creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Efficient 1/O Management Schemes
for All-Flash HPC Storage Systems

<

=A 7] A5 H " 2EHA AlLHES A
o

August 2020

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Hanul Sung

Ph.D. DISSERTATION

Efficient 1/O Management Schemes
for All-Flash HPC Storage Systems

<

=A 7] A5 H " 2EHA AlLHES A
o

August 2020

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Hanul Sung

Efficient I/O Management Schemes

for All-Flash HPC Storage Systems

8

ToR

2020 & 7 €&

Tor
_,,_o
iy
HE

T

7]

2020 H 6 ¥

AN TN N N

—_—

04 o4 o4 o4 ol

— N N N N

‘m.o
T
B

L

e
SR

<k
~d

—

N

,._No ﬂmo oF of of

ol

ol

oF

oF 1 oF OF oF

p——

Abstract

Most I/0 traffic in high performance computing (HPC) storage systems is dom-
inated by checkpoints and the restarts of HPC applications. For such a bursty
I/O, new all-flash HPC storage systems with an integrated burst buffer (BB)
and parallel file system (PFS) have been proposed. However, most of the dis-
tributed file systems (DFS) used to configure the storage systems provide a
single connection between a compute node and a server node, which hinders
users from utilizing the high I/O bandwidth provided by an all-flash server
node. To provide multiple connections, DFSs must be modified to increase the
number of sockets, which is an extremely difficult and time-consuming task
owing to their complicated structures. Users can increase the number of dae-
mons in the DFSs to forcibly increase the number of connections without a
DFS modification. Because each daemon has a mount point for its connection,
there are multiple mount points in the compute nodes, resulting in significant
effort required for users to distribute file I/O requests to multiple mount points.
In addition, to avoid access to a PFS composed of low-speed storage devices,
such as hard disks, dedicated BB allocation is preferred despite its severe un-
derutilization. However, a BB allocation method may be inappropriate because
all-flash HPC storage systems speed up access to the PFS.

To handle such problems, we propose an efficient user-transparent I/O manage-
ment scheme for all-flash HPC storage systems. The first scheme, I/O transfer
management, provides multiple connections between a compute node and a
server node without additional effort from DFS developers and users. To do so,

we modified a mount procedure and I/O processing procedures in a virtual file

system (VFS). In the second scheme, data management between BB and PFS,
a BB over-subscription allocation method is adopted to improve the BB utiliza-
tion. Unfortunately, the allocation method aggravates the I/O interference and
demotion overhead from the BB to the PFS, resulting in a degraded checkpoint
and restart performance. To minimize this degradation, we developed an I/0O
scheduler and a new data management based on the checkpoint and restart
characteristics.

To prove the effectiveness of our proposed schemes, we evaluated our I/O trans-
fer and data management schemes between the BB and PFS. The I/O trans-
fer management scheme improves the write and read I/O throughputs for the
checkpoint and restart by up to 6- and 3-times, that of a DFS using the origi-
nal kernel, respectively. Based on the data management scheme, we found that
the BB utilization is improved by at least 2.2-fold, and a stabler and higher
checkpoint performance is guaranteed. In addition, we achieved up to a 96.4%
hit ratio of the restart requests on the BB and up to a 3.1-times higher restart

performance than that of other existing methods.

Keywords: Operating System, High Performance Computing, Distributed File
System, Parallel File System, File I/O Management, Data Management, Net-
work Scalability, Virtual File System, Burst Buffer, Checkpoint, Restart, De-
motion

Student Number: 2013-20801

ii :

Contents

Abstract i
Contents iii
List of Figures vi
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Background 11
2.1 BurstBuffer. 11
2.2 Virtual File System oL 13
2.3 Network Bandwidth 14
2.4 Mean Time Between Failures 16
2.5 Checkpoint/Restart Characteristics 17
Chapter 3 Motivation 19
3.1 I/O Transfer Management for HPC Storage Systems 19
3.1.1 Problems of Existing HPC Storage Systems 19

3.1.2 Limitations of Existing Approaches 23

iii :

3.2

Data Management for HPC Storage Systems 26
3.2.1 Problems of Existing HPC Storage Systems 26
3.2.2 Limitations with Existing Approaches 27

Chapter 4 Mulconn: User-Transparent I/O Transfer Manage-

4.1

4.2

4.3

4.4

ment for HPC Storage Systems 31
Design and Architecture 31
4.1.1 Overview 31
4.1.2 Scale Up Connections 34
413 1I/O Scheduling 36
4.1.4 Automatic Policy Decision 38
Implementation o oo 41
421 FileOpenand Close 41
4.2.2 File Writeand Read 45
Evaluation o 46
4.3.1 Experimental Environment 46
4.3.2 1/0O Throughputs Improvement 46
4.3.3 Comparison between TtoS and TtoM 59
4.3.4 Effectiveness of Our System 60
Summary e e e 63

Chapter 5 BBOS: User-Transparent Data Management for HPC

5.1

5.2

Storage Systems 64
Design and Architecture L. 64
51.1 Overview 64
5.1.2 Data Management Engine 66
Implementation L oo oo 72
5.2.1 In-memory Key-value Store 72

iv =

522 I/OEngine

5.2.3 Data Management Engine

5.2.4 Stable Checkpoint and Demotion Performance

5.3 Evaluation

5.3.1 Experimental Environment

5.3.2 Burst Buffer Utilization

5.3.3 Checkpoint Performance

5.3.4 Restart Performance

5.4 Summary

Chapter 6 Related Work

Chapter 7 Conclusion

91

94

105

107

List of Figures

Figure 1.1

Figure 1.2

Figure 1.3

Figure 2.1
Figure 2.2

Figure 3.1
Figure 3.2

Figure 3.3

Figure 3.4
Figure 3.5

Figure 4.1
Figure 4.2

I/O throughputs of PFSs 3
I/0O throughputs of GlusterF'S depending on the number

of connections 4
Problems of new all-flash HPC storage systems 6
Virtual File System 12

Network Bandwidth based on the ability of socket’s threads 14

Loopback protocol in GlusterF'S 20
I/O throughput of GlusterF'S analysis with a loopback
method 21

Existing solutions for utilizing multiple connections in

Checkpoint performance depends on DWPP 28

Checkpoint performance depends on I/O jobs arrival

pattern (I/O job congestion) 29

Overview of Mulconn 32

Mount procedures with and without Mulconn 33
vi =

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

File system view of BBs with original VFS 35

File system view of BBs with our Mulconn 35
TtoS policy 37
TtoM 37

I/0 throughputs with synchronous I/O mode under var-
ious the number of connections 47
I/O throughputs with asynchronous I/O mode under
various the number of connections 48
Lock contention analysis for write operations with TtoS
and TtoM L 51
Write throughputs with two connections(client daemons)
under various the number of I/O threads 54
Write throughputs with four connections(client daemons)
under various the number of I/O threads 55
I/0 throughputs with multiple connection by increasing
the number of server daemons 56
I/0 throughputs with fewer threads for I/O job than the
number of connections L0 58
Comparision of I/O throughputs of our system and max-
imum available I/O thorughputs 60

Comparision of I/O throughputs of our system and max-

imum available I/O thorughputs 61
Architecture of BBOSo 65
BBOS demotion management 68
Checkpoint Throughput depending on DW PP 79
I/0 latency depending on DWPP 80

vii

Figure 5.5
Figure 5.6
Figure 5.7

Figure 5.8

Wait time of I/O jobs with MaxBW 84

Direct checkpoint on PFS by bypassing BB. 86
Hit ratio of restart requestson BB 86
Version-aware data placement 87

viii T
; _H 1'_” o
£

List of Tables

Table 5.1 Key-value pairsin BBOS 73

X

A2t gk

Chapter 1

Introduction

As computational capability has increased to over one petaflop, a large number
of system components have been used in high-performance computing (HPC)
systems, thereby causing an increase in the overall system failures [1-3]. As
a failsafe, HPC applications aggressively utilize a checkpoint/restart, which is
the most commonly applied fault tolerance mechanism. This has resulted in
checkpoints dominating up to 75%~80% of 1/0O traffic of HPC systems |2, 4]
and significantly generating a bursty I/O. A bursty I/0 is difficult to handle
for a parallel file system (PFS), which has been a foundation to the storage tier
of HPC systems consisting of hard disk devices (HDDs) and low speed network
adapters. As the capabilities of storage and network devices advance, a burst
buffer (BB), which is composed of high-end flash SSDs (e.g., 3D XPoint SSD
and NVMe SSD) [5,6] and high-speed network (i.e., 100 GbE network) adapters,
has been introduced as a new storage tier between the compute nodes and PFS.
Moreover, there have been recent attempts to merge a BB with a PFS [7,8]. As

the cost-per-bit of flash continues to decrease, it is becoming possible to replace

HDDs with low-end TLC SSDs [9]. The National Energy Research Scientific
Computing Center (NERSC), which is a primary scientific computing facility
announced that the next supercomputer with an all-flash storage system, called
PERLMUTTER [10], will be delivered in 2020. It is therefore expected that a
new all-flash HPC storage system with an integrated BB and PFS will be widely
adopted in the near future. We believe that this new storage system will include
high-end SSDs (e.g., 3D XPoint SSD and NVMe SSD) for the BB (performance)
and low-end SSDs (TLC SATA SSD) for the PFS (capacity) placed on the same
node.

Although some researchers have studied ways to utilize an all-flash storage
system, none have focused on connections between a compute node and a server
node despite I/O transmission scalability being one of the most critical issues in
HPC storage systems. Unfortunately, existing distributed file systems (DFSs)
used to configure the BB storage tier have adopted a single connection between
the compute and BB server nodes. For this reason, even with expensive high-
speed storage devices and network adapters on the BB node to handle a bursty
I/0, users do not experience the high 1/O bandwidth provided by the all-
flash storage server node. Figure 1.1 shows write I/O bandwidths with and
without widely used DFSs, such as GlusterF'S, NFS, and Lustre. We used a
single compute node and a server node and executed 16 threads to submit
synchronous I/O requests. In addition, we adopted Ext4 as a local file system
for the DFSs. Here, Local F'S achieves a rate of 2.6 GB/s using only Ext4 on
the server node without DFSs. This is the ideal I/O bandwidth providable by a
single server node. However, with GlusterF'S, we can only achieve a rate of 600
MB/s, although 2.6 GB/s is theoretically achievable. Whereas GlusterFS is a
user file system applying FUSE, NFS4 is implemented in a kernel and shows
a low I/O bandwidth of 1.2 GB/s. Lustre is also developed in a kernel, but

3000

2500

2000

1500

MB/s

1000

- . I .
0

Local FS GlusterFS NFSv4 Lustre

Figure 1.1: I/O throughputs of PFSs

provides 850 MB/s, which is 3-times lower than that of Local F'S. Such DFSs
do not fully utilize the I/O bandwidth provided by the BB server node owing
to the use of a single connection.

To solve the performance bottleneck caused by a single connection, all types
of DFSs need to be modified to increase the number of connections between
the compute and server nodes. However, because most DF'Ss have complicated
structures, significant effort is required to scale the number of connections, and
the DFSs must therefore continue using single connections. Therefore, most
users are provided with a high I/O bandwidth by allocating a BB composed of
multiple server nodes. However, this method causes high performance fluctua-
tions owing to the sharing of server nodes with other users.

Because the client daemon establishes a new connection with the server
daemon through the mount command upon startup, some users create multiple
client daemons of the DFSs using a mount command to increase the number of
connections. We created several client daemons with GlusterF'S to increase the
number of connections (between the compute and server nodes), and the write

I/0O throughputs for a checkpoint are increased by up to 2000 MB/s, as shown

Ralks L

o

3500

3000

2500

2 2000
as)

= 1500

1000

500 .
0
2 4 6

1

clientd ™ serverd

Figure 1.2: I/O throughputs of GlusterFS depending on the number of connec-

tions

in clientd of Figure 1.2.

Some other users have increased the number of connections by creating mul-
tiple server daemons in the same node. After a new server daemon is created,
a new connection is established between the client and server nodes through
the mount command. As shown in serverd of Figure 1.2, this method not only
improves the write I/O throughput for a checkpoint as the number of con-
nections increases, it also performs better than clientd because both methods
have the same number of connections, despite clientd having only one server
daemon and serverd having multiple server daemons. However, these methods
require user effort to distribute I/O requests to multiple mount points because
the number of mount points is same as the number of connections. If users have
multiple files to write, they must manually choose and set one mount point for
each file among multiple mount points to fully utilize multiple connections. In
addition, if the number of files is smaller than the number of connections, the
users will have greater difficulty distributing I/O requests of a file to multiple

connections.

Ralks L

o

In previous HPC storage systems where a PFS layer consisting of low-speed
HDD storage devices and low-speed network devices is located on different
server nodes from those of the BB storage layer, because of the substantial
performance differences offered by the BB and PFS, HPC users may prefer a
dedicated BB allocation for the complete lifetime of their HPC applications to
avoid access to the PFS as much as possible. However, this allocation method
causes a severe underutilization of an expensive BB for two reasons. First, some
users eagerly request BB resources (e.g., up to six-times the normal rate [11])
for I/O error prevention, performance scalability, a scale-up of the network
connections, and complicated data movement between the BB and PFS, even
when they actually utilize only a small portion (e.g., 5% of the BB is used
per hour according to the logs from NERSC CORI [12]). Second, because HPC
applications use a BB for only the I/O phases, BB stays idle for the remaining
time. Checkpoints, which dominate the 1/O traffic of HPC systems, are rarely
requested, for example, at a rate of once per hour or several minutes, and thus
the BB resources are mostly wasted. The PFS in the new system consists of a
high-speed network and low-end SSDs, which significantly reduces the overhead
of the PFS access. It is therefore not worth using a dedicated BB allocation
method owing to the penalty of a BB underutilization.

To address these problems in Figure 1.3, we propose an efficient user-
transparent 1/O management scheme for all-flash HPC storage systems. With
this scheme, we achieve faster checkpoints and restarts, which occupy most of
the I/0O traffic in an HPC system while improving the utilization of all-flash
HPC storage systems.

First, we developed a user-transparent I/O transfer management subsystem
in a virtual file system (VFS) to reduce the efforts of DFS developers and users

applying multiple connections to handle the problem shown in Figure 1.3 (D).

Com ute node Server node

@ DFS Server
] D
aemon

High-end SSDs

D/| Asng

DFS Client
Daemon

Low-end SSDs

Figure 1.3: Problems of new all-flash HPC storage systems

To decrease the number of DFS modifications as much as possible, we increased
the number of connections by making multiple client and server daemons for a
DFS of a BB through a mount command. With this approach, each compute
node has multiple mount points, resulting in excessive user effort in distributing
I/0 requests to multiple connections. Therefore, we implemented a new mount
procedure and new I/O processing procedures. We changed the vertical mount
hierarchy to a horizontal mount hierarchy for supporting multiple connections
and exposed only one mount point among the multiple mount points to users.
In addition, we added two scheduling policies for an I/O transfer, TtoS and
TtoM. Through these policies, I/O requests are evenly distributed to multiple
connections.

Second, we adopted a BB over-subscription allocation method instead of
a dedicated BB allocation method for improving the BB utilization (for the
problem shown in Figures 1.3 (2) and (3). The method allocates the BB capacity
only during the I/O phase, and not for the entire lifetime of HPC applications,
resulting in a reduction in wasted BB resources. However, this method may
affect the performance of the checkpoint/restart because a capacity larger than

the total capacity of the BB is allocated to the HPC applications. To handle this

problem, we transparently manage the data movement between the BB and PFS
and schedule the I/O jobs based on characteristics of the checkpoint/restart.
We analyzed the characteristics of a checkpoint /restart, adjusted the speed of
the demotion from the BB to the PFS and determined the data placement
between the BB and PFS based on the characteristics analyzed.

To demonstrate the effectiveness of our schemes, we evaluated our I/O trans-
fer and data management schemes between the BB and PFS. For the I/O trans-
fer management scheme, we used GlusterFS as a DFS for the BB and kernel
v5.3.12. Our experimental results show that our scheme increases the write and
read I/O throughputs for a checkpoint and restart by increasing the number
of connections and provides the best I/O throughputs of GlusterF'S in a given
experimental environment. In addition, it improves the write and read perfor-
mances by up to 6- and 3-times those of the DFSs with the original kernel,
respectively. For the data management scheme, we compared our scheme to
Datawarp, a representative of the current HPC schedulers that uses a dedi-
cated BB allocation method, and Harmonia [13], which is the only approach
available when considering a BB over-subscription. Our scheme improves the
BB utilization considerably while providing a high checkpoint performance. In
addition, it provides a high checkpoint capability and performs up to 96.4% of

the restarts on a BB by utilizing the characteristics of a checkpoint/restart.

