

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

3차원 낸드 플래시 저장 장치의 보안성과 실시간성

보장을 위한 계층 교차 최적화 기법

Cross-layer Optimization Techniques for

Secure Real-time 3D NAND Flash-Based

Storage Systems

2020년 8월

서울대학교 대학원

컴퓨터공학부

김명석

3차원 낸드 플래시 저장 장치의 보안성과 실시간성

보장을 위한 계층 교차 최적화 기법

Cross-layer Optimization Techniques for

Secure Real-time 3D NAND Flash-Based

Storage Systems

지도교수 김 지 홍

이 논문을 공학박사 학위논문으로 제출함

2020년 6월

서울대학교 대학원

컴퓨터공학부

김명석

김명석의 공학박사 학위논문을 인준함

2020년 7월

위 원 장 유 승 주 (인)

부위원장 김 지 홍 (인)

위 원 김 진 수 (인)

위 원 이 재 욱 (인)

위 원 이 성 진 (인)

Abstract

In recent years, NAND flash-based storage systems have explo-

sively grown in popularity owing to their unique advantages and the

successful reduction in the cost-per-bit value of NAND flash memory.

As NAND flash memory is widely adopted in various emerging data-

driven applications, modern storage systems are required to satisfy

new requirements such as high data security or real-time processing.

Therefore, it becomes crucial to develop new optimization techniques

that can properly address new challenges.

In this dissertation, we propose various optimization techniques

that enable flash storage systems to support high data security and

real-time processing without compromising the performance and the

reliability of NAND flash memory. Our techniques are motivated by

key findings that are based on comprehensive NAND characterization

studies. We found that the read service time of flash storage systems

can be significantly fluctuated and delayed by two major factors; One

is iterative read operations to search optimal read reference voltages,

called read retries and the other is a command conflict between read

tasks and preceding I/O requests. Moreover, we also founded that the

existing data sanitization techniques cannot avoid large performance

or reliability penalties because they physically destroy the stored data.

Therefore, to protect sensitive data reliably, a new approach is needed

that provides equivalent security guarantees without physically chang-

i

ing the data. Based on our findings, we proposed optimization tech-

niques to satisfy the new requirements of emerging storage markets.

We first introduce a practical read retry mitigation technique

based on a new NAND aging marker that accurately represents the

wear status of NAND blocks. Since the read retry operation is closely

related to the wear of NAND flash memory, knowing the exact aging

characteristics of individual NAND block is a prerequisite to minimize

the read retries. From our evaluation study, we first show that the

existing P/E cycle-based aging marker (PeWear) is inadequate to esti-

mate the actual aging status of NAND blocks, thus losing opportuni-

ties for further optimizations. To overcome the limitations of PeWear,

we propose a new NAND aging marker, RealWear, based on extensive

characterization studies using real 3D TLC flash chips. By consider-

ing multiple variables that can affect the NAND cell wear, RealWear

can accurately indicate the actual wear status of NAND blocks during

run time. Based on the value of RealWear, we construct optimal read

reference voltage tables and implement a RealWear-aware FTL, rFTL,

that employs RealWear-specific module. Since an optimal read refer-

ence voltages can be directly provided without the time-consuming

iterative searching, rFTL can significantly mitigate read latency fluc-

tuations, guaranteeing that the read latency can be bounded with at

most 2 read retry operations even in the worst-case scenario.

Secondly, we propose a new suspend/resume command for 3D

NAND flash memory, called priority-aware Suspend/Resume (pSR).

Unlike the existing preemption techniques, pSR limits the number of

ii

suspend/resume operations by permitting the preemption command

only at predefined safe points, thus efficiently avoiding large reliability

penalties due to excessive preemptions. Based on the accurate NAND

error model, pSR partially allows read tasks to immediately suspend

the ongoing flash operations with carefully managing the flash relia-

bility. Since pSR efficiently eliminating the conflicts between flash op-

erations, a high-priority read request can be served in a timely fashion

without an unpredictable long delay.

Finally, we propose evanesco, a new data sanitization technique

specifically designed for high-density 3D NAND flash memory. Unlike

existing techniques that physically destroy stored data, evanesco pro-

vides data sanitization by blocking access to stored data. By exploiting

existing spare flash cells in the flash memory chip, evanesco efficiently

supports two new flash lock commands (pLock and bLock) that disable

access to deleted data at both page and block granularities. Since the

locked page (or block) can be unlocked only after its data is erased,

evanesco provides a strong security guarantee even against an ad-

vanced threat model. To evaluate our technique, we build SecureSSD,

an evanesco-enabled emulated flash storage system. Our experimental

results show that SecureSSD can effectively support data sanitization

with a small performance overhead and no reliability degradation.

In order to evaluate the effectiveness of the proposed techniques,

we conducted a set of experiments with various benchmark tools and

I/O traces collected from real-world applications. The experimental

results showed that our proposed techniques allow a flash storage sys-

iii

tem to be managed in a timely fashion and to reliably protect sensitive

data from a malicious attack, thus enabling NAND flash-based storage

systems to better meet the various requirements of modern comput-

ing systems. Furthermore, our techniques can also improve both the

performance and lifetime by fully leveraging the exact status of the

individual NAND block.

Keywords: 3D NAND Flash Memory, Flash Translation Layer,

NAND Flash-Based Storage Systems, Embedded Systems, Security,

Real-time, Performance Optimization, Lifetime Optimization

Student Number: 2015-31049

iv

Contents

I. Introduction . 1

1.1 Motivation . 1

1.2 Dissertation Goals . 3

1.3 Contributions . 6

1.4 Dissertation Structure 8

II. Background . 11

2.1 NAND Flash Organization 11

2.2 Flash Operation . 13

2.3 Multi-level Cell Flash Memory 15

2.4 3D NAND Flash Memory 17

2.5 Wear Mechanism of Flash Memory 18

2.6 Impact of NAND Cell Wear Out 20

2.6.1 Impact on NAND Bit Errors 20

2.6.2 Impact on the Read Latency 22

2.7 NAND Flash-Based Storage Systems 23

2.8 Related Work . 26

2.8.1 NAND Aging Markers 26

2.8.2 Preemption Command 28

2.8.3 Data Sanitization 29

v

III. Read Retry Mitigation Using a New NAND Aging

Marker . 31

3.1 Motivation: Inadequacy of P/E-cycle based aging markers 32

3.1.1 Evaluation Methodology 33

3.1.2 Evaluation Results 35

3.1.3 Root Causes of Inadequacy in PeWear 38

3.1.4 Extended PeWear Markers 41

3.2 New NAND Aging Marker: RealWear 42

3.2.1 Variable Selection 43

3.2.2 Building Model 48

3.2.3 Model Calibration 49

3.3 Validation of RealWear 51

3.3.1 Bad Block Classification 51

3.3.2 Per-Sector Error Variations 54

3.3.3 Self-Recovery Effect 55

3.4 BoudedRead: Read Retry Mitigation 56

3.4.1 Optimal Read Reference Voltages Table (ORT) 57

3.4.2 Device-level Evaluation of BoudedRead 60

3.4.3 System-level Evaluation Results 61

3.4.4 Case Study 1: Lifetime Improvement 65

3.4.5 Case Study 2: GC Overhead Reduction 66

IV. Priority-Aware Suspend/Resume Technique 70

4.1 Limitation of the Existing Preemption Techniques . . 72

4.2 Priority-Aware Preemption: pSR 76

vi

4.2.1 Read-Erase Conflict: rCe 76

4.2.2 Read-Program Conflict: rCw 77

4.2.3 Read-Read Conflict: rCr 79

4.3 Evaluation Results . 80

V. Lock Based Data Sanitization Technique 83

5.1 Motivation . 83

5.1.1 Data Versioning Problem 83

5.1.2 Reprogram-Based Data Sanitization 89

5.2 Evanesco: Lock-Based Sanitization 93

5.2.1 Threat Model 93

5.2.2 Approach Overview 95

5.2.3 PLock: Page-Level Data Sanitization 97

5.2.4 BLock: Block-Level Data Sanitization 103

5.2.5 Implementation Overhead 107

5.3 SecureSSD: System Integration 108

5.4 System-Level Evaluation 111

VI. Conclusions . 116

6.1 Summary . 116

6.2 Future Work . 118

6.2.1 Prediction Model for Sudden NAND flash Failure118

6.2.2 Extensions of Read Retry Mitigation 119

6.2.3 Extensions of evanesco 121

6.2.4 Extensions for Advanced Memory Technology . 122

vii

Bibliography . 125

viii

List of Figures

Figure 1. The root causes of non-deterministic read service

time. 4

Figure 2. Organizational overview of a NAND flash block. . 12

Figure 3. Vth distributions of 2m-state NAND flash memory. 15

Figure 4. Illustrations of differences between 2D and 3D

NAND. 18

Figure 5. A schematic diagram of a 3D NAND flash cell. . 19

Figure 6. Changes in Vth distributions of the MLC flash. . 20

Figure 7. An overall architecture of typical NAND flash-

based storage systems. 24

Figure 8. PeWear evaluation results: Bad block classification. 36

Figure 9. PeWear evaluation results with varying N B
P/E

values

and dwell times. 36

Figure 10.An overview of model building for RealWear. . . 42

Figure 11.Correlation analysis of candidate variables for N(12). 46

Figure 12.Correlation analysis of candidate variables for N(12). 46

Figure 13.Correlation analysis of candidate variables for N(12). 46

Figure 14.Early model evaluation results. 50

Figure 15.Lifetime validation results of RealWear. 51

Figure 16.Error variation evaluation results of RealWear. . 54

Figure 17.Changes in the age(B) by the self-recovery effect. 55

Figure 18.Change in Vref under various operating conditions. 58

ix

Figure 19.Organizational overview of ORT. 60

Figure 20.NumRetry distributions. 61

Figure 21.An organizational overview of a rFTL. 62

Figure 22.Read latency comparison results. 64

Figure 23.Lifetime Improvement of LongLive. 66

Figure 24.Copyback threshold variations. 67

Figure 25. I/O throughput comparison results. 68

Figure 26.CDF of read latency. 70

Figure 27.A conflict problem in the flash storage system. . 72

Figure 28.Erase operation in flash memory: Incremental step

pulse erase. 73

Figure 29. Impact of an preemption on the block quality. . . 75

Figure 30.Overview of preemption techniques. 77

Figure 31.Suspend/resume during a program operation. . . 78

Figure 32.Conflict between read task and management task. 79

Figure 33.Overview of paFTL. 80

Figure 34.Evaluation results of paFTL. 81

Figure 35.Data versioning under different write patterns. . 87

Figure 36.Vth distributions of 2m-state NAND flash memory. 90

Figure 37.Changes in RBER of flash pages under OSR. . . 91

Figure 38.Operational overview of pLock and bLock. 96

Figure 39.pLock implementation. 98

Figure 40.Design space exploration results for pLock. 101

Figure 41.RBER vs. open interval length. 104

Figure 42.bLock implementation. 106

x

Figure 43.Design space exploration results for bLock. 107

Figure 44.Operational overview of SecureSSD. 109

Figure 45. IOPS of different SSDs (higher is better). 113

Figure 46.WAF of different SSDs (lower is better). 113

Figure 47.Performance of SecureSSD under four different work-

loads. 114

Figure 48.Sudden failure of NAND blocks. 119

Figure 49.Estimation of optimal read reference voltage. . . 120

Figure 50.Re-design of NAND architecture for recoverable

bLock. 123

Figure 51.Re-design of NAND architecture for unrecover-

able bLock. 124

xi

List of Tables

Table 1.A summary of candidate variables. 43

Table 2.A summary of six workloads. 63

Table 3.A summary of our data versioning evaluations. . . 86

Table 4. I/O characteristics of our four benchmarks. 112

xii

Chapter 1

Introduction

1.1 Motivation

Over the past decade, NAND flash-based storage systems have

been the key enablers of the modern digital revolution thanks to their

superior properties compared to magnetic disk drives (e.g., HDDs)

such as low power consumption, high shock resistance, fast random

access, and small form factor. Especially, with the continuous effort of

NAND manufacturers, the cost-per-bit value of NAND flash memory

has been dramatically reduced due to various innovative technologies

such as 3D process integration [1, 2] and multi-level cell technology [3,

4]. Therefore, NAND flash-based storage systems are expected to more

widely adopted in various storage markets, and play a more critical

role in new emerging storage market areas (e.g., real-time analytics,

cloud storage, machine learning, and self-driving cars).

While the new application offers a great opportunity for NAND

flash-based storage systems, it also presents other new challenges to

be solved due to the variety of missions to be performed under more

harsh operating conditions compared to existing applications. For ex-

ample, consider the NAND flash memory for future self-driving cars.

Autonomous vehicles should properly manage tera-bytes of data every

1

hour under widely varying operating temperatures in a timely fash-

ion [5]. Furthermore, since such a vehicle is expected to run for long

times without failures, its on-board storage system should guarantee

a long lifetime. Cloud storage service, where large amounts of data

should be collected and processed, continuously struggle to guaran-

tee a user experience, called QoS (Quality of Service), by eliminat-

ing the unpredictable variations in their service time. On the other

hand, it is increasingly becoming important to protect sensitive per-

sonal data such as private photos, social-networking-service messages,

or confidential data (e.g., medical records or proprietary documents)

in storage devices from malicious attackers. Therefore, to successfully

implement a modern storage system, NAND flash memory should sat-

isfy various requirements not only high-performance and long-lifetime

(key requirements of traditional applications) but also new require-

ments such as high-security and real-time processing.

Unfortunately, the current NAND flash-based storage systems

are ill-suited to meet new flash requirements of emerging applications

because most existing flash solutions have focused on resolving the

limitations of large-capacity NAND flash memory (e.g., poor reliabil-

ity or slow program latency). Therefore, to overcome new challenges,

significant improvements are needed across the key design abstrac-

tions of a NAND flash-based storage system. Moreover, since it is

hard to develop a single ultimate solution that can properly address

all requirements, multiple optimization techniques should be devel-

oped and effectively integrated.

2

1.2 Dissertation Goals

Before exploring proper solutions, we analyzed the root causes of

NAND flash-based storage systems making it difficult to support high-

security and real-time processing based on a comprehensive evaluation

using real 3D TLC flash chips. From NAND characterization studies,

we identified the limitations of the existing techniques and obtained

various optimization hints to be exploited in our study. Based on these

hints, we developed device-level optimization techniques by revisiting

(or re-designing) the conventional flash operations, and implemented

system-level optimization techniques to take a fully advantage of the

device-level techniques.

For example, to acquire the real-time properties of flash storage

systems, we analyzed the root causes of non-deterministic read service

time due to a long read tail-latency. This unpredictable and unfavor-

able phenomenon is not caused by single factor, but is caused by a

combination of various factors in multiple layers constituting a storage

system. In summary, as shown in Figure 1, the causes can be found

in three different layers in a NAND flash-based storage system:

• 1st Layer - NAND flash memory: Multiple read retries as NAND

flash memory wears

• 2nd Layer - Flash Transition Layer (FTL): Command conflict

by preceding I/O requests or management tasks in FTL

• 3rd Layer - Host System: Priority-unaware Scheduling Policy

3

NAND Flash-Based Storage Systems

NAND Flash Array

Flash Translation Layer

Maintenance Tasks

Garbage

Collection

Wear

Leveling

Data

Refresh

NAND commands

Requests Requested data

Host Computing System

I/O request
Unbounded

response time

d I/O processing without priority

- I/O delay by long maintenance tasks

Non-deterministic read latencies

- Large fluctuation by read retries

Non-preemptive flash operation

- Delay by conflicts with preceding

flash operation (write, erase or read)

Scheduling / Task Management

Figure 1: The root causes of non-deterministic read service time.

Based on the analysis results, we developed new optimization

techniques to tackle the problem of non-deterministic read service time

in NAND flash-based storage systems. First, to mitigate the number

of read retries (NumRetry), since NumRetry is significantly varied as a

NAND flash memory wears out, we attempted to accurately estimate

the exact wear status of NAND flash memory by a new NAND ag-

ing marker (RealWear). Second, based on RealWear, we proposed a

read retry mitigation technique (BoudedRead) that an optimal read

reference voltages can be directly given without an iterative time-

consuming search process. Third, we also proposed a new preemption

technique to efficiently resolve the command conflicts between flash

operations. By properly utilizing these optimization techniques, a host

system is expected to develop a new scheduling (or task management)

policy to guarantee the real-time properties. (This is not included in

4

our paper, and remained as our future work.)

For the high-security in flash storage systems, we developed new

data sanitization techniques through similar procedures to the above.

We first analyzed the limitation of existing solutions which sanitize

by physically destroying the data in NAND flash memory. And then,

we proposed a new flash interface to sanitize security-sensitive data

by disabling access to the sanitized data. Finally, we also introduced

a system-level optimization technique that supports device-level tech-

niques at low performance overhead.

In this dissertation, we propose new cross-layer techniques that

aim at satisfying high-security and real-time processing of NAND

flash-based storage systems. Our primary goal of this dissertation is

as follows:

• Enabling a system software to vertically integrate the optimiza-

tion techniques so as to maximize improvement gains.

• Developing system-level techniques to guarantee the requirement

of real-time processing based a new NAND aging marker and

preemption policy.

• Providing data sanitization techniques to reliably protect sensitive

data without performance and reliability overheads.

5

1.3 Contributions

In this dissertation, we introduce three optimization techniques

to add new solutions to the data security and real-time processing

problem of NAND flash-based storage systems. The contributions of

our work can be summarized as follows:

• We present a read retry mitigation technique using a new NAND

aging marker, called RealWear, which can indicate the actual ag-

ing status of an individual NAND block in a much more accurate

fashion over the existing P/E cycle-based aging marker. Based on

the comprehensive device-level measurements, we quantitatively

show the key variables related to the wear status of a NAND

block, and design RealWear following a general model construc-

tion. Using real state-of-the-art 3D TLC NAND flash chips, we

experimentally confirmed the validation of our model by compar-

ing it with other existing NAND aging markers. To demonstrate

the benefit of RealWear in flash storage systems, we present three

case studies, LongLive, FastCopy, and BoudedRead. BoudedRead

set an optimal reference voltage based on the value of RealWear

and operating conditions. Our evaluation result of BoudedRead

shows that no read can experience more than two read retries

under all possible operating conditions, thus significantly reduc-

ing the tail latency of the flash storage system. To the best of

our knowledge, BoudedRead is the first technique that supports

the bounded read latency. BoudedRead can open new application

6

areas for flash memory where timing constraints are important.

In addition, over their counterpart techniques based on the P/E

cycle-based aging marker, LongLive can extend the lifetime of in-

dividual NAND blocks by an average of 63% and FastCopy can

improve the performance up to 21% by reducing GC overhead.

• We propose a novel priority-aware suspend/resume technique,

called pSR, that handles all the cases where a read task conflicts

with other flash commands (including read). Unlike the existing

preemption techniques, pSR limits the number of suspend/resume

operations by permitting the preemption command only at pre-

defined safe points (that is experimentally determined), thus ef-

ficiently avoiding large reliability penalties due to excessive pre-

emptions. Based on the accurate NAND error model, pSR par-

tially allows read tasks to immediately suspend the ongoing flash

operations with properly modifying the wear status of the tar-

get NAND block. Based on the proposed pSR command, we have

developed an priority-aware FTL, called paFTL. When a read re-

quest arrives, the paFTL decides if an ongoing operation would

be preempted or not depending on its priority, thus enabling a

high-priority read task to be served in a timely manner without

an unexpectedly long delay.

• We propose evanesco, a new low-cost data-sanitization technique

for modern 3D NAND flash memory. Evanesco effectively sanitizes

security-sensitive data by disabling access to the sanitized data

7

until the corresponding block is physically erased. By using spare

flash cells, evanesco reliably manages the data-access permission

inside a flash chip without negative effect on the performance

and reliability of a storage system. To take a full advantage of

evanesco, We introduce SecureSSD, an evanesco-enabled storage

system that implements evanesco at low performance overhead.

By allowing a user to set the security requirements of written data

with extended I/O interfaces, SecureSSD selectively sanitizes only

security-sensitive data. We experimentally evaluate the reliability,

performance, and lifetime of SecureSSD using 160 state-of-the art

3D TLC NAND flash chips. Our evaluations show that SecureSSD

quickly sanitizes a page or a block without negatively affecting the

reliability of the storage system. We compare SecureSSD to ex-

isting physical-sanitization techniques and show that SecureSSD

significantly reduces the performance and lifetime overheads of

data sanitization. Over existing reprogram-based techniques, Se-

cureSSD increases the input/output operations per second (IOPS)

performance by up to 4.8× (2.9× on average) and reduces the

number of block erasures by up to 79% (62% on average).

1.4 Dissertation Structure

This dissertation is composed of six chapters including the intro-

duction and conclusions which are at the first and the last, respec-

tively. The four intermediate chapters are organized as follows:

8

Chapter 2 briefly explains the background for our work, including

basics of NAND flash memory and overall architecture of NAND flash-

based storage systems. We also examine the wear mechanism of NAND

flash memory and its impact on flash operations.

Chapter 3 introduces a NAND aging marker, called RealWear,

which accurately predicts the wear status of individual NAND blocks.

We evaluate the inadequacy of the existing P/E cycle-based aging

marker and discuss the root causes of the weakness of P/E cycle-based

aging marker. We construct RealWear based on multiple variables that

are closely related to the wear of NAND flash memory, and confirm

its validations using the state-of-the-art 3D NAND devices. To take a

full advantage of its benefits, we also propose a RealWear-aware FTL,

rFTL, which manages NAND flash-based storage systems based on the

value of RealWear. rFTL can further improves the existing optimiza-

tion techniques, thus providing better reliability and performance of a

flash storage system. Moreover, rFTL also enables a new optimization

technique that reduces read latency fluctuations due to read retries,

thus achieving time-bounded reads for a flash storage system.

In Chapter 4, we introduce a simple yet effective co-design of

NAND devices and flash controllers to improve the read performance

of NAND flash-based storage systems.. We first explain the limitations

of the existing suspend/resume techniques and figure out the solution

based on comprehensive NAND characterization studies. Then we pro-

pose design and implementation of a new suspend/resume command

that can guarantee the read service time by properly handling the

9

conflicts between high-priority read tasks and other flash operations.

Lastly, Chapter 5 presents a new integrated data sanitization

technique, called Evanesco, for reliably protecting the sensitive data

in NAND flash memory. Before introducing our techniques, we reveal

the performance and reliability issues of the existing sanitization tech-

niques. Then, we propose two new flash lock commands (pLock and

bLock) that disable access to deleted data at both page and block

granularity. After explaining the key mechanism of the two locking

commands and their implementation details, to demonstrate the effec-

tiveness of evanesco, we build SecureSSD, an emulation-based proto-

type solid-state drive (SSD) that implements an extended flash mem-

ory model with pLock and bLock. By using pLock and bLock only for

security-sensitive data, SecureSSD keeps the performance overhead of

data sanitization at minimum.

10

Chapter 2

Background

In this section, we first explain the basics of NAND flash-based

storage systems, starting from the physical characteristics of under-

lying NAND cells and flash operations to the overall architecture of

modern NAND flash-based storage systems. We also briefly describe

the physical/structural characteristics of 3D NAND flash memory.

We then review the wear mechanism of NAND flash memory and its

impact on the performance and lifetime of storage systems. Finally,

previous studies highly related to our work are summarized.

2.1 NAND Flash Organization

NAND flash memory consists of NAND cells, which store data,

and peripheral circuits, which support flash commands such as read

and write. Figure 2 illustrates a typical NAND block organization.

Although the NAND cell, shown in Figure 2, is structurally similar

to a normal MOS transistor, it is unique in that its threshold voltage

Vth can be adjusted by injecting (ejecting) electrons into (out of) the

floating gate1. Depending on the number of electrons in the floating

1In 2D NAND flash memory, floating-gate cell structures were typically used,
while many 3D NAND devices adopt charge trap (CT)-type cell structures. The
details will be explained in Section 2.4.

11

gate, the NAND cell works as an off or on switch under a given control

gate voltage, thereby effectively storing data (encoded by Vth). For

example, in single-level cell (SLC) flash memory [8], we can assign ‘0’

state (i.e., data value ‘0’) to high Vth in the NAND cell, and ‘1’ state

(i.e., data value ‘1’) to low Vth in the flash cell.

As shown in Figure 2, a group of NAND cells (typically 8K-

16K cells) form a wordline (WL) and multiple WLs (typically 128-

256 WLs) form a block. In this block, there are n WLs and each WL

consists of p NAND cells. For example, if there are 200 WLs in a block

and each WL has 16-KB NAND cells, a NAND block has 3.2 MB

of size. The WL can be logically divided into multiple pages which

is the unit of read and program operations. A WL stores as many

pages as the number of bits represented by a single NAND cell (up to

four pages with state-of-the-art QLC technology). In single-level cell

BL
0

BL
1

BL
i

BL
m-1

SSL

GSL

CSL

…

…

…

…

… …R
o

w
 D

e
co

d
e

r/
C

h
a

rg
e

 P
u

m
p

Page Buffer … …

… …
Data In/Out

Column Decoder/Charge Pump

WL
n–1

… … … …WL
k

WL
0

… … … …

…

…

…

…

…

…

Control

Gate

Oxide

Oxide

Substrate

S De–

WLk

To

CSL

To

BLi

Floating

Gate

Flash Cell

Figure 2: Organizational overview of a NAND flash block.

12

(SLC) flash memory, 1 WL corresponds to 1 page, while m-bit cell

flash memory has m pages per a single WL. Since the NAND cells on

the same WLk share the common WLk signal from the row decoder

module, read and program operations are performed together at the

same time, thus achieving high bandwidth. BLs, which are shared by

all the blocks in a flash chip, are connected to the page buffer, which

is used for off-chip data transfer through the data-in/out circuitry.

Two select transistors at the top and bottom of a BL comprise the

source select line (SSL) and the ground select line (GSL) of a block,

respectively. By applying proper voltages to the SSL and GSL of a

NAND block, we can activate (or de-activate) the block to perform

flash operations.

