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Abstract

Conditionally Optimal Parallelization

for Global FP on Multi-core Systems

Park Daechul

Department of Computer Science and Engineering

The Graduate School

Seoul National University

Throughout the last decade, the importance of parallel computing has risen greatly

to match the ever-increasing computational demand. Frameworks such as OpenMP

and OpenCL allow easy parallelization of computing tasks into desirable number

of threads, opening up a chance to greatly utilize the parallel computing resources.

We call this “parallelization freedom”. However, this does not come for free, as par-

allelization overhead increase with parallelization option (i.e. the number of thread

each task is parallelized). Thus parallelization option must be carefully decided to

better utilize a given computing resource. This paper addresses the problem of as-

signing parallelization option to each task for global FP scheduler. For this, we extend

the approaches made by Cho, which is limited to the global EDF scheduler case. We

prove that a conditionally optimal parallelization assignment of parallelization option

also exists for the global FP case. Through extensive simulations and autonomous

driving module task sets, we show a significant improvement of schedulability.
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1 Introduction

Today, as computational demand continuously grows, the importance of parallel com-

puting has risen greatly. This trend is also relevant in the real-time community, as

real-time safe-critical tasks are also growing in its complexity and size. Using a par-

allelization framework such as OpenMP [3] and OpenCL [20], we can parallelize

such tasks, each into multiple threads. This is called “parallelization freedom.” Such

frameworks allow easy parallelization of computing tasks. However, there is no such

thing as a free lunch. The parallelization overhead increases with the parallelization

option (i.e., the number of threads each task is parallelized) [1]. Therefore, the par-

allelization option must be decided carefully to utilize a given computing resource

better.

This problem has recently drawn attention in the real-time community [13], and

several methods have been proposed for Fluid scheduling [12] [8] and for global

EDF [4]. However, both scheduling method is not practical, as both scheduling meth-

ods accompanies a large context switch and migration overhead. Global FP [2], on

the other hand, does not suffer from such drawbacks and thus is widely accepted and

used throughout the industry. However, the problem of assigning the parallelization

option has not yet been discussed for the global FP case. For this, this paper proposes

a method to assign an optimal parallelization option for the global FP scheduler.

To validate the assigned parallelization option for each task, we need a schedula-

bility analysis. For this, we use BCL [6], a sufficient, polynomial time schedulability

analysis for global EDF and global FP [5], and one of the foundational work on

interference-based schedulability analysis domain. BCL checks whether each task
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could complete its execution before the deadline, even maximally interfered by other

tasks [19].

In [9], Cho et al. observed that when an assignment of parallelization option is an-

alyzed through BCL, the following two properties emerge: 1) Increase of paralleliza-

tion option of a task acquire greater “tolerance” (i.e. greater room for tolerating inter-

ference). 2) However, at the same time, the task may inflict greater “interference” on

other tasks. Cho et al. proves both properties monotonically increase with paralleliza-

tion option, and based on that proposes an optimal parallelization option assignment

algorithm: 1) All tasks start at no-parallelization, 2) Parallelization option of each

task is increased when its “tolerance” is smaller than its experienced “interference,”

3) iterate overall tasks, until all tasks can tolerate the received interference (schedu-

lable), or cannot while reaching maximum possible option (unschedulable).

In this paper we prove that the same monotonic increasing property of both

“interference” and “tolerance” regarding to the parallelization option hold for the

global FP case [16]. We trade-off the two properties to derive an optimal paralleliza-

tion option assignment for global FP. The effectiveness of the proposed algorithm is

validated through extensive simulation, and we observed a significant improvement

of schedulability.

The rest of this paper is organized as follows. Section II formally defines our

problem of parallelization option assignment for global FP scheduling. In Section

III we extend the BCL schedulability analysis for global FP scheduler, and for tasks

with parallelization. In Section IV, we introduce the two properties of parallelization,

i.e. tolerance and interference, and identify a trade-off relation between the two. In

section V, the properties of parallelization is used to derive an optimal assignment
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Figure 1: Task with parallelization freedom and it’s execution table ek.

algorithm. Section VI reports our experimental results. Finally, Section VII states our

conclusions.

2 Problem Description

A system with m homogeneous CPU cores and n sporadic tasks is considered. Those

tasks are scheduled by global FP, and each tasks, where the k-th task denoted as τk,

is assigned a priority πk for scheduling. Without loss of generality, we assume tasks

are sorted by their priority in the descending order, i.e. i ≤ j ⇔ πi ≥ πj .[14] The

tasks are contained in a task set Γ which is represented as follows:

Γ = {τk | 1 ≤ k ≤ n}.

Each tasks are expressed by the following four parameters:

τk = (πk, Tk, Dk, ek),

where πk is the previously mentioned assigned priority, Tk is the minimum inter-
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release time, Dk is the relative deadline, and ek is the thread execution time table

according to the parallelization option Ok as shown in Figure 1. Ok can have a value

ranging from 1 (no-parallelization) toOmax = m (number of CPU) threads. When τk

is parallelized into Ok number of threads, they share the same priority [11], release

times and deadlines. Thus we call those Ok threads as sibling threads, and denote

such a parallelized task by τk(Ok):

τk(Ok) = {τ1
k (Ok), τ

2
k (Ok), · · ·, τOkk (Ok)},

where τ lk(Ok)(1 ≤ l ≤ Ok) is the l-th sibling thread. The execution time of

the l-th sibling thread elk(Ok) can be obtained from thread execution table (Figure

1). Without loss of generality, we assume that the execution time of sibling threads

are sorted in the descending order, i.e. i ≤ j ⇔ eik(Ok) ≥ ejk(Ok). Therefore for

any given sibling threads, the first thread among them e1
k(Ok) has the largest execu-

tion time, i.e. max
τ lk(Ok)∈τk(Ok)

elk(Ok) = e1
k(Ok) := emaxk (Ok). The sum of all thread

execution time of sibling threads of parallelization option Ok, i.e.,
∑Ok

l=1 e
l
k(Ok), is

denoted by Ck(Ok), and will be referred to as the total computation time of τk(Ok).