The contributions are summarized as follows:

e We discuss the issue of I/O bandwidth bottleneck caused by a single
connection provided by major distributed file systems for a new all-flash

HPC storage system that can be avoided.

e We increase I/O bandwidth from a single storage server node of DFSs via
multiple connections by implementing an I/O subsystem in VFS without
modifying DFSs and user applications so that users can utilize with I/O

bandwidth of the server node transparently.

e We show that the I/O subsystem improves write and read I/O perfor-

mances by up to 6x and 3x, respectively, compared with original kernel.

e We adopt the over-subscription BB allocation method to handle BB un-

derutilization problem caused by the dedicated BB allocation method.

e We analyzed the checkpoint/restart characteristics of HPC applications.
We observed that each application has its own checkpoint period and
failure rate. In addition, there is no data locality across checkpoint files
unlike normal data. We found the characteristics of HPC applications is
highly related to low checkpoint/restart performance with existing data

management approach.

e We propose a novel data management scheme between BB and PFS
for all-flash HPC storage systems based on the characteristics of check-
point/restart to provide high BB utilization as well as high checkpoint /restart
performance. The scheme schedules I/O jobs, adjusts demotion threshold
and speeds of checkpoint and demotion adaptively and manages data

placement between BB and PFS.

e We implemented the scheme by adding some modules and modifying Glus-
terF'S, one of the most popular distributed file system. It shows increased
BB utilization and improved checkpoint/restart performances compared

with prior works.

This dissertation is structured as follows:

Chapter 2 covers the background about Burst Buffer, virtual file system,
network bandwidth and characteristics of checkpoint and restart for pro-
viding high I/O throughput and high utilization in a new all-flash HPC

storage systems.

Chapter 3 demonstrates the motivation in which I/O transparent man-
agement and data management for all-flash HPC storage systems are

proposed with problems and limitations of existing HPC storage systems.

Chapter 4 introduces I/O transfer management scheme for all-flash HPC
storage systems. We first explain design and architecture of the scheme
and describe the details of implementation. Next, we evaluate our scheme

in an all-flash HPC storage system with various configurations.

Chapter 5 introduces user-transparent data management for all-flash
HPC storage systems. We start with explaining the details of design and
architecture of our scheme. Then, we describe the implementations of our
scheme and evaluate the scheme on an all-flash HPC storage system with

various experimental scenario.
Chapter 6 explains the several works related to our schemes.

Chapter 7 summarizes and concludes the dissertation. It also describes

future direction.

10 -

Chapter 2

Background

2.1 Burst Buffer

HPC systems consist of thousands of compute nodes and storage nodes for sci-
entific applications requiring complicated computation. Because of high cost
of flash storage devices, PFSs have been configured with HDD-based storage
nodes. A rapid growth in computing power has occurred a significant perfor-
mance gap between compute nodes and storage nodes, making it difficult for
HDD-based PFSs to handle massive amounts of data generated by compute
nodes.

To handle this performance bottleneck caused by HDD-based PFSs, a new
storage layer, called Burst Buffer composed of flash devices, has placed between
compute nodes and PFSs. BB has mitigated the performance gap by handling
bursty 1/0, which PFSs were difficult to process, with high I/O bandwidth.
There are two types of BB, node-local BB and remote shared BB, depending on
where BB is placed. Each BB type has advantages and disadvantages, so HPC

11 :

‘ Kernel

System Call Interface
T

!

| Virtual File System

Ext4 XFS F2FS | - | NFS GlusterFS

| Device Driver |J
—

‘ Block Device ‘ ‘ Network Device ‘

wa)sAS 1

Figure 2.1: Virtual File System

providers select appropriate BB type according to purposes of their system.

Node-local BB is used as local file system for each compute node by installing
a flash storage devices on the compute node. For this reason, the overall perfor-
mance of node-local BB increases linearly with the number of compute nodes,
so it is excellent in performance scalability. In addition, since I/O requests are
performed without network overhead for accessing remote nodes, node-local
BB provides faster I/O processing. But, since each compute node uses a unique
local file system, it causes additional efforts to share data between multiple
compute nodes.

Unlike node-local BB, remote shared BB, which is a BB type used by most
super computers, has unique physical nodes for BB. Multiple compute nodes
use the same file system of BB, which makes they share data. Otherwise, perfor-
mance isolation is not guaranteed in remote shared BB due to shared resource
contention, because compute nodes share several hardware resources in BB

nodes including flash devices.

12

2.2 Virtual File System

Virtual file system (VFS) is a common interface provided on file systems so
that users can use multiple file systems without application modification. Users
perform file operations using system call without worrying about the type of
connected file system or data on local disk or network. As shown in Figure 2.1,
VFES adopts common file model to hide specific file processing procedures of
file systems and manages files. To do this, virtual file system has four objects,
super block, inode, file and dentry.

Super block object stores information of mounted file systems, such as file
system type, state, size, and inode. Virtual file system manages multiple file
systems using the object. Inode object contains information related to a specific
file, called metadata. Since VFS handles file operations with the inode, file
systems have to built inode objects for their files. File object is required to
manage information associated with files opened by tasks (applications). The
object remains in memory only while each task accesses inode objects. In order
for tasks to access files, the inode objects of the files must be linked to file objects
associated with its tasks. To reduce overhead caused by process, Dentry object

keeps the link between file and inode in cache.

13

@ ® @ ® @

4

Client Client Client
Ecﬂ —| socl H soc2 |7 socl

Server Server Server

© @ @ GO

(a) Single connection (b) Two connections with(c) Two connections with
isolated core for socketshared core for socket

threads on a server node threads on a server node

Figure 2.2: Network Bandwidth based on the ability of socket’s threads

2.3 Network Bandwidth

PFSs create sockets for a connection with transport types, such as TCP, UDP,
and RDMA. There are many factors, such as transmission unit size, that deter-
mine network bandwidth, but the ability of socket’s threads to send and receive
requests is overwhelming.

We measured maximum achievable network bandwidth between a client
node and a server node with different the number of connections and cores for
I/O transmission using a iPerf3 benchmark.

Figure 2.2a shows a single connection between the client node and the server
node and each node has one socket thread for the connection. With socl, we
get 25Gbits/sec network bandwidth. For two connections in Figure 2.2b, there
is one socket thread for each connection on each node. That is, each node has
two threads for I/O transmission. As the number of connections and the num-
ber of socket threads doubled, the total CPU utilization for I/O transmission

doubled and the network bandwidth was increased as almost two times high as

14

47Gbits/sec. And with two connections at Figure 2.2¢, we make each client-side
socket thread using one core, and the two server-side threads sharing one core.
Despite having two connections, it show 28Gbits/sec network I/O bandwidth,
which proves that the network bandwidth is greatly affected by how much the
socket threads perform for I/O transmission, not by the number of connec-
tions. However, even if multiple socket threads execute I/O transmission for a
single connection, it still cannot achieve high network bandwidth due to lock
contention for the socket among the threads.

Therefore, in order to provide the aggregated I/O bandwidth of multiple

flash devices from server to client, multiple connections must be created.

15

2.4 Mean Time Between Failures

The applications are recommended to use a technique called checkpoint for
fault tolerance. They periodically pause their operations to save current data
in Burst Buffer for the checkpoint. When in case of a failure, they can continue
their operations from the latest checkpoint.

Mean Time Between Failures (MTBF) represents the average time period
for each failure. The applications with more failures have low MTBEF, and the
ones with fewer failures have higher MTBF. According to this paper [14], the
failure occurs frequently in proportion to the inversion of MTBF also on the
real-world scenarios. Since the applications recover their data after the failure,

the application with a higher failure rate has the higher chance of read request.

16

2.5 Checkpoint/Restart Characteristics

HPC applications have checkpoint/restart related characteristics unlike other
applications. For the new HPC storage system with BB over-subscription method,
a novel data management needs to be developed based on the characteristics.

First of all, HPC applications run for a long time to solve computationally
intensive problems and perform checkpoint at a particular cycle to avoid re-
computations from scratch. For this reason, the total amount of the checkpoint
written to BB by the applications for a certain period, called Data Write Per
Period (DWPP) in this paper, is kept quite steady. As so, it is possible to
predict future DWPP with previous DWPP values.

Second, each application has its own checkpoint period. Thus, each appli-
cation accesses the BB differently during a certain period. HPC applications
with short checkpoint period access BB more frequently than ones with long
checkpoint period.

Third, HPC applications keep multiple versions of checkpoint for data dura-
bility. HPC users have a tendency to keep the old versions of checkpoint without
deleting them even though only the most recent version of the checkpoint file
is required for restart. According to the paper, multiple versions of checkpoint
(three to seventeen) are beneficial for acceptable error coverage [15]. Since each
user requires different reliability, each application has the different number of
checkpoint versions.

Fourth characteristic is that HPC applications have different failure rates.
Failure is caused by individual components, such as processors, disk, memory,
power supplies, network, cooling systems, and the physical connections between
them [16]. Since failures of a single component are rare, the large number of the

components unavoidably leads to frequent failures [17,18]. Many prior works

17 :

have mentioned that the mean time between failure (MTBF) in a single node
is about thousands hours, but MTBF of a large-scale cluster with hundreds of
node is dozens of hours. Soft errors are also more likely to occur in complicated
processing. Therefore, failure rates increase linearly with the number of nodes
used by HPC applications [19,20].

Lastly, there is no locality across the checkpoint files of HPC applications
unlike normal data. Temporal locality does not exist across checkpoint files,
because the checkpoint file is requested only when in failures. Since a new
checkpoint file is created in every checkpoint period, the same checkpoint file
is not constantly used unless the application has multiple failures within a
single checkpoint period. Also, spatial locality does not exist across checkpoint
files. The failure of an application does not affect the failures of the others
because each application has different failure rates. So checkpoint files of other
applications will not be requested, even if they are stored around a checkpoint

file which is accessed due to a failure.

18

Chapter 3

Motivation

3.1 I/0O Transfer Management for HPC Storage Sys-

tems

In this section, we describe the limitations of distributed file systems (DFSs)

for utilizing a high I/O bandwidth of an all-flash BB.

3.1.1 Problems of Existing HPC Storage Systems

In the initial DFSs, low-speed storage devices, such as hard disks, resulted in
a performance bottleneck. As storage technology developed, a software stack
overhead of the DFSs began to occur. Despite a number of researchers hav-
ing alleviated the software stack overhead, a performance bottleneck remains
between client and server nodes of DFSs.

To determine the unresolved performance bottleneck, we analyze the I/0O
performance provided by the users of GlusterF'S, a popular DFS. We use two

nodes for a client and server of GlusterF'S. These nodes are connected by a 100

19 -

/dev/fuse/

ettt

nni
i)
2
12}
1I/0 submit GlusterFS
r—m client daemon
socket
oW I
- | Server |
E ;
N GlusterFS
| POSIX e
server daemon
®
[Local FS

Figure 3.1: Loopback protocol in GlusterF'S

GbE network switch, and the server node has five NVMe SSDs, which achieve
rates of 3 GB/s and 16 GB/s for a sequential write and read, respectively.
Figure 3.2 shows the sequential write I/O throughputs using a loop back method
at various points in the GlusterF'S, as shown in Figure 3.1. GlusterFS uses the
Filesystem in Userspace (FUSE) interface as a user-level file system. First, we
execute the loopback at the FUSFE stack where GlusterF'S receives 1/0 requests
from the FUSE, as if the requests are successfully processed, as shown in (I)
of Figure 3.1. Second, we apply a loopback from a Client stack such as (2).
Third, we apply the loopback at an I/O submit stack, which transfers I/0O
requests from the client node to the server node, such as in (3). Fourth, once
the GlusterF'S server receives an I/O request, such as in (4), we apply a loopback.

Finally, we measure the performance normally without a loopback method, as

in ®).

20

Original INEEG—_—

fuse_loopback G

Q
o client_loopback IEEEEE—
g,
w
I0submit_loopback IEEE—
server_loopback NN
Original IEEEE_—
fuse_loopback I
Q
2 client_loopback I ——
£ |
<

10submit_loopback EEEEE——
server_loopback N

0 500 1000 1500 2000 2500 3000 3500 4000 4500
MB/s

Figure 3.2: I/O throughput of GlusterF'S analysis with a loopback method

Using the loopback method on the GlusterFS client side, as the requests
go through more stacks, the performance decreases in both sync and async
I/0 modes, although a bandwidth of over 3 GB/s is continuously provided. As
shown in the result of server_loopback, when the requests transfer from the
client node to the server node, write throughputs fall below 700 MB/s even if
the data have not been written to the actual storage devices. In addition, the
throughputs are extremely similar to that of a normally performed GlusterFS
with no loopback method. In other words, the server node can provide more than
a 3 GB/s write performance, whereas DFS users only utilize an I/O bandwidth
of approximately 600 MB/s owing to the performance bottleneck on the DFS

network layer with a single connection.

21 - Aﬂ '-i‘ 1_” .{J.}]_].r

| /mnt/cl || /mnt/c2 || /ml}t/c3 || /mnt/c4 |

1 t $
[gligntd | | gligntd | | clientd | | gligntd |

[socl } [soc2 | [soc3 } [soc4 I Client
I : ! Server
I BBl). _____ !

rverd
[Local FS]

(a) Scale up connections by making multiple DF'S client daemons

| /mnt/cl || /mnt/cZ || /mnt/c3 || /mnt/c4 |

[ghqnj;d | | ghgn;d | | ghqn;d | | ghqn;d |
— socl I—I—T—I soc2 |— soc3 |—|—l—| socd Iﬂ

Server
-

Local FS

(b) Scale up connections by making multiple DF'S server daemons

| /mnt/c1 |
£ [y t £

[. clientd |
— . =[soct]- - -[soe2 } ; [s0¢3 |- -[socd |- - E"ent.

Serverl¥ Server2y -Server3v Serverd
1 1 I BBl
serverd | ; [serverd serverd rver

[Local FS H Local FS][Local FS]|[Local FS]

(c) Scale up connections by connecting multiple DFS server nodes

Figure 3.3: Existing solutions for utilizing multiple connections in DFSs

22 :

3.1.2 Limitations of Existing Approaches

Because of a performance bottleneck of the DFS network layer with a single
connection, all-flash HPC storage systems composed of a DFS have a bounded
I/O throughput. To handle this problem, multiple connections are required for
a DFS to utilize the aggregated 1/O bandwidth of the server node. However,
because most DFSs are implemented into complicated structures, it is a difficult
and time-consuming task to modify the systems to allow multiple connections
between the client and server nodes.

Users can utilize the high I/O bandwidth by manually increasing the con-
nections in three ways, as shown in Figure 3.3. First, they use multiple connec-
tions between the client and server nodes by creating client daemons through
a mount command, such as shown in Figure 3.3a. For instance, if a user wants
four connections between the client and server nodes, the user executes the fol-
lowing mount command, “mount -t glusterfs BB1 /mnt/c(1~4),” four times.
Because there are mount points connected to the same DFS in the same sever,
the users must distribute I/O requests to them (c1, ¢2, ¢3, and c4) evenly to uti-
lize the multiple connections. The easiest way is to use a different mount point
for each file, although to do so the user must manually modify the applications.
Moreover, if the number of files is not larger than the number of connections,
some connections may not be utilized, and thus clients have to distribute I/O
requests for the same file to the multiple connections in a complicated way.

Another way is to increase the number of connections by creating multiple
DFSs and server daemons on the same server node. As shown in Figure 3.3b, a
user makes two DF'Ss in the same server node and connects two client daemons
to one server daemon through the mount commands, "mount -t glusterfs BB1

/mnt/c(1,2)” and "mount -t glusterfs BB2 /mnt/c(3,4)”. This allows the user

23 -

to have four connections, but requires more complicated steps in addition to the
effort required through the first approach. Because the two DFSs are different
file systems, they manage files separately even if they use the same devices.
Therefore, the same DFS must be used when the user executes I/0O jobs multiple
times on the same file. Otherwise, the same file exists in two DFSs and cannot
guarantee data consistency.

