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Abstract

As computer hardware advances, computing resources in a machine (e.g., the number

of processing cores, cache sizes, and memory sizes) are increasing in various domains

from the datacenter to embedded devices. To utilize these resources efficiently, it is

necessary to execute multiple workloads in parallel by consolidating them for sharing

system resources. However, the resource sharing may cause severe contentions for the

shared resources, thereby the performance of workloads can be degraded significantly.

Moreover, workloads may have different service level objectives (SLOs) from latency-

critical to best-effort, which complicates the consolidation of workloads. To deal with

the contentions, many OSs and hardware vendors have provided diverse resource iso-

lation techniques. However, they have been used in perspective of fairness, not perfor-

mance. Besides, the existing schemes do not provide or perform isolations efficiently

and effectively. This dissertation presents feedback-based performance isolation opti-

mizations that adaptively mitigate resource contentions by exploiting the available iso-

lation interfaces in the existing OS and hardwares. To enable this, an efficient online

profiling which estimates resource contentions is necessary. Also, isolations should be

performed dynamically guided by the workloads’ profiles.

In the dissertation, we propose performance isolation optimizations guided by on-

line profiling for three systems. First, we present a performance isolation scheme that

considers the charac- teristics of hardware and software isolation techniques for mul-

ticore systems. Second, we present an adaptive isolation optimization to mitigate mo-

bile edge devices where resource are constrained and contentions may shift unexpect-

edly and frequently. Lastly, we propose a hierarchical contention-aware scheduling

optimization for clusters, where provisions resources in fairness-centric manner, to
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mitigate contention when resource provisioning for latency-critical virtual machines

(VMs). We have evaluated the proposed online profiling scheme and dynamic perfor-

mance isolation scheme on diverse system environments (i.e., multicore server, edge

devices, and clusters). Evaluation results show that our adaptive proposed approach

can effectively track and mitigate resource contention for consolidated workloads, and

thus can attain lower execution time (and latency) while achieving higher resource

efficiency compared to the existing schemes under dynamic and significant resource

contention.

Keywords: Performance Isolation, Resource Management, Resource Contention, Adap-

tive System, Multicore System, Edge Computing, Cluster
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Importance of Contention-Awareness

With the advance of the computer hardware, the size of computing resources within

a machine are increasing. The number of CPU cores in a machine are growing to

tens of cores, and the sizes of cache and memory are getting larger accordingly. In

this trend, it is critical to share these resources by running multiple workloads (or

tasks) in parallel to reduce wasted resources and maximize efficiency. From datacenter

server to embedded devices, resource sharing becomes inevitable for efficient resource

management and multi-process environments.

However, resource sharing may incur significant resource contentions among work-

loads. The resource contention can occur, from resources that are easy to allocate, such

as CPU and memory, to ones that are hard to allocate, like last-level cache (LLC) and

memory bandwidth. These resource contentions typically yield the following prob-

lems.
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First, resource contention may affect negatively to the performance of workloads.

Because resources may not be available when one workload try to utilize resources

due to the other workloads already occupy them. In fact, workloads are typically not

designed with a consideration that resources are not available on a machine. Besides

that, for some resources such as LLC and memory bandwidth, most of machines does

not have any allocation interface, thus it makes high performance variation according

to the resource contentions among applications.

Second, resource contentions may lead to low resource efficiency by fragmented

resources when reserving resources to avoid degraded performance. Resource reser-

vation is straight-forward approach that allows sufficient resource allocation for work-

loads and avoids resource contention fairly. Even though it avoids contentions, it easily

result in the low resource efficiency when resource demands are dynamically changed.

Third, resource contentions may increase the violation rate of service level objec-

tives (SLOs) for workloads. Workloads generally have their own SLOs that can be

either strict ones requiring low latency as much as few milliseconds or be relatively

relaxed ones seeking best-effort performance. If resource contentions are significant,

it may be impossible to meet strict SLOs without mitigating contentions. Although

contentions are successfully reduced by using isolation techniques, if contentions are

frequently changed, workloads may experience the frequent SLO violations frustrating

their users. As a result, it leads to huge revenue loss in case of production services.

Obviously, resource sharing will be necessary and prevail in many domains to

achieve higher resource efficiency. Therefore, effective and efficient isolation schemes

that can detect resource contention and mitigate them is crucial for computer systems.

1.1.2 Problems

There have been many resource allocation and isolation techniques for handling re-

source contentions at OS or hardware level. However, most resource isolation tech-
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niques focus on resource fairness. Exploiting these isolation techniques for perfor-

mance needs several optimizations. Because profiling contentions and estimating how

these contentions affects the workload’s performance is challenging. Identifying con-

tentions is also related to choosing which isolation technique is appropriate for higher

performance as well.

In this dissertation, we present several challenges to be addressed for effective per-

formance isolation. First, existing isolation techniques should be fully considered for

performance isolation. Many isolation techniques have different characteristics and

configurations to improve isolation. Therefore, it is crucial to understand the differ-

ence among isolation techniques to choose proper isolation techniques. In addition,

it is necessary to profile resource contention online and perform isolation techniques

adaptively. Contentions may shift dynamically during the workload’s execution and it

may complicate isolation enforcement at runtime. Also, performance-feedback with-

out contention estimation can lead to inefficient isolations. Thus, contentions should

be handled in online manner to track and mitigate dynamic contentions. Finally, when-

ever resource provisioning is performed in cluster-level, it is necessary for frameworks

not only improve resource efficiency, but also to consider contention-awareness for

mitigating performance interference. Nevertheless, many cloud frameworks have not

designed for mitigating contentions for performance of workloads.

These three challenges are related to optimizations for performance isolation and

also related to the memory, one of the most contentious resources.

Multiple Isolation Techniques. Various resource isolation techniques have been ex-

ploited for performance isolation such as throttling CPU cycles, CPU core allocation,

hardware cache partitioning, and so on. Nevertheless, there is no any consideration

on which isolation technique is more effective in terms of attaining the higher perfor-

mance. Typical multicore machines have several isolation techniques, and these isola-

tion techniques have some tradeoffs in terms of strictness, responsiveness, and flexibil-
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ity depending on the technique is software and hardware. For example, software-based

throttling CPU cycles can be less effective than hardware-based per-core dynamic

voltage frequency scaling (DVFS), because hardware isolation can directly control its

hardware at low overhead as well as provide much faster isolation. Also, enforcing the

right isolation technique guided by profiling can avoids inefficient isolation enforce-

ments when multiple isolation techniques are used. Yet, current isolation schemes do

not provide proper guide for the efficient isolation enforcement.

Dynamic Resource Contention. Resource contention is closely related to the patterns

of resource usages that workloads consume. If they change continuously during the ex-

ecution, the proper isolation technique to mitigate contention also should be changed

accordingly. Therefore, online profiling and tracking contentions is necessary to know

which contention affects negatively to the performance of workloads at runtime. More-

over, it is also crucial to perform isolation techniques adaptively and efficiently by the

workload’s profile. Edge computing environments including mobile edge devices have

relatively constrained resources than clouds and are exposed to unexpected external

events which incur high load variations for workloads. It is important how isolation

scheme adaptively and effectively works under high and dynamic contention.

Contention-unaware Resource Provisioning. Cloud management frameworks are

generally designed for maximizing resource efficiency in terms of resource capacity

by bin-packing VMs or containers as much as possible. It seems reasonable in that re-

ducing wasted resources achieves higher resource efficiency. However, the bin-packing

approach may be harmful for performance of workloads due to resource contention.

To avoid performance degradation while improving resource efficiency, frameworks

should incorporate contention-awareness into their two-level resource provisioning

that filters and weights nodes based on contentions, and mitigates contention within

a node.
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1.2 Contribution

The contributions are summarized as follows:

• We explore the tradeoffs between hardware isolation techniques and software

ones in terms of the strictness, responsiveness, and flexibility. We present how

inefficient isolation decisions affect performance degradation when consolida-

tion. We design and implement a hybrid isolation system which adaptively iso-

lates workloads considering the characteristics of workloads and tradeoffs in

the isolation techniques. We evaluated that our system can improve the perfor-

mance significantly compared with recent isolation scheme for the selected set

of benchmarks.

• We identify the key challenges of multitasking on edge devices that have inte-

grated SoC architecture and limited resources. We describe a profiling technique

the measures dominant resource contention and also describe a practical phase

change detection mechanism for the resource contention on edges. We describe

the design and implementation details of EdgeIso, which uses several isolation

techniques for effective performance isolation between tasks having diverse lev-

els of SLOs. We evaluated EdgeIso on an NVIDIA Jetson TX2 device to com-

pare with other alternative approaches using the selected set of benchmarks.

• We described the problem of inefficient resource provisioning mechanism in

OpenStack and VMWare vSphere. Since cloud resource management is fairness-

centric, we present a performance-centric contention-aware resource provision-

ing scheme that mitigates resource contention and improves performance of

latency-critical in-memory VMs. We present the design and implementation of

the hierarchical contention-aware scheduler and evaluated our scheme on Open-

Stack and VMware vSphere.
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1.3 Dissertation Structure

• Chapter 2 introduces backgrounds for several isolation techniques supported by

OSs and hardwares, architectural characteristics and challenges of various sys-

tems (e.g., multicore systems, edge devices, and clusters).

• Chapter 3 introduces HIS, our hybrid isolation scheme for multicore systems.

We briefly presents the related work for multiple isolation techniques and de-

scribes the tradeoff between hardware and software techniques. We describe the

design and implementation of our scheme and evaluate our scheme on consoli-

dated multiple threaded workloads.

• Chapter 4 introduces EdgeIso, our effective performance isolation scheme for

edge devices. We illustrate the challenges of resource-constrained edge devices

(i.e., NVIDIA Jetson TX2). We describe the design and implementation of on-

line profiler and adaptive isolation scheme, evaluate the scheme for data pro-

cessing and latency-critical workloads, and compare ours with alternative ap-

proaches.

• Chapter 5 proposes a hierarchical contention-aware isolation scheme for clus-

ters. We illustrate the problems of contention-unaware resource provisioning

for various clusters (i.e, OpenStack and VMWare vSphere). We describe the

method for measuring resource contention of in-memory latency-critical VMs

(i.e., memcached). We describe the design and implementation of a contention-

aware VM scheduling algorithm that provisions VM resources considering mem-

ory contention hierarchically at the intra node and inter node level. We evalu-

ated our optimization for cluster by using mutilate, designed for testing various

throughput and tail latency, and testing dynamic memory contentions.

• Chapter 6 concludes the dissertation and describes the future work.
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Chapter 2

Background

In this chapter, we describe what is resource contention, what makes the contention,

and why it should be controlled. We also describe the service level objectives which is

a key criteria for how workloads are categorized and how aggressively workloads are

consolidated. After that, this chapter provides backgrounds for the various isolation

techniques supported by Linux kernel and hardware. Lastly, we explain some archi-

tectural characteristics and challenges of various systems including multicore systems,

edge devices (integrated GPUs), and clusters.

2.1 Resource Contention

Resource contention can occur anywhere as long as resources are shared. However, the

definition of resource contention in the dissertation is contention for resources shared

by all cores, assuming a typical multi-core environment. Resource contentions typi-

cally occur in last-level cache, memory bandwidth, and memory shared by all cores.

These shared resources are critical to memory-intensive workloads, which prevails in
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big data and AI domains.

In addition, another cause of resource contention usually stems from the fairness-

centered resource allocation policy of the OS. Here, fairness is related to the capacity

of the resources allocated. For example, Linux OS and OpenStack determines how

many CPU cores or memory sizes can be allocated to processes, virtual machines, and

container, based on the number of workloads that are consolidated in a machine.

However, this allocation approach is not proportional to LLC or memory band-

width that are difficult to allocate. Because their allocation interfaces are not explicitly

exposed so that one workload can saturate all resources depending on the characteris-

tics of consolidated workloads, even if cores and memory are allocated fairly among

workloads.

This is why contentions on shared resources lead to poor workload performance,

and also to over-allocation of resources, creating resource inefficiency, to avoid perfor-

mance degradation. In order to mitigate these resource contentions at the OS or hard-

ware level, various resource allocation techniques are provided to enable isolations.

Nevertheless, using these resource isolation techniques for performance isolation, it is

necessary to measure contention accurately and provide resource isolation accordingly.

2.2 Service Level Objectives

Each workload typically has its own service level objective. While there are several

ways to define the SLO, achieving these service level objectives is critical. SLOs can

be defined by the number of instructions per cycle (IPC) or query per second (QPS) for

measuring throughput, 99th percentile and 95th percentile tail latency for measuring

worst case latency. Based on the criteria of these SLOs, workloads can be largely di-

vided into two categories. One is latency-critical workloads which require low latency,

and the other is best-effort one without any specific latency or throughput required.
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Table 2.1: Comparison of the existing hardware and software isolation techniques

Hardware isolation techniques Software isolation techniques

Intel CAT [3] Per-core DVFS [4] CPU Cycle Limit [5] CPU Allocation [6] Thread Migration [6]

Type Partitioning Throttling Throttling Scheduling Scheduling

Latency (ms) 3 2 40∼50 3 90

Configurations

(Xeon E5-2683v4)

# of ways

(20 per LLC)

# of available freq.

(10 per core)

quota / period

(100)

# of cores

(16)

# of sockets

(2)

Strictness High High Medium Medium Low

Responsiveness High High Medium High Low

Flexibility Low Low High High High

Best-effort workloads are typically co-located with latency-critical ones to utilize idle

resources which are not used by latency-critical ones to improve resource efficiency.

When consolidating best-effort ones and latency-critical ones, it is essential to meet

SLOs of latency-critical ones because of other co-located best-effort ones saturate

shared resources.

2.3 Isolation Techniques

This section briefly describes the existing resource isolation techniques available in

modern multicore systems. Resource isolation techniques can be categorized into two

groups; one is software and the other is hardware. We will describe software and hard-

ware isolation techniques and illustrates tradeoffs between these isolation techniques.

Table 2.1 shows the existing hardware and software isolation techniques. Most

schedulers utilizes the software isolation techniques and hardware isolation techniques

in the table. All isolation techniques can be categorized by three types; Throttling,

Scheduling, and Partitioning.
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2.3.1 Software Isolation Techniques

Software techniques reduce contentions among workloads by using software inter-

faces. Throttling and Scheduling are the representative types of software iso-

lation techniques. Throttling is a broadly used to minimize performance interfer-

ence by controlling the execution rates of contentious workloads among co-located

ones. For example, Google CPI2 throttles CPUs of background workloads to protect

the performance of co-located production workloads [7]. Memguard restricts the mem-

ory accesses of the memory-intensive workloads based on assigned memory budget

throttling CPU cycles [8]. Limiting CPU cycles is an efficient software isolation tech-

nique which throttle the execution of specific workloads [7–9]. The technique mitigates

the contention for shared resources by limiting the number of cycles to quota within

the configured periods. If the assigned cycles are exhausted during a period, the core

will remain idle until the new period begins.

Another technique is mitigating contentions via Scheduling. Two techniques

are mostly used for Scheduling. One is CPU allocation, and the other is thread

migration. CPU allocation is simple, yet the effective software technique to isolate

workloads. It works purely in software manner, and easily reduces the contention of

shared resources. It allocates dedicated CPU cores to each workload to minimize re-

source contention among workloads. When allocating cores to workloads, it is critical

to consider which workloads will be colocated with each other [10–14]. Because re-

source contention among workloads can grow or not depending on which workloads

are co-located. When resource contentions can not be resolved by other isolations in

a socket, thread migration can be helpful by migrating the most suffered workload

to the less contentious socket (or machine). This can be helpful where exist severe

contentions that Throttling can not mitigate. In contrast, in the cases of all the

possible schedule pairs can not relax the contention, Scheduling may result in poor
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performance due to the unnecessary overheads as it would fail to find better workload

pairs.

2.3.2 Hardware Isolation Techniques

Hardware techniques physically allocate resources to mitigate contentions among work-

loads or exploits specific hardware features equipped on recent multicore machines.

Hardware techniques can provide fast and strict isolation compared with the soft-

ware ones, because they directly control hardware interfaces. Besides, hardware tech-

niques have lower latency than software ones. Because they have a fewer number

of available configurations, which makes configuration search faster when enforcing

isolations. There are two types of hardware isolation techniques; Partitioning

and Throttling. Partitioning is a representative hardware isolation technique

which strictly segregates resources for multiple workloads. For hardware partitioning,

there are Intel Cache Allocation Technology (Intel CAT) for LLC way-partitioning [3]

and Intel Running Average Power Limits (Intel RAPL) for limiting power consump-

tion [15].

Another hardware isolation technique is Throttling-type one using dynamic

voltage frequency scaling (DVFS). DVFS is originally designed to perform power

management, however, owing to the advance of DVFS, voltage regulators on recent

CPUs can adjust a voltage of each core in the CPUs. This enables faster and low-

overhead controls for specific operations [16], thus this can enable fine-grained isola-

tion for latency-sensitive workloads [17].

2.4 Architectural Characteristics and Challenges

The degree of resource contention or the type of contentious resource may vary de-

pending on the system architecture. The following sections describe where the re-
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source contention occurs by the architectures and explain the specific problem caused

by resource contention in their environments and requirements for workloads.

2.4.1 Multicore Systems

As illustrated in figure 2.1, a multicore machine consists of CPU cores, L1/L2/L3

caches, memory controllers, prefetchers, and memory nodes [10,13,18]. Among these

resources, as the number of CPU cores is increasing, a processor can have almost 20

CPU cores in a socket. Also, the number of processors is also increasing, and multicore

systems generally have multiple processors. Proportional to the increasing number of

CPU cores, the sizes of last-level cache and memory bandwidth are gradually growing,

yet they have not grown as much as the number of cores [13].

Socket

CPU CPU CPU CPU

L1$ L1$ L1$ L1$

L2$ L2$ L2$ L2$

L3$ (LLC)

Memory Controller

Prefetcher

Memory

Figure 2.1: Multicore System Architecture

Therefore, if memory-intensive workloads are executing on these many CPU cores,

it puts high memory loads on LLC and memory bandwidth, thereby degrading over-

all system performance. Consequently, the fact that memory resources are more de-
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manded and memory-intensive workloads increase means that several indicators, show-

ing the degree of resource contention, and isolation techniques to solve the problem

are more critical than before.

2.4.2 Edge Devices

Latency-critical workloads rely on the caching of hot data for providing low latency

or accelerating their services via accelerators. These make unpredictable latency for

tasks when shared resource contention occurs and lowers the utility for the allocated

resources such as CPU and memory. The resource contention becomes more signifi-

cant and more critical in the world of edge devices. Figure 2.2 illustrates the resource

contention on the NVIDIA Jetson TX2. It has four CPU cores, two superscalar (Den-

Edge Device (NVIDIA Jetson TX2)

GPU

L1$ L1$ L1$ L1$

Shared Last Level Cache (L2$)

Memory Controller

GPU L2$

SM SM

DRAM 
Bank0

DRAM 
Bank1

DRAM 
Bank N

DRAM 
Bank2

…

Latency-
Critical Task

Batch Task Batch Task

CPUCPU CPU CPU

S

PU

Figure 2.2: Shared resource contention between tasks on an edge device with inte-

grated CPU-GPU architecture.

ver) CPU cores, and 256 GPU cores. As Jetson TX2 has an integrated CPU-GPU ar-

chitecture, GPU shares memory and memory bandwidth with CPUs in the node. The

integrated architecture worsens resource contention and also are found in other edge
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devices like NVIDIA Jetson Xavier [19] or Intel edge devices [20].