As the parallelization option increasesOk → O′k individual thread execution time

decreases, i.e. elk(Ok) ≥ elk(O′k), but the total computation time increases Ck(Ok) ≥

Ck(O
′
k). Which is due to the parallelization overhead. We define the parallelization

overhead α(Ok → Ok + 1) as the total computation amount increase, i.e., Ck(Ok +

1)− Ck(Ok), for unit reduction of the first thread’s execution time, that is,

α(Ok → Ok + 1) =
Ck(Ok + 1)− Ck(Ok)
e1
k(Ok)− e1

k(Ok + 1)
. (1)
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The tasks are scheduled on m homogeneous CPU cores using global FP scheduler,

with the priority that is statically assigned to each task and unchanged throughout

execution. Similar to other researches on global FP scheduler[6], we assume that all

task can be preempted and migrated at any time with negligible scheduling cost.

Problem Definition: For a given task set Γ, our problem is to find a paralleliza-

tion option Ok for each task τk ∈ Γ, that makes all the sibling threads of all the tasks

in Γ can be scheduled meeting their deadlines using global FP on m homogeneous

CPU cores.

3 Global FP Extension of BCL Schedulability Analysis for

Tasks with Parallelization Freedom

A schedulability analysis is needed to validate the assigned parallelization option

[10] [18]. Many works on schedulability analysis for global FP exists[2], targeted for

sporadic tasks scheduled on multi-core systems. Some of them are exact, meaning

a true determination of schedulability can be done in sacrifice of the computational

time. They require exponential time and thus are ruled out of consideration for this

paper. Thus we will have to use the sufficient variants, that operate in polynomial

time.

However, to the best of our knowledge, currently there are no sufficient schedula-

bility analysis that targets global FP and tasks with parallelization freedom. For this,

we extended a sufficient schedulability analysis, i.e. BCL [6], which is one of the

foundation work on the sufficient schedulability domain.

In this section we first overview the BCL schedulability analysis targeted for
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Figure 2: Interference of τk within the interval [rkj , rkj +Dk].

global FP on multi-core systems. Then we extend the analysis to accommodate tasks

with parallelization freedom.

3.1 Overview of BCL Schedulability Analysis for Global FP

Developed by Bertogna [6] et al., BCL schedulability analysis is a sufficient analysis

targeted for sporadic tasks [5] on multicore systems, scheduled with global FP. The

analysis uses the following definitions: (See Figure 2)

1) Iτk(a, b): Accumulated length of all intervals in which τk is ready to execute

(released), but cannot execute due to higher priority tasks occupying all the

CPU cores.

2) Iτi,τk(a, b): Accumulated length of all intervals in which τk is ready to execute

(released), but cannot execute due to τi’s jobs occupying the CPU cores. Note
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Figure 3: Worst-case workload of τi within the interval [rjk, r
j
k +Dk].

that the interval Iτi,τk(a, b) is always a subset of the interval Iτk(a, b).

Summing up Iτi,τk(a, b) for all the tasks that has higher priority than τk, (τi ∈ Γ, πi ≥

πk),and dividing with the number of CPU cores m yields Iτk(a, b):

Iτk(a, b) =
1

m

∑
i≤k

Iτi,τk(a, b). (2)

For any job of τ jk is to be executed, it must complete ek amount of execution

within Dk time unit after its release(rjk). Therefore for the job to successfully com-

plete its execution, the maximal amount of interference it can suffer is Dk − ek. A

schedulability condition can be derived by combining this observation with the above

equation (2):

Iτk(rjk, r
j
k +Dk) =

1

m

∑
i≤k

Iτi,τk(rjk, r
j
k +Dk) ≤ Dk − ek. (3)

Although the above schedulability condition is exact, it is not practically useful,

because for a sporadic task system, all tasks may release at arbitrary time points.

This requires checking exponentially many possible values of Iτi,τk(rjk, r
j
k +Dk). To
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overcome this, BCL upper-bounds the interference Iτi,τk(rjk, r
j
k + Dk) to the total

worst-case workload of the task within the same interval. In other words, the inter-

ference of τi to τk cannot exceed τi’s total execution. Figure 3 shows the maximal

workload of τi that can squeeze inside an interval of length Dk. It is when the jobs of

τi is aligned and executed with the following conditions

1) τi’s first job’s execution begins exactly at the start of the interval, and finishes

executing at its absolute deadline. This job is called a carry-in job.

2) Subsequent jobs of τi is executed most frequently with its minimum inter-

release time Tk. These jobs are called body jobs.

3) Last job of τi is also released most frequently, and executes immediately. This

job is called a carry-out job.

Summing up the above three cases, we can calculate the worst-case workload of

τi within τk, i.e., Wτi,τk as follows:

Wτi,τk = min(ei, Dk) + b L
Ti
cei + min(ei, L mod Ti), (4)

where L = Dk−ei−(Ti−Di) is the remaining interval ofDk when the carry-in

job is removed (See Figure 3). In the above equation, the first term min a(ei, Dk)

is the workload from the carry-in job, the second term b LTi cei is from the body jobs,

and the last term min(ei, L mod Ti) is from the carry-out job.

