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Abstract

Design of Mobile Personal

Workout Assistant Using Deep

Learning
Gwanmo Park

Department of Computer Science and Engineering

Seoul National University

Workout exercises are a crucial component of physical fitness, and

they are an integral part of many people's lives. Maintaining the

correct posture during the exercise is extremely vital as incorrect

postures can lead to ineffective sessions or even injuries. However, it

is not easy for non-experts to check on their postures. Not only is it

hard to have an objective look at their own postures, but they also

lack the proper knowledge. In this paper, we design a mobile personal

workout assistant, which helps users evaluate their squat postures

using only simple mobile devices such as smartphone. We designed a

pipeline in which the keypoint data are first extracted from the RGB

videos using a pose estimation algorithm, then analyzed using a deep

neural network model inspired by those used in action recognition

tasks. We collected a dataset of nearly 20,000 squat exercises to train

the model from scratch, and successfully created a classification

model with the test accuracy of 85%, suitable to create a prototype

mobile application which the users can utilize to check their postures.
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A user study aimed to evaluate the effectiveness of the application is

planned for future research.

Keywords: posture correction, neural network, mobile device, pose

estimation, deep learning
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1. Introduction
Workout exercises such as squat, push-up, and shoulder press, are a

crucial component of physical fitness and health. As such, many

people regularly perform these exercises, making them an integral

part of their lives. To reap meaningful benefits from workouts,

however, maintaining proper posture is vital. Incorrect postures can

activate wrong muscles or apply unwanted pressure on the body,

leading to ineffective sessions or even injuries. Unfortunately,

avoiding incorrect postures is not an easy task for most non-experts.

It is hard to view their own bodies from objective perspective, and

performing the exercise takes too much effort that they do not have

the leisure of checking their postures. Widely accepted solution for

this is to have someone else watch and give feedback. However,

non-experts often do not have the proper knowledge of correct

postures and can not give helpful feedback. Experts, on the other

hand, can give valuable feedback and increase the quality of workout

sessions, but they are in short supply and often require considerable

economic costs.

There has been a number of research on posture correction,

but most required special devices or used heuristic methods. In this

paper we aim to use deep neural networks to design a personal

workout assistant capable of giving feedback on squat postures using

only simple mobile devices such as smartphones. We use a

combination of pose estimation and video classification to analyze the

workout postures. The skeletal pose data is first extracted from RGB

video using an open-source pose estimation algorithm, which is then

used as the input to a classification network. We utilized network

architectures for action recognition tasks, modified to fit our needs. In

order to train a quality model, we created a dataset of about 20,000
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squat data performed by over 100 experts and novices, annotated by

experts. As the dataset contains more labels than what we used in

this paper, we expect that it can be in other interesting purposes.

2. Related Work
In this section, we organize the related work in three different areas:

posture correction, action recognition, and pose estimation.

2.1. Posture Correction

There has been various attempts to create a computer-aided posture

correction system. For example, Chen et al. [1] built a system which

analyzed workout posture using pose estimation, similar to our own.

However, they used geometric methods and dynamic time warping

using very small amount of data. Nike+ Kinect Training was a

fitness game for the Xbox 360 that used Microsoft Kinect, a

depth-sensing camera device [2]. Han et al. [3] proposed use of deep

neural network to analyze the skeleton data extracted using Microsoft

Kinect. Both [2] and [3] used a special device, and [3] did not

actually show the implementation.

2.2. Video Classification

For the classification model architecture, we adopted ideas from those

developed for video classification tasks. Specifically, we closely looked

into action recognition task, the identification of different actions from

video clips. It is similar to our posture classification task in that both

deal with a sequential data of a single action. Out task could be

considered simpler as we extract human skeleton data instead of

using the original video, significantly decreasing the size of input
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data. At the same time, the posture classification task is somewhat

more nuanced since it tries to spot a subtle difference between the

same action.

The state-of-the-art action recognition approaches could be

broadly categorized into two groups: single stream network and two

stream networks. LRCN[4] and C3D[5] uses single stack of layers to

learn spatiotemporal information. TwoStreamFusion[6], TSN[7],

ActionVlad[8], HiddenTwoStream[9], and I3D[10] all use separate

stacks for spatial and temporal streams. Of these we mostly adopted

the architectures that uses single stream network, because having

separate stacks for spatial and temporal streams loses its meaning for

us as we use the extracted keypoint data instead of images.

Specifically, we implemented a model that uses both LSTM blocks

(analogous to [4]) and temporal convolution layers (analogous to [5]).