2.4.3 Clusters

As cloud computing has become popular and the demand for constructing the pri-

vate or public clouds has been increasing, cloud platforms have evolved and many

cloud projects have been suggested. Although these projects have been performed,

the technologies for dynamic infrastructure reconfiguration or flexible resource shar-

ing, which are the keys to Software-Defined Data Center (SDDC), have insufficiently

been developed and used. To address this problem, we have designed and developed a

Software-Defined Compute (SDC) framework based on the OpenStack [21], which is

one of the most popular open-source cloud platforms. The framework performs profil-

ing and scheduling to control the shared resources such as CPU and memory. For this

reason, we focus on the SDC architecture. Figure 2.3 illustrates the overall high-level

SDC architecture. In this architecture, we fill the gap between the traditional datacen-

ter resource management framework and ideal SDC. For more flexible and efficient

resource usage, it is important to capture the behavior of workloads and schedule the

workloads based on the behavior more dynamically. In an SDC framework, all com-

puting resources, including CPU and memory, are reorganized in a flexible manner

or coordinated by the centralized/decentralized controller in order to achieve the spe-

cific operational goal such as guaranteeing the SLOs. In contrast to the architecture

of traditional datacenter, an SDC one requires the components, such a performance

monitoring tool and a coordinator, providing the SDC functionality. The subsequent

subsections will describe the profiler and scheduler components of our SDC frame-

work.

Profiling for SDC. Identifying the behavior of workloads is inevitable and necessary

to support the SDC. The profiler should monitors the behavior of workloads, and if the

performance degradation is detected, then a recovery action should be taken. However,
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Figure 2.3: Proposed Software-Defined Compute Architecture. The components col-

ored in black are the ones newly added for workload profiling and scheduling. The

components colored in grey are the OpenStack compute (Nova), resource monitor

(Ceilometer) and VMs.

there is no profiler to detect the performance anomaly in OpenStack. There exists the

component for resource metering called Ceilometer, but this component simply counts

the resource availability for billing. Currently, Ceilometer provides only alarm services

which report the resource states to the user. The alarm services monitor the resource

consumption of workloads and if the consumption exceeds the predefined threshold,

then the services notify the user of that situation or trigger the additional actions such

as autoscaling. Figure 2.4 shows the high-level architecture of the proposed workload

profiler. It consists of two components; one is the performance metric monitor which

collects the resource consuming stats such as memory contention information, and the

other is the interference estimator, which evaluates the interferences among VMs and

hosts, and propagates the evaluated information to other services. With the profiler, the

cloud platform can monitor the performance degradation and leverage the performance

metrics to schedule workloads.

Resource Management for SDC. Existing resource management frameworks have
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Ceilometer 
Performance 
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Estimator

Collector
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Local SchedulerNova 

Filter 
Scheduler

Database

Workload Profiler

Compute

Figure 2.4: Proposed High-Level Workload Profiler Architecture. The workload pro-

filer consists of two components, which are performance metric monitor and interfer-

ence estimator. Each workload profiler is in each compute, and it delivers the profiled

information to other services.

focused on the resource availability. To the current frameworks, ”how much of each

resource is available in the datacenters?” is an important question. In the case of Open-

Stack, the numbers of allocatable virtual cores & network IPs and available RAMs are

regarded as important resources. For this reason, the OpenStack compute (Nova) and

OpenStack resource monitor (Ceilometer) consider the resource availability first, and

Nova distributes the workloads to the hosts as evenly as possible.

VMWare vSphere, another production-level cloud solution, uses DRS (Distributed

Resource Scheduler) as a cluster scheduler, and DRS works based on the resource

entitlements, which are weighted resource usage based on CPU and memory utiliza-

tions [22]. Figure 2.5 depicts the architecture of VMWare vSphere DRS. It dynami-

cally reconfigures the pools of resources, which are allocated to the VMs based on their

requirements. A set of resources in a datacenter are represented by a resource pool tree,

controlling the resource by the three different policies, which are reservation, limit,
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and shares. DRS is different from the Filter scheduler in terms of the granularity of

controlling the resources, but it is similar to OpenStack in that it evaluates the cluster

imbalance by using the standard deviation of host resource entitlements and dynami-

cally schedules the workloads. These resource management strategies have limitations,

specifically ”each of them does not care the performance goal such as the SLO.”

VMVMVMVM

DRS  
(Distributed Resource Scheduler)

ESX host

VMVMVMVM

ESX host

VMVMVMVM

ESX host

ESX Cluster ESX Cluster

VMVMVMVM

ESX host

…
Resource Pool

Figure 2.5: VMWare vSphere DRS. DRS collects the stats of VMs and hosts and dy-

namically schedules the VMs possibly by migrating them to other hosts.

To overcome their limitations, the datacenter frameworks require flexibility and

efficiency. The flexibility means that the frameworks should prioritize the workloads

based on their performance goals and allocate the resources accordingly. The efficiency

means that the frameworks have to maximize the performance of workloads by allocat-

ing the resources properly. To gain the flexibility and efficiency, we propose a resource

manager, consisting of the local scheduler and global scheduler. These schedulers are

different from the existing datacenter schedulers such as the OpenStack Filter sched-

uler, in that they focus on the performance goals. In the case of the global scheduler,

it periodically predicts the changes in latency, and if the predicted value exceeds the

predefined threshold, it triggers the performance recovery procedure. In the case of the

local scheduler, it classifies the workloads based on their characteristics, and allocates
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the resources considering their service goals. For example, the local scheduler allows

latency-critical workloads to use the dedicated resource pool, but gives other batch

workloads to the shared resource pool, for which the latency does not matter. The lo-

cal scheduler also adaptively reacts to the resource contentions on the host, and thus it

can mitigate the performance degradation of workloads and improve the performance

isolation for the workloads.
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Chapter 3

HIS: Towards Hybrid Isolation for
Shared Multicore Systems

3.1 Introduction

A variety of applications from the simple web server to the complicated machine learn-

ing are running in the modern data centers. In the data centers, these applications are

typically running on the multicore servers, sharing the computing resources such as

CPU and memory to improve resource efficiency. Sharing resources on a machine is

essential to reduce the total cost of ownership (TCO) of the data center; however, it

causes contentions for the shared resources leading to performance degradation [23].

The performance degradation may result in user complaints and tremendous revenue

loss [24]. To meet the service level objectives (SLOs) of multiple applications while

improving resource efficiency in a machine, it is necessary to enforce isolation tech-

niques appropriately to mitigate resource contentions.

There are two types of isolation techniques for multicore systems, that is, soft-

ware and hardware ones. Software techniques are isolation techniques that allocate
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resources such as CPU and memory by controlling interactions among threads and

resources in a software manner. They are broadly used in various platforms because

it is relatively easy to adopt software isolation techniques [7, 9]. Moreover, software

techniques are flexible in terms of performance, allowing multiple configurations for

maximizing performance [11, 14]. On the other hand, software techniques are rela-

tively loose isolation than hardware ones since they do not directly segregate or ma-

nipulate resources contrary to hardware ones. It makes software isolations less strict

and less responsive than hardware ones, which may result in relatively slow isolation

enforcement and high-performance variations [17]. Further, compared with hardware

isolation, software one may have a larger search space for configurations due to con-

siderable available combinations. For example, hardware cache partitioning provides

strict isolation for last-level cache, and per-core dynamic voltage frequency scaling

(DVFS) is useful when boosting latency-critical operations [16, 17].

Several research works have utilized software and hardware isolation techniques.

First, some works use software techniques, such as core allocation, cycle throttling,

and thread placement [7, 8, 11, 14]. Software approaches focus on efficient, portable,

and flexible isolation. However, their approach is less strict in terms of providing pre-

dictable performance, and less responsive in that latency to isolation may be relatively

high. Second, a few works utilize hardware techniques, such as hardware cache parti-

tioning and per-core DVFS [16, 17]. Hardware approaches are strict and fast because

they directly control the hardware feature for performance isolation. Their approach

allows stable performance for workloads by segregating resources completely or quick

response time for rapid changes in workloads. However, the approach may use a few

hardware configurations that may not be enough for achieving maximum performance.

Third, some research works use both hardware and software techniques for the isola-

tion of multiple resources [25, 26]. Their works are in line with ours in terms of using

multiple types of isolation techniques. However, we focus on the tradeoffs in hard-
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ware and software techniques, which they have not fully explored, and we effectively

perform isolations by profiling the sources of performance degradation among various

resources, which they have not focused.

In this chapter, we investigate the characteristics of isolation techniques in terms

of strictness, responsiveness, and flexibility. We explore the tradeoffs lying between

hardware and software techniques and further evaluate a prototype that combines soft-

ware and hardware isolation techniques to overcome the shortcomings of each iso-

lation technique. The proposed scheme considers the tradeoffs mainly caused by the

isolation mechanism which is either strict and low-latency hardware techniques or

loose but flexible software ones to mitigate the contentions dynamically according to

the workloads’ resource demands and execution patterns.

To realize the hybrid isolation scheme, we developed a profiler and a user-level

scheduler that uses four isolation techniques. Profiler conducts online profiling stages

that collects performance counter samples during no contention for estimating resource

contentions. It is useful to track the changes in contentions and identify which resource

is the most contentious. Scheduler uses two hardware isolations, which are hardware

cache partitioning and per-core DVFS, and two software isolations that allocate cores

and perform thread placement. Using these techniques, the scheduler can perform iso-

lation strictly, fast, and flexibly to consolidated workloads. We have evaluated our

scheme for latency-critical workloads with different levels of SLOs when colocating

best-effort workloads having diverse characteristics in terms of resource contentions.

Our results show that the proposed scheme can improve the performance of foreground

workloads by from 1.4−76× compared with Heracles [25], the recent performance

isolation frameworks.

The contributions of our work as follows:

• We have explored the tradeoffs between hardware isolation techniques and soft-

ware ones in terms of the strictness, responsiveness, and flexibility.
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• We have designed and implemented a hybrid isolation system that profiles the

sources of contentions in an online manner and adaptively isolates workloads

considering the characteristics of workloads and tradeoffs in the isolation tech-

niques.

• We have evaluated that our system can effectively improve the performance

compared with the state-of-the-art isolation scheme for the latency-critical work-

loads with diverse SLOs.

The rest of this chapter is organized as follows: Section 3.2 describes the tradeoff

between hardware and software techniques, and Section 3.3 shows problem of inef-

fective isolations; different isolation effects and inefficient isolation decisions. Section

3.4 describes the design and implementation of our hybrid isolation scheme. Section

3.5 shows the evaluation results. Section 3.6 covers the related work. Finally, Section

3.7 concludes this chapter.
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3.2 Trade-offs between Hardware and Software Techniques

In this section, we describe the trade-offs between hardware and software isolation

techniques. Also, we present the effects of isolation techniques by the characteristics

of workloads such as resource demands.

To describe the trade-offs, we ran two workloads, each is a multi-threaded process

and ran on a single socket while enforcing performance isolation. The test machine

has 32GB of RAM, and its CPU is a Xeon E5-2683v4 (2.1GHz, 16-cores). We turned

off the hyper-threading feature. For baseline, we used static software isolation (i.e.,

Core Allocation). We used cgroups cpuset [6] to allocate 8 cores (16 cores) of

one socket equally to each workload and allocate local memory. We chose several

benchmarks for foreground workloads that show a diverse range of memory and LLC

access pattern; streamcluster and canneal of PARSEC [27], and kmeans and

nn of Rodinia [28], and Apache benchmark (ab). For background workloads, we used

SP of the NASA parallel benchmark [29] because it shows high LLC and memory

bandwidth usage enough to stress memory subsystem.

Strictness. To show the strictness of hardware techniques and software ones, we com-

pared hardware cache-partitioning and software cycle-limiting by running two work-

loads concurrently on a socket. We ran canneal as a foreground and SP as a back-

ground by allocating the equal number of dedicated cores. For hardware isolation, we

allocated the equal amount of LLC to each workload, and for software isolation, we

limited the CPU cycles of a background workload to use only 50% of assigned CPU

cycles to restrict LLC accesses to its half.
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Figure 3.1: Comparing the strictness of the hardware and software isolations, necessary

for predictable performance, the software one shows high variation of performance.

Workloads are canneal (foreground) and SP (background). x-axis represents the

number of samples and y-axis represents LLC allocation and IPC of workloads.

Figure 3.1 shows the changes in LLC usage and instructions per cycle (IPC) of

foreground and background workloads. As shown in Figure 3.1a and 3.1b, when using

the hardware isolation technique, the LLC allocations are equally divided all the time

due to the direct and strict segregation of hardware isolation. On the other hand, when

using the software isolation technique, the LLC allocations are changed dramatically

over times, because the software isolation does not guarantee the physical segregation
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of resources.

The difference between isolation techniques makes the performance of workloads

unpredictable. Figure 3.1c and 3.1d show the performance variations of the software

isolation. Software CPU cycle limiting shows a larger variation compared with the

hardware cache partitioning in the case of foreground workload. Even worse, in the

case of background workload, those variations are getting much bigger, showing more

unpredictable IPCs when software cycle limiting. As a result, we find that the hardware

isolation technique provides better predictable performance than the software isolation

technique by enforcing strict isolation.

Responsiveness. We also compared responsiveness of the hardware and software tech-

nique to find which technique can provide more fine-grained contention control by

performing isolation quickly. We define responsiveness of isolation technique as the

latency to its effect. We chose per-core DVFS as a hardware isolation technique and

CPU cycle limiting as a software one to demonstrate the difference in terms of the

responsiveness. Per-core DVFS can adjust the core frequencies at 0.1GHz granularity.

On the other hand, CPU cycle limiting can change the cycle at 1% granularity. Even

though the control granularity of software is more fine-grained, the speed of enforc-

ing isolation is faster when enforcing hardware isolation. Enforcing core frequency

takes a couple of milliseconds. Meanwhile, enforcement of cycle limiting takes 40-50

milliseconds which is 13-25× longer than DVFS as shown in Table 2.1.

To illustrate the responsiveness of the hardware and software isolation technique,

we ran two workloads in a socket, and each runs on the eight dedicated cores; one

is apache web server and the other is SP that shows high LLC and memory band-

width demands. We evaluated the responsiveness of isolation techniques by running

the apache benchmark (ab) which sends the requests to the web server. While running

two workloads, we increased the request load of the web server, and also throttled the
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Figure 3.2: Comparing the responsiveness of the hardware and software isolations. The

graph shows the responsiveness can affect the performance. Workloads are apache web

server (ab) (foreground) and SP (background). x-axis represents the percentile of web

server request and y-axis represents the latency of web server

execution of the background workload. To compare hardware and software techniques,

we conducted the experiments twice; first with per-core DVFS, and second with CPU

cycle limiting. In both experiments, we throttled the CPU cores of the background

workload by increasing the degree of isolation by a step at every 200 milliseconds,

and we increased ten steps. For per-core DVFS, we changed the CPU frequency of

the background workload from 2.1GHz to 1.2GHz by 0.1GHz. In the same way, for

CPU cycle limiting, we also changed the allowed CPU cycle percentage from 100%

to 57%, which is the same degree as DVFS. Figure 3.2 presents how the hardware

isolation technique responds more quickly. When performing the software isolation,

98th percentile latency can be 1.33× higher than hardware isolation. This latency dif-
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ference in tail-latency comes from fast isolation speed thanks to low overhead of hard-

ware technique. The effect of fast isolation may be more important where the resource

contention changes frequently or fine-grained control matters. Consequently, we find

that the hardware isolation technique is more responsive than software one.

Flexibility. We investigated the flexibility of the hardware and software isolation tech-

nique. Flexibility means the ability to choose better scheduling options by mapping

threads to resources (e.g., CPU cores and memory nodes) or grouping workloads which

minimize the contentions and improve the throughput for the workloads. To describe

the effectiveness of flexibility, we grouped four workloads, which shows high LLC-

intensity or memory bandwidth intensity, into two groups. And, two workloads are

paired in each group, and scheduled each group to the separate sockets. We performed

different isolations to the same four workloads; the first with the hardware cache par-

titioning and the second with scheduling by regrouping the background workloads.

Figure 3.3 shows scheduling is more effective than hardware cache partitioning, so

that the performance of canneal and SP improves by up to 1.6× and 1.3× than the

hardware one. Some workloads show performance degradations, but their performance

loss is reasonable considering the other workloads’ performance benefit. The results

indicate that software isolation can be useful when the resource contention can not

be reduced by the hardware isolation, which have a few isolation options. In this ex-

periment, hardware cache partitioning can only solve resource contention in a socket.

However, software isolations such as migration enable more options for enhancing

performance and improving resource efficiency.
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Figure 3.3: Benefits of the flexible software isolation. canneal and SP show high

LLC and memory contentions. However, swaptions and nn are relatively not. In

case of performing the hardware isolation, the contention is still high. On the other

hand, the software isolation can effectively mitigate the contention significantly. x-axis

shows the runtime and speedup of workloads and y-axis shows their name and CPU

affinities. The ranges in parenthesis indicate the range of CPU IDs where workloads

run.

3.3 Ineffective Isolations

3.3.1 Different Isolation Effects

In addition to the trade-offs between isolation techniques, the isolation effects depend

on the characteristics of workloads such as resource demands. The same isolation tech-

nique can deliver different impacts according to the workloads. We present a simple

example of multiple isolations are performed on the different foreground under the

high LLC and memory contention.

To demonstrate the effectiveness of each isolation, we tested all isolation tech-

niques which are Partitioning, Throttling, and Scheduling. We manu-

ally divided LLCs evenly to workloads using Intel CAT for Partitioning. We
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Figure 3.4: Enforcing multiple isolations to streamcluster and canneal, each

colocated with SP. The execution time is normalized to the performance of a work-

load running on the dedicated cores on the default system (P: Partitioning, T:

Throttling, and S: Scheduling).

also changed the execution rate of background workload by setting the frequency of

core as the highest frequency(2.1 GHz), the middle frequency(1.7 GHz), and the low-

est frequency(1.2 GHz) for Throttling. Finally, we changed the number of cores

of the background workload to the half of allocated cores, which is four cores, to de-

scribe the effect of mitigating memory contention via Scheduling. The baseline is

the case of when two workloads are running on its dedicated cores without performing

any isolation.
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As shown in Figure 3.4, the performances of foregrounds vary according to the dif-

ferent isolation techniques. This is because the resource demands of the foregrounds

are different from each other, and also isolation effects are different depending on the

isolation techniques as well. In the case of streamcluster, partitioning LLC in-

creased the execution time by 20% compared with the baseline, but Throttling

or Scheduling reduced the execution time by 10% compared to the baseline. This

is because the streamcluster is a memory bandwidth intensive workload, so re-

stricting LLC makes its performance worsen. However, Throttling or Scheduling

could increase the memory bandwidth of streamcluster by reducing background’s

memory access. In the case of canneal, it uses less memory bandwidth than streamcluster,

but it is an LLC intensive workload with high LLC hit ratio. For canneal, all three

isolations can reduce the execution time significantly.

