creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Conditionally Optimal Parallelization

for Global FP on Multi-core Systems

H €] 7 o] A|AH AH9] Global FPE 93
Z712] 22| yEs} 7|4

20204 8¢

Conditionally Optimal Parallelization

for Global FP on Multi-core Systems

20204 6

Al st ojstd
C

M}

E

DE DR B ES

20204 7€

A4F 33 G
A9 oA ()

9 4 AAE Q)

Abstract

Conditionally Optimal Parallelization

for Global FP on Multi-core Systems

Park Daechul
Department of Computer Science and Engineering
The Graduate School

Seoul National University

Throughout the last decade, the importance of parallel computing has risen greatly
to match the ever-increasing computational demand. Frameworks such as OpenMP
and OpenCL allow easy parallelization of computing tasks into desirable number
of threads, opening up a chance to greatly utilize the parallel computing resources.
We call this “parallelization freedom”. However, this does not come for free, as par-
allelization overhead increase with parallelization option (i.e. the number of thread
each task is parallelized). Thus parallelization option must be carefully decided to
better utilize a given computing resource. This paper addresses the problem of as-
signing parallelization option to each task for global FP scheduler. For this, we extend
the approaches made by Cho, which is limited to the global EDF scheduler case. We
prove that a conditionally optimal parallelization assignment of parallelization option
also exists for the global FP case. Through extensive simulations and autonomous

driving module task sets, we show a significant improvement of schedulability.

keywords : scheduling; parallelization freedom; global FP

Student Number : 2016-21201

il

Contents

1 Introduction

2 Problem Description

3 Global FP Extension of BCL Schedulability Analysis for Tasks with Par-
allelization Freedom
3.1 Overview of BCL Schedulability Analysis for Global FP
3.2 Extension of BCL Schedulability Analysis for Tasks with Paralleliza-

tionFreedom

4 A Trade-Off of Parallelization: Tolerance VS. Interference
4.1 Monotonic Increasing Property of Tolerance

4.2 Monotonic Increasing Property of Interference

5 Optimal Parallelization Options Assignment Algorithm

6 Experiment
6.1 SimulationResults

6.2 ImplementationResults oL

7 Conclusion

References

il

11
11

13

23

29

29

32

33

34

List of Figures

10

Task with parallelization freedom and it’s execution table eg. 3
Interference of 75, within the interval [ry;,ri; + Dyl 6
Worst-case workload of 7; within the interval [ri, ri +Dgl.. 7

Worst-case workload of sibling threads of 74 within the interval [rf , rf +

Worst-case workload carry-in job of 71.(Oy) and 7} (O + 1) within
theinterval D;. 16

Worst-case workload carry-out job of 7}, (Of) and 7} (Oy, + 1) within

theinterval D;. 19

Change of workload bound from 73 to 7; for O — O +1.. 22

Optimal parallelization option assignment 25

Simulation result with m=4 CPUcores. 30

Implementationresults L .. 32
1

v 47 ==t

1 Introduction

Today, as computational demand continuously grows, the importance of parallel com-
puting has risen greatly. This trend is also relevant in the real-time community, as
real-time safe-critical tasks are also growing in its complexity and size. Using a par-
allelization framework such as OpenMP [3] and OpenCL [20], we can parallelize
such tasks, each into multiple threads. This is called “parallelization freedom.” Such
frameworks allow easy parallelization of computing tasks. However, there is no such
thing as a free lunch. The parallelization overhead increases with the parallelization
option (i.e., the number of threads each task is parallelized) [1]. Therefore, the par-
allelization option must be decided carefully to utilize a given computing resource
better.

This problem has recently drawn attention in the real-time community [13], and
several methods have been proposed for Fluid scheduling [12] [8] and for global
EDF [4]. However, both scheduling method is not practical, as both scheduling meth-
ods accompanies a large context switch and migration overhead. Global FP [2], on
the other hand, does not suffer from such drawbacks and thus is widely accepted and
used throughout the industry. However, the problem of assigning the parallelization
option has not yet been discussed for the global FP case. For this, this paper proposes
a method to assign an optimal parallelization option for the global FP scheduler.

To validate the assigned parallelization option for each task, we need a schedula-
bility analysis. For this, we use BCL [6], a sufficient, polynomial time schedulability
analysis for global EDF and global FP [5], and one of the foundational work on

interference-based schedulability analysis domain. BCL checks whether each task

could complete its execution before the deadline, even maximally interfered by other
tasks [19].

In [9], Cho et al. observed that when an assignment of parallelization option is an-
alyzed through BCL, the following two properties emerge: 1) Increase of paralleliza-
tion option of a task acquire greater “tolerance” (i.e. greater room for tolerating inter-
ference). 2) However, at the same time, the task may inflict greater “interference” on
other tasks. Cho et al. proves both properties monotonically increase with paralleliza-
tion option, and based on that proposes an optimal parallelization option assignment
algorithm: 1) All tasks start at no-parallelization, 2) Parallelization option of each
task is increased when its “tolerance” is smaller than its experienced “interference,’
3) iterate overall tasks, until all tasks can tolerate the received interference (schedu-
lable), or cannot while reaching maximum possible option (unschedulable).

In this paper we prove that the same monotonic increasing property of both
“interference” and “tolerance” regarding to the parallelization option hold for the
global FP case [16]. We trade-off the two properties to derive an optimal paralleliza-
tion option assignment for global FP. The effectiveness of the proposed algorithm is
validated through extensive simulation, and we observed a significant improvement
of schedulability.

The rest of this paper is organized as follows. Section II formally defines our
problem of parallelization option assignment for global FP scheduling. In Section
IIT we extend the BCL schedulability analysis for global FP scheduler, and for tasks
with parallelization. In Section IV, we introduce the two properties of parallelization,
i.e. tolerance and interference, and identify a trade-off relation between the two. In

section V, the properties of parallelization is used to derive an optimal assignment

N /
Or=1 &)
W | = - —
E— — ¢@=p E— k
—> — (4o
deadline Dy, = : : 7S
[Va
" minimum inter-release time Ty —/ er(maz)
O = maxz | 1 3 [e%(max)
|i| em‘”.(max)

Figure 1: Task with parallelization freedom and it’s execution table ey.

algorithm. Section VI reports our experimental results. Finally, Section VII states our

conclusions.