2.2 Flash Operation

The program operation changes the data value of a NAND cell

by increasing the cell’s Vth (i.e., program operation can only change

the data value from ‘1’ to ‘0’). To increase the Vth of the selected

NAND cells, program operation transfers electrons from the channel

(i.e., substrate) into the floating gate of the selected NAND cells using

FN tunneling [9] by applying a high voltage (i.e., V cg > 20V) to the

control gate in Figure 2. The FN tunneling current density JF N is

modeled as:

JF N = A · Eox · exp
−kB

Eox
(2.1)

13

where A is a material/structure-specific constant, kB is the Boltzmann

constant, and Eox is the electric field intensity across the Tox layer. Eox

is given by (Vfg/dox) where Vfg is the floating gate voltage coupled by

Vcg, and dox is the thickness of Tox layer. As shown in Equation (2.1),

the density of FN tunneling current is proportional to the electric field

intensity across tunnel oxide (Tox) layer. As a higher gate voltage

is applied, more FN tunnel current flows, which means that more

electrons are injected into the floating gate. On the other hand, the

erase operation sets the data value of a NAND cell back to ‘1’. The

erase operation decreases Vth of the NAND cells by applying a high

voltage to the substrate (i.e., Vsub > 20V) to remove electrons from

the floating gate. Since the program operation can change the data

value of a NAND cell only from ‘1’ to ‘0’, all the NAND cells of a page

should be erased first to program data on the page (called erase-before-

program). The erase operation works at block granularity because a

high voltage is applied to the substrate that underlies the entire block.

To read the stored data from a page, the Vth levels of the NAND

cells on the WL are probed using a read reference voltage Vref . In

Figure 2, when WLk is selected for read,2 if the Vth of the i-th NAND

cell in WLk is higher than Vref , the i-th NAND cell turns off, so the

cell current of BLi is blocked (i.e., the NAND cell is identified as ‘0’).

On the other hand, if the Vth of the i-th NAND cell is lower than Vref ,

2Since no other WL in the same block (e.g., WLk−1 or WLk+1) should affect
the read operation on WLk, the NAND cells in all other WLs should behave like
pass transistors. Their gate voltages are set to VREAD (> 6V), which is much
higher than the highest Vth value of any NAND cell [10].

14

electron

D
e

si
g

n
 L

im
it

N
u

m
b

e
r

o
f

c
e

ll
s

Vth

–

MSB LSB

11

Erase (E)

–
– –

–
– –

– – ––
–

–
– –

10

P1

00

P2

01

P3

Vth margin

Floating Gate

–

(a) m=2 : MLC flash memory.

N
u

m
b

e
r

o
f

c
e

ll
s

Vth

111

E

110

P1

100

P2

000

P3

D
e

si
g

n
 L

im
it

010

P4

011

P5

001

P6

101

P7

MSB LSB

CSB

Vth margin

(b) m=3 : TLC flash memory.

Figure 3: Vth distributions of 2m-state NAND flash memory.

the i-th NAND cell turns on, so the cell current can flow through BLi

(i.e., the NAND cell is identified as ‘1’). By sensing BLs from the

selected WLk, the stored data in the entire WL is read into the page

buffer. Note that, if we can prevent the page buffer from buffering

the data of a NAND cell, or prevent the data in the page buffer from

being transferred out of the flash chip via the data-out path, we would

prevent access to the stored data in any WL.

2.3 Multi-level Cell Flash Memory

To improve the storage capacity of NAND flash memory, the

multi-level cell (MLC) technique has been developed by NAND man-

ufacturers. MLC technology was initially developed to store 2 bits per

cell [11, 12], then extended to support 3 bits/cell (called TLC) [13, 14]

15

and 4 bits/cell (called QLC) [3, 4]. Figure 3 illustrates Vth distribu-

tions for 2m-state NAND flash memory that stores m bits within a

single flash cell by using 2m distinct Vth states, for m = 2 (MLC)

and m = 3 (TLC). As m increases to store more bits in a flash cell,

more Vth states should be squeezed into a limited Vth window, which is

fixed at flash design time. Therefore, more careful management (e.g.,

smaller ISPP voltage steps [15]) is required for multi-level flash mem-

ory to form finer Vth states. Small ISPP voltage step (Vispp) can keep

Vth distributions of adjacent program states as distant as possible so

that the interference between neighboring states can be minimized.

Although narrowing Vth distributions for program states makes pro-

gram states more error-resistant, it inevitably slows down the program

speed (tPROG).

Furthermore, as m increases, the Vth margin (i.e., the gap between

two neighboring Vth states) inevitably becomes smaller, as shown in

Figures 3(a) and 3(b). When the Vth margin is smaller, the Vth dis-

tributions of two neighboring states are more likely to overlap under

various noise conditions (e.g., long retention times [16, 17], cell-to-cell

interference [18, 19], and read disturbance [20, 10]), which degrades

the reliability of NAND flash memory. For example, MLC NAND

flash memory can tolerate up to 3,000 program and erase (P/E) cy-

cles, while TLC NAND flash memory can tolerate only about 1,000

P/E cycles [21]. As a result, the higher the flash capacity by increasing

m, the lower the flash reliability and performance.

16

2.4 3D NAND Flash Memory

3D NAND flash memory [1, 2, 22], in which memory cells are

vertically stacked, enabled the continuous growth in the flash capac-

ity by overcoming various technical challenges in scaling 2D NAND

flash memory. For example, 2D flash memory technologies had en-

countered the fundamental limits to scaling below the 10-nm process

technology [23] because of the low device reliability (due to severe

cell-to-cell interference) and high manufacturing complexity. By ex-

ploiting the vertical dimension for the capacity increase, 3D NAND

flash memory has contributed to sustain the 50% per year growth rate

in the NAND flash capacity.

Although an architecture of 3D NAND flash memory is concep-

tually described as if multiple 2D NAND flash layers are stacked in a

vertical direction, the inner organization of 3D NAND flash memory is

quite different from this logical explanation. Figure 4(a) illustrates an

organizational difference in a NAND block between 2D flash and 3D

flash. The 3D NAND block in Figure 4 (a) consists of five horizontal

layers (h-layers), which are stacked along the z axis. Each horizontal

layer consists of four word lines (WLs). Similarly, the 3D NAND block

may be described to have four vertical layers (v-layers) in the y axis

where each v-layer consists of five vertically stacked WLs that are sep-

arated by select-line (SL) transistors. As shown in Figure 4(a), when a

2D NAND block is rotated by 90 ◦ in a counterclockwise direction us-

ing the x axis as an axis of rotation, it corresponds to a single v-layer.

17

+90

Bit Line

SL

Channel

WLs

SL

h-layer

v-layer
WL1

WL2
WL3

WL4

z

x

y

(a) An organizational difference.

(b) A difference in cell structures.

Figure 4: Illustrations of differences between 2D and 3D NAND.

Furthermore, most 3D NAND devices (e.g., TCAT [1], p-BICs [22]

and SMArT [24]) adopt cylindrical charge trap (CT)-type cell struc-

tures. This CT-type cell uses a non-conductive layer of silicon nitride

(SiN) that traps electrical charges to store bit information, while 2D

NAND devices use floating gate cell structures which store bits in a

conductor (e.g., poly-Si). As shown in Figure 4(b), this SiN layer has

been modified into a three dimensional form that wraps around the

channel, acting as an insulator that holds charges.

2.5 Wear Mechanism of Flash Memory

Figure 5 shows a schematic illustration of 3D NAND flash cell.

The NAND cell is surrounded by dielectric materials (the tunnel oxide

18

Blocking

Oxide

Source

Drain

Tunnel Oxide

(Tox)

C
h

an
n

el

S
iN

C
o

n
tr

o
l

G
at

e SiN layer

Source Drain

Control Gate

Blocking Oxide

Tox

e-

e-

Vcg (>20V)

Vsub (>20V)

e-

e-

(a) An initial state

(b) After wear out

(c) A failure state

(Tunnel oxide)

trap

leakage
path

Figure 5: A schematic diagram of a 3D NAND flash cell.

and blocking oxide) so that electrons in the SiN layer are electrically

insulated. This cell organization gives NAND flash memory a non-

volatile characteristic so that the electrons trapped into the NAND

cell do not leak even after power off. Ideally, the Tox layer works as

a perfect insulator with no impurities when the NAND cell is ini-

tially manufactured (i.e. an initial state), as shown in Figure 5(a).

However, as NAND flash memory experiences repetitive program and

erase operations, Tox layer is progressively damaged by stress from a

high program/erase voltage. As the damage to Tox layer is accumu-

lated, as illustrated in Figure 5(b), unexpected traps (i.e., defects) are

generated and accumulated in Tox layer. These traps make Tox layer

an inefficient insulator, making NAND cells wear out.

As shown in Figure 5(c), if the total amount of accumulated traps

exceed a certain level by repetitive stress, the traps tend to be aligned

and make a leakage path that electrons can move, so Tox layer cannot

longer acts as an insulator. Once such a path is formed in Tox layer,

19

of

 c
el

ls

Threshold Voltage [V]

MSB LSB

(01)

P1

(10)

P2

(00)

P3
(11)

P0(ER)

(a) An initial state of MLC flash mem-
ory.

Threshold Voltage [V]

of

 c
el

ls

Initial After wear out

Disturb Retention

(b) After wear out state of MLC flash
memory.

Figure 6: Changes in Vth distributions of the MLC flash.

the NAND cell cannot reliably store its data any more, making Tox

layer a poor insulator.

2.6 Impact of NAND Cell Wear Out

Since the reliability of NAND flash memory depends on he re-

liability of the Tox layer (as an insulator) in a NAND cell, the cell

wear-out status directly affects all the aspects of the flash operations.

In this section, we describe how bit errors increase with the wear sta-

tus of the NAND cell and how this affects flash operations with focus

on the read latency.

2.6.1 Impact on NAND Bit Errors

Figure 6 illustrates how Vth distributions of NAND states changes

as NAND cells wear out. In our example, to simplify description, we

use MLC flash memory (where m = 2) that stores two bits (LSB and

20

MSB bits) in a single NAND cell. At the initial (i.e., fresh) state, LSB

and MSB bits, which are stored in the same NAND cell, can be read

without any problem by identifying the Vth state of the NAND cell

using the reference voltages V Ri
ref ’s. Note that V Ri

ref is the read reference

voltage used to distinguish Pi state from P(i − 1) state. For example,

V R3
ref distinguishes P3 state from P2 state.

However, as the NAND cells wear out, the Vth distribution of the

NAND cells gets widened and shifted under various noise conditions,

so that Vth states are more likely to be overlapped with V Ri
ref ’s. When

NAND cells are programmed, neighboring cells belonging to the ER-

state (erased cells) are softly programmed, so that their Vth move

to the right (We call this type of errors program disturbance [25].).

The repeated read operations also shift Vth of P0-state cells to the

right. When NAND cells are read, VREAD (6∼7V) is applied to the

all WLs in the same block except for the target WL (See Section 2.2).

When pages in the same block are frequently read, ER-state cells in

the block are softly programmed, thus shifting their Vth to the right

(We call this type of errors read disturbance [10].). If NAND cells are

left for a long time after a program operation, a charge loss occurs

by the stress-induced leakage current (SILC) through traps in the

tunnel oxide layer. These errors, as shown in Figure 6(b), are called

retention errors [17]. The charge loss shifts the Vth of program states

to the left. These various noise conditions shift NAND states, thus

making NAND states overlapped each other.

Once the Vth states are overlapped, the original data cannot be

21

correctly read with V Ri
ref ’s (i.e., cannot identify whether ‘1’ or ‘0’). For

example, when P3 is shifted to left due to a long data retention time, it

may overlap with V R3
ref , thus introducing a large number of bit errors.

The shaded regions in Figure 6(b) indicate such overlapped errors,

and the larger the overlapped region, the greater the number of bit

errors. Since a flash page should be reliably read within its lifespan,

the lifetime of a flash storage system is directly affected by the number

of bit errors in the flash page which, in turn, is directly related to the

wear status of NAND cells in the flash page.

2.6.2 Impact on the Read Latency

When a flash page is read with V Ri
ref , a flash controller monitors if

bit errors are beyond the ECC (Error Correction Code) engine’s cor-

rection capability. If bit errors cannot be corrected by the ECC engine,

the flash controller retries a read operation with slightly shifted V Ri
ref

values until the page can be successfully read without uncorrectable

errors. For example, as shown in Figure 6(b), when P3 is shifted due

to a long data retention time, the initial V R3
ref should be adjusted with

an offset ∆V R3
ref to minimize bit errors. We call this new reference volt-

age as an optimal reference voltage (e.g., V R3
ref − ∆V R3

ref). If Vth states

of NAND flash memory are substantially shifted from their initial dis-

tributions, the number NumRetry of read retries can be significantly

increased.

In general, the read latency tREAD of a NAND flash memory

22

can be expressed as;

tREAD = (tR + tDMA + tECC) × (NumRetry + 1) (2.2)

where tR is the flash page access time, tDMA is the data transfer time

from a flash chip to a flash controller, and tECC is the error correc-

tion time by the ECC engine. As shown in Equation (2.2), tREAD of

a NAND flash memory depends linearly on NumRetry. Therefore, to

minimize the read latency, NumRetry should be minimized. For exam-

ple, in Figure 6(b), if ∆V R3
ref could be identified without four succes-

sive read retries, tREAD can be substantially reduced. Since the wear

status of NAND cells is one of the key factors that affect NumRetry,

knowing the exact wear status of NAND cells is an important prereq-

uisite of minimizing tREAD.

2.7 NAND Flash-Based Storage Systems

Figure 7 depicts an overall architecture of modern NAND flash-

based storage systems. To achieve high performance, NAND flash-

based storage systems employ several NAND devices. The read and

write bandwidth of a single NAND device is far limited even over the

traditional hard disk drives (HDDs). For example, a state-of-the-art

3D NAND device takes about 50 µs to read 4-KB page, thus pro-

viding only 80 MB/s of read bandwidth. NAND flash-based storage

systems overcome this limited performance of a single NAND device

by allowing multiple NAND devices to be operate in parallel. In order

23

NAND

Device

NAND

Device

NAND

Device

…

NAND

Device

NAND

Device

NAND

Device
…

NAND

Device

NAND

Device

NAND

Device

…
NAND

Device

NAND

Device

NAND

Device

…

Flash

Controller

Flash

Controller

Flash

Controller

Flash

Controller

System Bus Controller

Microprocessor SRAM DRAM Host Interface Logic

Flash Translation Layer (FTL)

Figure 7: An overall architecture of typical NAND flash-based storage
systems.

to minimize performance interference between NAND devices, NAND

flash-based storage systems are design to have as many buses as pos-

sible (i.e., as less NAND devices per bus as possible) with dedicated

hardware controllers which can handle multiple NAND commands on

their NAND device simultaneously.

Most modern NAND flash-based systems run a special storage

firmware, called a flash translation layer (FTL). Due to the unique

features of NAND flash memory, such as the erase-before-write nature

and operation-unit asymmetry, a NAND flash-based storage system

should deal with underlying NAND devices in different ways over

other storage medium such as DRAM and magnetic disks. An FTL

is responsible for providing backwards compatibility to the block I/O

24

interface, hiding the unique features of NAND flash memory.

FTLs support two main functionalities: the address translation

and garbage collection (GC). NAND flash memory does not support

in-place update, so an FTL should handle host writes in an append-

only manner, writing incoming data to free (i.e., erased) pages. As

a result, when a host system updates data at the same location in

the host system view, the physical location of data are changed. In

order to handle future reads on the data, an FTL have to keep track

of the physical location (i.e., physical address) in the storage system

corresponding the location in the host system view (i.e., logical ad-

dress). Since this logical-to-physical (L2P) mapping is accessed in ev-

ery read/write requests, the effectiveness of managing L2P mappings

is critical to the performance of NAND flash-based storage systems.

In order to maintain free pages for future writes, an FTL has to

perform GC. GC procedure reclaims invalid pages whose data are not

necessary any longer as host system deleted the data or update them

with new data at their corresponding logical address. It requires a

block erasure, so all the valid pages in a victim block to be erased have

to be moved to other free pages. These copy overheads can significantly

degrade the performance and lifetime of NAND flash-based storage

systems, so typical garbage collectors choose the target block which

has a largest number of invalid pages.

25

2.8 Related Work

2.8.1 NAND Aging Markers

There have been many attempts to design a new NAND aging

marker that can better represent the exact aging status of NAND flash

memory. However, few investigations have successfully converted the

theoretical findings on the NAND aging process from the NAND de-

vice physics to practical NAND aging markers that can be utilized at

the FTL level. For example, Woo et al. [26] proposed a block aging

metric based on tPROG as well a NP/E. However, as shown in Fig-

ure 12(b), tPROG is not a meaningful input to the wear status of the

NAND flash memory. It strongly correlates with the NAND wear only

when blocks are young. When blocks become old, it is difficult to relate

tPROG with the NAND wear. Furthermore, this technique did not

account for other key factors affecting the wear status of NAND flash

cells (e.g., self-recovery effect) so its classification accuracy is ques-

tionable. Similarly, Pelato et al. [27] suggested another block aging

metric exploiting bit-error rates (BERs) of a NAND block in addition

to tPROG and NP/E. Wang [28] also proposed the super-block man-

agement technique, called WAS, by wear-leveling NAND blocks based

on BERs. Although it may work better over [26], it shares the same

limitation of [26]. Unlike existing FTL-level aging markers, RealWear

is unique in that it comprehensively considers all the key factors that

affect the NAND flash wear.

26

RealWear does not make any novel new contribution to the NAND

wear model from the device physics perspective. However, unlike many

existing theoretical results on the NAND wear model that were not

successfully exploited at the FTL level, RealWear takes full advantages

of theoretical findings at the practical NAND aging marker level. For

example, Mielke et al. [29] performed extensive studies about the wear

mechanism of flash memory with particular attention to the tunnel

oxide degradation. They theoretically demonstrated how oxide degra-

dation, which is caused by trap generation in the tunnel oxide, affects

flash operations and reliability (i.e., BERs) and proved it by exten-

sive evaluations at the device level. By quantifying the relationship

between the trap density and the NAND cell wear, they successfully

modeled the behavior of individual NAND cells under various condi-

tions. Spinelli et al. [30] also presented comprehensive research to un-

derstand the wear of NAND flash memory and its root cause. Based

on the experimental observations on device physics, they offered a

new model to predict the Vth of NAND cells and a new wear mecha-

nism for the state-of-the-art 3D NAND flash memory. Although many

device-level characterization studies on NAND cell wear have been

conducted, unfortunately, the results are rarely utilized as a NAND

aging marker because of a huge overhead (e.g., cost), thus limiting

their practical applications in real storage systems.

27

2.8.2 Preemption Command

There have been several previous studies that attempted to re-

solve the long read-tail latency. We briefly discuss related prior works

focusing on command preemption and read retry mitigation.

Wu et al. [32] have suggested a command-preemption technique

that immediately suspends the ongoing program/erase operations for

reads. However, since it does not consider the side effect of exces-

sive suspensions, it may incur serious reliability issues. Kim et al.

[33] have proposed a hybrid erase suspension technique that allows

immediate erase suspensions until timeout happens. Although this

technique attempts to avoid the reliability degradation by deferring

the erase suspension after a timeout, it is not designed based on pre-

cise modeling using real flash device. Furthermore, since none of them

supports read preemption, they are limited in fully differentiating the

read performance according to the I/O priority of each task.

Many studies have also tackled the read retry problem which sig-

nificantly affects user-experienced performance of NAND flash-based

storage systems. Cai et al. [17] proposed ROR (Retention Optimized

Read) scheme to reduce read retries by adjusting read reference volt-

ages periodically. Although ROR works well in low-density 2D flash

memory, it could be challenging to apply ROR in modern flash stor-

age systems using high-density 3D flash memory. For 48-layer 256-Gb

3D TLC flash memory, when ROR updates V Ri
ref ’s for each block once

a day, it can take about 2.7 hours to monitor the entire flash storage

28

once, resulting in a huge monitoring overhead. Li et al. [31] reduced

the number of read retries by accurately estimating the optimal read

voltage based on error patterns in a small set of reserved cells that

store predefined data. The proposed scheme allows most read requests

can be served with a single retry, but lowers the ECC capability since

sentinel cells occupy the spare area reserved for the ECC parity. This

drawback would render the approach difficult to be applied in mod-

ern TLC/QLC NAND flash memory where the reliability is a serious

concern.

2.8.3 Data Sanitization

The most fundamental approach to sanitizing data is to physically

destroy the data in the storage medium. Diesburg et al. [34] propose

a framework that enables a file system to notify an SSD to immedi-

ately erase blocks containing security-sensitive data. However, such an

erase-based approach can significantly degrade the performance and

lifetime of SSDs, introducing a large number of data copies. To sanitize

data without requiring block erasure, several studies [35, 36, 37, 38]

propose techniques based on scrubbing, which destroys the Vth val-

ues of cells in a target page in a WL. Scrubbing a WL in SLC flash

memory is relatively simple as there is only one page in a WL. How-

ever, for MLC flash memory, scrubbing techniques need to copy other

valid pages in the same WL to some other WLs before destroying the

Vth values of the target page in a WL. To mitigate the performance

overhead of scrubbing in MLC flash memory, Lin et al. [39] propose

29

the one-shot reprogramming technique that enables the destruction

of the Vth values of individual pages in a WL separately from each

other. However, as shown in Section 5.1.2, the one-shot reprogram-

ming technique is not easily applicable to modern 3D NAND flash

storage systems, since it cannot meet the reliability requirements due

to significant over-programming errors.

Multiple works use data encryption to implement low-overhead

data sanitization techniques for flash-based storage systems [40, 41,

42, 43]. The schemes encrypt security-sensitive data with a crypto-

graphic algorithm, such as AES [44], and delete the encryption key

when the data needs to be sanitized. Since it is almost impossible

to obtain original data without the encryption key, the encrypted

data can be effectively destroyed just by deleting the encryption key.

However, encryption may not always be desirable due to performance

overheads or resource constraints, and it also requires a complicated

key management to satisfy stringent security requirements. If the en-

cryption key is compromised [45, 46], this solution becomes ineffective.

30

Chapter 3

Read Retry Mitigation Using a
New NAND Aging Marker

In this chapter, we introduce new read retry mitigation techniques

that are applicable to modern storage systems. As shown in Sec-

tion 2.6.2, read retries can linearly increase the read latency (tREAD),

and the number of read retries (NumRetry) is closely related to the

wear status of a NAND block. For example, the data is read from

multiple NAND blocks that have a different wear status, flash stor-

age systems can suffer from large fluctuations in the read latency due

to largely different NumRetry per NAND blocks. If we know the ex-

act wear status of NAND flash memory, an optimal read reference

voltages can be directly given without an iterative time-consuming

search process, so the number of read retries (NumRetry) can be ide-

ally eliminated. This chapter consists of two parts; One is to design

a new NAND aging marker (RealWear) to accurately represent the

individual wear status of NAND blocks, and the other is to develop

the read retry mitigation technique (BoudedRead) using the optimal

read reference table that is constructed based on RealWear.

31

3.1 Motivation: Inadequacy of P/E-cycle
based aging markers

In theory, the wear status of a NAND cell is determined by the

amount of damage accumulated in the tunnel oxide layer of the NAND

cell from flash operations (e.g., program or erase). However, because

of practical difficulties, the defect in the tunnel oxide layer cannot

be directly measured during run time. Instead, the wearing degree of

NAND cells is approximately estimated using a wear predictor that

is based on the known causes of degrading the tunnel oxide layer.

The most common wear indicator is to count the chronological

age of a NAND cell based on the number of program/erase (P/E)

cycles (i.e., the number of program and erase operations the NAND

cell has experienced), in a similar fashion as the chronological age of

a human being. Since a high electrical voltage (¿ 20V) is known to

damage the tunnel oxide layer during the program and erase opera-

tions, the number of P/E cycles has been regarded as an effective and

practical proxy indicating the wear status of NAND cells.

Intuitively, the role of a P/E-cycle based aging marker is similar

to that of the chronological age of a human being. (In this paper,

we call a P/E-cycle based aging marker PeWear.) For example, indi-

viduals with the same chronological age could have widely different

biological ages due to their genetic differences such as the length of

telomere [47]. Even twins with the same genetic characteristics may

have different biological ages because of differences in their life styles

32

and living environments [48]. Similarly, when two NAND blocks ex-

perience the same number of P/E cycles, their wearing degree could

be significantly different. This difference in aging characteristics be-

tween NAND blocks is caused by various factors such as (1) process

variations occurred while they are manufactured, (2) I/O workload

variations in different NAND blocks, and (3) variations in their oper-

ating environment. Although these factors affect the wearing degree

of the NAND block in both directions (i.e., less wearing or more wear-

ing), the P/E cycle-based aging marker cannot reflect these factors at

all.

In this section, we report our evaluation results on the inadequacy

of the existing P/E cycle-based aging marker and discuss the root

causes of the weakness of P/E cycle-based aging marker.

3.1.1 Evaluation Methodology

Evaluation Metric Before we present our evaluation results on a

P/E cycle-based aging marker, we describe a general methodology for

evaluating a NAND aging marker M. As shown in Section 2.5, the

NAND cell wear is closely related to the number of traps (i.e., a trap

density) accumulated in the tunnel oxide layer during flash operations

(i.e., P/E cycles). However, since the true trap density in Tox can only

be measured by a destructive way using a highly-sophisticated tools

(e.g., SEM [49]), it is practically impossible to measure trap density

during run time.

As an alternative metric to represent the wear status, we use the

33

number N(t) of retention errors after t-month retention time. Many

previous studies about NAND physics have shown that the number

of retention errors has a near-linear relationship with the trap den-

sity [50, 51]. Furthermore, for recent multi-level NAND flash memory,

retention errors are dominant in determining the flash reliability, es-

pecially when the NAND flash memory is aged [6, 17].