However, in the case of streamcluster, when both techniques (Throttling

and Scheduling) are used, the execution time is reduced by 24% compared with the

baseline configuration. On the other hand, in case of canneal, the execution time is

reduced by up to 38%, which is the highest performance improvement. In this way, we

find that effective isolation techniques can be different according to the characteristics

of the workload. Moreover, we realize that it is necessary and important to enforce

appropriate isolation techniques adaptively considering the changed contentions.

3.3.2 Inefficient Isolation Decisions

Performing the “right” isolation technique is critical to the performance isolation.

The quality of isolation decision can be determined by ”which isolation is used” and

whether “the chosen isolation technique can mitigate the most significant contention

effectively”. However, current recent isolation frameworks perform isolations based on

1) the offline analysis of contentions for workloads or 2) the online performance feed-

back such as tail latency and throughput. The former is regarded as expensive approach
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in that it requires offline analysis to accurately mitigate resource contentions. More-

over, it may need another offline analysis for every machine platform and workloads

to get workload profile. On the other hand, the latter does not have to require offline

data, instead it directly gets performance feedbacks periodically to decide isolations.

However, when deciding isolations, it does not consider which isolation technique is

the most contentious one. This can affect to the quality of isolation decisions when

multiple isolation techniques are utilized to reduce performance interferences. There

may be possible to allocate resources or set configurations sub-optimally without con-

sidering the most contentious one or coordinating isolation techniques.

Table 3.1 and figure 3.5 shows the comparison between recent isolation system

(i.e., Heracles [25]) and our proposed system. Heracles is well-known performance

isolation system that utilizes multiple isolation techniques to mitigate resource con-

tention among a latency-critical workload and best-effort workloads while improv-

ing resource efficiency. It consists of multiple sub-controllers and one high-level con-

troller. A high-level controller is responsible for monitoring tail-latency of a latency-

critical workload and deciding whether the best-effort workloads can be allocated

more resource allocations or not by the application-level performance data, which are

the tail-latency and loads (i.e., 99th percentile latency and queries per second), ev-

ery fifteen seconds. To obtain performance feedbacks from latency-critical workloads,

applications need to be modified to send their end-to-end latency data to Heracles.

Sub-controllers are responsible for different resource contentions including core &

memory, power, and network bandwidth. These sub-controllers simultaneously per-

form isolations every two seconds according to the decision for resource allocation

given by a high-level controller. Unlike Heracles, our scheme does not need applica-

tion modification for isolation decision. We directly measure which resource is how

much contentious and perform isolations for the most contentious one at the time.

Although our scheme does not consider simultaneous isolations enforcement, we con-
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sider the most contentious isolation at a time, thereby we can avoid the sub-optimal

isolation decision that worsen application’s performance. Moreover, isolation interval

is relatively short that is able to quickly adapt to the changes in dynamic resource

contention compared with Heracles.

FG 
Workload BG 

Workload

Server Machine

latency, 
load sender

High-level 
Controller

isolation techniques

Sub-
Controller
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Controller
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ControllerUser-level

OS Kernel 
(Linux)

(a) Heracles Architecture
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Feedback/Monitor Flow

Control Flow (Scheduler)
Control Flow (Profiler)

(b) HIS Architecture

Figure 3.5: Comparing the system architecture of Heracles and ours
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Table 3.1: Comparison between Heracles and the proposed scheme

Heracles [25] HIS (Proposed)

Need for

App. Modification
O X

Contention Analysis X O

Simultaneous Isolation

Enforcement
O X

Isolation Decision
by application’s latency

and loads

by application’s

contentions

Isolation Interval
High-level Controller: 15s

Sub-Controller: 1∼2s
100ms

3.4 HIS: Hybrid Isolation System

This section describes the overview of how our proposed system can deal with the

trade-offs between multiple isolation techniques depending on the characteristics of

workloads. To achieve this goal, we propose HIS, a hybrid isolation system that lever-

ages hardware and software isolation techniques to mitigate contentions and improve

the performance of workloads.

Figure 3.6 illustrates our HIS architecture. As described in the figure, our system

consists of a profiler, isolation techniques, and a scheduler. We divide workloads as

foreground workloads and background workloads. The foreground is a latency-critical

or high-priority batch workload and the background is the best-effort workload. HIS

groups these two types of workloads and performs isolations on workload groups and

places a group on a socket to improve resource efficiency. We also assume there is one

foreground workload in the workload group like other clouds do [25].
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Figure 3.6: HIS architecture. It consists of a profiler, isolation techniques, and a sched-

uler. The redline shows control flow and black dotted line shows the feedback of work-

load profiles, performances, and isolation decisions. The scheduler uses four isolation

techniques; two hardware isolations (i.e., Intel CAT and per-core DVFS) and two soft-

ware isolations (i.e., core allocation and thread migration).

The profiler collects the performance counters from workloads, and then profiles

resource contentions from the collected counters. To profile resource contention on-

line, the profiler performs solo-run mode, which enables for a foreground workload to

run alone, to obtain the performance counters of each workload when no contention

exists. After profiling solo-run data, the profiler collects performance counters of con-

solidated workloads to estimate how contentions affect resource usages. We define the

performance counters of workloads when workloads co-executes as co-run data. Note

that, we currently consider the solo-run data for the foreground workloads. We will de-

scribe more detail of solo-run mode at the Section 5.1.Both the obtained solo-run data
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and the co-run data are used to calculate the resource contention. After that, it sends

the information of resource contention to the scheduler. Then, the scheduler checks

which resource contention is the most contentious and decides an isolation technique

considering the types of isolation technique and resource contention. Once an isola-

tion technique is selected, the scheduler searches for a configuration of isolation and

enforces isolations until the contention is minimized to below the pre-tuned thresh-

old (i.e., 5% for each contention). In other words, the scheduler adjusts isolations to

reduce the resource contention for a foreground workload close to when the work-

load runs alone. The scheduler repeats this procedure until the foreground workload

finishes.

For isolations, HIS checks which isolation technique is the most appropriate one

among multiple isolation ones; HIS considers multiple hardware and software isola-

tions, and applies isolation techniques incrementally to improve the performance of a

foreground workload while maximizing that of background one. This approach is use-

ful because the scheduler reflects the subsequent resource contention and can enforce

the corresponding isolation technique. For enforcing a proper isolation, the scheduler

should know the dominant contention and decide appropriate isolations. Following

sections will describe how the profiler profiles contention and how scheduler chooses

isolation configurations in detail.

3.4.1 Profiling Contention

Profiling contention is essential for performance isolation. Our scheduler receives the

resource usages of workloads from the profiler to estimate the contention on the sys-

tem. To profile the contention, the profiler measures the per-workload performance

counters such as LLC misses and LLC references in every profile interval (i.e., 100ms).

It calculates the resource contention by the difference of resource usages between when

all workloads run concurrently (co-run) and when a workload runs alone (solo-run).
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We used the differences of co-run and solo-run data, because it presents resource sen-

sitivity of a workload that how much the performance of workloads is degraded by the

contention compared with no contention exists [12, 17, 30].

The profiler maintains the solo-run data for each foreground workload to calculate

the resource contention, thus the scheduler checks whether the solo-run data exists or

the execution phase has changed at every scheduling interval using already sampled

data. If there is no data to calculate resource contention or the profile sample data

is outdated, then the scheduler dictates to collect the new samples for solo-run data

by stopping other background workloads. We call this procedure solo-run mode. We

used two signals to enable solo-run mode; SIGSTOP for stop running workloads and

SIGCONT for resume stopped workloads. To enable the solo-run mode, the profiler

stops all current isolations and also pauses other background workloads during the

successive profile intervals (e.g., one or two seconds). During the solo-run mode, only

a foreground workload runs alone, and after finishing, the profiler stores all collected

performance counters during the mode and resumes all previously paused isolations

and background workloads.

The profiler classifies the workloads by their mostly used resources and also clas-

sify them by the type of the workload provided by users (e.g., FG and BG). We fo-

cused on the LLC and memory bandwidth to mitigate the contention on the mem-

ory subsystem. To measure the LLC contention, we used the LLC misses and LLC

references, obtained by performance counters, and calculate the LLC hit ratio

reflecting how much workload reuses the LLC. In addition, local mem bytes, ob-

tained by Intel Resctrl, is used to estimate the memory bandwidth contention. The

metrics can be added to consider more contentions and complicated execution pat-

terns. With these metrics, the profiler can determine the dominant resource by compar-

ing them, and also classify a workload as one of which CPU-intensive, LLC-intensive,

or memory bandwidth intensive at every scheduling interval.
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3.4.2 Hybrid Isolation

In this section, we will detail the trade-offs of isolation techniques and describe how

our scheduler leverages them to mitigate the contention.

Isolation Mechanisms

HIS considers four isolations to mitigate contentions. In Table 2.1 of Section 2.1.1,

HIS uses four techniques, which are hardware cache partitioning, per-core DVFS, core

allocation, and thread migration, in hybrid isolation system.

Hardware Isolations. For hardware isolations, we used the Intel Cache Allocation

Technology (Intel CAT) and per-core dynamic voltage frequency scaling (DVFS).

With Intel CAT, HIS can allocate a LLC by the unit of a way. In our machine (i.e.,

Xeon E5-2683v4, 16-cores per socket), a socket has 40MB of LLCs and each consists

of 20 ways. Intel CAT provides strict isolation for the LLC in a socket, because it

partitions LLCs physically by masking the ways in Resctrl. We also used the per-core

DVFS to throttle the execution of workload. Per-core DVFS is used to improve power

efficiency of processors as well as mitigate the contentions and enable fine-grained

control to improve performance of workloads. Using per-core DVFS, the scheduler

can rapidly mitigate the memory contention, generated from contentious background

workloads by adjusting the frequencies of cores running backgrounds. For enforcing

core frequencies, we used the CPUFreq Governor of Linux.

The hardware isolations perform strict and quick isolation compared with the soft-

ware isolations. Hardware cache partitioning provides the strict isolation which affects

more predictable performance for the workloads. They generally take few millisec-

onds to reflect their effects to the workloads’ performance. As shown in Table 2.1 (in

Sec. 2.1.1), we observed 2−3ms of latencies, and this low latency is beneficial to meet

the SLOs of the latency-sensitive workload when the execution patterns of workloads
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changed frequently or the load of latency-sensitive workload shows high variation.

Software Isolations. For software isolations, we used the cgroups cpuset to al-

locate CPUs and memory nodes to workloads. To mitigate the contentions on the mul-

ticore systems, two software isolations are used in scheduling; core allocation and

thread migration. Core allocation performs the allocation of CPU cores for workloads

to isolate core resources by their CPU demands. For example, latency-sensitive work-

loads such as the web server can show high load variation by the user patterns, so the

CPU demands can vary by their loads. Therefore, core allocation should be performed

according to the CPU demands to improve resource efficiency and meet the SLO of

foreground workloads.

Unlike core allocation which manages the contention of a workload group, thread

migration detects the performance imbalance between workload groups, then it re-

groups those workloads by migrating workloads to the other socket. The thread migra-

tion is effective when the contention on a workload group is too large to be mitigated

by other isolations (e.g., hardware isolations) on the single socket. However, too fre-

quent thread migrations may be harmful to the performance because the cost of the

memory migration over the sockets is expensive [31]. Therefore, we designed that

thread migration is triggered only (1) if the performance benefit is estimated to exceed

the threshold or (2) if the phase changes in a workload group is detected.

The software isolations provide flexibility compared with the hardware isolations.

Core allocation treats CPU demands as well as mitigates memory contention accord-

ing to the type of contention of workloads. They typically take more times than the

hardware isolations to reflect isolation impacts on the workloads’ performance (e.g.,

tens to hundreds of milliseconds).
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Hybrid Scheduler

The hybrid scheduler periodically (1) chooses a proper isolation technique and (2)

searches isolation configurations to improve the performance of foreground workloads

within the workload groups. Before the hybrid scheduler initiates isolations, the pro-

filer sends the information about current active workload groups, such as pid, workload

type (FG or BG), and profiled resource contention to the scheduler. By using the work-

load group information, the scheduler initiates the isolations for the workload groups

in parallel. While performing isolations, the scheduler checks whether the workloads

in the group need solo-run data to calculate contentions, and if yes, requests for the

profiler to perform solo-run mode to collect the new solo-run data.

Choosing an isolation technique. The hybrid scheduler chooses an isolation tech-

nique based on the mostly contentious resource, identified by the profiler. For the

resource contention, at first, the scheduler checks whether the hardware isolation is

available for the resource or not, and chooses the isolation if the isolation is possible

and has not been tried. Between software and hardware isolations, the scheduler pri-

oritizes hardware isolations for the strict and fast isolation. If all hardware isolation

has tried before, the scheduler checks whether the software isolation technique are

available for the resource or not and if it is possible then chooses the software isola-

tion. If all the hardware and software isolations are used, the scheduler reconsider all

techniques to reuse them. We implemented our policy to consider hardware isolation

as much as possible. However, the policy for choosing an isolation technique can be

changed to meet SLOs of the workloads.

There are two cases that the software isolations are chosen rather than hardware

one. The first case is wrong invocation for an isolation technique. The scheduler often

fails to search a better configuration due to the a few errors of profile data. For instance,

the profiler may identify CPU contention as major factor when the actual contention is
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LLC contention. In this situation, the scheduler may perform hardware cache partition-

ing by its profile results. To minimize this case, we may choose isolation techniques

more conservatively by not changing techniques until successive contentions are de-

tected. The second case is when the scheduler exploits all hardware techniques, but

still fails to reduce the contention because of their lower number of available con-

figurations. For example, while the per-core DVFS may be not enough for mitigating

severe memory contention due to its small configuration ranges, restricting the number

of cores may be more beneficial to mitigate memory contention.

Enforcing isolation. After choosing the isolation, the scheduler searches isolation con-

figurations that minimize the resource contention by enforcing the various configura-

tions repeatedly and incrementally. Whenever before enforcing isolation, the scheduler

decides whether it allocates more resources to the foreground workload or not, based

on resource contention. For example, if the dominant resource contention for the fore-

ground workload is LLC contention, and also if the LLC hit ratio of the foreground

one during co-run is lower than that of solo-run, the scheduler allocates more LLC

ways to foreground workload. Because lower LLC hit ratio than the solo-run typically

means that foreground workload can be improved if the workload is assigned more

LLC ways.

Once the isolation is performed, the scheduler waits until the effect of enforcing

an isolation is reflected, and then it repeatedly checks the degree of the contention.

We empirically find that 100ms is the most effective time to feedback contentions, yet

the wait time can be tuned depending the target workloads. The scheduler finds there

is no severe contention, or it can not perform the isolations further (e.g., searching

all possible configurations), then the configuration search ends. Finally, the scheduler

enforces the configuration for chosen isolation.
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3.5 Evaluation

This section describes the preliminary experimental setup and results. We evaluated

the hybrid isolation system for the batch and latency-sensitive workloads compared

with the default Linux system using static software isolations. Here, we define the

baseline as the case of co-run where the foreground and the background runs together

on a socket. Both workloads share memory subsystem such as an LLC and a memory

controller, but have their own dedicated CPU cores.

3.5.1 Experimental Setup

We evaluated the HIS on a dual 16-core Intel Xeon E5-2683 v4 server. The LLC size

of the server processor is 40MB and can be allocated to the workload in 2MB units

(per a way) using Intel CAT. The nominal frequency is 2.1GHz and the configurable

core frequencies are 10 steps from 1.2GHz to 2.1GHz. We turned off Turbo-boost and

Hyper-threading. Our test machine is equipped 32GB of RAM with each socket. The

maximum bandwidth of the socket is measured to 68 GB/s by Intel VTune and we used

Linux kernel 4.19.0.

We used various benchmark applications from four different suites. For batch fore-

grounds, we used PARSEC (bodytrack, canneal, streamcluster, dedup,

facesim, ferret, fluidanimate, swaptions, and vips) and Rodinia (cfd,

nn, kmeans, and bfs). For latency-sensitive foregrounds, we used the apache web

server and ab (apache benchmark), three workloads (xapian, moses, and sphinx) in

Tailbench [32]. In the case of latency-sensitive foreground, the scheduler should re-

spond quickly to deal with the load spikes of the web server. We chose the SP from

NPB as the background for comparing static naive approach and ours, because SP

shows high memory bandwidth and LLC usage than other benchmarks. For compari-

son with Heracles, the-state-of-art isolation system, we chose three different levels of
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background workloads in terms of memory intensiveness; for CPU workloads, bfs

and swaptions, for LLC-intensive workloads, canneal and facesim, for mem-

ory bandwidth-intensive workloads, SP and UA.

3.5.2 Experimental Results

Batch Workloads

We show the performance results for the batch workloads running as the foreground

in Figure 3.7. In the figure, HIS isolates foreground workload effectively, so that the

performance of batch workloads are improved significantly compared to the co-run.

In case of canneal, the performance is improved more than 1.7× than co-run with

simple core isolation that the workloads run on their dedicated cores, and the scheduler

improves the performance of benchmarks on average 1.22× than co-run. On the other

hand, the performance of the background workload is degraded, because our scheduler

restricts the resource usage of the background workload to improve the performance

and the responsiveness of foreground.

Latency-sensitive Workloads

Figure 3.8 presents the performance of latency-sensitive workload running as the fore-

ground. In order to evaluate the performance of latency-sensitive workload, we modi-

fied the abwhich uses the Pareto distribution to reproduce situations where a few users

are connected during most of the time and the connections are bursty. We measured

the percentile latencies of requests.

In the figure, HIS can reduce the tail-latencies of web server below the performance

of solo-run (8 cores) until 99.9th percentile, because the scheduler considers changes

in dynamic load of the web server as well as the dominant resource contentions, and

enforces various isolation techniques according to them. We also plot the tail-latencies
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Figure 3.7: Performance improvement of the batch foreground workload with HIS

compared to the co-run. Each workload is initially allocated eight dedicated cores

(background workload: SP).

of solo-run (12 cores) to compare with the proactive approach that reserves CPU cores

as much as the maximum CPU cores that HIS allocates under the experiment. The

latencies of HIS are higher than solo-run (12-cores), because HIS begins by allocating

fewer cores to workload and increase the number of cores assigned to the workloads.

Compared with the co-run, HIS achieves the performance up to 2.14× speedup

(for 99.9th percentile latency), while the performance of background workloads is slow

down by 1.47×. We observed that the main reason for the performance improvement

of foreground is due to fast and strict hardware isolation, core isolation which allocates

more cores depending on the CPU demands, and adaptive isolations.
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Figure 3.8: Performance improvement of the latency-sensitive foreground workload

(Apache web server) with HIS compared to the co-run. Each workload is initially

allocated eight dedicated cores (background workload: SP).

Comparison with the recent work

We compared ours with the recent isolation scheme, Heracles, using several workloads

in Tailbench [32] to show the performance improvement under dynamic contentions.

We chose three latency-critical workloads (moses, sphinx, and xapian) from Tail-

bench that can show various levels of SLOs from seconds to milliseconds. moses is

a latency-critical statistical machine translation workload that translates one language

to another one. sphinx is a latency-critical speech recognition workload, processing

natural languages, which is very widely used in AI speakers. xapian is a latency-

critical online search workload that requires very low latency to return the output of

users’ search. To identify the characteristics of benchmarks for experiments, we con-

ducted experiments under no contention by increasing the levels of loads in terms of
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Figure 3.9: The performance profile of latency-critical workloads

QPS. We followed evaluation setup as described in Tailbench. Figure 3.9 shows the

performance profile of latency-critical workloads.