2 Problem Description

A system with m homogeneous CPU cores and n sporadic tasks is considered. Those
tasks are scheduled by global FP, and each tasks, where the k-th task denoted as 7,
is assigned a priority 7y, for scheduling. Without loss of generality, we assume tasks
are sorted by their priority in the descending order, i.e. i < j < m; > m;.[14] The
tasks are contained in a task set I which is represented as follows:

D= {r|1<k<n)}

Each tasks are expressed by the following four parameters:

T, = (g, Ty D, €x),

where 7y, is the previously mentioned assigned priority, 7} is the minimum inter-

3 .-';r'\-\.-! -;.:I- 1_] ."‘.l'l

11’

release time, D; is the relative deadline, and e;. is the thread execution time table
according to the parallelization option Oy, as shown in Figure 1. Oy, can have a value
ranging from 1 (no-parallelization) to O"%* = m (number of CPU) threads. When 7,
is parallelized into Oy number of threads, they share the same priority [11], release
times and deadlines. Thus we call those Oy, threads as sibling threads, and denote

such a parallelized task by 74 (Oy):

7(Ok) = {74 (O1), 2 (Ok), - -, 7 ¥ (On) },

where 7/ (Oy)(1 < I < Oy) is the 1-th sibling thread. The execution time of
the 1-th sibling thread eﬁc(Ok) can be obtained from thread execution table (Figure
1). Without loss of generality, we assume that the execution time of sibling threads
are sorted in the descending order, i.e. i < j < €} (Oy) > ei(Ok). Therefore for
any given sibling threads, the first thread among them e,lc(Ok) has the largest execu-
tion time, i.e. max el (Op) = et (Og) := €™ (Oy). The sum of all thread

7} (O) €™ (Ok)

execution time of sibling threads of parallelization option Oy, i.e., Zlozkl eﬁi(Ok), is
denoted by C(Oy), and will be referred to as the total computation time of 7 (O).

As the parallelization option increases Oy, — O, individual thread execution time
decreases, i.e. ei/, (Of) > efg(Ofe), but the total computation time increases C(Oy) >
Ci(Oy,). Which is due to the parallelization overhead. We define the parallelization

overhead o(Oy — Oy, + 1) as the total computation amount increase, i.e., C(Ox +

1) — Cx(Oy), for unit reduction of the first thread’s execution time, that is,

Cr(Or + 1) — Cr(Oy)

@) @) 1) = .
(O, = Or +1) e} (Or) — e} (O + 1)

ey

The tasks are scheduled on m homogeneous CPU cores using global FP scheduler,
with the priority that is statically assigned to each task and unchanged throughout
execution. Similar to other researches on global FP scheduler[6], we assume that all
task can be preempted and migrated at any time with negligible scheduling cost.
Problem Definition: For a given task set I', our problem is to find a paralleliza-
tion option Oy, for each task 73, € I, that makes all the sibling threads of all the tasks
in I' can be scheduled meeting their deadlines using global FP on m homogeneous

CPU cores.

3 Global FP Extension of BCL Schedulability Analysis for

Tasks with Parallelization Freedom

A schedulability analysis is needed to validate the assigned parallelization option
[10] [18]. Many works on schedulability analysis for global FP exists[2], targeted for
sporadic tasks scheduled on multi-core systems. Some of them are exact, meaning
a true determination of schedulability can be done in sacrifice of the computational
time. They require exponential time and thus are ruled out of consideration for this
paper. Thus we will have to use the sufficient variants, that operate in polynomial
time.

However, to the best of our knowledge, currently there are no sufficient schedula-
bility analysis that targets global FP and tasks with parallelization freedom. For this,
we extended a sufficient schedulability analysis, i.e. BCL [6], which is one of the
foundation work on the sufficient schedulability domain.

In this section we first overview the BCL schedulability analysis targeted for

I, (rl, v + Dy) < Dy, — e

e
N

ri W Ti -+ Dk Time

I’ri,’rk (r.]ia T.]i + Dk‘)
Dy,

Figure 2: Interference of 75, within the interval [r;, ri; + Dy].

global FP on multi-core systems. Then we extend the analysis to accommodate tasks

with parallelization freedom.

3.1 Overview of BCL Schedulability Analysis for Global FP

Developed by Bertogna [6] et al., BCL schedulability analysis is a sufficient analysis
targeted for sporadic tasks [S] on multicore systems, scheduled with global FP. The

analysis uses the following definitions: (See Figure 2)

1) I (a,b): Accumulated length of all intervals in which 7y is ready to execute
(released), but cannot execute due to higher priority tasks occupying all the

CPU cores.

2) I,

K3

7 (a,b): Accumulated length of all intervals in which 7, is ready to execute

(released), but cannot execute due to 7;’s jobs occupying the CPU cores. Note

: [A=l 5w

L=

carry-in job body job carry-out job

Jed ARl Bnl

j K Sl 3k 3 i D Time
7 €; fTZ — l)Z Tz Tk + Dg

v b

Figure 3: Worst-case workload of 7; within the interval [ri, ri + D).

that the interval I, ;, (a,b) is always a subset of the interval I, (a,b).

Summing up I, -, (a, b) for all the tasks that has higher priority than 7, (7; € I', m; >

7y),and dividing with the number of CPU cores m yields I, (a, b):

L(,0) = = 3" I a,1). @

z<k

For any job of le is to be executed, it must complete e, amount of execution
within D;, time unit after its release(ri). Therefore for the job to successfully com-
plete its execution, the maximal amount of interference it can suffer is Dy, — eg. A
schedulability condition can be derived by combining this observation with the above

equation (2):

L, (rl.,]+ Dy) = Z I, 7 (7,71 + Dy,) < Dy — ey 3)
z<k

Although the above schedulability condition is exact, it is not practically useful,
because for a sporadic task system, all tasks may release at arbitrary time points.

This requires checking exponentially many possible values of I, -, (Ti, ri + Dy,). To

overcome this, BCL upper-bounds the interference I, -, (ri, ri + Dy) to the total
worst-case workload of the task within the same interval. In other words, the inter-
ference of 7; to 7, cannot exceed 7;’s total execution. Figure 3 shows the maximal
workload of 7; that can squeeze inside an interval of length Dy. It is when the jobs of

7; is aligned and executed with the following conditions

1) ;s first job’s execution begins exactly at the start of the interval, and finishes

executing at its absolute deadline. This job is called a carry-in job.

2) Subsequent jobs of 7; is executed most frequently with its minimum inter-

release time 7T}. These jobs are called body jobs.

3) Last job of 7; is also released most frequently, and executes immediately. This

job is called a carry-out job.

Summing up the above three cases, we can calculate the worst-case workload of
7; within 7, i.e., W, -, as follows:

W,

(3

L
7, = min(e;, Dy) + LTJ e; + min(e;, L mod T;), 4)
K2

where L = Dy, —e; — (T; — D;) is the remaining interval of Dy when the carry-in
job is removed (See Figure 3). In the above equation, the first term min a(e;, D)
is the workload from the carry-in job, the second term LT%J e; is from the body jobs,
and the last term min(e;, L mod T;) is from the carry-out job.

Bertogna [5], et al. observes that when 73, is schedulable, the maximum interfer-
ence that each interfering task 7; gives to 73 cannot exceed Dy, — e;. Therefore when

W, 7 = Dy — ey, the excess workload can be thought to have ran in parallel with 7,

k3

thus we should not consider the excess as interference. In other words, we can limit
the contribution of each W, -, to D} — e;. We can call this “bounded workload”

from 7; to 7, i.e., W, 7,

WTiﬂ'k = min(Wﬂ'J}w Dy, — 6k>)

Worst-case workload of 7; within the interval [ri, ri + Dy). Now, using the con-
cept of “bounded workload”, we can extend the previous exact schedulability condi-

tion, i.e. Eq. (3), to derive a sufficient schedulability condition for 7%:

o 1 o 1 _
In(rlori 4 Di) = o3 T (o Do) € =3 " Wrin, < Dy —ex. (6)
i<k i<k

Finally, the schedulability condition Eq. (6) can be extended to the entire task set
I", by checking whether Eq. (6) is satisfied for V7, € I'. From now on, we will use
the term “schedulable” meaning that the task or the task set is “BCL schedulable”

according to Eq. (6).