More details on them will be given in section 4.

2.3. Pose Estimation

The field of pose estimation has seen a rapid growth in the past

decade. Early methods were based on depth images [11]. Nerual

networks were first used in 2014 by Toshev et al. [12], and Cao et

al. proposed a method for realtime multi-human 2D pose estimation in

2017 [13]. The method was further refined by Moon et al. by

identifying and fixing common errors in pose estimation systems [14].

Multi-human 3D pose estimation developed by Moon et al. in 2019

[15]. In our system, we used OpenPose[13], an open-source project

capable of detecting human body, hand, facial, and foot keypoints in

realtime, for 2D pose estimation process (see figure 1). We chose to

use OpenPose because it was well supported and the pre-trained

models are readily available.
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Figure 1. Example of OpenPose output. Image from www.github.com/CMU-
Computing-Lab/openpose

http://www.github.com/CMU-Computing-Lab/openpose
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3. Dataset
In order to train a quality model, we collected our own dataset of

squat exercise data with the help of the experts from the Sports

Science Department of Pusan National University. Total of 19,885

squats performed by 105 individuals were collected. Of those, 9,940

squats by 53 experts were classified as correct postures, and the

remaining 9,942 squats performed by 52 novices were classified as

incorrect postures. We specifically chose to collect incorrect postures

from novices instead of experts, because we wanted the incorrect

posture data to be representative of naturally arising postures, not the

ones forcefully created by the experts. We selected 17 arbitrary

individuals (from both experts and novices) to use their squat data as

the test set. Test set was split based on individuals instead of data

in order to ensure that the test set is comprised of entirely new data

from the individuals that were not included in the training set. We

expected that the squats performed by the same individual must

Figure 2. Sample data point from a single squat exercise. 3D keypoint 
data (rightmost) are actually recorded in CSV formats.

Correct Incorrect
Training Set 8,824 8,827

Test Set 1,116 1,115
Table 1. Composition of the dataset.
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share some amount of characteristics. The exact composition of

training and test sets are shown in Table 1.

We collected three different data from each squat: RGB video

recorded from the front, RGB video recorded from a right-side

diagonal direction, and the 3D skeleton data extracted from depth

images[11] recorded using Microsoft Kinect. Sample data is shown in

Figure 2. In addition to being classified into correct and incorrect

postures, each data point has ten supplementary labels. Four of these

labels are the metadata of the squat performer: age, gender, height,

and weight. Remaining six labels identify the specific parts of the

body that are considered incorrect: base of support, left knee, right

knee, torso, hip joint, and neck. These five body parts were identified

as the common causes of incorrect squat posture. All data were

labeled by the experts from the Sports Science Department of Pusan

National University. All of the individuals performed squats without

holding anything on their hand, because the algorithm used to extract

the 3D pose data often incorrectly identified the individual's arms or

hands if they were holding something.



- 7 -

4. Method

4.1. Pipeline

In this section we describe the pipeline of our system. Frist, the

videos recorded from the front are trimmed to accelerate the pose

estimation process. Then we use OpenPose to extract 2D skeleton

keypoints from the videos, but we only use certain portion of the

output (see Figure 3) as some parts of the body, such as arms, head,

and feet, do not have significant impact on the correctness of the

squat posture.

The keypoint data are normalized in the following way. A

reference frame is selected for each video among the first few frames

after a human is detected for the first time. We added the condition

about human detection as in some videos the individuals were not

standing within the camera frame at the start. The reference frame is

selected from early portion to ensure the highest chance that the

target is upright and standing straight in the reference frame. Once

the reference frame is chosen, a transform matrix that would map the

coordinate of the hip joint keypoint to (0, 0) and the length of the

torso to 1 in the reference frame is found and uniformly applied to all

the frames. This ensures the coordinates of the keypoints would fall

within a similar bound of values for every data point, and the

differences between the data points from individuals with differing

heights are relieved. To mitigate the inevitable errors from the pose

estimation we apply Gaussian filter with standard deviation 1 to each

keypoint sequence. This has the effect of smoothing out the

movement of each keypoint and suppressing any unexpected sudden

jumps. Lastly, we calculated the per-frame changes in the normalized

keypoint positions and use it as the input to the classification model.
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Figure 3. The full output of OpenPose (25 keypoints) on the right. The 
portion of the output we use (10 keypoints) on the left.
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If a person was detected in k frames of the video, for example, the

input tensor to the model would be of the size k-1 X 20. If the

person did not move at all throughout the video, the resulting input

to the classification model would be a tensor of all zeros.

