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Abstract

Most I/O traffic in high performance computing (HPC) storage systems is dom-

inated by checkpoints and the restarts of HPC applications. For such a bursty

I/O, new all-flash HPC storage systems with an integrated burst buffer (BB)

and parallel file system (PFS) have been proposed. However, most of the dis-

tributed file systems (DFS) used to configure the storage systems provide a

single connection between a compute node and a server node, which hinders

users from utilizing the high I/O bandwidth provided by an all-flash server

node. To provide multiple connections, DFSs must be modified to increase the

number of sockets, which is an extremely difficult and time-consuming task

owing to their complicated structures. Users can increase the number of dae-

mons in the DFSs to forcibly increase the number of connections without a

DFS modification. Because each daemon has a mount point for its connection,

there are multiple mount points in the compute nodes, resulting in significant

effort required for users to distribute file I/O requests to multiple mount points.

In addition, to avoid access to a PFS composed of low-speed storage devices,

such as hard disks, dedicated BB allocation is preferred despite its severe un-

derutilization. However, a BB allocation method may be inappropriate because

all-flash HPC storage systems speed up access to the PFS.

To handle such problems, we propose an efficient user-transparent I/O manage-

ment scheme for all-flash HPC storage systems. The first scheme, I/O transfer

management, provides multiple connections between a compute node and a

server node without additional effort from DFS developers and users. To do so,

we modified a mount procedure and I/O processing procedures in a virtual file
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system (VFS). In the second scheme, data management between BB and PFS,

a BB over-subscription allocation method is adopted to improve the BB utiliza-

tion. Unfortunately, the allocation method aggravates the I/O interference and

demotion overhead from the BB to the PFS, resulting in a degraded checkpoint

and restart performance. To minimize this degradation, we developed an I/O

scheduler and a new data management based on the checkpoint and restart

characteristics.

To prove the effectiveness of our proposed schemes, we evaluated our I/O trans-

fer and data management schemes between the BB and PFS. The I/O trans-

fer management scheme improves the write and read I/O throughputs for the

checkpoint and restart by up to 6- and 3-times, that of a DFS using the origi-

nal kernel, respectively. Based on the data management scheme, we found that

the BB utilization is improved by at least 2.2-fold, and a stabler and higher

checkpoint performance is guaranteed. In addition, we achieved up to a 96.4%

hit ratio of the restart requests on the BB and up to a 3.1-times higher restart

performance than that of other existing methods.

Keywords: Operating System, High Performance Computing, Distributed File

System, Parallel File System, File I/O Management, Data Management, Net-

work Scalability, Virtual File System, Burst Buffer, Checkpoint, Restart, De-

motion

Student Number: 2013-20801
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Chapter 1

Introduction

As computational capability has increased to over one petaflop, a large number

of system components have been used in high-performance computing (HPC)

systems, thereby causing an increase in the overall system failures [1–3]. As

a failsafe, HPC applications aggressively utilize a checkpoint/restart, which is

the most commonly applied fault tolerance mechanism. This has resulted in

checkpoints dominating up to 75%∼80% of I/O traffic of HPC systems [2, 4]

and significantly generating a bursty I/O. A bursty I/O is difficult to handle

for a parallel file system (PFS), which has been a foundation to the storage tier

of HPC systems consisting of hard disk devices (HDDs) and low speed network

adapters. As the capabilities of storage and network devices advance, a burst

buffer (BB), which is composed of high-end flash SSDs (e.g., 3D XPoint SSD

and NVMe SSD) [5,6] and high-speed network (i.e., 100 GbE network) adapters,

has been introduced as a new storage tier between the compute nodes and PFS.

Moreover, there have been recent attempts to merge a BB with a PFS [7,8]. As

the cost-per-bit of flash continues to decrease, it is becoming possible to replace

1



HDDs with low-end TLC SSDs [9]. The National Energy Research Scientific

Computing Center (NERSC), which is a primary scientific computing facility

announced that the next supercomputer with an all-flash storage system, called

PERLMUTTER [10], will be delivered in 2020. It is therefore expected that a

new all-flash HPC storage system with an integrated BB and PFS will be widely

adopted in the near future. We believe that this new storage system will include

high-end SSDs (e.g., 3D XPoint SSD and NVMe SSD) for the BB (performance)

and low-end SSDs (TLC SATA SSD) for the PFS (capacity) placed on the same

node.

Although some researchers have studied ways to utilize an all-flash storage

system, none have focused on connections between a compute node and a server

node despite I/O transmission scalability being one of the most critical issues in

HPC storage systems. Unfortunately, existing distributed file systems (DFSs)

used to configure the BB storage tier have adopted a single connection between

the compute and BB server nodes. For this reason, even with expensive high-

speed storage devices and network adapters on the BB node to handle a bursty

I/O, users do not experience the high I/O bandwidth provided by the all-

flash storage server node. Figure 1.1 shows write I/O bandwidths with and

without widely used DFSs, such as GlusterFS, NFS, and Lustre. We used a

single compute node and a server node and executed 16 threads to submit

synchronous I/O requests. In addition, we adopted Ext4 as a local file system

for the DFSs. Here, LocalFS achieves a rate of 2.6 GB/s using only Ext4 on

the server node without DFSs. This is the ideal I/O bandwidth providable by a

single server node. However, with GlusterFS, we can only achieve a rate of 600

MB/s, although 2.6 GB/s is theoretically achievable. Whereas GlusterFS is a

user file system applying FUSE, NFS4 is implemented in a kernel and shows

a low I/O bandwidth of 1.2 GB/s. Lustre is also developed in a kernel, but

2
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Figure 1.1: I/O throughputs of PFSs

provides 850 MB/s, which is 3-times lower than that of LocalFS. Such DFSs

do not fully utilize the I/O bandwidth provided by the BB server node owing

to the use of a single connection.

To solve the performance bottleneck caused by a single connection, all types

of DFSs need to be modified to increase the number of connections between

the compute and server nodes. However, because most DFSs have complicated

structures, significant effort is required to scale the number of connections, and

the DFSs must therefore continue using single connections. Therefore, most

users are provided with a high I/O bandwidth by allocating a BB composed of

multiple server nodes. However, this method causes high performance fluctua-

tions owing to the sharing of server nodes with other users.

Because the client daemon establishes a new connection with the server

daemon through the mount command upon startup, some users create multiple

client daemons of the DFSs using a mount command to increase the number of

connections. We created several client daemons with GlusterFS to increase the

number of connections (between the compute and server nodes), and the write

I/O throughputs for a checkpoint are increased by up to 2000 MB/s, as shown

3
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in clientd of Figure 1.2.

Some other users have increased the number of connections by creating mul-

tiple server daemons in the same node. After a new server daemon is created,

a new connection is established between the client and server nodes through

the mount command. As shown in serverd of Figure 1.2, this method not only

improves the write I/O throughput for a checkpoint as the number of con-

nections increases, it also performs better than clientd because both methods

have the same number of connections, despite clientd having only one server

daemon and serverd having multiple server daemons. However, these methods

require user effort to distribute I/O requests to multiple mount points because

the number of mount points is same as the number of connections. If users have

multiple files to write, they must manually choose and set one mount point for

each file among multiple mount points to fully utilize multiple connections. In

addition, if the number of files is smaller than the number of connections, the

users will have greater difficulty distributing I/O requests of a file to multiple

connections.
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In previous HPC storage systems where a PFS layer consisting of low-speed

HDD storage devices and low-speed network devices is located on different

server nodes from those of the BB storage layer, because of the substantial

performance differences offered by the BB and PFS, HPC users may prefer a

dedicated BB allocation for the complete lifetime of their HPC applications to

avoid access to the PFS as much as possible. However, this allocation method

causes a severe underutilization of an expensive BB for two reasons. First, some

users eagerly request BB resources (e.g., up to six-times the normal rate [11])

for I/O error prevention, performance scalability, a scale-up of the network

connections, and complicated data movement between the BB and PFS, even

when they actually utilize only a small portion (e.g., 5% of the BB is used

per hour according to the logs from NERSC CORI [12]). Second, because HPC

applications use a BB for only the I/O phases, BB stays idle for the remaining

time. Checkpoints, which dominate the I/O traffic of HPC systems, are rarely

requested, for example, at a rate of once per hour or several minutes, and thus

the BB resources are mostly wasted. The PFS in the new system consists of a

high-speed network and low-end SSDs, which significantly reduces the overhead

of the PFS access. It is therefore not worth using a dedicated BB allocation

method owing to the penalty of a BB underutilization.

To address these problems in Figure 1.3, we propose an efficient user-

transparent I/O management scheme for all-flash HPC storage systems. With

this scheme, we achieve faster checkpoints and restarts, which occupy most of

the I/O traffic in an HPC system while improving the utilization of all-flash

HPC storage systems.

First, we developed a user-transparent I/O transfer management subsystem

in a virtual file system (VFS) to reduce the efforts of DFS developers and users

applying multiple connections to handle the problem shown in Figure 1.3 1○.

5
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Figure 1.3: Problems of new all-flash HPC storage systems

To decrease the number of DFS modifications as much as possible, we increased

the number of connections by making multiple client and server daemons for a

DFS of a BB through a mount command. With this approach, each compute

node has multiple mount points, resulting in excessive user effort in distributing

I/O requests to multiple connections. Therefore, we implemented a new mount

procedure and new I/O processing procedures. We changed the vertical mount

hierarchy to a horizontal mount hierarchy for supporting multiple connections

and exposed only one mount point among the multiple mount points to users.

In addition, we added two scheduling policies for an I/O transfer, TtoS and

TtoM . Through these policies, I/O requests are evenly distributed to multiple

connections.

Second, we adopted a BB over-subscription allocation method instead of

a dedicated BB allocation method for improving the BB utilization (for the

problem shown in Figures 1.3 2○ and 3○. The method allocates the BB capacity

only during the I/O phase, and not for the entire lifetime of HPC applications,

resulting in a reduction in wasted BB resources. However, this method may

affect the performance of the checkpoint/restart because a capacity larger than

the total capacity of the BB is allocated to the HPC applications. To handle this

6



problem, we transparently manage the data movement between the BB and PFS

and schedule the I/O jobs based on characteristics of the checkpoint/restart.

We analyzed the characteristics of a checkpoint/restart, adjusted the speed of

the demotion from the BB to the PFS and determined the data placement

between the BB and PFS based on the characteristics analyzed.

To demonstrate the effectiveness of our schemes, we evaluated our I/O trans-

fer and data management schemes between the BB and PFS. For the I/O trans-

fer management scheme, we used GlusterFS as a DFS for the BB and kernel

v5.3.12. Our experimental results show that our scheme increases the write and

read I/O throughputs for a checkpoint and restart by increasing the number

of connections and provides the best I/O throughputs of GlusterFS in a given

experimental environment. In addition, it improves the write and read perfor-

mances by up to 6- and 3-times those of the DFSs with the original kernel,

respectively. For the data management scheme, we compared our scheme to

Datawarp, a representative of the current HPC schedulers that uses a dedi-

cated BB allocation method, and Harmonia [13], which is the only approach

available when considering a BB over-subscription. Our scheme improves the

BB utilization considerably while providing a high checkpoint performance. In

addition, it provides a high checkpoint capability and performs up to 96.4% of

the restarts on a BB by utilizing the characteristics of a checkpoint/restart.
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The contributions are summarized as follows:

• We discuss the issue of I/O bandwidth bottleneck caused by a single

connection provided by major distributed file systems for a new all-flash

HPC storage system that can be avoided.

• We increase I/O bandwidth from a single storage server node of DFSs via

multiple connections by implementing an I/O subsystem in VFS without

modifying DFSs and user applications so that users can utilize with I/O

bandwidth of the server node transparently.

• We show that the I/O subsystem improves write and read I/O perfor-

mances by up to 6x and 3x, respectively, compared with original kernel.

• We adopt the over-subscription BB allocation method to handle BB un-

derutilization problem caused by the dedicated BB allocation method.

• We analyzed the checkpoint/restart characteristics of HPC applications.

We observed that each application has its own checkpoint period and

failure rate. In addition, there is no data locality across checkpoint files

unlike normal data. We found the characteristics of HPC applications is

highly related to low checkpoint/restart performance with existing data

management approach.

• We propose a novel data management scheme between BB and PFS

for all-flash HPC storage systems based on the characteristics of check-

point/restart to provide high BB utilization as well as high checkpoint/restart

performance. The scheme schedules I/O jobs, adjusts demotion threshold

and speeds of checkpoint and demotion adaptively and manages data

placement between BB and PFS.

8



• We implemented the scheme by adding some modules and modifying Glus-

terFS, one of the most popular distributed file system. It shows increased

BB utilization and improved checkpoint/restart performances compared

with prior works.
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This dissertation is structured as follows:

• Chapter 2 covers the background about Burst Buffer, virtual file system,

network bandwidth and characteristics of checkpoint and restart for pro-

viding high I/O throughput and high utilization in a new all-flash HPC

storage systems.