3.2 Extension of BCL Schedulability Analysis for Tasks with Paralleliza-

tion Freedom

The schedulability analysis derived in the previous section Eq. (6) is targeted for sin-
gle threaded tasks, therefore it cannot be applied directly to our model which involves
parallelized tasks. Therefore in this section we present an extension of the analysis
for tasks with parallelization freedom.

Recall from Chapter 2, a task with parallelization option Oy, i.e. 7;(Oy) creates

a set of O, threads, i.e. 7,(O) = {7 (O), 72(Ok), - -, TkOk (Og)}, which shares the

same priority 7y, deadline Dy, minimum inter-release time 7}, but different execu-
tion time, i.e. {e+(Oy), €2(Oy), -+, eg’“ (Og) }. Now consider the set of parallelization
option O = {01, 02, - - -,0,, }, where Oy, is the parallelization option of ;. We can
extend the original task set I', by combining the set of threads created with paral-

lelization option O:

F(@) = 7'1(01) U TQ(OQ) J---u Tn(On)

We will call this an extended task set I'(Q), or simply a task set whenever there
is no ambiguity. This extended task set has O1 + Oz + - - - 4+ O,, number of individual
threads. Now Eq. (6) can be applied to the extended task set I'(Q) to determine the
schedulability of the original task set I

Moreover, additional improvement of the schedulability analysis can be made by
leveraging the property of the sibling threads; that they share the same release time
and deadline. This is unlike the case of non-sibling threads that belong to different
tasks, which has no correlation with each other at all. Since the interval between the
release and the deadline of sibling threads overlap exactly with each other, we can be
sure that all the sibling threads receive exactly the same workload from other non-
sibling tasks. In such condition, it can be proved that the largest thread among the
siblings, i.e. e,lc(Ok), is the hardest to schedule[9]. Using this property, now we can
determine the schedulability of all the siblings only by checking the schedulability of
its largest thread. Therefore for 74 (Oy) to be schedulable, we need to check for only
74 (Op):

> W, 1100 < m(Dx — eh(Or)) 7
Ti EF((O)) 77—1'7&7—]1 (Ok)vﬂ—i Zﬂ-k

10 x—g N :.-_ -:I

4 A Trade-Off of Parallelization: Tolerance VS. Interfer-

ence

When applying the extended BCL schedulability analysis on tasks with paralleliza-
tion freedom, we can observe a following trade-off relation: Upon increase of a task’s

parallelization option:

e The task’s execution time is shortened. Since its deadline stays the same, its
“tolerance” to other tasks’ interference increases. In other words, the task may

be schedule even receiving more interference from other tasks.

e However, as a side-effect, the additional threads created by the parallelization

may induce greater “interference” to other tasks.

In this section we formally discuss such effects of parallelization of a task to its
“tolerance” and “interference” to others. We prove that both effects in fact, comprises

a monotonic relation regarding to the parallelization option.

4.1 Monotonic Increasing Property of Tolerance

Tolerance is defined for each task of selected option 7 (Oy), as a threshold of in-
terference a task can experience for it to be schedulable. This value can be obtained
from the extended BCL schedulability condition for 74 (Oy), i.e. Eq. (7), by separat-

ing the bounded workload it receives from sibling and non-sibling threads. This is

) [|
11 "g .;-.-._:I

represented as:

Z Wfi<ok),7,i(ok) + Z Wn,f,g(ow < m(Dy, — e},(O)
7} (Or) €71 (O) 1#1 Ti &7k (Ok),mi >y

®)

. Ir7 . 1 ’
where the first term, i.e. ZT;(Ok)erk(Ok),l;Al Wr,i(ok),r,g(ok) , is 7;;(Og)’s re-

ceived bounded workload from its siblings and the second term, i.e.

ZTi¢Tk(Ok)a7ri27rk WTuT;i(Ok) , is from its

— 1 —
> Wanoosm@Di—eON) = 3 Wyoymon

7i @7k (O) ymi >y, 7} (O) €7 (O 1#£1
()]
The left-hand side is the amount of the bounded workload or interference from
other tasks’ threads that 73,(Oy) receives. This value needs to be smaller than the
right-hand side for 7, (Oy,) to be schedulable. Therefore the right-hand side can be

interpreted as tolerance of 74,(Oy), and denoted as:

W06 =m(Dy —eh(O) — Y. Waogson (10
7L (OR)ET(Og),1#1
This definition of tolerance has a monotonic increasing property in regards of the
parallelization option Oy, of a task, which is proven for the global EDF case in [9].
Since the definition of tolerance is the same for the global FP case, the monotonic
increasing property of tolerance still holds for the global FP case, which can be for-
mally written:

—tol . . . :
Property 1. WT(; 7" (Oy,) is a monotonic increasing function of Oy (< O™ =

12 ot el B

e (O +1) € (Op)

carry-in job body job carry-out job
i \ A N
72 :
TkOé+1

N
n ; 7
i ! + D; Time

i€ >

910, +1) Ly (0k+1).0; A

D;

Figure 4: Worst-case workload of sibling threads of 7, within the interval [r7, r{ +
D;).

4.2 Monotonic Increasing Property of Interference

Now with Property 1, we are able to improve the schedulability of a given task by
increasing its parallelization option. However, this does not come for free. For the ad-
ditional workload threads created by 71’s increased parallelization may inflict greater
interference to other tasks in the system. We explain the intuition behind how this
happens in Figure 4, where 73,’s parallelization option increases from O=1 to Oy=4
within 7; # 75’s execution interval D;. We can see that in the higher parallelization
case of 7y, i.e. 7;(4), more carry-in and carry-out jobs (shaded area) gets included
inside 7;’s interval.

Being precise, 7, (Oy)’s threads’ individual contribution of interference toward
7; does not increase. However it is the summation of interference from all the sibling
threads of 7,(Oy) that increases as Oy increases. Thus we define the interference

function 73, (Oy) given to another task 7; as a sum of all the interference from sibling

13 ot el

threads of 71(Oy):

Ok Ok

—inter ference g .

W OK) =Y Wi op.ri 00 = 2 min(Wei 0, 110, Dk — € (03)
=1 =1

where VVT}c (Ow)7-(0:)> is calculated using Eq. 4

Recall that all sibling threads share the same release time. This suggests, as
shown in Figure 4, the worst case execution pattern should be different for the sibling
threads. To represent this situation for the sibling thread, we define L., (o,)(D;), as
the remaining interval of D;, i.e. D; — e}.(Og) — (T}, — D).

The sum of the execution time of all sibling threads increases for higher option
due to the parallelization overhead[12], i.e., Ct(Ok) < Cx(Ox+1), (VO,1 < Of <
m). Also as shown in Figure 3, the execution time of the sibling thread, the length
of the horizontal bar, decreases when we choose higher parallelization option, i.e.,
el (Og) < €l (Or+1), (VL < Oy). Therefore, the execution time of the newly created
(O + 1)-th sibling thread, depicted as a dark horizontal bar in Figure 4, is greater
if not equal than the sum of the decreased execution time of other sibling threads,

likewise Eq. 12.