Following the common industry practice (i.e., the JEDEC stan-

dard [52]), N(t) is measured by using an accelerated lifetime test. For

example, to emulate a 12-month retention time condition, we baked

the flash chips at 85°for 13 hours (which is equivalent to one year

at 30°based on the Arrhenius’s law1 [53]). We measured N(t) while

varying both the number of P/E cycles (from 0 to 20K) and the data

retention time (from 0 to 12 months)2. In our evaluations, a NAND

block is regarded as dead (or failed) when N(12) of the NAND block

outnumbers the maximum number NECC of bit errors that can be cor-

rected by an ECC module. (Because of the page limit, we only discuss

the key results under the 12-month retention time requirement which

1The Arrhenius’s Law is given as follows:

AF (T1, T2) = t1

t2
= exp

(
Ea

kB
·
(1

T1
− 1

T2

))
where AF is the acceleration factor between t1 and t2. t1 is the dwell time under
temperature T1, and t2 is the dwell time under temperature T2. kB is the Boltz-
mann constant (8.62 × 10−5 eV/K), and the activation energy (Ea) is a process-
dependent constant, which is typically 1.1 eV for NAND flash memory [52].

2Data center applications usually require 2∼3 DWPD (Drive Writes Per
Day) [54, 55] with the warranty period of 3∼5 years. Since host writes are consid-
erably amplified, NAND flash memory needs to support at least 7K P/E cycles for
such data center applications. Since most NAND blocks are still usable after 7K
P/E cycles, we measured N(12) while increasing the number of P/E cycles up to
20K P/E cycles for a comprehensive characterization study.

34

is often the worst-case reliability condition.)

Evaluation Workload We used simple synthetic I/O benchmark

programs in our evaluations. To reflect wear-related key factors, a

synthetic benchmark program repeats a sequence S(n) of three flash

operations where S(n) is given by [s1: erase a block B, s2: program

all the pages in B, and s3: read 1000×n pages from B]. By varying n

in s3, we effectively simulate the dwell time3 which is known to affect

NAND cell wear. (The dwell time, DB
t of a NAND block B, is defined

as the average interval length between consecutive erase operations

to the NAND block B [56].) We report our evaluation results for two

benchmark programs, W (2) and W (10), where S(2) and S(10) were

used, respectively. W (2) is used to mimic an update-intensive work-

load with short dwell time (e.g., 1 minute) while W (10) simulates

a read-intensive workload with longer dwell time (e.g., 5 minutes).

Furthermore, to avoid pattern dependent reliability problems of writ-

ten data [57], 8 different pseudo-randomized patterns were used when

pages are programmed.

3.1.2 Evaluation Results

Bad Block Classification We first evaluated PeWear for deciding if

a NAND block is bad or not. When PeWear is used to classify NAND

blocks, a bad-block classifier decides that a NAND block B is bad

when the number N B
P/E

of P/E cycles exceeds the maximum allowed

3As will be explained in Section 3.1.3, the Tox layer of NAND cells may be
cured during the dwell time, thus improving the wear status of NAND cells.

35

#
 o

f
b

a
d

 b
lo

ck
s

0

2000

4000

6000

8000

10000

of P/E cycles [× 1,000]

1710 11 12 13 14 15 16987 18 19

1-min. dwell time : workload W(2)

Avg. lifetime

12.3K

(a) A bad block distribution in W(2).

#
 o

f
b

a
d

b
lo

ck
s

0

2000

4000

6000

8000

10000

of P/E cycles [× 1,000]

1710 11 12 13 14 15 16987 2018 19

Avg. lifetime

13.9K

5-min. dwell time : workload W(10)

(b) A bad block distribution in W(10).

Figure 8: PeWear evaluation results: Bad block classification.

10

20

30

40

50

60

0

ECC limit

of P/E cycles [× 1,000]

25 bits

1 2 3 4 5 6 7

19 bits11 bits

8

70
1-min. dwell time : workload W(2)

(a) Per-sector error distributions.

N
(1

2
)

10

20

30

40

50

60

of P/E cycles [× 1,000]

0 1 2 3 4 5 6 7

= 1 min.

Block
Block

Dt

= 5 min.Dt

= Dt

= 1 min.Dt

(b) Error variation over Dt.

Figure 9: PeWear evaluation results with varying N B
P/E

values and dwell
times.

number N Max
P/E

of P/E cycles. If PeWear were an ideal NAND aging

marker, any read request to a block B′ with N B′

P/E
> N Max

P/E
would fail

while all the reads to a block with N B′

P/E
≤ N Max

P/E
would be successful.

To evaluate the effectiveness of PeWear in a bad-block classifier, we

collected N B
P/E

values when blocks became physically bad, not logically

bad by a heuristic criterion such as PeWear. We use N Max(B)
P/E

to denote

N B
P/E

value of the block B when read to the block B fails for the first

time.

36

Figures 8(a) and 8(b) show how (physically) bad blocks are dis-

tributed over different N B
P/E

values. If PeWear is an ideal NAND ag-

ing marker, all blocks would reach its maximum lifetime at the same

number of P/E cycles. However, wide distributions over varying P/E

cycles clearly indicate that PeWear does not meet the requirement of

an ideal aging marker. Our evaluation result reveals that some blocks

are able to withstand a larger number of P/E cycles than others before

becoming unusable. For example, some NAND blocks showed uncor-

rectable errors at 8K P/E cycles while others were still usable after

16K P/E cycles. Obviously, PeWear cannot accurately represent the

exact wear status of NAND blocks. Furthermore, when we use PeWear

as a NAND aging marker, to avoid data loss, we must set N Max
P/E

less

than the minimum value of all N Max(B)
P/E

values. Therefore, the lifetime

of most NAND blocks are wasted. For example, 7K P/E cycles may

be used as N Max
P/E

in Figure 8(a), thus wasting the lifetime of all the

NAND blocks.

Figures 8(a) and 8(b) also show the impact of the dwell time on

the flash reliability. For the W (2) workload with the 1-minute dwell

time, an average NAND block becomes bad around after 12.3K P/E

cycles. On the other hand, as the length of dwell time increases to 5

minutes in W (10), an average NAND block becomes bad around after

13.9K P/E cycles. Since PeWear does not consider the dwell time, it

is insufficient to be an ideal aging marker.

Per-Sector Error Variations Since N(12) is known to have a strong

correlation with the wear status of a NAND block (as explained in

37

Section 3.1.1), we evaluated how closely PeWear is related to N(12).

We measured the per-sector N(12) values because the ECC engine in

a flash controller recovers the errors in the unit of sector. Figure 9(a)

shows that N(12) values can be significantly different even at the

blocks with the same P/E cycles. When W (2) was used, for example,

at 4K P/E cycles, a sector from the worst NAND block experienced 19

more bit errors than that from the best NAND block. Error variations

between NAND blocks get wider as well with the number of P/E

cycles. At 7K P/E cycles, the difference between the maximum and

the minimum number of bit errors increases to 25 bits from 19 bits at

4K P/E cycles. Note that Figure 9(a) clearly indicates that PeWear

should be revisited to be an ideal aging marker. For example, as shown

in a dotted line in Figure 9(a), when the wear status of a block B is

about 37 (as represented by its N(12) value), the number of P/E

cycles of the block B can be any value between 3K and 8K.

3.1.3 Root Causes of Inadequacy in PeWear

From the device physics perspective, there are three key vari-

ations among NAND blocks that were not reflected by the P/E-

cycle based aging marker. We explain three variations in this section

which help to understand why PeWear is inadequate as a NAND ag-

ing marker. (Since the key motivation for developing RealWear is to

better reflect three variations in a NAND aging marker, this section

also serves as a motivation of RealWear.)

Process Variations The difference in aging characteristics among

38

NAND blocks is mainly caused by process variability that occurs while

they are manufactured. As shown in Section 2.5, the wear of NAND

cells is resulted from the Tox degradation due to high voltage stress

applied during program and erase operations. Equation (2.1) for JF N

in Section 2.2 shows that once VSiN is fixed, the voltage stress on the

Tox is determined by the thickness of Tox (i.e., dox).

NAND cells with a thinner dox are more susceptible to stress by

a high program or erase voltage, which makes them easier to wear out

than those with a thicker dox. For example, when a program or erase

voltage of 30V is applied to a NAND cell, the NAND cell with dox of

6 nm is exposed to the stress of 50 MV/cm. On the other hand, the

NAND cell with dox of 5 nm is exposed to the stress of 60 MV/cm.

As the number of P/E cycles increases, each NAND cell accumulates

a different amount of stress due to the process variability4, resulting

in heterogeneous aging characteristics between NAND blocks even if

they experience the same P/E cycles as shown in Figure 9(a).

I/O Workload Variations Although PeWear faithfully tracks the

number of erase/program operations, it does not account for the dwell

time DB
t of a NAND block B, which significantly affects the NAND

aging process because of its self-recovery effect on the cell wear. When

a NAND block is left idle without any active program/erase operation,

the wear status of the NAND block may be partially improved because

the damage to the Tox layer can be cured during the dwell time.

4For example, dox of flash cells at the edge of a wafer can be thinner than that
at the center of the wafer due to the loading effect [58].

39

This phenomenon, often called as the detrapping process, is resulted

from degenerating traps in the Tox layer by thermal energy. The self-

recovery effect is known to be logarithmically proportional to DB
t [59,

60].

Since Dt is decided by how I/O operations are performed, the

I/O characteristics of an I/O workload directly affects the wear status

of NAND blocks. For example, in an update-intensive workload, DB
t

tends to be short because NAND blocks should be frequently erased

and programmed. Figure 9(b) illustrates why an ideal NAND aging

marker should consider the effect of DB
t . To minimize the impact of the

process variation on this evaluation, we selected physically adjacent

two NAND blocks (say, the block α and the block β). As shown in

Figure 9(b), two blocks exhibit the same N(12) values when their DB
t

values are equal. However, when NAND blocks experience different

dwell times, their N(12) values significantly differ. The block β, which

has 5 times longer DB
t over the block α, wears more slowly than the

block α.

Operating Environment Variations Various environmental condi-

tions (such as operating temperatures) can also affect the wear status

of a NAND block. For example, the self-recovery effect is proportional

to the ambient temperature of a storage system because the detrap-

ping process can be accelerated by thermal energy [61]. Therefore,

although the initial aging status of two NAND blocks were the same,

when they experience different ambient temperatures, the aging rate

of two blocks can be significantly different.

40

As commonly done, the impact of operating temperature on the

self-recovery effect can be understood by converting the impact of

operating temperature to that of the dwell time at a baseline temper-

ature, say, 30°. The converted dwell time at the baseline temperature

is called as the effective dwell time Deff

t . The dwell time at x°can

be converted to the effective dwell time at 30°using the Arrhenius’s

Law [53]. For example, the dwell time of 1 hour at 50°corresponds

to the effective dwell time of 13 hours at 30°. Since the impact of

operation temperature can be converted to that of the dwell time,

if operating temperature is known (e.g., from an on-board thermal

sensor), the dwell time can handle both variations from operating

environment and an I/O workload.

3.1.4 Extended PeWear Markers

To improve the accuracy of PeWear, several NAND aging markers

have been proposed by extending PeWear with additional factors that

were related to the wear status of a NAND block. For example, Woo et

al. [26] proposed a block aging metric by combining the program la-

tency tPROG and NP/E. (We call this scheme as PeWear+.) Pelato et

al. [27] suggested an extended version of PeWear+ by exploiting the

bit error rate of a NAND block. (We call this scheme as PeWear++.)

Although both PeWear+ and PeWear++ work better over PeWear as

will be shown in Section 3.3, they do not fully overcome the funda-

mental limitations of PeWear because they cannot adequately handle

three variations explained above.

41

3.2 New NAND Aging Marker: RealWear

To overcome the limitations of the P/E cycle-based aging marker

(as described in Section 3.1), RealWear is proposed based on a new

flash wear model that was built from our extensive flash characteri-

zation study. As in Section 3.1, we used the number N(12) of errors

as a metric for determining the wear status of NAND cells. For a

given block B, we define its age, denoted by age(B), as N(12)/NECC.

Since we assume that N(12) ≤ NECC, age(B) ranges from 0 to 1. Since

N(12) of the block B should be based on the number of bit errors after

the 12-month retention time, it cannot be measured on-line when it

is needed to decide age(B). Therefore, the key to designing a NAND

aging marker lies in estimating N(12) accurately without waiting for

12 months.

Figure 10: An overview of model building for RealWear.

42

Table 1: A summary of candidate variables.
Type Description Inclusion

Latency
tBERS Erase latency O
tREAD flash page access time X
tPROG Program latency X

Bit errors N(0) No. of bit errors right after program O

Noisy Factors
ICI Inter-cell interference X

RTN Random telegraph noise X
BPD Back Pattern Dependency X

Dynamic Factors
NP/E P/E cycles O
Dt Dwell time O

Kamb Ambient temperature O

Figure 10 shows an overall procedure that we used in build-

ing a model for RealWear. We followed a general model construc-

tion approach which consists of two key phases: variable selection and

model-building. In the variable selection phase, we first collected wear-

related candidate variables based on their known relationship with the

wear status of NAND blocks. We empirically evaluated each candidate

variable to check if it was sufficiently correlated with bit errors (i.e,

N(12)). In the model building phase, we constructed a model for es-

timating age(B) of a NAND block B using regression analysis of the

selected variables.

3.2.1 Variable Selection

We initially collected 10 candidate variables, which are summa-

rized in Table 1, that are known to be related to the wear status of

NAND flash memory. Since our goal was to build a practical aging

marker that can be used by a flash/SSD controller, we considered a

43

wear-related variable as a candidate variable only if they can be acces-

sible using an open NAND interface (e.g., ONFI [62].) The candidate

variables are grouped into four types. The variables in the latency

type are known to change their latency depending on the wear status

of a NAND block [26, 27, 6], thus making them good indicators for

representing the NAND aging characteristics. N(0), which represents

the number of errors right after programming a block with no data

retention time, was selected as a candidate variable because it can in-

dicate the status of Tox layer before errors from other factors (such as

retention errors or read-disturb errors) are included in N(t) [27]. Fur-

thermore, N(0) can be directly measured with little overhead. Since

the worst N(0) value would be needed for RealWear, for a given block,

we measure only once the number of bit errors from the LSB page of

the most vulnerable WL (e.g., an edge WL) in the block, which takes

less than 20µs. The variables, ICI5 [19], RTN6 [63] and BPD7 [20],

in the noisy factors category were included because they distort Vth

distributions of NAND cells as NAND flash memory gets aged, thus

potentially affecting N(12). Dt and Kamb (the ambient temperature)

were included because they are known to affect the wear status of a

NAND block by the self-recovery effect.

To select a proper subset of variables from 10 candidate variables,

5Inter-Cell-Interference (ICI) can be decided by measuring how much the initial
Vth value of a victim NAND cell is affected by adjacent NAND cells.

6Random Telegraph Noise (RTN) can be measured by the error variance during
repetitive read operations (e.g., 10 reads in our evaluation).

7Back Pattern Dependency (BPD) is the read error variance depending on the
data pattern written in a NAND block.

44

we performed comprehensive evaluations using 160 state-of-the-art

(48-layer) 3D TLC flash chips. To minimize the potential distortions

in the evaluation results, for each test scenario, we evenly selected

120 test blocks from each chip at different physical block locations,

and tested all the WLs in each selected block. We tested a total of

3,686,400 WLs (11,059,200 pages) to obtain statistically significant ex-

perimental results. By using an in-house custom test board (equipped

with a flash controller and a thermal controller), we evaluated 10

candidate variables using N(12) values under various operating con-

ditions.

As shown in the last column of Table 1, we finally selected 5

variables (tBERS, N(0), NP/E, Dt, and Kamb) in estimating N(12).

tBERS and N(0) are useful in representing the effect of process vari-

ability in our model. Two dynamic factors (Dt and Kamb), which re-

flect variations in I/O workload and operating environment, can be

combined into the effective dwell time (Deff

t) at 30°because the effect

of Kamb can be converted to additional dwell time, as explained in

Section 3.1.3. Therefore, we do not include Kamb in our model. In

summary, the estimator N̂(12) of N(12) can be computed as follow:

N̂(12) = f(NP/E , tBERS , N(0) , Deff

t) + C0 (3.1)

where the constant term C0 reflects inborn defects of a manufacturing

process.

Figures 11, 12 and 13 summarize the key correlation analysis re-

sults of 10 candidate variables for N̂(12). Figures 11(a) and 11(b)

45

0

70

60

50

40

30

10

20

N
 (

1
2

)

305 10 15 20 25

Erase latency [ms]

(a) tBERS vs. N(12).

70

60

50

40

30

10

20

N
 (

1
2

)

328 10 18 22 2812 14 16 20 24 26 30

N(0)

ECC limit

(b) N(0) vs. N(12).

60

50

40

30

20

N
 (

1
2

)

3000 10 60 120 2401 30 180

[min.]

3K P/E cycles

8K P/E cycles

Dt

(c) Dt vs. N(12).

Figure 11: Correlation analysis of candidate variables for N(12).

60

40

20

0

8530 40

Temp. []

670-minute

dwell time

220-minute

dwell time

1-minute

dwell time

N
 (

1
2

)

10 P/E cycles

(a) Dt vs. N(12).

60

50

40

30

10

20

N
 (

1
2

)

710 690 670 650 630 610

Program latency [s]

Uncorrelated

P/E cycles

tP
R

O
G

(b) tP ROG vs. N(12).

43

42

41

40

38

39

600 10 20 30 40 50

N(12)

(c) N(12) vs. tREAD.

Figure 12: Correlation analysis of candidate variables for N(12).

150

100

0

50

6010 20 30 40 50

N(12)

ICI BPD

(a) N(12) vs. BP D & ICI.

5

3

1

2

4

R
e
a
d
E
r
ro
r

600 10 20 30 40 50

N(12)

(b) N(12) vs. RT N .

Figure 13: Correlation analysis of candidate variables for N(12).

show that tBERS and N(0) have a strong and positive quasi-linear

correlation with N(12). tBERS and N(0), therefore, are included in

Equation (3) as a quasi-linear relationship. Figure 11(c) shows the

effect of Dt on N(12). As Dt increases, the wear of a NAND block

46

is improved (i.e., the wear is recovered) by the self-recovery effect.

However, its effect was almost saturated when the NAND block ex-

perienced the effective dwell time more than 180 minutes regardless

of the aging status of the NAND block. Our observations match well

with a known fact that the self-recovery effect has a logarithmic rela-

tionship with the dwell time because it is resulted from degenerating

traps (i.e., the detrapping process) due to thermal energy, as explained

in Section 3.1.3.

Since we represent the impact of operating temperature by the

converted effective dwell time, we validated if the effective dwell time

accurately reflects the impact of operating temperature on the wear

status of NAND cells. Figure 12(a) compares N(12) values of 10 P/E-

cycled NAND blocks under three different (dwell time, temperature)

combinations that are converted to the same effective dwell time. As

shown in Figure 12(a), N(12) values indicate that three combinations

equally affect the NAND cell wear as expected by the Arrhenius’s

Law.

We have not included tPROG, tREAD, ICI, BPD, and RTN in

Equation (3.1). Figure 12(b) explains why tPROG was not included.

Although tPROG is known to decrease as blocks get aged [6], the de-

creasing rate becomes very small once NAND cells were moderately

worn (as shown in the inserted graph). Therefore, unlike in previous

studies (e.g., [26]), we find that tPROG is not an efficient indicator

for the wear status of a NAND block. For example, when tPROG is

610 us, the corresponding N(12) interval ranges 30 to 58. tREAD was

47

also excluded from Equation (3.1) because it did not change with the

NAND cell wear, as shown in Figure 12(c). Figures 13(a) and 13(b)

show the impact of noisy factors on N(12). As shown in Figure 13(a),

the amount of the Vth shift (∆Vth) due to ICI and BPD, which can

cause additional bit errors, increases as a NAND block gets aged. How-

ever, ICI and BPD factors were excluded from Equation (3) because

their effect on N(12) was too small to be practically detected during

run time. Figure 13(b) shows the effect of RTN using ∆ReadError

values which indicate changes in the number of bit errors between

successive read operations to the same NAND page. As shown in Fig-

ure 13(b), ∆ReadError tends to increase as a NAND block gets aged.

Although RTN can moderately affect N(12) (e.g., 4 additional er-

ror bits), we did not include RTN in our model because computing

∆ReadError during run time may incur a substantial performance

overhead.

3.2.2 Building Model

Based on the evaluation results, we refine Equation (3) as follows:

N̂(12) = C0 + β1 · NP/E + β2 · tBERS + β3 · N(0) + β4 · ln(Deff

t)

Five coefficients, β1, β2, β3, β4, and C0, were estimated by the

least squares approximation method [64, 27]. Specifically,

48



β1

β2

β3

β4

C0


= (AT A)−1AT


...

N(12)
...



where A =


...

...
...

...
...

NP/E tBERS N(0) ln (Deff

t) C0
...

...
...

...
...

 .

tBERS and N(0), which are almost equally contribute to N(12),

have the largest influence on N(12). NP/E complements changes in the

wear status when tBERS and N(0) do not change. Furthermore, the

impact of Deff

t on N(12) was rather limited up to 30% because the

self-recovery effect has a logarithmic relationship with the dwell time

as shown in Section 3.2.1.

3.2.3 Model Calibration

From early model validation results, we observed that the con-

structed model in Equation (4) needs some changes to achieve the high

prediction accuracy. Figure 14(a) shows how accurately the N̂(12)

model of Equation (4) can decide if a block is bad or not. First, 28%

of test blocks became dead before their ages reach 1.0, which is the

false-negative case. This error is critical because data may be stored

to a dead block, thus losing data. Second, 16% of test blocks were

still alive even after their ages reach 1.0, which is the false-positive

49

0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.00.8 0.9

0

20

40

60

80

100
%

 o
f

b
a

d
 b

lo
c
k

s

RealWear

0.9

0
.9

6

0
.9

7

0
.9

8

0
.9

9

1
.0

0

0%

100%

(a) A bad block distribution before cal-
ibration.

of P/E cycles [× 1,000]

6 8 10 12 14 16420

tB
E

R
S

[m
s]

5

10

15

20

25

30
block B

1

block B
2

block B
3

Same tBERS

(b) NP/E vs. tBERS.

Figure 14: Early model evaluation results.

case. Although less critical, this error wastes the lifetime of mis-aged

blocks.

Since it is a critical requirement for a bad-block classifier not to

have any false-negative case, we made two modifications to Equation

(4) as the final step of building RealWear. The first change was re-

quired because the measurement resolution of tBERS was too coarse

when a block is erased. When a block is erased, an incremental step

pulse erase (ISPE) scheme [20] is used. Under the ISPE scheme, a

sequence of erase substeps are applied until a block is successfully

erased. Since each erase substep typically takes 5 ms, tBERS values

can only take multiples of 5 ms. Unfortunately, 5 ms was too coarse

to distinguish different wear status of a NAND block. For example,

as shown in Figure 14(b), tBERS of the block B3 does not change at

10 ms until its P/E cycles reach 10K. Although the wear status of the

block B3 was getting worse as its N B3
P/E

is increasing from 5K and 10K,

tBERS could not properly indicate the changing wear status because

of the large timing resolution of a single erase substep. The second

50

%
 o

f
b

a
d

 b
lo

c
k

s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 1.00.8 0.9

RealWear

0

20

40

60

80

100

0%

100%

0.9

0
.9

6

0
.9

7

0
.9

8

0
.9

9

1
.0

0

(a) A bad block distribution after cali-
bration.

PeWear

(1.0K)

RealWear

0

20

40

60

80

L
if
e

[%
]

100

PeWear

(7.0K)

PeWear

(+)

PeWear

(++)

12.7%

44.6%
54.3%

68.5%

92.1%

(b) A comparison of life.

Figure 15: Lifetime validation results of RealWear.

change was needed because of the RTN factor, which was excluded

in the proposed N(12) model. As shown in Figure 13(d), the RTN

factor can introduce up to 4 bit errors. When such additional error

bits were added when N(0) is measured, the accuracy of N̂(12) was

degraded.

3.3 Validation of RealWear

To validate the accuracy of RealWear, we performed an extensive

validation studies under different operating conditions. We report the

key results only in this section, focusing on three validation cases as in

Section 3.1: (1) bad block classification, (2) per-sector error variation,

and (3) support for temporal/operational variations.

3.3.1 Bad Block Classification

To determine how effectively RealWear predicts the lifetime of

individual NAND blocks, we evaluated if RealWear can accurately

51

decide if a block is live or dead. In our model, when the age of a

NAND block reaches 1.0, the block is considered to be dead. Fig-

ure 15(a) shows how (physically) bad blocks are distributed over dif-

ferent age(B) values. Compared to the evaluation results of PeWear,

most of the bad blocks are distributed within a narrow age(B) range.

This result is clearly different from that of Figure 8(a) where bad

blocks are widely distributed over different N B
P/E

values. It suggests

that RealWear can effectively represent the different aging character-

istics among NAND blocks and eventually prevent NAND blocks from

being wasted.

Especially, as shown in the box graph of Figure 15(a), no test

blocks become dead before their ages reach 1.0. That is, as long as

the block age is less than 1, it can reliably store its data. On the

other hand, 8% of the test blocks outlived their maximum age (i.e.,

1.0) partly because we over-estimate the block age to account for

the RTN factor. Although these blocks could have been used longer,

unused lifetimes were short without causing any reliability problem.

To compare the lifetime prediction accuracy of a NAND aging

marker M, we defined a new metric, the lifetime efficiency (life) of M

as follows:

life(M) = Predicted total amount of writes
Actual total amount of writes × 100. (3.2)

Figure 15(b) compares life values of different NAND aging markers.

The lifetime efficiency of RealWear is close to 92%. That is, RealWear

utilizes more than 90% of the NAND block lifetime. On the other

52

hand, life(PeWear) is very poor. For example, when N Max
P/E

was set

to 7K, life(PeWear) was only 44.6%. If N Max
P/E

was set to 1K (which

is a typical N Max
P/E

value for consumer flash products), life(PeWear)

significantly drops to 12.7%. When PeWear is used, most blocks were

actually alive when PeWear identified them as dead, thus wasting a

significant portion of their lifetimes.

We also examined the life values of proposed NAND aging

markers in previous studies, PeWear+ [26] and PeWear++ [27](that we

described in Section 2.8.1). As shown in Figure 15(b), the life value

of PeWear+ and PeWear++ are 54.3% and 68.5%, respectively, which

are much lower than that of RealWear. Their prediction accuracy

is quite limited compared to RealWear because both PeWear+ and

PeWear++ exploit tPROG as a model variable to indicate the wear

status of a NAND block. As shown in Section 3.2.1, when a NAND

block becomes old (i.e., experiences a large number of P/E cycles),

tPROG is not correlated to the wear status of a NAND block. So,

PeWear+ and PeWear++ cannot avoid the poor prediction accuracy in

the high-endurance region. In contrast, RealWear can maintain the

high prediction accuracy in the entire endurance region because it

uses tBERS, which maintains a high correlation with the wear status

of a NAND block even when the NAND block becomes very old, as a

model variable.