• Chapter 3 demonstrates the motivation in which I/O transparent man-

agement and data management for all-flash HPC storage systems are

proposed with problems and limitations of existing HPC storage systems.

• Chapter 4 introduces I/O transfer management scheme for all-flash HPC

storage systems. We first explain design and architecture of the scheme

and describe the details of implementation. Next, we evaluate our scheme

in an all-flash HPC storage system with various configurations.

• Chapter 5 introduces user-transparent data management for all-flash

HPC storage systems. We start with explaining the details of design and

architecture of our scheme. Then, we describe the implementations of our

scheme and evaluate the scheme on an all-flash HPC storage system with

various experimental scenario.

• Chapter 6 explains the several works related to our schemes.

• Chapter 7 summarizes and concludes the dissertation. It also describes

future direction.
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Chapter 2

Background

2.1 Burst Buffer

HPC systems consist of thousands of compute nodes and storage nodes for sci-

entific applications requiring complicated computation. Because of high cost

of flash storage devices, PFSs have been configured with HDD-based storage

nodes. A rapid growth in computing power has occurred a significant perfor-

mance gap between compute nodes and storage nodes, making it difficult for

HDD-based PFSs to handle massive amounts of data generated by compute

nodes.

To handle this performance bottleneck caused by HDD-based PFSs, a new

storage layer, called Burst Buffer composed of flash devices, has placed between

compute nodes and PFSs. BB has mitigated the performance gap by handling

bursty I/O, which PFSs were difficult to process, with high I/O bandwidth.

There are two types of BB, node-local BB and remote shared BB, depending on

where BB is placed. Each BB type has advantages and disadvantages, so HPC
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Figure 2.1: Virtual File System

providers select appropriate BB type according to purposes of their system.

Node-local BB is used as local file system for each compute node by installing

a flash storage devices on the compute node. For this reason, the overall perfor-

mance of node-local BB increases linearly with the number of compute nodes,

so it is excellent in performance scalability. In addition, since I/O requests are

performed without network overhead for accessing remote nodes, node-local

BB provides faster I/O processing. But, since each compute node uses a unique

local file system, it causes additional efforts to share data between multiple

compute nodes.

Unlike node-local BB, remote shared BB, which is a BB type used by most

super computers, has unique physical nodes for BB. Multiple compute nodes

use the same file system of BB, which makes they share data. Otherwise, perfor-

mance isolation is not guaranteed in remote shared BB due to shared resource

contention, because compute nodes share several hardware resources in BB

nodes including flash devices.
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2.2 Virtual File System

Virtual file system (VFS) is a common interface provided on file systems so

that users can use multiple file systems without application modification. Users

perform file operations using system call without worrying about the type of

connected file system or data on local disk or network. As shown in Figure 2.1,

VFS adopts common file model to hide specific file processing procedures of

file systems and manages files. To do this, virtual file system has four objects,

super block, inode, file and dentry.

Super block object stores information of mounted file systems, such as file

system type, state, size, and inode. Virtual file system manages multiple file

systems using the object. Inode object contains information related to a specific

file, called metadata. Since VFS handles file operations with the inode, file

systems have to built inode objects for their files. File object is required to

manage information associated with files opened by tasks (applications). The

object remains in memory only while each task accesses inode objects. In order

for tasks to access files, the inode objects of the files must be linked to file objects

associated with its tasks. To reduce overhead caused by process, Dentry object

keeps the link between file and inode in cache.

13
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Figure 2.2: Network Bandwidth based on the ability of socket’s threads

2.3 Network Bandwidth

PFSs create sockets for a connection with transport types, such as TCP, UDP,

and RDMA. There are many factors, such as transmission unit size, that deter-

mine network bandwidth, but the ability of socket’s threads to send and receive

requests is overwhelming.

We measured maximum achievable network bandwidth between a client

node and a server node with different the number of connections and cores for

I/O transmission using a iPerf3 benchmark.

Figure 2.2a shows a single connection between the client node and the server

node and each node has one socket thread for the connection. With soc1, we

get 25Gbits/sec network bandwidth. For two connections in Figure 2.2b, there

is one socket thread for each connection on each node. That is, each node has

two threads for I/O transmission. As the number of connections and the num-

ber of socket threads doubled, the total CPU utilization for I/O transmission

doubled and the network bandwidth was increased as almost two times high as
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47Gbits/sec. And with two connections at Figure 2.2c, we make each client-side

socket thread using one core, and the two server-side threads sharing one core.

Despite having two connections, it show 28Gbits/sec network I/O bandwidth,

which proves that the network bandwidth is greatly affected by how much the

socket threads perform for I/O transmission, not by the number of connec-

tions. However, even if multiple socket threads execute I/O transmission for a

single connection, it still cannot achieve high network bandwidth due to lock

contention for the socket among the threads.

Therefore, in order to provide the aggregated I/O bandwidth of multiple

flash devices from server to client, multiple connections must be created.
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2.4 Mean Time Between Failures

The applications are recommended to use a technique called checkpoint for

fault tolerance. They periodically pause their operations to save current data

in Burst Buffer for the checkpoint. When in case of a failure, they can continue

their operations from the latest checkpoint.

Mean Time Between Failures (MTBF) represents the average time period

for each failure. The applications with more failures have low MTBF, and the

ones with fewer failures have higher MTBF. According to this paper [14], the

failure occurs frequently in proportion to the inversion of MTBF also on the

real-world scenarios. Since the applications recover their data after the failure,

the application with a higher failure rate has the higher chance of read request.
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2.5 Checkpoint/Restart Characteristics

HPC applications have checkpoint/restart related characteristics unlike other

applications. For the new HPC storage system with BB over-subscription method,

a novel data management needs to be developed based on the characteristics.

First of all, HPC applications run for a long time to solve computationally

intensive problems and perform checkpoint at a particular cycle to avoid re-

computations from scratch. For this reason, the total amount of the checkpoint

written to BB by the applications for a certain period, called Data Write Per

Period (DWPP) in this paper, is kept quite steady. As so, it is possible to

predict future DWPP with previous DWPP values.

Second, each application has its own checkpoint period. Thus, each appli-

cation accesses the BB differently during a certain period. HPC applications

with short checkpoint period access BB more frequently than ones with long

checkpoint period.

Third, HPC applications keep multiple versions of checkpoint for data dura-

bility. HPC users have a tendency to keep the old versions of checkpoint without

deleting them even though only the most recent version of the checkpoint file

is required for restart. According to the paper, multiple versions of checkpoint

(three to seventeen) are beneficial for acceptable error coverage [15]. Since each

user requires different reliability, each application has the different number of

checkpoint versions.

Fourth characteristic is that HPC applications have different failure rates.

Failure is caused by individual components, such as processors, disk, memory,

power supplies, network, cooling systems, and the physical connections between

them [16]. Since failures of a single component are rare, the large number of the

components unavoidably leads to frequent failures [17, 18]. Many prior works
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have mentioned that the mean time between failure (MTBF) in a single node

is about thousands hours, but MTBF of a large-scale cluster with hundreds of

node is dozens of hours. Soft errors are also more likely to occur in complicated

processing. Therefore, failure rates increase linearly with the number of nodes

used by HPC applications [19,20].

Lastly, there is no locality across the checkpoint files of HPC applications

unlike normal data. Temporal locality does not exist across checkpoint files,

because the checkpoint file is requested only when in failures. Since a new

checkpoint file is created in every checkpoint period, the same checkpoint file

is not constantly used unless the application has multiple failures within a

single checkpoint period. Also, spatial locality does not exist across checkpoint

files. The failure of an application does not affect the failures of the others

because each application has different failure rates. So checkpoint files of other

applications will not be requested, even if they are stored around a checkpoint

file which is accessed due to a failure.

18



Chapter 3

Motivation

3.1 I/O Transfer Management for HPC Storage Sys-

tems

In this section, we describe the limitations of distributed file systems (DFSs)

for utilizing a high I/O bandwidth of an all-flash BB.

3.1.1 Problems of Existing HPC Storage Systems

In the initial DFSs, low-speed storage devices, such as hard disks, resulted in

a performance bottleneck. As storage technology developed, a software stack

overhead of the DFSs began to occur. Despite a number of researchers hav-

ing alleviated the software stack overhead, a performance bottleneck remains

between client and server nodes of DFSs.

To determine the unresolved performance bottleneck, we analyze the I/O

performance provided by the users of GlusterFS, a popular DFS. We use two

nodes for a client and server of GlusterFS. These nodes are connected by a 100
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Figure 3.1: Loopback protocol in GlusterFS

GbE network switch, and the server node has five NVMe SSDs, which achieve

rates of 3 GB/s and 16 GB/s for a sequential write and read, respectively.

Figure 3.2 shows the sequential write I/O throughputs using a loop back method

at various points in the GlusterFS, as shown in Figure 3.1. GlusterFS uses the

Filesystem in Userspace (FUSE) interface as a user-level file system. First, we

execute the loopback at the FUSE stack where GlusterFS receives I/O requests

from the FUSE, as if the requests are successfully processed, as shown in 1○

of Figure 3.1. Second, we apply a loopback from a Client stack such as 2○.

Third, we apply the loopback at an I/O submit stack, which transfers I/O

requests from the client node to the server node, such as in 3○. Fourth, once

the GlusterFS server receives an I/O request, such as in 4○, we apply a loopback.

Finally, we measure the performance normally without a loopback method, as

in 5○.
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Figure 3.2: I/O throughput of GlusterFS analysis with a loopback method

Using the loopback method on the GlusterFS client side, as the requests

go through more stacks, the performance decreases in both sync and async

I/O modes, although a bandwidth of over 3 GB/s is continuously provided. As

shown in the result of server loopback, when the requests transfer from the

client node to the server node, write throughputs fall below 700 MB/s even if

the data have not been written to the actual storage devices. In addition, the

throughputs are extremely similar to that of a normally performed GlusterFS

with no loopback method. In other words, the server node can provide more than

a 3 GB/s write performance, whereas DFS users only utilize an I/O bandwidth

of approximately 600 MB/s owing to the performance bottleneck on the DFS

network layer with a single connection.
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Figure 3.3: Existing solutions for utilizing multiple connections in DFSs
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3.1.2 Limitations of Existing Approaches

Because of a performance bottleneck of the DFS network layer with a single

connection, all-flash HPC storage systems composed of a DFS have a bounded

I/O throughput. To handle this problem, multiple connections are required for

a DFS to utilize the aggregated I/O bandwidth of the server node. However,

because most DFSs are implemented into complicated structures, it is a difficult

and time-consuming task to modify the systems to allow multiple connections

between the client and server nodes.

Users can utilize the high I/O bandwidth by manually increasing the con-

nections in three ways, as shown in Figure 3.3. First, they use multiple connec-

tions between the client and server nodes by creating client daemons through

a mount command, such as shown in Figure 3.3a. For instance, if a user wants

four connections between the client and server nodes, the user executes the fol-

lowing mount command, “mount -t glusterfs BB1 /mnt/c(1∼4),’’ four times.

Because there are mount points connected to the same DFS in the same sever,

the users must distribute I/O requests to them (c1, c2, c3, and c4) evenly to uti-

lize the multiple connections. The easiest way is to use a different mount point

for each file, although to do so the user must manually modify the applications.

Moreover, if the number of files is not larger than the number of connections,

some connections may not be utilized, and thus clients have to distribute I/O

requests for the same file to the multiple connections in a complicated way.

Another way is to increase the number of connections by creating multiple

DFSs and server daemons on the same server node. As shown in Figure 3.3b, a

user makes two DFSs in the same server node and connects two client daemons

to one server daemon through the mount commands, ”mount -t glusterfs BB1

/mnt/c(1,2)” and ”mount -t glusterfs BB2 /mnt/c(3,4)”. This allows the user
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to have four connections, but requires more complicated steps in addition to the

effort required through the first approach. Because the two DFSs are different

file systems, they manage files separately even if they use the same devices.

Therefore, the same DFS must be used when the user executes I/O jobs multiple

times on the same file. Otherwise, the same file exists in two DFSs and cannot

guarantee data consistency.

Finally, as shown in Figure 3.3c, users can group multiple server nodes to

make a single DFS, which is the most widely used approach. Each server node

has a server daemon and connection to the client node. If the client node with

a 100 GbE network adapter is provided with a 600 MB/s I/O bandwidth from

a single server node, the client node must establish connections with approxi-

mately 10 server nodes. If the client uses too many server nodes, the user may

experience a performance fluctuation owing to contention at the server node.

