility,” ACM SIGOPS Operating Systems Review, vol. 27, no. 5,

pp. 189–202, 1993.

[48] M. N. Thadani and Y. A. Khalidi, An efficient zero-copy I/O framework

for UNIX. Sun Microsystems Laboratories, 1995.

[49] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Io-lite: a unified i/o buffering

and caching system,” ACM Transactions on Computer Systems (TOCS),

vol. 18, no. 1, pp. 37–66, 2000.

94

[50] H.-k. J. Chu, “Zero-copy tcp in solaris,” in Proceedings of the 1996 annual

conference on USENIX Annual Technical Conference, pp. 21–21, Usenix

Association, 1996.

[51] P. Shivam, P. Wyckoff, and D. Panda, “Emp: zero-copy os-bypass nic-

driven gigabit ethernet message passing,” in Proceedings of the 2001

ACM/IEEE conference on Supercomputing, pp. 57–57, ACM, 2001.

[52] A. Kesavan, R. Ricci, and R. Stutsman, “To copy or not to copy: Making

in-memory databases fast on modern nics,” in Data Management on New

Hardware, pp. 79–94, Springer, 2016.

[53] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez,

A. Mendelson, N. Navarro, A. Cristal, and O. S. Unsal, “Didi: Mitigating

the performance impact of tlb shootdowns using a shared tlb directory,”

in Parallel Architectures and Compilation Techniques (PACT), 2011 In-

ternational Conference on, pp. 340–349, IEEE, 2011.

[54] A. Awad, A. Basu, S. Blagodurov, Y. Solihin, and G. H. Loh, “Avoiding tlb

shootdowns through self-invalidating tlb entries,” in Parallel Architectures

and Compilation Techniques (PACT), 2017 26th International Conference

on, pp. 273–287, IEEE, 2017.

[55] M. K. Kumar, S. Maass, S. Kashyap, J. Veselỳ, Z. Yan, T. Kim, A. Bhat-

tacharjee, and T. Krishna, “Latr: Lazy translation coherence,” in Pro-

ceedings of the Twenty-Third International Conference on Architectural

Support for Programming Languages and Operating Systems, pp. 651–664,

ACM, 2018.

95

[56] L. Shrira and H. Xu, “Thresher: An efficient storage manager for copy-

on-write snapshots.,” in USENIX Annual Technical Conference, General

Track, pp. 57–70, 2006.

[57] X. Wu, W. Wang, and S. Jiang, “Totalcow: Unleash the power of copy-

on-write for thin-provisioned containers,” in Proceedings of the 6th Asia-

Pacific Workshop on Systems, p. 15, ACM, 2015.

[58] M. Chowdhury and R. Rangaswami, “Native os support for persistent

memory with regions,” in Proceedings of 33rd International Conference

on Massive Storage Systems and Technology (MSST’17), 2017.

[59] J. Park, C. Min, H. Yeom, and Y. Son, “z-read: Towards efficient and

transparent zero-copy read,” in 2019 IEEE 12th International Conference

on Cloud Computing (CLOUD), IEEE, 2019.

[60] J. Axboe, “Fio-flexible io tester.{Online}.” https://github.com/axboe/

fio.

[61] C. D. Spradling, “Spec cpu2006 benchmark tools,” ACM SIGARCH Com-

puter Architecture News, vol. 35, no. 1, pp. 130–134, 2007.

[62] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:

Memory bandwidth reservation system for efficient performance isolation

in multi-core platforms,” in 2013 IEEE 19th Real-Time and Embedded

Technology and Applications Symposium (RTAS), pp. 55–64, IEEE, 2013.

[63] D. H. Yoon, M. K. Jeong, and M. Erez, “Adaptive granularity memory

systems: A tradeoff between storage efficiency and throughput,” SIGARCH

Comput. Archit. News, vol. 39, p. 295–306, June 2011.

96

[64] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible framework for

file system benchmarking,” login: The USENIX Magazine, vol. 41, no. 1,

2016.

[65] A.-P. Liedes and A. Wolski, “Siren: A memory-conserving, snapshot-

consistent checkpoint algorithm for in-memory databases,” in 22nd In-

ternational Conference on Data Engineering (ICDE’06), pp. 99–99, IEEE,

2006.

[66] L. Li, G. Wang, G. Wu, and Y. Yuan, “Consistent snapshot algorithms for

in-memory database systems: experiments and analysis,” in 2018 IEEE

34th International Conference on Data Engineering (ICDE), pp. 1284–

1287, IEEE, 2018.

[67] L. Li, G. Wang, G. Wu, Y. Yuan, L. Chen, and X. Lian, “A compara-

tive study of consistent snapshot algorithms for main-memory database

systems,” IEEE Transactions on Knowledge and Data Engineering, 2019.

[68] A. Sharma, F. M. Schuhknecht, and J. Dittrich, “Accelerating analytical

processing in mvcc using fine-granular high-frequency virtual snapshot-

ting,” in Proceedings of the 2018 International Conference on Management

of Data, pp. 245–258, ACM, 2018.

[69] U. Vahalia, UNIX internals: the new frontiers. Pearson Education India,

1996.