Bertogna [5], et al. observes that when τk is schedulable, the maximum interfer-

ence that each interfering task τi gives to τk cannot exceed Dk − ek. Therefore when

Wτi,τk ≥ Dk−ek, the excess workload can be thought to have ran in parallel with τk,
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thus we should not consider the excess as interference. In other words, we can limit

the contribution of each Wτi,τk to Dk − ek. We can call this “bounded workload”

from τi to τk, i.e., W τi,τk :

W τi,τk = min(Wτi,τk , Dk − ek) (5)

Worst-case workload of τi within the interval [rjk, r
j
k +Dk). Now, using the con-

cept of “bounded workload”, we can extend the previous exact schedulability condi-

tion, i.e. Eq. (3), to derive a sufficient schedulability condition for τk:

Iτk(rjk, r
j
k +Dk) =

1

m

∑
i≤k

Iτi,τk(rjk, r
j
k +Dk) ≤

1

m

∑
i≤k

W τi,τk ≤ Dk − ek. (6)

Finally, the schedulability condition Eq. (6) can be extended to the entire task set

Γ, by checking whether Eq. (6) is satisfied for ∀τk ∈ Γ. From now on, we will use

the term “schedulable” meaning that the task or the task set is “BCL schedulable”

according to Eq. (6).

3.2 Extension of BCL Schedulability Analysis for Tasks with Paralleliza-

tion Freedom

The schedulability analysis derived in the previous section Eq. (6) is targeted for sin-

gle threaded tasks, therefore it cannot be applied directly to our model which involves

parallelized tasks. Therefore in this section we present an extension of the analysis

for tasks with parallelization freedom.

Recall from Chapter 2, a task with parallelization option Ok, i.e. τk(Ok) creates

a set of Ok threads, i.e. τk(Ok) = {τ1
k (Ok), τ

2
k (Ok), · · ·, τOkk (Ok)}, which shares the
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same priority πk, deadline Dk, minimum inter-release time Tk, but different execu-

tion time, i.e. {e1
k(Ok), e

2
k(Ok), ···, e

Ok
k (Ok)}. Now consider the set of parallelization

option O = {O1, O2, · · ·, On}, where Ok is the parallelization option of τk. We can

extend the original task set Γ, by combining the set of threads created with paral-

lelization option O:

Γ(O) = τ1(O1) ∪ τ2(O2) ∪ · · · ∪ τn(On).

We will call this an extended task set Γ(O), or simply a task set whenever there

is no ambiguity. This extended task set has O1 +O2 + · · ·+On number of individual

threads. Now Eq. (6) can be applied to the extended task set Γ(O) to determine the

schedulability of the original task set Γ.

Moreover, additional improvement of the schedulability analysis can be made by

leveraging the property of the sibling threads; that they share the same release time

and deadline. This is unlike the case of non-sibling threads that belong to different

tasks, which has no correlation with each other at all. Since the interval between the

release and the deadline of sibling threads overlap exactly with each other, we can be

sure that all the sibling threads receive exactly the same workload from other non-

sibling tasks. In such condition, it can be proved that the largest thread among the

siblings, i.e. e1
k(Ok), is the hardest to schedule[9]. Using this property, now we can

determine the schedulability of all the siblings only by checking the schedulability of

its largest thread. Therefore for τk(Ok) to be schedulable, we need to check for only

τ1
k (Ok): ∑

τi∈Γ(O),τi 6=τ1k (Ok),πi≥πk

W τi,τ1k (Ok) ≤ m(Dk − e1
k(Ok)) (7)
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4 A Trade-Off of Parallelization: Tolerance VS. Interfer-

ence

When applying the extended BCL schedulability analysis on tasks with paralleliza-

tion freedom, we can observe a following trade-off relation: Upon increase of a task’s

parallelization option:

• The task’s execution time is shortened. Since its deadline stays the same, its

“tolerance” to other tasks’ interference increases. In other words, the task may

be schedule even receiving more interference from other tasks.

• However, as a side-effect, the additional threads created by the parallelization

may induce greater “interference” to other tasks.

In this section we formally discuss such effects of parallelization of a task to its

“tolerance” and “interference” to others. We prove that both effects in fact, comprises

a monotonic relation regarding to the parallelization option.

4.1 Monotonic Increasing Property of Tolerance

Tolerance is defined for each task of selected option τk(Ok), as a threshold of in-

terference a task can experience for it to be schedulable. This value can be obtained

from the extended BCL schedulability condition for τk(Ok), i.e. Eq. (7), by separat-

ing the bounded workload it receives from sibling and non-sibling threads. This is
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represented as:

∑
τ lk(Ok)∈τk(Ok),l 6=1

W τ lk(Ok),τ1k (Ok) +
∑

τi /∈τk(Ok),πi≥πk

W τi,τ1k (Ok) ≤ m(Dk − e1
k(Ok)

(8)

where the first term, i.e.
∑

τ1k (Ok)∈τk(Ok),l 6=1W τ lk(Ok),τ1k (Ok) , is τ1
k (Ok)’s re-

ceived bounded workload from its siblings and the second term, i.e.∑
τi /∈τk(Ok),πi≥πkW τi,τ1k (Ok) , is from its

∑
τi /∈τk(Ok),πi≥πk

W τi,τ1k (Ok) ≤ m(Dk − e1
k(Ok))−

∑
τ lk(Ok)∈τk(Ok),l 6=1

W τ lk(Ok),τ1k (Ok)

(9)

The left-hand side is the amount of the bounded workload or interference from

other tasks’ threads that τk(Ok) receives. This value needs to be smaller than the

right-hand side for τk(Ok) to be schedulable. Therefore the right-hand side can be

interpreted as tolerance of τk(Ok), and denoted as:

W
tolerance
τk

(Ok)6 = m(Dk − e1
k(Ok))−

∑
τ lk(Ok)∈τ(Ok),l 6=1

W τ lk(Ok),τ1k (Ok) (10)

This definition of tolerance has a monotonic increasing property in regards of the

parallelization option Ok of a task, which is proven for the global EDF case in [9].

Since the definition of tolerance is the same for the global FP case, the monotonic

increasing property of tolerance still holds for the global FP case, which can be for-

mally written:

Property 1. W tolerance
τk

(Ok) is a monotonic increasing function of Ok(< Omax =

12



Figure 4: Worst-case workload of sibling threads of τk within the interval [rji , r
j
i +

Di).

m).