As shown in the figure, we found that the loads that abruptly increase 95th per-

centile tail-latency. Using these loads, we defined peak loads and also set the high

load configurations of these workloads as 70% of peak loads. Each high load configu-

rations is as follows; For the configuration of xapian is 1540 QPS, for moses, 140

QPS, for sphinx, 5.6 QPS. For 99th percentile tail-latency at the high load configu-

rations, xapian takes under 10ms, moses takes from 10ms to 1s, and sphinx takes

more than 2s.

Further, we analyzed the characteristics of selected workloads for evaluation. Fig-

ure 3.10 shows the various resource usages of selected workloads. As shown in fig-

ure 3.10a, we can easily figure out that sphinx is the most memory bandwidth-

intensive one, moses shows moderate bandwidth usage, and xapian barely uses

memory bandwidth. However, as the figure 3.10b and 3.10c show, xapian shows

higher last-level cache hit ratio and IPCs than moses.

With these workload configurations, we conducted experiments that show how our

proposed scheme performs well compared with Heracles. Note that, scheduling inter-

val of HIS is 100ms. Therefore, for fair comparison with Heracles, we adjusted the

scheduling interval of all controllers (both high-level controller and sub-controllers) in
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Figure 3.10: The characteristics of latency-critical workloads

Heracles as one second. In addition, we implemented three sub-controllers for Her-

acles, focusing on memory contentions; sub-controllers for Cores, LLC, and CPU

frequencies. All sub-controllers measure current memory bandwidth before perform-

ing isolation based on collected performance counters (i.e., local memory bytes

from Intel Resctrl and number of CPUs, CPU frequency) to decide allocate more re-

sources or not. On the other hand, HIS collects local memory bytes, LLC misses,

LLC references, instructions, cycles, number of CPUs, number of threads,

and CPU frequency.

We also set the SLOs of each workload as 1.5× the 99th percentile tail-latency.

(i.e., xapina: 7ms, mesos: 223ms, sphinx: 3s). Figure 3.11 shows the evaluation

results of Heracles, a naive isolation, and ours. Naive isolation is naive resource al-

location that statically partitions CPU cores evenly and does not manage the memory

contention.
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Figure 3.11: Comparing the performance of latency-critical workloads
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As shown in the figure, although Heracles significantly improve the tail-latency

than naive approach, HIS shows similar or latency improvement compared to Heracles

in terms of 99th percentile tail-latency. Especially a red-dotted circle in each graph

shows the most improved case for each workload; xapian improves 76×, moses

improves 1.4×, and sphinx improves 1.6× than Heracles. Even though Heracles

uses conservative resource allocation policy for best-effort workloads that use latency

slack and loads, it is not enough for improving performance. These improvement can

be achieved by their unawareness of the most contentious resources that leads to the

ineffective isolation enforcement. As Heracles does not have any coordination mecha-

nisms for sub-controllers, isolation enforcements are performed sub-optimally.

For xapian, the performance improvement is significantly higher than Heracles,

because the SLO of xapian is very low and small sub-optimal contention manage-

ment can be harmful for the performance of the workload. Heracles may easily perform

wrong isolation for resource contentions that results in the high latency (76×). On the

other hand, HIS continuously tracks all resource contentions and mitigates the most

significant one effectively as well as chooses isolation techniques considering their

characteristics.

Besides latency-critical workloads, we also compared the throughput of best-effort

workloads. Figure 3.12 shows that both HIS and Heracles achieved similar perfor-

mance for the best-effort workloads. For the most improved cases, marked red-dotted

circles in graphs, we observed that latency-critical workload’s performance is not im-

proved and same as Heracles. It means HIS performs isolations more effectively than

Heracles and achieves higher resource efficiency, thus achieving higher background

workloads while maintaining the similar performance of co-located latency-critical

workloads.
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Figure 3.12: Comparing the performance of best-effort workloads
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We also tested the sensitivity of scheduling intervals for Heracles. Heracles has

relatively high scheduling interval to collect meaningful tail-latency feedbacks. There-

fore, when it decides wrong decisions, large interval may be harmful for latency of

latency-critical workloads. We adjusted interval configurations of high-level controller

from fifteen seconds to 100 milliseconds and also adjusted that of sub-controllers from

two seconds to 100 milliseconds correspondingly.

Figure 3.13 describes the how scheduling interval affects to the Heracles. In this

experiments, we observed that shorter intervals than one second results in higher la-

tency. Heracles allocates more resources to best-effort workloads until any SLO viola-

tion or high loads, thus it conservatively allocates resources to the best-effort ones. In

case of shorter isolation intervals (i.e., 0.1 & 0.5 seconds), sub-controllers aggressively

increase resource allocations for best-effort ones which is likely to make more frequent

SLO violation or higher latency. In addition to that issue, tail-latency feedbacks may

be not enough for successful isolation decisions for high-level controller.

As illustrated in the figure, HIS outperforms various settings of Heracles, because

HIS effectively finds which contention is major and rapidly adapts to the contention

fluctuation which may lead to performance degradation.
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3.6 Related Work

There have been many studies on isolation approaches used in multicore systems. Soft-

ware isolation is widely used in most multicore systems. CPI2 [7] detects the per-

formance anomaly and identifies the suffered a victim workload using statistics of

CPI(Cycles Per Instruction), and throttles the CPU usage of the antagonist for per-

formance isolation. Their work is inline with ours in terms of throttling background

workloads with software isolations. However it only uses software techniques which

provide less strict isolation, thereby needs harsh CPU hard-capping for antagoist for

strictness (i.e., 0.01 CPU-sec/sec).

Memguard [8] isolates the memory bandwidth contention based on its memory

budget. It utilizes a software isolation that throttles memory access of each workload

by restricting CPU cycles, thus each workload’s memory bandwidth can not exceed

the assigned memory bandwidth. Similar to our work, it isolates memory resources by

reserving memory bandwidth, but it does not utilize hardware isolation technique, so

there is no guarantee for strict isolation. However, our work uses hardware isolation

techniques to supplement strictness. Both CPI2 [7] and Memguard [8] isolate work-

loads by throttling CPU using a software technique, and they can mitigate memory

contention easily. However software techniques may result in unintended interferences

under the co-location of workloads showing bursty behaviors.

Dirigent [17] is a fine-grained isolation runtime system which partition an LLC and

throttle CPUs. Similar to ours, it exploits hardware isolation techniques such as hard-

ware cache partitioning and per-core DVFS to meet the SLOs of a latency-sensitive

workload while backfilling batch workloads to improve resource efficiency. Our work

is in line with their work [17] in terms of providing fine-grained isolations for consid-

ering the characteristics of workloads. However, we focus on the adaptive enforcement

of multiple isolation techniques according to the characteristics of workloads, thus we
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can take more options for better performance isolation.

Quasar [11] utilizes a machine learning algorithm to infer which colocation mostly

mitigates the shared resource contention, and uses scheduling and thread migration,

which is the software approach, for isolation of consolidated workloads. Their work

is inline with ours in terms of multiple isolation techniques In contrast, they only uses

software isolation techniques for higher flexibility which can not provide strict and fast

isolation.

Heracles [25] and PARTIES [26] isolate workloads by partitioning and throttling

resources using both hardware and software isolation schemes to meet SLOs of pro-

duction workloads while increasing resource efficiency. Similar to ours, their works

are inline with ours in terms of using multiple isolation techniques for multicore sys-

tems. However, their works do not consider the tradeoffs between isolation techniques

which can be harmful for the strictness and flexibility.

3.7 Conclusion

We developed a hybrid isolation system that utilizes hardware and software isolation

techniques in a hybrid manner by the characteristics of the workloads. We have ex-

plored the tradeoffs between hardware and software isolation techniques, and illus-

trated how these properties affect performance of consolidated workloads. We have

proposed an algorithm for isolation to use isolation techniques mutually complemen-

tary through characteristics analysis of workloads and comparison of each isolation

technique. Our experimental results show that our approach can improve the perfor-

mance of foreground workloads in terms of execution time than the static software

isolation by from 1.7×−2.14×, and also improves tail-latency from 1.4×−76× com-

pared to the-state-of-art isolation framework while improving resource efficiency un-

der the different levels of contentions.
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Chapter 4

EdgeIso: Effective Performance
Isolation for Edge Devices

4.1 Introduction

As the Internet of Things has evolved, numerous types of applications have emerged

increasingly. Virtual realities [33], wearable devices [34], smart factories [35, 36], au-

tonomous drones [37], and self-driving cars [38, 39] are such emerging applications,

and these require low latency along with efficient data processing. However, the exist-

ing clouds present relatively high latencies, which are not enough to meet the service

level objectives (SLOs) of those services [40]. For this reason, edge computing is get-

ting attention as a complementary solution.

Although edge reduces the latency by placing services close to users and data

sources, it still has a potential problem that might violate SLOs; resource contention

caused by multitasking for the tasks with different resource demands and SLOs on

edge. For example, the latency-critical tasks which interact with users (or sensors) can

be colocated with the batch ones to process data from them to improve the quality
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of services [37, 41]. As batch tasks typically tend to consume lots of resources, it

can result in unpredictable and degraded performance for the latency-critical tasks.

Moreover, the problem can be worse by the edge’s integrated architecture and limited

capacity. Edge devices, such as NVIDIA Jetson TX2, have integrated CPU and GPU

architecture sharing memory and memory bandwidth. These architectural character-

istics may impose frequent and severe contention for memory when multitasking on

edge [42].

There have been several studies to handle these challenges on edges. An approach

is offloading heavy computations to clouds [43–45]. Similar to ours, it can provide

low latency for tasks on edges, but it does not consider resource contention caused

by multitasking and requires additional resources for offloading. Another approach is

resource reservation for recurrent tasks based on resource capacity such as CPU and

memory [46,47]. Our study is in line with these studies in terms of achieving higher re-

source efficiency by consolidating tasks on nodes. However, they assume the recurrent

characteristics of cloud tasks that may not adapt to the edge’s dynamic environment.

Resource isolation can adjust the degree of accessing the shared resources by using

several isolation interfaces [9,17,23,25,26]. This approach is used in many cloud sys-

tems to isolate performance among tasks. Our study is in line with these studies in

terms of providing isolations for latency-critical tasks. However, these cloud frame-

works do not consider multiple latency-critical tasks scenario, which is common in

edge nodes [9,17,25], or have insufficient capabilities to support more strict SLOs and

adaptive isolations for edges [23, 26].

In this chapter, we propose EdgeIso, a lightweight user-level scheduler that effec-

tively isolates the performance of tasks while maximizing resource efficiency by (a)

profiling the dominant resource contention for tasks, (b) detecting the phase changes

of tasks such as load fluctuations, and (c) performing isolation techniques incremen-

tally and adaptively. To identify the dominant resource contention, we present an effi-
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cient online profiler that utilizes the fact that insufficient allocation for the dominantly

used resource of the latency-critical task affects its performance negatively. The pro-

filer monitors performance counters of both the latency-critical tasks’ co-run and solo-

run and calculates the sensitivities for resource contentions to determine the dominant

resource contention. Also, we developed EdgeIso to perform an isolation technique

incrementally. Although each isolation affects the subsequent shape of resource con-

tentions, this design allows the scheduler to search the best configuration for perfor-

mance isolation effectively. We focus on one of the most crucial resource contentions

for edges, including CPU, last-level cache (LLC), and memory bandwidth. For these

resource contentions, we utilize three isolation techniques; CPU core allocation, CPU

cycles throttling, and GPU core frequency scaling. Although EdgeIso mainly deals

with computation and memory contention, it is applicable to cover other types of re-

source contentions (e.g., network and storage I/O). Lastly, we implement a phase de-

tection mechanism that adapts to the load fluctuation of tasks or changes in resource

demands, thereby avoiding performance degradation and oscillatory behaviors.

We evaluate our proposed scheduler on an NVIDIA Jetson TX2, which has four

CPU cores and 256 GPU ones using batch data processing and latency-critical ob-

ject detection tasks. Our preliminary experimental results show that EdgeIso can ef-

fectively mitigate resource contention, achieve the performance of the latency-critical

and foreground data processing tasks comparable to that of its solo-run, and meet di-

verse levels of SLOs of latency-critical tasks. We also find that our scheduler can meet

SLOs of latency-critical tasks compared with the other alternative schemes, such as

offloading to cloud and resource reservation.

This chapter makes four contributions as follows. First, it identifies the key chal-

lenges of multitasking on edge devices that have integrated SoC architecture and lim-

ited resources. Second, it describes a profiling technique the measures dominant re-

source contention and also describes a practical phase change detection mechanism
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for the resource contention on edges. Third, it describes the design and implementation

details of EdgeIso, which uses several isolation techniques for effective performance

isolation between tasks having diverse levels of SLOs. Fourth, it evaluates EdgeIso on

an NVIDIA Jetson TX2 device to compare with other alternative approaches using the

selected set of benchmarks.

4.2 Motivation and Related Work

4.2.1 Motivation

To show how much resource contention affects the performance of the latency-critical

task, we ran object detection task on GPU and a single core, and also ran each STREAM [2]

as a batch task, which widely known as memory bandwidth benchmarks, on a single

and its dedicated core. Figure 4.1b shows the performance of a latency-critical task

under memory contention. As increasing the number of batch tasks, the tail latency of

object detection is degraded by up to 3× compared with when the no batch task runs.

The results show that shared resource contention can be critical to latency-critical tasks

on edge devices.

Diverse SLOs. Edge applications are different from the cloud ones in that they

have relatively more strict latency requirements (e.g., <300ms) [34, 40]. Like cloud

applications [26], SLOs of edge ones are diverse and ranging from seconds to mil-

liseconds [34, 48]. Edges usually run multiple latency-critical tasks and also run batch

tasks such as data processing and retraining tasks [41]. The diverse SLOs complicate

performance isolations in edges. In order to meet SLOs on edges, accurate and careful

resource management is necessary because wrong decisions lead to significant viola-

tions of the SLOs, which may affect user satisfaction or accidents [48].

High Load Fluctuations. Edge applications often suffer from high fluctuations in

offered traffics caused by the dynamic environment such as user mobility and the cor-
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related events [49]. This high fluctuation indicates the frequently changing resource

demands of tasks. To deal with the load fluctuations, some cloud schedulers provide

reservation schemes for resources in advance [46, 47]. However, edge devices have

constrained resources; thus, it is not a viable solution. Even though there exists adap-

tive runtime for SLOs, it is critical for the runtime to quickly detect the fluctuations

and deal with them effectively for edge devices.

4.2.2 Related Works

There are several techniques for solving these challenges. Figure 4.1c illustrates the

difference between the existing approaches and EdgeIso. Table 4.1 highlights the com-

parison of benefits between the existing techniques and EdgeIso.

Offloading. Edge applications can mitigate resource contention by offloading the heavy

tasks to the clouds. This approach provides low latencies for latency-critical tasks as

well as high throughput for batch tasks. However, it can waste the resources of an edge

node during the idle time of a latency-critical task.

Steel [43] provides the interface for developers to make and deploy edge applica-

tions easily. It also can provide low latency for latency-critical tasks similar to ours and

quickly moves edge tasks to other nodes by using their interface. However, it has yet

no consideration for the resource contentions between multiple latency-critical tasks.

Neurosergeon [45] suggests the offloading scheme which performs layer-wise parti-

tioning of a neural network to improve performance or energy efficiency when running

a DNN workload on edge-cloud. Their work is in line with ours in terms of improving

the latency of the latency-critical task. However, their work also does not consider the

multitasking scenario, which can lead to the resource contention on which we focus.

Semantic Cache [44] offloads inference tasks to clouds and performs caching the re-

sults of them on edges to achieve low latency. However, it also uses a small neural

network as an encoder to learn and classify the similarity of features between incom-
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Figure 4.1: (a) Shared resource contention between tasks on an edge device with inte-

grated CPU-GPU architecture. (b) Performance degradation of the latency-critical task

(object detection; Single Shot Multi-box Detection [1]) by increasing the number of

co-located memory intensive batch ones. We used STREAM benchmark [2] as a batch

one. (c) Comparison between existing isolation techniques and EdgeIso.
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ing images and cached ones, which may need more resources to improve its accuracy.

Therefore, their work is in line with ours in terms of providing low latency. However,

it also has a potential resource contention problem.

Reservation. Another technique is resource reservation for tasks based on the resource

capacity. This approach already adopted in many clouds to meet SLOs of various tasks.

As illustrated in Figure 4.1c, the reservation scheme carefully allocates resources to

tasks by their priorities or resource usage history. It can guarantee certain levels of

SLOs and resource efficiency by consolidating tasks as much as possible based on the

resource utilization such as CPU and memory. However, it does not consider the con-

tention for shared resources, which can degrade the performance of tasks. Moreover,

it may not adapt quickly to edges where execution patterns or resource contention

change continuously according to the edge’s dynamic environment.

Rayon [46] runs on top of YARN [50] and provide the reservation scheme for

tasks based on resource capacity and the deadlines of tasks. Rayon guarantees the

tasks’ deadline by re-ordering the execution and allocating CPU and memory resources

according to the submitted resource requests. However, it does not consider the con-

tention for shared resources such as LLC and memory bandwidth. Our work is similar

to prioritize latency-critical tasks to meet their SLOs. Besides, we also consider the

contention for shared resources. TetriSched [47] proposes a plan-ahead reservation

scheme to know when the resource is available for other tasks based on the history

of recurrent tasks. Using history data, It helps to schedule tasks to wait for resources

of a node or allocate to other nodes. However, similar to Rayon, it does not mitigate

the contention for shared resources, and more importantly, they assume the recurrent

execution patterns aiming to cloud tasks. Also, Tetrisched is in line with our work in

terms of improving higher resource efficiency. However, our work can not only handle

shared resource contention but also adapt load fluctuation more effectively.

Resource Isolation. There are several resource management runtime for clouds ex-
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Table 4.1: Comparison between existing isolation techniques. ((�) shows references

partially working on the feature)

Isolation Techniques

Offloading [43–45] Reservation [46, 47] Resource Isolation [9, 23, 25, 26] EdgeIso

Low Latency (for Latency-Critical Task) � � � �

High Resource Efficiency � � �

Quick Adaptation (�) [43] (�) [9] �

GPU Task Isolation �

ploiting resource isolation techniques. Leverich et al. [23] solve the performance degra-

dation when consolidating multiple latency-critical tasks by adjusting virtual runtime

and task awakening mechanism in Linux scheduler by giving some awakening slack

to prioritize the task. They utilize kind of throttling CPU bandwidth. The resource iso-

lation is similar to ours; however, they do not focus on the shared resource contention

and quick adaptation, which is essential to edges. PerfIso [9] proactively allocates

CPU cores for latency-critical tasks to meet their SLOs and quick adaptation for the

load fluctuations. Similar to ours, it achieves low latencies and quick adaptation, how-

ever, it only focuses on CPU contention and not on shared resources such as memory

bandwidth and LLC, which can be more critical to edge tasks. Both Heracles [25] and

PARTIES [26] isolates shared resources for the latency-critical task to meet their SLOs

by monitoring the task’s current latency. They are inline with our works in that they

use multiple resource isolation techniques, however, unlike ours, Heracles does not

support multiple latency-critical tasks, and PARTIES randomly chooses resource iso-

lation techniques exploiting resource fungibility which can lead to long convergence

time for latency-critical tasks.
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4.3 Design and Implementation

For effective isolation, it is necessary to identify which resource is the most contentious

one. In order to identify this, we utilize the resource sensitivity, the degree of changes

in resource usage under the contentions. The more resource usage changes, the higher

resource sensitivity is. We will call the resource usage (or data) when a task runs alone

as solo-run data, and when multiple tasks run together as co-run data. Calculating

resource contention with the difference between solo-run data and co-run data is the

simple but effective metric for measuring shared resource contention [18]. To utilize

this approach, we develop the online profiler measuring these sensitivities. Also, we

design and implement EdgeIso to perform isolation to reduce those changes in resource

usage for the latency-critical tasks.