[70] J. Evans, “A scalable concurrent malloc (3) implementation for freebsd,”

in Proc. of the bsdcan conference, ottawa, canada, 2006.

97

[71] S. Thomas, K. Sherly, and S. Dija, “Extraction of memory forensic artifacts

from windows 7 ram image,” in 2013 IEEE Conference on Information &

Communication Technologies, pp. 937–942, IEEE, 2013.

[72] B. Dolan-Gavitt, “The vad tree: A process-eye view of physical memory,”

digital investigation, vol. 4, pp. 62–64, 2007.

[73] G. Bronevetsky, R. Fernandes, D. Marques, K. Pingali, and P. Stodghill,

“Recent advances in checkpoint/recovery systems,” in Proceedings 20th

IEEE International Parallel & Distributed Processing Symposium, pp. 8–

pp, IEEE, 2006.

[74] B. Schroeder and G. A. Gibson, “Understanding failures in petascale com-

puters,” Journal of Physics: Conference Series, vol. 78, no. 1, p. 012022,

2007.

[75] M. Vaz Salles, T. Cao, B. Sowell, A. Demers, J. Gehrke, C. Koch, and

W. White, “An evaluation of checkpoint recovery for massively multi-

player online games,” Proceedings of the VLDB Endowment, vol. 2, no. 1,

pp. 1258–1269, 2009.

[76] T. Cao, M. Vaz Salles, B. Sowell, Y. Yue, A. Demers, J. Gehrke, and

W. White, “Fast checkpoint recovery algorithms for frequently consistent

applications,” in Proceedings of the 2011 ACM SIGMOD International

Conference on Management of data, pp. 265–276, ACM, 2011.

[77] MongoDB, “Disable transparent huge pages (thp),” 2019. [Online].

[78] antirez, “Data types,” 2017. [Online].

98

[79] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in Proceedings of the

1st ACM symposium on Cloud computing, pp. 143–154, ACM, 2010.

99

요약

최근폭발적인데이터성장과더불어데이터베이스,키-밸류스토리지등의데이터

집약적인 응용들이 다양한 도메인에서 인기를 얻고 있다. 데이터 집약적인 응용의

높은 성능 요구를 충족하기 위해서는 주어진 메모리 자원을 효율적이고 완벽하

게 활용하는 것이 중요하다. 그러나, 범용 운영체제(OS)는 시스템에서 수행 중인

모든 응용들에 대해 시스템 차원에서 공평하게 자원을 제공하는 것을 우선하도록

설계되어있다. 즉, 시스템 차원의 공평성 유지를 위한 운영체제 지원의 한계로 인

해 단일 응용은 시스템의 최고 성능을 완전히 활용하기 어렵다. 이러한 이유로,

많은 데이터 집약적 응용은 운영체제에서 제공하는 기능에 의지하지 않고 비슷한

기능을 응용 레벨에 구현하곤 한다. 이러한 접근 방법은 탐욕적인 최적화가 가능

하다는 점에서 성능 상 이득이 있을 수 있지만, 시스템 자원의 비효율적인 사용을

초래할 수 있다.

본 논문에서는 운영체제의 지원과 약간의 응용 수정만으로도 비효율적인 시스

템자원사용없이보다높은응용성능을보일수있음을증명하고자한다.그러기

위해 운영체제의 메모리 서브시스템을 최적화 및 확장하여 데이터 집약적인 응용

에서 발생하는 세 가지 메모리 관련 문제를 해결하였다. 첫째, 동일한 데이터가

여러 계층에 존재하는 중복 캐싱 문제를 해결하기 위해 응용과 커널 버퍼 간에

메모리 효율적인 협력 캐싱 방식을 제시하였다. 둘째, 입출력시 발생하는 메모리

복사로 인한 성능 간섭 문제를 피하기 위해 메모리 효율적인 무복사 읽기 입출력

방식을 제시하였다. 셋째, 인-메모리 데이터베이스 시스템을 위한 메모리 효율적

인 fork 기반 체크포인트 기법을 제안하여 기존 포크 기반 체크포인트 기법에서

발생하는 메모리 사용량 증가 문제를 완화하였다; 기존 방식은 업데이트 집약적

워크로드에 대해 체크포인팅을 수행하는 동안 메모리 사용량이 최대 2배까지 점

진적으로 증가할 수 있었다.

100

본논문에서는제안한방법들의효과를증명하기위해실제멀티코어시스템에

구현하고 그 성능을 평가하였다. 실험결과를 통해 제안한 협력적 접근방식이 기존

의 비협력적 접근방식보다 데이터 집약적 응용에게 효율적인 메모리 자원 활용을

가능하게 함으로써 더 높은 성능을 제공할 수 있음을 확인할 수 있었다.