53

N
(1
2
)

0.2 0.4 0.6 0.8 1.0

62
56

5149

4443

3836

68

32

6 Bits

age(B)

60

40

20

(a) age(B) vs. N(12).

60

50

40

RealWearPeWear PeWear
(+)

PeWear
(++)

30

70

N
(1

2
)

Max.

Min.

75%

50%

25%

ECC limit

(b) Per-sector error distributions.

Figure 16: Error variation evaluation results of RealWear.

3.3.2 Per-Sector Error Variations

We also evaluated how accurately RealWear estimates true N(12)

values. As shown in Figure 16(a), blocks with the same age values

exhibited almost the same number of bit errors (per 1-KB sector).

For example, at the 12-month retention time, error variations between

blocks having the same age values were less than 7 bits. This result is

quite contrasting to one shown in Figure 9(b) where blocks with the

same NP/E showed differences in the number of bit errors up to 25 bits

at 8K P/E cycles. Unlike in PeWear (as shown in Figure 9(b)), blocks

with different block ages are unlikely to map to the same N(12) value.

In other words, RealWear can distinguish blocks with different N(12)

values without mis-classification.

To further validate the accuracy of RealWear, we compared the

number of bit errors between blocks in different NAND aging markers.

Among the blocks with the same PeWear, per-sector errors differ by

up to 25 bits. On the other hand, when RealWear is used, the maxi-

54

B
lo

ck
 a

g
e

0.0

0.2

0.4

0.6

0.8

1.0

Total amount of writes

1

30

40

5 10 10 10

3 month

dwell time

Dt [min.]

Figure 17: Changes in the age(B) by the self-recovery effect.

mum difference in the per-sector error bits was only 6 bits. Although

PeWear+ and PeWear++ show smaller per-sector error variations over

PeWear, their prediction accuracy is significantly worse than that of

RealWear. As shown in Figure 16(b), error variations between blocks

with the same PeWear+ and PeWear++ values were up to 20 bits and 15

bits, respectively, which indicate that PeWear+ and PeWear++ are not

sufficient to exactly distinguish the wear status of individual NAND

blocks.

3.3.3 Self-Recovery Effect

Since one of the key differences between RealWear and PeWear

is whether the self-recovery effect is modeled or not, we validated if

RealWear properly reflects the impact of I/O workload variation and

temperature variation on block ages. Figure 17 shows how the block

age changes under different variations. As expected, the longer the

dwell time, the slower the aging rate. At the same dwell time of 10

55

minutes, a higher operating temperature significantly slows the ag-

ing process. For example, when the operating temperature is changed

from 30°to 40°, the lifetime of a block is increased by 20%.

To maximize the self-recovery effect, we emulated the power-off

setting of an SSD by applying the 3-month dwell time at 40°. As

shown in the bottom dotted line of Figure 17, RealWear can reflect

this situation as well. Because of the self-recovery effect, blocks got

younger as indicated by two drops in the graph.

3.4 BoudedRead: Read Retry Mitigation

Based on RealWear, we develop a new system-level optimiza-

tion technique, BoudedRead, which aims at mitigating the number

of read retries by directly searching optimal read reference voltages.

As described in Section 2.6.2, as a NAND block wears, tREAD sig-

nificantly fluctuates because a failed read should be retried until an

optimal reference voltage is found. Since the required number of read

retries cannot be known a priori, it is generally not possible to put

an upper bound on tREAD. BoudedRead, on the other hand, exploits

the accurate wear status of a NAND block from RealWear so that

the number of read retries can be bounded under a fixed maximum

number. First, with varying retention times, read cycles, and operat-

ing temperature, we define an optimal read reference voltages table

(ORT) based on extensive NAND characterization studies. Second,

we confirm the validity of ORT by investigating NumRetry distribu-

56

tions of real 3D TLC flash chips under various operating conditions.

Finally, we identify the benefit of BoudedRead by system-level evalua-

tions using various real workload. Furthermore, to demonstrate addi-

tional benefits of RealWear, we also present two case studies, LongLive

and FastCopy, that can improve the lifetime and performance of flash

storage systems.

3.4.1 Optimal Read Reference Voltages Table
(ORT)

In order to define the optimal read reference voltages table (ORT),

we tracked the change in Vth distributions and bit errors of 3D TLC

flash chips with varying operating conditions such as P/E cycles,

retention time at 30◦C8, read cycles, and write/read temperature.

Figures 18(a) ∼ 18(f) shows representative evaluation results of the

optimal Vref ’s under various operating conditions. As shown in Sec-

tion 2.5, since Vth distributions of each NAND state is affected and ex-

hibits a different behavior by various factors, individual Vref ’s changes

a different rate depending on the wear status of NAND flash memory

or operating conditions. When the number of P/E cycles increases,

the optimal Vref for the lower states (R1 or R2) should be raised up-

ward because Vth of the lower states (E or P1) easily moves to the

right due to program disturbance. For example, at 1,000 P/E cycles,

R1 and R2 should be raised +300mV and +100mV, respectively, to

8The retention temperature is not considered because it can be converted to
30◦C by Arrhenius’s relationship.

57

0
0.5

1 7 30 90 180 365

1.0

0.9

0.8

0.7

0.6

O
p

ti
m

a
l

R
7

Retention time (day)

(a) Change in optimal R7.

0
0.5

1 7 30 90 180 365

1.0

0.9

0.8

0.7

0.6

O
p

ti
m

a
l

R
6

Retention time (day)

(b) Change in optimal R6.

0
0.9

1 7 30 90 180 365

1.4

1.3

1.2

1.1

1.0

O
p

ti
m

a
l

R
1

Retention time (day)

(c) Change in optimal R1.

0
0.9

1 7 30 90 180 365

1.4

1.3

1.2

1.1

1.0

O
p

ti
m

a
l

R
2

Retention time (day)

(d) Change in optimal R2.

1 10 100 1,000

1.7

1.6

1.4

1.2

1.0

1.5

1.3

1.1

O
p

ti
m

a
l

R
1

Retention time (day)

(e) Change in optimal R1

85 55 45
0.5

0.7

0.9

1.1

1.3

1.5

75 65 2535

O
p

ti
m

a
l

R
7

Read temperature [

(f) Change in optimal R7.

Figure 18: Change in Vref under various operating conditions.

minimize bit errors. On the other hand, the optimal Vref for the higher

states (R7 or R6) is hardly affected by P/E cycles. However, when the

retention time becomes longer, Vth of the higher states (P7 or P6) is

susceptible to move to the left due to charge loss, so that the opti-

mal Vref should be shifted downward. As the number of P/E cycles

58

increase, the amount of shift of the optimal Vref is accelerated. Fur-

thermore, higher program states experience a greater amount of the

charge loss, and hence show a larger shift compared to lower program

states [17]. In additions, when pages in the same block are frequently

read, ER-state is likely to be softly programmed by VREAD and shifted

to the right [10], therefore the optimal value R1 is also raised upward,

as shown in Figure 18(e). Figure 18(f) shows that the temperature

difference between write and read operations can move the Vth dis-

tributions of NAND states. Since the current flowing along BL (or

channel) and the swing characteristics of select line transistors (SSL

transistor in Figure 2) greatly depend on the temperature, read and

verify operations are affected by the operating temperature. There-

fore, the optimal Vref should be changed considering the temperature

when write and read operations.

Based on evaluation results, we constructed optimal read refer-

ence table (ORT) by considering the wearing degree of a NAND block,

retention-times, read cycles, and operating temperature. Figure 19

shows shows the organizational concept of the optimal read reference

voltages table which is a look-up table that stores the optimal optimal

Vref .

For the comparison its effect, our ORT was constructed by two

versions; One is based on RealWear and the other is based on PeWear.

In addition, to reflect the unique characteristics of 3D NAND flash

memory, the WL address entry was added to ORT. Each WL in 3D

NAND flash memory has different aging characteristics and bit errors

59

depending on its physical location. For example, the edge WL shows

a larger Vth shift than the center WL even in the same retention time,

so optimal read reference voltages of the edge WL should be quite

different from that of the center WL.

3.4.2 Device-level Evaluation of BoudedRead

BoudedRead is based on an existing read-latency optimization

technique [70] that uses a lookup table for finding an optimal read

reference voltage. For a fixed retention time requirement (e.g., 12

months), each entry of the ORT table, which is indexed by the num-

ber of P/E cycles, stores a pre-defined best sequence of read reference

voltages that were decided from an off-line device-level characteriza-

tion study. When a read reference voltage is needed for a block with

x P/E cycles, read reference voltages stored in ORT[x] is tried one by

one until a read is successful. Unlike the existing read-latency opti-

mization technique that indexes the ORT table by the number of P/E

…

0

100

200

1,000

10,000

…

0day 1day … 30day … 365day

R1 R1_0 R1_1 … R1_30 … R1_365

R2 R2_0 R2_1 … R2_30 … R2_365

R3 R3_0 R3_1 … R3_30 … R3_365

R4 R4_0 R4_1 … R4_30 … R4_365

R5 R5_0 R5_1 … R5_30 … R5_365

R6 R6_0 R6_1 … R6_30 … R6_365

R7 R7_0 R7_1 … R7_30 … R7_365

(Wear = b) P/E 100

(Wear = c) P/E 1,000

(Wear = a) P/E 50

(Temp.) (# of read)

25

30

50

55

85

…
…

WL0

WL1

WL23

WL24

WL47

…

(WL)

…

Figure 19: Organizational overview of ORT.

60

0%

100%

80%

60%

40%

20%

p
o

rt
io

n
 o

f
b

lo
ck

s
[%

]

0 1 2 3 4 5 7

1 Mon

3 Mon

6 Mon

12 Mon

NumRetry

6

(a) Indexed by NP/E.

0%

100%

80%

60%

40%

20%

p
o

rt
io

n
 o

f
b

lo
ck

s
[%

]

NumRetry

1 Mon

3 Mon

6 Mon

12 Mon

0 1 2 3 4 5 7 86

(b) Indexed by RealWear.

Figure 20: NumRetry distributions.

cycles, BoudedRead uses the block age for indexing the ORT table.

Figure 20 compares how NumRetry changes when NP/E and age(B)

are used for locating the ORT entry, respectively. As shown in Fig-

ure 20(a), when NP/E is used, there are large variations in NumRetry

because NP/E cannot accurately represent the wear status that strongly

affects NumRetry. Under the 12-month data retention requirement, up

to 7 read retries were needed. Since the minimum number of read re-

tries was 2, tREAD values can significantly fluctuate during run time.

On the other hand, as shown in Figure 20(b), BoudedRead exhibits a

narrow distribution of NumRetry values. Furthermore, no blocks need

more than 2 read retries regardless of the data retention requirement.

3.4.3 System-level Evaluation Results

In order to evaluate the benefit of BoudedRead at the storage sys-

tem level, we have implemented rFTL, a RealWear-aware FTL, using

an open emulation platform for storage systems [65]. Figure 21 shows

an overall organization of rFTL. rFTL, which is based on an existing

61

RealWear-aware FTL (rFTL)

L2P

Mapping

Table

Flash Controller

3D TLC NAND Devices

Kamb
read / program / erase

Block Age Manager

(BAM)

Host writes Host reads

Wear

Leveler

Garbage

Collector

N(0)tBERS

Figure 21: An organizational overview of a rFTL.

page-level FTL, employs one RealWear-specific module, the block age

manager (BAM), that is responsible for supporting RealWear. The BAM

module, which is in charge of managing block ages of all the blocks

in a flash storage system, keeps track of the following key parameters

for each block: NP/E, Dt, tBERS, N(0) and Kamb. Whenever a block

B is erased, BAM 1) increments NP/E by one, 2) measures the elapsed

time tBERS for the block erasure and 3) records the current time

for computing Dt. For each block, N(0) is measured only once for the

first page of a block. BAM reads back the first page of the block B

immediately after it is programmed. Kamb is periodically updated by

an on-board temperature sensor inside an SSD. Based on these model

variables of RealWear, BAM keeps age(B) in the metadata area of the

block B. Although rFTL needs extra parameters, their overhead is

negligible because they are managed at the block granularity. Since a

few bytes would be sufficient for each block, per-block parameters can

62

Table 2: A summary of six workloads.
Varmail Fileserver Proxyserver Webserver OLTP NTRX

Read:Write 40:60 40:60 55:45 85:15 70:30 5:95
WAF 2.7 5.4 1.9 1.2 2.0 2.3

be stored in the OOB area of a block without incurring an extra space

overhead. Furthermore, since they are computed as parts of normal

operation, no performance overhead exists for RealWear.

Since we used a DRAM-based emulated storage system in our

experiments, it was not possible to obtain the actual tBERS, N(0)

and Kamb values during run time. Instead, we generated tBERS and

N(0) on demand whenever a block is erased. To accurately reflect real

tBERS values that are measured during run time, we built tBERS

distributions over different NP/E values in advance from our measure-

ment experiments. When a block is erased, tBERS is randomly gener-

ated from a pre-constructed tBERS distribution. For example, when

NP/E is 4K, tBERS is randomly selected from three values, 5 ms, 10

ms, and 15 ms. N(0) is synthetically generated in a similar fashion as

well. We set Kamb to 30°. We assumed that Kamb does not change in

our experiments.

For fast evaluations, we limited the SSD capacity to 32 GB. Our

target SSD consists of two buses, each of which has four 3D TLC flash

chips. Each chip has 428 blocks and each block is composed of 576 16-

KB pages. We set basic flash operation timing parameters for read,

program and erase to 80 µs, 700 µs, and 3.5 ms, respectively [14].

For three case studies, we used six workloads: four from Filebench

63

0

2

4

6

8

10

young young-adult adult

N
o

r
m

a
li

z
e

d
 M

a
x

 R
e

a
d

 L
a

te
n

c
y Baseline BoundedRead

child young adult old adult

8.0

0.0

2.0

6.0

10.0

N
o

rm
a

li
ze

d
 m

a
x

 r
ea

d
 l

a
te

n
cy

Baseline BoundedRead(over / =)

4.0

Figure 22: Read latency comparison results.

benchmark tool [79], Varmail, Fileserver, Proxyserver, and Webserver,

and two from Sysbench [67], OLTP and NTRX. Table 2 summarizes

the key I/O characteristics of each workload.

To better understand the benefit of BoudedRead, we compared

the maximum read latency of each workload as shown in Figure 22.

All the measurements were normalized to the minimum read latency

with no read retry. Furthermore, we ignored queuing delay due to

contention between other read requests. In order to simulate different

wear status of NAND blocks, we pre-conditioned NAND blocks with

three distinct states in the SSD lifetime: a child stage (when only 10%

of the SSD lifetime is consumed), a young adult stage (when 20% of

the SSD lifetime is passed) and an old adult stage (when 50% of the

SSD lifetime is used). In the old adult stage, where more read re-

tries are needed, the maximum read latency of the baseline technique

64

can be 7 times longer on average over when no read retry is needed.

In Proxyserver and OLTP, the maximum read latency increases by 9

times because many blocks in these workloads hold very cold pages

with long retention time. On the other hand, the maximum read la-

tency of BoudedRead does not increase more than 3 times over the

minimum read latency (with no read retry) regardless of block stages

or workloads.

3.4.4 Case Study 1: Lifetime Improvement

As a case study, we evaluated how much the storage lifetime can

be extended by modifying the existing wear leveler to use RealWear

instead of PeWear in selecting the oldest block. We call this version of

rFTL by LongLive.

To evaluate the lifetime improvement of LongLive over a baseline

FTL, which is based on a PeWear-based wear-leveler, we measured the

total amount of writes until an SSD reaches the end of its lifetime.

Since SSDs in the market use different N Max
P/E

values, we evaluated

LongLive over the baseline FTL with two N Max
P/E

values: 1K and 8K. As

shown in Figure 23, LongLive served on average 63% more writes over

the baseline FTL. When N Max
P/E

was set to 1K, the lifetime of LongLive

increases, by 12 times. LongLive achieves a slightly higher improvement

ratio on read-intensive workloads (e.g., Webserver). This is because,

in read-intensive workloads, NAND blocks tend to have longer Dt’s,

which make more flash cells to be self recovered.

65

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
LongLive (over 8K) LongLive (over 1K)

12.0

0.0

0.5

1.0

1.5

2.0

13.0
L

if
et

im
e

im
p

ro
v

em
en

t
o

v
er

 b
a

se
li

n
e

NTRXOLTPVarmail FileserverWeb Proxy Average

LongLive (/ =) LongLive (/ =)

Figure 23: Lifetime Improvement of LongLive.

3.4.5 Case Study 2: GC Overhead Reduction

As another case study, we applied RealWear for reducing GC

overhead. As well known, GC involves a large number of page copy

operations, which may overlap with important host I/O requests. To

avoid host-perceived performance degradation from GC, one efficient

technique is to use the NAND copyback command. Since the copy-

back command allows a page to be moved to a different block inside

a NAND die without performing off-chip DMA operations, it can sig-

nificantly reduce the data migration overhead during GC. However,

since an error correction operation is skipped during an internal data

copy, bit errors are accumulated whenever copyback is used for data

migration. If the number of accumulated errors by copyback opera-

tions exceeds NECC, data loss can occur. (In fact, this is the main

reason why copyback is rarely used in modern SSDs [68])

To overcome the reliability issue from copyback operations, it is

66

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 K 1 K 2 K 3 K 4 K 5 K 6 K

of P/E Cycles [

C
o

p
y

b
a

ck
 t

h
re

sh
o

ld

3

0

1

2

6

4

5

Baseline RealWear(over / =)

Blocks with the worst characteristics

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6

C
o

p
y

b
a

c
k

 T
h

re
s

h
o

ld

age(B)
C

o
p

y
b

a
ck

 t
h

re
sh

o
ld

3

0

1

2

6

4

5

0 61 2 3 4 5

of P/E cycles [× 1,000] age(B)

Figure 24: Copyback threshold variations.

important to find the largest number of consecutive copyback oper-

ations for a given block that does not cause data loss. We call this

number the copyback threshold of the block. One recent technique [69]

decides the copyback threshold of a block based on the block’s P/E

cycles (i.e., using PeWear). However, as expected, the copyback thresh-

old defined by the number of P/E cycles is not effective, thus missing

many opportunities for additional copybacks on many blocks. Fig-

ure 24(a) shows that blocks with the same P/E cycles may have quite

different copyback threshold values using standard box plots with 25th

and 75th percentiles. Since the copyback threshold value is decided

by blocks with the worst reliability characteristics, as shown in Fig-

ure 24(a), most blocks under-utilize their copyback potentials.

On the other hand, FastCopy, our proposed technique, assigns

the copyback threshold value of a block based on its block age, not

67

0.0

0.5

1.0

1.5

2.0

child young adult old adult

N
o

rm
a

li
ze

d
 I

/O
 t

h
ro

u
g

h
p

u
t

1.5

0.0

0.5

1.0

2.0
Baseline FastCopy(over / =)

child young adult old adult

Figure 25: I/O throughput comparison results.

its P/E cycles. As shown in Figure 24(b), copyback thresholds are

very narrowly distributed among the blocks with the same age. For

example, except for 0.4-old blocks and 0.5-old blocks9, all the blocks

with the same age have a single copyback threshold value. Therefore,

more copybacks are possible in FastCopy. For example, FastCopy can

use copybacks five times in a row while the PeWear-based technique

can apply copybacks at most three times.

To evaluate the GC performance improvement by FastCopy, we

evaluated various workloads in three distinct block states, a child

stage, a young adult stage, and an old adult stage. Figure 25 com-

pares I/O throughput of FastCopy with the PeWear-based technique.

The results in Figure 25 were normalized over the basic FTL which

does not utilize a copyback operation. Overall, as NAND blocks get

9The wear status of these blocks were believed to be at the boundary condition
between two copyback threshold values.

68

aged, FastCopy outperforms the baseline FTL by up to 21%. When

blocks are in their old-adult stage, the baseline FTL cannot utilize

copybacks at all. However, FastCopy continues to exploit copybacks

thanks to the higher accuracy of RealWear.

69

Chapter 4

Priority-Aware Suspend/Resume
Technique

Typically, the read latency of an SSD can significantly increase

when reads and writes are mixed in a given workload. For example,

as shown in Figure 26, the read latency can be increased by 23 times

over the average read latency. Since many storage applications give a

higher priority for reads over other flash operations (e.g., write and

erase), such a dramatic increase in the read latency occurs because

reads are blocked by writes and block erasures. Since both writes and

erases are atomically executed, their long latencies (i.e., 2-3 orders of

magnitude longer latencies) significantly increase the read latency.

Figure 26: CDF of read latency.

70

When a read request r is issued from a host system to an SSD, its

read latency λREAD (the SSD-level read latency) significantly varies

depending on the preceding I/O requests that were issued before r. If

there are preceding higher-priority requests, r should wait until their

services are finished, call a conflict problem.

Figure 27 shows a simple example of conflict problems. We as-

sume that an SSD has 1 channel & 4way structure which can per-

form 4 flash chips simultaneously, and each flash chip has its own

queue1. When 4 read requests (r1 ∼ r4) are issued from a host, the

host searches whether the target data is cached in DRAM or not (1).

If the target data is found in DRAM, it is served to the host and read

requests are successfully finished (i.e., cache hit). If the target data is

not found in DRAM (i.e., cache miss), read requests are sent to the

SSD to search the target data from NAND flash memory (2). Each

request is transferred through channel (3) and put into the queue of

flash chip where the destination block is located (4). After waiting

for its own order in the queue, the read request activates a read op-

eration at the destination block in a flash chip (5). The output data

is transferred to an ECC (Error Correction Code) unit to guarantee

the data integrity (6) and is returned to the host.

In the above scenario, λREAD (ri), can be affected by both tREAD

(ri) (the NAND device read latency) and TW AIT (ri) (the wait time in

1The modern NAND flash-based storage system consists of multiple flash chips
which are connected to independent micro controllers. By exploiting multi-channel
architecture that can be operated independently and simultaneously, flash storage
systems can secure high performance (e.g., high bandwidth).

71

4 read requests

(r1 ~ r4)

Host

-controller

DRAM

ECC unit

r4r3

r1

Flash
Chip #1

Flash
Chip #2

Flash
Chip #3

Flash
Chip #4

r2

E : erase

P : program

r : read

E P r#

Queue

Channel

Figure 27: A conflict problem in the flash storage system.

a flash storage system). When ri arrives at the destination block, the

read task cannot be immediately activated because preceding flash

operations can be performed in the target flash chip, so that it should

wait until a precedent I/O request is finished. If a erase operation is

already performed (the case of r2 in Figure 27), the total waiting time,

TW AIT (ri) increases to T 0
W AIT (ri) + tBERS where T 0

W AIT (ri) is the

waiting time without command conflict and tBERS is a erase latency

of NAND flash memory.

4.1 Limitation of the Existing Preemp-
tion Techniques

To handle read requests in a prioritized fashion over other com-

mands, various preemption techniques are used in modern SSDs [32,

33, 71]. For example, if a read is blocked by a previous program/erase

operation at the same flash chip, the existing techniques can suspend

72

the ongoing operation to service the read first.

Unfortunately, the existing command preemption techniques are

not sufficient to support read performance differentiation in an effi-

cient fashion. First, the existing command preemption techniques fo-

cus on suspending slow ongoing flash commands such as program and

erase operations (whose latency is 5.7× and 30.4× longer than that

of a read, respectively [72, 73]). When a read operation conflicts with

other read operations, no read preemption is supported in existing

techniques. However, we observed that read-over-read conflicts among

different tasks occur frequently. For example, in one of our test sce-

narios, 25% of high-priority reads are delayed by lower-priority reads.

Furthermore, when such read-over-read conflicts happen at old SSDs,

the waiting time for a high-priority read can be 6.1× higher than

tREAD due to read retries in servicing the ongoing (lower-priority)

read.

Second, the existing techniques do not properly account for the

impact of repeated erase preemption on the flash reliability. Figure 28

Figure 28: Erase operation in flash memory: Incremental step pulse
erase.

73

illustrates how an erase operation is performed in NAND flash mem-

ory. To perform a NAND block erase, the incremental step pulse eras-

ing scheme is a standard feature in modern SSDs [89]. Instead of uti-

lizing a single, very high voltage pulse (e.g., 14V) for an erase, which

has negative impact on NAND lifetime, this scheme performs an erase

operation with several, discrete pulses (typically 5 or fewer), and each

pulse has a higher nominal voltage than the previous one. By verify-

ing the set of erased cells between erase pulses and by applying higher

voltage pulses to cells that are not erased yet, this scheme minimizes

damage on NAND cells. A single erase pulse consists of the following

3 stages: 1 voltage ramping stage in which the erase pulse reaches

the desired voltage, 2 erase execution stage during which the voltage

is stabilized and maintained, and 3 voltage recovery stage in which

the erase voltage is reset for the erase-verify operation. To suspend

an ongoing erase (or resume a suspended erase), it is necessary to

discharge (or charge) a high operating voltage (> 20V) during inter-

vals represented as 1 and 3 that is determined in the flash design

stage. Therefore, NAND cells suffer from additional stress during the

erase suspension and resumption [33] during charging and discharging

a high erase voltage, thus accelerating the wear of the NAND block.

To evaluate the impact of erase preemption on the wear of a

NAND block, we measured the average bit-error rate (BER) of NAND

blocks while changing the number of preemptions per erase from 0 to

100.2 As shown in Figure 29(a), excessive erase preemptions signifi-

2When a read always preempts an ongoing erase, more than 100 preemptions

74

N
o

rm
a

li
ze

d
 B

E
R

0.9

1.0

1.1

1.2

1.3

1.4

1.5

of P/E cycles

1000 3000 5000 7000

(a) Reliability impact of preemption.