Oy,
2+ (O Z (Or) — k(O + 1)) (12)
We can use the definition of interference function W:th:f (O to formally

write the second property of parallelization, and prove it in the following lemma.

—inter ference
Tk Ti

Property 2. W (Oy) is a monotonic increasing function of Oy (< O™ =

14 x—g N :.-_ -:I

—inter ference —inter ference
(Or)

Lemmal. W <W

TksTh Tk Ti

(O + 1), when Og(< O™ =m).

Proof. To prove this lemma, we will first show that the total workload of 7, within

7;’s interval increases when the parallelization increases, i.e. W, -, (Or) < Wr, 7, (Ox+

1). Then we will show that the interference function increases as well, i.e.

Winterference (Ok)) < Winterference (Ok i 1) '

TksTi TkyTi

The total workload of 73, within 7;’s interval is expressed using Eq. 4. It is a sum

of the following three terms:
1) Carry-in job: min(el (Ox), D;),

2) Body jobs: LiLT’”Oﬁ)(Di)

Jek (Oy),and
3) Carry-out job: min(e} (O), Ly, (0,)(Di) mod Tj).

where, LTk(Ok)(Di) = Di — e}c(Ok) - (Tk - Dk)
In the following, we prove that all these individual terms increase with the paral-

lelization option, thus making the sum of all three terms increase as well.
e Carry-in job

Here we are comparing:

O Or+1
Zmin(egﬂ(Ok),Di) < Z min(el (O, + 1), D;)
=1 =1

Since the right-hand side of above equation is the sum of Oy + 1 threads, let us
separate it into two parts: {1,- - -, O}, and {Oy, + 1}. This way, we can individually

(thread-wise) compare left and right-hand side with thread of {1, - - -, Oy } and finally

15 ot el B

/
don |
W Time
B ("R
(O +1) T]
k—— Time
D;
case 1)
€ (Ox) ¢ (Ox)
74(Ox) T 74(Ox) T
L%
W Time w Time
B () ' eL(Ox +1)
T(Ok +1) T T,g(ok+1)'[
w Time w Time
case 2-1) case 2-2)

Figure 5: Worst-case workload carry-in job of T]lc(Ok) and T]i(Ok + 1) within the
interval D;.

append the last thread {Oy + 1} for the right-hand side only:
Ok
> " min(ef,(Ok + 1), D;) + min(ef* ' (Og + 1), Dy).
=1

More specifically, we are going to show that even though the individual workload
may decrease for threads with index 1 < [< Oy, the combined workload will always
increase when the last thread [= Oy + 1, i.e. eg”l(Ok + 1) is considered. We will

use the following term to represent the decrease of carry-in workload for the 1-th

thread:
Afzarry—in = min(egc(ok’)a Dl) - mln(eé(Ok + 1)7 D’L)
Let us compare the 1, - - -, Oy threads of each term side by side, with thread index

[-1 = —
16 ’F'-! =]--]| ‘*'],- Tl

1 <1 < Oy. As shown in Figure 5, there can only be three relations of T,i(Ok) and
7L(Og + 1):

Case 1) Note that the thread of higher parallelization is always shorter if not
equal, i.e. €} (Or) > €\ (O + 1). Therefore in this case min(el (Oy + 1), D;) =
el (O +1).

= Al = el (0p) — €L (O + 1).

carry—in

In Figure 5, for each thread, the shaded part represents the included workload.
For this case, we can see both thread’s workload is entirely included as workload.
This means that the decrease of carry-in workload is €} (O,) — et (O, + 1), which is
shown formally above.

Case 2) min(el (Oy), D;) = D; :

There are two sub-cases depending on e%(Ok +1).

Case 2-1) min(e} (Og + 1), D;) = € (Of + 1):

= Al = D; — e (O +1) < ek (0r) — el (Op +1).

carry—in

Case 2-2) mm(ei(Ok + 1), Dz) = D;:

I
= Acarry—in =D;—D;=0.
In all above cases, AL, ;. < €}.(Oy) —e},(Or +1). Adding up O}, threads, we

get 0% Al gy in < 9% €l (Og) — ek (Of,+1). Which, as you may have noticed,
is always smaller or equal to the last thread’s workload eg”l (Og + 1) according to

Eq. 12. Therefore the carry-in job’s workload always increases or remain the same.

17 N

e Body job

Similarly as in the carry-in case, we divide the body job workload into two parts
{1--- O} and {Of + 1}, and denote the difference in body job workload of 1-th

l .
thread as A} dy"

LT}C k D LTk k+1 D
By = 122D 1 0) | 0t Py 0, 1) a1y

Where, LTk(Ok)(D%) = Di - e}C(Ok) - (Tk - Dk) and LTk(Ok+1)(Di) = Di -
6,%(0]@ +1)— (Tk — Dy).

Because €} (Oy) > €} (O + 1), we can know that

LLTk(Ok)(Di) LTk(Ok+1)(Di)J

T, 1< T, (14)

This means that there may be additional body job of 7,(Oy, + 1) included inside
interval D;. However for this proof, we restrict the number of body job to be the
same, i.e. both have L%J number of body jobs. Note that this is the harder
case, and when we consider the (may existing) additional body job of 7, (Oy, + 1),
the total body job workload will only increase.

Then, for the LMJ body jobs, an upper-bound of Al 4y can be derived

from Eq. 13: Abody L%)()J{ek(Ok) — €l (O + 1)}. Which, forOythreads:

y(D

7% (O l)
Z Abody *J

Oy
<D {ek(Or) = €4 (O + 1)} (15)

=1

Lastly we compare the above value to the body job workload of the leftover (O +

¥ [, -1 =1
18 ""“-_E'I'.I 1 :

e} (O) e}.(Ok)

(Ok) | - :/l 0K | - :/l

F g
Time Time
~

Ln_ (Ow) (Dl) mod Tk

er(Ok) (Dl) mod Tk

Ok +1) & l 71(Or + 1) H ﬁi l
Fﬁ Time kﬁl\ Time

& - % L7k(0k+1)(Di) mod Tk SRR % Ln.(Ok+1)(Di) mod Tk

case 1-1) case 1-2)
I L / !
71.(Ok) | 73 (Ok)
Time - Time
ek(Ok a 1) LTk(Ok)(Di) mod Tk ek(ok + 1) LT‘C(Ok)<Di) mod Tk
N
Tlf:(ok"‘l) ﬁ l T/f-(Ok‘i‘l) |J
Time Time
[~ I~
< ... %Di L+, 04+1)(Di) mod Ty, & - —)Di L., 0p+1)(D;) mod Ty
case 2-1) case 2-2)

Figure 6: Worst-case workload carry-out job of 7} (Oy) and 7} (Oy, + 1) within the
interval D;.

1)-th thread, i.e. LLT’“ Ok) JeO’“H(+ 1). Likewise, according to Eq. 12, the
addition of the leftover thread ((Oy + 1)-th thread) exceeds or equal to the value of
Eq. 15. Therefore the sum of body job’s workload always increases or remains the

same.
e Carry-out job

Similar for the body job case, we denote the difference in carry-out job workload

of 1-th thread as Al

carry—out*

. . H k: 1_'.]| [

Al min(e (Oy), L+, 0,)(D;) mod Tj)

carry—out —

(16)
— min(e}, (O, + 1), Ly, (0, +1)(D;) mod T}),

where, L, 0,)(D;) and L, 0, +1)(D;) each defined the same as the body job
case.