The preprocessed keypoints data are then used as the input

of the deep neural network which classifies them as either correct or

incorrect postures.
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4.2. Model Architecture

We viewed out task (classification of squat postures) as a narrow

branch of the action recognition task, in which videos are classified

according to the actions being performed by humans in them. It is

better to have an understanding of the whole action instead of

per-frame information, so the temporal aspect of the data is crucial

for the task. As such, we borrowed some ideas regarding temporal

information from previous studies. Specifically, we combined the

concepts from LRCN[4] and C3D[5] to design a model with both

temporal convolution layers and LSTM blocks. Our architecture

consists of three 1-dimensional convolution layers, one bidirectional

LSTM layer, and one fully connected layer followed by a softmax

layer. The convolution layers have temporal kernel depths of 5, 3, and

Figure 4. Simplified illustration of the model architecture. Only one 
convolution layer is illustrated. 
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3, respectively. That is, on the first convolution layer, five

consecutive frames are convoluted to create new features, and on the

second convolution layer, three consecutive convolution outputs are

convoluted together, and so on. Single filter on the convolution layer

effectively extracts one feature from the consecutive frames. The

numbers of filters on the convolution layers are 32, 64, and 64,

respectively. The bidirectional LSTM layer has 64 outputs while the

fully connected layer has 32 outputs. The model was trained with the

Adam optimizer with learning rate 0.003 and dropout rate 0.3. These

parameters were found using a grid search which resulted in the

highest validation accuracy of 0.9866. Figure 4 shows a simplified

illustration of our model architecture. The hyperparameters, including

the number of layers and the number of filters, were found using a

grid search.
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Training
Accuracy

Validation
Accuracy

Test 
Accuracy

LSTM + 
Convolution

0.9929 0.9866 0.8498

LSTM Only 0.8712 0.8532 0.7613
Convolution 

Only
0.9546 0.9441 0.8203

Auto-ML - - 0.688
Table 3. Table of classification accuracies using various methods.

Training 
Accuracy

Validation 
Accuracy

Test 
Accuracy

Test 
Precision

Test 
Recall

0.9929 0.9866 0.8498 0.8713 0.8394

Table 2. The performance of our model.
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5. Evaluation
We evaluated our system on the test set described in Section 3. The

results are reported in Table 1. Our model achieved accuracy of

0.8498, precision of 0.8713, and recall of 0.8394. In addition to the

model described in Section 4, we also trained and evaluated models 1)

without the convolution layers and 2) without LSTM blocks. We did

not have a suitable baseline performance as we could not find any

prior work dealing with squat postures specifically. As such, we used

the results of Auto-ML Video Intelligence service of Google Cloud as

the baseline even though it was not designed for this particular task,

but it is still capable of classifying videos. The results are reported

in Table 3. The combination of LSTM blocks and temporal

convolution layers had the highest performance with test accuracy of

85%. Convolution-only method performed better (82% accuracy) than

LSTM only method (78% accuracy). This implied that the benefits of

temporal convolution layer is larger than those of LSTM blocks.

Auto-ML Video Intelligence service understandably had low accuracy

of 69%. The test accuracies are significantly lower than training or

validation accuracies for all three versions of our model. This could

be due to the overfitting on all three occasions, or it could mean that

the large number of the test set data is very different from the data

in the training set.
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6. Mobile Device Prototype
Lastly, we implemented a prototype workout assistant application for

mobile devices. It consists of two components: the server and the

mobile application client. The server receives a single squat workout

video each time, analyzes the posture through the pipeline, and

responds with the classification score (the output of softmax layer)

along with the received video but with the extracted keypoints

rendered on top (see figure 6). The client allows users to record their

squat posture and send the recording over to the server to have it

analyzed. When the user touches the 'start' button (see figure 5), the

recording starts 3 seconds afterwards to grand the user some time to

position themselves correctly. The recording ends automatically after

some amount time configured by the user, and the recorded video is

sent to the server. Visual and auditory cues are given to signify both

the start and the end of the recording session. When the client

receives a response from the server, the recorded video is shown to

the user along with the extracted keypoints and whether the posture

was 'good' or 'bad' (figure 8). The user can configure the

classification score threshold to adjust the 'difficulty' of the workout

session. The application is best used if the device is placed at a

height of around 130cm (or just below chest height) and far enough

from the user's workout spot to be able to capture the user's entire

body. The user obviously needs to be facing the camera just like the

videos used in training. The server was implemented with Python

and TensorFlow, while the client was implemented for android

devices using Android Studio.
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Figure 5. The UI design for the mobile 
application. Users can configure recording time 
and score threshold using the dropdown menu 
on the upper right corner.
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Figure 6. The dropdown menu.