2414 16 18 20 221210

of read retries

10%

20%

30%

40%

50%

%
 o

f
fl

a
sh

 b
lo

ck
s

100 suspensions

1-yr retention at 7K P/E cycles

No suspensions

(b) Changes in NumRetry.

Figure 29: Impact of an preemption on the block quality.

cantly degrade the wear of a flash block, increasing BER by up to 48%

over the block with no suspension. When such reliability degradation

occurs to a block, an FTL should be aware of it so that a proper

remedy can be made for such blocks. However, no existing technique

considers the reliability degradation due to erase preemption.

Furthermore, excessive suspensions can increase NumRetry and

cause a wider NumRetry variance between flash blocks. As shown in

Figure 29(b), when blocks are preempted 100 times by reads, the av-

erage and maximum values of NumRetry can increase by 2.8 and 4,

respectively, over when there is no erase preemption. Note that the

range of NumRetry is also increased from 9 to 12, which exacerbates

the tREAD fluctuation. Unless the reliability degradation from com-

mand preemption is properly managed, it becomes more difficult to

differentiate read performance.

to a single erase can occur since 1) the erase latency is an order of magnitude longer
than the read latency, and 2) multiple tasks continuously issue read requests.

75

4.2 Priority-Aware Preemption: pSR

The goal of priority-aware preemption, pSR, is to ensure that

higher-priority read commands preempt flash chip as much as possible,

and to minimize side effects by excessive preemptions as described

in Section 4.1 To achieve this goal, pSR module adaptively decides

if an ongoing operation would be preempted or not when a read is

requested. We consider three conflict cases between a read and an

ongoing operation: 1) a read with an erase (rCe), 2) a read with a

write (rCw), and 3) a read with a read (rCr).

4.2.1 Read-Erase Conflict: rCe

In the rCe case, pSR applies different decisions based on the read

priority. When the read priority is high, the pSR immediately suspends

the current erase step, which is similar to the existing preemption

technique as shown in Figure 30 (a). The reliability degradation by

excessive immediate suspensions is automatically tracked later when

the RealWear updates tBERS and N(0). On the other hand, when

the read priority is not high, the pSR in principle delays the erase

suspension until the current erase sub-step (i.e., safe point) is finished

as shown in Figure 30 (b). Since the preemption is deferred at a safe

point, the number of preemption during erase operation is limited,

so unfavorable reliability degradation can be efficiently avoided. Fig-

ure 29(a) indicates that up to 30 suspensions have no impact on the

flash reliability. When a block B is erased, we set its suspension share,

76

Read & immediately suspend

Read Erase & Verify
Next

erase loop

(a) Immediate suspend/resume technique

suspend suspend suspend

Read ReadRead Read

1ms 1ms 1ms 1ms

response time

Next

erase loop

(b) Deferred suspend/resume technique

Figure 30: Overview of preemption techniques.

s(B), to 30 (i.e., the erase can be divided into 30 sub-steps.). Based

on the workload requirement, we proportionally share 30 suspensions

between medium- and low-priority tasks. In addition, to maximize the

efficiency of the erase suspension, the pSR partially allows reads from

medium/low-priority tasks to immediately suspend the ongoing erase.

4.2.2 Read-Program Conflict: rCw

In the rCw case, the pSR does not immediately suspend the cur-

rent write. Instead, it waits until the current ISPP loop for the write

is finished. Similar to the erase operation, the incremental step pulse

programming (ISPP) scheme is common practice to control the Vth

distribution in modern NAND flash memory, where a program oper-

ation is consists of multiple iterative sub-steps, called ISPP loop [15].

77

suspend

ReadRead Verify Program

PLn-1

Next

program loopPLn PLn+1
.

Figure 31: Suspend/resume during a program operation.

One ISPP loop takes 44 µs [74] while the 16-KB (1-page) tREAD

is 115 µs [73]. Since the length of one ISPP loop is shorter than the

minimum tREAD value (i.e., with no read retry), the benefit of im-

mediate program suspension is minimal while its reliability impact on

the block is not negligible. Therefore, as shown in Figure 31, when

a read task is requested during program operation, it does not im-

mediately suspend an ongoing program operation but waits until one

program loop (i.e., one ISPP lope) is finished.

Furthermore, a read task can be conflicted with critical manage-

ment tasks triggered by FTL (e.g., garbage collection (GC) to man-

age NAND flash memory reliably. Typically, the management tasks

require a large amount of erase and program operations. When the

garbage collection is once triggered, a large amount of program oper-

ations for copying valid data and many erase operations for obtaining

free blocks. Since management tasks can be urgently required to avoid

fatal system failure, the conflict between read requests and manage-

ment tasks should be processed in a balanced fashion.

Figure 32 shows an example to resolve the conflict problem be-

tween a read task and a management task. Since read requests are

78

R WFTL

Task

R R R R RW W W W

Urgent Maintenance Task

is done on time!!!

Trb Trb Trb Trb Trb

Preemptions

Figure 32: Conflict between read task and management task.

delayed until the atomic inner loop of erase or program operation in

a management task is completed, the management task can be com-

pleted on time.

4.2.3 Read-Read Conflict: rCr

In the rCr case, the pSR takes a similar approach as in the rCe

case. When the read priority is high, the pSR immediately suspends

the current read (unless the priority of the current read is also high).

To reflect the impact of read suspension on the block quality, the pSR

increments the read counts3 of the target block whenever an immedi-

ate read suspension occurs. For reads from the medium-priority task,

the pSR suspends the low-priority read only when the ongoing read

needs a read retry. By delaying the read suspension until a read retry

3As the read counts increases, the target NAND block suffers from read dis-
turbance, therefore bit errors of the target block increase [10].

79

Figure 33: Overview of paFTL.

step is finished, the read counts of target block is not affected.

4.3 Evaluation Results

In order to take full advantage of new suspend/resume technique

and its policy, we designed a new FTL, paFTL, which adaptively selects

either the immediate preemption or the delayed suspension/resume

depending on the priority of a read request. As illustrated in Figure 33,

for an incoming read, paFTL checks if the read request has a high

priority or not. For a high-priority read, paFTL immediately stops the

current program (or erase) if the read request needs to access the

same NAND plane as the current operation. For a normal-priority

read, paFTL waits for the completion of the current program (or erase)

loop. If the quota (i.e., the number of suspend/resume that does not

80

Figure 34: Evaluation results of paFTL.

cause the degradation of flash reliability) is enough when considering

future workload, medium-priority or low-priority read tasks can have a

chance to immediately preempt, thus improving the read performance.

To evaluate the effectiveness of the proposed technique, we com-

pared our paFTL with two different FTLs, baseline and irFTL. Base-

line, which assumes that both program and erase are atomic op-

erations, includes many FTL features for minimizing the read la-

tency such as preemptive garbage collection [90] and out-of-order I/O

scheduling [91]. irFTL, which is optimized for the read latency, always

use the immediate reset for read requests. As shown in Figure 34 paFTL

reduces 99.99th read latency by 50% over baseline. Moreover, paFTL

81

improves the read performance by 12% even over irFTL with a negli-

gible P/E increase while avoiding unnecessary immediate suspensions.

82

Chapter 5

Lock Based Data Sanitization
Technique

5.1 Motivation

In this section, we explore the data versioning problem in NAND

flash-based storage systems. Furthermore, we also examine why the

existing data sanitization techniques cannot be practical in real stor-

age systems.

5.1.1 Data Versioning Problem

Due to the unique nature of NAND flash memory called out-of-

place update that is different from magnetic disk storage, when a file

system deletes or updates a file, multiple versions of old data of the

file can remain in the storage system as the FTL always writes new

data of the file in new physical pages. In this paper, we call this issue

the data versioning problem. To better understand the data versioning

problem in a flash-based storage system, we empirically measure how

many invalid versions of a file exist in a flash-based storage system

throughout the lifetime of the file under varying storage workload

characteristics.

Version Trace Tool. We use a custom I/O tracing environment,

83

VerTrace, that integrates an existing I/O profiling tool, IOPro [75],

and an open storage emulation platform, FlashBench [76]. VerTrace

annotates each physical page with 1) the name of the file to which it

belongs and 2) the creation time of the file. VerTrace uses the MD5

hash function [77] to efficiently manage per-page annotation informa-

tion, which is passed to the emulated storage model of FlashBench

via an extended block I/O interface. We extend the emulated storage

model of FlashBench to support a logger module that keeps track of

the number Npage
valid(f, t) of valid pages and the number Npage

invalid(f, t) of

invalid pages for a file f at time t. VerTrace works with the ext4 file

system [78].

Benchmark Traces and Settings. We use three benchmark traces,

Mobile, MailServer, and DBServer, each of which mimics the I/O activ-

ity in an Android smartphone, a mail server, and a database server,

respectively. For faster evaluation, we limit the maximum capacity of

the emulated storage to 16 GiB. To avoid potential start-up bias of

simulations and focus on steady-state behavior, each evaluation runs

until the total written data size exceeds 64 GiB after we initially fill

75% of the storage capacity.

Metrics. The main goal of our evaluation is to identify 1) how many

invalid versions of a file exist, and 2) for how long these invalid ver-

sions remain inside the storage device. To evaluate the impact of the

file access pattern on data versioning, we classify files into two types

depending on their write patterns. We call a file f a uni-version (UV)

file if the snapshot (i.e., contents) of f at time t is a subset of the

84

snapshot of f at time (t + 1). For example, if f is an append-only

file or a write-once file, f is a UV file. If f is not a UV file, we call

f a multi-version (MV) file. For example, if the file system deletes or

overwrites f , f is not a UV file.

To quantize the data versioning behavior of a file, we use two

metrics. First, we define the version amplification factor (VAF) of a

file f as follows:

V AF (f) = max
t∈I

{Npage
invalid(f, t)}/ max

t∈I
{Npage

valid(f, t)}

where I represents the entire execution time of the workload. The

higher the V AF (f) of a file f , the higher the number of invalid versions

are present in the flash chips, which makes the storage system more

vulnerable to malicious access. Intuitively, the V AF (f) of a UV file

f would be ‘0’. If f is an MV file, its V AF (f) significantly varies

depending on the access pattern of f , which reveals the amount of

updated or deleted data of f remaining stale inside flash chips.

Second, we measure the total length Tinsecure(f) of insecure time

intervals of a file f . We define that a file f is insecure at time t, if

Npage
invalid(f, t) > 0. The longer the Tinsecure(f) of a file f , the more

likely an adversary can recover an old version of file f . In a real sys-

tem, Tinsecure(f) highly depends not only on the access pattern of f ,

but also on the system idle time. For example, Tinsecure(f) may be ex-

tremely long if there is a huge time gap between when a user deletes

file f and when the user issues a sufficient number of writes to invoke

GC (which physically erases the deleted data). Since the system idle

85

time significantly varies depending on the user, which is difficult to

model, we use logical time that increments by 1 for each 4-KiB host

write.

Analysis Results. Table 3 summarizes three interesting observations

about the data versioning behavior of the three benchmark traces.

We calculate the average and maximum V AF and Tinsecure values

of all the created files in each trace execution. Tinsecure values are

normalized to the total number of writes needed to fill the entire

capacity of an SSD.1

First, the V AF (f) of a file f can be quite high (e.g., 7.8) when

file f is heavily updated, as seen for MV files in DBServer. Even if a

file is not deleted, such files with high V AF values can pose security

vulnerabilities unless their old versions are properly sanitized.

Second, even uni-version files with no updates can have a large

number of invalid versions as seen for Mobile (1.5 V AF value) and

MailServer (1.0 V AF value). Since UV files do not update their own

data, these invalid versions are the result of the extra copy operations

Table 3: A summary of our data versioning evaluations.

Workload
Uni-version (UV) files Multi-version (MV) files

V AF (f) Tinsecure(f) V AF (f) Tinsecure(f)
avg. max. avg. max. avg. max. avg. max

Mobile 0.24 1.5 2.0×10−2 0.43 1.0 2.0 0.41 2.3
MailServer 0.22 1.0 2.1×10−2 1.7 0.93 2.4 0.50 2.5
DBServer 4.8 ×10−3 0.24 0.52 2.6 3.2 7.8 3.5 3.5

1If Tinsecure(f) = 1.0, it indicates that invalid pages of a file f exist while the
total capacity of a disk is written.

86

0.0

0.5

1.0

1.5

 3 4 5 6
Time (in disk writes)N

u
m

b
e

r
 o

f
p

a
g

e
s

 [
1

0
3
]

(,)

(,)

0.75 1.0 1.25 1.5

Mobile: write-once

(a) fmb: a UV file in Mobile.

0

5

10

15

20

 0 5 10 15

(,)

(,)

Time (in disk writes)

1.25 2.5 3.750

N
u

m
b

e
r

 o
f

p
a

g
e

s
 [

1
0

3
]

DBServer: highly-updated

(b) fdb: an MV file in DBServer.

Figure 35: Data versioning under different write patterns.

during GC invocations.2

Third, Tinsecure values are quite large in UV files as well as MV

files. For example, the average and maximum Tinsecure values of MV

files in DBServer are 3.5, which indicates that most of the MV files have

one or more invalid versions for a very long time (while the host system

performs 3.5 disk writes). Note that even UV files are insecure for a

significant amount of time (e.g., in MailServer and DBServer) because

GC victim blocks are erased lazily as explained in Section 5.2.4.

To highlight different data versioning patterns, we select two

files, fmb (from Mobile) and fdb (from DBServer), and compare their

Npage
valid(f, t) and Npage

invalid(f, t) timeplots. Figure 35(a) shows the time-

plot for the append-only file fmb. Even though fmb is a UV file with no

updates, there are a fair number of invalid pages (up to 800 pages) due

2As explained in Section 2.7, the GC process invalidates all the valid pages
in a victim block, after copying these valid pages’ data to other free pages. Until
the victim block is erased, a UV file can have invalid pages stored in the victim
block. Since a block is erased lazily (to minimize the negative reliability impact of
erase operations; see Section 5.2.4), it may take a long time for invalid pages of
the victim block to be physically erased.

87

to GC invocations. Figure 35(b) shows the data versioning pattern of

the heavily-updated MV file fdb. Before the GC process is invoked

at time t0, Npage
invalid(fdb, t) rapidly increases due to frequent updates

while Npage
valid(fdb, t) remains constant. Although Npage

invalid(fdb, t) tends

to decrease after t0 because invalid pages are erased by subsequent

GC invocations, the rate of decrease in Npage
invalid(fdb, t) is quite slow

because 1) invalid pages of fdb are scattered to many blocks and 2)

more invalid pages are generated from continuous updates to fdb.

Based on our empirical study, we identify two key requirements

that a desired data sanitization technique should meet. First, the tech-

nique should support per-page sanitization. As mentioned above, the

invalid pages of a file (e.g., fdb of DBServer) can be stored in the same

block with other files’ valid pages. If it is not possible to individually

sanitize an invalid page, all the valid pages stored in the same block

should be copied to other block(s) to sanitize the invalid page, which

incurs significant performance and lifetime overheads.

Second, the effect of the page-level sanitization technique should

be immediate. Our study shows that a single file may have a large

number of invalid pages for a long time, even when the host system

does not delete the file. If the storage system does not support imme-

diate sanitization of invalid data (i.e., if it sanitizes a file only when

the host system deletes the file), the storage system should keep track

of all the physical pages used for each file because the FTL uses mul-

tiple physical pages to store the data of a single logical page when

the file system updates the logical page or the GC process moves the

88

data. Doing so not only requires additional I/O interfaces to send

file-system information, but also significantly increases the metadata

maintained inside the storage system.

5.1.2 Reprogram-Based Data Sanitization

Most existing data-sanitization techniques (e.g., [34, 35, 37, 39,

36, 38]) destroy the stored data by intentionally changing the Vth of

flash cells. For example, the scrubbing technique [37] increases the Vth

of all flash cells in a WL so that the Vth distributions of different states

are mixed together, which makes it impossible to identify the original

data. However, in MLC NAND flash memory, this technique is not

easy to adopt because it incurs a significant performance overhead

to move valid pages out of the WL to be scrubbed. For example,

consider TLC NAND flash memory that stores three pages (i.e., LSB

(least-significant bit), CSB (central-significant bit), and MSB (most-

significant bit) pages) in each WL. To sanitize one of the three pages,

other valid page(s) should be moved to other free page(s). To do so,

two extra read operations and two extra write operations may be

needed.

To overcome the performance overhead of the scrubbing tech-

nique, prior work proposes a more efficient reprogram-based sanitiza-

tion technique for MLC NAND flash memory [39]. Unlike scrubbing,

this technique uses the one-shot programming scheme. The key claim

of the one-shot reprogramming (OSR) technique is that, even in MLC

NAND flash memory, a page can be safely destroyed by using a low

89

11 1X 00 01

N
u

m
b

er
 o

f
ce

ll
s

V
th

–

MSB LSB

–
–Floating

gate

–
– – –

– – ––
–

–
– –

–
–
–

(a) Intended (normal) program operation.

11 1X 00 01

N
u

m
b

er
 o

f
ce

ll
s

V
th

–

MSB LSB

–
–Floating

gate

–
– – –

– – ––
–

–
– ––

– –
–

–

“Error bits from over-programming.”

(b) Abnormal over-programming.

Figure 36: Vth distributions of 2m-state NAND flash memory.

program voltage, while the other page in the same WL does not suffer

a critical reliability damage. Since no page copy is required during the

reprogram process, OSR can achieve zero-copy overhead. Figure 36(a)

illustrates an example case where OSR works as intended. In this ex-

ample, the LSB page is to be sanitized while the MSB page is to

remain as a valid page. To destroy the LSB page, OSR moves the Vth

levels of the E-state cells (i.e., ‘11’) to the right so that they are over-

lapped with the Vth levels of the P1-state cells (i.e., ‘10’). By doing so,

the original LSB page cannot be correctly read with V R1
ref , which ef-

fectively sanitizes the LSB page. Note that, in this example, the MSB

page is not affected at all, and can be reliably read with V R2
ref .

90

Sanitize

LSB

After

retention

Initial

ECC limit

3-K P/E cycle &

30 -year retentionN
o

r
m

a
li

z
e
d

 B
E

R
2.0

1.5

1.0

0.5

0.0

(a) A bad block distribution in W(2).

Sanitize

LSB & CSB

After

retention

Initial

ECC limit
min.

max.

75%
50%
25%

1-K P/E cycle &

30 -year retentionN
o

r
m

a
li

z
e
d

 B
E

R

2.0

1.5

1.0

0.5

0.0

(b) A bad block distribution in W(10).

Figure 37: Changes in RBER of flash pages under OSR.

Although many flash cells would behave as shown in Figure 36(a),

a significant number of flash cells may misbehave under OSR due to

over-programming [80, 19]. Figure 36(b) shows such a case where OSR

moves the Vth levels of the E-state cells too far (to the right) such that

some of them overlap with the P2-state cells (i.e., ‘00’). When such

over-programming errors occur, the MSB page cannot be reliably read

with V R2
ref , because the MSB values of over-programmed cells (which

should be ‘1’) are recognized as ‘0’.

To identify how the reliability of multi-level cell NAND flash

memory is affected by over-programming errors, we measure how raw

bit-error rate (RBER) changes under OSR in real 3D MLC and TLC

flash memory chips. Figures 37(a) and 37(b) show RBER of flash pages

in MLC and TLC NAND flash memory, respectively, under three dif-

ferent conditions: 1) right after (i.e., zero retention time) programming

all the pages on a WL (left-most box plot), 2) right after sanitizing the

other page(s) on the same WL using OSR (middle box plot), and 3)

91

after a 1-year retention time (right-most box plot).3 In MLC NAND

flash memory, as shown in Figure 37(a), after the LSB page is sani-

tized by the OSR, 7.4% of the RBER values in MSB pages exceed the

ECC limit, making these valid MSB pages unreadable. As explained in

Figure 36(b), a large portion of the extra bit errors on MSB pages are

over-programming errors due to an excessive Vth shift during OSR. To

minimize over-programming errors, one solution might be to fine-tune

the OSR parameters separately for each WL. However, since the exact

amount of Vth shift under OSR can significantly vary depending on

each WL’s process-variation related characteristics (e.g., the physical

location of each WL on the chip), customizing the OSR parameters

separately for each WL is extremely difficult. Figure 37(b) shows that

the impact of OSR on the reliability of TLC NAND flash memory

is even higher than that in MLC because TLC NAND flash memory

has a narrower Vth margin between adjacent Vth states. For example,

when both the LSB page and the CSB page are sanitized, all of the

MSB pages become unreadable due to their high RBER values.

We also observe that the RBER value of a valid page after sani-

tizing other pages on the same WL greatly increases if the valid page

experiences a long retention time. When we measure RBER with the

industry standard requirement (i.e., 1-year retention requirement at

30◦C [52]), most of the MSB pages in 3D MLC NAND flash memory

and all of the MSB pages in 3D TLC NAND flash memory, cannot be

3All measurements are normalized to the maximum RBER value below which
an ECC module can correct errors.

92

reliably read. As shown in the right-most box plots in Figures 37(a)

and (b), such valid pages’ RBER values can be more than 1.5 times

over the ECC limit (correction capability). Our evaluation results,

therefore, clearly show that OSR is not a reliable solution for data

sanitization in modern flash-based storage systems, since it leads to

destruction of valid data that is not supposed to be sanitized.

5.2 Evanesco: Lock-Based Sanitization

We propose evanesco, a new technique to sanitize a physical page

immediately without negatively affecting the reliability of other stored

data. In this section, we present our threat model and introduce two

new flash commands, pLock and bLock, which enable evanesco to san-

itize a page and a block, respectively, at low cost.

5.2.1 Threat Model

We assume a very capable attacker who possesses all the required

skills to recover deleted information from a modern flash-based storage

system by reading flash cells through the interfaces to the NAND flash

chip. The attacker can gain physical access to a full system, including a

processor, DRAM, and a flash-based storage device. The attacker can

deconstruct the storage device (e.g., de-soldering flash chips) without

any damage on stored data, and directly access the raw flash chips

through all known flash interface commands while bypassing the file

system and the FTL.

93

If the storage system is encrypted, the attacker can obtain any

necessary passwords and encryption keys to decrypt stored data. The

attacker has comprehensive knowledge about the implemented en-

cryption scheme, and can perform sophisticated attacks (e.g., a cold

boot attack [45]) to retrieve the secret keys. The attacker can issue a

court order or legal subpoena that obliges a user to reveal the used

password.

We assume that the attacker cannot directly probe raw flash

memory cells to retrieve stored data using highly sophisticated tools

such as a scanning electron microscope (SEM) [49]. Although such

attempts were successful in very early 2D SLC NAND flash memory

(with 350-nm technology node) [81], to our knowledge, they are very

difficult in practice for modern 3D NAND flash memory due to sev-

eral reasons. First, in order to have visual access to flash memory cells,

the attacker needs to deprocess several tens of layers of flash chips.

Since memory cells are organized in a cubic form in 3D NAND flash

memory, it likely requires extreme effort to expose individual cells

without damaging their electrical status (i.e., stored data). Second,

the technology node of modern 3D NAND flash memory already has

reached 20 nm [82], and manufacturers employ aggressive multi-level

cell techniques (e.g., TLC and QLC NAND flash memory) to maxi-

mize storage density. To directly read stored data from such memory

cells, an SEM should support an extremely high resolution to dis-

tinguish the contrast between cells with different values. We are not

aware of any demonstration that allows an attacker to directly probe

94

raw memory cells in modern 3D NAND flash memory. We speculate

that, if such techniques exist, they require extremely expensive equip-

ment and infrastructure.

5.2.2 Approach Overview

The key insight of evanesco is that if we could block access to a

flash page by controlling the on-chip access permission (AP) flag of

the page, we could achieve the same effect of data sanitization with-

out physically destroying the data stored in the page. In evanesco,

we support two types of AP flags inside a flash chip, a page-level AP

(pAP) flag and a block-level AP (bAP) flag, controlled by two new

flash commands, pageLock (pLock) and blockLock (bLock), respec-

tively. The pLock <ppn> command locks physical page number ppn by

setting the pAP flag of ppn to the disabled state. The bLock <pbn>

command locks physical block number pbn by setting the bAP flag

of pbn to the disabled state. When a page or a block of a flash chip

is locked by pLock or bLock, respectively, the flash chip blocks any

access to it. Since the pAP flag (or bAP flag) of the locked page (or

locked block) can be reset to its default enabled state only after the

block with the locked page (or the locked block itself) is erased (i.e.,

no unlock command exists for locked pages or blocks), once a page or a

block is locked, its data becomes permanently inaccessible. When the

locked page or block is re-enabled, its data already has been destroyed

by an erase operation.

95

Flash Chip

…Block 0x08bAP pAP

read

ppn: physical page number, E: enabled, D: disabled

Flash Chip

…Block 0x08bAP pAP

read 0x20

pbn: physical block number, E: enabled, D: disabled

ppnoperation

ppnoperation

Page Buffer

…

Dout

E

E

E

0x20

0x21

0x22

0x23

E Data A

Data B

Flash Page

DData C
D?

Yes

Lock

000…0

failed read

Page Buffer

…

Dout

E

E

0x20

0x21

0x22

0x23

D

Data B

Flash Page

DData C
D?D?

No

000…0

failed read

EData A

Yes

Data C

Lock

000…0

ppn

pLock 0x22

operation

pbn

bLock 0x08

operation

0x22

(a) pLock

(b) bLock

Figure 38: Operational overview of pLock and bLock.

Figures 38(a) and 38(b) illustrate an operational overview of

pLock and bLock, respectively. To sanitize physical page 0x22 (de-

noted as PP#0x22), the pLock <0x22> command (1) sets the pAP

flag of PP#0x22 to disabled (‘D’ in 2). Future reads to PP#0x22 (3)

fail because the evanesco-enhanced logic inside the flash chip checks

if the pAP flag is enabled (4) before transferring the page data out

from a flash chip (5). If a target page’s pAP flag is enabled (e.g., as

for PP#0x20), a read request to the page operates as a normal read

operation. Similarly, as shown in Figure 38(b), when physical block

0x08 (denoted as PB#0x08) needs to be sanitized, the bLock <0x08>

command (1) sets the bAP flag of PB#0x08 to disabled (‘D’ in 2).