Finally, as shown in Figure 3.3c, users can group multiple server nodes to
make a single DFS, which is the most widely used approach. Each server node
has a server daemon and connection to the client node. If the client node with
a 100 GbE network adapter is provided with a 600 MB/s I/O bandwidth from
a single server node, the client node must establish connections with approxi-
mately 10 server nodes. If the client uses too many server nodes, the user may
experience a performance fluctuation owing to contention at the server node.
As the number of server nodes used increases, the chance to share server nodes
with other users increases, and the user obtains an unstable performance. We
experimented using an IOR benchmark by applying five configurations and
changing the number of OSTs and the stripe size on a Cori supercomputer in
NERSC. As a result of applying each configuration five times, we found up to
a 4-fold difference in performance despite the same configuration. Although it
is proper for a single client node to use multiple server nodes for replication,
as few server nodes as possible should be utilized for a stable performance.
Despite this serious problem, this approach is used most often because many
DFSs check the source IP and destination IP addresses and allow only a single
connection between them. If we create multiple daemons on the same node as
in the first and second approaches using an NFS4, two nodes are regarded to
have already established a connection, and thus the NFS4 makes them share a

single connection.

24 :

As mentioned above, significant efforts from all DFS implementers or users
are needed to utilize a high I/O bandwidth of a single DFS server. Therefore,

a new solution is needed to alleviate such efforts.

25

|

I

1L

3.2 Data Management for HPC Storage Systems

3.2.1 Problems of Existing HPC Storage Systems

A BB is introduced for absorbing a bursty I/O in an HPC system. Most super-
computers, including Cori [12] from NERSC, allocate a BB by using a dedicated
BB allocation method. The users specify the desired capacity for the applica-
tions, and the specified space is provided by an HPC scheduler [21,22] for
the entire lifetime of the application. However, this allocation method causes
a severe underutilization of the BB, which is composed of expensive hardware
resources, such as high-speed storage media and a high-speed network. In gen-
eral, the users request more than the actual capacity necessary because the
application jobs fail owing to an I/O error when the allocated capacity is insuf-
ficient. To avoid a failure, users are recommended by supercomputer providers
to request a surplus BB capacity [11]. Users may also require a high capacity
to not only avoid a failure but also achieve a higher performance. Because the
scheduler determines the number of dedicated BB nodes in proportion to the
requested capacity, the users request a larger capacity allowing them to ex-
perience a higher performance with more BB nodes and a higher parallelism.
Along with the performance scalability, another reason for overabundant re-
quests arises from a complicated data management in multi-tier HPC storage
systems (i.e., local storage of a compute node, BB, and DFS). Because current
supercomputers manage a BB and PFS separately, the users are challenged
with a redundant and complicated management. For example, if users have a
limited BB capacity for only one checkpoint, they should copy data manually
from the BB to the PFS at every end of the I/O phase to make BB space for the
next I/O phase. Furthermore, if the workflow of an application is complicated,

manual data movement can be difficult for users to achieve [23].

26 -

BB underutilization is also caused by the characteristics of the checkpoint
and restart. HPC applications apply a checkpoint with a fixed period [24-26],
called a checkpoint period, by repeating the compute and I/O phases peri-
odically. Unfortunately, as the checkpoint period ranges from tens of minutes
to tens of hours, expensive BB resources remain idle for long compute phases.
Moreover, each application requires a BB capacity larger than the actual check-
point size to preserve the consistency of the checkpoints. At least twice as much
BB capacity is needed for the checkpoints because the old checkpoint should
be maintained until the new checkpoint is completely written in a safe man-
ner. HPC users also store multiple versions of a checkpoint in a BB for data
durability. Because only the latest version of a checkpoint is needed in case of
a failure, the remaining older versions do not actually need to be stored in the
BB.

These problems caused by a dedicated BB allocation method have motivated

our HPC storage management approach based on an over-subscribing BB.

3.2.2 Limitations with Existing Approaches

Unlike a dedicated BB allocation method, a BB over-subscription method allo-
cates more space to applications than the total capacity of the BB by allowing
the applications to be used only during the I/O phase, and not within the
whole lifetime. Thus, applications during the computation phase should yield
a BB to other applications during the I/O phase through a demotion from
the BB to the PFS. Therefore, a data management approach between the BB
and PFS is needed. Many approaches have been proposed for a multi-tiered
system [11,13,27,28], including an approach between the cache, memory, and
storage and an approach for a multi-tier storage of a distributed file system.

However, for the following reasons, these approaches are unsuitable for a new

27 :

a‘g 5 e1.38 1.68 «198
&}

T4 B
%Smrtnlnl jdoge
=3

E‘:’Z

= 1)@ d g e 2Vwnnpats®e e 5 0le
:

3'0

9 0 1000 2000 3000
6 Time (sec)

Figure 3.4: Checkpoint performance depends on DWPP

HPC storage system where the checkpoint dominates most of the I/O traffic.
For the first reason, the existing approaches use a static demotion thresh-
old without considering the amount of data to be moved between storage tiers.
With prior approaches, a demotion, i.e., the process of copying checkpoint files
from the BB to the PFS, is only applied when the BB is idle before reaching the
threshold. When the capacity of the BB used reaches the threshold, a demotion
is concurrently applied with a checkpoint. If the number of users using the BB
increases, the number of checkpoints also increases, resulting in an increased
DW PP. The increased DW PP causes a decrease in the BB idle time, which
reduces the amount of the demotion without interrupting the checkpoint. In
particular, because the speed of the data stored in the BB (write B/W of high-
end SSDs) may overwhelm the speed of the demotion to the PFS (write B/W of
low-end SSDs), the BB fills up when there is an insufficient BB idle time. With
the BB filled, applications have to wait until the BB has the available capacity,
leading to a significantly low checkpoint performance and a high latency. Fig-
ure 3.4 shows the checkpoint performance with different DW P Ps after setting
the same demotion threshold to 90% of the total BB capacity. Because S indi-
cates the capacity of the BB, 1.3 S, 1.6 S, and 1.9 S writes are 1.3-, 1.6-, and

28

Low Med * High

1

SRR S Tl 1ol Bt Th e

o 0080 0g 0o e’'e @%qgm o 9 0

S —= MM W Bk W

<

500 1000 1500 2000 2500 3000
Time (sec)

Checkpoint Throughput(GB/s)

Figure 3.5: Checkpoint performance depends on I/O jobs arrival pattern (I/O

job congestion)

1.9-times the size of the BB during a certain period, respectively. With 1.3 S,
a slightly lower performance is demonstrated after 1000 s. However, with 1.6
S, the BB occasionally becomes full during the middle of an I/O job for the
checkpoint, and thus the performance begins to decrease over time. For 1.9 S,
almost half of the applications achieve a four-fold lower performance because
they have to be stopped or apply a checkpoint with a demotion to increase the
available BB capacity.

As another reason, the existing approaches do not consider the distribution
of I/O jobs for a checkpoint. Specifically, even with the same DW PP, 1/0
jobs of applications for checkpoint arrive in groups or evenly within a certain
period. When the I/O jobs arrive evenly, a BB idling time occurs between job
arrivals. Thus, the files are demoted during a BB idling time, making sufficient
space in the BB for the next I/O jobs. However, if the I/O jobs arrive in
crowds, a lack of a BB idling time between I/O jobs causes little demotion,
which leads to a capacity depletion of the BB. As shown in Figure 3.5, the
checkpoint performance is highly related to the I/O job congestion under the

29

same DW PP. There are three I/O job congestion patterns (low, medium, and
high) with 1.9 S, which represent the rate of crowding of arriving I/O jobs. A
low congestion always shows a higher performance because there is a sufficient
idling time between I/O jobs. By contrast, when the I/O jobs arrive in crowds
with medium and high congestion, it results in a low checkpoint performance.

Finally, the existing approaches identify hot and cold checkpoint files using
basic algorithms based on the data locality, such as FIFO, LRU, and Hotness-
aware. (Hot checkpoint files are left in the BB, whereas cold checkpoint files
stay in the PFS.) However, as mentioned in section 2.5, because checkpoint files
across applications do not have data locality, it is inappropriate to apply basic
algorithms for selecting cold checkpoint files. HPC applications have their own
checkpoint period and keep multiple versions of the checkpoints. With the FIFO
algorithm, although old versions of the checkpoints for an application with a
low checkpoint period are stored in the BB, the latest checkpoint with high
checkpoint period can be chosen as the cold data. This lowers the efficiency of
the BB and leads to a low restart performance. In addition, a checkpoint file
is needed only in the case of a failure. Because a new checkpoint file is created
during every checkpoint period, it is very unlikely that the same file will be
reused multiple times. Therefore, an LRU or Hotness-aware algorithm leads
to a low efficiency of the BB. Moreover, because there is no spatial locality
between the checkpoint files, checkpoint files near a failed file do not need to
be prefetched or left in the BB. The failure rates also need to be considered
because HPC applications have their own failure rates. Without considering the
failure rates, checkpoint files with a high failure rate might be chosen as cold

data, and not as checkpoint files with a low failure rate.

30 -

Chapter 4

Mulconn: User-Transparent 1/0
Transfer Management for HPC
Storage Systems

4.1 Design and Architecture
4.1.1 Overview

To enable users of new all-flash HPC storage systems to utilize a high I/O band-
width from a single BB server node, we propose a new I/O transfer management
scheme, called Mulconn, as shown in Figure 4.1. By developing Mulconn in a
VFS, which is an abstract layer that all file systems depend on, we completely
eliminate the effort required by users to distribute I/O requests to multiple
connections, and reduce the effort required by developers to modify compli-
cated DFS sources for multiple connections. To provide multiple connections,
we modify a new mounting procedure and I/O procedures in a client-side VFS
and utilize mount binding in a server-side VFS. However, in the case of DFSs

that provide a single connection between nodes, as mentioned in section 3.1.2,

31 :

Compute node

VES Server node

O/l fAsng

Mount binding]

VFS
[Mount][/o | DFS Serve| DFS Server
Daemon| Daemon
procedure || procedure
g DFS [High-end SSDs]
cl c| q Client : i
Dad Da{ D{ Daemon [Low-end SSDs]

Figure 4.1: Overview of Mulconn

only a simple code modification is required to create a new socket even if a
connection exists between two nodes when a new daemon is created.

In this section, we present the design aspects of our Mulconn.

32

|
——] !
| /mnt/c || /mnt/c || /mnt/c || /m?t/c |
[_clientd | [_clientd | [clientd | [gliqntgj |
[socl | [soc2 — soc3 — s0c4 | Client

Server
BB1 |

[serverdl]
| Local FS |

(a) Mount procedure with original VFS

| /mnt/c |
-
[/mnt/c || /mnt/c | /mnt/c || /mnt/c
) f T f
[gliqnld | | gliqnm | | clientd | | gliqnm |
! socl | ! soc2 } ! soc3 } ! s0c4 Iﬂ
1 1 T Server
o BBl | .
[Local FS]

(b) Mount procedure of Mulconn with multiple client daemons

| /mnt/c |
B oS —

| /m?t/c | /mnt/c | /m?t/c I /ml;t/c |
x
[clientd] [clientd] [clientd 1 [clientd |
—l socl I_I;I soc2 I_I soc3 I | | o I Client

Server

M'—lm

/mnt/s
(Local FS)

(c) Mount procedure of Mulconn with multiple client and server

daemons

Figure 4.2: Mount procedures with and without Mulconn

33

4.1.2 Scale Up Connections

A reliable and simple way to provide multiple connections while minimizing the
modification of DFSs is making multiple client and server daemons by using the
mount command. However, as mentioned earlier, significant effort is required
by users to make the best of multiple connections. To handle this problem, we
adhere to the method of creating connections through the mount command,
but implement a new mount procedure in a VFS such that the users do not
need to manage multiple mount points.

We make a new mount command, as shown below, allowing DFS users
to easily achieve multiple connections. "mount -mc n -t fstype -md
BB_1,...,BB_n dir” With an mc option, we receive the number of connections
desired by the users and internally conduct a mount procedure several times
to make the specified number of connections. In addition, we need to expose
one mount point specified by the clients. However, users cannot use all con-
nections with only a single mount point with the original VFS. If the mount
command is requested multiple times on the same mount point, I/O requests
to the mount point are processed through the recent BB owing to the vertical
mount path hierarchy, as shown in Figure 4.2a. If a user executes the command
"mount —t glusterfs BB1 /mnt/c”, four times, I/O requests to the /mnt/c
are transmitted only through the fourth connected socket despite the presence
of four connections from the client node to the BB1.

For all connections using only one mount point, we change the vertical
hierarchy of the mount path to a horizontal hierarchy. Figure 4.2b shows our
system with a horizontal hierarchy. Unlike a traditional procedure, I/O requests
to /mnt/client are delivered using any socket.

As mentioned in section 3.1.2, users can increase the number of connections

34 :

mnt/sl /mnt/s2

r [users | [orders |

A x
[Tom.c | [John.c |[Tom.c | [book.c |

File system view of BB1 File system view of BB2

Figure 4.3: File system view of BBs with original VF'S

‘

/
bind *. -’ bind

Tom.c |[John.c

File system view of BB1 and BB2

Figure 4.4: File system view of BBs with our Mulconn

35

by making DFSs (a BB in new HPC storage systems) on the same server node.
However, the users must apply a file I/O by distinguishing which DFS each
mount point is connected to. To do so, we add an md option in our mount
command. Users specify the names of the DFS they use through this option. If
"mount — mc 4 —t glusterfs —md BB1, BB2 /mnt/c’ is executed by the
user, we connect two of the four mount points to DFS1 and the other two to
DFS2, as in Figure 4.2c. However, data conflicts may occur because two DFSs
have different file system trees, as shown in Figure 4.3. When the user writes
to a file called Tom.c, a mount point connected to BB1 is used and the file is
stored in DFS1. However, when write requests are requests to the Tom.c file
again, a mount point for BB2 is used, and thus Tom.c is also created in BB2.
That is, the same file exists in multiple locations, resulting in a data conflict.
For this reason, we bind the two mount points of BB1 and BB2 to the same
directory of a local file system in the server node, and thus they have the same
file system view, as indicated in Figure 4.4. With this method, regardless of
which connection the user applies, the same file does not exist on multiple

DFSs.

4.1.3 I/0O Scheduling

To distribute I/O requests to multiple connections well (evenly), we propose
two I/O scheduling polices. Figures 4.5 and 4.6 demonstrate our two polices,

TtoS and TtoM.

TtoS

Figure 4.5 shows a thread-to-single connection (TtoS) policy, which is the sim-
plest way to utilize multiple connections. The policy aims to allocate one con-

nection among the multiple connections to each thread requesting I/O requests

36 -

—
T
—J
A
—
Y
—
=2
—
T
—
~
—
T
—J
o0
—

[T\L][TQ][T3][T4

f X f X F X 7
\ ' \ /! AY I/ Ay /
A N AN v/
| Socl | | Soc2 | | Soc3 | | Soc4 |
parly x 7 el
= ~ Y rd - -
-~ ~ rd -

~ -
‘ Distributed File System ‘

Figure 4.5: TtoS policy

TS T6 T7 || T8
" <

x—’}/ ,

-
7
-4,
I

o

\
“V—.\—;— T ..» A \ :
g ERET ’,’;f“-.~\\ Teiae v

‘ Distributed File System ‘

Figure 4.6: TtoM

from a DFS client node. Because each thread uses only one connection, the
contention for the socket is relatively small. However, if the number of threads
is smaller than the number of connections, there may be idle connections, and

thus a high I/O bandwidth from the DFS server may not be utilized.

TtoM

To overcome the limitation of the TtoS policy, we propose a thread-to-multiple
connections (T'toM) policy, which gives threads access to all sockets, as shown
in Figure 4.6. To transfer I/O requests using all sockets, we open the same file

over all connections. The files opened based on the number of connections are

37 :

invisible to the users, and only one fd is provided, as if the user has only one
file. When I/0 requests of the file are issued, they are delivered in order. All
connections are for the same DFS server node on the same client node, but
the DFS server considers each connection to be a different client. Therefore,
the DF'S server asks a local file system (LFS) to open the same file the same
number of times with the number of connections, resulting in a lock contention
when I/0 requests for the same file through different connections arrive at the
LFS. In addition, because the sockets are accessed by all threads, the contention

for the socket is much larger than that of T'toS.

4.1.4 Automatic Policy Decision

In addition to providing the two I/O scheduling policies, TtoS and TtoM,
Mulconn also proposes an automatic policy decision for users who have dif-
ficulty choosing I/O policies. Based on the experimental results, we use TtoS
for write processing and choose TtoM for read processing with an automatic

policy decision.