There are four possible cases of 7}(Oy) and 71 (Oy, + 1) ’s relation, as depicted
in Figure 6. Likewise, the included part of the carry-out workload is represented as a
shaded box in the figure:

Case 1) min(e} (Oy), Ly, 0, (D;) mod Ty,) = el (Ox): We can further branch
into the following two sub-cases.

Case 1-1) min(e} (O + 1), Ly, (0,+1)(Di) mod Ty) = e} (O + 1) :

= Alcarryfout = egc(Ok) B eiﬂ(Ok + 1)

This is when both thread’s carry-out job is entirely included as workload, as
shown in Figure 6. The decrease of included carry-out job workload is eic(Ok) —
el (O, + 1), as formally shown above.

Case 1-2) mm(ei(Ok + 1), LTk(Ok+1) (Dz) mod Tk>

= LTk(Ok+1) (Dz) mod Tk .

This is an odd case when the included carry-out workload seems to decrease,
Le. Aéarry_out < 0. However, this is not true. It is because in this case, an addi-

tional body job must have existed for 7, (O + 1), and we intentionally left it out of

consideration from the body job’s proof. The existence of an additional job can be

1 i R,
20 N =4

shown in the following way: We know that el (Oy) > €l (Oy, +1). Also we know that

, L, D;
LLTk(?ILjC)(Dl)J S L k(o?l;l)()J frOanq. 14.

Because we are applying a same modulo 7} operations to both er(ok)(Di)

and L, 0,+1)(D;), the only way case 1-2) could arise is when LLT“OTi’;)(Di)J <

Lr (0,.,)(Di)
L@

Therefore for 7;,(O + 1), there is a carry-out job plus an additional entire body
job. Therefore, the carry-out workload always increases for this case.

Case 2) min(e}.(Oy), L., (0,)(D:) mod Ty,) = L., 0,)(D;) mod T}, :
We can further branch into the following two sub-cases.

Case 2-1) min(e} (Oy, + 1), Ly, (0, +1)(Di) mod Ty) = €} (O + 1) :

= Al L., 0p)(Di) mod Ty, — (O + 1) < €},(Of) — e} (Of + 1)

carry—out —

Case 2-2) min(e%(Ok—i-l), LTk(Ok+1)(Di) mod Tk) = LTk(Ok+1) (Dz) mod Tk :

= Alcarry—out
= L., (0,)(Di) mod Ty, — L, (0,+1)(D;) mod T},
= {D; — ¢}(Or) = (Tx — D)} = {Di — ¢,,(Ox + 1) — (T}, — Dy)}
= ek (Op) — ek (Op + 1).
In all above cases, Alcawy,out < €} (Or) — €} (O, + 1). Adding up Oy, threads,
we get Zzozk1 Alcm,ry,out < 2&1(62(016) —é! (O +1)). This, also according to Eq.
12 is smaller than or equal to the last thread’s workload e;Ok +1)(O+1). Therefore

the carry-out job’s workload always increases or remain the same.

Summing the results, all carry-in, body, and carry-out job’s workload increase

21 N FH L

Wi (0 +1),72(00) Wt (04),72(03)

Ok
O +1

D; — €}(0:)

D;

Figure 7: Change of workload bound from 7 to ; for O — Oy + 1.

with the increase of parallelization. Therefore the total workload of 75 within 7;’s in-
terval increases when the parallelization option increases, i.e. W, -, (O) < W5, -, (Op+
1).

For our last step, we will show using Figure 7. that the interference function
also increases with the parallelization option. In Figure 7, each horizontal bar rep-
resents 7;’s individual total workload inside Til’S interval, i.e. D;. Note that this in-
cludes all the workload from carry-in, body and carry-out jobs of 7. In the figure,

7 (Og)thread’s workload is represented as horizontal bar, and 74 (O + 1)thread’s
workload is shown as a shaded portion of the bar.

The interference function is defined in Eq. 4 as:

Ok Ok

—inter ference = .

WT]C,TZ‘ (Or) = § :WT}C(O;C),T}(OZ') = E mln(WT,i(Ok),Til(Oiw Dy, — eil (05)).
=1 =1

This means that for each bar in the figure, the part left to the dashed line D; — ez1 (O)

is counted as interference.

22 N =L

As we proved in the previous step, sum of the shaded area, i.e. W, -, (Ox + 1),
is larger than equal to the sum of the entire white bars (including the overlapping
shaded portion), i.e. Wy, -, (Oy). Thus 7;(Oy, + 1)’s last thread, depicted as dotted
shaded bar is larger than the white area surrounded by the thick solid line. The lemma

follows. OJ

To sum up all the above discussions, the schedulability condition of 7, can be
finally written, using both the monotonic increasing property of tolerance and inter-

ference as follows:

—inter ference —inter ference

WTk,Ti (Ok) < WTk,Ti (Ok +]‘) (17)

5 Optimal Parallelization Options Assignment Algorithm

In the previous section, two monotonic increasing property of parallelization free-
dom, and their trade-off has been introduced. As the parallelization option increases
for 7, its “tolerance” monotonically increases. However its “interference” to other
task 7; also increases.

This hints that a great way to make I'" schedulable, is to assign only the “barely
tolerable” option for each task 7 € T'. In other words, each tasks should try to keep
its parallelization option low, because increasing the option beyond its current need
is pointless, and would only result in interfering other task more.

This was an original motivation in [9], where task would start from lowest par-
allelization, i.e. no parallelization, and iteratively granted a “barely tolerable option”

over calculated current interference. This is called the *Optimal Parallelization Op-

23 N = L

tion Assignment (OPOA)’ algorithm. OPOA was originally targeted for global EDF
scheduling policy only. However we discovered that the requirement for OPOA, i.e.
monotonic increasing property of both tolerance and interference function also holds
for global FP case, and thus OPOA is directly applicable for the global FP case as
well. In the following we introduce the extended OPOA algorithm converted and
targeted for global FP.

An illustration of OPOA for global FP using two tasks 71, 72 is depicted in Fig

8. In each sub figures, the horizontal axis represent the received interference from all

. .y . Tint .
higher priority tasks, i.e. W;:L,Tekrference(Ok). The tolerance according to the paral-
N . .. w=tol o
lelization of each task is marked on the axis, i.e. WTZ 6mnce(Ok), and in this case the

maximum parallelization option is 4. Above the marked tolerance, the current chosen
option is shown with a check *checkmark’, indicating the task is parallelized into the
checked option.

Initially all tasks start with no-parallelization, which is shown in left-side of Fig
8(a). Next in Fig 8(b), task with highest priority is drawn, and its received interfer-
ence is calculated, and the value is marked underneath the axis with a triangle. This
case it is the first thread 71, and its received interference is zero, because it has the
highest priority among all. Then the option with barely schedulable tolerance for 7
is selected, which in this case is O; = 1. In Fig 8(c) this process is repeated for 7o,
but this time 7o experiences interference from 77 only, and thus 75 is raised to option
2 to tolerate the received interference.