When the bAP flag is disabled, a read to any of the pages in PB#0x08

96

fails, including a read to PP#0x20 (3), because the evanesco-enhanced

logic first checks the bAP flag (4) before the pAP flag and prevents

reading out page data from a disabled block (5), regardless of the

pAP flag of the target page.

5.2.3 PLock: Page-Level Data Sanitization

Organizational Overview. Figure 39(a) shows an organizational

overview of our pLock implementation. In order to exploit the exist-

ing flash organization as much as possible, per-page pAP flags are

implemented using flash cells available in the spare area4 (i.e., the

OOB (out-of-band) area) of each WL. For example, in the TLC flash

memory illustrated in Figure 39(a), three pAP flags are placed in the

spare area for the LSB, CSB, and MSB pages of each WL, respec-

tively. Since the spare area is read concurrently with the main data

area (i.e., a page), no special command is needed to read a pAP flag. If

the pAP flag of a page is set to disabled , the bridge transistor, which

connects the page buffer to data-out pins as shown in Figure 39(a), is

turned off so that the flash chip outputs all-zero data. Otherwise, the

flash chip outputs the requested data from the page.

To implement the pAP flags with spare flash cells, it should be

possible to selectively program flash cells on the same WL because

1) the pAP flag of a page is set to disabled after the page is pro-

4A flash page consists of a main data area for storing data and a spare area
for storing page-specific information such as the logical page address and error-
correcting code (ECC) [20] values. A typical 16-KiB page has up to 1 KiB as spare
area.

97

WL8

M C L

WL9

WL15

Dout

E?

Bridge transistor VCC

Page Buffer

Main Data Area

MSB CSB LSB

0x18 0x1A 0x19

0x1B 0x1D 0x1C

0x2D 0x2F 0x2E

Data Cells

…

pAP Flags

…

…

…

N: offY: on

E E E

D E D

D D E

Spare Area

(a) An organizational overview of pLock.

k

Majority Circuit

0: off1: on

BL
n-1

BL
m+3k

LSB

Data

…

Page Buffer Dout

ppn

CSL

WL
k

CSB

AP Flag Selector

BL
m+2kBL

m+k

…

… …

… …

… …

… …

… …

… …

…
…

… … …

MSB

pAP Flags

(b) An implementation of pLock.

Figure 39: pLock implementation.

grammed on the main data area and 2) the pAP flag of each page on

the same WL is set to disabled at different times. To support such

selective cell programming, we exploit the SBPI (self-boost program

inhibit) technique [15], which allows flash cells on the same WL to be

selectively programmed by choosing different voltage settings for dif-

ferent BLs.5 For example, when programming PP#0x19, we inhibit all

three pAP flags on WL8 with the SBPI technique so that the pAP flags

are not programmed, and thus they stay in the default enabled state.

When PP#0x19 needs to be sanitized, pLock sets only the pAP flag of

PP#0x19 to disabled by inhibiting all the data cells on WL8 as well

as the pAP flags of PP#0x18 and PP#0x1A.

5When a page in WLk is programmed, its i-th cell within the page is selectively
programmed depending on the value of BLi. If BLi is set to ‘0’ (i.e., 0V), the i-th
cell is programmed. If BLi is set to ‘1’ (i.e., VCC), the i-th cell is not programmed
(i.e., it is inhibited) because there is an insufficient voltage difference between the
cell’s floating gate and the substrate due to the channel boosting effect [20, 80, 15,
83]

98

Implementation. To support pLock with the organization shown in

Figure 39(a), there are two main implementation challenges. First,

programming a pAP flag should not cause reliability issues (e.g., due

to interference) in the main data area and the spare area of the WL.

Although the SBPI technique supports selective programming of flash

cells on a WL, inhibited cells might be affected by a high program

voltage applied to the WL. Second, a pAP flag should be programmed

fast and read reliably. In particular, it should be guaranteed that there

is no error in pAP flags under all flash operating conditions (e.g., long

retention times, high P/E cycles, and process variability [16]). For

example, if a disabled pAP flag value is mistakenly re-enabled after a

long retention time, the associated locked page can be accessed again,

which is unacceptable.

In our current design, we meet the first requirement by program-

ming a pAP flag using the one-shot programming scheme with a lower

program voltage, in addition to the SBPI scheme. Since flash cells

for pAP flags need to distinguish between only two discrete states

enabled and disabled, we treat flash cells for pAP flags as SLC

cells. Unlike typical TLC data cells which need to store eight different

states, SLC flash cells with two states can be reliably programmed

with a low program voltage, avoiding a reliability degradation due

to the over-programming problem (Section 5.1.2). Furthermore, the

one-shot programming scheme reduces the frequency and duration

of applying a program voltage to a WL. Therefore, using the SBPI

scheme with a low-voltage one-shot programming scheme minimizes

99

the impact of programming a pAP flag on the reliability of the in-

hibited flash cells. Note that using the one-shot programming scheme

also has the benefit of having a relatively short latency.

To guarantee error-free management of pAP flags, we employ

a simple k-modular redundancy scheme that allocates k flash cells

for each pAP flag. As shown in Figure 39(b), the k-bit majority cir-

cuit computes the pAP flag value of each page from k flash cells. As

we show in the following subsection, with a sufficiently high k, we

can manage pAP flags reliably without requiring a complicated ECC

module.

Design Space Exploration. To determine good design parameters

for our proposed pLock implementation in Figure 39, we conduct com-

prehensive reliability and performance evaluations using 160 state-of-

the-art (48-layer) 3D NAND flash chips. To minimize the potential

distortions in the evaluation results, for each test scenario, we evenly

select 120 test blocks from each chip at different physical block loca-

tions, and test all the WLs in each selected block. We test a total of

3,686,400 WLs (11,059,200 pages) to obtain statistically significant ex-

perimental results. Using an in-house custom test board, we evaluate

various performance and reliability metrics while varying the number

of P/E cycles (from 0 to 1,000) and retention-time requirements (from

0 to 5 year). Due to the page limit, we discuss only the key results

under worst-case reliability conditions.6

6Our test procedure follows the JEDEC standard [52] recommended for
commercial-grade flash products.

100

(vi) (iii)

(iv) (i)

(v) (ii)

P
ro

g
ra

m
 l

a
te

n
c

y
 [

u
s

]
Region I

Region II

100

150

200

(a) Initial design space Ψ × T .

100us

150us

200us

%
 o

f
p

ro
g

.
fl

a
g

 c
e

ll
s

60%

80%

100%

40%

(b) RBER variations in Ψ × T .

100us

150us

200us

N
o

r
m

a
li

z
e

d
 R

B
E

R

1.0

1.1

0.9

1.2

(c) Success rate of programming
flag cells.

(a) (b)

(c) (d)

(e) (f)
#

 o
f

fl
a

g
 c

e
ll

s
 w

/
o

 e
r

ro
r

s

1 yr. 5 yr.

10 102 103 104

6

8

4

9

7

5

(d) Retention errors in flag cells
when k = 9.

Figure 40: Design space exploration results for pLock.

In the design shown in Figure 39, there are three key design

parameters that we need to decide: 1) program voltage V pLock
prog and 2)

program latency tpLock used for programming the flag cells, and 3) k,

the number of flash cells per pAP flag. To find the best combination

of (V pLock
prog , tpLock), as shown in Figure 40(a), we start from an initial

design space Ψ ×T where Ψ = {V p
1 , V p

2 , V p
3 , V p

4 , V p
5 } (V p

i+1 − V p
i =

0.5V) and T = {100µs, 150µs, 200µs}. We define the initial design

space Ψ × T via a preliminary evaluation on the performance and

reliability of the pLock implementation in Figure 39.

First, we evaluate how the reliability of data cells is affected by

a different combination of (V pLock
prog , tpLock) ∈ Ψ × T for the pLock im-

plementation. Although the SBPI technique enables pLock to inhibit

101

data cells while programming flag cells, the RBER of data cells can

increase due to program disturbance.7 As shown in Figure 40(b), the

higher the program voltage or the longer the program latency, the

higher the RBER of data cells due to program disturbance during

pLock. Based on the result shown in Figure 40(b), we exclude four

combinations in Region I (Figure 40(a)) from further consideration

because they increase the RBER of data cells.

Second, we evaluate if a flag cell can be reliably programmed for

a (V pLock
prog , tpLock) combination of the remaining design space (i.e., Ψ×

T− Region I). As shown in Figure 40(c), several combinations cannot

reliably program a flag flash cell due to low program voltage or short

program time. For example, with combination (Vp
1, 100µs), pLock can

program only 47.3% of flag cells successfully. Based on the result in

Figure 40(c), we exclude five combinations in Region II, leaving six

candidate combinations, (i) ∼ (vi), as shown in Figure 40(a).

As the last step in our design space exploration, we evaluate how

the number of retention errors changes when k flag cells are grouped

to represent a single pAP flag. We test two retention-time require-

ments at 30 ◦C after 1K P/E cycles, 1-year and 5-year retention

times, while varying k from 5 to 11. Figure 40(d) shows the evalu-

ation results when k = 9 (which we use as the final k value). The

number of retention errors is significantly affected by which (V pLock
prog ,

tpLock) combination we use. For example, for the 5-year retention-

7Even if all the data cells in a WL are inhibited during pLock, the high program
voltage applied to the WL can affect the Vth levels of the data cells. This undesired
phenomenon is called program disturbance [20, 80, 25].

102

time requirement, combination (vi), (Vp
2, 200 µs), leads to 5 reten-

tion errors in 9 flag cells, while combination (i), (Vp
4, 150 µs), leads

to at most 2 errors. When combined with the 9-bit majority circuit,

combination (vi) cannot guarantee that a pAP flag is correctly man-

aged throughout the required retention time. Out of the six candidate

combinations, we select combination (ii), (Vp
4, 100 µs), which meets a

high retention-time requirement with the shortest tpLock, as the final

design parameter along with 9 flag cells to represent a pAP flag.

5.2.4 BLock: Block-Level Data Sanitization

Need for Block-Level Sanitization. The pLock command enables

per-page sanitization at low cost, but its performance overhead may

become nontrivial if a large number of pages need to be sanitized

at the same time. For example, if a user wants to securely delete a

1-GiB file (e.g., a video file) from a flash-based storage system with

16-KiB page size, 65,536 consecutive pLock commands are needed,

which can introduce significant delay in the flash-based storage sys-

tem. A block-level data sanitization mechanism could mitigate the

performance overhead of a large number of pLock commands: a single

bLock command can sanitize all the pages in a block at once with low

latency.

There is an even more fundamental reason to support such a

bLock command in modern 3D NAND flash memory. In recent 3D

NAND flash memory, due to structural characteristics, the reliabil-

ity of data stored in a block strongly depends on the time gap be-

103

0.8

1.0

1.2

1.4

Length of open interval

Zero Very short Short Medium Long Very long

N
o

r
m

a
li

z
e

d
 R

B
E

R

(R
a

w
 B

it
 E

r
ro

r
 R

a
te

) No P/E cycling After P/E cycling After P/E cycling + retention

Figure 41: RBER vs. open interval length.

tween when the block is erased and when data is programmed to the

block [84]. This time gap is called an open interval. The shorter the

open interval, the more reliable the storage of data. Figure 41 illus-

trates how RBER increases as the length of an open interval increases.

When the open interval is the largest we tracked, RBER is 30% larger

than when the open interval is zero. To avoid the reliability problem

of an open interval, a block should be erased lazily, i.e., the erase of

the block should happen just before programming data on the block.

Therefore, bLock is essential to effectively sanitize data in an entire

block without reliability issues.

Implementation. We implement bLock by leveraging a new feature

of 3D flash organization. We allocate per-block bAP flags in the SSL

of each flash block. As explained in Section 2.1, there is an SSL at the

top of each block, which is used to select the active block during flash

operations. Unlike 2D flash memory where normal transistors are used

for SSL transistors, 3D flash memory uses normal flash cells as SSL

transistors [85], which allows us to program (and erase) the SSL of a

104

block as a normal WL.8 Therefore, by sufficiently increasing the Vth

levels of SSL cells (i.e., programming the SSL just like programming

a normal WL), we can turn the SSL cells of a block into off switches,

which effectively inhibit all read requests to the block. Since there is

no way to erase only SSL cells using the standard flash interfaces,

bLock can efficiently sanitize an entire block.

Figure 42(a) shows the operational overview of our bLock im-

plementation. To disable a block (i.e., to set its bAP to disabled),

bLock shifts the Vth levels of SSL cells to higher than VREAD, which

effectively disconnects all the flash cells below such SSL cells from the

page buffer. Since no current can flow through BLs, the page buffer

data for all the flash pages in a block is fixed to ‘0’ irrespective of

the actual page data. As shown in Figure 42(b), we find that when

the center Vth level of an SSL exceeds 3V, a read operation to any of

the pages in the corresponding block fails due to the introduction of

enough bit errors beyond the correction capability of ECC.

Design Space Exploration. To implement bLock in practice, two

requirements should be satisfied. First, bLock should move the Vth

levels of SSL cells sufficiently so that all SSL cells are completely

turned off during a read operation. Second, before physically erasing

a flash block, SSL cells should reliably keep their high Vth levels during

the entire lifetime. Note that, in bLock, we do not need to consider

the interference between an SSL and other WLs in the same block

8Using a normal flash cell to implement an SSL transistor is inevitable in 3D
NAND flash memory because inserting a normal transistor in a vertically-stacked
3D flash organization is more difficult than inserting a flash cell.

105

WLk

SSL

WLk-1

CSL

…

…

…

…

Page Buffer …

… … …

E D
Vref

P
re

ch
a

rg
in

g

No current

0 0 0

(a) An operational overview.

0.5

1.5

2.5

3.5

4.5

1V 2V 3V 4V 5V

0K P/E 1K P/E

ECC Limit

N
o

r
m

a
li

z
e

d
 R

B
E

R

Center V
th

of SSL [V]

(b) RBER vs. center Vth of SSL.

Figure 42: bLock implementation.

because an SSL is already physically separated from other WLs in

the same block via a dummy WL (which is inserted between an SSL

and WLs) to prevent potential unintentional programming of an SSL

during a normal flash operation.

In our bLock implementation, we consider two design parameters

related to bAP flags: program voltage V bLock
prog and program latency

tbLock which are used for programming bAP flags (i.e., SSL cells). To

minimize latency, we use the one-shot program scheme for bLock. To

find a good combination of (V bLock
prog , tbLock), we start from an initial

design space Ψ × T where Ψ = {V b
1 , V b

2 , ..., V b
6 } (V b

i+1 − V b
i = 1.0V)

and T = {200µs, 300µs, 400µs}, as shown in Figure 43(a).

First, we evaluate if each combination can reliably program an

SSL so that the center Vth level of the SSL is maintained above 3V

with the one-shot programming technique. Based on our evaluation,

we exclude the candidate combinations in Region I (in Figure 43(a))

from further consideration because they cannot move the center Vth

106

(iii) (i)

(v) (ii)

(vi) (iv)200

300

Program voltage

P
ro

g
ra

m
 l

a
te

n
c

y
 [

u
s

]

Region I

400

(a) Initial design space Ψ × T .

(i) (ii)
(iii) (iv)
(v) (vi)

10 102 103 104

C
e

n
te

r
 V
t
h

o
f

S
S

L

Retention Time [days]

1 yr. 5 yr.5

4

3

2

1

(b) Impact of retention time on
center Vth of SSL.

Figure 43: Design space exploration results for bLock.

level of SSL transistors to higher than 3V with a desired latency.

Second, we evaluate how the Vth levels of SSL cells change under

a given retention time requirement. We test two retention-time re-

quirements at 30 ◦C after 1K P/E cycles, 1-year and 5- year retention

times. Figure 43(b) shows that the center Vth level of an SSL signifi-

cantly vary depending on different (V pLock
prog , tpLock) combinations. For

example, the center Vth level of an SSL programmed with combina-

tion (i), (Vb
6, 400µs), is predicted to be more than 4V even after 5

years, while the center Vth level of an SSL programmed with combi-

nation (vi), (Vb
5, 200µs), is predicted to be lower than 3V before 1

year. Thus, combination (vi) is not reliable (and neither are combina-

tions (iv) and (v)). Considering both tbLock and retention reliability,

we select combination (ii), (Vb
6, 300µs), as our final design parameters.

5.2.5 Implementation Overhead

Area Overhead. The proposed pLock implementation requires one

9-bit majority circuit per flash chip in addition to 27 flag cells per each

107

WL. Since we implement the flag cells using the unused flash cells in

the spare area of a WL, no space overhead exists for supporting the

pAP flags. For the 9-bit majority circuit, approximately 200 transis-

tors are needed [86]. Considering the size of the typical peripheral

circuit area in modern flash memory, the area impact of this majority

circuit is insignificant. The area overhead of the bridge transistors is

also negligible because only one bridge transistor is needed for each

data-out path. For example, only 8 bridge transistors are needed for

a typical ×8 I/O NAND flash chip.

Latency Overhead. In our implementation, tpLock and tbLock are

100µs and 300µs, respectively. Compared to the page-program latency

(tPROG) and block-erasure latency (tBERS), the latency overhead

of pLock and bLock is very small. For 3D TLC NAND flash memory,

tpLock is less than 14.3% of tPROG (700µs), and tbLock is less than

8.6% of tBERS (3.5ms) [14].

5.3 SecureSSD: System Integration

In order to take full advantage of pLock and bLock at the system

level, we design an evanesco-enabled flash-based storage system, called

SecureSSD, which efficiently supports data sanitization at low cost by

interacting with a host computing system. Although pLock and bLock

provide low-cost data sanitization at the flash-chip level, it would

unnecessarily degrade both SSD and system performance if they are

used for sanitizing security-insensitive data. To avoid this, SecureSSD

108

allows the user to specify the security requirements of written data

through an extended I/O interface, so that the evanesco-aware FTL

in SecureSSD uses pLock and bLock only when invalidating security-

sensitive data.

Figure 44 shows how SecureSSD manages written data accord-

ing to the data’s security requirements. To support data sanitiza-

tion for evanesco-unaware systems in a backward compatible manner,

SecureSSD, by default, treats all written data as security sensitive.

When an evanesco-aware application does not require high security

for a file (e.g., bar in Figure 44), it opens the file with a new access

mode flag O INSEC. Opening a file with O INSEC indicates that the

file data can have multiple versions in the SSD and deletion is not

SECURESSD

Evanesco–Aware FTL

NAND Array

Z
Y
S
X0x60

0x61
0x62
0x63

Block 18…
…

L2P Mapping

Table

Extended

Page Status Table

(S: Secured)

…
0x61
0x62

PPA
…
S
V

Status

… …

…
0x32
0x33

LPA
…

0x61
0x62

PPA

… …

Lock

Manager

pLock

bLock

GC done

Garbage

Collector

deletion or update

Operating

System

Application fd = open(“foo”, O_RDWR);
// open foo securely
fd_ver = open(“bar”, O_RDWR | O_INSEC);
// open bar insecurely

if (file->f_flags & O_INSEC)
bio->bi_opf =| REQ_OP_INSEC_WRITE;
// set a low security requirement

PG status

I
I

Figure 44: Operational overview of SecureSSD.

109

secure. For a write request to a file opened with the O INSEC flag, a

block I/O request to SecureSSD is flagged with a new operation flag

REQ OP INSEC WRITE so that SecureSSD is aware that the written data

is security insensitive.

To keep track of the security requirement of each page, the evanesco-

aware FTL in SecureSSD employs an extended page status table and

a lock manager. A page in SecureSSD can be in one of four states:

free, valid, invalid, or secured . For a default write (e.g., a write to LPA

0x32 of foo in Figure 44), the FTL updates the L2P mapping for the

requested LPA with a free PPA (e.g., 0x61), and sets the page status

to secured. In contrast, for a security-insensitive write (e.g., a write to

LPA 0x33 of bar), the FTL sets the page status of the corresponding

PPA (e.g., 0x62) to valid instead of secured.

When a PPA needs to be invalidated, e.g., due to a file up-

date/deletion from the host or a copy operation in the GC process

(1 in Figure 44), the lock manager first retrieves the status of the

PPA from the extended page status table (2). If the status of the

PPA is not secured, the FTL only updates the status to invalid (3) as

a regular evanesco-unaware FTL would do. If the status of the PPA

is secured, the lock manager immediately invokes a pLock or bLock

command depending on the status of the other pages in the same

block (4). For example, when sanitizing a single secured page, the

lock manager issues a pLock command. On the other hand, when 1)

all the remaining pages in a block need to be sanitized (e.g., during

GC or due to a trim request to contiguous secured pages) and 2) the

110

estimated latency for sanitizing the pages with pLock is longer than

tbLock, the lock manager issues a bLock command to minimize the

performance overhead due to data sanitization. After that, the FTL

updates the status of the securely-invalidated page(s) to invalid (5).

5.4 System-Level Evaluation

Methodology. We implement SecureSSD on FlashBench [76] with

an evanesco-enabled emulated flash model. Although FlashBench sup-

ports up to 512-GiB capacity, we limit its SSD capacity to 32 GiB for

fast evaluation. We configure SecureSSD with two channels, each of

which has four 3D TLC NAND flash chips. Each chip has 428 blocks

and each block has 576 16-KiB pages (i.e., 192 WLs). We set flash op-

eration timing parameters for tREAD, tPROG, and tBERS to 80µs,

700µs, and 3.5ms, respectively. Based on our design space exploration

results, we set tpLock and tbLock to 100µs and 300µs, respectively.

We use four different benchmark traces. Three traces, MailServer,

DBServer, and FileServer, are generated with the Filebench benchmark

tool [79]. One trace, Mobile, is collected from an Android smartphone

(Samsung Galaxy S2 [87]). Table 4 summarizes three main I/O char-

acteristics of the evaluated benchmarks: 1) read to write ratio, 2) write

pattern, and 3) write size. We use a custom trace replayer that sends

each write request to an SSD with its security requirements and aligns

the data boundary of each write request to multiples of 16 KiB (i.e.,

the physical page size).

111

Table 4: I/O characteristics of our four benchmarks.

Benchmark read:write File write pattern Write size
MailServer 1:1 create/append/delete e-mails 16–32 KiB
DBServer 1:10 overwrite data files and log files 16–256 KiB
FileServer 3:4 create/append/delete files 32–128 KiB

Mobile 1:50 create/delete pictures 0.5–8 MiB

We compare SecureSSD (secSSD) with two baseline SSDs, erSSD

and scrSSD, which exploit existing physical sanitization techniques

to support immediate data sanitization.9 As with secSSD, erSSD and

scrSSD manage write requests in a secure fashion, only if the requests

have a high security requirement. When a secured page needs to be

invalidated, erSSD erases the entire block that contains the secured

page10 while scrSSD performs scrubbing on the WL that contains the

secured page. When the target block or the target WL has other valid

pages, erSSD and scrSSD copy the valid pages to other free pages. In

scrSSD, we set the scrubbing latency to 100µs assuming that the one-

shot programming scheme is used to minimize performance overhead.

To understand the benefits of pLock and bLock, we also evaluate

secSSDnobLock which works in the same fashion as secSSD but without

bLock.

Evaluation Results. To evaluate the performance of SecureSSD, we

measure input/output operations per second (IOPS) performance and

9All three SSDs we evaluate guarantee that ∀t : Npage
invalid(f, t) = 0, for a file f

with a high security requirement.
10Since we are interested in comparing the I/O performance of erSSD and

secSSD, we assume that there is no reliability issue due to the open block problem
(see Section 5.2.4) in erSSD, i.e., erSSD can immediately erase a block without any
reliability issue.

112

N
o

r
m

a
li

z
e

d
 I

O
P

S

0.0

0.2

0.4

0.6

0.8

1.0

MailServer DBServer FileServer Mobile

erSSD scrSSD secSSD

Figure 45: IOPS of different SSDs (higher is better).

N
o

r
m

a
li

z
e

d
 W

A
F

0

1

2

3

4

5

MailServer DBServer FileServer Mobile

erSSD scrSSD secSSD

1
8
4
.9

2
8
5
.3

2
4
5
.4

3
2
0
.2

2.9

3.3

4.4

1.5

Figure 46: WAF of different SSDs (lower is better).

write amplification factor (WAF) values for each SSD. All values are

normalized to ones from an SSD with no data sanitization support.

Figure 45 compares IOPS values of different SSDs under each work-

load. SecSSD significantly outperforms erSSD and scrSSD under every

workload. erSSD performs poorly, achieving less than 4% of the IOPS

113

N
o

r
m

a
li

z
e

d
 I

O
P

S

0.8

0.9

1.0

MailServer DBServer FileServer Mobile

60% 70% 80% 90% 100%% of security-sensitive data:

Figure 47: Performance of SecureSSD under four different workloads.

level of the baseline SSD. Although scrSSD significantly outperforms

erSSD, it achieves only 34% of the performance of the baseline SSD.

In contrast, secSSD achieves 94.5% of the performance of the baseline

SSD.

The performance gap between secSSD versus erSSD / scrSSD is

mainly due to the large number of additional copy operations present

in erSSD and scrSSD. As shown in Figure 46, the WAF values of erSSD

and scrSSD are substantially higher, by up to 320× and 4.41× (251×

and 2.6× on average) over the baseline SSD, respectively. In contrast,

secSSD achieves almost equivalent WAF as the baseline SSD. Note

that the amplified writes in erSSD and scrSSD can greatly degrade

the SSD lifetime as well as the IOPS performance due to more frequent

GC invocations.

Even though both secSSDnobLock and secSSD can sanitize a page

114

without copying other valid pages stored in the same WL, secSSDnobLock

has lower performance than secSSD, in particular, under workloads

with large-size writes (as in FileServer and Mobile). This is because

the more pages are invalidated at the same time, the more oppor-

tunities for secSSD to sanitize an entire block by using bLock. We

compare the number of pLock operations performed in secSSD and

secSSDnobLock under each workload: the results show that the use of

bLock operations reduces the number of pLock operations by up to

57% (28% on average) in secSSD. As a result, secSSD further im-

proves the IOPS performance by up to 5.4% (3.1% on average) over

secSSDnobLock, as shown in Figure 45.

Finally, we measure the IOPS performance of secSSD under each

workload while varying the fraction of securely-managed data, as

shown in Figure 47. The fewer the secured pages, the higher the

performance secSSD could achieve by using pLock and bLock only

when invalidating security-sensitive data. When managing 60% of to-

tal written data in a secure fashion, the performance of secSSD is only

up to 6.2% (2.8% on average) lower than that of the baseline SSD.