Figure 4.2 shows the architecture of EdgeIso. It mainly consists of a profiler and

scheduler. Profiler periodically monitors the resource usage of latency-critical tasks

and its contention running on the edge ( 1 in Figure 4.2). Using profiled data, the

phase detector evaluates whether the calculated resource contentions are larger than

the predefined threshold or not ( 2a ). We define a phase as the degree of resource

usages for a task during the successive profile intervals. If the changes exceed the

predefined threshold, the profiler regards it as a change for the phase, which needs

to update the task’s resource usage to calculate the resource contention appropriately.

Once a phase change is detected, the profiler updates the solo-run data to accurately

calculate the resource contention.

Before monitoring solo-run data of a latency-critical task for its changed phase,

the profiler stops all other tasks and run the latency-critical task alone during the pre-

defined time ( 2b ). If there exist multiple latency-critical tasks, the profiler profiles

each task in a round-robin manner by switching tasks in a fine-grained time slice not

to affect the latency of tasks negatively. The profiler finds the dominant resource con-
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Figure 4.2: EdgeIso system architecture. It mainly consists of the profiler and sched-

uler. The black line shows data flow and the red dotted line shows enforcement (e.g.,

suspending tasks for profiling & performing isolations).

tentions (DRCs), which is the contention showing the most substantial change in re-

source usage due to its sensitivity to contention and sends it to the scheduler ( 3 ).

For isolation, the scheduler tries to find a latency-critical task that violates mostly

its SLO. After that, it decides which isolation should be performed at the next inter-

val considering the contention information and an isolation policy ( 4 ). After all, the

scheduler invokes a selected isolator to perform isolations ( 5 ), and the isolator per-

forms the isolation incrementally ( 6 ). In the following sections, we describe in detail

how the profiler and scheduler work on edges to achieve our goals.
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4.3.1 Profiling

When multiple tasks are running simultaneously, resource contention among tasks can

be changed continuously according to the loads, behaviors, and interaction among the

tasks. Thus, profiling the resource contentions for multiple tasks is difficult during

scheduling the tasks.

To solve this challenge, we devise a profiling technique that effectively measures

the resource contention for a task by suspending other tasks and monitoring the re-

source usage of a task alone for a predefined period in an online manner. By using the

collected data, the profiler can measure the resource contention for the task by calcu-

lating the difference of resource usage between solo-run and co-run. We abbreviate

the difference to diff in the rest of this section.

Figure 4.3 shows how the online profiler works for profiling the solo-run data. The

profiler uses signals such as SIGSTOP and SIGCONT to pause and resume the execu-

tion of tasks. By doing this, the profiler can perform the profiling for a task’s solo-run

data for a predefined period whenever a phase has changed; in other words, the con-

suming pattern of resource usage changes. In case of where multiple latency-critical

tasks are running on an edge node, the profiler profiles each latency-critical task dur-

ing the predefined period and switches to another latency-critical one in a round-robin

manner. In the worst case, all latency-critical tasks require entering the profiling stage.

This approach reduces the latency penalty by amortizing their penalty of suspension

periods at the cost of loss of accuracy. Even though the profiler inaccurately obtains

profiled data at first, the subsequent profiling stages can minimize the inaccuracy and

correct the profile. This approach is practical in terms of minimizing the overhead

of profiling while collecting solo-run data for a new phase. Given the profiled data,

the profiler calculates the resource contentions (diff s). It is one of the most effective

methods for profiling resource contention in an online manner [30].
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resource usages when the task runs alone.

Depending on the values of diff s, the profiler finds which resource is contentious

at the time. If the value of diff is below 0 (i.e., -1 <diff< 0), it means that the resource

is currently under contention, otherwise, the resource contention does not exist for

the resource and more resource is used compared with resource usage of the task’s

solo-run (i.e., 0 <diff< 1). The definition of diff s for various resource types and how

DRCs are determined using diff s will be described in the dominant resource contention

section. The profiler collects and tracks the changes in diff s of the latency-sensitive

task and periodically informs that to the scheduler.

With the diff s, the profiler checks whether the phase has changed. If it occurs

significant changes in diff s repeatedly (e.g., one of the abs(diff s)>1 for three times),

then the profiler considers the current phase has changed and triggers profiling stages.

We set three for the threshold to avoid false positives, but it is a tunable one. As the

profiling stage is triggered, the profiler informs it to the scheduler to stop all the other

tasks, and profiles the solo-run data of the phase-changed latency-critical task during

the predefined period.

Metrics. Currently, we focus on the resource contention for CPUs, last-level cache
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(LLC), and memory bandwidth. However, we implement a monitor interface in the

profiler, which can be easily extensible to incorporate other types of resource con-

tentions. We use Linux Perf and /proc to monitor the values of metrics. For mea-

suring LLC contention, we use the LLC hit ratio, which reflects the reuse of LLC. For

memory bandwidth, we use memory bandwidth utilization by using the LLC misses,

the bytes of a cache line, and a maximum bandwidth of the edge devices. For CPU con-

tention, we use the number of active threads (for detecting contention) and instructions

per core (for allocating cores).

Dominant Resource Contention. Identifying the dominant resource contention of

latency-critical tasks is essential for efficient and effective performance isolation. We

define the dominant resource contention (DRC) for a task as the resource having the

largest negative value of diff, except CPU contention. Specifically, for deciding the

dominant resource contention, the profiler monitors diff s of multiple resource metrics;

LLC hit ratio (LLC HR) for LLC, memory bandwidth (Mem BW) for memory BW,

the instructions per second (IPS) and the number of active threads per allocated core

(NumTh/cores) for CPU cores. Note, the number of active threads is used for detecting

contention and IPS used for allocating cores, which will be described in the scheduling

section. diff s are defined as follows:

diffLLC = LLC HRco run − LLC HRsolo run

diffMem BW = (MemBWco run/MemBWsolo run)− 1

diffIPS = (IPSco run/IPSsolo run)− 1

diffNumTh/cores

= NumThcur/corescur −NumThprev/coresprev

Before comparing multiple diff s, EdgeIso checks if the number of active threads ex-

ceeds the threshold (e.g., > 2× allocated cores), and if yes, then CPU contention is

regarded as the DRC. Otherwise, EdgeIso compares other diff s, which are LLC hit
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ratio and memory bandwidth. Unlike other contentions, we deal with CPU contention

differently, because it gives For example, if there is no change in the number of active

threads, and diff s are -0.251 (LLC), 0.449 (Mem BW), -0.126 (IPS), and 1 (NumTh/-

cores), respectively, then EdgeIso determines the LLC contention as the DRC based

on the given diff s.

Phase Change Detection. We consider the changes in the phase of the latency-critical

tasks. Without the phase detection, the calculation of diff s can become wrong. Because

the calculation is based on the sampled solo-run data during a short time, it can not

represent the metrics during the whole execution. Therefore, the profiler keeps tracking

of sampled data and checking whether a new phase comes in every one second. As

shown in Figure 4.4, the profiler tracks diff s of resources for detecting the changed

phase. To avoid oscillations, we only admit the values of exceeding the threshold (one

of the abs(diff )s>1) for three times as the phase change. We choose three for detecting

an actual phase change because more than three mismatches between isolator and DRC

increase latency significantly. Additional optimizations for detecting phase also can be

applied to ours [51, 52].

4.3.2 Scheduling

The objective of EdgeIso is to mitigate resource contention for meeting SLOs of the

latency-critical tasks while improving maximizing resource efficiency by co-running

batch tasks. In this section, we describe isolation techniques used to mitigate resource

contention and illustrate how EdgeIso utilizes isolation techniques incrementally and

dynamically.

Isolation Techniques. To mitigate the contentions for the shared resources, we use

three resource isolation techniques: core allocation, cycle throttling, and GPU fre-

quency throttling. GPU cores and CPU ones on the edge device share the memory

bandwidth due to its inherent integrated architecture. For memory bandwidth con-
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tention, we use the GPU frequency throttling and core allocation. Since there is no

explicit isolation interface for memory bandwidth, we throttle the execution of the

most contentious task, which accesses the memory frequently. For memory access of

CPU cores, we control the number of cores allocated to the most contentious task by

using cgroup:cpuset. For memory access to GPU ones, we utilize the interface for

GPU power management. The range of possible GPU frequencies is from 140MHz to

1300MHz, and the number of possible steps is fourteen.

Jetson TX2 uses ARM processors, which do not support any LLC isolation tech-

niques such as Intel Cache Allocation Technology (CAT) [3]. Therefore, in order to

throttle LLC contention, instead of using LLC partition, we limited the cycles of tasks

by using cgroup:cpu. However, for the edge devices may have such LLC isolation

techniques (e.g., Intel Fog Reference Design (FRD) equipped with a Xeon processor

[48, 53]), EdgeIso can exploit the technique to isolate the allocation of LLC. For CPU
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contention, we also utilize cgroup:cpuset to change the mapping between threads

to CPU cores.

Algorithm. EdgeIso incrementally and adaptively performs isolation techniques to

mitigate the contention between the latency-critical tasks and batch ones. We imple-

ment EdgeIso (1) to deal with dynamically changing contention by tracking phase

changes and (2) to perform isolation incrementally based on the contention and current

isolation. Reflecting the phase change is necessary to meet the SLO of latency-critical

tasks while improving resource efficiency by running batch tasks more aggressively.

Also, performing incremental isolations is important to find the best configuration for

the isolations (e.g., parameters for each isolation).

In order to find the proper parameters, we implement a pluggable policy that de-

cides the next isolation techniques. The policy dictates the next isolation technique and

tasks to be isolated corresponding to the DRC of the most SLO violated latency-critical

task. It also helps to avoid oscillations of choosing isolators by counting mismatches

between isolators and DRC.

Figure 4.5 illustrates how isolation is selected based on the dominant resource

contention. In the figure, DRC is memory bandwidth at Nth interval. Therefore, the

scheduler selects memory bandwidth isolator and proceeds isolations. Depending on

the contention and the results of performed isolation, DRC may change to other re-

source types such as CPU or LLC. If DRC is memory bandwidth at the N+1th interval,

the memory bandwidth isolator will proceed to perform isolation. Otherwise, DRC has

changed to other types, and then the scheduler checks the counters of mismatches be-

tween isolators and DRC to comply with the policy. If the number of counters exceeds

the threshold (e.g., three for our policy), the scheduler changes the current isolator to

an isolator, which corresponds to the resource type, described in the isolation technique

section.

Algorithm 4.1 shows the pseudo-code of the scheduler. Initially, EdgeIso evenly
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allocates the resources to tasks. In the case of two tasks, EdgeIso allocates half of the

CPU cores to the tasks, respectively. The scheduler periodically gets all diff s from

latency-critical tasks (line 2). For appropriate isolations, the scheduler checks whether

there is any profiled data (metrics of solo-run) for the latency-critical task to decide

to trigger profiling (lines 3-4). If no previous profiled data exists or phase change has

detected, by suspending other batch tasks, the profiler measures the resource demands

of the latency-critical tasks for a short period and updates from them (lines 5-6). After

that, the scheduler finds the victim, which is the most SLO-violated latency-critical
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task, DRC of the LC task, and checks the current isolator (line 7-9). Then, the sched-

uler determines which task is the most contentious task based on DRC (line 10). After

deciding target task, current isolator and chosen contentious task(cont task), the

next isolation technique to mitigate the contention is decided (line 11). To avoid oscil-

lations when enforcing isolations, EdgeIso counts the number of mismatches between

the current isolation technique and the DRC. When the mismatches occur over three

times, the scheduler recognizes it as the real changes of DRC and decides to use the

other isolation techniques for the subsequent isolation. Otherwise, the scheduler con-

siders it as the temporal changes of resource contention and ignores them.

Once the scheduler decides an isolation technique, it is necessary to determine how

much isolation will be performed for the tasks (lines 12-19). To determine whether the

stronger isolations or weaker one for the latency-critical tasks, EdgeIso uses diff s of

the tasks. If the contention is getting smaller by performing the isolation, the perfor-

mance interference for the tasks is also decreased. EdgeIso searches for the isolation

configurations for a resource contention until diff is reduced below 0.5%, which can

be tunable (lines 12-19). Although the scheduler fails to reduce diff, the search process

can stop if it reaches the boundaries for the configuration (lines 18-19). For example,

when using GPU DVFS for throttling memory access for GPU cores, configurable

minimum core frequency is 140MHz. As the search process reaches to 140MHz, then

it ends to find more configurations.
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Algorithm 4.1: Pseudo-code of the EdgeIso Algorithm

1 while True:

2 diff info = get all diffs of LC tasks()

3 phase change = phase change detection(diff info)

4 if phase change:

// Profiling solo-run data for the changed phase

5 solo run data = profiling solo run()

6 update data(solo run data)

7 victim = get SLO violated LC task()

8 drc = dominant resource cont(victim)

9 cur iso = get cur isolator()

10 cont task = choose iso target task(drc)

// Deciding the next isolator

11 next iso = decide next isolator(drc, cur iso, cont task)

// Monitoring contention (diff info) and determining the

next isolation step

12 next step = next iso.monitor contention(diff info)

13 switch next stepdo

14 case strengthen

15 next iso.strengthen()

16 case weaken

17 next iso.weaken()

18 case stop

19 next iso.set idle()

20 sleep(0.2) // Sleep during predefined interval
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4.3.3 Overheads

The overhead of EdgeIso comes from the profiler, phase detection, and scheduler. The

profiler monitors the resource usages in every 200ms by attaching a monitor thread

to every co-running task for reading performance counters. We find that they con-

sume less than 5% CPU utilization per task. In our prototype, the profiler performs

asynchronous I/Os, and it does not affect the performance of tasks as well. The over-

head from phase-detection consists of the overhead of profiling solo-run data for the

latency-critical tasks. Every detection of a phase change takes a two-seconds delay for

all batch tasks. We empirically choose two seconds because it is the minimum inter-

val for capturing changing contention for our experiments. However, this is tunable

parameters depending on the platform and the types of tasks. Although batch tasks’

overhead, the latency benefit for the latency-critical tasks is much more significant,

considering batch tasks’ SLOs. They mostly run in a best-effort manner with low lev-

els of SLOs. In the experiment, we find that the total number of invocation of phase

detection is two times in the case of Figure 4.9a, which is acceptable. The overhead of

the scheduler itself is not as much as 10% in terms of the CPU utilization. We run the

scheduler on the cores that execute the batch task. Thus, the overhead of the scheduler

does not affect the performance of the latency-critical task.

4.4 Evaluation

We performed experiments on a Jetson TX2, equipped with four ARMv8 cores, a Pas-

cal GPU(256 GPU cores), and 8GB RAM installed Samsung 860 Pro SSD 512GB.

The maximum memory bandwidth of Jetson TX2 is 50GB/s. We disabled two Denver

cores in the following experiments and only uses ARM cores and a GPU. In Jetson

TX2, Denver CPUs are disabled as a default due to their high energy consumption.

Enabling these cores gives powerful processing capabilities but also consumes power
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significantly. Denver cores are useful running some tasks in isolation since they have

dedicated caches separated from caches connected to the other four ARM cores. How-

ever, they also share memory bandwidth with other ARM cores and accelerators. In

order to evaluate data processing tasks, we used the four SparkGPU benchmarks [54];

SparkDSLR (CPU-DSLR), SparkGPULR (CPU-GPULR), GpuKmeansBatch (GPU-

KMB), and GpuKmeans (GPU-KM). The prefix indicates the types of cores on where

the workload runs, and the suffix means the name of the SparkGPU benchmark. For

example, GPU-KMB is a benchmark, which name is KmeansBatch and runs on GPU

For object detection, we chose Single Shot Multi-box Detection (SSD) [1] for the in-

ference task and its retraining one. We used the pre-trained VGG models and carefully

adjust parameters not to exceed the memory capacity to avoid the crash of tasks by the

out-of-memory (e.g., retraining tasks train runs two images in a batch, and learning

rate 0.01). For input datasets, we used the subset of VOC-2007 [55], and each dataset

has 200 images.

4.4.1 Data Processing Task

In the first experiment, we show that EdgeIso can successfully isolate the performance

of the foreground task, even though the background one is co-running. As shown in

Figure 4.6a, the performance of foreground tasks is improved by 1.2× compared with

that of their co-runs, thus reducing the memory contention completely. Moreover,

EdgeIso effectively isolates the performance of foreground tasks and improves the

performance as much as their solo-run (No Contention). Some tasks (i.e., GPU-KMB

and CPU-DSLR in Figure. 4.6a) run a little bit faster than the case of solo-run because

the false sharing in batch tasks is eliminated by allocating memory in a misaligned

way [30].

This improvement can be attained since our scheduler periodically profiles the

dominant resource contention and enforces multiple isolation techniques adaptively to
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Figure 4.6: Performance comparison of No Contention (i.e. solo-run), Core Isolation

(i.e. simple core isolation using cgroup:cpuset), and EdgeIso on a Jetson TX2.

reduce the resource contention aggressively and incrementally. To improve the per-

formance of the foreground task, EdgeIso throttles the background task. Figure 4.6b

shows the performance of background tasks. It shows the degraded performance by up

to 2.2× that of the background task’s solo-run in case of co-running GPU-KMB and

CPU-GPULR. Although two data processing tasks are competing, their characteristics

of resource demands and SLOs can differ. If certain batch tasks have higher priority

than other batch tasks, EdgeIso can give those tasks higher priority and runs at least

contention.
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4.4.2 Latency-critical Task

For the latency-critical task experiments, we used Single Shot Multi-box Detection

(SSD) [1] for the inference task and its retraining one. We ran the SSD task on a GPU

and two CPU cores as the foreground and also run retraining one on the rest of two

CPU cores as the background. In order to test the performance of the latency-critical

task when different input images are incoming, we prepared four groups of image

datasets from VOC2007 by the number of objects in an image; small, medium, large,

dynamic. There is only one object in an image of the small dataset. The medium dataset

has 9 or 10 objects, the large dataset has from 25 to 42 objects, and the dynamic dataset

made by combining three datasets.

We evaluated three isolation schemes when an object detection task runs with a re-

training task. We chose small and dynamic as input dataset to test stable or dynamic sit-

uation, respectively. First one is NoIso, which allocates CPU and memory resources

without any isolation techniques, second one is CoreIso only pins dedicated CPU

cores using cgroup, and last one is EdgeIso. In the case of NoIso, both tasks can

run on all four CPU cores, but the object detection task uses GPU additionally.