Figure 7. The menu to change the recoding time. 
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Figure 9. The menu to change the threshold score. 
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Figure 8. The result screen of the mobile 
application.
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7. Discussion
Unfortunately, while our current system is able give feedback on the

posture with some level of confidence, it suffers from few critical

limitations. First, the model is not very robust. Placing the recording

device too high or too low can make it hard for the system to

correctly assess the posture, since the bent angles of the knees, for

example, may be significantly different depending on the device's

position. The model also completely fails if the user is not facing the

camera for obvious reasons. This could possibly be remedied if we

could accurately extract 3-dimensional keypoint data from simple

RGB videos. While there were several studies on the topic, as far as

we know, the state-of-the-art technique estimates 3-dimensional pose

from 2-dimensional pose, and we were concerned that the subtle

differences between correct the incorrect squat postures may be lost

in the estimation process.

Second, the model is not able to give tips about fixing the

incorrect postures. In the current form, it can only determine if the

posture is correct or incorrect, but that may not be enough for

beginners who lack the proper knowledge. In fact, our system cannot

even tell why the posture is incorrect. We attempted a multi-label

classification that not only classified the correctness of the whole

posture but also the correctness of each body parts listed in Section

3. However, the results were very unreliable. For example, because

majority of the incorrect postures (over 90%) were caused by

incorrect knees, the model simply classified any incorrect postures as

having incorrect knees. On the other hand, the base of support was

so rarely incorrect that the model never classified it to be incorrect.

Understanding why a deep neural network acts the way it does is a

hard problem, and integrating XAI techniques to the system may help
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with this issue.

Lastly, it is too hard to expand to other workout exercises.

Expanding the system to pushups, for instance, would require

collecting thousands of pushup data, which is extremely time and

energy consuming. Data augmentation would help reducing the

workload, but it may be trickier than it seems. Applying traditional

image/video data augmentation techniques (such as cropping or

changing color) may not yield meaningfully different 2-dimensional

keypoint data. Naively augmenting the keypoint data may result in

postures that do not happen naturally.
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8. Conclusion
In this work we design a mobile personal workout assistant using

deep neural network. We first collected a squat workout dataset with

around 20,000 data points. Then we devised a pipeline with two

stages: pose estimation and classification. We used OpenPose to

extract 2-dimensional human body keypoint estimation, and designed

a classification model inspired by models developed for the action

recognition task, We evaluated the performance of our system on the

test set. Lastly, using our system we implemented a mobile

application capable of giving feedback on squat postures using only a

simple mobile device.
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국문초록

스쿼트, 푸쉬업과 같은 운동은 건강을 유지하는 역할을 하며 많

은 사람의 삶에 중요한 부분을 차지한다. 이 같은 운동을 할 시에는 올

바른 자세를 유지하는 게 중요한데, 특히 근육운동의 경우 잘못된 근육

을 사용하거나 몸에 필요 이상의 압박을 주어서 운동의 효과를 받지 못

하거나 심지어는 부상이 생길 위험도 있다. 문제는 비전문가들의 경우

본인의 자세를 확인하기가 어려울 수 있다. 운동 중 본인의 몸을 객관적

으로 보기도 어려울뿐더러 올바른 자세에 대한 지식이 없는 경우도 많

다. 본 연구에서는 스마트폰과 같은 간단한 모바일 기기만으로 사용자의

스쿼트 자세에 대한 피드백을 줄 수 있는 모바일 운동 도우미 시스템을

고안한다. 본 시스템에서는 먼저 모바일 기계에서 촬영된 RGB 영상으로

부터 포즈 추정 기술을 사용, 관절 위치를 계산한 뒤, 딥러닝 네트워크를

사용해 자세의 올바른 정도를 분석한다. 여기서 사용되는 딥러닝 네트워

크는 기존의 행동인식 네트워크를 참고하여 디자인되었고 20,000개가량

의 스쿼트 데이터로 만든 데이터셋을 사용해 학습되었다.

주요어: 자세교정, 인공 신경망, 모바일 기기, 포즈 추정, 딥러닝

학번: 2018-23020
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