주요어:운영체제,데이터베이스,메모리관리,더블캐싱,무복사, TLB격추,카피

온 라이트, 체크포인팅

학번: 2013-20794

101

	Chapter 1 Introduction
	1.1 Motivation
	1.1.1 Importance of Memory Resources
	1.1.2 Problems

	1.2 Contributions
	1.3 Outline

	Chapter 2 Background
	2.1 Linux Kernel Memory Management
	2.1.1 Page Cache
	2.1.2 Page Reclamation
	2.1.3 Page Table and TLB Shootdown
	2.1.4 Copy-on-Write

	2.2 Linux Support for Applications
	2.2.1 fork
	2.2.2 madvise
	2.2.3 Direct I/O
	2.2.4 mmap

	Chapter 3 Memory Efficient Cooperative Caching
	3.1 Motivation
	3.1.1 Problems of Existing Datastore Architecture
	3.1.2 Proposed Architecture

	3.2 Related Work
	3.3 Design and Implementation
	3.3.1 Overview
	3.3.2 Kernel Support
	3.3.3 Migration to DBIO

	3.4 Evaluation
	3.4.1 System Configuration
	3.4.2 Methodology
	3.4.3 TPC-C Benchmarks
	3.4.4 YCSB Benchmarks

	3.5 Summary

	Chapter 4 Memory Efficient Zero-copy I/O
	4.1 Motivation
	4.1.1 The Problems of Copy-Based I/O

	4.2 Related Work
	4.2.1 Zero Copy I/O
	4.2.2 TLB Shootdown
	4.2.3 Copy-on-Write

	4.3 Design and Implementation
	4.3.1 Prerequisites for z-READ
	4.3.2 Overview of z-READ
	4.3.3 TLB Shootdown Optimization
	4.3.4 Copy-on-Write Optimization
	4.3.5 Implementation

	4.4 Evaluation
	4.4.1 System Configurations
	4.4.2 Effectiveness of the TLB Shootdown Optimization
	4.4.3 Effectiveness of CoW Optimization
	4.4.4 Analysis of the Performance Improvement
	4.4.5 Performance Interference Intensity
	4.4.6 Effectiveness of z-READ in Macrobenchmarks

	4.5 Summary

	Chapter 5 Memory Efficient Fork-based Checkpointing
	5.1 Motivation
	5.1.1 Fork-based Checkpointing
	5.1.2 Approach

	5.2 Related Work
	5.3 Design and Implementation
	5.3.1 Overview
	5.3.2 OS Support
	5.3.3 Implementation

	5.4 Evaluation
	5.4.1 Experimental Setup
	5.4.2 Performance

	5.5 Summary

	Chapter 6 Conclusion
	요약

<startpage>14
Chapter 1 Introduction 1
 1.1 Motivation 1
 1.1.1 Importance of Memory Resources 1
 1.1.2 Problems 2
 1.2 Contributions 5
 1.3 Outline 6
Chapter 2 Background 7
 2.1 Linux Kernel Memory Management 7
 2.1.1 Page Cache 7
 2.1.2 Page Reclamation 8
 2.1.3 Page Table and TLB Shootdown 9
 2.1.4 Copy-on-Write 10
 2.2 Linux Support for Applications 11
 2.2.1 fork 11
 2.2.2 madvise 11
 2.2.3 Direct I/O 12
 2.2.4 mmap 13
Chapter 3 Memory Efficient Cooperative Caching 14
 3.1 Motivation 14
 3.1.1 Problems of Existing Datastore Architecture 14
 3.1.2 Proposed Architecture 17
 3.2 Related Work 17
 3.3 Design and Implementation 19
 3.3.1 Overview 19
 3.3.2 Kernel Support 24
 3.3.3 Migration to DBIO 25
 3.4 Evaluation 27
 3.4.1 System Configuration 27
 3.4.2 Methodology 28
 3.4.3 TPC-C Benchmarks 30
 3.4.4 YCSB Benchmarks 32
 3.5 Summary 37
Chapter 4 Memory Efficient Zero-copy I/O 38
 4.1 Motivation 38
 4.1.1 The Problems of Copy-Based I/O 38
 4.2 Related Work 40
 4.2.1 Zero Copy I/O 40
 4.2.2 TLB Shootdown 42
 4.2.3 Copy-on-Write 43
 4.3 Design and Implementation 44
 4.3.1 Prerequisites for z-READ 44
 4.3.2 Overview of z-READ 45
 4.3.3 TLB Shootdown Optimization 48
 4.3.4 Copy-on-Write Optimization 52
 4.3.5 Implementation 55
 4.4 Evaluation 55
 4.4.1 System Configurations 56
 4.4.2 Effectiveness of the TLB Shootdown Optimization 57
 4.4.3 Effectiveness of CoW Optimization 59
 4.4.4 Analysis of the Performance Improvement 62
 4.4.5 Performance Interference Intensity 63
 4.4.6 Effectiveness of z-READ in Macrobenchmarks 65
 4.5 Summary 67
Chapter 5 Memory Efficient Fork-based Checkpointing 69
 5.1 Motivation 69
 5.1.1 Fork-based Checkpointing 69
 5.1.2 Approach 71
 5.2 Related Work 73
 5.3 Design and Implementation 74
 5.3.1 Overview 74
 5.3.2 OS Support 78
 5.3.3 Implementation 79
 5.4 Evaluation 80
 5.4.1 Experimental Setup 80
 5.4.2 Performance 81
 5.5 Summary 86
Chapter 6 Conclusion 87
요약 100
</body>