Although selective sanitization has a higher performance impact un-

der write-intensive workloads, DBServer and Mobile, secSSD exhibits

the lowest performance in DBServer. This is because DBServer issues

a large number of small updates to securely managed files such that

secSSD has little opportunity to perform bLock and to exploit the

internal parallelism of the SSD for pLock operations.

115

Chapter 6

Conclusions

6.1 Summary

NAND flash-based storage systems have been widely adopted in

modern computing systems, owing to their superior properties com-

pared to HDDs and the continuous reduction of the cost-per-bit value

of NAND flash memory. However, due to the popularity of NAND

flash memory in emerging storage market areas (e.g., data-driven ap-

plications), NAND flash-based storage systems are necessary to satisfy

new requirements such as high security or better user experience. In

order to address these new challenges properly, we should explore new

optimization techniques based on revisiting existing flash solutions.

In this dissertation, we proposed several system-level techniques

that aim at resolving new emerging requirements without sacrificing

performance or lifetime. First, we presented RealWear, a new NAND

aging marker, that represents the wear status of NAND blocks very ac-

curately. Unlike the existing P/E cycle-based aging marker, RealWear

systematically exploits the underlying physics of the NAND cell aging

process in deriving a NAND flash wear model. Based on an extensive

real flash characterization study using recent 3D flash chips, 5 key

model parameters were selected and a novel flash wear model was de-

116

veloped using regression analysis. Our validation study showed that

RealWear can accurately classify NAND blocks based on their real

wear status. In order to demonstrate the practical benefit of RealWear

at the flash storage system level, we reported three case studies that

improve the lifetime and performance of flash storage systems. Our

experimental results show that a RealWear-aware FTL can enhance

the lifetime and the performance of a flash storage system by 63%

and 21%, respectively over a P/E cycle-based conventional FTL. Fur-

thermore, for the first time, we demonstrate that the worst-case flash

read latency can be bounded by using RealWear in deciding an opti-

mal read voltage level.

Second, we introduced a new suspend/resume technique, pSR,

which allows us to process a high-priority read request first with-

out a delay that caused by conflicts with other preceding flash op-

erations. Based on the accurate NAND error model, we revisit the

existing preemption command to avoid flash reliability degradation

by excessive suspend/resume operations. In order to take advantages

of pSR-enabled NAND devices at the storage level, we developed a

priority-aware FTL, paFTL, which employs a novel priority-aware sus-

pend/resume technique that comprehensively treats the read-first com-

mand preemption policy. Our experimental results using paFTL show

that the proposed priority-aware flash management scheme is effective

in differentiating read performance over tasks with different priorities.

Finally, we proposed evanesco, a new chip-level data sanitization

technique for modern flash-based storage systems. Evanesco supports

117

immediate per-page sanitization at low cost with two new flash com-

mands, pLock and bLock, that disable access to a page or a block, re-

spectively, using access control mechanisms implemented on the flash

chip. By leveraging spare cells in existing flash memory organization,

evanesco effectively makes sanitized data in a flash chip inaccessible,

with only a small resource overhead. Using state-of-the-art 3D NAND

flash chips, we validate that pLock and bLock can quickly disable a

target page and block without compromising reliability of stored data.

To fully exploit pLock and bLock, we design an evanesco-enabled flash

storage system, SecureSSD, which efficiently and securely manages

security-sensitive data by interacting with a host system using ex-

tended I/O interfaces. Our experimental results show that SecureSSD

can delete security-sensitive files immediately and irrecoverably while

providing a comparable performance to an SSD with no data saniti-

zation support.

6.2 Future Work

6.2.1 Prediction Model for Sudden NAND flash
Failure

Although we believe that RealWear can accurately represent the

normal NAND aging process, it cannot be used to predict sudden

NAND flash failures that are not related to the Tox layer. For exam-

ple, when some peripheral circuitry of a NAND flash chip suddenly

malfunctions, RealWear cannot be used to prepare for such a sud-

118

#
 o

f
se

ct
o

r
er

ro
rs

10

20

30

40

50

60

0

ECC limit

of P/E cycles [1,000]

erase fail program fail

25 bit

1 2 3 4 5 6 7

70

19 bit11 bit

Figure 48: Sudden failure of NAND blocks.

den failure in advance. As shown in Figure 48, some NAND blocks

suddenly become dead (i.e., no more store the data reliably) by pro-

gram or erase status fail. These failures occur regardless of the wear

of NAND flash memory and can spread to entire NAND blocks in a

flash chip. One of our immediate directions is to develop a predic-

tion model for such sudden failures. From our preliminary evaluation,

we verified that there exist meaningful fore-warnings for some sud-

den chip failures. When such a prediction model is combined with

RealWear, the reliability of a flash storage system is expected to be

significantly improved.

6.2.2 Extensions of Read Retry Mitigation

In our BoudedRead, the number of read retries (NumRetry) is

mitigated by pre-defined look-up table (ORT) containing the optimal

119

P
ro

b
a
b
ili
ty

D
e
n
si

ty

R1 R2 R3

Threshold
Voltage (Vth)

Raw bit errors

P1

(01)

P2

(10)

P3

(00)

ER

(11)

Original

After Wear-out

Ri: read reference voltage

Program disturb retention

Raw bit errors = a · f(wear) + b · g(retention) + c · h(read cycles)

R1’ = R1 +
a · f(wear)

Figure 49: Estimation of optimal read reference voltage.

read reference voltages. Although the effect of BoudedRead is evident,

it requires a great number of NAND characterization studies to de-

fine ORT. Moreover, flash storage systems should allocate a certain

amount of memory space to maintain ORT.

To further optimize the read retry mitigation technique, we be-

lieve that the optimal read reference voltage can be obtained by a

simple calculation based on accurate error prediction. Using a new

NAND aging marker (RealWear) and noisy factors such as retention

time or read cycles, the number of bit errors from a flash block can

be precisely estimated. For example, as shown in Figure 49, when bit

errors of block B is measured, we can calculate how many bit errors

are generated by each factors. If we know how many bit errors can be

reduced through one read retry (∆ Error), we can estimate how much

the read reference voltage needs to be shifted. For example, if the

120

number of bit errors caused by the wear of a flash block (i.e., program

disturb error) is 20 and δ Error is 4, a total of 5 read retries is needed.

Therefore, the new optimal R1 value (R1’) can be calculated by R1

+ 5 × δ(read level). (∆(read level)) is the amount of read reference

voltage that changes when one read retry is performed.)

6.2.3 Extensions of evanesco

Our bLock efficiently sanitizes the data in NAND flash memory

by disabling access to deleted data at block granularity, and access

to sanitized block can only recovered by block erasure. In order to

apply our sanitization technique to more various environments, we will

attempt to a new data sanitization technique that can disable access

to a flash block adaptively. By modifying the conventional NAND

architecture, we can design two types of bLock; One is recoverable

bLock, and the other is unrecoverable bLock.

As shown in Figure 51, there need two key changes to implement

the recoverable bLock. To set Vth of SSL transistors to an initial state,

we should add new NAND interfaces; One is for erasing only SSL

transistors, and the other is for programming only SSL transistors to

raise their Vth. Figures 50(a) and 51(b) shows how to control only SSL

transistors without affecting other WLs in a flash block for recoverable

bLock. On the other hand, for unrecoverable bLock, we can introduce

another new NAND interface to program both SSL and dummy WL

at the same time as shown in Figure 51. By exploiting these new

data sanitization techniques, we expect that a flash storage system

121

can protect its data more efficiently under various environments.

6.2.4 Extensions for Advanced Memory Tech-
nology

Based on both chip-level and system-level evaluations, we con-

clude that our techniques are an effective for modern flash memory

based SSDs with low overheads. We believe the basic ideas of our tech-

niques are applicable to other memory technologies such as advanced

3D NAND flash memory or new emerging memories (e.g., PCM, STT-

MRAM, or RRAM). However, depending on the electrical/physical

characteristics of each memory technologies, optimization techniques

should be modified to well-suit for the purpose. For 3D NAND flash

memory, as the number of vertical layers increases, evanesco should

be more carefully managed because successive programming flag cells

can cause exacerbate program disturbance in main data. In addition,

recent COP (Cell On Peri) technology, which can change the internal

organization of NAND flash-based storage system, demands a totally

different approach to optimize a storage system.

122

SSL

DMY0,1

WL0-63

GSL

t
1

t
2

t
3

Vpp

Verase

BL

(Substrate)

GND

Vshut_off

Vshut_off

Vshut_off

Vshut_off

0V

(a) The internal conditions for erasing SSL.

SSL

DMY0,1

WL0-63

GSL

t
1

t
2

t
3

Vpp

BL

(Substrate)

…

Vpgm1 Vpgm2 …

Vpgm,final (ISPP)

GND

GND

GND

GND

Vpph >> Vpgm,final

(b) The internal conditions for programming SSL.

Figure 50: Re-design of NAND architecture for recoverable bLock.
123

SSL

DMY1

WL0-63

& DMY0

GSL

t
1

t
2

t
3

Vpp

BL

(Substrate)

GND

GND

GND

Vpph >> Vpgm,ssl

Vpgm,ssl >> Vpgm,wl

Vpgm,ssl

Figure 51: Re-design of NAND architecture for unrecoverable bLock.

124

Bibliography

[1] J. Jang, H. Kim, W. Cho, H. Cho, J. Kim, S. Shim, Y. Jang,

J. Jeong, B. Son, D. Kim, K. Kim, J. Shim, J. Lim, K. Kim,

S. Yi, J. Lim, D. Chung, H. Moon, S. Hwang, J. Lee, Y. Son,

Y. Chung, Y. Lee, “Vertical cell array using TCAT (Terabit Cell

Array Transistor) technology for ultra high density NAND flash

memory,” in Proceedings of the IEEE Symposium on VLSI Tech-

nology (VLSI), 2009.

[2] S. Lee, J.-Y. Lee, I.-H. Park, J. Park, S.-W. Yun, M.-S. Kim,

J.-H. Lee, M. Kim, K. Lee, T. Kim, B. Cho, D. Cho, S. Yun,

J.-N. Im, H. Yim, K.-H. Kang, S. Jeon, S.-Jo, Y.-L. Ahn, S.-

M. Joe, S. Kim, D.-K. Woo, J. Park, H.-W. Park, Y. Kim, J. Park,

Y. Choi, M. Hirano, J.-D. Ihm, B. Jeong, S.-K. Lee, M. Kim,

H. Lee, S. Seo, H. Jeon, C.-H. Kim, H. Kim, J. Kim, Y. Yim,

H. Kim, D.-S. Byeon, H.-J. Yang, K.-T. Park, K.-H. Kyung, and

J.-H. Choi, “A 128Gb 2b/Cell NAND Flash Memory in 14nm

Technology with tPROG=640µs and 800MB/s I/O Rate,” in

Proceedings of the IEEE International Solid-State Circuits Con-

ference (ISSCC), 2016.

[3] N. Shibata et al., “A 1.33 Tb 4-bit/Cell 3D-flash memory on a

96-Word-Line-Layer technology,” IEEE International Solid-State

Circuits Conference (ISSCC), pp. 210–212, 2019.

125

[4] S. Lee et al., “A 1Tb 4b/cell 64-stacked-WL 3D NAND flash

memory with 12MB/s program throughput,” IEEE International

Solid-State Circuits Conference (ISSCC), pp. 340–342, 2018.

[5] AEC, “AEC-Q100 Qualification specifications from the Automo-

tive Electronics Council (AEC),”

http://www.aecouncil.com/AECDocuments.html.

[6] M. Kim, Y. Song, M. Jung, and J. Kim, “SARO: A State-Aware

Reliability Optimization Technique for High Density NAND

Flash Memory,” in Proceedings of the ACM Great Lakes Sym-

posium on VLSI (GLSVLSI), 2018.

[7] Enterprise Storage, “SSD Lifespan: How Long Will Your

SSD Work?,” https://www.enterprisestorageforum.com/storage-

hardware/ssd-lifespan.html, 2019.

[8] F. Roohparvar, “Single Level Cell Programming in a Multiple

Level Cell Non-Volatile Memory Device,” In Unite States Patent,

Number 7,366,013, April 2008.

[9] J. Maserjian and N. Zamani, “Behavior of the Si/SiO2 interface

observed by Fowler-Nordheim tunneling,” AIP Journal of Ap-

plied Physics, 1982.

[10] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read Disturb Er-

rors in MLC NAND Flash Memory: Characterization, Mitigation,

and Recovery,” in Proceedings of the 45th Annual IEEE/IFIP

126

International Conference on Dependable Systems and Networks

(DSN), 2015.

[11] K. Kanda, N. Shibata, T. Hisada, K. Isobe, M. Sato,

Y. Shimizu, T. Shimizu, T. Sugimoto, T. Kobayashi, N. Kana-

gawa, Y. Kajitani, T. Ogawa, K. Iwasa, M. Kojima, T. Suzuki,

Y. Suzuki, S. Sakai, T. Fujimura, Y. Utsunomiya, T. Hashimoto,

N. Kobayashi, Y. Matsumoto, S. Inoue, Y. Suzuki, Y. Honda,

Y. Kato, S. Zaitsu, H. Chibvongodze, M. Watanabe, H. Ding,

N. Ookuma, and R. Yamashita, “A 19 nm 112.8 mm2 64 Gb

Multi-Level Flash Memory With 400 Mbit/sec/pin 1.8 V Toggle

Mode Interface,” IEEE Journal of Solid-State Circuits, vol. 48,

no. 1, pp. 159–167, 2012.

[12] K. T. Park, S. Nam, D. Kim, P. Kwak, D. Lee, Y. Choi,

M. H. Choi, D. H. Kwak, D. H. Kim, M. S. Kim, H. W. Park,

S. W. Shim, K. M. Kang, S. W. Park, K. Lee, H. J. Yoon, K. Ko,

D. K. Shim, Y. L. Ahn, J. Ryu, D. Kim, K. Yun, J. Kwon, S. Shin,

D. S. Byeon, K. Choi, J. M. Han, K. H. Kyung, J. H. Choi, and

K. Kim, “Three-dimensional 128 Gb MLC vertical NAND flash

memory with 24-WL stacked layers and 50 MB/s high-speed pro-

gramming,” IEEE Journal of Solid-State Circuits, vol. 50, no. 1,

pp. 204–213, 2014.

[13] H. Nitta, T. Kamigaichi, F. Arai, T. Futatsuyama, M. Endo,

N. Nishihara, T. Murata, H. Takekida, T. Izumi, K. Uchida,

T. Maruyama, I. Kawabata, Y. Suyama, A. Sato, K. Ueno,

127

H.Takeshita, Y. Joko, S. Watanabe, Y. Liu, H. Meguro, A. Ka-

jita, Y. Ozawa, Y. Takeuchi, T. Hara, T. Watanabe, S. Sato,

H. Tomiie, Y. Kanemaru, R. Shoji, C. H. Lai, M. Nakamichi,

K. Owada, T. Ishigaki, G. Hemink, D. Dutta, Y. Dong, C. Chen,

G. Liang, M. Higashitani, J. Lutze, “Three bits per cell floating

gate NAND flash memory technology for 30nm and beyond,” in

Proceedings of the IEEE International Reliability Physics Sym-

posium (IRPS), 2014.

[14] W. Jeong, J. W. Im, D. H. Kim, S. W. Nam, D. K. Shim,

M. H. Choi, H. J. Kim, D. H. Kim, Y. S. Kim, H. W. Park,

D. H. Kwak, S. W. Park, S. M. Yoon, W. G. Hahn, J. H. Ryu,

S. W. Shim, K. T. Kang, J. D. Ihm, I. M. Kim, D. S. Lee, J. Cho,

M. S. Kim, J. H. Jang, S. W. Hwang, D. S. Byeon, H. J. Yang,

K. Park, K. H. Kyung, and J. H. Choi, “A 128 Gb 3b/cell V-

NAND flash memory with 1 Gb/s I/O rate,” IEEE Journal of

Solid-State Circuits, vol. 51, no. 1, pp. 204–212, 2015.

[15] K. Suh, B. Suh, Y. Lim, J. Kim, Y. Choi, Y. Koh, S. Lee, S. Kwon,

B. Choi, J. Yum, J. Choi, J. Kim, and H. Lim, “A 3.3 V 32 Mb

NAND flash memory with incremental step pulse programming

scheme,” IEEE Journal of Solid-State Circuits, vol. 30, no. 11,

pp. 1149–1156, 1995.

[16] Y. Cai, E. Haratsch, O. Mutlu, and K. Mai, “Error patterns in

MLC NAND flash memory: Measurement, characterization, and

128

analysis,” in Proceedings of the the Conference on Design, Au-

tomation and Test in Europe (DATE), 2012.

[17] Y. Cai, Y. Luo, E. Haratsch, K. Mai, O. Mutlu, “Data retention in

MLC NAND flash memory: Characterization, optimization, and

recovery,” in Proceedings of the IEEE 21st International Sym-

posium on High Performance Computer Architecture (HPCA),

2015.

[18] K.-T. Park, M. Kang, D. Kim, S.-W. Hwang, B. Y. Choi, Y.-

T. Lee, C. Kim, and K. Kim, “A Zeroing Cell-to-Cell Interfer-

ence Page Architecture with Temporary LSB Storing and Par-

allel MSB Program Scheme for MLC NAND Flash Memories,”

IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 919–928,

2008.

[19] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. Haratsch,

“Vulnerabilities in MLC NAND flash memory programming: Ex-

perimental analysis, exploits, and mitigation techniques,” in Pro-

ceedings of the IEEE 21st International Symposium on High Per-

formance Computer Architecture (HPCA), 2017.

[20] R. Micheloni, L. Crippa, and A. Marelli, Inside NAND Flash

Memories, Springer, 2010.

[21] Micron, “Micron 3D NAND flash memory,”

https://www.micron.com/-/media/client/global/documents/products

/product-flyer/3d-nand-flyer.pdf, 2016.

129

[22] M. Ishiduki, Y. Fukuzumi, R. Katsumata, M. Kito, M. Kido,

H. Tanaka, Y. Komori, Y. Nagata, T. Fujiwara, T. Maeda,

Y. Mikajiri, S. Oota, M. Honda, Y. Iwata, R. Kirisawa, H. Aochi,

and A. Nitayama, “Optimal device structure for pipe-shaped

BiCS flash memory for ultra high density storage device with ex-

cellent performance and reliability,” in Proceedings of the IEEE

International Electron Devices Meeting (IEDM), 2009

[23] Y. Park, J. Lee, S. Cho, G. Jin, and E. Jung, “Scaling and relia-

bility of NAND flash devices,” in Proceedings of the IEEE Sym-

posium on Reliability Physics (IRPS), 2014.

[24] E. Choi and S. Park, “Device considerations for high density and

highly reliable 3D NAND flash cell in near future,” in Proceedings

of the IEEE International Electron Devices Meeting (IEDM),

2012.

[25] A. Torsi, Y. Zhao, H. Liu, T. Tanzawa, A. Goda, P. Kalavade, and

K. Parat, “A program disturb model and channel leakage current

study for sub-20 nm NAND flash cells,” IEEE Transactions on

Electron Devices, vol. 58, no. 1, pp. 11–16, 2010.

[26] Y. Woo and J. Kim “Diversifying wear index for MLC NAND

flash memory to extend the lifetime of SSDs,” in Proceedings of

the International Conference on Embedded Software (EMSOFT),

2013.

130

[27] B. Peleato, H. Tabrizi, R. Agarwal, and J. Ferreira, “BER-based

wear leveling and bad block management for NAND flash,” in

Proceedings of the IEEE International Conference on Communi-

cations (ICC), 2015.

[28] S. Wang, F. Wu, C. Yang, Z. Zhou, C. Xie, and J. Wan,

“WAS: Wear Aware Superblock Management for Prolonging SSD

Lifetime,” in Proceedings of the Design Automation Conference

(DAC), 2019.

[29] M. Neal and J. Chen, “Reliability of flash nonvolatile memories,”

Oxide Reliability: A Summary of Silicon Oxide Wearout, Break-

down, and Reliability, pp. 103–134, 2002.

[30] A. Spinelli, C. Compagnoni, and A. Lacaita, “Reliability of

NAND flash memories: Planar cells and emerging issues in 3D

devices,” Computers, vol. 6, no. 2, pp. 16, 2017.

[31] Q. Li, M. Ye, Y. Cui, L. Shi, X. Li, and C. Xue, “Sentinel Cells En-

abled Fast Read for NAND Flash,” in Proceedings of the USENIX

Workshop on Hot Topics in Storage and File Systems (HotStor-

age), 2019.

[32] G. Wu and X. He, “Reducing SSD Read Latency via NAND Flash

Program and Erase Suspension,” in Proceedings of the USENIX

Conference on File and Storage Technologies (FAST), 2012.

[33] S. Kim, J. Bae, H. Jang, W. Jin, J. Gong, S. Lee, T. Ham,

and J. Lee, “Practical Erase Suspension for Modern Low-latency

131

SSDs,” in Proceedings of the USENIX Annual Technical Confer-

ence (ATC), 2019.

[34] S. Diesburg, C. Meyers, M. Stanovichi, M. Mitchell, J. Marshall,

J. Gould, and A. Wang, “TrueErase: Per-File Secure Deletion

for the Storage Data Path,” in Proceedings of the 28th Annual

Computer Security Applications Conference (ACSAC), 2012.

[35] K. Sun, J. Choi, and S. H. Noh, “Models and Design of an

Adaptive Hybrid Scheme for Secure Deletion of Data in Con-

sumer Electronics,” IEEE Transactions on Consumer Electronics

(TEC), vol. 54, no. 1, pp. 100–104, 2008.

[36] W. C. Wang, C. C. Ho, Y. H Chang, K. T. W. Kim, and P. H. Lin,

“Scrubbing-Aware Secure Deletion for 3-D NAND Flash,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits

and Systems (TCAD), vol. 37, no. 11, pp. 2790–2081, 2018.

[37] M. Y. Wei, L. M. Grupp, F. E. Spada, and S. Swanson, “Reliably

Erasing Data from Flash-Based Solid State Drives,” in Proceed-

ings of the USENIX Conference on File and Storage Technologies

(FAST), 2011.

[38] S. Jia, L.Xie, B. Chen, and P. Liu, “NFPS: Adding undetectable

secure deletion to flash translation layer,” in Proceedings of the

11th ACM on Asia Conference on Computer and Communica-

tions Security (ASIACCS), 2016.

132

[39] P. H. Lin, Y. M. Chang, Y. C. Li, C. C. Ho, and Y. H. Chang,

“Achieving Fast Sanitization with Zero Live Data Copy for MLC

Flash Memory,” in Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), 2018.

[40] D. Boneh and R. J. Lipton, “A Revocable Backup System,” in

Proceedings of the USENIX Security, 1996.

[41] J. Lee, J. Heo, Y. Cho, J. Hong, and S. Y. Shin, “Secure Dele-

tion for NAND Flash File System,” in Proceedings of the ACM

Symposium on Applied Computing (SAC), 2008.

[42] J. Lee, K. Ganesh, H. Lee, and Y. Kim “FeSSD: A Fast

Encrypted SSD Employing On-Chip Access-Control Memory,”

IEEE Computer Architecture Letters (CAL), vol. 16, no. 2, pp.

115–118, 2017.

[43] J. Reardon, S. Capkun, and D. Basin, “Data Node Encrypted File

System: Efficient Secure Deletion for Flash Memory,” in Proceed-

ings of the USENIX Security, 2012.

[44] J. Daemen and V. Rijmen, The design of Rijndael: AES-the ad-

vanced encryption standard, Springer, 2013.

[45] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,

W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum, and

W. E. Felten, “Lest We Remember: Cold Boot Attacks on En-

cryption Keys,” in Proceedings of the USENIX Security, 2008.

133

[46] T. Müller, T. Latzo, and F. C. Freiling, “Self-Encrypting Disks

Pose Self-Decrypting Risks: How to Break Hardware-Based Full

Disk Encryption,” Technical Report Friedrich-Alexander Univer-

sity of Erlangen-Nuremberg, 2012.

[47] C. Greider and E. Blackburn, “A telomeric sequence in the RNA

of Tetrahymena telomerase required for telomere repeat synthe-

sis,” Nature, vol. 16, no. 6205, pp. 331–337, 1989.

[48] R. Khamsi, “Twins grow apart as they age,”

https://www.nature.com/articles/news050704-3, 2005.

[49] S. Swapp, “Scanning Electro Microscopy (SEM),”

https://serc.carleton.edu/research education/geochemsheets/techniques

/SEM.html, 2017.

[50] A. Chou, K. Lai, K. Kumar, P. Chowdhury, and J. Lee, “Model-

ing of stress-induced leakage current in ultrathin oxides with the

trap-assisted tunneling mechanism,” Applied physics letters, vol.

70, no. 25, pp. 3407–3409, 1997.

[51] S. Kamohara, D. Park, and C. Hu “Deep-trap SILC (stress in-

duced leakage current) model for nominal and weak oxides,” in

Proceedings of the 36th IEEE International Reliability Physics

Symposium (IRPS), 1998.

[52] JEDEC, “JEDEC Solid State Technology Assn., Solid-State

Drive (SSD) Requirements and Endurance Test Method

[JESD218],” https://www.jedec.org, 2010.

134

[53] S. Arrhenius, “Über die Dissociationswärme und den Einfluss

der Temperatur auf den Dissociationsgrad der Elektrolyte,”

Zeitschrift für physikalische Chemie, vol. 4, pp. 96–116, 1889.

[54] Intel, “Intel SSD Data Center Family,”

https://www.intel.com/content/www/us/en/products/memory-

storage/solid-state-drives/data-center-ssds.html, 2019.

[55] Samsung, “Setting the standard in storage,”

https://www.samsung.com/semiconductor/ssd/, 2019.

[56] Y. Luo, S. Ghose, Y. Cai, E. Haratsch, O. Mutlu, “HeatWatch:

Improving 3D NAND flash memory device reliability by exploit-

ing self-recovery and temperature awareness,” in Proceedings of

the IEEE International Symposium on High Performance Com-

puter Architecture (HPCA), 2018.