The right side of Figure 8 shows when two or more tasks have the same priority.
In this case, 73 and 74 has the same priority, and thus iterative measure has to be

applied. Firstly, we calculate the received interference of both tasks. Note that 73

24 N = L

T

T4

T

73

Ta

TL

Ta

(¢]

ptolerance

interference

YrermesW

o

(2]

tolerance

Feraes W 0,)

L) piserane) wiierenc) Wy
(a) Initial setting

v O O

ieranes) iseranee g iserane gy

v

tolerance

W™ (1)

(@] O

tolerance

W) W,

T oerinies W50,

tolerance

W™ ()

4

W

©))

tolerance ptolerance

W @ Wy 3)

o

optolerance

W

interference

¥

Treraca W ©)
)
Trernca W 7"(0)

&

Wi)

O

wierane o)

"(3)

O

iserane gy

"(3)

et W7 (0)

tolerance

w.. (4)

Trerinca W7 (0)

(c) Second thread assignment

2

3

T4

T3

g

@)

telerance

@)

tolerance

o

teleranc

W, (1) W @ W 3) Wl ()

A Srerma W00
©) 4 (6] (@]
ke) kg e) ey

)

v

iseranes)

(d) First iteration 73 = my

o

iseranes)

o

rtolerance

Wi (3)

Sreracs Wm0,

o

tolerance

W, ()

A

o

W (1)

v

Wiskeranee)

o

terane 5y

tolerance

W™ (4)

(@]

terance g ioerance) taerance)

A,,
o

e} &

Snetma W 0)

Wickerance gy

A

v

teranee)

(e) Termination - schedulable

@)
W™ (2)

o

tolerance

Wi (3)

P et (7]

o

ptolerance

Wi (1)

Treraat W (0)

o

Wi (1)
e)

(f) Termination - not schedulable

Figure 8: Optimal parallelization option assignment

25

s W (0)

and 74 interfere each other mutually according to the selected option. If the received
interference exceeds the current tolerance for any task, we raise its parallelization
option likewise to the barely tolerable option Fig 8(e). This step is repeated until
one of the following condition is met: (1) For all tasks, its tolerances is greater than
its received interference Fig. 8(d) — schedulable case according to Eq. 19, or (2)
For any task, it reached its maximum parallelization but cannot tolerate the received
interference Fig. 8(f) — unschedulable case.

The pseudo-code in Algorithm 1 describes the OPOA algorithm for global FP.
The algorithm takes a set of tasks I" as input, and returns two outputs. 1) Schedulabil-
ity of the given task set and 2) Parallelization option combination Q, which represents
a parallelization option of each task when the task set is schedulable. The for-loop in
Line 1 through Line 5 calculates and stores the tolerance Wiilemnce(Ok) depends on
parallelization option Oy, according to Eq. 7. The initialization in Line 6 creates an
empty group G, where which means each task 7;’s schedulability is yet unknown.

The initialization in Line 11 creates an array Q" representing the current se-
lected parallelization option for each tasks, which currently all of them is initialized
as 1. The initialization in Line 12 creates an 'updated’ flag, which represents that at
some point in the following iteration some task option has been updated. The for-loop
from Line 13 to Line 31 check the schedulability for each task set g in same prior-
ity group mathbbGuntil it is decided ’schedulable’ or ’not schedulable’. Note that
each step starts from the next highest priority group. The while-loop from Line 14 to
Line 29 iteratively compares the tolerance and the step-wise calculated interference
of each task and will end when there is no more updates. For each iteration, Line

15 sets the "updated’ flag back to false, and at the end of the while-loop, if still "up-

1 ™
26 *" == L]

Algorithm 1: Optimal Parallelization Option Assignment (OPOA)
for global FP scheduling

Input: Set of tasks I' = 74,70, - -, 7
QOutput: (1) Schedulability, (2) Parallelization option combination
0= (OluOQa tC 7On)

for 7, € ' do

for O, =110 O;*" do

‘ W(Tk)tolerance(Ok) — Eq.7

end
end
initialize G < emptygroup
for 7, € ' do

| G[my].append(ry,)

end
initialize S < (Unknown, Unknown, - - -, Unknown)
initialize Q°“" + (1,1,--+,1)
initialize updated < True

L= B Y R N R S

—
N o= O

13 for next highest priority g € G do

14 while updated do

15 updated < False

16 O « Opr

17 for 7, € g do

18 S cromay, IR ey R 11
19 while W:zlerance((o)zur) < Znenmdﬂ_k Wf:jﬁ:}: ference(ofre) do
20 O™ «+— O +1

21 updated < True

2 if OF“" > O*** then

23 Sy < False and Q" < O™*

24 break //goto Line 17, continue with next 7y,
25 end

26 end

27 end

28 if any Sy, € S is False then

29 | break

30 end

31 end

32 if any S), € S is False then

33 | break

34 end

35 end

36 if any Sy € S is False then

37 \ return not schedulable

38 end

39 else

40 | return schedulable, O°*"

41 end

g
27 AT

dated’ flag is false, then we will terminate the while-loop. Line 16 copies and stores
the current parallelization option combination O§*" as O}". Then, the for-loop from
Line 17 to Line 27 calculates the total interference and increases the parallelization
options till the ’barely tolerable parallelization option’ of each task 7. Line 18 cal-
culates the total interference from higher or equal priority tasks using Eq. 11 with
previous parallelization option combination QP"¢. Then, the while-loop from Line
19 to 26 compares the tolerance with the calculated interference. If the tolerance is
smaller, then Line 20 increases the parallelization option OF"" one at a time and Line
21 sets the ’update’ flag as true. Line 22 checks whether OF"" exceeded the limit
O™ and when it does Line 23 sets S, as a false, meaning the task is unschedula-
ble and OF"" back to O™?*. Also in such case Line 24 breaks the while-loop from
Line 19 to Line 26 and goto Line 17 to continue with next 7 to calculate rest of the
tasks before terminating. After checking all task inside the priority group g, Line 28
checks whether any Sj, € S was false, and if true it breaks the for-loop from Line 17
to Line 29 and goto Line 30 then breaks the while-loop from Line 14 to Line 29 and
finally return "not schedulable’ in Line 33. If all S, € S was true, however, we goto
Line 29 to check the updated’ flag. If "updated’ flag is true then we goto Line 14 to
continue iteration. After the while-loop from Line 14 to Line 29. The if-else state-
ment from Line 32 to Line 36 returns the output ’schedulable’ or 'not schedulable’.
And if the output is ’schedulable’, then the parallelization option combination Q“"
is also returned.

Instead of exhaustive search, Algorithm 1 executes a one-way search in the for-
loop from Line 13 to Line 31 using the monotonic property of both tolerance and

interference. For n tasks with maximum O™%* parallelization option, the maximum

1 ™
28 *" == L]

increase of options is at most n - O™**, The maximum number of group g € G is
n, hence O(n) complexity. And the for-loop from Line from 17 to Line 27 is O(n?).
In each iteration, the algorithm calculate the interference in Line 18 with the time
complexity of O(n) for all n tasks by the for-loop form Line 17 to Line 27. Therefore,

the overall time complexity of Algorithm 1 is O(n*).

