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Abstract 

Factors Affecting the Adoption of  

Innovative Durable Household Goods:  

Cases of EV and PV in Korea 

 

Kim, Eunsung 

Technology, Economics, Management and Policy Program 

The Graduate School 

Seoul National University 

 

 

Electric vehicles (EV) and residential photovoltaic (PV) panels are both decentralized energy 

resources and innovative durable household goods that can induce structural changes in the 

process of production and consumption of energy—that is, moving from a supplier-oriented 

system to a consumer-oriented system—as well as fulfilling the need for a low-carbon future 

due to climate change. The widespread adoption of these innovative technologies is a 

prerequisite for this transition of the energy system, which will open the doors to possible new 

business models and successful innovations in the energy industry. 
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Recognizing the importance of consumers’ adoption of these technologies, economic 

incentive-oriented innovation diffusion policies have been implemented in Korea during the last 

couple of decades, and studies have attempted to elucidate what drives consumers to decide to 

adopt them. 

Previous studies mainly investigated stated preferences through surveys due to the 

characteristics of emerging markets. A study analyzing revealed preferences is significant in that 

such research enables the discovery of new findings that go beyond those of stated preference-

based research through comparisons and contrasts with survey-based studies. Therefore, in this 

study, actual adoption data of EVs and the veranda-type solar mini power plant (mini-solar PV) 

were analyzed. In addition, the demand for these two innovative durable goods is highly 

influenced by the characteristics of consumers in a certain country, domestic market conditions, 

electricity rate structure, and policies regarding diffusion, so international comparative analyses 

face inherent limitations.  

Since the adoption of EVs and mini-solar PV yields count data consisting of consumer 

choices, the analysis was conducted using a Poisson regression model and negative binomial 

regression model. Chapter 2 analyzes the factors that encouraged consumers’ EV adoption from 

2013 to 2017 in each first-tier administrative division. Whereas academia and the media have 

mainly focused on subsidies and charging infrastructure construction, the analysis showed that 

the technological excellence, as represented by the range per full charge, had a strong positive 

impact on EV adoption. 

As charging takes a long time relative to refueling an internal combustion engine vehicle, the 

number of chargers divided by the number of EVs registered in each first-tier administrative 
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division was used as a proxy variable representing public charging infrastructure, but negative 

and insignificant results were found. Meanwhile, the robustness test using the number of 

chargers divided by the area of the first-tier administrative division as a proxy variable showed 

positive and significant results. Since public fast chargers were not frequently used in practice 

by EV owners and there was a generous amount of non-public level 2 chargers during the study 

period, we can conclude that the presence of public fast chargers in the vicinity relieved the 

range anxiety of potential adopters of EVs and induced them to purchase an EV. 

In Chapter 3, the factors affecting mini-solar PV adoption in Seoul Metropolitan City from 

2014 to 2018 were analyzed. Mini-solar PV units are much smaller than typical residential solar 

PV units, but can be mounted on the veranda even when living in an apartment without a roof 

upon which solar panels could be installed, making them suitable for residential sectors in dense 

cities such as Seoul. The efficiency of PV panels had a strong positive effect on citizens’ 

adoption of mini-solar PV, confirming that technical excellence was the most important factor 

in adoption, as in the case of EVs. This can also be found in surveys of the adopters of mini-

solar PV, where the need for improved panel efficiency was identified as the highest-priority 

need for future improvements to facilitate the widespread adoption of mini-solar PV. 

In contrast to previous studies, however, income-related variables did not explain the 

adoption of mini-solar PV. This can be interpreted in light of the finding that owner-occupancy 

was a more important factor; this is because a solar panel, once installed, is not easy to transfer 

to another residence. This tendency also reflects residence patterns in Korea. Eco-friendliness 

had a significant positive effect on the adoption of mini-solar PV, but no significant effect on 

the adoption of EVs. This can likely be explained by the relatively low price of mini-solar PV 
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compared to EVs and the tendency for consumers to be less sensitive to operating costs than to 

the initial purchase cost. 

This study is of considerable academic significance in that actual data for EVs and PVs were 

analyzed. However, this also is a weak point of this study, because the limitations of the data 

prevented us from conducting more sophisticated analyses. The results of this study can provide 

insights into how to explain consumers’ decisions to adopt innovative household durable goods 

as the EV and PV markets mature in the future. 
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Chapter 1. Introduction 

 

1.1 Background and Motivation 

 

The complete technology lifecycle should be considered when evaluating the success of an 

innovation [IRENA, 2017]. Of the enormous amount of technology innovations that have 

occurred in the energy sector since the 2000s, it is indisputable that electric vehicles and 

photovoltaics (PV), especially residential solar PV, are two of the most notable and game-

changing innovations. As increasingly many consumers adopt each innovation and reach a 

“critical mass,” the diffusion of innovations will become self-sustaining [Rogers, 1962] and the 

transition of the energy system will take place. 