38

Algorithm 4.1: File Open and File Close for TtoS

1

2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

do_sys_open(path)

{
int £d = alloc_fd();
struct *file = do_filp_open(path);
_fd_install(fd, file);

}

do_filp_open(path)
{
struct file = alloc_empty_file();

_follow mount_rcu(file, path);

}

__follow mount rcu(file, path)
{
int conn_num = thread_id % total_num_conn;
__lookup mount (path, file->mnt, conn_ num);
}
_lookup-mount (path, file, conn_num) {
file->mnt_path = file->mnt->mnt_array[soc_num];
}
__fd_install(fd, file)
struct fdtable *fdt = thread->fdt;
fdt->fd[fd] = file;
}
_close_fd(£fd) {
struct *file = thread->fdt->fd[fd];
flip close(file);
}

39 -

Algorithm 4.2: File Open and File Close for TtoM

1

2

3

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

do_sys_open(path)
{
int fd = alloc_fd(Q);
for (int fnum = 0; f_num < conn_num; f_num++)
{
struct *file = do_filp_open(path,f num);

__fd_install(fd, file, f_num);

}

do_filp_open(path, f_num)

{
struct file = alloc_empty file();
__followmount_rcu(file, path, f_num);

}

__follow mount rcu(file, path, f num)

{

__lookup_mount (path, file->mnt, f_num);
}
_lookup mount (path, file, f num) {
file->mnt_path = file->mnt->mnt_array[f_num];
}
__fd_install(fd, file, f_num)
struct fdtable *fdt = thread->fdt;
fdt->fd_array [f num]->fd[fd] = file;
}
_close_fd(£fd) {
for (int fnum = 0; fnum < conn_num; f_num++)
{
struct *file = thread->fdt->fd_array[f num]->fd[£fd];

flip_close(file);

} 40 =

4.2 Implementation

In this section, we demonstrate the implementation of our system in a VFS

using I/O processing.

4.2.1 File Open and Close

A file open request is applied first for file write/read requests. While processing
the file open request, the connection that will handle the request is determined.
With follow_mount_rcu(), we select one of the connections in the horizontal
mount path hierarchy depending on the policy proposed and open a file through
the connection.

Algorithm 4.1 shows the file open and file close procedures of TtoS. If a file
open request is presented, an fd required for the I/O requests is assigned by
the user through alloc_fd() (Line 3). Then, do_filp_open() is called to open the
file of the path specified by the user (Line 4). In do_filp_open(), an empty file is
first allocated and __follow_mount_rcu() is then called with the file to determine
which mount path to use to send the requests to that file (Line 10). With the
T'toS policy, we choose the connection based on the thread ID (Line 14). Most
applications that use DFSs run file I/O tasks simultaneously using multiple
threads, and thus they have a series of thread IDs. Hence, the users make the
best use of all connections. In addition, we call __lookup_mount() to specify
the mount path to the file with the determined connection number (Line 15).
With __lookup_mount(), we find the mount path that matches the number of
connections in the horizontal mount hierarchy we created and insert the mount
path to the file (Line 18). Next, __fd_install() is called with the prepared fd and
file (Line 5). Because TtoS uses a single connection per thread, an fd array of

an fdtable stores the file according to the fd (Lines 21 and 22). If a file close

41 :

request is required from the user, only one file is to be closed in the T'toS policy
(Lines 24 and 25).

With the TtoM policy, we open the same file as many times as the number
of connections through all sockets, as shown in Algorithm 4.2. Therefore, the
file structure is allocated and __fd_install() is called based on the number of
connections (Line 4 and 5). Unlike the traditional relationship between the fd
and file, because the user actually has multiple files with one fd, we modify
struct fdtable. In fdtable struct, there is an array that maps the opened file
with the fd in the original kernel. We create an array for each connection, and
map the files per connection to their own array, such as thread — fdt —
fd_array[] in Lines 19 and 20. With multiple fd arrays, the users are available
to access all connections with one fd.

In the case of a file close request, all open files are closed in all connections
in the TtoM policy by finding the files from the fd_array of fdtable with only
one fd (Lines 26-32).

42

Algorithm 4.3: File Write and File Read for TtoS

1 ksys_write(fd) or ksys_read(fd) or io_submit_one(fd)

2 {

3 struct *file = __fget(fd);

4 write (file, data); or read(file, data);
5}

6 __fget(fd)

7 {

8 struct *file = __fcheck files(£fd);
o}

10 __fcheck files(fd) {

11 struct fdtable *fdt = thread->fdt;
12 return fdt->fd[fd];

13 }

43

Algorithm 4.4: File Write and File Read for TtoM

1 ksys_write(fd) or ksys_read(fd) or io_submit_one(fd)

2 {

3 struct *file = __fget(fd);

4 write (file, data); or read(file, data);

5}

6 __fget(fd)

7 { struct *file = __fcheck files(fd);

8 file->access_cnt++;

9 int connnum = (file->access_cnt % total_num_conn;
10 file = __fcheck files_TtoM(fd, conn_num);

1 }

12 __fcheck files(fd) {

13 struct fdtable *fdt = thread->fdt;

14 return fdt->fd[fd];

15 }

16 __fcheck files TtoM(fd, conn num) {

17 struct fdtable *fdt = thread->fdt->fd_array[conn_num]
18 return fdt->fd[fd];

19 }

)

44

4.2.2 File Write and Read

After the file open operation, write and read 1/O requests of the file arrive.
Regardless of the synchronous and asynchronous I/O models applied, when-
ever write and read I/O requests are issued, the file created during the open
operation is first brought in __fcheck_files().

Algorithm 4.3 shows the file write and file read procedures with the TtoS
policy. First, we execute a __fget() called __fcheck_files() to find the file for the
I/0 requests (Lines 3-7). In __fcheck_files(), because only one file is mapped
to one fd of the fd array, the procedure is the same as that of the original kernel.

With the TtoM policy 4.4, we first receive a file through a __fcheck_files()
as with the T'toS procedure. However, there are multiple fd arrays for one fd,
and thus we select the fd array for each I/O request to use multiple connections
evenly. To do so, we add a variable called access_cnt to file struct and increase
the value of access_count each time the I/O requests a file to arrive (Line 8).
By calling __fcheck_files TtoM(), which we developed using the variable, fd
arrays can be used in sequence (Lines 16-19). Therefore, TtoM creates 1/O

requests for a file that transfers through all connections.

45

4.3 Evaluation

4.3.1 Experimental Environment

We evaluate our I/O subsystem, Mulconn, using a single client node and a
sever node. To demonstrate the effectiveness of the I/O subsystem, we executed
experiments under two different environments. In the first environment, we use
two nodes for the client and server consisting of an Intel(R) Xeon(R) Silver 4216
processor and three 2-TB FADU NVMe SSDs provided by a semiconductor
start-up company. Each SSD has an I/O bandwidth of up to 1700 and 3200
MB/s for a sequential write and read, respectively. In the second environment,
we have two nodes with an AMD EPYC 7301 16-core processor for the client and
server nodes. In addition, we adopt five Intel DC P4500 (1 TB) SSDs, each of
which shows a sequential write and read bandwidth of up to 600 and 3200 MB/s,
respectively. In both environments, the client and server nodes are connected
with a 100 GbE Mellanox SN2100 Switch. We use GlusterF'S version 6.5 for
a parallel file system and tune the configurations of the GlusterF'S for a high
performance, but without making any modifications. Ext4 is used as the local
file system for GlusterFS. In addition, we add the designed I/O subsystem in a
VES of kernel version 5.3.12. For the experiments, we use a micro benchmark
FIO. To validate our system based on two policies, we compare sequential write
and read I/O throughputs provided by the PFS of our system with those of the

original kernel version 5.3.12.

4.3.2 1/0 Throughputs Improvement

In this section, write and read I/O throughputs with synchronous and asyn-
chronous I/O mode are measured by increasing the number of connections with

multiple client daemons and server daemons through our system.

46 -

4500

4000
3500
3000

a‘? 2500
= 2000
1500
1000
500

0

Original TtoS TtoM TtoS TtoM TtoS TtoM
soc2 soc4 soc8
(a) Sync Write I/O throughputs

4500
4000

3500

3000

£ 2500

= 2000

1500

1000
50

Original TtoS TtoM TtoS TtoM TtoS TtoM
soc2 soc4 soc8

o O

(b) Sync read I/O throughputs

Figure 4.7: 1/O throughputs with synchronous I/O mode under various the

number of connections

47

4500
4000
3500
3000

% 2500

= 2000

1500

1000
50

Original TtoS TtoM TtoS TtoM TtoS TtoM
soc2 soc4 soc8

S O

(a) Async write I/O throughputs

4500
4000
3500
3000

g 2500

= 2000

1500

1000
50

Original TtoS TtoM TtoS TtoM TtoS TtoM
soc2 soc4 soc8

o O

(b) Async read I/O throughputs

Figure 4.8: I/O throughputs with asynchronous I/O mode under various the

number of connections

48 =
= ,-‘E-.-I —.I:Jj' Eﬂ

Scale Up Connections with Client Daemons

Figure 4.7 shows synchronous write and read I/O throughputs with GlusterF'S
under the first environment. Here, Original indicates the result with the orig-
inal kernel, and TtoS and TtoM show the results with the optimized kernel
including our I/O subsystem. For this experiment, we use 16 threads to execute
I/0O operations on each file. In the study, Original shows write and read I/0O
throughputs of approximately 1800 and 1700 MB/s, respectively, because there
is only one connection between the client and server nodes. Unlike Original,
TtoS and TtoM have two to eight connections by increasing the number of
client daemons. Both TtoS and TtoM show a higher write I/O throughput as
the number of connections increases and up to 4300 MB/s with eight connec-
tions. The read I/O throughputs also improve as the number of connections
increases, although the performance improvement stops at approximately 3500
MB/s. As shown in the figure, TtoS and TtoM have a similar performance.
This is because threads of TtoM cannot send I/O requests to multiple connec-
tions simultaneously but do send a single request to one of the connections and
wait until the server receives it in synchronous mode.

To achieve a higher 1/O bandwidth, we utilize asynchronous I/O mode to
submit I/O requests simultaneously. Despite using asynchronous I/O mode,
Original shows a similar or lower write throughput compared with those from
synchronous mode, as shown in Figure 4.8a. This is because only the maximum
bandwidth obtained from a single connection is provided to the client, regardless
of how many threads it uses to send requests asynchronously, and network con-
tention occurs among multiple threads. In contrast to similar amounts of change
in write throughput from TtoS and TtoM depending on the number of con-

nections in synchronous I/O mode, they show different patterns of throughput

49 -

change in asynchronous I/O mode. Here, TtoS improves the write throughput
with the number of connections and shows higher throughputs than using syn-
chronous I/O mode. However, in the case of TtoM, the write throughput does
not increase after four connections, and the performance even decreases with
eight connections. Although the same numbers of connections are formed, the
two policies provide different write throughputs because of the different ways
the I/O threads use the connections, as mentioned in section 4.1.3. In addition,
TtoS allows each thread to use only one connection, and thus each file is opened
only once in the PFS server and local file system. By contrast, TtoM allows
each thread to use all connections, and therefore the file is opened as many
times as the number of connections. There is actually one user thread that
writes to the file, although because file open operations are performed through
different PF'S client daemons, each of which has a connection, multiple threads
are considered to request an open operation on the same file in the PFS server.
Thus, the PFS server daemon requests as many file operations as the number
of connections to the local file system. For this reason, multiple threads access

the same file in the local file system, Ext4, resulting in a lock contention.

50

4

= write = trylock = others mwrite = trylock = others

(a) TtoS2 (b) TtoM2

00

wwrite ®trylock = others = write = trylock = others
(c) TtoS4 (d) TtoM4

00

mwrite ®trylock = others = write = trylock = others

(e) TtoS8 (f) TtoM8

Figure 4.9: Lock contention analysis for write operations with TtoS and TtoM

51

To analyze the lock contention in TtoM, we profile a function that per-
forms a write operation in Ext4d (extd_file_write_iter()). The function is di-
vided into three parts, and we measure the time spent in each part with two,
four, and eight connections. One of the parts is inode_trylock() used to guar-
antee data consistency by preventing access from multiple threads. Another is
__generic_file_write_iter() used to write data to the storage devices. The final
part includes the remaining functions not used in the other two parts. Figure 4.9
shows the ratio of the execution time in each part to the total execution time of
extd_file_write_iter(). Regardless of the number of connections, TtoS spends
most of its time executing the function for an actual write to the devices. By
contrast, in the case of TtoM, the execution time required to attempt to obtain
the lock is greater than the time required to write, except for two connections.
With these two connections, both TtoS and TtoM show almost similar write
I/0O throughputs because the time for a trylock is less than that for a write.
When there are four and eight connections, TtoS and TtoM have a similar
time to write, but TtoM spends almost 11- and 50-times more time obtaining
the lock than T'toS for four and eight connections, respectively. In other words,
the lock contention is severe in TtoM because the multiple threads try to per-
form a write operation on the same file, and thus the write I/O throughput is
lower than that of TtoS. As the number of connections increases, the number
of threads accessing the same file increases, resulting in a more serious lock
contention, which allows TtoM to provide a lower I/O write throughput.

Fortunately, TtoM shows unchanged read I/O throughputs after two con-
nections in asynchronous I/O mode, as shown in Figure 4.8b. This is because
there is no lock for the read operations in extd_file_read_iter(). However, both
TtoM and TtoS show lower read I/O throughputs in asynchronous I/O mode

than those in synchronous I/O mode. A decrease in performance may occur

52 :

in the software overhead of GlusterFS or FUSE owing to the many requests
being submitted concurrently. A decreased performance does not occur during
an asynchronous write I/O execution because the write operation is processed
more slowly on a device than a read operation. This problem is out of the scope
of our system, however, and thus we do not address it herein.

Figure 4.10 and 4.11 shows write I/O throughputs with two and four con-
nections under the second environment. In this environment, original kernel,
which provides only single connection, shows around 500MB/s regardless of
the number of I/O threads and the number of client daemons. On the other
hand, Mulconn performs much better. As shown in the figure 4.10, TtoS shows
higher write I/O throughputs than TtoM because there is no lock contention.
By creating two cilent daemons, two connections are used, and up to 1500MB /s
write I/O throughput is achieved. As with the figure 4.11, the number of dae-
mons is increased from 2 to 4, and the write I/O throughputs doubled. We
shows 6-times performance improvement over the Original kernel with just four

connections.

53

3000

2500

2000
1500

MB/s

1000

500
0

0

¥ Original mTtoS = TtoM

(a) Sync write I/O throughputs

uOriginal mTtoS = TtoM

(b) Async write I/O throughputs

1 2 4 8 16

of /O threads

1 2 4 8 16

of /O threads

Figure 4.10: Write throughputs with two connections(client daemons) under

various the number of I/O threads

54

3000

2500

2000

1500

MB/s

1000

500

. |1

3000

2500

2000

uOriginal m TtoS = TtoM

(a) Sync write I/O throughputs

1 2 4 8 16

of /O threads

1 2 4 8 16

mOriginal m TtoS = TtoM

(b) Async write I/O throughputs

of I/O threads

Figure 4.11: Write throughputs with four connections(client daemons) under

various the number of I/O threads

55

4500
4000
3500

£ 2500

225

2 2000
1500
1000

500

(e

Original I

TtoS I

TtoS+ I
TtoM I
TtoM+ I

sync

Original

TtoS I
TtoS+ I

TtoM I
TtoM+ I

async

(a) Write I/O throughputs with multiple server daemons

4500
4000
3500

3000

22500

2 2000
1500
1000

500
0

Original E——

TtoS I

Original

B
Ogo
=g

sync

TtoS I

TtoS+ I
TtoM I
TtoM+ I

async

(b) Read I/O throughputs with multiple server daemons

Figure 4.12: I/O throughputs with multiple connection by increasing the num-

ber of server daemons

56

2 A

LT

| 8}

Scale Up Connections with Server Daemons

Despite increasing the number of connections to eight through the creation of
client daemons, the write and read I/O throughputs are no longer improved with
the T'toS and TtoM policies. Because of the increased number of connections,
the single server daemon of GlutsterF'S has difficulty processing the increased
I/0 requests, and thus the server daemon reaches a performance bottleneck. To
handle this performance bottleneck, we add new connections by creating a new
server daemon as mentioned in Section 4.1.2. We call TtoS and TtoM using
connections made by creating server daemons as TtoS+ and TtoM +.

We use eight connections between the client and server nodes and two server
daemons, as shown in Figure 4.12. In TtoS+ and TtoM+, we have four con-
nections to the first server daemon and the other four connections to the sec-
ond daemon. For executions of write operations, TtoM+ only performs better
than TtoM in asynchronous I/O mode. In other experimental write results, the
scale-up connections with server daemons have no effect because there is an in-
sufficient number of requests for a single server daemon to reach a performance
bottleneck.