As shown in Figure 4.7a and 4.7b, latency of EdgeIso is much stable and lower

than other schemes. Although CoreIso isolates CPU resources, it still shows high

latency variation compared with the baseline (No contention). It indicates that mem-

ory contention itself can increase latencies significantly. Interestingly, although the

small object images show low latency and low variation without contention, it becomes

higher latency variation under the resource contention, as shown in Figure 4.7b. We

investigated those images and find that not only the number of objects in an image but

also the size of objects affects the latency variation. From our observations, it turns

out that the insufficient LLC resources to perform caching an object at that time makes

latency spikes.
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To show the SLO compliance, we set two different SLOs and compare the SLO

violation ratio of NoIso, CoreIso, and EdgeIso. We defined an SLO as the degree

of a slowdown from solo-run, considering the latency of object detection can vary

depending on the number of objects. Figure 4.7c shows the SLO violation ratio when

threshold is set to 10% and 20%, respectively. EdgeIso violates SLOs less than 10%

for all dataset when the threshold is 20% (S-20% and D-20%). Even for small dataset,

EdgeIso just violate 1%. When the SLO threshold is 10%, the ratio of SLO violation

can become around 18% for EdgeIso when dynamic case (D-10%) at the worst case,

but it is still lower than that of other schemes.

Figure 4.7d shows the normalized throughput of batch tasks for three schemes.

We chose the instruction rate (IPS; instruction per second) to measure batch tasks’

throughput. Unlike latency-critical task, EdgeIso shows the lowest throughput for

the batch task, because it throttles the execution of batch ones to mitigate the memory

contention caused by them. Despite its degraded throughput, the batch task usually

runs in a best-effort manner. Also, this performance degradation can be acceptable in

the edge environment where the more strict latency is required for the latency-critical

task.

We also used Tailbench [32] to evaluate various types of latency-critical tasks run-

ning on CPU cores along with several batch tasks using GPU and CPU. In order to

evaluate them on Jetson TX2, we follow the network benchmark setup in [32], and we

used the Xeon-grade server as a client to generate loads enough to Jetson device. We

set the QPS of each task as 300 for img-dnn, 1 for sphinx, and 1000 for xapian. We

chose the GPU and CPU version of KMeans workloads used in Figure 4.6, and SSD

retraining task used in 4.7. Figure 4.8 shows the normalized latency of each benchmark

to solo-run. From the results, we can find that EdgeIso can deal with different levels

of resource contention effectively. As shown in Figure 4.8a, EdgeIso achieves much

lower latency than other schemes by mitigating memory contention. Because img-dnn
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Figure 4.7: The normalized latency of object detection using Single Shot Multi-box

Detection (SSD) on Jetson TX2. The x-axis represents the incoming images in each

dataset (time goes from left to right), and y-axis represents normalized latency to its

solo-run (no contention.) We set SLO thresholds as the 10% and 20% of slowdown

from solo-run.
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Figure 4.8: The normalized latency of Tailbench tasks on Jetson TX2. We evaluate

three schemes. Each Tailbench task run as a foreground with co-running several batch

tasks as background. (KM: kmeans, TR: SSD-training, C: CPU, and G: GPU)

task is memory-intensive one that consumes a lot of memory bandwidth, memory con-

tention was a major factor of the performance degradation of latency-critical tasks.

Figure 4.8b also shows similar or a little higher latency when using EdgeIso than the

NoIso case, but in overall, we achieve lower latency. In the xapian case, we observed

significant latency improvement compared with others, but this benchmark is so CPU

intensive one with strict SLOs. Therefore, we obtained much higher latencies than the

solo-run case.

4.4.3 Comparison with Alternative Approaches

We also evaluated how much the EdgeIso is beneficial compared with the existing

alternative methods of mitigating resource contention. We ran three tasks for evalua-

tion; one latency-critical task and two batch tasks consume a different level of memory

bandwidth. For the latency-critical task, object detection, used in the previous experi-

ment, is selected, and k-means clustering (from SparkGPU Benchmarks) and retrain-

ing task of the object detection is selected as a batch task, respectively. We chose
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dynamic dataset which has high load fluctuations. Then, we placed and launched

these tasks on the Jetson TX2 in the following way to show the effects of using al-

ternative methods. In all scenarios, the latency-critical task runs on a GPU, and batch

tasks run on the CPUs.

Offloading. It refers to the scheme that places or migrates a single heavy batch task

from the edge node to the cloud and running the latency-critical task with a light batch

one on the edge [44]. In the experiment, we place the latency-critical task and k-means

batch task on the Jetson TX2 by allocating the dedicated CPU cores to them evenly.

For a heavy batch task, we placed a retraining task to the Xeon E5-2683 v4 server,

which is a typical type of server for the clouds.

Reservation. This scheme allocates the user-requested amount of resources in advance

and re-order the tasks’ execution by their deadline [46, 47]. To mimic the reservation

system, we allocated all tasks in the edge node carefully, maximizing resource utiliza-

tion. Therefore, we placed the latency-critical task with the k-means batch task and

retraining task in a Jetson TX2 and allocated the different cores to all tasks in the

experiment.

Figure 4.9a shows the normalized latency of each alternative scheme and EdgeIso.

Comparing with Offloading and Reservation in terms of request latency, EdgeIso

shows 58.5%, 94.8% lower peak latency in the best case and shows 27.7% and 18.2%

higher latency in the worst case, respectively. On average, EdgeIso shows 8.2% and

26.1% lower latencies than Offloading and Reservation one, respectively. For

standard deviation, EdgeIso shows 9.8% and 33.4% lower standard deviation, respec-

tively.

We can see that Offloading has similar latency for the latency-critical task

compared with the EdgeIso in terms of peak latency. Since Offloading runs only

two tasks on the Jetson, there is only one contender for the latency-critical task. In this

case, the latency of Offloading can be better. Nevertheless, there is a slowdown
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Figure 4.9: Comparison with alternative approaches. The normalized latency of object

detection using Single Shot Multi-box Detection (SSD) on Jetson TX2.
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of latency due to the co-running batch task(i.e., kmeans), resulting in performance

degradation.

In the case of Reservation, we mimic the reservation scheme by place all three

tasks in Jetson node. The Reservation approach places tasks considering the re-

source capacity by using simple core allocation such as cgroup:cpuset. It shows

the high latency variation and also shows the highest latency compared with others.

Especially, we can see that when dataset with the small number of objects (for first 50

images of Figure 4.9a) are processed, Reservation shows very unpredictable la-

tency, because the images in the dataset are sensitive to resource contention and other

co-running batch tasks easily evict them.

In the case of EdgeIso, the latency is similar to Offloading. However, the la-

tency variation is much smaller. Even though EdgeIso runs three batches on a Jetson

node, it shows the lowest median latency and low variation. From the results, we can

find that EdgeIso can improve latency under high resource contention while maxi-

mizing resource efficiency by running batch tasks together. As shown in Figure 4.9b,

we also find that all SLO violation ratios of EdgeIso are lowest compared with other

approaches under all different SLO thresholds.

Figure 4.9c shows the throughput of re-training task when Offloading, Reservation,

and EdgeIso. Offloading achieves the highest throughput in the experiment. Be-

cause we run the re-training task on the Xeon server, which is not suffered from any re-

source contention, the throughput can be higher than other approaches. However, there

may exist resource contention in most cloud datacenters. This may result in perfor-

mance degradation as well. Reservation attains similar performance to that of its

solo-run at the latency penalty for the latency-critical task. EdgeIso shows the low-

est throughput for the batch task. This performance penalty is due to the EdgeIso’s

isolation policy which prioritizes the latency-critical task and reduces its resource con-

tention from other tasks. Even though its performance is degraded, EdgeIso shows
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only half performance compared with when the no contention exists.

For more detailed comparisons, we conducted other experiments with diverse con-

figurations for different thread-to-core mapping and different reservation schemes. We

make two variations for reservation scheme. One is Time Reservation (TR)

and the other is Space reservation (SR). Time Reservation reserves

certain percents of CPU cycles for workloads, and any other workload can not use

the CPU cycles, which is similar to reservation scheme in TetriSched [47]. Space

Reservation reserves a number of CPU cores for workloads which is used in the

previous experiment in Figure 4.9.

We conducted experiments using a different workloads set used in previous experi-

ments. While foreground task is same as object detection, background tasks are a linear

regression task (SparkDSLR) and a kmeans task (CPU version of GpuKmeansBatch)

in SparkGPU. Each thread setting is described in legend of each graph.

As shown in Figure 4.10, EdgeIso shows lower SLO violation ratio for various

SLO violation thresholds than other schemes. Especially, EdgeIso achieves best

performance when two CPU threads are used for data loaders by Figure 4.10a. It is

because four threads case makes too much context switching for assigned single core

and one thread case shows lower parallelism. In these experiments, we used 4 threads

for best-effort tasks.
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Figure 4.10: Comparison of SLO violation ratio for a latency-critical task (EdgeIso,

Time Reservation, Space Reservation, and Offloading)
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Time Reservation shows relatively worse performance than Space Reservation,

because Time Reservation has to do more context switches than Space Reservation

and the number of allocated CPU cores for best-effort tasks is smaller that it less ac-

cess to the memory concurrently. Note, the number of threads and cores described

in legends means thread and core settings for latency-critical tasks. For example,

”Reserv-2th-2c (SR)” in Figure 4.10c means Space Reservation and the number

of threads and cores are two for latency-critical tasks, respectively. Time Reservation

achieves similar but slightly worse performance to EdgeIsowhen the latency-critical

task uses four threads, which is the worst case of EdgeIso. On the other hand, Space

Reservation shows similar but slightly worse performance to EdgeIso when the

latency-critical task uses one or two threads, which is the best case of EdgeIso.

In summary, EdgeIso shows higher performance (lower latency) 2× and 4× than

Space Reservation and Time Reservation, respectively.

For Offloading scheme, we moved more heavy task (kmeans) to another Jetson

TX2 node, and ran two tasks (object detection for a latency-critical task, and linear re-

gression for a best-effort one). Comparing with ours, Offloading is slightly better

when threshold is 20−30% in terms of SLO violation ratio. However, Offloading

show higher SLO violation ratio compared with the best case of EdgeIso (i.e., cases

of one or two threads). In summary, EdgeIso shows 3−6× higher performance

(lower latency) than Offloading scheme.

We also compared the performance of best-effort tasks running on background by

aggregating instructions per cycle of all two best-effort tasks. As shown in Figure 4.11,

we found that EdgeIso allows best-effort tasks running at high throughput as much

as Offloading that needs additional hardware resources to run the offloaded task.

For both Reservation schemes, they show lower throughput for best-effort tasks,

because they degraded the throughput of best-effort tasks due to smaller resource allo-

cation or larger context switching.
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Figure 4.11: Performance comparison for best-effort tasks (EdgeIso, Time Reserva-

tion, Space Reservation, and Offloading)

4.5 Conclusion

In this work, we have illustrated the challenges of multitasking on edge devices, which

is critical to the performance of tasks. To address these challenges, we present EdgeIso,

an effective edge scheduler that mitigates resource contention on edges and isolates the

performance of latency-critical tasks while running background tasks. It periodically

profiles which resource contention is the dominant one for the tasks running on the

edge, tracks the changes in the contentions efficiently, and performs isolations adap-

tively and dynamically by enforcing the appropriate isolation techniques incremen-

tally. We have evaluated EdgeIso on an NVIDIA Jetson TX2 using several benchmarks

of diverse SLOs and resource demands. The evaluation results show that EdgeIso can

effectively mitigate resource contention, reduce the SLO violation ratio significantly

for tasks of diverse SLOs compared with existing schemes under dynamic resource

contention.
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Chapter 5

Workload-aware Resource
Management for Software-Defined
Compute

5.1 Introduction

As cloud computing industry has been growing rapidly and becoming mature, more

and more diverse and heterogeneous workloads have been running on the datacenters.

There are a variety of workloads such as big data analytics, scientific workloads, social

networks, and other web service workloads in the datacenter. These workloads have

their own service goals, and thus it is important to meet these service objectives for

user satisfaction [24].

However, it is difficult to efficiently and effectively run these workloads in data-

centers because of their different resource demands for the resources. If the demands

conflict, the contention for the limited shared resources increases. In order to minimize

the contention, it is important to know workloads’ resource consuming patterns. Espe-

cially, CPU and memory are most intensively shared resources considering the mul-
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ticore architecture that most of servers have, and in-memory workloads being widely

used, such as in-memory cache [56] and in-memory database [57].

Even though the different demands for the resources in running datacenter work-

loads including memory intensive or latency-sensitive ones need to be considered, the

current datacenter frameworks [21,22] do not take them into account sufficiently. Tra-

ditional frameworks have focused mainly on the allocation of resources to the work-

loads; they have not considered the resource consuming patterns such as memory ac-

cess or CPU interrupt handling. These metrics are also important compared to tradi-

tional ones including the allocated memory size, because they reflect the execution

behavior of the workloads, and thus they can be directly associated with their perfor-

mance. Using the metrics for scheduling workloads, the datacenters can handle the

dynamic changes in the behavior of workloads. The key to Software-Defined Com-

pute (SDC), which is one of the emerging trends for the datacenters, is to consider

the dynamic behavior of workloads in performing the allocation of resources to the

workloads.

SDC is one part of Software-Defined Data Center (SDDC), where all datacen-

ter functions are controlled by the software controller [58]. It is originally from the

concept of Software-Defined Network (SDN), which decouples the control and data

planes. Similar to the SDN, the SDDC aims to reconfigure and reorganize the data-

center infrastructures by the software controller. Through the software-defined com-

ponents such as the SDN and SDC, the datacenter can be more flexible and cost-

effective. For example, if the SDC is realized, the datacenter infrastructures can be

optimized, targeting the specific workloads easily, and flexibly reconfigured respond-

ing to changes in the behavior of workloads.

We introduce an effective workload-aware resource management framework for

SDC. For the workload-aware resource management, we monitor the behavior of work-

loads in the datacenter and place or schedule the workloads based on the behavior, not
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based on the resource availability only. The workload profiler and workload-aware

schedulers are the key components for the workload-aware resource management,

which are used for profiling the workload characteristics and scheduling workloads to

avoid performance interferences. In particular, we focus on the performance isolation

with respect to the CPU and memory resources for the latency-sensitive workloads,

most commonly used in the datacenter, when demonstrating the effectiveness of the

framework. The workload profiler continuously monitors the resource usage pattern

of latency-sensitive workloads, and if the performance anomaly is detected, then the

workload-aware schedulers handle the performance problem by dynamically schedul-

ing workloads or migrating the workloads to other hosts.

We implemented our schedulers in an OpenStack testbed and made it run in the

VMWare one, and evaluated the scheduling algorithms in the OpenStack and VMWare

testbeds. By performing experiments, we found that we can improve the performance

of latency-sensitive workloads; specifically, we can achieve twice higher throughputs

and lower the tail latency by up to 95% compared to the existing frameworks.

The rest of chapter is organized as follows. Section 5.2 shows the motivational sce-

nario for contention-unaware scheduling. Section 5.3 explains the new performance

metrics for profiling the behavior of workloads. Section 5.4 explains the methods for

mitigating the contention for shared resources, describes workload-aware scheduling

algorithms in the proposed framework, and provides the details of our scheduler im-

plementation. Section 5.5 shows the results of our experiments performed to compare

the proposed algorithms with the existing scheduling ones. Section 5.6 discusses the

applicability of our proposed approach in practice. Section 5.7 presents the related

work. Finally, Section 5.8 concludes the chapter.
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5.2 Motivation

We consider the contention for memory in a motivating example. Suppose that VMs

are placed on the hosts and have various resource demands as shown in Figure 5.1a

and 5.1b. Even though there are various types of workloads in the datacenter, we as-

sume only two types of workloads exist in the hosts in the simple scenario. In this case,

some hosts may have lots of memory intensive VMs and others may not. If there are

an equal number of VMs in each host, there may be no difference of resource utiliza-

tion among the hosts, because the resources are allocated based on the types of VM

instances. However, although the allocated resources are similar between two hosts,

there may be a large difference in the performance of VMs; for example, the inten-

sity of memory contention is different among the hosts due to the difference in the

number of the simultaneous memory accesses. Currently the existing datacenter VM

management is based on the strategy which maximizes the overall resource utiliza-

tion of datacenter. Therefore, the current VM scheduling algorithms evenly distribute

the VMs among the hosts in the datacenter. This strategy may be good for resource

utilization, but it may not guarantee low latency or high throughput for the workloads.

Figure 5.1c and 5.1d show the different levels of VM memory intensity in a host

depending on the VM-to-core mapping. Figure 5.1c shows that the memory inten-

sive VMs spread across the cores in the host, and this placement can result in high

memory intensity at once; in the worst case, all cores might handle memory requests

at the same time, and thus the VMs accessing the memory subsystem in the same

socket could suffer from performance degradation. However, if the VMs are placed

and scheduled as shown in Figure 5.1d, then simultaneous memory requests could be

reduced and thus the performance degradation would also be decreased. Furthermore,

to avoid the performance degradation, it is essential to schedule workloads across the

cluster considering the resource states of both hosts and cluster. Because the resource
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Figure 5.1: Different Level of Memory Intensity (a-b), Different VM-to-Core Map-

ping (c-d). The darker colored is a VM, the higher memory intensive is the VM. The

physical CPUs are depicted as the black circles. We assumed that each VM has only

one vCPU to show the problem clearly.

demands in the hosts change so dynamically over time that load imbalance can easily

occur.

5.3 Workload Profiling for Performance Isolation

This section presents how our proposed profiler works and which metric is used for

profiling. We used the metrics to detect the contention for resources to mitigate the

contention and those to present the behavior of latency-sensitive workloads in order to

maximize the levels of resource utilization while meeting the SLOs.

5.3.1 Performance Metrics for Workloads Behavior

This section presents metric used by the workload-aware schedulers for estimating

the memory contention. In addition to the memory contention metric, it also shows
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the metric that measures the the performance of latency-sensitive workloads. In the

following subsections, we answer the following questions: “which metric is useful

and effective for understanding the characteristics of workload such as the memory

intensity or latency sensitivity?” and “how can the workload-aware schedulers use

these metrics?”

Memory Intensity

The memory intensity is different from the memory utilization in that it reflects the

memory access behavior of the workloads. For example, there may be workloads that

have high memory utilization but low memory intensity and vice versa. Therefore,

when balancing the load in the datacenter, it might be ineffective to consider only the

memory utilization as a metric for load balancing, without taking the memory inten-

sity into account. The memory contention is critical to not only the memory intensive

VMs, but also other colocated VMs. High memory contention, caused by ineffective

consolidation, could affect the other VMs which access the shared memory subsys-

tem. For this reason, we first investigated that which metric is effective to identify the

memory intensity of VMs.