4.2 Monotonic Increasing Property of Interference

Now with Property 1, we are able to improve the schedulability of a given task by

increasing its parallelization option. However, this does not come for free. For the ad-

ditional workload threads created by τk’s increased parallelization may inflict greater

interference to other tasks in the system. We explain the intuition behind how this

happens in Figure 4, where τk’s parallelization option increases from Ok=1 to Ok=4

within τi 6= τk’s execution interval Di. We can see that in the higher parallelization

case of τk, i.e. τk(4), more carry-in and carry-out jobs (shaded area) gets included

inside τi’s interval.

Being precise, τk(Ok)’s threads’ individual contribution of interference toward

τi does not increase. However it is the summation of interference from all the sibling

threads of τk(Ok) that increases as Ok increases. Thus we define the interference

function τk(Ok) given to another task τi as a sum of all the interference from sibling

13



threads of τk(Ok):

W
interference
τk,τi

(Ok) =

Ok∑
l=1

W τ lk(Ok),τ1i (Oi)
=

Ok∑
l=1

min(Wτ lk(Ok),τ1i (Oi)
, Dk − e1

i (Oi))

(11)

where Wτ lk(Ok),τ1i (Oi)
, is calculated using Eq. 4

Recall that all sibling threads share the same release time. This suggests, as

shown in Figure 4, the worst case execution pattern should be different for the sibling

threads. To represent this situation for the sibling thread, we define Lτk(Ok)(Di), as

the remaining interval of Di, i.e. Di − e1
k(Ok)− (Tk −Dk).

The sum of the execution time of all sibling threads increases for higher option

due to the parallelization overhead[12], i.e.,Ck(Ok) ≤ Ck(Ok+1), (∀Ok, 1 ≤ Ok ≤

m). Also as shown in Figure 3, the execution time of the sibling thread, the length

of the horizontal bar, decreases when we choose higher parallelization option, i.e.,

elk(Ok) ≤ elk(Ok+1), (∀l ≤ Ok). Therefore, the execution time of the newly created

(Ok + 1)-th sibling thread, depicted as a dark horizontal bar in Figure 4, is greater

if not equal than the sum of the decreased execution time of other sibling threads,

likewise Eq. 12.

eOk+1
k (Ok + 1) ≥

Ok∑
l=1

(elk(Ok)− elk(Ok + 1)) (12)

We can use the definition of interference function W interference
τk,τi

(Ok) to formally

write the second property of parallelization, and prove it in the following lemma.

Property 2.W interference
τk,τi

(Ok) is a monotonic increasing function ofOk(< Omax =

m).

14



Lemma 1. W interference
τk,τi

(Ok) < W
interference
τk,τi

(Ok + 1), when Ok(< Omax = m).

Proof. To prove this lemma, we will first show that the total workload of τk within

τi’s interval increases when the parallelization increases, i.e.Wτk,τi(Ok) < Wτk,τi(Ok+

1). Then we will show that the interference function increases as well, i.e.

W
interference
τk,τi

(Ok) < W
interference
τk,τi

(Ok + 1).

The total workload of τk within τi’s interval is expressed using Eq. 4. It is a sum

of the following three terms:

1) Carry-in job: min(elk(Ok), Di),

2) Body jobs: bLτk(Ok)(Di)Tk
celk(Ok),and

3) Carry-out job: min(elk(Ok), Lτk(Ok)(Di) mod Tk).

where, Lτk(Ok)(Di) = Di − e1
k(Ok)− (Tk −Dk).

In the following, we prove that all these individual terms increase with the paral-

lelization option, thus making the sum of all three terms increase as well.

• Carry-in job

Here we are comparing:

Ok∑
l=1

min(elk(Ok), Di) <

Ok+1∑
l=1

min(elk(Ok + 1), Di)

Since the right-hand side of above equation is the sum of Ok + 1 threads, let us

separate it into two parts: {1, · · ·, Ok}, and {Ok + 1}. This way, we can individually

(thread-wise) compare left and right-hand side with thread of {1, · · ·, Ok} and finally
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Figure 5: Worst-case workload carry-in job of τ lk(Ok) and τ lk(Ok + 1) within the
interval Di.

append the last thread {Ok + 1} for the right-hand side only:

Ok∑
l=1

min(elk(Ok + 1), Di) + min(eOk+1
k (Ok + 1), Di).

More specifically, we are going to show that even though the individual workload

may decrease for threads with index 1 ≤ l ≤ Ok, the combined workload will always

increase when the last thread l = Ok + 1, i.e. eOk+1
k (Ok + 1) is considered. We will

use the following term to represent the decrease of carry-in workload for the l-th

thread:

∆l
carry−in = min(elk(Ok), Di)−min(elk(Ok + 1), Di).

Let us compare the 1, · · ·, Ok threads of each term side by side, with thread index

16



1 ≤ l ≤ Ok. As shown in Figure 5, there can only be three relations of τ lk(Ok) and

τ lk(Ok + 1):

Case 1) Note that the thread of higher parallelization is always shorter if not

equal, i.e. elk(Ok) ≥ elk(Ok + 1). Therefore in this case min(elk(Ok + 1), Di) =

elk(Ok + 1).

⇒ ∆l
carry−in = elk(Ok)− elk(Ok + 1).

In Figure 5, for each thread, the shaded part represents the included workload.

For this case, we can see both thread’s workload is entirely included as workload.

This means that the decrease of carry-in workload is elk(Ok)− elk(Ok + 1), which is

shown formally above.

Case 2) min(elk(Ok), Di) = Di :

There are two sub-cases depending on elk(Ok + 1).

Case 2-1) min(elk(Ok + 1), Di) = elk(Ok + 1):

⇒ ∆l
carry−in = Di − elk(Ok + 1) < elk(Ok)− elk(Ok + 1).

Case 2-2) min(elk(Ok + 1), Di) = Di:

⇒ ∆l
carry−in = Di −Di = 0.