As the number of server nodes used increases, the chance to share server nodes

with other users increases, and the user obtains an unstable performance. We

experimented using an IOR benchmark by applying five configurations and

changing the number of OSTs and the stripe size on a Cori supercomputer in

NERSC. As a result of applying each configuration five times, we found up to

a 4-fold difference in performance despite the same configuration. Although it

is proper for a single client node to use multiple server nodes for replication,

as few server nodes as possible should be utilized for a stable performance.

Despite this serious problem, this approach is used most often because many

DFSs check the source IP and destination IP addresses and allow only a single

connection between them. If we create multiple daemons on the same node as

in the first and second approaches using an NFS4, two nodes are regarded to

have already established a connection, and thus the NFS4 makes them share a

single connection.

24



As mentioned above, significant efforts from all DFS implementers or users

are needed to utilize a high I/O bandwidth of a single DFS server. Therefore,

a new solution is needed to alleviate such efforts.

25



3.2 Data Management for HPC Storage Systems

3.2.1 Problems of Existing HPC Storage Systems

A BB is introduced for absorbing a bursty I/O in an HPC system. Most super-

computers, including Cori [12] from NERSC, allocate a BB by using a dedicated

BB allocation method. The users specify the desired capacity for the applica-

tions, and the specified space is provided by an HPC scheduler [21, 22] for

the entire lifetime of the application. However, this allocation method causes

a severe underutilization of the BB, which is composed of expensive hardware

resources, such as high-speed storage media and a high-speed network. In gen-

eral, the users request more than the actual capacity necessary because the

application jobs fail owing to an I/O error when the allocated capacity is insuf-

ficient. To avoid a failure, users are recommended by supercomputer providers

to request a surplus BB capacity [11]. Users may also require a high capacity

to not only avoid a failure but also achieve a higher performance. Because the

scheduler determines the number of dedicated BB nodes in proportion to the

requested capacity, the users request a larger capacity allowing them to ex-

perience a higher performance with more BB nodes and a higher parallelism.

Along with the performance scalability, another reason for overabundant re-

quests arises from a complicated data management in multi-tier HPC storage

systems (i.e., local storage of a compute node, BB, and DFS). Because current

supercomputers manage a BB and PFS separately, the users are challenged

with a redundant and complicated management. For example, if users have a

limited BB capacity for only one checkpoint, they should copy data manually

from the BB to the PFS at every end of the I/O phase to make BB space for the

next I/O phase. Furthermore, if the workflow of an application is complicated,

manual data movement can be difficult for users to achieve [23].
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BB underutilization is also caused by the characteristics of the checkpoint

and restart. HPC applications apply a checkpoint with a fixed period [24–26],

called a checkpoint period, by repeating the compute and I/O phases peri-

odically. Unfortunately, as the checkpoint period ranges from tens of minutes

to tens of hours, expensive BB resources remain idle for long compute phases.

Moreover, each application requires a BB capacity larger than the actual check-

point size to preserve the consistency of the checkpoints. At least twice as much

BB capacity is needed for the checkpoints because the old checkpoint should

be maintained until the new checkpoint is completely written in a safe man-

ner. HPC users also store multiple versions of a checkpoint in a BB for data

durability. Because only the latest version of a checkpoint is needed in case of

a failure, the remaining older versions do not actually need to be stored in the

BB.

These problems caused by a dedicated BB allocation method have motivated

our HPC storage management approach based on an over-subscribing BB.

3.2.2 Limitations with Existing Approaches

Unlike a dedicated BB allocation method, a BB over-subscription method allo-

cates more space to applications than the total capacity of the BB by allowing

the applications to be used only during the I/O phase, and not within the

whole lifetime. Thus, applications during the computation phase should yield

a BB to other applications during the I/O phase through a demotion from

the BB to the PFS. Therefore, a data management approach between the BB

and PFS is needed. Many approaches have been proposed for a multi-tiered

system [11, 13, 27, 28], including an approach between the cache, memory, and

storage and an approach for a multi-tier storage of a distributed file system.

However, for the following reasons, these approaches are unsuitable for a new
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Figure 3.4: Checkpoint performance depends on DWPP

HPC storage system where the checkpoint dominates most of the I/O traffic.

For the first reason, the existing approaches use a static demotion thresh-

old without considering the amount of data to be moved between storage tiers.

With prior approaches, a demotion, i.e., the process of copying checkpoint files

from the BB to the PFS, is only applied when the BB is idle before reaching the

threshold. When the capacity of the BB used reaches the threshold, a demotion

is concurrently applied with a checkpoint. If the number of users using the BB

increases, the number of checkpoints also increases, resulting in an increased

DWPP . The increased DWPP causes a decrease in the BB idle time, which

reduces the amount of the demotion without interrupting the checkpoint. In

particular, because the speed of the data stored in the BB (write B/W of high-

end SSDs) may overwhelm the speed of the demotion to the PFS (write B/W of

low-end SSDs), the BB fills up when there is an insufficient BB idle time. With

the BB filled, applications have to wait until the BB has the available capacity,

leading to a significantly low checkpoint performance and a high latency. Fig-

ure 3.4 shows the checkpoint performance with different DWPP s after setting

the same demotion threshold to 90% of the total BB capacity. Because S indi-

cates the capacity of the BB, 1.3 S, 1.6 S, and 1.9 S writes are 1.3-, 1.6-, and
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Figure 3.5: Checkpoint performance depends on I/O jobs arrival pattern (I/O

job congestion)

1.9-times the size of the BB during a certain period, respectively. With 1.3 S,

a slightly lower performance is demonstrated after 1000 s. However, with 1.6

S, the BB occasionally becomes full during the middle of an I/O job for the

checkpoint, and thus the performance begins to decrease over time. For 1.9 S,

almost half of the applications achieve a four-fold lower performance because

they have to be stopped or apply a checkpoint with a demotion to increase the

available BB capacity.

As another reason, the existing approaches do not consider the distribution

of I/O jobs for a checkpoint. Specifically, even with the same DWPP , I/O

jobs of applications for checkpoint arrive in groups or evenly within a certain

period. When the I/O jobs arrive evenly, a BB idling time occurs between job

arrivals. Thus, the files are demoted during a BB idling time, making sufficient

space in the BB for the next I/O jobs. However, if the I/O jobs arrive in

crowds, a lack of a BB idling time between I/O jobs causes little demotion,

which leads to a capacity depletion of the BB. As shown in Figure 3.5, the

checkpoint performance is highly related to the I/O job congestion under the

29



same DWPP . There are three I/O job congestion patterns (low, medium, and

high) with 1.9 S, which represent the rate of crowding of arriving I/O jobs. A

low congestion always shows a higher performance because there is a sufficient

idling time between I/O jobs. By contrast, when the I/O jobs arrive in crowds

with medium and high congestion, it results in a low checkpoint performance.

Finally, the existing approaches identify hot and cold checkpoint files using

basic algorithms based on the data locality, such as FIFO, LRU, and Hotness-

aware. (Hot checkpoint files are left in the BB, whereas cold checkpoint files

stay in the PFS.) However, as mentioned in section 2.5, because checkpoint files

across applications do not have data locality, it is inappropriate to apply basic

algorithms for selecting cold checkpoint files. HPC applications have their own

checkpoint period and keep multiple versions of the checkpoints. With the FIFO

algorithm, although old versions of the checkpoints for an application with a

low checkpoint period are stored in the BB, the latest checkpoint with high

checkpoint period can be chosen as the cold data. This lowers the efficiency of

the BB and leads to a low restart performance. In addition, a checkpoint file

is needed only in the case of a failure. Because a new checkpoint file is created

during every checkpoint period, it is very unlikely that the same file will be

reused multiple times. Therefore, an LRU or Hotness-aware algorithm leads

to a low efficiency of the BB. Moreover, because there is no spatial locality

between the checkpoint files, checkpoint files near a failed file do not need to

be prefetched or left in the BB. The failure rates also need to be considered

because HPC applications have their own failure rates. Without considering the

failure rates, checkpoint files with a high failure rate might be chosen as cold

data, and not as checkpoint files with a low failure rate.
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Chapter 4

Mulconn: User-Transparent I/O
Transfer Management for HPC
Storage Systems

4.1 Design and Architecture

4.1.1 Overview

To enable users of new all-flash HPC storage systems to utilize a high I/O band-

width from a single BB server node, we propose a new I/O transfer management

scheme, called Mulconn, as shown in Figure 4.1. By developing Mulconn in a

VFS, which is an abstract layer that all file systems depend on, we completely

eliminate the effort required by users to distribute I/O requests to multiple

connections, and reduce the effort required by developers to modify compli-

cated DFS sources for multiple connections. To provide multiple connections,

we modify a new mounting procedure and I/O procedures in a client-side VFS

and utilize mount binding in a server-side VFS. However, in the case of DFSs

that provide a single connection between nodes, as mentioned in section 3.1.2,
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Figure 4.1: Overview of Mulconn

only a simple code modification is required to create a new socket even if a

connection exists between two nodes when a new daemon is created.

In this section, we present the design aspects of our Mulconn.
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Figure 4.2: Mount procedures with and without Mulconn
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4.1.2 Scale Up Connections

A reliable and simple way to provide multiple connections while minimizing the

modification of DFSs is making multiple client and server daemons by using the

mount command. However, as mentioned earlier, significant effort is required

by users to make the best of multiple connections. To handle this problem, we

adhere to the method of creating connections through the mount command,

but implement a new mount procedure in a VFS such that the users do not

need to manage multiple mount points.

We make a new mount command, as shown below, allowing DFS users

to easily achieve multiple connections. ”mount -mc n -t fstype -md

BB 1,...,BB n dir” With an mc option, we receive the number of connections

desired by the users and internally conduct a mount procedure several times

to make the specified number of connections. In addition, we need to expose

one mount point specified by the clients. However, users cannot use all con-

nections with only a single mount point with the original VFS. If the mount

command is requested multiple times on the same mount point, I/O requests

to the mount point are processed through the recent BB owing to the vertical

mount path hierarchy, as shown in Figure 4.2a. If a user executes the command

”mount − t glusterfs BB1 /mnt/c”, four times, I/O requests to the /mnt/c

are transmitted only through the fourth connected socket despite the presence

of four connections from the client node to the BB1.

For all connections using only one mount point, we change the vertical

hierarchy of the mount path to a horizontal hierarchy. Figure 4.2b shows our

system with a horizontal hierarchy. Unlike a traditional procedure, I/O requests

to /mnt/client are delivered using any socket.

As mentioned in section 3.1.2, users can increase the number of connections
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by making DFSs (a BB in new HPC storage systems) on the same server node.

However, the users must apply a file I/O by distinguishing which DFS each

mount point is connected to. To do so, we add an md option in our mount

command. Users specify the names of the DFS they use through this option. If

”mount −mc 4 − t glusterfs −md BB1, BB2 /mnt/c” is executed by the

user, we connect two of the four mount points to DFS1 and the other two to

DFS2, as in Figure 4.2c. However, data conflicts may occur because two DFSs

have different file system trees, as shown in Figure 4.3. When the user writes

to a file called Tom.c, a mount point connected to BB1 is used and the file is

stored in DFS1. However, when write requests are requests to the Tom.c file

again, a mount point for BB2 is used, and thus Tom.c is also created in BB2.

That is, the same file exists in multiple locations, resulting in a data conflict.

For this reason, we bind the two mount points of BB1 and BB2 to the same

directory of a local file system in the server node, and thus they have the same

file system view, as indicated in Figure 4.4. With this method, regardless of

which connection the user applies, the same file does not exist on multiple

DFSs.

4.1.3 I/O Scheduling

To distribute I/O requests to multiple connections well (evenly), we propose

two I/O scheduling polices. Figures 4.5 and 4.6 demonstrate our two polices,

TtoS and TtoM .

TtoS

Figure 4.5 shows a thread-to-single connection (TtoS) policy, which is the sim-

plest way to utilize multiple connections. The policy aims to allocate one con-

nection among the multiple connections to each thread requesting I/O requests
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Design

 Mulconn: User-transparent I/O transfer management

 I/O processing procedures

 TtoS (Thread to Single connection)

 Simplest way to utilize multiple connestions

 To allocate one connection among multi connections to each thread for 

executing I/O jobs
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Figure 4.5: TtoS policy

Design

 Mulconn: User-transparent I/O transfer management

 I/O processing procedures

 TtoM (Thread to Multiple connections)

 Each thread accesses all of connections

 Users submit I/O requests to the server node using all of connections

 Unlike TtoS, there are no idle connections, if there are fewer threads than 

the number of connections
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Figure 4.6: TtoM

from a DFS client node. Because each thread uses only one connection, the

contention for the socket is relatively small. However, if the number of threads

is smaller than the number of connections, there may be idle connections, and

thus a high I/O bandwidth from the DFS server may not be utilized.