As shown in Figure 4.12b, T'toS+ and TtoM+ show higher read I/O through-
puts than T'toS and TtoM with synchronous I/O mode. As mentioned before,
read throughputs are low in asynchronous I/O mode owing to the numerous re-
quests submitted at the same time. We expected that increasing the number of
server daemons would improve the read throughputs; however, TtoM+ shows

only a 600 MB/s higher async read throughput than TtoM.

57 :

3000

2500
m2000
§1500
1000
= I
0
2223222222323
BEEFEEEEBREERERE
o o

soc2 soc4 soc8

thread1 thread?2

(a) Async Write I/O throughputs with fewer threads than the

number of connections

4500
4000
3500
" 3000
= 2500
£ 2000
1500
1000
500
0
SL25LQL5LSZSTSLRLSZILR=EZL=S
g 2 2 2 g 2 2 2
BESEESEEEBREEREEE
e St
© soc2 soc4 soc8 © soc2 socd soc8
threadl thread2

(b) Async read I/O throughputs with fewer threads than the

number of connections

Figure 4.13: I/O throughputs with fewer threads for I/O job than the number

of connections

" S Eas kg

4.3.3 Comparison between TtoS and TtoM

In section 4.3.2, because we use a maximum of 8 connections and 16 threads
for an I/0, all connections are utilized in both TtoS and TtoM. However, if
the number of threads is smaller than the number of connections, idle connec-
tions will occur with TtoS. Because TtoS allows each thread to use only one
connection, it provides a low throughput despite being able to achieve a higher
throughput with more connections when the number of threads is less than
the number of connections. By contrast, TtoM allows each thread to access all
connections, and thus all connections are utilized regardless of the number of
threads. Regarding the efficiency of the two policies, we have one or two threads
for I/O jobs and two, four, and eight connections for the experiments shown in
Figure 4.13. In synchronous I/0O mode, the number of connections used by each
thread does not affect the I/O throughput because the threads have to wait for
a return after submitting an I/O request. Therefore, we only measure the I/O
throughputs in asynchronous I/0O mode.

Figure 4.13a shows the write I/O throughputs with one and two threads
using two to eight connections. With one thread for the I/O, Original, TtoS,
and TtoM show similar write I/O throughputs. The throughputs of TtoS and
Original are the same because both utilize a single connection owing to the
use of one thread. All connections are used by one thread under TtoM, but
it has the same throughput as the others because of the overhead caused by a
lock contention. In the experiments with two threads, T'toS improves the write
throughput, whereas TtoM shows a lower throughput than TtoS owing to the
increased lock contention.

There is no lock contention in the read operation, resulting in higher read

throughputs of TtoM than those of TtoS in Figure 4.13b. When read I/O

59 -

fuse loopback
client_loopback

server_loopback

Manual+
TtoS+
TtoM+
0 10000 20000 30000
MB/s

Figure 4.14: Comparision of I/O throughputs of our system and maximum

available I/O thorughputs

requests are submitted with one thread, T'toS uses only one connection, whereas
TtoM sends multiple requests to all connections simultaneously, showing up
to three-times more read throughputs. When two threads are executed, TtoS
utilizes two connections, and thus the throughputs are improved compared to
those with a single thread. However, as the number of connections increases to
four to eight, TtoM shows a higher throughput than TtoS.

When the number of threads for the I/O is smaller than the number of
connections, TtoM has little effect on the write I/O throughput but leads to a

significantly improved write throughput.

4.3.4 Effectiveness of Our System

To verify how well our system utilizes the I/O bandwidth provided by a sin-
gle server, we compare the I/O throughput of TtoS+ and TtoM+ with the
throughputs of the method mentioned in section 3.1.2, which requires effort by
DFS users. We refer to this method as Manual+ in this section. In addition, we

conducted loopback experiments to emphasize the effectiveness of our system.

60 A
e g ke

o

|

I

U

fuse loopback
client_loopback

server_loopback

Manual+
TtoS+
TtoM+
0 10000 20000 30000
MB/s

Figure 4.15: Comparision of I/O throughputs of our system and maximum

available I/O thorughputs

For the experiments, we use eight connections with two server daemons, and
thus TtoS+, TtoM+, and Manual+ have eight mount points for the server
daemons. To allow Manual+ to easily distribute I/O requests to the eight
connections, we allow each thread to access one connection such as TtoS+.
Figures4.14 and 4.15 show write and read I/O throughputs with 16 threads in
synchronous I/O mode. The write I/O throughputs are over 20 GB/s when write
I/0O requests go through the fuse and client stacks. However, as the I/O requests
pass the server stack, which returns the requests as soon as the server daemon
receives them, the write throughputs decrease to 5859 MB/s. We make connec-
tions and distribute 1/O requests to eight mount points manually; Manual+
has a similar write throughput as our approach, which means there is little
overhead in our system, although we allow the DFS users to utilize multiple
connections without much effort. In addition, our TtoS+ and TtoM+ show a
throughput close to that of serverjoopback even when writing to real devices.

For the read executions, a fuse or stack of GlusterFS for FUSE has difficulty

61

SRk

1

I

U

processing many read requests simultaneously, and thus the write throughput
is improved by making the I/O requests go through the client stack to keep
them from getting crowded at the fuse and the stack for FUSE. Similar to
the throughputs for a write I/O, the read throughputs for the server_loopback
and Manual+ decrease to 5500 and 4471 MB/s, respectively. Predictably, our
TtoS+ and TtoM+ provide the same performance as Manual+.

Based on these results, we prove that our system helps the PFS users to
obtain the maximum I/O throughput in the simplest way provided by this

environment and GlusterFS.

62

4.4 Summary

Herein, we proposed BBOS for use in a new all-flash HPC storage system.
Specifically, we over-subscribed the BB by only allocating it during I/O phases,
and not during the entire lifetime for a higher BB utilization. To mitigate a
performance reduction caused by an over-subscription, we provided the I/O
scheduler and data management module. The I/O scheduler resolved the 1/O
interference across the HPC applications by coordinating the I/O jobs. For
data management in the new HPC storage system, we analyzed and utilized
the characteristics of a checkpoint/restart. Based on these characteristics, we
transferred data from the BB to the PFS transparently by adjusting the thresh-
olds and speed of the demotion according to the DW PP. We also identified
cold data by considering different versions and failure rates.As a result, we
improved the BB utilization by at least 2.2-times that of the dedicated BB
allocation method. In addition, we guarantee a higher checkpoint throughput
without a sudden performance reduction and handle 96.4% of restart requests
in the BB, providing up to a 3.1-times higher restart performance than that of

other approaches.

63 -

Chapter 5

BBOS: User-Transparent Data
Management for HPC Storage
Systems

5.1 Design and Architecture

5.1.1 Overview

Figure 5.1 shows the overall architecture of BBOS. BBOS is composed of two
engines, 1/0 engine and Data management engine, and an in-memory key-value

store for efficient engine process.

I/O Engine

In this paper, we provide an I/O scheduler for mitigating I/O interference across
applications. If we do not schedule the I/O jobs, multiple jobs may arrive si-
multaneously to BB. This causes resource competition and interferes optimized
access pattern of each 1/0 jobs [29]. In addition, interleaved data from the mul-

tiple I/O jobs is saved in the same SSD block, which causes garbage collection

64 :

2o -
w2 |© |V/OEngine e
o 2 8 E*%
T o o
= /O Scheduler D209 =
5§18 Rt -
0nE |a 1/0 request ‘ 1 e
Qo |m —-o—-a-- f--- < Z
Q3 TH—o— g 4 <
) e e o o PR -=a
g:/ < —>—>0] - 1
I-/O — Data Management
orkers Engine
checkpoint/restart r throtlermw BW | _ Throttler |-,
nlon A v 1
ala : _ delete_ _| _ &1
N ln BB: NVMe SSDs demoted data Deleters EX
n|n 2
E E "demote €«—————- - - -4 Demoters fe-!
PFS: SATASSDS [—___.-4- Replicators
replicate
t

Figure 5.1: Architecture of BBOS

overhead [30]. For these reasons, the I/O interference degrades the performance
of the applications. The over-subscription method increases the number of the
I/O jobs using BB, which may cause I/O congestion more serious. Thus, we
schedule I/O jobs so that they do not overlap in I/O scheduler of 1/O engine.
We place multiple I/O queues for each BB and assign an individual queue to
each application. Then the I/O jobs are transferred to their own queue as shown
in Figure 5.1. Our scheduler operates I/O jobs in the order of the I/O queues
so that the I/O jobs across applications do not overlap each other. I/0 engine
also has 1/0 workers to execute I/O jobs for checkpoint and restart. They de-
termine which storage tier the scheduled I/O jobs should access, either BB or

PFS, with the help of the in-memory key-value store.

65 -

Data Management Engine

Data management engine consists of four modules: throttler, demoters, deleters
and replicators. Throttler is responsible for dynamically controlling the speed
of checkpoint and the demotion. Demoters demote data from BB to PFS by
considering checkpoint versions and failure rates. In our management system,
demoted data remains in BB like a cache unless there is no space left for a new
checkpoint in order to provide high restart performance. Whenever space for
new checkpoints is not sufficient, Deleters remove the demote-finish data that
still exists in BB. Replicators transfer checkpoint files from storage devices of

local PFS node to ones of remote storage nodes within the same replication

group.

5.1.2 Data Management Engine

As mentioned in section 3.2.2; because checkpoint/restart characteristics are
not fully considered, some applications may suffer from a severe performance
degradation. To address this problem, we first set the demotion threshold and
adjust the speed of the checkpoint and demotion depending on the DW PP.
In addition, we developed a data placement policy for the new HPC storage
system to improve the BB efficiency and restart performance. With our data
management approach, a checkpoint and demotion are managed for each specific
period for expediency. We demote all data written during this period (DW PP)

for easy management within the next period.

Adaptive Demotion Adjustment

To prevent the BB from overflowing, we determine a demotion threshold in

consideration of the DW PP and I/O job congestion. As shown in Figure 3.4,

66 -

because the DW PP affects the amount of data to be demoted during a period, a
smaller demotion threshold is chosen for a larger DW PP. Even if the DW PP
is the same size, the BB may fill up depending on the I/O job congestion
shown in Figure 3.5. Under a worst-case scenario, I/O jobs arrive without any
idle time for the BB. To prepare for the worst case, we need to demote the
number of data equal to the DW PP minus the capacity of the BB (5), called
C, along with a checkpoint execution. In addition, the speed of the checkpoint
and demotion (Bwmax, Bwmin, Brmaz, and Brmin) also affect the demotion
threshold when demoting an amount of data equal to C' with a checkpoint. The
throughput of the checkpoint and demotion are influenced by the concurrent
execution of the write and read operations. When a checkpoint and demotion are
operated together for C, write and read operations compete for BB resources.
Unfortunately, this competition leads to an inverse relationship between the
write and read bandwidth. As a result, the minimum demotion throughput
(Brmin) is determined by the maximum checkpoint throughput (Bwmazx), i.e.,
the maximum write throughput provided by the BB. The minimum checkpoint
throughput (Bwmin) is determined by the maximum demotion throughput
(Brmax), i.e., the maximum write throughput provided by the PFS, as shown
in equation (5.1). (The m and b values may differ according to the various
devices applied.) Thus, we adjust the speed of the checkpoint from Bwmaz to
Bwmin, and the speed of demotion from Brmin to Brmazx after the demotion

threshold.
BWy =m x BW, +b (m < 0) (5.1)

To easily calculate the demotion threshold, we show our demotion manage-
ment by categorizing the patterns of the demotion into three groups according

to the DW PP, as shown in Figure 5.2. Here, S is the capacity of the BB, and

67 :

—10S ——128 ---145 - »1.65

Bwmax ___— t¢p ———

= AN
= \
z N
: O\
2 N
: N
& N
< tds
B in [»
0 0.58 1.0S 1.58
DWSF

Figure 5.2: BBOS demotion management

DWSF is the amount of data written thus far within the period. Within a
single period, the time given to execute a checkpoint at Bwmax without any
demotion is t., and ¢4 is the time required to demote C while the checkpoint con-
tinues. Here, t; is composed of t4q and t4,, the former being the time when the
demotion throughput gradually changes from Brmin to Brmazx, and the lat-

ter being the time when the demotion throughput is Brmax without changing.

1)Pattern 1: A demotion is only performed when the BB is idle
As shown in Figure 5.2, when DWPP is 1.0 S, the BB does not overflow
within this period because DW PP has the same capacity as the BB. Thus, a
checkpoint is possible with the Bwmax without a concurrent execution of any
demotion.

2)Pattern 2: A demotion is conducted with a checkpoint for a
certain period of time
As with 1.2 S, shown in the figure, DW PP has a larger capacity than the BB
(S), resulting in a positive value of C' for demotion with checkpoint execution.
However, C' is not as large, and thus a demotion needs to be conducted only for

a certain time with a checkpoint. The threshold depends on C. The larger C'is,

68 -

the earlier the ideal start time of the demotion. In the case of a 1.2-S DW PP,
the threshold of DWSF is 0.7 S. This means that a demotion is executed
even if a checkpoint is applied when DW SF reaches 0.7 S. The checkpoint
throughput is adjusted between Bwmax and Bwmin for a demotion. With a
change in the checkpoint throughput, the demotion throughput is also adjusted
between Brmin and Brmax.

3)Pattern 3: A demotion is always conducted with a checkpoint
As DW PP increases, C sufficiently increases to the point at which a demotion
starts at the same time as the checkpoint. The demotion throughput increases
from Brmin to Brmax, and the larger C' is, the more quickly the demotion
throughput reaches Brmax. With 1.4 S, the threshold for a start of a demotion
is zero, and the threshold for a demotion with Brmax is 0.6S. If the demotion
is applied using Brmax from the beginning with a checkpoint such as 1.65,
we can handle the highest capacity. Therefore, the DW PP from this scenario
becomes the maximum period allowed.

With the following equation (5.2), the thresholds used to start a demotion
and to demote with Brmax are also determined according to C'. Because it is
mandatory to demote all data on the BB within a certain period for the sake

of the next period, the period is determined as shown in equation (5.3).

69 -

te > 0,
tet+taq
/ BW,(t) dt
0

= Bwmaz x t. + BumertBumin oy, = DWPP
tettqaq
/ BW,(t) dt
0

= Brmin x t. + 73Tmax'2"3rmm X tgg = C

tad+tds
/ BW,, (1) dt
0

= BumartBumin y ¢, + Bwmin X tgs = DW PP

tad+tds
/ BW,(t) dt

0

= 73”"”;3’”"“'” X tgq + Brmax x tgs = C

(period — (te +tq)) x Bdmax > S (5.3)

Data Placement Policy

To handle the limitations with an existing data placement, we developed a
data placement policy based on the characteristics of a checkpoint/restart. In
our data placement policy, a promotion is not required. Because there is no
spatial locality across checkpoint files, there is no need to prefetch files around
the file, which is requested for a restart. For a high restart performance, we
select cold files by considering the checkpoint version and failure rates. The
old version checkpoint files do not need to be in the BB, and thus they have
the highest priority to be cold files. If there are no old version checkpoint files

in the BB, we identify the cold files based on the failure rates. In this paper,

70

we determine the failure rates of the applications depending on the number
of nodes used. However, as many prior studies have mentioned regarding the

causes of failures, the failure rates can be determined using such causes.

Direct Checkpoint on PFS

We expect a change in HPC storage systems in the future, with Brmax reach-
ing close to Bwmin because BB and PFS can be placed on the same node.
Because cold data from the BB are destined to be in the PFS, such data do
not need to be written on the BB first, wasting BB resources. For this reason,
we optimize the data management approach by bypassing the BB. Because we
know the failure rates of the incoming checkpoint, we can classify in advance
whether the checkpoint is hot or cold by comparing the failure rates with those
of other checkpoints on the BB. If the incoming checkpoint is determined to be
cold, the checkpoint is directed to be written on the PFS. The optimized ap-
proach reduces the amount of demotion, diminishing the concurrent execution
of the checkpoint and demotion. We can therefore provide a higher checkpoint

performance.

71

5.2 Implementation

In this section, we describe the implementation details of the proposed ap-

proach.