In all above cases, ∆l
carry−in ≤ elk(Ok)−elk(Ok+1). Adding upOk threads, we

get
∑Ok

l=1 ∆l
carry−in ≤

∑Ok
l=1 e

l
k(Ok)−elk(Ok+1). Which, as you may have noticed,

is always smaller or equal to the last thread’s workload eOk+1
k (Ok + 1) according to

Eq. 12. Therefore the carry-in job’s workload always increases or remain the same.
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• Body job

Similarly as in the carry-in case, we divide the body job workload into two parts

{1 · · · Ok} and {Ok + 1}, and denote the difference in body job workload of l-th

thread as ∆l
body:

∆l
body = b

Lτk(Ok)(Di)

Tk
celk(Ok)− b

Lτk(Ok+1)(Di)

Tk
celk(Ok + 1) (13)

where, Lτk(Ok)(Di) = Di − e1
k(Ok) − (Tk − Dk) and Lτk(Ok+1)(Di) = Di −

e1
k(Ok + 1)− (Tk −Dk).

Because elk(Ok) ≥ elk(Ok + 1), we can know that

b
Lτk(Ok)(Di)

Tk
c ≤ b

Lτk(Ok+1)(Di)

Tk
c (14)

This means that there may be additional body job of τk(Ok + 1) included inside

interval Di. However for this proof, we restrict the number of body job to be the

same, i.e. both have bLτk(Ok)(Di)Tk
c number of body jobs. Note that this is the harder

case, and when we consider the (may existing) additional body job of τk(Ok + 1),

the total body job workload will only increase.

Then, for the bLτk(Ok)(Di)/Tk
c body jobs, an upper-bound of ∆l

body can be derived

from Eq. 13: ∆l
body ≤ b

Lτk(Ok)(Di)

Tk
c{elk(Ok)− elk(Ok + 1)}. Which, forOkthreads:

Ok∑
l=1

∆l
bodyb

Lτk(Ok)(Di)

Tk
c ≤

Ok∑
l=1

{elk(Ok)− elk(Ok + 1)}. (15)

Lastly we compare the above value to the body job workload of the leftover (Ok+
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Figure 6: Worst-case workload carry-out job of τ lk(Ok) and τ lk(Ok + 1) within the
interval Di.

1)-th thread, i.e. bLτk(Ok)(Di)Tk
ceOk+1
k (Ok + 1). Likewise, according to Eq. 12, the

addition of the leftover thread ((Ok + 1)-th thread) exceeds or equal to the value of

Eq. 15. Therefore the sum of body job’s workload always increases or remains the

same.

• Carry-out job

Similar for the body job case, we denote the difference in carry-out job workload

of l-th thread as ∆l
carry−out.
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∆l
carry−out = min(elk(Ok), Lτk(Ok)(Di) mod Tk)

−min(elk(Ok + 1), Lτk(Ok+1)(Di) mod Tk),

(16)

where, Lτk(Ok)(Di) and Lτk(Ok+1)(Di) each defined the same as the body job

case.

There are four possible cases of τ lk(Ok) and τ lk(Ok + 1) ’s relation, as depicted

in Figure 6. Likewise, the included part of the carry-out workload is represented as a

shaded box in the figure:

Case 1) min(elk(Ok), Lτk(Ok)(Di) mod Tk) = elk(Ok): We can further branch

into the following two sub-cases.

Case 1-1) min(elk(Ok + 1), Lτk(Ok+1)(Di) mod Tk) = elk(Ok + 1) :

⇒ ∆l
carry−out = elk(Ok)− elk(Ok + 1).

This is when both thread’s carry-out job is entirely included as workload, as

shown in Figure 6. The decrease of included carry-out job workload is elk(Ok) −

elk(Ok + 1), as formally shown above.

Case 1-2) min(elk(Ok + 1), Lτk(Ok+1)(Di) mod Tk)

= Lτk(Ok+1)(Di) mod Tk :

This is an odd case when the included carry-out workload seems to decrease,

i.e. ∆l
carry−out < 0. However, this is not true. It is because in this case, an addi-

tional body job must have existed for τk(Ok + 1), and we intentionally left it out of

consideration from the body job’s proof. The existence of an additional job can be
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shown in the following way: We know that elk(Ok) ≥ elk(Ok+1). Also we know that

bLτk(Ok)(Di)Tk
c ≤ b

Lτk(Ok+1)
(Di)

Tk
c from Eq. 14.

Because we are applying a same modulo Tk operations to both Lτk(Ok)(Di)

and Lτk(Ok+1)(Di), the only way case 1-2) could arise is when bLτk(Ok)(Di)Tk
c <

b
Lτk(Ok+1)

(Di)

Tk
c.

Therefore for τk(Ok + 1), there is a carry-out job plus an additional entire body

job. Therefore, the carry-out workload always increases for this case.

Case 2) min(elk(Ok), Lτk(Ok)(Di) mod Tk) = Lτk(Ok)(Di) mod Tk :

We can further branch into the following two sub-cases.

Case 2-1) min(elk(Ok + 1), Lτk(Ok+1)(Di) mod Tk) = elk(Ok + 1) :

⇒ ∆l
carry−out = Lτk(Ok)(Di) mod Tk − elk(Ok + 1) < elk(Ok)− elk(Ok + 1)

Case 2-2) min(elk(Ok+1), Lτk(Ok+1)(Di) mod Tk) = Lτk(Ok+1)(Di) mod Tk :

⇒ ∆l
carry−out

= Lτk(Ok)(Di) mod Tk − Lτk(Ok+1)(Di) mod Tk

= {Di − elk(Ok)− (Tk −Dk)} − {Di − elk(Ok + 1)− (Tk −Dk)}

= elk(Ok)− elk(Ok + 1).

In all above cases, ∆l
carry−out ≤ elk(Ok) − elk(Ok + 1). Adding up Ok threads,

we get
∑Ok

l=1 ∆l
carry−out ≤

∑Ok
l=1(elk(Ok)−elk(Ok+1)). This, also according to Eq.