TtoM

To overcome the limitation of the TtoS policy, we propose a thread-to-multiple

connections (TtoM) policy, which gives threads access to all sockets, as shown

in Figure 4.6. To transfer I/O requests using all sockets, we open the same file

over all connections. The files opened based on the number of connections are
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invisible to the users, and only one fd is provided, as if the user has only one

file. When I/O requests of the file are issued, they are delivered in order. All

connections are for the same DFS server node on the same client node, but

the DFS server considers each connection to be a different client. Therefore,

the DFS server asks a local file system (LFS) to open the same file the same

number of times with the number of connections, resulting in a lock contention

when I/O requests for the same file through different connections arrive at the

LFS. In addition, because the sockets are accessed by all threads, the contention

for the socket is much larger than that of TtoS.

4.1.4 Automatic Policy Decision

In addition to providing the two I/O scheduling policies, TtoS and TtoM ,

Mulconn also proposes an automatic policy decision for users who have dif-

ficulty choosing I/O policies. Based on the experimental results, we use TtoS

for write processing and choose TtoM for read processing with an automatic

policy decision.
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Algorithm 4.1: File Open and File Close for TtoS

1 do sys open(path)

2 {

3 int fd = alloc fd();

4 struct *file = do filp open(path);

5 fd install(fd, file);

6 }

7 do filp open(path)

8 {

9 struct file = alloc empty file();

10 follow mount rcu(file, path);

11 }

12 follow mount rcu(file, path)

13 {

14 int conn num = thread id % total num conn;

15 lookup mount(path, file->mnt, conn num);

16 }

17 lookup mount(path, file, conn num) {

18 file->mnt path = file->mnt->mnt array[soc num];

19 }

20 fd install(fd, file)

21 struct fdtable *fdt = thread->fdt;

22 fdt->fd[fd] = file;

23 }

24 close fd(fd) {

25 struct *file = thread->fdt->fd[fd];

26 flip close(file);

27 }
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Algorithm 4.2: File Open and File Close for TtoM

1 do sys open(path)

2 {

3 int fd = alloc fd();

4 for (int f num = 0; f num < conn num; f num++)

5 {

6 struct *file = do filp open(path,f num);

7 fd install(fd, file, f num);

8 }

9 }

10 do filp open(path, f num)

11 {

12 struct file = alloc empty file();

13 follow mount rcu(file, path, f num);

14 }

15 follow mount rcu(file, path, f num)

16 {

17 lookup mount(path, file->mnt, f num);

18 }

19 lookup mount(path, file, f num) {

20 file->mnt path = file->mnt->mnt array[f num];

21 }

22 fd install(fd, file, f num)

23 struct fdtable *fdt = thread->fdt;

24 fdt->fd array[f num]->fd[fd] = file;

25 }

26 close fd(fd) {

27 for (int f num = 0; f num < conn num; f num++)

28 {

29 struct *file = thread->fdt->fd array[f num]->fd[fd];

30 flip close(file);

31 }
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4.2 Implementation

In this section, we demonstrate the implementation of our system in a VFS

using I/O processing.

4.2.1 File Open and Close

A file open request is applied first for file write/read requests. While processing

the file open request, the connection that will handle the request is determined.

With follow mount rcu(), we select one of the connections in the horizontal

mount path hierarchy depending on the policy proposed and open a file through

the connection.

Algorithm 4.1 shows the file open and file close procedures of TtoS. If a file

open request is presented, an fd required for the I/O requests is assigned by

the user through alloc fd() (Line 3). Then, do filp open() is called to open the

file of the path specified by the user (Line 4). In do filp open(), an empty file is

first allocated and follow mount rcu() is then called with the file to determine

which mount path to use to send the requests to that file (Line 10). With the

TtoS policy, we choose the connection based on the thread ID (Line 14). Most

applications that use DFSs run file I/O tasks simultaneously using multiple

threads, and thus they have a series of thread IDs. Hence, the users make the

best use of all connections. In addition, we call lookup mount() to specify

the mount path to the file with the determined connection number (Line 15).

With lookup mount(), we find the mount path that matches the number of

connections in the horizontal mount hierarchy we created and insert the mount

path to the file (Line 18). Next, fd install() is called with the prepared fd and

file (Line 5). Because TtoS uses a single connection per thread, an fd array of

an fdtable stores the file according to the fd (Lines 21 and 22). If a file close
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request is required from the user, only one file is to be closed in the TtoS policy

(Lines 24 and 25).

With the TtoM policy, we open the same file as many times as the number

of connections through all sockets, as shown in Algorithm 4.2. Therefore, the

file structure is allocated and fd install() is called based on the number of

connections (Line 4 and 5). Unlike the traditional relationship between the fd

and file, because the user actually has multiple files with one fd, we modify

struct fdtable. In fdtable struct, there is an array that maps the opened file

with the fd in the original kernel. We create an array for each connection, and

map the files per connection to their own array, such as thread → fdt →

fd array[] in Lines 19 and 20. With multiple fd arrays, the users are available

to access all connections with one fd.

In the case of a file close request, all open files are closed in all connections

in the TtoM policy by finding the files from the fd array of fdtable with only

one fd (Lines 26–32).
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Algorithm 4.3: File Write and File Read for TtoS

1 ksys write(fd) or ksys read(fd) or io submit one(fd)

2 {

3 struct *file = fget(fd);

4 write (file, data); or read(file, data);

5 }

6 fget(fd)

7 {

8 struct *file = fcheck files(fd);

9 }

10 fcheck files(fd) {

11 struct fdtable *fdt = thread->fdt;

12 return fdt->fd[fd];

13 }
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Algorithm 4.4: File Write and File Read for TtoM

1 ksys write(fd) or ksys read(fd) or io submit one(fd)

2 {

3 struct *file = fget(fd);

4 write (file, data); or read(file, data);

5 }

6 fget(fd)

7 { struct *file = fcheck files(fd);

8 file->access cnt++;

9 int conn num = (file->access cnt % total num conn;

10 file = fcheck files TtoM(fd, conn num);

11 }

12 fcheck files(fd) {

13 struct fdtable *fdt = thread->fdt;

14 return fdt->fd[fd];

15 }

16 fcheck files TtoM(fd, conn num) {

17 struct fdtable *fdt = thread->fdt->fd array[conn num];

18 return fdt->fd[fd];

19 }
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4.2.2 File Write and Read

After the file open operation, write and read I/O requests of the file arrive.

Regardless of the synchronous and asynchronous I/O models applied, when-

ever write and read I/O requests are issued, the file created during the open

operation is first brought in fcheck files().

Algorithm 4.3 shows the file write and file read procedures with the TtoS

policy. First, we execute a fget() called fcheck files() to find the file for the

I/O requests (Lines 3-7). In fcheck files(), because only one file is mapped

to one fd of the fd array, the procedure is the same as that of the original kernel.

With the TtoM policy 4.4, we first receive a file through a fcheck files()

as with the TtoS procedure. However, there are multiple fd arrays for one fd,

and thus we select the fd array for each I/O request to use multiple connections

evenly. To do so, we add a variable called access cnt to file struct and increase

the value of access count each time the I/O requests a file to arrive (Line 8).

By calling fcheck files T toM(), which we developed using the variable, fd

arrays can be used in sequence (Lines 16-19). Therefore, TtoM creates I/O

requests for a file that transfers through all connections.
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4.3 Evaluation

4.3.1 Experimental Environment

We evaluate our I/O subsystem, Mulconn, using a single client node and a

sever node. To demonstrate the effectiveness of the I/O subsystem, we executed

experiments under two different environments. In the first environment, we use

two nodes for the client and server consisting of an Intel(R) Xeon(R) Silver 4216

processor and three 2-TB FADU NVMe SSDs provided by a semiconductor

start-up company. Each SSD has an I/O bandwidth of up to 1700 and 3200

MB/s for a sequential write and read, respectively. In the second environment,

we have two nodes with an AMD EPYC 7301 16-core processor for the client and

server nodes. In addition, we adopt five Intel DC P4500 (1 TB) SSDs, each of

which shows a sequential write and read bandwidth of up to 600 and 3200 MB/s,

respectively. In both environments, the client and server nodes are connected

with a 100 GbE Mellanox SN2100 Switch. We use GlusterFS version 6.5 for

a parallel file system and tune the configurations of the GlusterFS for a high

performance, but without making any modifications. Ext4 is used as the local

file system for GlusterFS. In addition, we add the designed I/O subsystem in a

VFS of kernel version 5.3.12. For the experiments, we use a micro benchmark

FIO. To validate our system based on two policies, we compare sequential write

and read I/O throughputs provided by the PFS of our system with those of the

original kernel version 5.3.12.

4.3.2 I/O Throughputs Improvement

In this section, write and read I/O throughputs with synchronous and asyn-

chronous I/O mode are measured by increasing the number of connections with

multiple client daemons and server daemons through our system.

46



Socket 개
수 write Socket 개

수 read

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Original TtoS TtoM TtoS TtoM TtoS TtoM

M
B

/s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Original TtoS TtoM TtoS TtoM TtoS TtoM

M
B

/s

soc2 soc4 soc8
soc2 soc4 soc8

(a) Sync Write I/O throughputs

Socket 개
수 write Socket 개

수 read

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Original TtoS TtoM TtoS TtoM TtoS TtoM

M
B

/s

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Original TtoS TtoM TtoS TtoM TtoS TtoM

M
B

/s

soc2 soc4 soc8
soc2 soc4 soc8

(b) Sync read I/O throughputs

Figure 4.7: I/O throughputs with synchronous I/O mode under various the

number of connections
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Figure 4.8: I/O throughputs with asynchronous I/O mode under various the

number of connections
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Scale Up Connections with Client Daemons

Figure 4.7 shows synchronous write and read I/O throughputs with GlusterFS

under the first environment. Here, Original indicates the result with the orig-

inal kernel, and TtoS and TtoM show the results with the optimized kernel

including our I/O subsystem. For this experiment, we use 16 threads to execute

I/O operations on each file. In the study, Original shows write and read I/O

throughputs of approximately 1800 and 1700 MB/s, respectively, because there

is only one connection between the client and server nodes. Unlike Original,

TtoS and TtoM have two to eight connections by increasing the number of

client daemons. Both TtoS and TtoM show a higher write I/O throughput as

the number of connections increases and up to 4300 MB/s with eight connec-

tions. The read I/O throughputs also improve as the number of connections

increases, although the performance improvement stops at approximately 3500

MB/s. As shown in the figure, TtoS and TtoM have a similar performance.

This is because threads of TtoM cannot send I/O requests to multiple connec-

tions simultaneously but do send a single request to one of the connections and

wait until the server receives it in synchronous mode.

To achieve a higher I/O bandwidth, we utilize asynchronous I/O mode to

submit I/O requests simultaneously. Despite using asynchronous I/O mode,

Original shows a similar or lower write throughput compared with those from

synchronous mode, as shown in Figure 4.8a. This is because only the maximum

bandwidth obtained from a single connection is provided to the client, regardless

of how many threads it uses to send requests asynchronously, and network con-

tention occurs among multiple threads. In contrast to similar amounts of change

in write throughput from TtoS and TtoM depending on the number of con-

nections in synchronous I/O mode, they show different patterns of throughput
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change in asynchronous I/O mode. Here, TtoS improves the write throughput

with the number of connections and shows higher throughputs than using syn-

chronous I/O mode. However, in the case of TtoM , the write throughput does

not increase after four connections, and the performance even decreases with

eight connections. Although the same numbers of connections are formed, the

two policies provide different write throughputs because of the different ways

the I/O threads use the connections, as mentioned in section 4.1.3. In addition,

TtoS allows each thread to use only one connection, and thus each file is opened

only once in the PFS server and local file system. By contrast, TtoM allows

each thread to use all connections, and therefore the file is opened as many

times as the number of connections. There is actually one user thread that

writes to the file, although because file open operations are performed through

different PFS client daemons, each of which has a connection, multiple threads

are considered to request an open operation on the same file in the PFS server.

Thus, the PFS server daemon requests as many file operations as the number

of connections to the local file system. For this reason, multiple threads access

the same file in the local file system, Ext4, resulting in a lock contention.
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Figure 4.9: Lock contention analysis for write operations with TtoS and TtoM
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To analyze the lock contention in TtoM , we profile a function that per-

forms a write operation in Ext4 (ext4 file write iter()). The function is di-

vided into three parts, and we measure the time spent in each part with two,

four, and eight connections. One of the parts is inode trylock() used to guar-

antee data consistency by preventing access from multiple threads. Another is

generic file write iter() used to write data to the storage devices. The final

part includes the remaining functions not used in the other two parts. Figure 4.9

shows the ratio of the execution time in each part to the total execution time of

ext4 file write iter(). Regardless of the number of connections, TtoS spends

most of its time executing the function for an actual write to the devices. By

contrast, in the case of TtoM , the execution time required to attempt to obtain

the lock is greater than the time required to write, except for two connections.