[57] J. Cha, J. Kang, and S. Kang, “Data randomization scheme for

endurance enhancement and interference mitigation of multilevel

flash memory devices,” Etri Journal vol. 35, no. 1, pp. 166–169,

2013.

[58] J. Kattrunen, J. Kiihamaki, and S. Franssila, “Loading effects in

deep silicon etching,” in Proceedings of the International Society

of Optical Engineering (SPIE), 2000.

[59] M. Neal, H. P. Beljal, A. Fazio, Q. Meng, N. Righos, “Recovery ef-

fects in the distributed cycling of flash memories,” in Proceedings

135

of the IEEE International Reliability Physics Symposium (IRPS),

2006.

[60] S. Lee, T. Kim, K. Kim, and J. Kim, “Lifetime management

of flash-based SSDs using recovery-aware dynamic throttling,”

in Proceedings of the USENIX Conference on File and Storage

Technologies (FAST), 2012.

[61] Q. Wu, G. Dong, and T. Zhang, “Exploiting Heat-Accelerated

Flash Memory Wear-Out Recovery to Enable Self-Healing SSDs,”

in Proceedings of the USENIX Conference on Hot topics in Stor-

age and File systems (HotStorage), 2011.

[62] ONFI, “Open NAND Interface specification,”

http://www.onfi.org/specifications, 2020.

[63] S. Joe, J. Yi, S. Park, H. Shin, B. Park, Y. Park, and J. Lee,

“Threshold voltage fluctuation by random telegraph noise in

floating gate NAND flash memory string,” IEEE Transactions

on Electron Devices (TED), vol. 58, no. 1, pp. 67–73, 2011.

[64] C .Zuppa, “Error estimates for moving least square approxima-

tions,” Bulletin of the Brazilian Mathematical Society, vol. 34,

no. 2, pp. 231–249, 2003.

[65] S. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu,

and Arvind, “BlueDBM: An Appliance for Big Data Analytics,”

in Proceedings of the International Symposium on Computer Ar-

chitecture (ISCA), 2015.

136

[66] Filebench, http://filebench.sourceforge.net.

[67] Sysbench, http://github.com/akopytov/sysbench.

[68] D. Hong, M. Kim, J. Park, M. Jung, and J. Kim, “Improving SSD

Performance Using Adaptive Restricted-Copyback Operations’”

in Proceedings of the IEEE Non-Volatile Memory Systems and

Applications Symposium (NVMSA), 2019.

[69] F. Wu, J. Zhou, S. Wang, Y. Du, C. Yang, and C. Xie, “FastGC:

Accelerate Garbage Collection Via an Efficient Copyback-based

Data Migration in SSDs,” in Proceedings of the Design Automa-

tion Conference (DAC), 2018.

[70] M. Doi, T. Tokutomi, S. Hachiya, A. Kobayashi, S. Tanakamaru,

S. Ning, T. Iwasaki, and K. Takeuchi, “Quick-low-density par-

ity check and dynamic threshold voltage optimization in 1X nm

triple-level cell NAND flash memory with comprehensive anal-

ysis of endurance, retention-time, and temperature variation,”

Japanese Journal of Applied Physics (JJAP), vol. 55, no. 8, pp.

084201-1–084201-10, 2016.

[71] H. Maejima, K. Kanda, S. Fujimura, T. Takagiwa, S. Ozawa,

J. Sato, Y. Shindo, M. Sato, N. Kanagawa, and J. Musha, “A

512Gb 3b/Cell 3D flash memory on a 96-word-line-layer technol-

ogy,” in Proceedings of the IEEE International Solid-State Cir-

cuits Conference (ISSCC), 2018.

137

[72] D. Kang, W. Jeong, C. Kim, D. Kim, Y. Cho, K. Kang, J. Ryu,

K. Kang, S. Lee, W. Kim, H. Lee, J. Yu, N. Choi, D. Jang, J. Ihm,

D. Kim, Y. Min, P. Kwak, B. Jung, D. Lee, H. Kim, H. Yang,

D. Byeon, K. Park, K. Kyung, and J. Choi, “256Gb 3b/Cell V-

NAND Flash Memory with 48 Stacked WL Layers,” in Proceed-

ings of the IEEE International Solid-State Circuits Conference

(ISSCC), 2016.

[73] Micron, “Micron Announces 16 nm 128Gb MLC NAND,

SSD in 2014,” http://www.anandtech.com/show/7147/micron-

announces-16nm-128gb-mlc-nand-ssds-in-2014, 2013.

[74] G. Wu, “Performance and Reliability Study and Exploration of

NAND Flash-based Solid State Drives,” Virginia Commonwealth

University, 2013.

[75] S. S. Hahn, S. Kee, C. Ji, L. P. Chang, I. Yee, L. Shi, C. J. Xue,

and J. Kim, “Improving file system performance of mobile storage

systems using a decoupled defragmenter,” in Proceedings of the

USENIX Annual Technical Conference (ATC), 2017.

[76] S. Lee, J. Park, and J. Kim, “FlashBench: A workbench for a

rapid development of flash-based storage devices,” in Proceedings

of the 23rd IEEE International Symposium on Rapid System Pro-

totyping (RSP), 2012.

[77] R. Rivest, “The MD5 message-digest algorithm,”

https://tools.ietf.org/html/rfc1321, 1992.

138

[78] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and

L. Vivier, “The new ext4 filesystem: current status and future

plans,” in Proceedings of the Linux Symposium, 2007.

[79] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible

framework for file system benchmarking,” USENIX Login, vol.

41, no. 1, pp. 6–12, 2016.

[80] S. Aritome, NAND flash memory technologies, Springer, 2015.

[81] F. Courbon, S. Skorobogatov, and C. Woods, title=Reverse

engineering flash EEPROM memories using scanning electron

microscopy, in Proceedings of the International Conference on

Smart Card Research and Advanced Applications 2016.

[82] Tech insights, “Intel/Micron 64L 3D NAND Analysis,”

https://www.techinsights.com/blog/intelmicron-64l-3d-nand-

analysis, 2017.

[83] M. Kim J. Lee, S. Lee, J. Park, J. Kim, “Improving performance

and lifetime of large-page NAND storages using erase-free sub-

page programming,” in Proceedings of the Design Automation

Conference (DAC), 2017.

[84] C. M. Compagnoni, A. Ghetti, M. Ghidotti, A. S. Spinelli, and

A. Visconti, “Data retention and program/erase sensitivity to

the array background pattern in deca-nanometer NAND Flash

memories,” IEEE Transactions on Electron Devices (TED), vol.

57, no. 1, pp. 321–327, 2009.

139

[85] Samsung, “Samsung V-NAND technology: Yield more

capacity, performance, endurance and power efficiency,”

https://studylib.net/doc/8282074/samsung-v-nand-technology,

2014.

[86] Z. Gajda and L. Sekanina, “Reducing the number of transistors in

digital circuits using gate-level evolutionary design,” in Proceed-

ings of the 9th annual conference on Genetic and evolutionary

computation, 2007.

[87] Samsung Electronics, “Galaxy S2 Black,”

https://www.samsung.com/uk/smartphones/galaxy-s2/GT-

I9100LKAXEU/, 2011.

[88] K. Jeffay, D. Smith, A. Moorthy, and J. Anderson, “Proportional

Share Scheduling of Operating System Services for Real-Time

Applications,” in Proceedings of the IEEE Real-Time Systems

Symposium (RTSS), 1998.

[89] D. W. Lee, S. Cho, B. W. Kang, S. Park, B. Park, M. K. Cho,

K. Ahn, Y. S. Ye, and S. W. Park, “The operation algorithm for

improving the reliability of TLC (triple level cell) NAND flash

characteristics,” in Proceedings of the 2011 3rd IEEE Interna-

tional Memory Workshop (IMW), 2011.

[90] J. Lee, Y. Kim, G. M. Galen, S. Oral, F. Wang, and J. Kim, “A

semi-preemptive garbage collector for solid state drives,” in Pro-

140

ceedings of the IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), 2011.

[91] S. S. Hahn, S. Lee, and J. Kim, “SOS: Software-based out-of-

order scheduling for high-performance NAND flash-based SSDs,”

in Proceedings of the IEEE 29th Symposium on Mass Storage

Systems and Technologies (MSTT), 2013.

141

초 록

최근 몇 년 동안 낸드 플래시 기반 스토리지 시스템은 플래시 메모리이 가

지고 있는 여러 고유한 장점과 비트 당 비용 가치의 성공적인 감소로 인해 저장

장치시장에서폭발적으로성장하고있다.낸드플래시메모리가다양한새로운

데이터 중심 애플리케이션에 널리 채택됨에 따라 최신 스토리지 시스템은 높은

데이터 보안 또는 실시간 처리와 같은 새로운 요구 사항을 충족해야한다. 따라

서새로운요구사항을해결하기위해서는기존기법의최적화정도를뛰어넘을

수 있는 새로운 기법의 개발이 필요하다.

본 논문에서는 플래시 스토리지 시스템이 낸드 플래시 메모리의 성능과

안정성을손상시키지않으면서도높은데이터보안및실시간처리를지원할수

있는 다양한 최적화 기술을 제안한다. 우리의 기술은 실제 낸드 소자를 활용한

포괄적인 특성 연구의 결과를 기반으로 고안되었다. 플래시 스토리지 시스템

의 읽기 서비스 시간은 크게 두 가지 요인에 의해 변동되고 지연 될 수 있다.

하나는 최적의 읽기 기준 전압을 검색하기 위하여 반복적으로 읽기 작업을 수

행하는 읽기 재시도 동작이고 다른 하나는 읽기 작업과 이전에 수행중인 I/O

요청 간의 충돌이다. 또한 기존 데이터 삭제 기술은 저장된 데이터를 물리적

으로 파괴하기 때문에 성능이나 신뢰성의 열화를 피할 수 없다. 따라서 중요한

데이터를안정적으로보호하려면물리적으로데이터를변경하지않고도동등한

보안성을 보장할 수 있는 새로운 접근 방식이 필요하다.

본 논문에서는 낸드 소자에 대한 평가 결과를 바탕으로 스토리지 시장의

새로운 요구 사항을 충족시키는 최적화 기술을 제안한다.

첫째로, 낸드 블록의 마모 상태를 정확하게 나타내는 새로운 낸드 노화

지수를 기반으로 하는 실제 읽기 재시도 완화 기술을 개발하였다. 읽기 재시도

작업은낸드플래시메모리의마모와밀접한관련이있으므로개별낸드블록의

정확한 노화 특성을 아는 것은 읽기 재 시도를 최소화하기위한 필수 전제 조건

이다. 사전 평가를 통하여 우리는 기존의 P/E 사이클 기반 노화 지수(PeWear)

가 낸드 블록의 실제 노화 상태를 측정하기에 부적절함을 확인하였다. PeWear

142

의 한계를 극복하기 위해 실제 3D TLC 플래시 칩을 사용한 광범위한 특성

평가를 기반으로 새로운 낸드 노화 지수 RealWear를 제안하였다. 낸드 셀의

마모에 영향을 줄 수있는 여러 변수를 고려하여 RealWear는 런타임 동안 낸드

블록의 실제 마모 상태를 정확하게 나타낼 수 있다. RealWear 의 값을 바탕으

로 다양한 동작 조건을 고려한 최적의 읽기 기준 전압 테이블을 구성하고 이를

활용하기위하여 RealWear특정모듈을사용하는 RealWear-aware FTL, rFTL

을 구현하였다. 성능 열화를 유발하는 반복적인 검색 작업없이 최적의 읽기 기

준 전압을 직접 제공 할 수 있기 때문에 rFTL 은 읽기 지연 시간 변동을 크게

완화하여 최악의 시나리오에서도 읽기 지연 시간을 최대 2 번의 읽기 재시도

작업으로 제한 할 수 있다.

둘째로, 3D 낸드 플래시 메모리의 특성을 기반으로 우선 순위에 따라 sus-

pend/resume (일시 선점/재개) 동작을 지원하는 기법을 제안한다 (pSR). 기

존의 선점 기술과 달리 pSR 은 사전에 정의된 safe 지점에서만 선점 명령을

허용하여 일시 선점/재개 작업의 수를 제한하므로 과도한 선점 작업으로 인한

신뢰성 열화를 효과적으로 피할 수 있다. 정확한 낸드 오류 모델을 기반으로

pSR 은 부분적으로 읽기 작업이 진행중인 I/O 작업을 즉시 중단할 수 있도록

허용한다. pSR은플래시작업간의충돌을효율적으로제거하기때문에예측할

수없는긴지연없이우선순위가높은읽기요청을적시에제공할수있습니다.

마지막으로, 고 용량의 3D 낸드 플래시 메모리를 위해 새로운 데이터 삭

제 기술인 evanesco 를 제안한다. 저장된 데이터를 물리적으로 파괴하는 기존

기술과 달리 evanesco 는 저장된 데이터에 대한 접근을 차단함으로써 저장된

데이터의보안을보장한다.플래시메모리칩에서제공되는여분의플래시셀을

활용하여 evanesco 는 페이지 및 블록 단위로 삭제된 (플래시 칩에는 남아있는)

데이터에 대한 접근을 비활성화하는 두 개의 새로운 플래시 명령 (pLock 및

bLock)을 효율적으로 지원한다. 잠긴 페이지 (또는 블록)는 물리적으로 데이터

가지워진후에만잠금을해제할수있으므로 evanesco는다양한위협모델에

대해서도 강력한 보안을 보장한다. 이 기법의 효과를 평가하기 위해 evanesco

를 지원하는 에뮬레이트 플래시 스토리지 시스템인 SecureSSD 를 구현하였다.

143

실험 결과를 바탕으로 SecureSSD 가 작은 성능 오버 헤드와 신뢰성 저하없이

데이터 삭제를 효과적으로 지원할 수 있음을 확인하였다.

본 논문에서 제안한 기법들은 저장장치 프로토타입 및 공개 낸드 플래

시 저장장치 개발/평가 환경에 구현되었으며, 실제 응용 프로그램에서 수집한

다양한 벤치 마크 도구 및 I/O 트레이스들을(traces) 사용하여 그 유용성을 검

증하였다. 실험 결과에 따르면 제안된 기술을 통해 플래시 스토리지 시스템을

적시에 관리하고 악의적 인 공격으로부터 민감한 데이터를 안전하게 보호할

수 있음을 확인하였다. 또한, 당사의 기술은 개별 낸드 블록의 정확한 상태를

완전히 활용하여 성능과 수명을 모두 향상시킬 수 있었다.

키워드: 낸드 플래시 메모리, 플래시 변환 계층, 낸드 플래시 기반 저장장치,

내장형 시스템, 데이타 보안, 실시간성, 성능 최적화, 수명 최적화

학번: 2015-31049

144

감사의 글

지난 십여년 동안의 치열했던 회사 생활을 잠시 뒤로하고 늦은 나이에

뒤늦게 다시 학교로 돌아온지 벌써 5년의 시간이 흘렀습니다. 학교에서 보낸

시간들은 제 인생의 다른 어떤 기간과도 비교할 수 없을 만큼 소중한 시간이었

고, 이곳에서의 경험들은 앞으로의 제 인생에 큰 힘이 될 것으로 생각합니다.

돌이켜보면 포기하고 싶으만큼 힘들 때도 많았지만 그럴때마다 항상 따뜻하게

격려해 주시고 도와 주셨던 고만운 분들 덕분에 지금의 좋은 성과를 얻을 수

있게 된 것 같습니다.

제 박사학위논문이 논문이 완성되기까지 정말 많은 분들의 도움이 있었습

니다. 이 지면을 빌어 그분들께 감사의 인사를 드리고자 합니다.

먼저 지도교수님이신 김지홍 교수님께 진심으로 감사의 말씀을 드립니다.

교수님의 지도 하에 박사과정을 할 수 있었던 것은 제 인생에서 정말 큰 행운이

었습니다.시스템에대한지식이일천한저를제자로받아주시고스스로연구를

진행하고 그 결과를 논문으로 작성하여 발표까지 할 수 있는 한 명의 연구자가

될 수 있도록 저를 지켜봐주시고 지도해 주신 것 감사드립니다. 돌이켜보면 교

수님께전공지식뿐만아니라인간과삶을대하는진정한자세도함께배운것

같습니다. 앞으로도 소중한 가르침 잊지 않고 마음속 깊이 간직하며 삶 속에서

실천할 수 있도록 노력하겠습니다.

또한 부족한 저의 논문을 심사해주신 유승주 교수님, 이재욱 교수님, 김

진수 교수님, 그리고 이성진 교수님께도 감사의 말을 드리고 싶습니다. 바쁘신

와중에도 귀중한 시간을 내어 논문 자격 심사부터 최종 학위 심사에 이르기까

지 아낌없이 조언해주시고 지도해 주신 것이 저의 학위 논문 완성에 큰 힘이

되었습니다.

제가 학업을 시작하고 이어갈 수 있도록 도와 주신 김기남 사장님, 최정혁

부사장님,이성수전무님,최기환상무님,이진엽상무님,그리고송기환상무님

께도감사드립니다.박사학위진학이라는좋은기회를주시고다른어려움없이

학업에 전년할 수 있도록 전폭적으로 지원해주셔서 마음 깊이 감사드립니다.

제가 보고 배운 것들을 바탕으로 복귀하여 회사에 도움이 될 수 있도록 노력하

겠습니다.

제가 학교 생활에 잘 적응하고 무사히 학업을 마칠 수 있었던 데에는 연구

실의 여러 동료들의 도움이 컸습니다. 박지성 박사, 김태진 박사, 한상욱 박사,

그리고 저와 같이 학술연수를 하였던 송영선 책임, 심영섭 수석, 홍두원 수석에

게많은도움을받았습니다.함께연구하면서도움을준이재훈,유장석,한승욱,

천명준, 신슬기, 조유현, 김윤아, 조건희, 이두솔, 정일보, 이재용, 이두솔, 신재

민, 심준석, 이상구, 한보경에게도 고맙다는 말을 전하고 싶습니다. 여러분들의

앞길에 항상 행운이 함께 하길 기원하며, 꼭 인생의 목표를 이루길 바랍니다.

제 인생의 사표이신 연세대학교 윤일구 교수님. 항상 존경하고 사랑합니

다. 기쁜일, 힘든일 함께했던 반도체공학 연구실의 동료 및 후배 여러분들에게

도 감사의 말을 전합니다. 제 인생의 행운으로 다가온 소중한 친구들. 대학생때

만나 지금껏 함께한 성환이, 화경이, 신이, 장혁이, 30년 지기 원숙이, 사회에

서 만났지만 가족과도 같은 미선이, 승엽이, 혜정이, 영현이와 은명이에게도

지면을 빌려 고마움을 표하고 싶습니다.

제가 학업을 마칠때까지 따뜻한 관심과 기대를 가지고 기다려주신 사랑하

는 가족들과 지인들에게도 감사드립니다. 아들을 항상 자랑스러워하시고 묵묵

히 지켜봐 주시는 아버님, 어머님. 두 분께 받은 사랑을 조금이라도 보답할 수

있도록 언제나 최선을 다하겠습니다. 감사합니다. 그리고 사랑합니다. 그리고

제가 마땅히 해야했지만 학업을 핑계로 하지 못했던 일들을 대신 도와주셨고,

역시 저를 아들 이상으로 자랑스러워 하셨던 장인어른, 장모님께도 감사드립니

다. 회사에 있을 때나 학교에 있을 때나 늘 바빠서 많은 시간을 같이 보내주지

못하는 빵점짜리 아빠를 좋아해주는 세상에서 가장 사랑스러운 딸 서연이에게

도 미안하고 고맙다는 말을 꼭 하고 싶습니다. 못난 오빠를 항상 응원해주는

동생 은경이와 그 가족들, 그리고 친 동생같은 처제, 처남들에게도 감사의 마음

을 전하고 싶습니다. 마지막으로 어린 나이에 부족한 저를 만나 오랜 시간동안

항상 밝은 모습으로 저를 지지해주었고, 제가 여기까지 오는데 가장 큰 도움

을 준 주영이에게 제가 드릴 수 있는 가장 큰 감사와 사랑의 마음을 전합니다.

감사합니다.

2020년 8월

김 명 석

	Contents
	I. Introduction
	1.1 Motivation
	1.2 Dissertation Goals
	1.3 Contributions
	1.4 Dissertation Structure

	II. Background
	2.1 NAND Flash Organization
	2.2 Flash Operation
	2.3 Multi-level Cell Flash Memory
	2.4 3D NAND Flash Memory
	2.5 Wear Mechanism of Flash Memory
	2.6 Impact of NAND Cell Wear Out
	2.6.1 Impact on NAND Bit Errors
	2.6.2 Impact on the Read Latency

	2.7 NAND Flash-Based Storage Systems
	2.8 Related Work
	2.8.1 NAND Aging Markers
	2.8.2 Preemption Command
	2.8.3 Data Sanitization

	III. Read Retry Mitigation Using a New NAND
	Marker
	3.1 Motivation: Inadequacy of P/E-cycle based aging markers
	3.1.1 Evaluation Methodology
	3.1.2 Evaluation Results
	3.1.3 Root Causes of Inadequacy in PeWear
	3.1.4 Extended PeWear Markers

	3.2 New NAND Aging Marker: RealWear
	3.2.1 Variable Selection
	3.2.2 Building Model
	3.2.3 Model Calibration

	3.3 Validation of RealWear
	3.3.1 Bad Block Classification
	3.3.2 Per-Sector Error Variations
	3.3.3 Self-Recovery Effect

	3.4 BoudedRead: Read Retry Mitigation
	3.4.1 Optimal Read Reference Voltages Table (ORT)
	3.4.2 Device-level Evaluation of BoudedRead
	3.4.3 System-level Evaluation Results
	3.4.4 Case Study 1: Lifetime Improvement
	3.4.5 Case Study 2: GC Overhead Reduction

	IV. Priority-Aware Suspend/Resume Technique
	4.1 Limitation of the Existing Preemption Techniques
	4.2 Priority-Aware Preemption: pSR
	4.2.1 Read-Erase Conflict: rCe
	4.2.2 Read-Program Conflict: rCw
	4.2.3 Read-Read Conflict: rCr

	4.3 Evaluation Results

	V. Lock Based Data Sanitization Technique
	5.1 Motivation
	5.1.1 Data Versioning Problem
	5.1.2 Reprogram-Based Data Sanitization

	5.2 Evanesco: Lock-Based Sanitization
	5.2.1 Threat Model
	5.2.2 Approach Overview
	5.2.3 PLock: Page-Level Data Sanitization
	5.2.4 BLock: Block-Level Data Sanitization
	5.2.5 Implementation Overhead

	5.3 SecureSSD: System Integration
	5.4 System-Level Evaluation

	VI. Conclusions
	6.1 Summary
	6.2 Future Work
	6.2.1 Prediction Model for Sudden NAND flash Failure
	6.2.2 Extensions of Read Retry Mitigation
	6.2.3 Extensions of evanesco
	6.2.4 Extensions for Advanced Memory Technology

	Bibliography

<startpage>16
Contents
I. Introduction 1
 1.1 Motivation 1
 1.2 Dissertation Goals 3
 1.3 Contributions 6
 1.4 Dissertation Structure 8
II. Background 11
 2.1 NAND Flash Organization 11
 2.2 Flash Operation 13
 2.3 Multi-level Cell Flash Memory 15
 2.4 3D NAND Flash Memory 17
 2.5 Wear Mechanism of Flash Memory 18
 2.6 Impact of NAND Cell Wear Out 20
 2.6.1 Impact on NAND Bit Errors 20
 2.6.2 Impact on the Read Latency 22
 2.7 NAND Flash-Based Storage Systems 23
 2.8 Related Work 26
 2.8.1 NAND Aging Markers 26
 2.8.2 Preemption Command 28
 2.8.3 Data Sanitization 29
III. Read Retry Mitigation Using a New NAND Aging
Marker 31
 3.1 Motivation: Inadequacy of P/E-cycle based aging markers 32
 3.1.1 Evaluation Methodology 33
 3.1.2 Evaluation Results 35
 3.1.3 Root Causes of Inadequacy in PeWear 38
 3.1.4 Extended PeWear Markers 41
 3.2 New NAND Aging Marker: RealWear 42
 3.2.1 Variable Selection 43
 3.2.2 Building Model 48
 3.2.3 Model Calibration 49
 3.3 Validation of RealWear 51
 3.3.1 Bad Block Classification 51
 3.3.2 Per-Sector Error Variations 54
 3.3.3 Self-Recovery Effect 55
 3.4 BoudedRead: Read Retry Mitigation 56
 3.4.1 Optimal Read Reference Voltages Table (ORT) 57
 3.4.2 Device-level Evaluation of BoudedRead 60
 3.4.3 System-level Evaluation Results 61
 3.4.4 Case Study 1: Lifetime Improvement 65
 3.4.5 Case Study 2: GC Overhead Reduction 66
IV. Priority-Aware Suspend/Resume Technique 70
 4.1 Limitation of the Existing Preemption Techniques 72
 4.2 Priority-Aware Preemption: pSR 76
 4.2.1 Read-Erase Conflict: rCe 76
 4.2.2 Read-Program Conflict: rCw 77
 4.2.3 Read-Read Conflict: rCr 79
 4.3 Evaluation Results 80
V. Lock Based Data Sanitization Technique 83
 5.1 Motivation 83
 5.1.1 Data Versioning Problem 83
 5.1.2 Reprogram-Based Data Sanitization 89
 5.2 Evanesco: Lock-Based Sanitization 93
 5.2.1 Threat Model 93
 5.2.2 Approach Overview 95
 5.2.3 PLock: Page-Level Data Sanitization 97
 5.2.4 BLock: Block-Level Data Sanitization 103
 5.2.5 Implementation Overhead 107
 5.3 SecureSSD: System Integration 108
 5.4 System-Level Evaluation 111
VI. Conclusions 116
 6.1 Summary 116
 6.2 Future Work 118
 6.2.1 Prediction Model for Sudden NAND flash Failure 118
 6.2.2 Extensions of Read Retry Mitigation 119
 6.2.3 Extensions of evanesco 121
 6.2.4 Extensions for Advanced Memory Technology 122
Bibliography 125
</body>