There are a lot of memory related components affecting the performance of work-

loads. However, among the various components such as L3 cache, prefetcher, and

memory controller, there is no single dominant factor to influence the memory con-

tention [10]. In the memory subsystem, there exist two parts; one part is called core

part, which is dedicated to each core, such as L1 and L2 caches. The other part is called

uncore part, which is shared across the cores. L3 cache and memory controller are in

the uncore part. Because of the complexity of uncore part, we consider the entire un-

core part as a blackbox. And we focus on the rejected requests to the uncore memory

subsystem for deciding how much memory contention occurs. Between the L2 and L3

caches, there is an SQ (Super Queue) per core used for the buffer of uncore part [59].
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We monitor the rejections for memory requests to the SQ. When a request is rejected

because the SQ has become full, then it generates an SQfull event. We call the rate of

the requests rejected from the SQ ‘Memory Buffer Full Rate’ or MBFR for short.

To check how MBFR reflects the memory intensity and affects the performance of

VMs, we conducted the stress tests. We chose four workloads among the SPEC2006

benchmarks [60]. With two well-known memory intensive workloads, lbm and GemsFDTD,

and other two well-known CPU intensive workloads, zeusmp and sjeng, we investi-

gated the relationship between the MBFR and slowdown of the workloads while in-

creasing the number of the same workloads in a host.

Figure 5.2 shows the experimental results for the four different workloads. We

compared the execution time and MBFR with those of the solo execution. As shown

in the figure, we can find a strong correlation between MBFR and the average VM

slowdown. In the case of memory intensive VMs, the more VMs are colocated, the

higher MBFR and slowdown happen. In contrast, in the case of CPU intensive VMs,

no matter how many VMs are colocated, neither MBFR nor slowdown is changed

much.

In order to confirm that the MBFR could be an appropriate metric which reflects

the memory intensiveness, we compared it with the L3 miss rate, which might be

regarded as a possible memory intensiveness metric to identify the memory inten-

sity [10, 12]. Figure 5.3 shows the total L3 miss rate and total MBFR for each work-

load. As shown in the figure (left), we can figure out that some memory intensive

workloads have low L3 miss rates which do not reflect their memory intensity. For

example, lbm is known as a memory intensive workload and shows higher slowdown

than the CPU intensive workloads as shown in the figure, but it has lower L3 miss rates

than the other CPU intensive workloads, zeusmp and sjeng. However Figure 5.3 (right)

shows that memory intensive workloads, lbm and GemsFDTD, have higher memory

buffer full rates than the CPU intensive workloads. These results indicate that a single

92



lbm

N
or
m
al
iz
ed
 R
at
io

0

1

2

3

4

5

6

Number of VMs

1 2 3 4

Avg. Memory Buffer Full Rate
Avg. VM Slowdown

GemsFDTD

N
or
m
al
iz
ed
 R
at
io

0

0.5

1

1.5

2

Number of VMs

1 2 3 4

Avg. Memory Buffer Full Rate
Avg. VM Slowdown

(a) Memory Intensive Workloads

zeusmp

N
or
m
al
iz
ed
 R
at
io

0

0.5

1

1.5

2

Number of VMs

1 2 3 4

Avg. Memory Buffer Full Rate
Avg. VM Slowdown

sjeng

N
or
m
al
iz
ed
 R
at
io

0

0.5

1

1.5

2

Number of VMs

1 2 3 4

Avg. Memory Buffer Full Rate
Avg. VM Slowdown

(b) CPU Intensive Workloads

Figure 5.2: Correlation between Average Normalized MBFR and Average Slowdown.
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Figure 5.3: Comparison between L3 miss rate (left) and MBFR (right).

factor such as L3 miss rates may not show the memory contention in all cases. Via

some stress tests and comparison experiments, we found that MBFR is an effective

metric that shows the slowdown of VM.

SoftIRQs

To figure out the behavior of latency-sensitive workloads, we need to understand how

the network I/O operations are performed. When the latency-sensitive workloads com-

municate with other clients, the network I/O occurs, and then the interrupts, as known

as SoftIRQs (Software Interrupt Requests), are generated from the NIC of physical ma-

chines to process the incoming network packets. As shown in Figure 5.4, the number

of queries processed per second (QPS) during the execution of memcached workload

as the throughput, and that of generated SoftIRQs (y-axis) increase as the rate (x-axis)

of the requests made by the client grows. Also we find that the more network traffic is

incoming, the more packets are processed, and the more interrupts occur. Based on this

result, we could conclude that there is a strong correlation among the network traffic,

the number of interrupts, and the performance of latency-sensitive workloads.
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Time Window for Collecting the Values of Metrics

To detect the change in the performance of workloads, we collect the MBFR and

SoftIRQ samples for some intervals of time such as every 10 (for the local sched-

uler) and 30 seconds (for the global scheduler), considering these intervals as the time

windows. The use of time window is necessary for estimating the slowdown of VMs

or predicting the violation of SLOs. The local/global scheduler has its own scheduling

interval, and the workload profiler monitors the consecutive samples for the intervals

in order to provide the information to the schedulers. If the samples are collected,

the information for scheduling is calculated from the collected samples and sent to

the schedulers. For example, the averages of metric values are calculated and sent to

the local schedulers in order to decide the memory intensities of the hosts. For global

scheduling, the workload profilers send the samples of metric values collected every

30 seconds to the global scheduler, and the scheduler can decide which host has work-

loads causing SLO violations, and then perform migrations for the workloads.

Many other researchers recognized the importance of processing interrupts for the

latency sensitive workloads, and thus they tried to improve the performance of inter-

rupt processing [61–65]. Therefore, we decided to use the number of interrupts as an

indicator to reflect the performance of the latency-sensitive workloads.

5.4 Workload-Aware Scheduling for Performance Isolation

Our approach is to solve the contention problem via VM scheduling. To highlight the

effects of the workload-aware scheduling, we make some scenarios for placing and

dynamically scheduling VMs.
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Figure 5.4: Relationship between SoftIRQs and Throughput. As the SoftIRQ is satu-

rated, the throughput is also saturated. This indicates the SoftIRQ reflects the load in

the queueing system.

5.4.1 Method for Mitigating Resource Contention

This subsection describes the method for mitigating the resource contention and thereby

improving the performance. It presents the strategy of reducing the simultaneous mem-

ory accesses and also the method of predicting the latency for detecting the perfor-

mance anomaly. To reduce the resource contention, we adjust the vCPU-to-core map-

ping and restrict the number of cores that memory intensive workloads can run on. This

helps the performance of colocated workloads be not degraded. To meet the SLOs of

latency-sensitive workloads, we make a prediction of latency by utilizing the infor-

mation on the memory buffer full rates and software interrupts. We use a threshold to

determine the violation of SLO, and thus if the predicted latency exceeds the threshold,

the process of mitigating the contention is triggered.
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Restricted Scheduling

It is important to minimize the memory contention for latency-sensitive workloads, es-

pecially in the case of in-memory latency-critical workloads such as in-memory cache

services or in-memory database ones. These in-memory latency-critical services can be

easily affected by the characteristics of co-located workloads with high memory inten-

sity. Thus discreet scheduling is essential to meet the latency requirements of latency-

sensitive workloads. To do this, it is desirable for these workloads to make dedicated

access to the shared resources such as the cores and memory. Latency-sensitive work-

loads should be executed on the dedicated cores, because they are especially sensitive

to the sharing of CPU resources [62]. To mitigate the access for the shared memory

subsystem, it is necessary to restrict the number of memory intensive cores that have

high memory intensiveness.

Without restricting the number of such cores, the memory intensity may be in-

creased throughout all cores, resulting in high memory contention due to the con-

tention for the limited resources of memory subsystem. Importantly, it is critical to

schedule workloads considering the limitations of using the resources such as memory

bandwidth. In this chapter, to show the effectiveness of our workload-aware resource

management framework, we suggest a scheduling algorithm that dynamically restricts

the maximum number of memory intensive cores, on which memory intensive work-

loads can run.

Predicted Latency

In cloud datacenters, latency-sensitive workloads such as web servers and in-memory

database systems are common, and to these workloads, the tail-latency is considered

as a critical performance metric. We suggest a simple, efficient model to predict the

violation of SLO (Service Level Objective). To derive such a model, by using only
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server-side information, the trend of tail latency was predicted. We estimated the la-

tency with some metrics by using a memcached that is well known as the representative

latency-sensitive workload. The derived equation Eq.1 is as follows:

W =
c×MBFRvm

1−RIRQvm

, (5.1)

where W is the average waiting time, c × MBFRvm is the average service time

of the VM (c is a constant), and RIRQvm is the utilization of queueing system s.t.

0 ≤ RIRQvm < 1.

RIRQvm =
IRQvm

IRQmax

=
IRQvm

CPUvm
× k, (5.2)

where RIRQvm is the ratio of SoftIRQs, IRQvm is the number of SoftIRQs, IRQmax

is the maximum number of SoftIRQs, and CPUvm is the CPU utilization for the VM.

Eq. 5.2 was derived by using the Little’s law [66] to predict latency. This law could

be easily applied to any queueing system. To apply the law to our system, we assumed

that our queueing system is based on M/M/1, which is commonly used for web server

queueing model. In this M/M/1 model, W can be calculated with the average service

time and utilization of queueing system. Considering that the MBFR approximates

in the execution time of memory intensive workloads, MBFR can be substituted for

the service time. From the ratio of SoftIRQ (RIRQvm), we could calculate the utiliza-

tion of queueing system as shown in Eq. refeq2. To obtain the maximum IRQ for the

system, we simply used the fact that the more SoftIRQ is processed, the more CPU

consumption occurs as previously shown in Figure 5.4.

5.4.2 Workload-Aware Scheduler

We introduce workload-aware VM schedulers that minimize the memory contention

of latency-sensitive VMs while meeting the latency requirements for the VMs. Particu-

larly, we have focused on in-memory latency-sensitive workloads such as memcached,
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the latency requirements for the VMs of which can be met by minimizing the memory

contention of latency-sensitive VMs. The proposed schedulers perform the two-phase

scheduling, which consists of the host-level and core-level one.

Global Scheduler

The objective of the global scheduler is to place and dynamically schedule VMs among

the hosts by detecting the performance anomaly with the threshold for the LSVMs

(Latency-Sensitive VMs) and meet the performance requirements for these VMs while

minimizing the resource contention. First, the global scheduler should predict the la-

tencies of LSVMs, and thus it receives information on the MBFR and SoftIRQ from

the profiler.

The MBFR is used to measure the memory intensity, and the SoftIRQ is also

utilized to predict the performance anomaly for the LSVMs. These measurements

are used to check whether migration of VMs will be beneficial to the LSVMs, ev-

ery 30 seconds (Line 4). We set the interval of global scheduler to 30 seconds, be-

cause we emprically found that the interval is adequate for the global scheduler to

collect the performance information about the hosts. The global scheduler periodi-

cally checks the predicted latency of each LSVM and when it exceeds the threshold,

SLO threshold, then the scheduler starts the live migration procedure (Lines 7-

18). We think that the use of the threshold should lead to meeting the performance

requirement for a latency-sensitive workload as if it ran solely. Specifically, in the

case of the memcached workloads, we determined the threshold to the predicted la-

tency when a load of about 75 percentile of peak throughput was given, which kept it

below sub-10milliseconds latency. If there are other latency-sensitive workloads, mul-

tiple SLO thresholds could be used, and the SLO threshold of each latency-

sensitive workload should be determined as in the case of memcached workload which

we used. If the live migration procedure is triggered, then the global scheduler finds
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Algorithm 5.1: Global Scheduler

/* Global scheduler is invoked every 30 seconds */

1 def GlobalScheduler():

2 for each (current) host:

3 collected stats= collect metrics();

/* Collecting info on VMs and hosts from the profiler */

4 for each lsvm in current host:

5 p = predicted lsvm latency(collected stats);

6 if p > SLO threshold:

7 h = lowest cont host(collected stats);

8 if h is not current host:

/* If current (source) host is not the one with

the lowest memory intensity, migrating LSVM

to the least memory intensive host */

9 target vm = lsvm;

10 dest = h;

11 elif h is current host:

/* If current (source) host is the lowest

memory intensive host, migrating the highest

memory intensive Non-LSVM to the lowest

memory intensive host other than the source

one */

12 target vm = high cont nlsvm(collected stats);

13 dest = other lowest cont host(h);

14 live migration(target vm, dest);
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the destination to migrate the LSVM to, based on the MBFR; the scheduler searches

the lowest memory intensive host among all hosts except for the source host. If it suc-

ceeds in finding the lowest memory intensive host, then it migrates the LSVM to the

destination host (Lines 10-13); it migrates a non LSVM that has the highest memory

intensity to the second lowest memory intensive host (Lines 14-17).

Local Scheduler

The goal of local scheduler is to maximize the performance of latency-sensitive work-

loads by running them on the dedicated cores while executing the memory intensive

VMs on a limited set of other cores. Every 15 seconds, the local scheduling proce-

dure is triggered. We set the interval of local scheduling to 15 seconds, because we

empirically found that information on about 15 to 20 VMs was collected in 10 to 12

seconds. Once the scheduler is invoked, it classifies the vCPUs in the host into three

groups, which are latency-sensitive vCPUs (ls), memory intensive vCPUs (mem), and

non-memory intensive vCPUs (nmem) (Line 4). After classifying the vCPUs, the local

scheduler decides to allocate the dedicated cores to latency-sensitive vCPUs by pin-

ning each vCPU to a certain dedicated core in order to meet their requirement of the

low latency (Line 6). We allocate each dedicated core to each latency-sensitive vCPU,

and have the other vCPUs (mem and nmem) be pinned to other non-dedicated cores. It

is thus possible to allocate the dedicated cores to the latency-sensitive workloads. It is

important to divide the resources into two groups, the dedicated and shared ones, for

high performance of latency-critical workloads and for overall high server utilization.

To schedule the workloads other than the latency-sensitive ones, the scheduler de-

cides the number of memory intensive cores for throttling the concurrent memory ac-

cesses (Line 8).

The scheduler can determine the number dynamically based on the memory inten-

sity of the current host. Considering the fact that the MBFR of host increases quadrat-
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ically as shown in Figure 5.3 (right), we empirically found that the MBFR value of

host increases too rapidly, as memory intensive VMs run on more than approximately

a half of cores in the host. Therefore we set the maximum number of memory inten-

sive cores to the half of memory intensive workloads in the host. The local scheduler

schedules memory intensive workloads on the limited set of memory intensive cores

while it distributes the unscheduled non-memory intensive workloads on the rest of

the shared cores. When the scheduler allocates the cores to the vCPUs, it considers the

number of vCPUs running on each of the cores, which may be regarded as a kind of

fairness, so that it can maximize the core utilization in the host (Lines 12, 15 & 17).

To maximize the utilization, the local scheduler finds which core is the one, on

which the smaller number of vCPUs scheduled. For example, suppose that a vCPU is

in the set of unscheduled, and that core 0 and core 1 are the candidate destination cores,

which have one vCPU and three vCPUs, respectively. The local scheduler calculates

the differences in the number of vCPUs between the cores in the get min vcpu core()

function. If the difference is 0, then the vCPU is scheduled on the higher memory in-

tensive core; otherwise, this case means the imbalance between the cores occurs, and

thus the vCPU is scheduled on the less loaded core.

Once the destination core is determined, the CPU affinity of the vCPU is decided to

the destination core in the schedule() function. If the destination core is previously

allocated to the vCPU, the function does not do anything in order to avoid unnecessary

overhead (Line 18).

Implementation

We made a prototype of workload-aware schedulers with Python. The prototype is

composed of three parts, the global scheduler, the local scheduler, and workload pro-

filer, which are implemented as user-level programs to run without any modification

of host and guest OSes. The global scheduler makes RPC calls in order to receive the
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Algorithm 5.2: Local Scheduler

/* Local scheduler is invoked every 15 seconds */

1 def LocalScheduler():

2 collected stats = collect metrics();

3 mem, nmem, ls= classify vcpus(collected stats);

4 candidate vcpus = mem + nmem + ls;

5 dedicated cores = get dedicated cores(len(ls));

6 unscheduled = len(candidate vcpus);

7 mem cores = get mem cores(collected stats);

8 while unscheduled > 0:

9 src vcpu = get src vcpus(candidate vcpus);

10 if src vcpu is latency-sensitive vcpu:

11 dst = get min vcpu core(dedicated cores);

12 elif src vcpu is non-latency-sensitive vcpu:

13 if src vcpu is memory intensive vcpu:

14 dst = get min vcpu core(mem cores);

15 elif src vcpu is non-memory intensive vcpu:

16 dst = get min vcpu core(other cores);

17 schedule(src vcpu, dst);

18 unscheduled = unscheduled - 1;

19 candidate vcpus.remove(src vcpu);
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values of the metrics about the host from the profiler that resides in each host. The

global and local schedulers are implemented on the OpenStack Nova and KVM, and

they schedules the VMs by using the Nova and Libvirt API. The workload profiler

uses Linux Perf [67] to collect the values of the MBFR and SoftIRQs. To obtain these

values, the profiler reads the PMU counter every second. For detecting LSVMs, we

use the tracepoint events provided by the Perf. We utilize the MetricWeigher which is

a part of the OpenStack Filter scheduler to receive the values of metrics, and decide

whether the host is memory intensive or not.

5.5 Evaluation

To illustrate the benefit of our workload-aware scheduling, we show the result of

executing the scheduling algorithms step by step. We present the performance im-

provements from initial placement of workloads to dynamic scheduling of them in the

OpenStack and VMWare testbeds, respectively. We show how beneficial the proposed

workload-aware scheduling could be to the latency-sensitive workload by consider-

ing the memory intensity and latency sensitiveness. We first show the benefit of local

placement which assigns all the workloads (including the non-latency-sensitive ones)

to the cores by considering the memory intensity of host, and then show the benefit of

global placement which assigns the workloads to the hosts and subsequently the cores

of the selected hosts by considering the difference in the memory intensity between

the selected host and the other ones. Finally, we present how the proposed approach

works well even in a workload-changing scenario where the memory intensity of host

dynamically changes.

To create a high contention environment, we ran some SPEC2006 workloads as

interfering ones. We chose the lbm as a memory intensive one and sjeng as a CPU

intensive one, because the memory intensities of these two workloads are almost con-
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stant. We also used the memcached workload as the latency-sensitive one, which is one

of the most popular in-memory cache services for the Web. Because the memcached

should respond quickly to the requests from web services, the tail-latency is important

during the execution of memcached.

We show benefit of our proposed mechanisms by applying them in each of the

testbeds, and comparing them with each of the existing scheduling ones; OpenStack

using KVM on top of Linux OS, VMWare vSphere uses ESXi that is the bare-metal

hypervisor. To show the benefit of using our algorithms in the VMWare testbed, we

manually performed live migration by setting the CPU affinity in the UMA architecture

according to our algorithm.

5.5.1 Experimental Setup

We performed experiments in the OpenStack and VMWare vSphere testbeds. Each

testbed consists of four compute hosts, running twelve VMs, and one controller host

providing services such as networking and managing the compute hosts. Each host

in each testbed has an eight-core Intel Xeon CPU E5-2650 v2 @ 2.6GHz with both

Hyper-Threading and DVFS disabled. In each host, the CPU frequency is 2.6GHz and

the size of main memory is 256GB. Each server is connected though 1Gbps links.

For dynamic live migration, we used the Ceph filesystem as the OpenStack volume

backend, and vSphere’s VMFS filesystem for vMotion.