6 Experiment

6.1 Simulation Results

In this section, we show the performance of the proposed OPOA for global FP al-
gorithm through results from extensive simulation [7]. For our simulation, a total of
109 different task sets were evaluated. Each task 7, = (7k, T, Dy, €,) was gener-
ated in the following way: (1) 7 randomly drawn from uniform integer[0,10]. (2) T}
randomly selected from uniform[500,3000]. (3) Dy, drawn from uniform[400,7}].
(4) Execution time table e; constructed with eé(Ok =1) = Cx(Op = 1) =
uni form[300, 1000]. (5) Thread execution time of higher parallelization option O+

1,VOg,1 < O < m,C(O + 1) is computed using (O, — O + 1) =

Cr(Ok+1)—Ci(Ok)
e, (Ox)—ep (Op+1) >

i.e. Eq. 10. (6) Cx (O + 1) is divided into Oy + 1 threads by Uni-
fast algorithm [15], and those threads are sorted in descending order of their thread
execution time, i.e., ei(Ok) > eﬁc(Ok +1),Vl,1 <1< O.

Using the task generated by the above method, each task set is created in the

following way: (1) Create an empty task set I'. (2) Generate a new task 73, and append

Cr(1)
Tl Ty

to I'. (3) Check whether I" passes necessary schedulability test, i.e.) <

m. (4) If it passes the test, sort I' in descending order of each tasks priority 7y, and

1 ™
29 " gl |

schedulability

mours
e single
4 max
xrandom

task set utilization

(@) a(O, O +1) = 0.3

schedulability

=ours =ours
esingle e single
A max 4 max
xrandom > xrandom

schedulability

task set utilization task set utilization

(b) (O, 0r +1) =0.8 (©) a(Ok, O + 1) = 0.3, 20% tightened deadlines

Figure 9: Simulation result with m=4 CPU cores.

return I'. Afterwards, repeat from step (2). (5) If I fails the necessary test, discard I,

and start anew from step (1).

We run the simulation using the generated task sets with m=4 CPU cores, and

compare the schedulability result of the following four different parallelization ap-

proaches:

sent the task set utilization Uy, =)

Ours: Each task parallelized using Algorithm 1

Single: No-parallelization. All task, single threaded.

e Max: Maximum parallelization. Every task is parallelized into the maximum

possible parallelization option, i.e., O = O™ =m.

from uniform [1, O™*].

Random: Each task is parallelized with randomly chosen parallelization option

The experiment result is shown in Figure (9) In each sub-figures, the x-axis repre-

roer Ck(1), and the y-axis represent the schedu-

lability. Fig 10(a) compares the schedulability of the four approaches when the par-

allelization overhead a(Oy — Oy + 1) = 0.3 for every O < O™ = m = 4.

First comparing “Single” and “Max”, we can see that while “Max” shows better per-

¥ i]
30 M=

formance in the low task set utilization region, it performs poorly at high task set
utilization region, and the trend flips for the “Single” approach, where it performs
better at high utilization. This shows that in low utilization, the schedulability is
mostly affected by deadlines, and thus reducing the execution time of the threads
by parallelizing into higher option is advantageous. On the contrary, in the case with
higher utilization, schedulability is mostly shaped by the number of tasks that are in
the system. Therefore keeping the number of threads small by reducing paralleliza-
tion option is a better strategy. “Random” performs in-between “Single” and “Max”.
“Ours” significantly out performs in all task set utilization. This is because the OPOA
algorithm assigns optimal parallelization option through balancing trade-off relation
of tolerance and interference.

Fig 10(b) shows the result parallelization overhead is much higher, i.e., (O —
Or + 1) = 0.8 for every O < O™ = m = 4. Looking at “Single”, it is not
affected by higher parallelization overhead, since no thread undergoes parallelization.
On the other hand, performance of “Max” is greatly hindered, because benefiting
from parallelization became much harder. “Random” is between “Single” and “Max”.
Here, “Ours” is also affected by the high parallelization overhead, but still performs
much better than any other approaches.

Fig 10(c) shows the result when all task’s deadline is tightened by 20%. This
emphasizes the deadline’s effect to the schedulability. Thus for “Single” strategy,
since each thread’s execution time is large, is greatly affected by the reduced deadline,
with highly reduced performance compared to previous experiments. However the
“Max” strategy, which is affected less by the reduced deadline, performs similarly to

the base experiment, i.e. Fig 10(a). “Ours” is similarly affected but still performs best

1 ™
31 *" == L]

single-2 single-3 single-4

- -
£ 300000 | £ w0000
] g % 200000
{ - {
] Z 2 1500000
1000000 1000000 o
| H‘ | ||| | | -
[T RETTOTRA SRR TEATTAN) ¥
(- max-2 max-3 max-4
£ 200000 ¥ § oo £ 200000
gmm g Emm émmm
2 10000 e £ 50000 £ 1500000
ours-1 ours-2 ours-3 ours-4
£ 200000 - ¢ 00000 £ 00000
;mnmx)o ; g é?uumxm
8 1500000 § oo g £ 1500000
| II‘H‘ |\||||||| |||||| [l

Figure 10: Implementation results

in all utilization.

6.2 Implementation Results

To justify the practicality of our proposed approach, we implemented real-time task
sets using Linux kernel 4.19 with PREEMPT _RT patch. The tasks are scheduled ac-
cording to G-FP (SCHED_RR) scheduler on PC with Intel Core i7-8700 CPU (6-
cores). We use CPUSET to set the running of our tasks in m = 4 cores, fix the clock
frequency at 3.20 GHz, and disable GPU.

On this system, we execute the four real programs used for autonomous driv-
ing, (1)71: sensor read program emulating a multi-channel camera module, (2) 72:
lane tracking program used by Autoware, (3) 73: darknet-based object detection and
labeling program used by APOLLO, and (4) 74: steering actuation program emulat-

ing PID motor controller. Their minimum inter-release times and deadlines are set

32 : ’H & L ¢

as (T1 = Dy = 2500000), (7> = Do = 2500000), (T35 = D3 = 2300000), (T =
D, = 2000000), where the time units is ys.

Fig. 10 shows the measured response times of the largest thread 7']% (Og) of each
task 7. In each graph, the x-axis is the release time of each job and the y-axis is its
corresponding response time. The horizontal line on each graph is the deadline Dy
and if the response time exceed this line, it means a deadline violation. In "’single”, we
can observe many deadline misses of 7; and 74. This is because they are heavy work-
load tasks and without parallelization, their execution times are longer than deadlines.
In ’max”, the 71’s and 74’s deadline misses decrease because of the parallelization but
now we observe deadline misseds of the 79 and 73 due to the increased interference.
On the other hand, we can observe that “ours” meet all the deadlines of all the four

tasks by optimal parallelization.

7 Conclusion

In this paper, we presented an algorithm that optimally assign parallelization option
for global FP. To do this, we extended the BCL schedulability condition for tasks with
parallelization freedom scheduled with global FP. Next, a trade-off relation of a task’s
tolerance and interference was identified, by deriving a monotonic increasing prop-
erty of parallelization. Using the properties, an optimal parallelization assignment
algorithm for global FP with polynomial time complexity was derived. Through ex-
tensive simulation we showed a significant improvement of schedulability. Our plan
is to extend the approach to accommodate other schedulers, and to other task models

such as a DAG model [17].