With these two connections, both TtoS and TtoM show almost similar write

I/O throughputs because the time for a trylock is less than that for a write.

When there are four and eight connections, TtoS and TtoM have a similar

time to write, but TtoM spends almost 11- and 50-times more time obtaining

the lock than TtoS for four and eight connections, respectively. In other words,

the lock contention is severe in TtoM because the multiple threads try to per-

form a write operation on the same file, and thus the write I/O throughput is

lower than that of TtoS. As the number of connections increases, the number

of threads accessing the same file increases, resulting in a more serious lock

contention, which allows TtoM to provide a lower I/O write throughput.

Fortunately, TtoM shows unchanged read I/O throughputs after two con-

nections in asynchronous I/O mode, as shown in Figure 4.8b. This is because

there is no lock for the read operations in ext4 file read iter(). However, both

TtoM and TtoS show lower read I/O throughputs in asynchronous I/O mode

than those in synchronous I/O mode. A decrease in performance may occur
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in the software overhead of GlusterFS or FUSE owing to the many requests

being submitted concurrently. A decreased performance does not occur during

an asynchronous write I/O execution because the write operation is processed

more slowly on a device than a read operation. This problem is out of the scope

of our system, however, and thus we do not address it herein.

Figure 4.10 and 4.11 shows write I/O throughputs with two and four con-

nections under the second environment. In this environment, original kernel,

which provides only single connection, shows around 500MB/s regardless of

the number of I/O threads and the number of client daemons. On the other

hand, Mulconn performs much better. As shown in the figure 4.10, TtoS shows

higher write I/O throughputs than TtoM because there is no lock contention.

By creating two cilent daemons, two connections are used, and up to 1500MB/s

write I/O throughput is achieved. As with the figure 4.11, the number of dae-

mons is increased from 2 to 4, and the write I/O throughputs doubled. We

shows 6-times performance improvement over the Original kernel with just four

connections.
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(a) Sync write I/O throughputs

(b) Async write I/O throughputs

Figure 4.10: Write throughputs with two connections(client daemons) under

various the number of I/O threads
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(a) Sync write I/O throughputs

(b) Async write I/O throughputs

Figure 4.11: Write throughputs with four connections(client daemons) under

various the number of I/O threads
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Figure 4.12: I/O throughputs with multiple connection by increasing the num-

ber of server daemons
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Scale Up Connections with Server Daemons

Despite increasing the number of connections to eight through the creation of

client daemons, the write and read I/O throughputs are no longer improved with

the TtoS and TtoM policies. Because of the increased number of connections,

the single server daemon of GlutsterFS has difficulty processing the increased

I/O requests, and thus the server daemon reaches a performance bottleneck. To

handle this performance bottleneck, we add new connections by creating a new

server daemon as mentioned in Section 4.1.2. We call TtoS and TtoM using

connections made by creating server daemons as TtoS+ and TtoM+.

We use eight connections between the client and server nodes and two server

daemons, as shown in Figure 4.12. In TtoS+ and TtoM+, we have four con-

nections to the first server daemon and the other four connections to the sec-

ond daemon. For executions of write operations, TtoM+ only performs better

than TtoM in asynchronous I/O mode. In other experimental write results, the

scale-up connections with server daemons have no effect because there is an in-

sufficient number of requests for a single server daemon to reach a performance

bottleneck.

As shown in Figure 4.12b, TtoS+ and TtoM+ show higher read I/O through-

puts than TtoS and TtoM with synchronous I/O mode. As mentioned before,

read throughputs are low in asynchronous I/O mode owing to the numerous re-

quests submitted at the same time. We expected that increasing the number of

server daemons would improve the read throughputs; however, TtoM+ shows

only a 600 MB/s higher async read throughput than TtoM .
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(b) Async read I/O throughputs with fewer threads than the

number of connections

Figure 4.13: I/O throughputs with fewer threads for I/O job than the number

of connections
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4.3.3 Comparison between TtoS and TtoM

In section 4.3.2, because we use a maximum of 8 connections and 16 threads

for an I/O, all connections are utilized in both TtoS and TtoM . However, if

the number of threads is smaller than the number of connections, idle connec-

tions will occur with TtoS. Because TtoS allows each thread to use only one

connection, it provides a low throughput despite being able to achieve a higher

throughput with more connections when the number of threads is less than

the number of connections. By contrast, TtoM allows each thread to access all

connections, and thus all connections are utilized regardless of the number of

threads. Regarding the efficiency of the two policies, we have one or two threads

for I/O jobs and two, four, and eight connections for the experiments shown in

Figure 4.13. In synchronous I/O mode, the number of connections used by each

thread does not affect the I/O throughput because the threads have to wait for

a return after submitting an I/O request. Therefore, we only measure the I/O

throughputs in asynchronous I/O mode.

Figure 4.13a shows the write I/O throughputs with one and two threads

using two to eight connections. With one thread for the I/O, Original, TtoS,

and TtoM show similar write I/O throughputs. The throughputs of TtoS and

Original are the same because both utilize a single connection owing to the

use of one thread. All connections are used by one thread under TtoM , but

it has the same throughput as the others because of the overhead caused by a

lock contention. In the experiments with two threads, TtoS improves the write

throughput, whereas TtoM shows a lower throughput than TtoS owing to the

increased lock contention.

There is no lock contention in the read operation, resulting in higher read

throughputs of TtoM than those of TtoS in Figure 4.13b. When read I/O
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Figure 4.14: Comparision of I/O throughputs of our system and maximum

available I/O thorughputs

requests are submitted with one thread, TtoS uses only one connection, whereas

TtoM sends multiple requests to all connections simultaneously, showing up

to three-times more read throughputs. When two threads are executed, TtoS

utilizes two connections, and thus the throughputs are improved compared to

those with a single thread. However, as the number of connections increases to

four to eight, TtoM shows a higher throughput than TtoS.

When the number of threads for the I/O is smaller than the number of

connections, TtoM has little effect on the write I/O throughput but leads to a

significantly improved write throughput.

4.3.4 Effectiveness of Our System

To verify how well our system utilizes the I/O bandwidth provided by a sin-

gle server, we compare the I/O throughput of TtoS+ and TtoM+ with the

throughputs of the method mentioned in section 3.1.2, which requires effort by

DFS users. We refer to this method as Manual+ in this section. In addition, we

conducted loopback experiments to emphasize the effectiveness of our system.
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Figure 4.15: Comparision of I/O throughputs of our system and maximum

available I/O thorughputs

For the experiments, we use eight connections with two server daemons, and

thus TtoS+, TtoM+, and Manual+ have eight mount points for the server

daemons. To allow Manual+ to easily distribute I/O requests to the eight

connections, we allow each thread to access one connection such as TtoS+.

Figures4.14 and 4.15 show write and read I/O throughputs with 16 threads in

synchronous I/O mode. The write I/O throughputs are over 20 GB/s when write

I/O requests go through the fuse and client stacks. However, as the I/O requests

pass the server stack, which returns the requests as soon as the server daemon

receives them, the write throughputs decrease to 5859 MB/s. We make connec-

tions and distribute I/O requests to eight mount points manually; Manual+

has a similar write throughput as our approach, which means there is little

overhead in our system, although we allow the DFS users to utilize multiple

connections without much effort. In addition, our TtoS+ and TtoM+ show a

throughput close to that of serverloopback even when writing to real devices.

For the read executions, a fuse or stack of GlusterFS for FUSE has difficulty
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processing many read requests simultaneously, and thus the write throughput

is improved by making the I/O requests go through the client stack to keep

them from getting crowded at the fuse and the stack for FUSE. Similar to

the throughputs for a write I/O, the read throughputs for the server loopback

and Manual+ decrease to 5500 and 4471 MB/s, respectively. Predictably, our

TtoS+ and TtoM+ provide the same performance as Manual+.

Based on these results, we prove that our system helps the PFS users to

obtain the maximum I/O throughput in the simplest way provided by this

environment and GlusterFS.
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4.4 Summary

Herein, we proposed BBOS for use in a new all-flash HPC storage system.

Specifically, we over-subscribed the BB by only allocating it during I/O phases,

and not during the entire lifetime for a higher BB utilization. To mitigate a

performance reduction caused by an over-subscription, we provided the I/O

scheduler and data management module. The I/O scheduler resolved the I/O

interference across the HPC applications by coordinating the I/O jobs. For

data management in the new HPC storage system, we analyzed and utilized

the characteristics of a checkpoint/restart. Based on these characteristics, we

transferred data from the BB to the PFS transparently by adjusting the thresh-

olds and speed of the demotion according to the DWPP . We also identified

cold data by considering different versions and failure rates.As a result, we

improved the BB utilization by at least 2.2-times that of the dedicated BB

allocation method. In addition, we guarantee a higher checkpoint throughput

without a sudden performance reduction and handle 96.4% of restart requests

in the BB, providing up to a 3.1-times higher restart performance than that of

other approaches.
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Chapter 5

BBOS: User-Transparent Data
Management for HPC Storage
Systems

5.1 Design and Architecture

5.1.1 Overview

Figure 5.1 shows the overall architecture of BBOS. BBOS is composed of two

engines, I/O engine and Data management engine, and an in-memory key-value

store for efficient engine process.

I/O Engine

In this paper, we provide an I/O scheduler for mitigating I/O interference across

applications. If we do not schedule the I/O jobs, multiple jobs may arrive si-

multaneously to BB. This causes resource competition and interferes optimized

access pattern of each I/O jobs [29]. In addition, interleaved data from the mul-

tiple I/O jobs is saved in the same SSD block, which causes garbage collection
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Figure 5.1: Architecture of BBOS

overhead [30]. For these reasons, the I/O interference degrades the performance

of the applications. The over-subscription method increases the number of the

I/O jobs using BB, which may cause I/O congestion more serious. Thus, we

schedule I/O jobs so that they do not overlap in I/O scheduler of I/O engine.

We place multiple I/O queues for each BB and assign an individual queue to

each application. Then the I/O jobs are transferred to their own queue as shown

in Figure 5.1. Our scheduler operates I/O jobs in the order of the I/O queues

so that the I/O jobs across applications do not overlap each other. I/O engine

also has I/O workers to execute I/O jobs for checkpoint and restart. They de-

termine which storage tier the scheduled I/O jobs should access, either BB or

PFS, with the help of the in-memory key-value store.
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Data Management Engine

Data management engine consists of four modules: throttler, demoters, deleters

and replicators. Throttler is responsible for dynamically controlling the speed

of checkpoint and the demotion. Demoters demote data from BB to PFS by

considering checkpoint versions and failure rates. In our management system,

demoted data remains in BB like a cache unless there is no space left for a new

checkpoint in order to provide high restart performance. Whenever space for

new checkpoints is not sufficient, Deleters remove the demote-finish data that

still exists in BB. Replicators transfer checkpoint files from storage devices of

local PFS node to ones of remote storage nodes within the same replication

group.

5.1.2 Data Management Engine

As mentioned in section 3.2.2, because checkpoint/restart characteristics are

not fully considered, some applications may suffer from a severe performance

degradation. To address this problem, we first set the demotion threshold and

adjust the speed of the checkpoint and demotion depending on the DWPP .

In addition, we developed a data placement policy for the new HPC storage

system to improve the BB efficiency and restart performance. With our data

management approach, a checkpoint and demotion are managed for each specific

period for expediency. We demote all data written during this period (DWPP )

for easy management within the next period.

Adaptive Demotion Adjustment

To prevent the BB from overflowing, we determine a demotion threshold in

consideration of the DWPP and I/O job congestion. As shown in Figure 3.4,
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because the DWPP affects the amount of data to be demoted during a period, a

smaller demotion threshold is chosen for a larger DWPP . Even if the DWPP

is the same size, the BB may fill up depending on the I/O job congestion

shown in Figure 3.5. Under a worst-case scenario, I/O jobs arrive without any

idle time for the BB. To prepare for the worst case, we need to demote the

number of data equal to the DWPP minus the capacity of the BB (S), called

C, along with a checkpoint execution. In addition, the speed of the checkpoint

and demotion (Bwmax, Bwmin, Brmax, and Brmin) also affect the demotion

threshold when demoting an amount of data equal to C with a checkpoint. The

throughput of the checkpoint and demotion are influenced by the concurrent

execution of the write and read operations. When a checkpoint and demotion are

operated together for C, write and read operations compete for BB resources.