5.2.1 In-memory Key-value Store

We utilize Redis [31], an open-source in-memory key-value store to help the
processing of the engines. The BBOS stores the location of the checkpoint files
and important information needed for data management in the key-value store.
As shown in Table 5.1, nine key-value pairs are applied for the engines. One
of the key-value pairs is used to provide the location of the files. After the
checkpoint is completed, I/O engine saves the file path for each file name in
the key-value pair. At that moment, the names of the files are stored in a sorted
key-value list to identify cold data depending on the version number and failure
rates. Based on the key-value list, Demoters demote the oldest checkpoint
files first, and if there are no older versions of the checkpoint files, they start to
demote the file with the highest failure rates. We also store DW PP and DW SF
to determine the demotion threshold and throttle the speed of the checkpoint
and demotion. In Sections 5.2.2 and 5.2.3, we describe the process flows of
each engine using the key-value store in detail. Because the BBOS does not use
a page cache for a checkpoint and restart, in-memory store is used to utilize

unused memory and facilitate the engine execution.

5.2.2 I/0O Engine

I/O engine schedules I/O jobs and finds an appropriate storage tier for the
I/0 jobs. Concurrently, it also collects the information for the demotion. The

process flow of 1/0 workers is described as in algorithm 5.1.

72 :

KEY

VALUE

Description

“V-order”

Sorted Set(MTBF, APPID)

Record victims and

sort them by MTBF

“Clean”

List(APPID)

List up App ID which
have demotion-finished
files for cleanup when

BB needs free space

APPID+ “restart”

Sorted Set(MTBF,time)

Record the restart time
and new MTBF for ev-
ery read request for

restart

AppID+devicelD

Sorted Set(ver, filename)

Record the version and
the name of the check-
point files of each HPC

apps for each device

filename

String(location)

Record the file path for
easy file access on the

demotion or restart

APPID+“BB”

NULL

Record App ID if the
checkpoint files of the

app are in BB

“E-order”

List(APPID)

Record list of App IDs
with more than two
different checkpoint

versions in BB

“DWSE”

String(DWSF)

Record DWSF to
throttle the check-
point/restart speed

“R-order”

filename

Record the file name
for replicating files to

remote storage nodes

10

“DWPP”

DWPP

Record the total
amount of the check-
point written to BB by
the applications for a

certain period

Table 5.1: Key-value pairs in BBOS

73

Algorithm 5.1: Pseudo-code for Checkpoint

1: if freespace ! = enough

2 Signal to DELETER

3: if get(‘APPID+“BB”’, temp) | = NULL
4: put(‘E-order’, APPID)

5: put(‘APPID+NVMe#’, ‘filename’)

6: put(‘filename’, ‘loc’)

7: Executing writes for checkpointing..

8

: put(“DWSF”’, ‘DWSF + current file size’)

Demoted data can stay in the BB unless the capacity is insufficient for a new
checkpoint. Thus, the engine first checks if there is sufficient space left before
processing the checkpoint, and if not, it sends Deleters, a signal used to delete
demotion-finished files (lines 1 and 2). In addition, the engine checks if there
are any outdated checkpoint files of the application on the BB. This is because
the older versions of the checkpoint files do not need to remain in the BB after
the new checkpoint files are safely written. To check the files, the engine checks
if there is a key of the application in pair #6, and if so, it records the app ID
to pair #7, which collects victims with the highest priority (lines 3 and 4). The
engine enlists the file names of each application on pair #4 for Demoters that
perform the demotion on each high-end SSD in the BB (line 5). To provide
the location of the files, the engine saves the file path for each file name in
pair #5 (line 6). After completing the checkpoint, the engine updates pair #8
with the current file size for Throttler (lines 7 and 8). We need to record the
DW SF because the capacity of the BB is always full owing to the fact that our
system keeps the demotion-finished data in the BB until free space is actually

necessary.

74 :

5.2.3 Data Management Engine

Four modules from this engine manage an efficient demotion process between

the BB and the PFS.

Throttler

Throttler regulates the checkpoint and the restart speed while monitoring
the DWSF. Throttler obtains the DW SF from pair #8 and compares the
value with the threshold to start a demotion. After the threshold, the check-
point/restart speed is adjusted, and the module throttles the speed as recon-

figured.

Demoters

Demoters receive a signal from T'hrottler about a device in the BB that requires
a demotion. After that, Demoters collect information from the in-memory store
to execute the demotion described in Algorithm 5.2. First, Demoters check for
every victim in pair #7 because the older version of the checkpoint files should
be demoted first (line 1). If there is no victim, a victim is retrieved from pair
#1, which is ordered by MTBF (lines 2 and 3). If the victim is from pair
#1, the files of the victim are not deleted from the BB immediately after a
demotion to preserve the restart performance (lines 7 and 8). However, it is
necessary to record the app ID to pair #2 and erase these demoted files when
the BB needs the available capacity (line 9). If the victim is from pair #7, it
also means that the victim has older versions of the checkpoint files. Because
the older version files do not need to remain in the BB, they are deleted (lines
10 and 11). Finally, Demoters update pair #5 (line 12) and put a filename in
pair #9 for replication (line 13).

75 :

Algorithm 5.2: Pseudo-code for Demotion

1: pop(“E-order”’, APPID)
2: if APPID != exists
3: pop(“V-order”’, {MTBF, APPID})

4: flush <+ TRUE

5: pop(‘APPID+NVMe#’, {ver, files})

6: for each file of files

7. if(flush == TRUE)

8: demote file from NVMe# to SATA#

9: put(“Clean”’, APPID)

10: else

11: demote file of old version from NVMe# to SATA#
12: delete file in NVMe#

13: update(‘filename’, ‘loc’)
14: put(“R-order”’, ‘filename’)

Deleters

Deleters erase the fully demoted files after receiving a signal from 1/0 workers.
To do so, Deleters pop the app ID first, which is inserted in pair #2, and delete
the files from the BB using pairs #4 and #b5.

Replicators

Finally, Replicators replicate the checkpoint files from the local storage device
to the remote devices within the same replication group. Each storage node
has a mount point of the PFS, which consists of storage nodes in the same
replication group except itself. A PFS-only low-speed network is additionally
installed between each storage node. Thus, Replicators transfer the demoted
data to the mount point by using pair #9 without interfering with the BB

performance.

76 :

5.2.4 Stable Checkpoint and Demotion Performance

To provide a stable checkpoint /restart and demotion performance, a data man-
agement approach is optimized using new techniques. The checkpoint and de-
motion speeds are regulated as mentioned in 5.1.2. However, it is difficult to
accurately throttle their write and read speeds. Because the number of I/O re-
quests per second from each application varies, the speed of the checkpoint and
demotion is different even if we send the same number of read requests per sec-
ond for a demotion. The system may not be able to provide a stable checkpoint
performance owing to the inability to demote as much data as it should. For
this reason, we use blkio [32] of the cgroup to precisely throttle the speed of the
checkpoint and restart. In addition, we utilize the send_file() system call [33]
to maintain a stable demotion performance. For the demotion, the data must
be read from the BB and written to the PFS. This causes a context switching
and data copying overhead between the user and kernel level, resulting in a
low and unstable demotion performance. Because the send_file() system call
supports a zero-copy, we can eliminate the demotion overhead. Furthermore,
the checkpoint /restart performance may be degraded owing to a garbage col-
lection. To avoid a garbage collection overhead, we periodically request T RIM
after deleting the files. In addition, the TRIM throughput is managed using

blkio to minimize the performance degradation.

77 -

5.3 Evaluation
5.3.1 Experimental Environment

We evaluated our HPC storage management approach using eight compute
nodes and a single storage node for the BB and PFS. Four of the compute
nodes consist of an Intel Xeon Phi 7290 CPU processor with 72 physical cores
and the others are of an Intel Xeon Phi 7250 CPU with 68 physical cores. The
storage node consists of dual 12-core Intel Xeon Silver 4115 CPUs and 32 GB
of memory. For the BB, we use four 800-GB FADU NVMe SSDs provided by a
semiconductor start-up company [34], with a sequential write and read of up to
920 and 3200 MB/s, respectively. For the PFS, four 4-TB Samsung 860 EVO
SATA SSDs are installed. The compute and storage nodes are connected with
a 100 GbE Mellanox SN2100 switch.

We use the Gluster file system (GlusterF'S) [35] version 5.6 for both the BB
and PFS, the configuration of which is tuned for a high performance. In addi-
tion, the BBOS is implemented by modifying GlusterFS and adding some de-
veloped modules. In addition, each variable is determined as following: Bwmax
of 3.56 GB/s, Bwmin of 3 GB/s, Brmax of 1.6 GB/s, Brmin of 0.08 GB/s,
and period of 3800 s. For the experiments, we execute large sequential writes to
simulate a checkpoint by applying a microbenchmark FIO [36], and the failure
rates are determined based on the number of nodes used by each application.
According to [14], the failure rates and mean time between failures (MTBF')
have an inverse relationship. Thus, to express the failure rates of applications
simply for experimental purposes, we utilize the MTBF'.

To validate our system, we compare the BB utilization and checkpoint /restart
performance with Datawarp, a current HPC scheduler that uses a dedicated BB

allocation, and two policies of Harmonia [13], which is the only scheduler that

78 :

sogd BAXeN MEXEIN daepereq
S6'1 S9'1 SET S6'1 S91 SE'T S6'T S9'1 SE'T SO°1 -
USTH PRI A0 USIH PI A0 USTH PPN MoT [ISIH PAIN MOT USIH PN MO YSIH PIW A0 [USTH PPN MoT USTH PPN M0T USTH PAIN MOT(USIH PAIN M0 mmzu
: 0
_ | _ | “ | l
| _ I _ | | 000z
_ " _ " “ " 000¢
| | m t t | m m t | t t E: | | 00zg
I I I I I I
I I I I I I
I TSN R N | I
_ [_ _ = x| [009¢

79

(s/gN) andyBnoay | yurodspoyy

Figure 5.3: Checkpoint Throughput depending on DW PP

sodd WAXEN MIXE daegzepeq Nv-
S6'T SO'T SET S6'T SO'T SET S6'T SO'T SE'T SO'T 2AV—
USIH PAIA O] UBIH PO MOT USIH PIIN AOT WSIH PO MOT WSIH P3N AW USIH PIIN M0'T (VSIH PN MO'T USIH PO MOT WSTH PIIN AOT|USIH POV M0T xvi-

- - - - FS - - - - = - - - - 0
* * H _ H 008

| 0001

_ 00ST

I

I

I

I

(23s) LT

3
>
=)
«

00ST
000¢

Figure 5.4: 1/0 latency depending on DW PP
80

uses a BB over-subscription method. Because Harmonia is not opensource, we
created an emulation based on the paper. Datawarp does not apply 1/0O schedul-
ing, whereas Harmonia schedules I/O jobs to prevent them from overlapping
with each other. MaxEff, one of Harmonia’s policies, aims to optimize the BB
system efficiency by maximizing the BB utilization. Because the policy aims to
maintain a high capacity of the available BB, it consistently demotes the data
at full speed (Brmax) even when the checkpoint is concurrently applied. By
contrast, MaxBW from Harmonia aims to provide the maximum checkpoint
bandwidth to the applications. With this policy, the checkpoint and demotion
are not conducted at the same time. To describe the demotion threshold of the
two policies, as shown in Figure 5.2, the demotion thresholds of MaxEff and

MaxBW are zero and 1 S for DW SFE.

5.3.2 Burst Buffer Utilization

To compare the BB utilization with each approach, we assume that each ap-
plication requests an 80-GB checkpoint once per period. We then count how
many applications can finish the checkpoint within the period, which indicates
the maximum DW PP providable by each scheduler. Datawarp shows 0~100%
of the BB utilization because it allocates as much BB capacity as the users
desire with a dedicated allocation method. Under the best scenario, if all users
demand as much BB allocation as they need, the total BB capacity is used
up within this period, resulting in 100% BB utilization. In most cases, how-
ever, the BB utilization is low due to an overabundant BB capacity request
and the checkpoint /restart characteristics. By contrast, because Harmonia and
BBOS use an over-subscription BB allocation method, they can accommodate
more applications within the period than Datawarp. MaxBW needs to ensure

the maximum checkpoint throughput of the applications, and thus the demotion

81 :

cannot be performed together with the checkpoint. As a result, a BB utilization
of up to 190% is demonstrated. MaxEff shows a BB utilization of 210% because
it always performs the demotion at the maximum demotion throughput, i.e.,
Brmax. To provide the maximum DW PP, a BBOS is applied similarly to
MaxEff, which also achieves a BB utilization of up to 210%.

5.3.3 Checkpoint Performance

To validate the BBOS, we executed the experiments under various situations
with different scenarios for the I/O job congestion and DW PP. Because the
maximum DW PP of Datawarp equals the total capacity of the BB, we only
evaluate Datawarp with a DW PP of 1 S, and the others with a DW PP of 1.3,
1.6, and 1.9 S, respectively. We generated different I/O job congestion patterns
based on the following three scenarios: 1) Low congestion: The time interval of
each I/0O job is equal and evenly distributed throughout the period. 2) Medium
congestion: The time interval of each I1/O job is half that of a low congestion.
3) High congestion: The time interval of each I/O job is shortened two one-
tenth of a low congestion. (If I/O jobs are requested every 50 s under the low
congestion pattern, I/O jobs arrive every 25 s, whereas they arrive every 5 s
under the medium and high congestion patterns.) In addition, as described in
section 5.3.2, all applications require an 80-GB checkpoint once per period.
Figure 5.3 shows the checkpoint throughput and I/O latency, which is the
time interval between the time of an I/O request and the time of the response
under various DW PPs and an I/O job congestion. The I/O latency contains 1)
the wait time until the end of the previous job to prevent a concurrent execution
of I/0O jobs, 2)the stop time to make BB space available owing to the full BB,
and 3) the execution time of the I/O job. In Datawarp, because all demotions

are possible within a sufficient BB idle time between I/O jobs, a high checkpoint

82 :

throughput is provided under a low I/O job congestion. By contrast, under high
congestion, the checkpoint throughput of each application remains extremely
low owing to a concurrent execution of the I/O jobs because the jobs arrive
even when the previous jobs are not finished. As a result, Datawarp provides
the lowest checkpoint throughput and a similar average latency even with a
DWPP of 1.0 S when compared to the BBOS.

Unlike Datawarp, Harmonia and BBOS provide I/O scheduling to mitigate
I/0 interference across applications. Because MaxBW does not execute a de-
motion and checkpoint at the same time, it always provides a high checkpoint
throughput. However, some 1/0 jobs have to stop before the execution based on
the available BB capacity. With a low congestion, none of the applications wait
to avoid I/O interference or make space in the BB, regardless of the DW PP,
because of a sufficient idle time between I1/O jobs. With medium congestion,
when the DW PP exceeds 1.6 S, some applications begin to achieve a high la-
tency. The larger the DW PP is, the shorter the idle time within a period, and
thus the latency at 1.9 S is larger than that at 1.6 S. With high congestion,
applications have to wait to prevent I/O interference and must stop to make
space in the BB because there is insufficient idle time between jobs, which re-
sults in the highest latency. In addition, MaxBW has an extreme performance
variance across applications because the maximum latency is too high com-
pared to the average. Figure 5.5 shows the time-excluding execution time in
terms of latency for the 1st to 45th I/O jobs with medium I/O congestion at
1.9 S. With MaxBW, no I/O job waits or stops until I/O job #36, but 1/O jobs
arriving after #36 have to stop for sufficient space in the BB prior to execution.
Unfortunately, the stop time of all previous I/O jobs is accumulated. Therefore,
the later arriving I/O jobs have a longer wait time, resulting in a severe perfor-

mance fluctuation. Unlike MaxBW, the BBOS does not stop to increase the BB

83 -

400

Time to wait to prevent I/O interference - MaxBW

m Time to make BB capacity - MaxBW

w
(=]
o

= Time to wait to prevent I/O interference - BBOS

Wait time (sec)
8
S

100
0 -~"mmmmmnnm ...-llllllllllllllllll|||||IIIIIIIIIIIIIIII
0 5 10 15 20 25 30 35 40 45
1/O job number

Figure 5.5: Wait time of I/O jobs with MaxBW

capacity because BBOS demotes the data in advance and thus the BB is not
full. Therefore, the execution time of the I/O jobs increases, which forces the
next I/O jobs to wait. As a result, the BBOS shows a gradual increase in the
wait time initially, although the wait time of the I/O jobs does not significantly
increase. In conclusion, MaxBW provides a higher performance than the BBOS
when there is no wait time, such as Low and Med of 1.35 and Low of 1.6S and
1.95. However, if there is an insufficient BB idle time per period or idle time
between 1/0 jobs, MaxBW shows the higher latency and a higher performance
variance than the BBOS, because the BBOS prepares for situations in which
I/0 jobs come in groups by adjusting the checkpoint performance.