12 is smaller than or equal to the last thread’s workload e(
kOk+1)(Ok+1). Therefore

the carry-out job’s workload always increases or remain the same.

Summing the results, all carry-in, body, and carry-out job’s workload increase
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Figure 7: Change of workload bound from τk to τi for Ok → Ok + 1.

with the increase of parallelization. Therefore the total workload of τk within τi’s in-

terval increases when the parallelization option increases, i.e.Wτk,τi(Ok) < Wτk,τi(Ok+

1).

For our last step, we will show using Figure 7. that the interference function

also increases with the parallelization option. In Figure 7, each horizontal bar rep-

resents τk’s individual total workload inside τ1
i ’s interval, i.e. Di. Note that this in-

cludes all the workload from carry-in, body and carry-out jobs of τk. In the figure,

τk(Ok)thread’s workload is represented as horizontal bar, and τk(Ok + 1)thread’s

workload is shown as a shaded portion of the bar.

The interference function is defined in Eq. 4 as:

W
interference
τk,τi

(Ok) =

Ok∑
l=1

W τ lk(Ok),τ1i (Oi)
=

Ok∑
l=1

min(Wτ lk(Ok),τ1i (Oi)
, Dk − e1

i (Oi)).

This means that for each bar in the figure, the part left to the dashed line Di− e1
i (Oi)

is counted as interference.
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As we proved in the previous step, sum of the shaded area, i.e. Wτk,τi(Ok + 1),

is larger than equal to the sum of the entire white bars (including the overlapping

shaded portion), i.e. Wτk,τi(Ok). Thus τk(Ok + 1)’s last thread, depicted as dotted

shaded bar is larger than the white area surrounded by the thick solid line. The lemma

follows.

To sum up all the above discussions, the schedulability condition of τk can be

finally written, using both the monotonic increasing property of tolerance and inter-

ference as follows:

W
interference
τk,τi

(Ok) < W
interference
τk,τi

(Ok + 1) (17)

5 Optimal Parallelization Options Assignment Algorithm

In the previous section, two monotonic increasing property of parallelization free-

dom, and their trade-off has been introduced. As the parallelization option increases

for τk, its “tolerance” monotonically increases. However its “interference” to other

task τi also increases.

This hints that a great way to make Γ schedulable, is to assign only the “barely

tolerable” option for each task τ ∈ Γ. In other words, each tasks should try to keep

its parallelization option low, because increasing the option beyond its current need

is pointless, and would only result in interfering other task more.

This was an original motivation in [9], where task would start from lowest par-

allelization, i.e. no parallelization, and iteratively granted a “barely tolerable option”

over calculated current interference. This is called the ’Optimal Parallelization Op-

23



tion Assignment (OPOA)’ algorithm. OPOA was originally targeted for global EDF

scheduling policy only. However we discovered that the requirement for OPOA, i.e.

monotonic increasing property of both tolerance and interference function also holds

for global FP case, and thus OPOA is directly applicable for the global FP case as

well. In the following we introduce the extended OPOA algorithm converted and

targeted for global FP.

An illustration of OPOA for global FP using two tasks τ1, τ2 is depicted in Fig

8. In each sub figures, the horizontal axis represent the received interference from all

higher priority tasks, i.e. W interference
τi,τk

(Ok). The tolerance according to the paral-

lelization of each task is marked on the axis, i.e. W tolerance
τk

(Ok), and in this case the

maximum parallelization option is 4. Above the marked tolerance, the current chosen

option is shown with a check ’checkmark’, indicating the task is parallelized into the

checked option.

Initially all tasks start with no-parallelization, which is shown in left-side of Fig

8(a). Next in Fig 8(b), task with highest priority is drawn, and its received interfer-

ence is calculated, and the value is marked underneath the axis with a triangle. This

case it is the first thread τ1, and its received interference is zero, because it has the

highest priority among all. Then the option with barely schedulable tolerance for τ1

is selected, which in this case is O1 = 1. In Fig 8(c) this process is repeated for τ2,

but this time τ2 experiences interference from τ1 only, and thus τ2 is raised to option

2 to tolerate the received interference.

The right side of Figure 8 shows when two or more tasks have the same priority.

In this case, τ3 and τ4 has the same priority, and thus iterative measure has to be

applied. Firstly, we calculate the received interference of both tasks. Note that τ3
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Figure 8: Optimal parallelization option assignment
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and τ4 interfere each other mutually according to the selected option. If the received

interference exceeds the current tolerance for any task, we raise its parallelization

option likewise to the barely tolerable option Fig 8(e). This step is repeated until

one of the following condition is met: (1) For all tasks, its tolerances is greater than

its received interference Fig. 8(d) — schedulable case according to Eq. 19, or (2)

For any task, it reached its maximum parallelization but cannot tolerate the received

interference Fig. 8(f) — unschedulable case.

The pseudo-code in Algorithm 1 describes the OPOA algorithm for global FP.

The algorithm takes a set of tasks Γ as input, and returns two outputs. 1) Schedulabil-

ity of the given task set and 2) Parallelization option combination O, which represents

a parallelization option of each task when the task set is schedulable. The for-loop in

Line 1 through Line 5 calculates and stores the tolerance W tolerance
τk

(Ok) depends on

parallelization option Ok according to Eq. 7. The initialization in Line 6 creates an

empty group G, where which means each task τk’s schedulability is yet unknown.