Unfortunately, this competition leads to an inverse relationship between the

write and read bandwidth. As a result, the minimum demotion throughput

(Brmin) is determined by the maximum checkpoint throughput (Bwmax), i.e.,

the maximum write throughput provided by the BB. The minimum checkpoint

throughput (Bwmin) is determined by the maximum demotion throughput

(Brmax), i.e., the maximum write throughput provided by the PFS, as shown

in equation (5.1). (The m and b values may differ according to the various

devices applied.) Thus, we adjust the speed of the checkpoint from Bwmax to

Bwmin, and the speed of demotion from Brmin to Brmax after the demotion

threshold.

BWw = m×BWr + b (m < 0) (5.1)

To easily calculate the demotion threshold, we show our demotion manage-

ment by categorizing the patterns of the demotion into three groups according

to the DWPP , as shown in Figure 5.2. Here, S is the capacity of the BB, and
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Figure 5.2: BBOS demotion management

DWSF is the amount of data written thus far within the period. Within a

single period, the time given to execute a checkpoint at Bwmax without any

demotion is tc, and td is the time required to demote C while the checkpoint con-

tinues. Here, td is composed of tdd and tds, the former being the time when the

demotion throughput gradually changes from Brmin to Brmax, and the lat-

ter being the time when the demotion throughput is Brmax without changing.

1)Pattern 1: A demotion is only performed when the BB is idle

As shown in Figure 5.2, when DWPP is 1.0 S, the BB does not overflow

within this period because DWPP has the same capacity as the BB. Thus, a

checkpoint is possible with the Bwmax without a concurrent execution of any

demotion.

2)Pattern 2: A demotion is conducted with a checkpoint for a

certain period of time

As with 1.2 S, shown in the figure, DWPP has a larger capacity than the BB

(S), resulting in a positive value of C for demotion with checkpoint execution.

However, C is not as large, and thus a demotion needs to be conducted only for

a certain time with a checkpoint. The threshold depends on C. The larger C is,
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the earlier the ideal start time of the demotion. In the case of a 1.2-S DWPP ,

the threshold of DWSF is 0.7 S. This means that a demotion is executed

even if a checkpoint is applied when DWSF reaches 0.7 S. The checkpoint

throughput is adjusted between Bwmax and Bwmin for a demotion. With a

change in the checkpoint throughput, the demotion throughput is also adjusted

between Brmin and Brmax.

3)Pattern 3: A demotion is always conducted with a checkpoint

As DWPP increases, C sufficiently increases to the point at which a demotion

starts at the same time as the checkpoint. The demotion throughput increases

from Brmin to Brmax, and the larger C is, the more quickly the demotion

throughput reaches Brmax. With 1.4 S, the threshold for a start of a demotion

is zero, and the threshold for a demotion with Brmax is 0.6S. If the demotion

is applied using Brmax from the beginning with a checkpoint such as 1.6S,

we can handle the highest capacity. Therefore, the DWPP from this scenario

becomes the maximum period allowed.

With the following equation (5.2), the thresholds used to start a demotion

and to demote with Brmax are also determined according to C. Because it is

mandatory to demote all data on the BB within a certain period for the sake

of the next period, the period is determined as shown in equation (5.3).
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tc > 0,∫ tc+tdd

0
BWw(t) dt

= Bwmax× tc + Bwmax+Bwmin
2 × tdd = DWPP∫ tc+tdd

0
BWr(t) dt

= Brmin× tc + Brmax+Brmin
2 × tdd = C

tc = 0,∫ tdd+tds

0
BWw(t) dt

= Bwmax+Bwmin
2 × tdd + Bwmin× tds = DWPP∫ tdd+tds

0
BWr(t) dt

= Brmax+Brmin
2 × tdd + Brmax× tds = C

(5.2)

(period− (tc + td))×Bdmax ≥ S (5.3)

Data Placement Policy

To handle the limitations with an existing data placement, we developed a

data placement policy based on the characteristics of a checkpoint/restart. In

our data placement policy, a promotion is not required. Because there is no

spatial locality across checkpoint files, there is no need to prefetch files around

the file, which is requested for a restart. For a high restart performance, we

select cold files by considering the checkpoint version and failure rates. The

old version checkpoint files do not need to be in the BB, and thus they have

the highest priority to be cold files. If there are no old version checkpoint files

in the BB, we identify the cold files based on the failure rates. In this paper,
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we determine the failure rates of the applications depending on the number

of nodes used. However, as many prior studies have mentioned regarding the

causes of failures, the failure rates can be determined using such causes.

Direct Checkpoint on PFS

We expect a change in HPC storage systems in the future, with Brmax reach-

ing close to Bwmin because BB and PFS can be placed on the same node.

Because cold data from the BB are destined to be in the PFS, such data do

not need to be written on the BB first, wasting BB resources. For this reason,

we optimize the data management approach by bypassing the BB. Because we

know the failure rates of the incoming checkpoint, we can classify in advance

whether the checkpoint is hot or cold by comparing the failure rates with those

of other checkpoints on the BB. If the incoming checkpoint is determined to be

cold, the checkpoint is directed to be written on the PFS. The optimized ap-

proach reduces the amount of demotion, diminishing the concurrent execution

of the checkpoint and demotion. We can therefore provide a higher checkpoint

performance.
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5.2 Implementation

In this section, we describe the implementation details of the proposed ap-

proach.

5.2.1 In-memory Key-value Store

We utilize Redis [31], an open-source in-memory key-value store to help the

processing of the engines. The BBOS stores the location of the checkpoint files

and important information needed for data management in the key-value store.

As shown in Table 5.1, nine key-value pairs are applied for the engines. One

of the key-value pairs is used to provide the location of the files. After the

checkpoint is completed, I/O engine saves the file path for each file name in

the key-value pair. At that moment, the names of the files are stored in a sorted

key-value list to identify cold data depending on the version number and failure

rates. Based on the key-value list, Demoters demote the oldest checkpoint

files first, and if there are no older versions of the checkpoint files, they start to

demote the file with the highest failure rates. We also store DWPP and DWSF

to determine the demotion threshold and throttle the speed of the checkpoint

and demotion. In Sections 5.2.2 and 5.2.3, we describe the process flows of

each engine using the key-value store in detail. Because the BBOS does not use

a page cache for a checkpoint and restart, in-memory store is used to utilize

unused memory and facilitate the engine execution.

5.2.2 I/O Engine

I/O engine schedules I/O jobs and finds an appropriate storage tier for the

I/O jobs. Concurrently, it also collects the information for the demotion. The

process flow of I/O workers is described as in algorithm 5.1.

72



KEY VALUE Description

1 “V-order” Sorted Set(MTBF, APPID) Record victims and

sort them by MTBF

2 “Clean” List(APPID) List up App ID which

have demotion-finished

files for cleanup when

BB needs free space

3 APPID+“restart” Sorted Set(MTBF,time) Record the restart time

and new MTBF for ev-

ery read request for

restart

4 AppID+deviceID Sorted Set(ver, filename) Record the version and

the name of the check-

point files of each HPC

apps for each device

5 filename String(location) Record the file path for

easy file access on the

demotion or restart

6 APPID+“BB” NULL Record App ID if the

checkpoint files of the

app are in BB

7 “E-order” List(APPID) Record list of App IDs

with more than two

different checkpoint

versions in BB

8 “DWSF” String(DWSF) Record DWSF to

throttle the check-

point/restart speed

9 “R-order” filename Record the file name

for replicating files to

remote storage nodes

10 “DWPP” DWPP Record the total

amount of the check-

point written to BB by

the applications for a

certain period

Table 5.1: Key-value pairs in BBOS
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Algorithm 5.1: Pseudo-code for Checkpoint
1: if freespace ! = enough

2: Signal to DELETER

3: if get(‘APPID+“BB”’, temp) ! = NULL

4: put(‘E-order’, APPID)

5: put(‘APPID+NVMe#’, ‘filename’)

6: put(‘filename’, ‘loc’)

7: Executing writes for checkpointing..

8: put(“‘DWSF”’, ‘DWSF + current file size’)

Demoted data can stay in the BB unless the capacity is insufficient for a new

checkpoint. Thus, the engine first checks if there is sufficient space left before

processing the checkpoint, and if not, it sends Deleters, a signal used to delete

demotion-finished files (lines 1 and 2). In addition, the engine checks if there

are any outdated checkpoint files of the application on the BB. This is because

the older versions of the checkpoint files do not need to remain in the BB after

the new checkpoint files are safely written. To check the files, the engine checks

if there is a key of the application in pair #6, and if so, it records the app ID

to pair #7, which collects victims with the highest priority (lines 3 and 4). The

engine enlists the file names of each application on pair #4 for Demoters that

perform the demotion on each high-end SSD in the BB (line 5). To provide

the location of the files, the engine saves the file path for each file name in

pair #5 (line 6). After completing the checkpoint, the engine updates pair #8

with the current file size for Throttler (lines 7 and 8). We need to record the

DWSF because the capacity of the BB is always full owing to the fact that our

system keeps the demotion-finished data in the BB until free space is actually

necessary.
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5.2.3 Data Management Engine

Four modules from this engine manage an efficient demotion process between

the BB and the PFS.

Throttler

Throttler regulates the checkpoint and the restart speed while monitoring

the DWSF . Throttler obtains the DWSF from pair #8 and compares the

value with the threshold to start a demotion. After the threshold, the check-

point/restart speed is adjusted, and the module throttles the speed as recon-

figured.

Demoters

Demoters receive a signal from Throttler about a device in the BB that requires

a demotion. After that, Demoters collect information from the in-memory store

to execute the demotion described in Algorithm 5.2. First, Demoters check for

every victim in pair #7 because the older version of the checkpoint files should

be demoted first (line 1). If there is no victim, a victim is retrieved from pair

#1, which is ordered by MTBF (lines 2 and 3). If the victim is from pair

#1, the files of the victim are not deleted from the BB immediately after a

demotion to preserve the restart performance (lines 7 and 8). However, it is

necessary to record the app ID to pair #2 and erase these demoted files when

the BB needs the available capacity (line 9). If the victim is from pair #7, it

also means that the victim has older versions of the checkpoint files. Because

the older version files do not need to remain in the BB, they are deleted (lines

10 and 11). Finally, Demoters update pair #5 (line 12) and put a filename in

pair #9 for replication (line 13).
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Algorithm 5.2: Pseudo-code for Demotion
1: pop(“‘E-order”’, APPID)

2: if APPID != exists

3: pop(“‘V-order”’, {MTBF, APPID})

4: flush← TRUE

5: pop(‘APPID+NVMe#’, {ver, files})

6: for each file of files

7: if(flush == TRUE)

8: demote file from NVMe# to SATA#

9: put(“‘Clean”’, APPID)

10: else

11: demote file of old version from NVMe# to SATA#

12: delete file in NVMe#

13: update(‘filename’, ‘loc’)

14: put(“‘R-order”’, ‘filename’)

Deleters

Deleters erase the fully demoted files after receiving a signal from I/O workers.

To do so, Deleters pop the app ID first, which is inserted in pair #2, and delete

the files from the BB using pairs #4 and #5.

Replicators

Finally, Replicators replicate the checkpoint files from the local storage device

to the remote devices within the same replication group. Each storage node

has a mount point of the PFS, which consists of storage nodes in the same

replication group except itself. A PFS-only low-speed network is additionally

installed between each storage node. Thus, Replicators transfer the demoted

data to the mount point by using pair #9 without interfering with the BB

performance.
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5.2.4 Stable Checkpoint and Demotion Performance

To provide a stable checkpoint/restart and demotion performance, a data man-

agement approach is optimized using new techniques. The checkpoint and de-

motion speeds are regulated as mentioned in 5.1.2. However, it is difficult to

accurately throttle their write and read speeds. Because the number of I/O re-

quests per second from each application varies, the speed of the checkpoint and

demotion is different even if we send the same number of read requests per sec-

ond for a demotion. The system may not be able to provide a stable checkpoint

performance owing to the inability to demote as much data as it should. For

this reason, we use blkio [32] of the cgroup to precisely throttle the speed of the

checkpoint and restart. In addition, we utilize the send file() system call [33]

to maintain a stable demotion performance. For the demotion, the data must

be read from the BB and written to the PFS. This causes a context switching

and data copying overhead between the user and kernel level, resulting in a

low and unstable demotion performance. Because the send file() system call

supports a zero-copy, we can eliminate the demotion overhead. Furthermore,

the checkpoint/restart performance may be degraded owing to a garbage col-

lection. To avoid a garbage collection overhead, we periodically request TRIM

after deleting the files. In addition, the TRIM throughput is managed using

blkio to minimize the performance degradation.
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5.3 Evaluation

5.3.1 Experimental Environment

We evaluated our HPC storage management approach using eight compute

nodes and a single storage node for the BB and PFS. Four of the compute

nodes consist of an Intel Xeon Phi 7290 CPU processor with 72 physical cores

and the others are of an Intel Xeon Phi 7250 CPU with 68 physical cores. The

storage node consists of dual 12-core Intel Xeon Silver 4115 CPUs and 32 GB

of memory. For the BB, we use four 800-GB FADU NVMe SSDs provided by a

semiconductor start-up company [34], with a sequential write and read of up to

920 and 3200 MB/s, respectively. For the PFS, four 4-TB Samsung 860 EVO

SATA SSDs are installed. The compute and storage nodes are connected with

a 100 GbE Mellanox SN2100 switch.