We considered the memory contention on the UMA system. To differentiate the

memory intensity of each host in a scenario, we ran the memory and CPU intensive

VMs at the different ratios as shown in Table 5.1. We chose the ‘mutilate’ benchmark

to generate realistic memcached workloads [68]. Through the mutilate, we simulated

Facebook ‘ETC’ workloads which are the representative Facebook ones with the low-

est hit rate (81.4%) [69]. To generate the workloads, five clients were used, and each

client made the requests by using sixteen threads on the sixteen-core client host. We

105



Table 5.1: Different Configurations for Experiments. We used the SPEC 2006 bench-

marks, sjeng as a CPU-intesive workload and lbm as a memory intensive workload.

Host H1 H2 H3 H4

CPU-int. VMs 4 6 8 12

Mem-int. VMs 8 6 4 0

ran the memcached server in the VM instance with two vCPUs & 6G RAM, and two

memcached server threads in total.

5.5.2 Experiment Results

When creating a VM, its performance depends on the policy of scheduling it. The

existing VM scheduling algorithms used in cloud platforms such as OpenStack and

VMWare are based on the resource availability or resource entitlement. These ap-

proaches are resource efficient because it maximizes the cluster utilization, making

the utilization of each host uniform. However, they are not the best in terms of the

performance of VMs due to not considering workload patterns or characteristics. Also

they decide which hosts to run the VMs on, but not which cores to run them on, and

thus the contention for the shared resources, caused by colocation of workloads may

make their performance degraded and unpredictable.

Local Placement

To show the effect of local placement of VMs in a host, we ran the thirteen VMs (one

Memcached VM, six CPU intensive VMs, and six memory intensive VMs) in a host.

Figure 5.5 shows the performance improvements for different placements of VMs on

each testbed; the higher loads on the memcached VM is, the lower latency and higher

throughput are led to by using the proposed approach.
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Figure 5.5: Comparison for Local Placement
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The current existing approaches do not determine which workloads to schedule on

specific cores, leading to high CPU and memory contention. As shown in Figure 5.5,

our proposed approach improves the maximum throughput 1.4 times and reduces the

latency by 58% when applied to OpenStack, and improves the maximum throughput

1.6 times and reduces the latency by 95% when applied to VMWare vSphere.

Global Placement

Through the global placement experiments, we examined how and where the mem-

cached VM is scheduled with different scheduling algorithms, and then measured

its performance. When the VM was provisioned, the schedulers in OpenStack and

vSphere could not schedule the VM in the best place in terms of the memory inten-

sity. We performed experiments for the VM provisioning three times in each case. In

the case of OpenStack, although the available RAM size was equal among the hosts,

the VM was always scheduled on host 1. The Filter scheduler selected the host based

on the available RAM size, but since all hosts had the equal size of available RAM,

the scheduler randomly selected a host among all hosts. Tables 5.2 and 5.3 show the

resource usage in the OpenStack and VMWare testbeds, respectively.

Since the available RAM was equal, one host had the same available memory com-

pared to the other hosts. In the OpenStack testbed, most memory intensive workloads

were thus scheduled all across the hosts, and the memcached VM suffered from the

higher contention of the memory. In the case of VMWare vSphere, the VM was sched-

uled on host 1 twice, while the VM was scheduled on host 3 once. Because the DRS

algorithm is based on the host resource entitlement, which is the resource usage with

respect to the resource capacity. Given the resource capacities, the capacity of memory

was so larger than that of CPU that CPU was the most influential factor to the host load

metric. As a result, it did not consider the memory intensity, and thus the VMs were

scheduled regardless of the memory intensity, degrading the performance of the VMs.
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Figure 5.6: Comparison for Global Placement
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Figure 5.7: Dynamic scheduling (OpenStack). The existing OpenStack (a) could not

handle the dynamic changes in memory intensity. However, our proposed approach (b)

detected the violation of SLO and migrated the LSVM to the lowest memory intensive

host other than the current one.

Table 5.2: Resource Usage in the OpenStack Testbed. Since the same number of VMs

ran in each host, the memory of the same size was allocated to each of the VMs.

However the memory intensity of each host was different, and consequently the Filter

scheduler could not reflect the memory intensity.

Host H1 H2 H3 H4

Available RAM(MB) 208,708 208,708 208,708 208,708
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Figure 5.8: Dynamic scheduling (VMWare vSphere). The existing DRS (a) dispatched

the LSVM on the memory intensive host, which is inappropriate because of not con-

sidering the memory contention. The approach of migrating only the LSVM (b) led to

the violations of LSVM’s SLO for a longer period of time. However our approach of

migrating Non-LSVMs as well (c) led to the violations for a shorter period of time.
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Table 5.3: Resource Usage in the vSphere Testbed. The bold numbers indicate why

the CPU resource was considered as the more important one, and thus DRS put an

emphasis on the CPU resource rather than the memory resource or intensity.

Host H1 H2 H3 H4

CPU Usage (GHz) 31.82 33.30 32.90 33.07

CPU Capacity (GHz) 38.38 38.38 38.38 38.38

CPU Usage/Cap. 0.83 0.87 0.86 0.86

Mem Usage (GB) 19.13 17.23 14.56 12.14

Mem Capacity (GB) 255.96 255.96 255.96 255.96

Mem Usage/Cap. 0.08 0.07 0.06 0.05

In contrast, when our proposed approach was applied to the OpenStack and VMWare

testbeds, the scheduler always scheduled the memcached VM on host 4 that had the

lowest memory intensity, and the colocated workloads on the cores, which minimized

the contention for the shared resources. As shown in Figure 5.6, we could obtain the

performance improvements in terms of both the throughput and tail latency. Although

there was some degradation of performance in terms of latency in the high load com-

pared with the default, it may be due to the trade-off between the throughput and

latency because the throughput is twice as high.

Dynamic scheduling

Cloud datacenters are so dynamic that we should consider the case where the be-

havior of workload changes over time. We performed experiments in such dynamic

scenarios in order to check how much performance could be improved with different

dynamic scheduling algorithms. We used the initial placement of global placement ex-

periments previously conducted. We conducted the experiment where CPU intensive
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workload changed to memory intensive one every 30 second after the memcached VM

was placed initially. As shown in Figure 5.7, the existing default OpenStack was not

able to schedule the VM automatically via live migration. That is, it could not deal

with workload changes properly, leading to increases in the tail latency. At this mo-

ment, the memcached VM violated the SLO, but stayed in the memory intensive host

leading to performance degradation.

However, when our proposed approach was applied, the scheduler predicted the

violation of the SLO (10ms) and lively migrated the memcached VM to the lowest

memory intensive host other than the current one. Although the tail latency could be

increased temporally, because of the migration overhead, the SLO of memcached VM

was met. Figure 5.8 shows the results of VMWare vSphere’s dynamic scheduling in

the three cases, which are DRS scheduling (default), LSVM migration approach, and

all VMs (both LSVM and Non-LSVM) migration one (our proposed approach). In the

case of scheduling with DRS, the tail latency of the memcached VM was exacerbated,

but DRS did not migrate the VM. Since DRS scheduled VMs based on the resource

entitlement, the load imbalance standard deviation (0.021) for all hosts did not exceed

the migration threshold (0.141), and thus the migration process was not triggered. In

the approach of LSVM only migration and core mapping with our local algorithm,

the schedulers migrated the LSVM. The approach shows the stable tail-latency in the

OpenStack testbed (Figure 5.7b). Unlike this case, sometimes the approach shows the

unpredictable tail latency as in the vSphere (Figure 5.8b), leading to the violation of

the SLO. As in this case, the approach of dynamically scheduling LSVM, performing

the migration of LSVM might fail to meet its SLO. In this case, we should migrate the

other VMs, which are Non-LSVMs, to the lowest memory intensive hosts other than

their current ones. As shown in Figure 5.8c, even after the LSVM migration, if the

SLO of LSVM was violated, then scheduler migrated the Non-LSVMs until the SLO

was satisfied. Consequently, the use of our proposed approach met the SLO.
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5.6 Applicability

It would potentially be much beneficial to apply our proposed approach in real-world

applications. For example, the approach can be adopted to the public clouds such as

Amazon EC2 and Google Compute Engine. They provide lots of memory intensive

services such as in-memory databases. These services are memory intensive and la-

tency sensitive as well, to which it could be beneficial to apply the approach. Other ex-

amples are the entertainment services such as gaming. The gaming service is a latency-

critical one requiring low latency and lots of memory for storing temporal data. The

approach could be applicable and effective due to its nature of dynamical change. In

fact, it could be useful for any in-memory latency sensitive workloads.

5.7 Related Work

Our research is related to profiling resource contention. There have been some studies,

and one of the approaches is measuring the workload sensitivity by giving pressure to

a shared resource [12,18,70]. The benefit of this approach is to estimate the allowable

limit of the contention for the shared resource, which affects the performance of work-

loads regardless of the server microarchitecture. However, the approach has a defect

that taking an offline profiling should be preceded to estimate workload sensitivity.

There is another approach that utilizes metrics to decide the state of shared resources.

In this work, we take this approach and it is important how strongly the values of the

metrics as the result of workload profiling are correlated to the characteristics. By sug-

gesting a new performance metric that reflects the memory intensity, we can improve

the weakness of using the L3 miss rate, which has been dominantly used to character-

ize the memory intensity of workloads, but has turned out to be only partially useful.

There have been a number of attempts to detect the performance anomaly, using vari-

ous performance metrics. Google uses the CPI (Cycle Per Instruction) information for
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classifying the abnormal behavior of workloads [7]. This approach finds the interfering

workloads by using the correlation between the victim workload’s CPI and interfering

workloads’ CPU utilization. This approach is similar to ours, in that it restricts the ac-

tivity of interfering workloads, but they estimated the behavior of workloads by using

the CPI, which can be influenced from various types of interfering sources, thus it has

the limitation of identifying and recovering the contention for the shared resources.

Monasca is one of the recent projects on the OpenStack [71]. In Monasca, they try

to perform the analytics for detecting the performance anomaly by utilizing machine

learning algorithms, which is currently under continuous development.

Our research is also related to scheduling of datacenter workloads. Recently, there

have been some studies, considering a datacenter as a big logical computer and man-

aging its resources. Mesos is one of the representative projects that views a data-

center cluster as a resource pool to maximize resource utilization by sharing clusters

among distributed workloads [72]. However, Mesos targets the distributed workloads

such as Spark [73], and our performance isolation techniques could be integrated into

Mesos as well. And there have some projects on scheduling workloads at a datacen-

ter, which considers its heterogeneity and resource contention, such as Paragon [74]

and Quasar [11]. They use the history of profiled data and they also need some hosts

for profiling, and thus their approaches require additional data or infrastructure for ap-

plying their resource management framework. However, our workload-aware resource

management framework does not require any offline obtained data or any hosts for

offline profiling. Some researchers have also developed resource management frame-

works such as Kubernetes [75] for container and Mercury [76] for the resource man-

agement of big data workloads. Kubernetes has currently been developed actively by

Google, and our workload-aware resource management techniques can be adopted for

further improving performance. Mercury works on top of YARN [77], and uses the dy-

namic scheduling algorithms based on the policies, which are guaranteed and queue-
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able ones. However, it focuses on efficient scheduling of many short-lived distributed

jobs, and thus it is orthogonal to our workload-aware resource management frame-

work. In this work, we present our mechanisms of local scheduling (host scheduling)

and global scheduling (intra-cluster scheduling) in order to demonstrate the effective-

ness of our workload-aware resource management framework. We plan to perform

research on the cluster-level scheduling such as like inter-cluster scheduling or inter-

zone scheduling. We also plan to perform research on the policy-based scheduling with

more complicated workloads such as distributed analytic and multi-tier web platform

ones. These are important research subjects regarding datacenters and the demand for

research on these subject is increasing continuously.

Improving the QoS of latency-sensitive workloads is crucial to the users at a dat-

acenter. To enhance the QoS of the workloads, there have been many attempts such

as Bubble-flux [78], Heracles [25]. Similar to our research, these studies have been

conducted to predict and/or monitor the latencies in order to meet the SLO. By en-

hancing our metric, we can make better and more effective algorithm for predicting

tail-latencies. When improving the performance of latency-sensitive workloads, it is

problematic to consolidate latency-sensitive workloads [23]. Recent studies have just

focused on the colocation of latency-sensitive workloads represented as long-running

production workloads and best-effort batch workloads such as distributed data inten-

sive workloads. However, most workloads in public cloud datacenters might be latency

sensitive ones, and the colocation of them could lead to a critical problem.

5.8 Conclusion

We have proposed a workload-aware resource management framework, which can lead

to performance improvements in the latency and throughput of the target workloads.

By using our proposed framework and scheduling algorithm, we could minimize the
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performance interferences with latency-sensitive workloads, known as representative

datacenter ones. To mitigate the resource contention and understand the behavior of

workloads, we have developed effective performance metrics to reflect memory inten-

sity and the performance of latency-sensitive workloads. Base on these metrics, we

have developed the workload-aware scheduling algorithms that minimize the perfor-

mance interferences, thereby letting both host scheduling and inter-host scheduling

minimize the shared resource contention cooperatively. To demonstrate the effective-

ness of this framework, we have developed local (host) and global (inter-host) sched-

ulers in our framework in the OpenStack and VMWare vSphere testbeds, which are

most popular cloud platforms, and found the use of the framework can lead to signif-

icant performance improvements compared with the existing scheduling algorithms.

We plan to extend our algorithm to execute on bigger and more complex systems such

as NUMA ones and also with other diverse emerging workloads.
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Chapter 6

Conclusion

Performance isolation is becoming more important than before. However, many op-

erating systems and frameworks provide just only contention-unaware and fairness-

centric resource allocation, which leads to significant performance degradation, yield-

ing resource inefficiency and violation of service level objectives of workloads. We

have found three challenges for effective performance isolation and addressed them

by utilizing isolation techniques adaptively, hierarchically, and in hybrid manner.

In Chapter 3, we developed a hybrid isolation system that utilizes hardware and

software isolation techniques in a hybrid manner by the characteristics of the work-

loads. We have explored the tradeoffs between hardware and software isolation tech-

niques, and illustrated how these properties affect performance of consolidated work-

loads. We have proposed an algorithm for isolation to use isolation techniques mu-

tually complementary through characteristics analysis of workloads and comparison

of each isolation technique. Our experimental results show that our approach can im-

proves tail-latency from 1.4×−76× compared to the-state-of-art isolation framework

while improving resource efficiency under the different levels of contentions. improves
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tail-latency from 1.4×−76× compared to the-state-of-art isolation framework while

improving resource efficiency under the different levels of contentions.

In Chapter 4, we have illustrated the challenges of multitasking on edge devices,

which is critical to the performance of tasks. To address these challenges, we present

EdgeIso, an effective edge scheduler that mitigates resource contention on edges and

isolates the performance of latency-critical tasks while running background tasks. It

periodically profiles which resource contention is the dominant one for the tasks run-

ning on the edge, tracks the changes in the contentions efficiently, and performs iso-

lations adaptively and dynamically by enforcing the appropriate isolation techniques

incrementally. We have evaluated EdgeIso on an NVIDIA Jetson TX2 using several

benchmarks of diverse SLOs and resource demands. The evaluation results show that

EdgeIso can effectively mitigate resource contention, reduce the SLO violation ratio

significantly for tasks of diverse SLOs compared with existing schemes under dynamic

resource contention.

In Chapter 5, We have proposed a workload-aware resource management frame-

work, which can lead to performance improvements in the latency and throughput of

the target workloads. To mitigate the resource contention and understand the behav-

ior of workloads, we have defined effective performance metrics to reflect memory

intensity and the performance of latency-sensitive workloads. Base on these metrics,

we have developed the workload-aware scheduling algorithms that minimize the per-

formance interferences, thereby letting both host scheduling and inter-host schedul-

ing minimize the shared resource contention cooperatively. To demonstrate the effec-

tiveness of this framework, we have evaluated our algorithms on the OpenStack and

VMWare vSphere testbeds. Evaluation results show significant performance improve-

ments compared with the existing scheduling algorithms.

In the future work, we will investigate isolation techniques for the different micro-

architectures such as AMD and ARM to generalize our ideas. we will also extend
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various edge server which have more resources than Jetson TX2, such as autonomous

drones or cars. Finally, we will extend our hierarchical performance isolation scheme

for workloads spanning multiple compute servers for large-scale workloads.
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요약

컴퓨터 하드웨어가 발전함에 따라 데이터센터부터 임베디드 디바이스까지 다양한

분야들에서 머신 내 프로세싱 코어의 수, 캐쉬, 메모리 등 한 머신 내의 컴퓨팅 자

원들이증가하고있다.점점늘어나는머신내컴퓨팅자원들을효율적으로쓰기위

해서는 복수의 워크로드들을 통합함으로써 병렬적으로 수행하고 시스템 자원들을

공유하는것이필요하다.하지만,자원공유는공유되는자원들에대한심한경합을

야기할 수 있고, 이로 인해 워크로드들의 성능이 심각하게 저하될 수 있다. 더욱이,

워크로드들은지연시간이중요한것부터최선의수행만을목표로하는것까지다양

한서비스수준목표를가진워크로드들이있을수있는데,이는워크로드들의통합

을 어렵게 만든다. 경합 문제를 해결하기 위해서 운영체제와 하드웨어 제조사들이

다양한자원격리기법들을제시하고있지만여러격리기법들을성능-중심적인관

점이 아닌 공평한 자원 할당의 관점에서 사용해오고 있다. 게다가, 기존 기법들은

성능 격리를 제공하지 않거나 효율적이고 효과적으로 수행하지 못한다. 본 논문은

기존 운영체제 및 하드웨어의 자원 격리 기술을 활용하여 성능 격리를 적응적으로

수행하는 피드백 방식의 성능 격리 최적화 기법들을 제안한다. 이를 위해서는, 자

원 경합들을 평가하는 효과적인 온라인 프로파일링이 필요하다. 또한, 워크로드의

프로파일들에따라서격리가수행되어야한다.

본 논문에서, 우리는 세 가지 시스템에 대해서 온라인 프로파일링의 도움을 받

는 성능 격리 최적화기법들을 제시한다. 첫째, 일반적인 멀티코어 서버 환경에서

하드웨어 및 소프트웨어 격리기법들의 특성을 고려하는 성능 격리 최적화를 제시

한다. 둘째, 엣지 디바이스 환경과 같이 동적으로 자원 경합이 크게 변하는 특성을

고려한 적응적 성능 격리 최적화를 제시한다. 마지막으로, 공평성중심으로 자원을

프로비저닝하는 클러스터 환경에서 지연시간이 중요한 가상머신들의 자원 경합을

완화하는 계층적인 자원 경합 인지 스케줄링 최적화를 제안한다. 본 논문에서 제
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안한 온라인 프로파일링 기법들과 적응적 최적화기법들의 효과를 증명하기 위해

다양한 시스템 환경(멀티코어, 엣지 디바이스, 그리고 클러스터)에 구현하여 검증

하였다.실험결과는우리의제안하는적응적성능격리최적화접근방식이통합된

워크로드들이 수행되는 동적인 환경에서 효과적으로 자원 경합을 줄여 기존 기법

들 대비 워크로드들의 더 낮은 수행 시간 및 지연 시간을 보이는 동시에 높은 자원

효율성을달성할수있음을보였다.

주요어:성능격리,자원관리,자원경합,적응형시스템,멀티코어시스템,엣지컴

퓨팅,클러스터

학번: 2014-30324
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