By contrast, because MaxEff and BBOS apply a demotion in advance to
prevent a BB overflow, they do not stop the I/O jobs to create BB capacity
prior to the I/O execution. MaxEff shows the lowest checkpoint throughput
because this method always demotes data at the highest demotion speed. In
this way, a relatively large space in the BB is maintained but provides a lower
checkpoint latency compared to that of MaxBW. The BBOS adjusts the check-
point throughput between Bwmaz and Bwmin depending on the DW PP. The
smaller DW PP is, the higher the checkpoint throughput we achieve by avoiding

84

unnecessary concurrent checkpoint and demotion executions unlike with Max-
Eff. In the absence of a wait time to create BB capacity, only the checkpoint
throughput determines the latency, and thus the BBOS shows a lower latency
than MaxEff (however, the latencies are too small to be seen in Figure 5.4).
When the DW PP is large, MaxEff shows a higher latency than the BBOS, even
though it applies a demotion more aggressively than our approach. This is be-
cause MaxEff always demotes data at the full demotion speed and takes longer
to process a checkpoint, which results in a longer wait period for the next I/O
jobs. In our experiments, the difference in latency of MaxEff and BBOS seems
to be small (within tens of seconds) because the difference between Bwmax
and Bwmin is not large. If the difference increases, the BBOS can expect a
lower I/0O latency than MaxEff.

Consequently, the BBOS is a novel approach that takes advantage of and
complements the shortcomings of MaxBW and MAXEff, respectively. By ad-
justing the checkpoint and demotion speed depending on the DW PP and 1/0O
job congestion, the BBOS continuously provides a relatively higher checkpoint

throughput and lower latency than the other approaches.

Direct checkpoint on PFS

When the maximum demotion throughput (Brmax) is greater than the mini-
mum checkpoint throughput (Bwmin), we can reduce the unnecessary demo-
tion overhead by bypassing the BB. We conducted experiments using three
different DW PPs, i.e., 1.3, 1.6, and 1.9 S. Each application requests an 80-GB
checkpoint with a checkpoint period of 1 h. The MTBF's of all 1/O applica-
tions are set randomly from 0 to 100 min. As shown in Figure 5.6, the method
decreases the number of demoted data by up to 38% by bypassing the BB
method. Because checkpoints can be written directly on the PFS after DWSF

85 -

138 —_\
B w/ bypassing BB
Ow/o bypassing BB 1.6 |
1.9S ——\

0 0.2 0.4 0.6 0.8 1
Nomarlized Demotion Size

Figure 5.6: Direct checkpoint on PFS by bypassing BB

1 OLRU BFIFO BBBOS
o 0.8
£ 06
= 0.4
0.2
0
med high med high med
1.7S 1.9S 2.18

Figure 5.7: Hit ratio of restart requests on BB
becomes larger than the BB capacity, the larger the DW PP is, the longer the
period of time this method can be applied. Hence, as DW PP increases, more
checkpoint files of cold data can be written directly on the PFS. Consequently,
because fewer demotions are applied concurrently with the checkpoints, more

applications can experience a higher checkpoint throughput.

5.3.4 Restart Performance

In this section, we measure the hit ratio of the restart on the BB to compare
the restart performance. We compare the LRU and FIFO algorithms used in
most HPC data management schemes with the BBOS. Because the ratio of the
remaining amount to BB of the total data differs according to the DW PP,
we use three different DW PPs for the experiments, i.e., 1.7, 1.9, and 2.1 S. In
addition, we use three different variances of the MT BF' sets. We choose M T BF

86

i 1”&1{ T

Ow/o version-aware demotion

Bw/ version-aware demotion 11°] ~

0 0.2 04 0.6 0.8 1
Hit ratio

Figure 5.8: Version-aware data placement
randomly in the range of 0 to 20 min (low congestion), 0 to 50 min (medium
congestion), and 0 to 100 min (high congestion). We choose the applications
that need restart based on the expected MTBEF'. For the sake of simplicity,
all checkpoints are fixed to equal periods, and the checkpoint size is set to 80
GB. As shown in Figure 5.7, the BBOS shows the highest hit ratio on the BB,
which is up to 3.4-times higher in comparison. With all three methods, the hit
ratio increases as DW PP decreases because the checkpoint files have a higher
chance of remaining on the BB. In the case of the LRU and FIFO algorithms,
however, cold data are chosen based only on the order of the written time.
Thus, the hit ratio for each experiment is largely different and unrelated to the
variance of M TBF'. By contrast, the BBOS shows an increased hit ratio as
the variance increases. With a low variance, the effectiveness of our system is
relatively lower than the other scenarios because failure rates of the applications
are similar owing to a low variance of the M T BF'. By contrast, in the case of
a high variance, the checkpoint files are distributed well on the BB and PFS
according to the failure rates. As a result, the BBOS provides up to a 3.1-times

higher hit ratio of restarts on the BB compared to the others.

87

Version-aware Data Placement

To maintain a high hit ratio on the BB, the BBOS uses a version-aware data
placement method by identifying outdated checkpoint files as cold data with
the highest priority. To demonstrate the effectiveness of this method, a few
assumptions are made for the following experiment. We choose three checkpoint
periods for the HPC applications, i.e., 60, 30, and 20 min. Each user requests an
80-GB checkpoint and an MT BF of 0 to 100 is randomly selected. We assume
that the applications maintain three or more versions of the checkpoint. Thus,
the applications with a 60-min period have one checkpoint version, and have
two versions for a 30-min period and three versions for a 20-min period. Finally,
we arrange the ratios of the three periods as 1:1:1 and 5:2:1 with a DW PP of
1.9 S. Figure 5.8 shows a comparison of the restart hit ratio on the BB between
the availabilities of the version-aware method. In the case of 1:1:1, all of the
restart requests can be handled in the BB with the version-aware method in an
ideal situation, because the BB capacity is larger than the total number of new
version checkpoints. However, if we have to make available capacity when no
older version checkpoints are available, a single version checkpoint with a high
MTBF can be selected as cold data. Therefore, 96.4% of the restart requests on
average are applied on the BB in the actual experiments with the version-aware
method. By contrast, without a version-aware method, the selection of cold data
is based only on the MTBF'. Fresh checkpoint files with a high MTBF' exist
on the PFS, and older version files with a low MT BF remain on the BB. As a
result, 80.1% of the restart requests are given a high restart performance from
the BB. In the case of 5:2:1, because there is a large number of applications
with a low checkpoint period, none of the new-version checkpoint files can be

placed in the BB. Thus, with the version-aware method, we handle 92.5% restart

88 -

requests in the BB, which is slightly less than 1:1:1. Without this method, 71.7%
of the restart requests are performed in the BB, which is also lower than 1:1:1.
Consequentially, the version-aware method increases the restart requests up to

29.5%, which are applied in the BB.

89

5.4 Summary

Herein, we proposed BBOS for use in a new all-flash HPC storage system.
Specifically, we over-subscribed the BB by only allocating it during I/O phases,
and not during the entire lifetime for a higher BB utilization. To mitigate a
performance reduction caused by an over-subscription, we provided the I/O
scheduler and data management module. The I/O scheduler resolved the 1/O
interference across the HPC applications by coordinating the I/O jobs. For
data management in the new HPC storage system, we analyzed and utilized
the characteristics of a checkpoint/restart. Based on these characteristics, we
transferred data from the BB to the PFS transparently by adjusting the thresh-
olds and speed of the demotion according to the DW PP. We also identified
cold data by considering different versions and failure rates.As a result, we
improved the BB utilization by at least 2.2-times that of the dedicated BB
allocation method. In addition, we guarantee a higher checkpoint throughput
without a sudden performance reduction and handle 96.4% of restart requests
in the BB, providing up to a 3.1-times higher restart performance than that of

other approaches.

90 -

Chapter 6

Related Work

Many studies related to a multi-tiered HPC storage system include a BB, which
is composed of expensive resources. Since the emergence of a BB, researchers
have actively focused on improving the checkpoint performance in various ways.
To reduce the checkpoint overhead on a PFS, in [1,27], the authors have de-
veloped a multi-level checkpoint mechanism considering the different degrees of
reliability and the checkpoint cost of each tier in an HPC storage system. In
[37], the authors attempted to transfer data asynchronously for a checkpoint.
In [30], the authors observed that the BB performance is excessively reduced
owing to a garbage collection when multiple HPC users simultaneously use a
BB. To mitigate the reduction in performance, they assigned isolated blocks to
each user using multi-stream SSDs. However, these approaches do not consider
the I/O interference across applications, which is one of the most important
considerations for an HPC system. To mitigate the I/O interference, with ref-
erence to existing I/O schedulers for a PFS [29], some studies [38-40] have

provided I/O scheduling techniques for a BB. In [39], the authors dynamically

91 :

coordinated I/O jobs based on the past I/O behavior of the application and
system characteristics. In addition, [2] developed an I/O scheduling technique
by reshaping the I/O traffic from the BB to the PFS.

File servers [41-44] used for grid computing have increased the end-to-end
connections because a single TCP/IP connection prevents high data rates from
an advanced network technology [45-50]. However, as described above, there
have been many studies on obtaining a high I/O bandwidth in all-flash BB
servers, but studies on scaling up the connections in a distributed file system
have received little attention.

Researchers have recently started to take an interest in BB utilization and
the checkpoint performance. Some data management solutions [51] allowing
multi-tiered HPC storage systems to capitalize on the benefits of a BB have been
proposed. In [23], the authors suggested a goal-driven data management scheme
that automatically manages data as required by the applications. Although the
users do not have to move data manually, they must understand the application
workflow to command the data movement. In [11,52], the authors claimed that
HPC applications can achieve some frequently accessed data. Through I/0
profiling, hot data are identified and placed in the BB. In [53], the authors
regulate I/0O traffic using a write access pattern of the applications. They detect
randomness in the write traffic and only random writes are stored in the BB.
In addition, sequential writes are propagated directly to the PFS. However,
checkpoints, occupying most of the I/O traffic of an HPC system, do not have
hotness or a random access pattern because all checkpoint data are requested
sequentially for recovery.

Because the studies mentioned above still use a dedicated allocation method,
the BB cannot be fully utilized. To solve this problem, in [28] the authors use

a BB over-subscription method. In this case, five I/O scheduling policies are

92 :

proposed with different aims; however, these policies have several limitations
because the aims are too narrowly focused. In addition, a demotion policy,
including the demotion threshold and demotion speed, is not considered, nor is
a data placement method between the BB and PFS for an HPC storage system
with an over-subscribed BB allocation. This therefore leads to a fluctuation in

the checkpoint performance and a slow checkpoint /restart.

93

Chapter 7

Conclusion

All-flash HPC storage systems have recently been proposed. However, exist-
ing I/O transfer and data management schemes between the BB and PFS do
not support new all-flash HPC storage systems, resulting in a low checkpoint
and restart throughput and a low storage utilization. In this dissertation, we
explored two problems for handling the bursty 1/O of HPC applications and
addressed them by proposing a new user-transparent I/O management using
two types of schemes, i.e., I/O transfer schemes between the compute and server
nodes and data management schemes between the BB and PFS.

In Chapter 3, we described the problems of existing I/O transfer approaches
for HPC storage systems and the limitations of existing solutions in dealing with
such problems. Owing to a single connection between a compute node and a
server node of existing DFSs, a high I/O bandwidth of multiple flash storage
devices cannot be utilized. Existing solutions for handling this problem require
considerable efforts from DFS developers and users of HPC storage systems.

Therefore, we proposed a user-transparent I/O transfer scheme to solve the

94 :

problem caused by a single connection and to compensate for the limitations of
existing solutions. We increased the number of connections without modifica-
tions of the DFSs and HPC applications by modifying a mount procedure and
I/0 processing procedures in a virtual file system. Experimental results prove
that our scheme improves the write and read throughput for a checkpoint and
restart by up to 6- and 3-times that of the existing I/O transfer method, re-
spectively, using the original kernel.

In Chapter 4, we investigated the problems of the existing storage allocation
method for HPC storage systems and the limitations of existing data manage-
ment schemes. The dedicated BB allocation method is inefficient, causing a BB
underutilization owing to a faster PF'S access. For this reason, we utilized a BB
over-subscription allocation method; however, this BB allocation method may
degrade the performance of a checkpoint and restart. We therefore proposed a
new data management scheme using a BB and PFS based on the characteris-
tics of a checkpoint and restart. We managed the data movement from the BB
to the PFS by adjusting the speed of the demotion and adaptively determine
the candidates for demotion. Experimental results showed that our scheme im-
proves the BB utilization by up to 2.2-times that of the most popular dedicated
BB allocation scheme, Datawarp, and proved a higher and stable checkpoint
performance. In addition, we achieved up to a 3.1-times higher restart perfor-
mance than other data management schemes.

In a future study, using an I/O transfer scheme to increase the number of
connections by creating server daemons, we need to bind the mount points of
multiple BBs to the same directory of a local file system such that they have
the same file system view. GlusterF'S used in this dissertation applies metadata
from the local file system, and thus multiple server daemons have the same

metadata. However, in the case of DFSs that have their own metadata man-

95 -

agement system, each server daemon may have different metadata for the same
file. Of course, the data consistency will be guaranteed in a local file system,
although problems may arise in metadata-related I/O requests. For this reason,
there is a root to revise our I/O subsystem, allowing the DFSs to extend the
connections with the server daemons. With the data management scheme, be-
cause HPC applications have a consistent checkpoint period, we can accurately
predict when the next checkpoint request of the application will arrive. This
expectation enhances the checkpoint throughput without an extravagant de-
motion in advance. In addition, we can predict the failure rates of applications
based only on the number of nodes used. In the future, the exact causes of a

failure can be applied to determine the failure rates.

96

Bibliography

1]

K. Sato, K. Mohror, A. Moody, N. Maruyama, and S. Matsuoka, “A
user-level infiniband-based file system and checkpoint strategy for burst
buffers,” in Proceedings - 14th IEEE/ACM International Symposium on
Cluster, Cloud, and Grid Computing, CCGrid 2014, pp. 21-30, IEEE Com-

puter Society, 2014.

T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu, “Burst-
Mem: A high-performance burst buffer system for scientific applications,”
in Proceedings - 2014 IEEE International Conference on Big Data, IEEE
Big Data 2014, pp. 71-79, Institute of Electrical and Electronics Engineers
Inc., jan 2015.

T. Xu et al., “Explorations of Data Swapping on Burst Buffer,” in 2018
IEEE 2jth International Conference on Parallel and Distributed Systems
(ICPADS).

“The ASC Sequoia Draft Statement of Work -
https://asc.1llnl.gov/sequoia/rfp/02 SequoiaSOW V06.doc..”

N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,

and C. Maltzahn, “On the role of burst buffers in leadership-class storage

97 :

[10]

[11]

systems,” in 012 IEEE 28th Symposium on Mass Storage Systems and
Technologies (MSST), pp. 1-11, IEEE, apr 2012.

0. Yildiz, A. C. Zhou, and S. Ibrahim, “Eley: On the Effectiveness of
Burst Buffers for Big Data Processing in HPC Systems,” in 2017 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 87-91,
IEEE, sep 2017.

G. K. Lockwood, D. Hazen, Q. Koziol, S. Canon, K. Antypas, J. Balewski,
N. Balthaser, W. Bhimji, J. Botts, J. Broughton, T. L. Butler, G. F. Butler,
R. Cheema, C. Daley, T. Declerck, L. Gerhardt, W. E. Hurlbert, K. A.
Kallback-Rose, S. Leak, J. Lee, R. Lee, J. Liu, K. Lozinskiy, D. Paul,
C. Snavely, J. Srinivasan, T. S. Gibbins, and N. J. Wright, “Storage 2020:
A Vision for the Future of HPC Storage,” tech. rep., 2017.

John Bent, Brad Settlemyer and G. Grider, “Serving Data to the Lunatic
Fringe: The Evolution of HPC Storage — USENIX,” tech. rep.

Z. Yang, M. Hoseinzadeh, A. Andrews, C. Mayers, D. Evans, R. T.
Bolt, J. Bhimani, N. Mi, and S. Swanson, “AutoTiering: Automatic data
placement manager in multi-tier all-flash datacenter,” in 2017 IEEE 36th
International Performance Computing and Communications Conference,
IPCCC 2017, vol. 2018-Janua, pp. 1-8, Institute of Electrical and Elec-

tronics Engineers Inc., feb 2018.
“Nersc Perlmutter,” in https://www.nersc.gov/systems/perlmutter/.

T. Xu, K. Sato, and S. Matsuoka, “Explorations of Data Swapping on
Burst Buffer,” in Proceedings of the International Conference on Parallel
and Distributed Systems - ICPADS, vol. 2018-Decem, pp. 517-526, IEEE
Computer Society, feb 2019.