The initialization in Line 11 creates an array Ocur representing the current se-

lected parallelization option for each tasks, which currently all of them is initialized

as 1. The initialization in Line 12 creates an ’updated’ flag, which represents that at

some point in the following iteration some task option has been updated. The for-loop

from Line 13 to Line 31 check the schedulability for each task set g in same prior-

ity group mathbbGuntil it is decided ’schedulable’ or ’not schedulable’. Note that

each step starts from the next highest priority group. The while-loop from Line 14 to

Line 29 iteratively compares the tolerance and the step-wise calculated interference

of each task and will end when there is no more updates. For each iteration, Line

15 sets the ’updated’ flag back to false, and at the end of the while-loop, if still ’up-

26



Algorithm 1: Optimal Parallelization Option Assignment (OPOA)
for global FP scheduling

Input: Set of tasks Γ = τ1, τ2, · · ·, τn
Output: (1) Schedulability, (2) Parallelization option combination

O = (O1, O2, · · ·, On)
1 for τk ∈ Γ do
2 for Ok = 1 to Omaxk do
3 W (τk)tolerance(Ok)← Eq.7
4 end
5 end
6 initialize G← emptygroup
7 for τk ∈ Γ do
8 G[πk].append(τk)
9 end

10 initialize S← (Unknown,Unknown, · · ·, Unknown)
11 initialize Ocur ← (1, 1, · · ·, 1)
12 initialize updated← True
13 for next highest priority g ∈ G do
14 while updated do
15 updated← False
16 Oprek ← Ocurk
17 for τk ∈ g do
18

∑
τi∈Γ,τidτk

W
interference

τi,τk
(Oprei )← Eq.11

19 while W tolerance

τk
(Ocurk ) <

∑
τi∈Γ,πidπk

W
interference

τi,τk
(Oprei ) do

20 Ocurk ← Ocurk + 1
21 updated← True
22 if Ocurk > Omaxk then
23 Sk ← False and Ocurk ← Omax

24 break //goto Line 17, continue with next τk
25 end
26 end
27 end
28 if any Sk ∈ S is False then
29 break
30 end
31 end
32 if any Sk ∈ S is False then
33 break
34 end
35 end
36 if any Sk ∈ S is False then
37 return not schedulable
38 end
39 else
40 return schedulable, Ocur
41 end
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dated’ flag is false, then we will terminate the while-loop. Line 16 copies and stores

the current parallelization option combination Ocur
k as Opre

k . Then, the for-loop from

Line 17 to Line 27 calculates the total interference and increases the parallelization

options till the ’barely tolerable parallelization option’ of each task τk. Line 18 cal-

culates the total interference from higher or equal priority tasks using Eq. 11 with

previous parallelization option combination Opre. Then, the while-loop from Line

19 to 26 compares the tolerance with the calculated interference. If the tolerance is

smaller, then Line 20 increases the parallelization option Ocur
k one at a time and Line

21 sets the ’update’ flag as true. Line 22 checks whether Ocur
k exceeded the limit

Omax, and when it does Line 23 sets Sk as a false, meaning the task is unschedula-

ble and Ocur
k back to Omax. Also in such case Line 24 breaks the while-loop from

Line 19 to Line 26 and goto Line 17 to continue with next τk to calculate rest of the

tasks before terminating. After checking all task inside the priority group g , Line 28

checks whether any Sk ∈ S was false, and if true it breaks the for-loop from Line 17

to Line 29 and goto Line 30 then breaks the while-loop from Line 14 to Line 29 and

finally return ’not schedulable’ in Line 33. If all Sk ∈ S was true, however, we goto

Line 29 to check the ’updated’ flag. If ’updated’ flag is true then we goto Line 14 to

continue iteration. After the while-loop from Line 14 to Line 29. The if-else state-

ment from Line 32 to Line 36 returns the output ’schedulable’ or ’not schedulable’.

And if the output is ’schedulable’, then the parallelization option combination Ocur

is also returned.

Instead of exhaustive search, Algorithm 1 executes a one-way search in the for-

loop from Line 13 to Line 31 using the monotonic property of both tolerance and

interference. For n tasks with maximum Omax parallelization option, the maximum
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increase of options is at most n · Omax. The maximum number of group g ∈ G is

n, hence O(n) complexity. And the for-loop from Line from 17 to Line 27 is O(n2).

In each iteration, the algorithm calculate the interference in Line 18 with the time

complexity of O(n) for all n tasks by the for-loop form Line 17 to Line 27. Therefore,

the overall time complexity of Algorithm 1 is O(n4).

6 Experiment

6.1 Simulation Results

In this section, we show the performance of the proposed OPOA for global FP al-

gorithm through results from extensive simulation [7]. For our simulation, a total of

106 different task sets were evaluated. Each task τk = (πk, Tk, Dk, ek) was gener-

ated in the following way: (1) πk randomly drawn from uniform integer[0,10]. (2) Tk

randomly selected from uniform[500,3000]. (3) Dk drawn from uniform[400,Tk].

(4) Execution time table ek constructed with elk(Ok = 1) = Ck(Ok = 1) =

uniform[300, 1000]. (5) Thread execution time of higher parallelization optionOk+

1,∀Ok, 1 ≤ Ok < m,Ck(Ok + 1) is computed using α(Ok → Ok + 1) =

Ck(Ok+1)−Ck(Ok)
e1k(Ok)−e1k(Ok+1)

, i.e. Eq. 10. (6) Ck(Ok + 1) is divided into Ok + 1 threads by Uni-

fast algorithm [15], and those threads are sorted in descending order of their thread

execution time, i.e., elk(Ok) ≥ elk(Ok + 1),∀l, 1 ≤ l ≤ Ok.

Using the task generated by the above method, each task set is created in the

following way: (1) Create an empty task set Γ. (2) Generate a new task τk and append

to Γ. (3) Check whether Γ passes necessary schedulability test, i.e.
∑

τk∈Γ
Ck(1)
Tk

<

m. (4) If it passes the test, sort Γ in descending order of each tasks priority πk, and
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Figure 9: Simulation result with m=4 CPU cores.

return Γ. Afterwards, repeat from step (2). (5) If Γ fails the necessary test, discard Γ,

and start anew from step (1).

We run the simulation using the generated task sets with m=4 CPU cores, and

compare the schedulability result of the following four different parallelization ap-

proaches:

• Ours: Each task parallelized using Algorithm 1

• Single: No-parallelization. All task, single threaded.