We use the Gluster file system (GlusterFS) [35] version 5.6 for both the BB

and PFS, the configuration of which is tuned for a high performance. In addi-

tion, the BBOS is implemented by modifying GlusterFS and adding some de-

veloped modules. In addition, each variable is determined as following: Bwmax

of 3.56 GB/s, Bwmin of 3 GB/s, Brmax of 1.6 GB/s, Brmin of 0.08 GB/s,

and period of 3800 s. For the experiments, we execute large sequential writes to

simulate a checkpoint by applying a microbenchmark FIO [36], and the failure

rates are determined based on the number of nodes used by each application.

According to [14], the failure rates and mean time between failures (MTBF )

have an inverse relationship. Thus, to express the failure rates of applications

simply for experimental purposes, we utilize the MTBF .

To validate our system, we compare the BB utilization and checkpoint/restart

performance with Datawarp, a current HPC scheduler that uses a dedicated BB

allocation, and two policies of Harmonia [13], which is the only scheduler that
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Figure 5.3: Checkpoint Throughput depending on DWPP

79



Figure 5.4: I/O latency depending on DWPP
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uses a BB over-subscription method. Because Harmonia is not opensource, we

created an emulation based on the paper. Datawarp does not apply I/O schedul-

ing, whereas Harmonia schedules I/O jobs to prevent them from overlapping

with each other. MaxEff, one of Harmonia’s policies, aims to optimize the BB

system efficiency by maximizing the BB utilization. Because the policy aims to

maintain a high capacity of the available BB, it consistently demotes the data

at full speed (Brmax) even when the checkpoint is concurrently applied. By

contrast, MaxBW from Harmonia aims to provide the maximum checkpoint

bandwidth to the applications. With this policy, the checkpoint and demotion

are not conducted at the same time. To describe the demotion threshold of the

two policies, as shown in Figure 5.2, the demotion thresholds of MaxEff and

MaxBW are zero and 1 S for DWSF .

5.3.2 Burst Buffer Utilization

To compare the BB utilization with each approach, we assume that each ap-

plication requests an 80-GB checkpoint once per period. We then count how

many applications can finish the checkpoint within the period, which indicates

the maximum DWPP providable by each scheduler. Datawarp shows 0∼100%

of the BB utilization because it allocates as much BB capacity as the users

desire with a dedicated allocation method. Under the best scenario, if all users

demand as much BB allocation as they need, the total BB capacity is used

up within this period, resulting in 100% BB utilization. In most cases, how-

ever, the BB utilization is low due to an overabundant BB capacity request

and the checkpoint/restart characteristics. By contrast, because Harmonia and

BBOS use an over-subscription BB allocation method, they can accommodate

more applications within the period than Datawarp. MaxBW needs to ensure

the maximum checkpoint throughput of the applications, and thus the demotion
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cannot be performed together with the checkpoint. As a result, a BB utilization

of up to 190% is demonstrated. MaxEff shows a BB utilization of 210% because

it always performs the demotion at the maximum demotion throughput, i.e.,

Brmax. To provide the maximum DWPP , a BBOS is applied similarly to

MaxEff, which also achieves a BB utilization of up to 210%.

5.3.3 Checkpoint Performance

To validate the BBOS, we executed the experiments under various situations

with different scenarios for the I/O job congestion and DWPP . Because the

maximum DWPP of Datawarp equals the total capacity of the BB, we only

evaluate Datawarp with a DWPP of 1 S, and the others with a DWPP of 1.3,

1.6, and 1.9 S, respectively. We generated different I/O job congestion patterns

based on the following three scenarios: 1) Low congestion: The time interval of

each I/O job is equal and evenly distributed throughout the period. 2) Medium

congestion: The time interval of each I/O job is half that of a low congestion.

3) High congestion: The time interval of each I/O job is shortened two one-

tenth of a low congestion. (If I/O jobs are requested every 50 s under the low

congestion pattern, I/O jobs arrive every 25 s, whereas they arrive every 5 s

under the medium and high congestion patterns.) In addition, as described in

section 5.3.2, all applications require an 80-GB checkpoint once per period.

Figure 5.3 shows the checkpoint throughput and I/O latency, which is the

time interval between the time of an I/O request and the time of the response

under various DWPPs and an I/O job congestion. The I/O latency contains 1)

the wait time until the end of the previous job to prevent a concurrent execution

of I/O jobs, 2)the stop time to make BB space available owing to the full BB,

and 3) the execution time of the I/O job. In Datawarp, because all demotions

are possible within a sufficient BB idle time between I/O jobs, a high checkpoint
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throughput is provided under a low I/O job congestion. By contrast, under high

congestion, the checkpoint throughput of each application remains extremely

low owing to a concurrent execution of the I/O jobs because the jobs arrive

even when the previous jobs are not finished. As a result, Datawarp provides

the lowest checkpoint throughput and a similar average latency even with a

DWPP of 1.0 S when compared to the BBOS.

Unlike Datawarp, Harmonia and BBOS provide I/O scheduling to mitigate

I/O interference across applications. Because MaxBW does not execute a de-

motion and checkpoint at the same time, it always provides a high checkpoint

throughput. However, some I/O jobs have to stop before the execution based on

the available BB capacity. With a low congestion, none of the applications wait

to avoid I/O interference or make space in the BB, regardless of the DWPP ,

because of a sufficient idle time between I/O jobs. With medium congestion,

when the DWPP exceeds 1.6 S, some applications begin to achieve a high la-

tency. The larger the DWPP is, the shorter the idle time within a period, and

thus the latency at 1.9 S is larger than that at 1.6 S. With high congestion,

applications have to wait to prevent I/O interference and must stop to make

space in the BB because there is insufficient idle time between jobs, which re-

sults in the highest latency. In addition, MaxBW has an extreme performance

variance across applications because the maximum latency is too high com-

pared to the average. Figure 5.5 shows the time-excluding execution time in

terms of latency for the 1st to 45th I/O jobs with medium I/O congestion at

1.9 S. With MaxBW, no I/O job waits or stops until I/O job #36, but I/O jobs

arriving after #36 have to stop for sufficient space in the BB prior to execution.

Unfortunately, the stop time of all previous I/O jobs is accumulated. Therefore,

the later arriving I/O jobs have a longer wait time, resulting in a severe perfor-

mance fluctuation. Unlike MaxBW, the BBOS does not stop to increase the BB
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Figure 5.5: Wait time of I/O jobs with MaxBW

capacity because BBOS demotes the data in advance and thus the BB is not

full. Therefore, the execution time of the I/O jobs increases, which forces the

next I/O jobs to wait. As a result, the BBOS shows a gradual increase in the

wait time initially, although the wait time of the I/O jobs does not significantly

increase. In conclusion, MaxBW provides a higher performance than the BBOS

when there is no wait time, such as Low and Med of 1.3S and Low of 1.6S and

1.9S. However, if there is an insufficient BB idle time per period or idle time

between I/O jobs, MaxBW shows the higher latency and a higher performance

variance than the BBOS, because the BBOS prepares for situations in which

I/O jobs come in groups by adjusting the checkpoint performance.

By contrast, because MaxEff and BBOS apply a demotion in advance to

prevent a BB overflow, they do not stop the I/O jobs to create BB capacity

prior to the I/O execution. MaxEff shows the lowest checkpoint throughput

because this method always demotes data at the highest demotion speed. In

this way, a relatively large space in the BB is maintained but provides a lower

checkpoint latency compared to that of MaxBW. The BBOS adjusts the check-

point throughput between Bwmax and Bwmin depending on the DWPP . The

smaller DWPP is, the higher the checkpoint throughput we achieve by avoiding
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unnecessary concurrent checkpoint and demotion executions unlike with Max-

Eff. In the absence of a wait time to create BB capacity, only the checkpoint

throughput determines the latency, and thus the BBOS shows a lower latency

than MaxEff (however, the latencies are too small to be seen in Figure 5.4).

When the DWPP is large, MaxEff shows a higher latency than the BBOS, even

though it applies a demotion more aggressively than our approach. This is be-

cause MaxEff always demotes data at the full demotion speed and takes longer

to process a checkpoint, which results in a longer wait period for the next I/O

jobs. In our experiments, the difference in latency of MaxEff and BBOS seems

to be small (within tens of seconds) because the difference between Bwmax

and Bwmin is not large. If the difference increases, the BBOS can expect a

lower I/O latency than MaxEff.

Consequently, the BBOS is a novel approach that takes advantage of and

complements the shortcomings of MaxBW and MAXEff, respectively. By ad-

justing the checkpoint and demotion speed depending on the DWPP and I/O

job congestion, the BBOS continuously provides a relatively higher checkpoint

throughput and lower latency than the other approaches.

Direct checkpoint on PFS

When the maximum demotion throughput (Brmax) is greater than the mini-

mum checkpoint throughput (Bwmin), we can reduce the unnecessary demo-

tion overhead by bypassing the BB. We conducted experiments using three

different DWPPs, i.e., 1.3, 1.6, and 1.9 S. Each application requests an 80-GB

checkpoint with a checkpoint period of 1 h. The MTBFs of all I/O applica-

tions are set randomly from 0 to 100 min. As shown in Figure 5.6, the method

decreases the number of demoted data by up to 38% by bypassing the BB

method. Because checkpoints can be written directly on the PFS after DWSF
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Figure 5.6: Direct checkpoint on PFS by bypassing BB

Figure 5.7: Hit ratio of restart requests on BB

becomes larger than the BB capacity, the larger the DWPP is, the longer the

period of time this method can be applied. Hence, as DWPP increases, more

checkpoint files of cold data can be written directly on the PFS. Consequently,

because fewer demotions are applied concurrently with the checkpoints, more

applications can experience a higher checkpoint throughput.

5.3.4 Restart Performance

In this section, we measure the hit ratio of the restart on the BB to compare

the restart performance. We compare the LRU and FIFO algorithms used in

most HPC data management schemes with the BBOS. Because the ratio of the

remaining amount to BB of the total data differs according to the DWPP ,

we use three different DWPPs for the experiments, i.e., 1.7, 1.9, and 2.1 S. In

addition, we use three different variances of the MTBF sets. We choose MTBF
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Figure 5.8: Version-aware data placement

randomly in the range of 0 to 20 min (low congestion), 0 to 50 min (medium

congestion), and 0 to 100 min (high congestion). We choose the applications

that need restart based on the expected MTBF . For the sake of simplicity,

all checkpoints are fixed to equal periods, and the checkpoint size is set to 80

GB. As shown in Figure 5.7, the BBOS shows the highest hit ratio on the BB,

which is up to 3.4-times higher in comparison. With all three methods, the hit

ratio increases as DWPP decreases because the checkpoint files have a higher

chance of remaining on the BB. In the case of the LRU and FIFO algorithms,

however, cold data are chosen based only on the order of the written time.

Thus, the hit ratio for each experiment is largely different and unrelated to the

variance of MTBF . By contrast, the BBOS shows an increased hit ratio as

the variance increases. With a low variance, the effectiveness of our system is

relatively lower than the other scenarios because failure rates of the applications

are similar owing to a low variance of the MTBF . By contrast, in the case of

a high variance, the checkpoint files are distributed well on the BB and PFS

according to the failure rates. As a result, the BBOS provides up to a 3.1-times

higher hit ratio of restarts on the BB compared to the others.
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Version-aware Data Placement

To maintain a high hit ratio on the BB, the BBOS uses a version-aware data

placement method by identifying outdated checkpoint files as cold data with

the highest priority. To demonstrate the effectiveness of this method, a few

assumptions are made for the following experiment. We choose three checkpoint

periods for the HPC applications, i.e., 60, 30, and 20 min. Each user requests an

80-GB checkpoint and an MTBF of 0 to 100 is randomly selected. We assume

that the applications maintain three or more versions of the checkpoint. Thus,

the applications with a 60-min period have one checkpoint version, and have

two versions for a 30-min period and three versions for a 20-min period. Finally,

we arrange the ratios of the three periods as 1:1:1 and 5:2:1 with a DWPP of

1.9 S. Figure 5.8 shows a comparison of the restart hit ratio on the BB between

the availabilities of the version-aware method. In the case of 1:1:1, all of the

restart requests can be handled in the BB with the version-aware method in an

ideal situation, because the BB capacity is larger than the total number of new

version checkpoints. However, if we have to make available capacity when no

older version checkpoints are available, a single version checkpoint with a high

MTBF can be selected as cold data. Therefore, 96.4% of the restart requests on

average are applied on the BB in the actual experiments with the version-aware

method. By contrast, without a version-aware method, the selection of cold data

is based only on the MTBF . Fresh checkpoint files with a high MTBF exist

on the PFS, and older version files with a low MTBF remain on the BB. As a

result, 80.1% of the restart requests are given a high restart performance from

the BB. In the case of 5:2:1, because there is a large number of applications

with a low checkpoint period, none of the new-version checkpoint files can be

placed in the BB. Thus, with the version-aware method, we handle 92.5% restart
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requests in the BB, which is slightly less than 1:1:1. Without this method, 71.7%

of the restart requests are performed in the BB, which is also lower than 1:1:1.