98 -

[12]

[13]

[15]

[17]

“Cori Burst Buffer,” in https://www.nersc.gov/users/computational-

systems/cori/burst-buffer/.

X. Meng, C. Wu, J. Li, X. Liang, Y. Bin, M. Guo, and L. Zheng, “HFA: A
Hint Frequency-based approach to enhance the I/O performance of multi-
level cache storage systems,” in Proceedings of the International Conference
on Parallel and Distributed Systems - ICPADS, vol. 2015-April, pp. 376—
383, IEEE Computer Society, 2014.

D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy Checkpointing: Exploiting
Temporal Locality in Failures to Mitigate Checkpointing Overheads on
Extreme-Scale Systems,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 25-36, IEEE, jun
2014.

L. Guoming et al., “When is Multi-version Checkpointing Needed?,” in
Proceedings of the 3rd Workshop on Fault-tolerance for HPC at extreme

scale.

A. Saurabh et al., “Understanding and Exploiting Spatial Properties of
System Failures on Extreme-Scale HPC Systems,” in 2015 4/5th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-

works.

N. Nichamon et al., “Reliability-Aware Approach: An Incremental Check-
point/Restart Model in HPC Environments,” in 2008 IEEE international
Symposium, Cluster Computing and the Grid (CCGRID).

A. Saurabh et al., “Adaptive Incremental Checkpointing for Massively Par-
allel Systems,” in Proceedings of the 18th annual international conference

on Supercomputing.

99

[19]

[20]

[24]

J. Hui et al., “Optimizing hpc fault-tolerant environment: an analytical

approach,” in 2010 39th International Conference on Parallel Processing.

F. Petrini, K. Davis, and J. C. Sancho, “System-level fault-tolerance in
large-scale parallel machines with buffered coscheduling,” in Proceedings -
International Parallel and Distributed Processing Symposium, IPDPS 2004
(Abstracts and CD-ROM), vol. 18, pp. 2903-2910, 2004.

“DATAWARP - https://www.cray.com/products/storage/datawarp.”

“Slurm Workload Manager - https://slurm.schedmd.com/publications.html.”

W. Shin, C. D. Brumgard, B. Xie, S. S. Vazhkudai, D. Ghoshal, S. Oral,
and L. Ramakrishnan, “Data jockey: Automatic data management for
HPC multi-tiered storage systems,” in Proceedings - 2019 IEEE 33rd In-
ternational Parallel and Distributed Processing Symposium, IPDPS 2019,
pp- 511-522, Institute of Electrical and Electronics Engineers Inc., may
2019.

R. A. Ashraf, S. Hukerikar, and C. Engelmann, “Shrink or Substitute:
Handling Process Failures in HPC Systems using In-situ Recovery,” jan

2018.

J. W. Young and J. W., “A first order approximation to the optimum
checkpoint interval,” Communications of the ACM, vol. 17, pp. 530-531,
sep 1974.

J. Daly, “A higher order estimate of the optimum checkpoint interval for
restart dumps,” Future Generation Computer Systems, vol. 22, pp. 303—
312, feb 2006.

100

[27]

[29]

[33]
[34]

[35]

A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing system,”
in 2010 ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC 2010, 2010.

A. Kougkas, H. Devarajan, and X.-H. Sun, “Hermes: A multi-tiered dis-
tributed I/O Buffering System for HDF5,” in Proceedings of the 27th Inter-
national Symposium on High-Performance Parallel and Distributed Com-
puting - HPDC ’18, (New York, New York, USA), pp. 219-230, ACM Press,
2018.

M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross, “Omnisc’IO: A Grammar-
Based Approach to Spatial and Temporal I/O Patterns Prediction,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC, vol. 2015-Janua, pp. 623-634, IEEE Computer

Society, jan 2014.

J. Han, D. Koo, G. K. Lockwood, J. Lee, H. Eom, and S. Hwang, “Ac-
celerating a Burst Buffer Via User-Level 1/0 Isolation,” in 2017 IEEE In-
ternational Conference on Cluster Computing (CLUSTER), pp. 245-255,
IEEE, sep 2017.

“Redis-https://redis.io/.”

“blkio-https://www.kernel.org/doc/documentation/cgroup-v1/blkio-

controller.txt.”
“sendfile - http://man7.org/linux/man-pages/man2/sendfile.2.html.”
“FADU, THE SSD EXPERT - http://www.fadu.io.”

“Gluster - https://www.gluster.org/.”

101 :

[36]

[37]

[38]

[39]

“Fio - https://github.com/axboe/fio.”

K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B. R. De
Supinski, and S. Matsuoka, “Design and modeling of a non-blocking check-

Y

pointing system,” in International Conference for High Performance Com-

puting, Networking, Storage and Analysis, SC, 2012.

S. Thapaliya, P. Bangalore, J. Lofstead, K. Mohror, A. Moody, and L. Liv-
ermore, “Managing I/O Interference in a Shared Burst Buffer System,” in

2016 45th International Conference on Parallel Processing, 2016.

A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the 1/O of HPC Applications under Congestion,” in Proceed-
ings - 2015 IEEE 29th International Parallel and Distributed Processing
Symposium, IPDPS 2015, pp. 1013-1022, Institute of Electrical and Elec-

tronics Engineers Inc., jul 2015.

A. Kougkas, M. Dorier, R. Latham, R. Ross, and X. H. Sun, “Leveraging
burst buffer coordination to prevent I/O interference,” in Proceedings of the
2016 IEEE 12th International Conference on e-Science, e-Science 2016,

pp- 371-380, Institute of Electrical and Electronics Engineers Inc., mar
2017.

“GridkFTP 7
“bws/xdd: XDD - The eXtreme dd toolset.”
“Fast Data Transfer.”

L. Zhang, W. Wu, P. DeMar, and E. Pouyoul, “mdtmFTP and its eval-
uation on ESNET SDN testbed,” Future Generation Computer Systems,
vol. 79, pp. 199-204, feb 2018.

102

[45]

[46]

[47]

[48]

F. Garcia-Carballeira, J. Carretero, A. Calderén, J. D. Garcia, and L. M.
Sanchez, “A global and parallel file system for grids,” Future Generation

Computer Systems, vol. 23, pp. 116-122, jan 2007.

D. Nadig, E. S. Jung, R. Kettimuthu, I. Fosterz, S. V. Nageswara Rao,
and B. Ramamurthy, “Comparative Performance Evaluation of High-
performance Data Transfer Tools,” in International Symposium on Ad-
vanced Networks and Telecommunication Systems, ANTS, vol. 2018-

December, IEEE Computer Society, jul 2018.

Y. Liu, Z. Liu, R. Kettimuthu, N. Rao, Z. Chen, and I. Foster, “Data Trans-
fer between Scientific Facilities — Bottleneck Analysis, Insights and Opti-
mizations,” in 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), pp. 122-131, IEEE, may 2019.

S. B. Lim, G. Fox, A. Kaplan, S. Pallickara, and M. Pierce, “GridF'TP and
parallel TCP support in NaradaBrokering,” in International Conference
on Algorithms and Architectures for Parallel Processing, vol. 3719 LNCS,
pp- 93-102, Springer, Berlin, Heidelberg, 2005.

W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu,
I. Raicu, and I. Foster, “The Globus striped GridFTP framework and
server,” in Proceedings of the ACM/IEEE 2005 Supercomputing Confer-
ence, SC’05, vol. 2005, 2005.

K. T. Murata, P. Pavarangkoon, K. Yamamoto, Y. Nagaya, K. Muranaga,
T. Mizuhara, A. Takaki, O. Tatebe, E. Kimura, and T. Kurosawa, “Multi-
ple streams of UDT and HpFP protocols for high-bandwidth remote stor-

age system in long fat network,” in 7th IEEE Annual Information Technol-

103 -

[51]

[52]

[53]

oqy, Electronics and Mobile Communication Conference, IEEE IEMCON

2016, Institute of Electrical and Electronics Engineers Inc., nov 2016.

A. Kougkas, “Hermes: A multi-tiered distributed 1/O Buffering System
for HDF5,” in Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing - HPDC' ’18.

G. Zhang, L. Chiu, C. Dickey, L. Liu, P. Muench, and S. Seshadri, “Au-
tomated lookahead data migration in SSD-enabled multi-tiered storage
systems,” in 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies, MSST2010, IEEE Computer Society, 2010.

X. Shi, M. Li, W. Liu, H. Jin, C. Yu, and Y. Chen, “SSDUP: A Traffic-
Aware SSD Burst Buffer for HPC Systems,” in ICS 2017: Interna-
tional Conference on Supercomputing June 14-16, Chicago: Sponsored by
ACM/SIGARCH, vol. 10, 2017.

104

TS AFY 2EA] A 2"]
o] A AZLIES} A Z o] 2}A]5HT Qc}. o]
E5tA A 2stA flsted

B2 X 25o] AQTEgleh. sHw AR ALEe tol Ahg
e ofpRel B4t B AARES L7 shte] YEYD AFL AT
ool Al =ColH ATF & Uk B BANEY 9E 9B B
2o ofe e YEYD AFL AT AL B4 D A2 o] 57
sJolo} shALt, B4F wl A9 9] SetolQIE HlEnt A BB AE F71
A7) o] ALgslofol Sheh. ShARY, 4t nhe) A2 B9 BAHG TEE
FAE] Q17] B AT o] 24T wt A2F AAAE] 27

&2 ¥ 27) izl AREAE A A= E’r% A Cﬂ%é ‘?lQOP_—L’ tlolH

FEol dojuA] Fr= Foldfjof jttt. At} 7| Eoll= ARgAE] StEH AR

o Z2 A& A A= /98 PFSE O] < 57| 9fste, HAE 1 9]

84S ZI5tHAE AEg HAE Ha Tt ¥4 (Dedicated BB allocation

method)= ATt SEA|TF A28 EA] 71HHe] 1445 AP 2EHA
=

Al
o, sig WAE Wy &

"ol BE w Ax8o o] o] | g
WAlg AFgSHERe BA) ot
old EASS ddst] $istel, B =RA AAA WR Aol wE

105 -

HAISE] §istel, AZLEAES AN EHL JHoR HAE HHe} B
vhe) A 2go] HloleE hefateh

2 =R AL AQHe WSS THE FUsH] gIste] A Bl Aure] 2
B AARE FESHD A PUES A8t A5 WA Ee
Sol 429 A% el s1ol 71E 7|k Al 6u) L3 Al 2u) o 7]
293 97] 9E A5 ABYE dold Tl /WL 7% wel s,
AE N BEEE 220 A AZTh A B3 A AZEAE H5e
Bgon o 3.1 £ AAL A5 AR

1
H
r [*]
|
2
>,
i
)
H
r>~

SHH: 2013-20801

106 -

Aol 2

R o AR O NET T o
= T ~ ™ X T < T ,_ﬂol 5y ‘.WE ,,_an._ N
H & ¥ = L CRCIE S G
YOI~ <n © o M cY oy
= N M,lr_ Hj 3 X <k N TR e No o
T ok o R U T e\ .
. R R S R %
o H ol < = =
U R My 3% g < — o
3 NoES o N o Nw T W .z "
T <k ol B T N R — B0 =%
.5:. <1) ! e] | < o T T
.W B% __o_l Mul ,A_l ﬂ_.m_u ‘UI < WD Z0 ol B ,_ﬂma & 1D|
do T . BF o TR o om0y
W A HoLoe oo 3 = = -
ANy Sy T B N
o U A B R e L - R -
of g Y X4 ®E X opgTa T By o
Bo mp L. = 5 oy o M s ol . R
A S L LR - E
% o = ol oju = Ho o o3 TE o = N R
og op ™ N AR M o of up 9 o NS
o P i m_,ur — X 3
) < <K 8 " M o X° ™ % T W ~ w_._u
O#E —_~— _IT o ‘q _nT_ o o O.._O ﬂﬂ _ ‘lj_wl ﬂ_u =r ToR H_mm &E =LY
W Peielfepgal psw T ®a
T 5 Y R ‘..Ar_a o -y]| A ojn I) ~a
oo Tt Moo E BT o B oL om oo
e I S R T = VI g
GETTRTLE DD T, T
T m X ok 1y B o Al e -S|
B2 R o B T ooy o BT oo B
.8 = W BBz 5ox R o mf
S M o Mo o O R ? T
o A oo M3 - BN o oH —
ﬂﬂmu%%ANﬂ__ﬂ%ﬂwrﬂﬂulﬁoH&w@
uamawWmemeW__,anW%ﬁﬂmﬁWﬁﬂ
=7 T 38 T OB oof m T ow oW W
S o ® w AF ooy X T oF X W Tm oo

107

	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Burst Buffer
	2.2 Virtual File System
	2.3 Network Bandwidth
	2.4 Mean Time Between Failures
	2.5 Checkpoint/Restart Characteristics

	Chapter 3 Motivation
	3.1 I/O Transfer Management for HPC Storage Systems
	3.1.1 Problems of Existing HPC Storage Systems
	3.1.2 Limitations of Existing Approaches

	3.2 Data Management for HPC Storage Systems
	3.2.1 Problems of Existing HPC Storage Systems
	3.2.2 Limitations with Existing Approaches

	Chapter 4 Mulconn: User-Transparent I/O Transfer Management for HPC Storage Systems
	4.1 Design and Architecture
	4.1.1 Overview
	4.1.2 Scale Up Connections
	4.1.3 I/O Scheduling
	4.1.4 Automatic Policy Decision

	4.2 Implementation
	4.2.1 File Open and Close
	4.2.2 File Write and Read

	4.3 Evaluation.
	4.3.1 Experimental Environment
	4.3.2 I/O Throughputs Improvement
	4.3.3 Comparison between TtoS and TtoM
	4.3.4 Effectiveness of Our System

	4.4 Summary

	Chapter 5 BBOS: User-Transparent Data Management for HPC Storage Systems
	5.1 Design and Architecture
	5.1.1 Overview
	5.1.2 DataManagementEngine

	5.2 Implementation
	5.2.1 In-memory Key-value Store
	5.2.2 I/O Engine
	5.2.3 Data Management Engine
	5.2.4 Stable Checkpoint and Demotion Performance

	5.3 Evaluation
	5.3.1 Experimental Environment
	5.3.2 Burst Buffer Utilization
	5.3.3 Checkpoint Performance
	5.3.4 Restart Performance

	5.4 Summary

	Chapter 6 Related Work
	Chapter 7 Conclusion
	요약
	감사의 글

<startpage>14
Chapter 1 Introduction 1
Chapter 2 Background 11
 2.1 Burst Buffer 11
 2.2 Virtual File System 13
 2.3 Network Bandwidth 14
 2.4 Mean Time Between Failures 16
 2.5 Checkpoint/Restart Characteristics 17
Chapter 3 Motivation 19
 3.1 I/O Transfer Management for HPC Storage Systems 19
 3.1.1 Problems of Existing HPC Storage Systems 19
 3.1.2 Limitations of Existing Approaches 23
 3.2 Data Management for HPC Storage Systems 26
 3.2.1 Problems of Existing HPC Storage Systems 26
 3.2.2 Limitations with Existing Approaches 27
Chapter 4 Mulconn: User-Transparent I/O Transfer Management for HPC Storage Systems 31
 4.1 Design and Architecture 31
 4.1.1 Overview 31
 4.1.2 Scale Up Connections 34
 4.1.3 I/O Scheduling 36
 4.1.4 Automatic Policy Decision 38
 4.2 Implementation 41
 4.2.1 File Open and Close 41
 4.2.2 File Write and Read 45
 4.3 Evaluation. 46
 4.3.1 Experimental Environment 46
 4.3.2 I/O Throughputs Improvement 46
 4.3.3 Comparison between TtoS and TtoM 59
 4.3.4 Effectiveness of Our System 60
 4.4 Summary 63
Chapter 5 BBOS: User-Transparent Data Management for HPC Storage Systems 64
 5.1 Design and Architecture 64
 5.1.1 Overview 64
 5.1.2 DataManagementEngine 66
 5.2 Implementation 72
 5.2.1 In-memory Key-value Store 72
 5.2.2 I/O Engine 72
 5.2.3 Data Management Engine 75
 5.2.4 Stable Checkpoint and Demotion Performance 77
 5.3 Evaluation 78
 5.3.1 Experimental Environment 78
 5.3.2 Burst Buffer Utilization 81
 5.3.3 Checkpoint Performance 82
 5.3.4 Restart Performance 86
 5.4 Summary 90
Chapter 6 Related Work 91
Chapter 7 Conclusion 94
요약 105
감사의 글 107
</body>