1 ™
33 *" == L]

References

(1]

(2]

(3]

[4]

[5]

[6]

[7]

J. H. Anderson and J. M. Calandrino. Parallel real-time task scheduling on
multicore platforms. In 27th IEEE Real-Time Systems Sympo-sium, RTSS ’06.

IEEE, 2006.

Andersson and Jonsson. Fixed-priority preemptive multiprocessor scheduling:
to partition or not to partition. In 7th International Conference on Real-Time

Computing Systems and Applications, RTCSA °00. IEEE, 2000.

Ayguade, Copty, and Duran. The design of openmp tasks. IEEE Transactions

on Parallel and Distributed Systems, 20:404—418, 2008.

TP Baker. Multiprocessor edf and deadline monotonic schedulability analysis.

In 24th IEEE Real-Time Systems Symposium, RTSS °03. IEEE, 2003.

Bertogna, Cirinei, and Lipari. Schedulability analysis of global scheduling al-
gorithms on multiprocessor platforms. IEEE Transactions on Parallel and Dis-

tributed Systems, 20:553-566, 2008.

Bertogna, Marko, and Cirinei. Improved schedulability analysis of edf on mul-
tiprocessor platforms. In /7th Euromicro Conference on Reallime Systems,

ECRTS 05, pages 209-218. IEEE, 2005.

Bini and Buttazzo. Measuring the performance of schedulability tests. Real-

Time Systems, 30:129-154, 2005.

34 x—g N :.-_ -:I

[8]

[9]

[10]

[11]

[12]

[13]

[14]

J.-J. Chen and S. Chakraborty. Partitioned packing and scheduling for sporadic
real-time tasks in identical multiprocessor systems. In 24¢h Euromicro Confer-

ence on Real-Time Systems, ECRTS’12. IEEE, 2012.

Youngeun Cho, Dohyung kim, Daechul Park, Seungsu Lee, , and Chang-Gun
Lee. Conditionally optimal parallelization for global edf on multi-core systems.

In 40th IEEE Real-Time Systems Symposium, RTSS °19. IEEE, 2019.

Guo, Santinelli, and Yang. Edf schedulability analysis on mixed-criticality sys-
tems with permitted failure probability. In 21st International Conference on
Embedded and Real-Time Computing Systems and Applications, RTCSA ’15.

IEEE, 2015.

S. Funk J. Goossens and S. Baruah. Priority-driven scheduling of periodic task

systems on multiprocessors. Real-time systems, 25:187-205, 2003.

Kim, Cho, et al., and Han. System-wide time versus density tradeoff in real-time

multicore fluid scheduling. IEEE Transactions on Computers, 18:7, 2018.

Kwon, et al., and Lee. Multicore scheduling of parallel real-time tasks with
multiple parallelization options. In 21st IEEE Real-Time and Embedded Tech-

nology and Applications Symposium, RTETAS *15. IEEE, 2015.

Kato Lakshmanan and Rajkumar. Scheduling parallel real-time tasks on multi-
core processors. In 31th IEEE Real-Time Systems Symposium, RTSS °10. IEEE,

2010.

35 x—g N :.-_ -:I

[15]

[16]

[17]

[18]

[19]

(20]

F Markovic, J Carlson, and R Dobrin. Preemption point selection in limited
preemptive scheduling using probabilistic preemption costs. In 28th Euromicro

Conference on Real-Time Systems, ECRTS ’16. IEEE, 2016.

Daechul Park, Youngeun Cho, and Chang-Gun Lee. Conditionally optimal par-
allelization for global fp on multi-core systems. In 3th International Conference

on Information and Computer Technologies, ICICT °20. IEEE, 2020.

A. Saifullah, J. Li D. Ferry, K. Agrawal, C. Lu, and C. D. Gill. Parallel real-time
scheduling of dags. Transactions on Paralle and Distributed Systems, 25:3242—

3252, 2014.

Sheng, Gao, Xi, and Zhou. Schedulability analysis for multicore global schedul-
ing with model checking. In I1th International Workshop on Microprocessor

Test and Verification, IWMTV’10. IEEE, 2010.

A. Srinivasan and S. Baruah. Deadline-based scheduling of periodic task sys-

tems on multiprocessors. Information Processing Letters, 84:93-98, 2002.

Stone, Gohara, Shi, and et al. Opencl: A parallel programming standard for
heterogeneous computing. Computing in science and engineering, 12:66-73,

2010.

36 a1 i = L

p——

HE ol M ©of oF ® T S B o 1
R g o W oo A_%mww S
o) o B E %W%ﬂ»ﬂ = -
EEW%E_L%mo.Jﬂﬂ T
m B D B ool £ iy _1_mo B (b
o g B T 3 o W_. Ko =
M I A ,N»_n ool I oy o K]

™ ~

G TN L T
Y TR P Y
VR Lsd s lwg &
ﬂvaﬂEM_EIIamﬂﬂoﬁ

J w o 97 o ou o

Sk . P LB NP 3

mﬂmq}ﬁvq/__oa Jl_lﬂ_r_w —

= =¢ ° o o A X = .
nwl N iy i op ¥ M=o S

ﬁaﬁo@ﬂ‘_ﬂﬁﬂ_ ,._._|__o =
T oy B W 7o & ®ON- 0

- N *

W&Eﬂﬂﬂﬁoﬁmm ,_Wﬂ

O.mﬂo_umtw_draouﬂoamaw. (i
‘DIA_IﬂAIwr]L%_j‘MO Tll]Dl ,w.o
A T oo U S g R - N = I
_ﬂ_ﬂ%ae,ﬁmom_mrb@moﬂu._ W S
ﬂ.ﬂ%mo%mammﬂ_'drlw_%&m =
ﬂ__H| 9_ U =) _7A X

I EE L EERE LR g
= A >
SizrEZczIze g

T ohE R oW <
ﬂ%%@rg_ﬂzgﬂw;ﬁaﬁ N %

	1 Introduction
	2 Problem Description
	3 Global FP Extension of BCL Schedulability Analysis for Tasks with Parallelization Freedom
	3.1 Overview of BCL Schedulability Analysis for Global FP
	3.2 Extension of BCL Schedulability Analysis for Tasks with Parallelization Freedom

	4 A Trade-Off of Parallelization: Tolerance VS. Interference
	4.1 Monotonic Increasing Property of Tolerance
	4.2 Monotonic Increasing Property of Interference

	5 Optimal Parallelization Options Assignment Algorithm
	6 Experiment
	6.1 Simulation Results
	6.2 Implementation Results

	7 Conclusion
	References

<startpage>8
1 Introduction 1
2 Problem Description 3
3 Global FP Extension of BCL Schedulability Analysis for Tasks with Parallelization Freedom 5
 3.1 Overview of BCL Schedulability Analysis for Global FP 6
 3.2 Extension of BCL Schedulability Analysis for Tasks with Parallelization Freedom 9
4 A Trade-Off of Parallelization: Tolerance VS. Interference 11
 4.1 Monotonic Increasing Property of Tolerance 11
 4.2 Monotonic Increasing Property of Interference 13
5 Optimal Parallelization Options Assignment Algorithm 23
6 Experiment 29
 6.1 Simulation Results 29
 6.2 Implementation Results 32
7 Conclusion 33
References 34
</body>