Consequentially, the version-aware method increases the restart requests up to

29.5%, which are applied in the BB.
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5.4 Summary

Herein, we proposed BBOS for use in a new all-flash HPC storage system.

Specifically, we over-subscribed the BB by only allocating it during I/O phases,

and not during the entire lifetime for a higher BB utilization. To mitigate a

performance reduction caused by an over-subscription, we provided the I/O

scheduler and data management module. The I/O scheduler resolved the I/O

interference across the HPC applications by coordinating the I/O jobs. For

data management in the new HPC storage system, we analyzed and utilized

the characteristics of a checkpoint/restart. Based on these characteristics, we

transferred data from the BB to the PFS transparently by adjusting the thresh-

olds and speed of the demotion according to the DWPP . We also identified

cold data by considering different versions and failure rates.As a result, we

improved the BB utilization by at least 2.2-times that of the dedicated BB

allocation method. In addition, we guarantee a higher checkpoint throughput

without a sudden performance reduction and handle 96.4% of restart requests

in the BB, providing up to a 3.1-times higher restart performance than that of

other approaches.
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Chapter 6

Related Work

Many studies related to a multi-tiered HPC storage system include a BB, which

is composed of expensive resources. Since the emergence of a BB, researchers

have actively focused on improving the checkpoint performance in various ways.

To reduce the checkpoint overhead on a PFS, in [1, 27], the authors have de-

veloped a multi-level checkpoint mechanism considering the different degrees of

reliability and the checkpoint cost of each tier in an HPC storage system. In

[37], the authors attempted to transfer data asynchronously for a checkpoint.

In [30], the authors observed that the BB performance is excessively reduced

owing to a garbage collection when multiple HPC users simultaneously use a

BB. To mitigate the reduction in performance, they assigned isolated blocks to

each user using multi-stream SSDs. However, these approaches do not consider

the I/O interference across applications, which is one of the most important

considerations for an HPC system. To mitigate the I/O interference, with ref-

erence to existing I/O schedulers for a PFS [29], some studies [38–40] have

provided I/O scheduling techniques for a BB. In [39], the authors dynamically
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coordinated I/O jobs based on the past I/O behavior of the application and

system characteristics. In addition, [2] developed an I/O scheduling technique

by reshaping the I/O traffic from the BB to the PFS.

File servers [41–44] used for grid computing have increased the end-to-end

connections because a single TCP/IP connection prevents high data rates from

an advanced network technology [45–50]. However, as described above, there

have been many studies on obtaining a high I/O bandwidth in all-flash BB

servers, but studies on scaling up the connections in a distributed file system

have received little attention.

Researchers have recently started to take an interest in BB utilization and

the checkpoint performance. Some data management solutions [51] allowing

multi-tiered HPC storage systems to capitalize on the benefits of a BB have been

proposed. In [23], the authors suggested a goal-driven data management scheme

that automatically manages data as required by the applications. Although the

users do not have to move data manually, they must understand the application

workflow to command the data movement. In [11,52], the authors claimed that

HPC applications can achieve some frequently accessed data. Through I/O

profiling, hot data are identified and placed in the BB. In [53], the authors

regulate I/O traffic using a write access pattern of the applications. They detect

randomness in the write traffic and only random writes are stored in the BB.

In addition, sequential writes are propagated directly to the PFS. However,

checkpoints, occupying most of the I/O traffic of an HPC system, do not have

hotness or a random access pattern because all checkpoint data are requested

sequentially for recovery.

Because the studies mentioned above still use a dedicated allocation method,

the BB cannot be fully utilized. To solve this problem, in [28] the authors use

a BB over-subscription method. In this case, five I/O scheduling policies are
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proposed with different aims; however, these policies have several limitations

because the aims are too narrowly focused. In addition, a demotion policy,

including the demotion threshold and demotion speed, is not considered, nor is

a data placement method between the BB and PFS for an HPC storage system

with an over-subscribed BB allocation. This therefore leads to a fluctuation in

the checkpoint performance and a slow checkpoint/restart.
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Chapter 7

Conclusion

All-flash HPC storage systems have recently been proposed. However, exist-

ing I/O transfer and data management schemes between the BB and PFS do

not support new all-flash HPC storage systems, resulting in a low checkpoint

and restart throughput and a low storage utilization. In this dissertation, we

explored two problems for handling the bursty I/O of HPC applications and

addressed them by proposing a new user-transparent I/O management using

two types of schemes, i.e., I/O transfer schemes between the compute and server

nodes and data management schemes between the BB and PFS.

In Chapter 3, we described the problems of existing I/O transfer approaches

for HPC storage systems and the limitations of existing solutions in dealing with

such problems. Owing to a single connection between a compute node and a

server node of existing DFSs, a high I/O bandwidth of multiple flash storage

devices cannot be utilized. Existing solutions for handling this problem require

considerable efforts from DFS developers and users of HPC storage systems.

Therefore, we proposed a user-transparent I/O transfer scheme to solve the
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problem caused by a single connection and to compensate for the limitations of

existing solutions. We increased the number of connections without modifica-

tions of the DFSs and HPC applications by modifying a mount procedure and

I/O processing procedures in a virtual file system. Experimental results prove

that our scheme improves the write and read throughput for a checkpoint and

restart by up to 6- and 3-times that of the existing I/O transfer method, re-

spectively, using the original kernel.

In Chapter 4, we investigated the problems of the existing storage allocation

method for HPC storage systems and the limitations of existing data manage-

ment schemes. The dedicated BB allocation method is inefficient, causing a BB

underutilization owing to a faster PFS access. For this reason, we utilized a BB

over-subscription allocation method; however, this BB allocation method may

degrade the performance of a checkpoint and restart. We therefore proposed a

new data management scheme using a BB and PFS based on the characteris-

tics of a checkpoint and restart. We managed the data movement from the BB

to the PFS by adjusting the speed of the demotion and adaptively determine

the candidates for demotion. Experimental results showed that our scheme im-

proves the BB utilization by up to 2.2-times that of the most popular dedicated

BB allocation scheme, Datawarp, and proved a higher and stable checkpoint

performance. In addition, we achieved up to a 3.1-times higher restart perfor-

mance than other data management schemes.

In a future study, using an I/O transfer scheme to increase the number of

connections by creating server daemons, we need to bind the mount points of

multiple BBs to the same directory of a local file system such that they have

the same file system view. GlusterFS used in this dissertation applies metadata

from the local file system, and thus multiple server daemons have the same

metadata. However, in the case of DFSs that have their own metadata man-
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agement system, each server daemon may have different metadata for the same

file. Of course, the data consistency will be guaranteed in a local file system,

although problems may arise in metadata-related I/O requests. For this reason,

there is a root to revise our I/O subsystem, allowing the DFSs to extend the

connections with the server daemons. With the data management scheme, be-

cause HPC applications have a consistent checkpoint period, we can accurately

predict when the next checkpoint request of the application will arrive. This

expectation enhances the checkpoint throughput without an extravagant de-

motion in advance. In addition, we can predict the failure rates of applications

based only on the number of nodes used. In the future, the exact causes of a

failure can be applied to determine the failure rates.
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요약

고성능컴퓨팅스토리지시스템의입출력대역폭의대부분은고성능어플리케이션

의 체크포인트와 재시작이 차지하고 있다. 이런 고성능 어플리케이션의 폭발적인

입출력을 원활하게 처리하게 위하여, 고급 플래시 저장 장치와 저급 플래시 저장

장치를 이용하여 버스트 버퍼와 PFS를 합친 새로운 플래시 기반의 고성능 컴퓨팅

스토리지 시스템이 제안되었다. 하지만 스토리지 시스템을 구성하기 위하여 사용

되는 대부분의 분산 파일 시스템들은 노드간 하나의 네트워크 연결을 제공하고

있어 서버 노드에서 제공할 수 있는 높은 플래시들의 입출력 대역폭을 활용하지

못한다. 여러개의 네트워크 연결을 제공하기 위해서는 분산 파일 시스템이 수정

되어야 하거나, 분산 파일 시스템의 클라이언트 데몬과 서버 데몬의 갯수를 증가

시키는 방법이 사용되어야 한다. 하지만, 분산 파일 시스템은 매우 복잡한 구조로

구성되어 있기 때문에 많은 시간과 노력이 분산 파일 시스템 개발자들에게 요구

된다. 데몬의 갯수를 증가시키는 방법은 각 네트워크 커넥션마다 새로운 마운트

포인트가존재하기때문에,직접파일입출력리퀘스트를여러마운트포인트로분

산시켜야 하는 엄청난 노력이 사용자에게 요구된다. 서버 데몬의 개수를 증가시켜

네트워크 커넥션의 수를 증가시킬 경우엔, 서버 데몬이 서로 다른 파일 시스템 디

렉토리관점을갖기때문에사용자가직접서로다른서버데몬을인식하고데이터

충돌이 일어나지 않도록 주의해야 한다. 게다가, 기존에는 사용자들이 하드디스크

와 같은 저속 저장 장치로 구성된 PFS로의 접근을 피하기 위하여, 버스트 버퍼의

효율성을 포기하면서도 전용 버스트 버퍼 할당 방식 (Dedicated BB allocation

method)을 선호했다. 하지만 새로운 플래시 기반의 고성능 컴퓨팅 스토리지 시스

템에서는 병렬 파일 시스템으로의 접근이 빠르기때문에, 해당 버스트 버퍼 할당

방식을 사용하는것은 적절치 않다.

이런 문제들을 해결하기 위하여, 본 논문에서 사용자에게 내부 처리과정이 노출

105



되지않는 새로운 플래시 기반의 고성능 스토리지 시스템을 위한 효율적인 데이터

기법들을 소개한다. 첫번째 기법인 입출력 전송 관리 기법은 분산 파일 시스템 개

발자와 사용자들의 추가적인 노력없이 컴퓨트 노드와 서버 노드 사이에 여러개의

커넥션을 제공한다. 이를 위해, 가상 파일 시스템의 마운트 수행 과정과 입출력

처리 과정을 수정하였다. 두번째 기법인 데이터 관리 기법에서는 버스트 버퍼의

활용률을 향상 시키기 위하여 버스트 버퍼 초과 할당 기법 (BB over-subscription

method)을 사용한다. 하지만, 해당 할당 방식은 사용자 간의 입출력 경합과 디모

션 오버헤드를 발생하기때문에 낮은 체크포인트와 재시작 성능을 제공한다. 이를

방지하기 위하여, 체크포인트와 재시작의 특성을 기반으로 버스트 버퍼와 병렬

파일 시스템의 데이터를 관리한다.

본 논문에서는 제안한 방법들의 효과를 증명하기 위하여 실제 플래시 기반의 스

토리지 시스템을 구축하고 제안한 방법들을 적용하여 성능을 평가했다. 실험을

통해 입출력 전송 관리 기법이 기존 기법보다 최대 6배 그리고 최대 2배 높은 쓰기

그리고 읽기 입출력 성능을 제공했다. 데이터 관리 기법은 기존 방법에 비해, 버

스트 버퍼 활용률을 2.2배 향상 시켰다. 게다가 높고 안정적인 체크포인트 성능을

보였으며 최대 3.1배 높은 재시작 성능을 제공했다.

주요어: 운영체제, 고성능 컴퓨팅, 분산 파일 시스템, 병렬 파일 시스템, 파일 입

출력 서브시스템, 데이터 관리, 네트워크 확장, 가상 파일 시스템, 버스트 버퍼,

체크포인트, 재시작, 디모션

학번: 2013-20801
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학교에 나가 있어도 서운한 내색 하나 없이 언제나 내 편이 되어주던 소중한 내

남편 박경원 씨에게도 고마움과 함께 무한한 사랑을 전합니다.

어디서도 경험할 수 없는 값진 시간이였습니다. 이곳에서의 소중한 경험을

발판삼아 앞으로도 성장하는 삶을 이어가고자 합니다. 다시 한번, 올바른 길로

이끌어주신 모든 분들께 감사의 말씀 드립니다.
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