• Max: Maximum parallelization. Every task is parallelized into the maximum

possible parallelization option, i.e., Ok = Omax = m.

• Random: Each task is parallelized with randomly chosen parallelization option

from uniform [1, Omax].

The experiment result is shown in Figure (9) In each sub-figures, the x-axis repre-

sent the task set utilization Uk =
∑

τk∈ΓCk(1), and the y-axis represent the schedu-

lability. Fig 10(a) compares the schedulability of the four approaches when the par-

allelization overhead α(Ok → Ok + 1) = 0.3 for every Ok < Omax = m = 4.

First comparing “Single” and “Max”, we can see that while “Max” shows better per-
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formance in the low task set utilization region, it performs poorly at high task set

utilization region, and the trend flips for the “Single” approach, where it performs

better at high utilization. This shows that in low utilization, the schedulability is

mostly affected by deadlines, and thus reducing the execution time of the threads

by parallelizing into higher option is advantageous. On the contrary, in the case with

higher utilization, schedulability is mostly shaped by the number of tasks that are in

the system. Therefore keeping the number of threads small by reducing paralleliza-

tion option is a better strategy. “Random” performs in-between “Single” and “Max”.

“Ours” significantly out performs in all task set utilization. This is because the OPOA

algorithm assigns optimal parallelization option through balancing trade-off relation

of tolerance and interference.

Fig 10(b) shows the result parallelization overhead is much higher, i.e., α(Ok →

Ok + 1) = 0.8 for every Ok ≤ Omax = m = 4. Looking at “Single”, it is not

affected by higher parallelization overhead, since no thread undergoes parallelization.

On the other hand, performance of “Max” is greatly hindered, because benefiting

from parallelization became much harder. “Random” is between “Single” and “Max”.

Here, “Ours” is also affected by the high parallelization overhead, but still performs

much better than any other approaches.

Fig 10(c) shows the result when all task’s deadline is tightened by 20%. This

emphasizes the deadline’s effect to the schedulability. Thus for “Single” strategy,

since each thread’s execution time is large, is greatly affected by the reduced deadline,

with highly reduced performance compared to previous experiments. However the

“Max” strategy, which is affected less by the reduced deadline, performs similarly to

the base experiment, i.e. Fig 10(a). “Ours” is similarly affected but still performs best
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Figure 10: Implementation results

in all utilization.

6.2 Implementation Results

To justify the practicality of our proposed approach, we implemented real-time task

sets using Linux kernel 4.19 with PREEMPT RT patch. The tasks are scheduled ac-

cording to G-FP (SCHED RR) scheduler on PC with Intel Core i7-8700 CPU (6-

cores). We use CPUSET to set the running of our tasks in m = 4 cores, fix the clock

frequency at 3.20 GHz, and disable GPU.

On this system, we execute the four real programs used for autonomous driv-

ing, (1)τ1: sensor read program emulating a multi-channel camera module, (2) τ2:

lane tracking program used by Autoware, (3) τ3: darknet-based object detection and

labeling program used by APOLLO, and (4) τ4: steering actuation program emulat-

ing PID motor controller. Their minimum inter-release times and deadlines are set
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as (T1 = D1 = 2500000), (T2 = D2 = 2500000), (T3 = D3 = 2300000), (T4 =

D4 = 2000000), where the time units is µs.

Fig. 10 shows the measured response times of the largest thread τ1
k (Ok) of each

task τk. In each graph, the x-axis is the release time of each job and the y-axis is its

corresponding response time. The horizontal line on each graph is the deadline Dk

and if the response time exceed this line, it means a deadline violation. In ”single”, we

can observe many deadline misses of τ1 and τ4. This is because they are heavy work-

load tasks and without parallelization, their execution times are longer than deadlines.

In ”max”, the τ1’s and τ4’s deadline misses decrease because of the parallelization but

now we observe deadline misseds of the τ2 and τ3 due to the increased interference.

On the other hand, we can observe that ”ours” meet all the deadlines of all the four

tasks by optimal parallelization.

7 Conclusion

In this paper, we presented an algorithm that optimally assign parallelization option

for global FP. To do this, we extended the BCL schedulability condition for tasks with

parallelization freedom scheduled with global FP. Next, a trade-off relation of a task’s

tolerance and interference was identified, by deriving a monotonic increasing prop-

erty of parallelization. Using the properties, an optimal parallelization assignment

algorithm for global FP with polynomial time complexity was derived. Through ex-

tensive simulation we showed a significant improvement of schedulability. Our plan

is to extend the approach to accommodate other schedulers, and to other task models

such as a DAG model [17].
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요약(국문초록)

지난몇십년간,컴퓨테이션요구의증가와함께병렬컴퓨팅의중요성

이 크게 증대되고 있다. OpemMP나 OpenCL과 같은 프레임워크들은 컴퓨

팅테스크를원하는수의쓰레드로쉽게병렬화할수있도록한다.이를본

논문에서는 ’병렬화자유도’라고명명했다.그러나병렬화는댓가를필요로

하며 병렬화 옵션(각 태스크를 병렬화 하는 쓰레드의 갯수)에 따른 병렬화

오버헤드를발생시킨다.이에주어진컴퓨팅리소스의보다나은활용을위

해 병렬화 옵션은 신중하게 정해질 필요가 있다. 본 논문은 global FP 스케

쥴러상에서각테스크에병렬화옵션을할당하는문제를다룬다.이를위해

기존에 global EDF상으로한정되어있는조의접근방법을확장한다. global

FP 상에서도 병렬화 옵션의 조건적 최적 할당이 존재함을 증명하였다. 또

한 광범 위한 시뮬레이션과 자율주행 태스크셋을 통해 스케쥴러빌리티의

확실한향상을보였다.

주요어 :스케쥴링,병렬화자유도, global FP

학번 : 2016-21201
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