Several agencies and companies are touting rosy prospects (Figure 1) [IEA, 2018; OPEC, 

2017; BNEF, 2018; BP, 2018; ExxonMobil, 2018], but despite solid governmental support, the 

proportion of electric vehicles worldwide remains only at around 2.2% [IHS Markit, 2019], and 

the proportion of electric vehicles in Korea is only 0.24%. Some progress has been made on 

utility-scale solar PV. The levelized cost of electricity of solar PV has reached grid parity in 

certain countries, and solar PV also accounts for a significant proportion of installed capacity 

and generation. However, residential solar PV has not progressed to the same extent. It has been 

relatively successfully deployed in some countries, such as Australia, Germany, the United 

States, and Japan, but utility-oriented solar PV still predominates in most countries, including 

Korea. 
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Figure 1. Electric vehicles outlook by 20401 

 

  

                                                      

1 Source: Bloomberg NEF 
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Residential solar PV is a decentralized energy resource (DER) that enables consumers to 

generate and consume electricity in the same place, thereby opening the doors to possible new 

business models and successive innovations in the energy industry, along with smart meters and 

battery storage. Recently, in countries such as Australia, battery companies such as Tesla and 

Sonnen have started to operate virtual power plants by connecting hundreds of thousands of 

residential solar PV installations and batteries. Electric vehicles also belong to DER in the broad 

sense, and although they are still in incubation, various ideas based on bi-directional power 

transfer such as V2G using electric vehicle batteries have been proposed by high-tech startups. 

The widespread adoption of innovative consumer technologies is a prerequisite to induce 

fundamental changes in the energy industry—that is, from a supplier-oriented system to a 

consumer-oriented system—as well as to fulfill the need for a low-carbon future due to climate 

change. 

As mentioned earlier, several demand-side innovations have occurred in the past decades, 

especially in the residential sector. The efficiency of home appliances has improved 

tremendously, LEDs have shown superior performance in terms of performance and energy 

efficiency in the lighting field, and batteries have changed electricity, from a “use-it-or-lose-it” 

good into a storable good. 

However, although they reduce energy use in the residential sector by a significant amount, 

it is difficult to say that high-efficiency home appliances and LEDs are game-changing 

innovations and that their adoption will lead to further changes in the energy industry. Batteries 

are a key technology in energy transition, but due to the stable power supply in Korea, battery 

installation in the domestic sector has not been feasible, and there has not been government 
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support for battery installation in households (Table 1). 

Therefore, this study investigated the factors associated with consumer adoption of electric 

vehicles and residential solar PV in Korea. From a methodological standpoint, this study is 

significant in that it used actual consumer adoption data. Several previous studies have analyzed 

factors associated with electric vehicles and residential solar PV adoption, but extensive research 

on this topic has not yet been conducted in Korea. Since the market has been only established 

within the last few years and is still in its infancy, there are no readily available data; therefore, 

most studies have analyzed stated preferences based on surveys or used simulations to make 

predictions about the future. 
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Table 1. Demand-side innovations in energy technologies in Korea 
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However, setting aside the limitations of specific surveys themselves, there is a tremendous 

gap between people's intention to adopt and actual adoption; therefore, research based on 

revealed preferences is essential. For example, according to a survey of the Korea Consumer 

Agency regarding residential solar PV, 60.6% of 1,000 non-residential PV households said they 

were willing to install residential solar PV systems. However, as of 2017, the share of households 

with installed residential solar PV is only 0.23%. As the most prominent piece of evidence 

regarding this point, the proportion of detached houses in Korea in which it is possible to install 

residential solar PV with a size of 3 kW or higher was only 23.1% as of 2017, and the ratio is 

gradually decreasing over time throughout the nation. Therefore, this study analyzed revealed 

preferences to review whether the stated preferences of consumers actually lead them to decide 

to purchase the products, and if not, why.  

Second, it is significant that this dissertation analyzes these issues in Korea. Of course, 

several cross-country analyses have been published in the previous literature. However, it must 

be kept in mind that each country has unique characteristics in terms of both electric vehicles 

and residential solar PV adoption, including both consumer characteristics and policy 

differences that affect the market. Therefore, a meaningful comparison between countries must 

consider these country-specific characteristics. 

The automobile market is an excellent example of a market with very different characteristics 

across countries. Even in a comparison of Korea to China and Japan, which are its closest 

neighbors, there are considerable differences in the models, brands, size, and body type of cars 

that consumers prefer. These differences are even more evident when a comparison is made to 

other major countries around the world.  
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Each country also has unique circumstances regarding residential solar PV. In addition to 

variation in solar irradiance according to geographic conditions, the compensation that 

consumers receive from residential solar PV installations depends on electricity prices and 

schemes. In countries with low irradiance, such as those in northern Europe, because there is not 

much excessive generation, the main compensation mechanism is only to save on bills through 

self-consumption; therefore, unless the system price is low enough and retail rates are high 

enough, consumers do not have an economic incentive to install the system. In contrast, in Spain, 

there is excessive generation due to high irradiance, and the profits obtained by retrieving it are 

high; therefore, the payback period is sufficiently shortened without much governmental support. 

In Spain, after installation, consumers showed a pattern of selling electricity when the retail rate 

was high and using electricity from the grid when the retail rate was low. 

Considering these two points, this study is significant as a starting point for analyzing what 

actually drives consumers to adopt electric vehicles and residential solar PV in Korea. Based on 

these findings, it will be possible to analyze the effects of relevant policies. 
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1.2 Research Frameworks and Thesis Outline 

 

In this study, I investigate the factors associated with adoption of electric vehicles and mini-

solar PV in households, which are consumer durable innovations in the energy industry. Due to 

the difficulty of acquiring data about the diffusion of technological innovations, the existing 

studies have mainly focused on surveys, and limited research has been based on actual data. 

However, survey-based research faces the limitation that consumers’ purchasing intentions do 

not necessarily lead to purchase decisions. Thus, the aim of this study is to evaluate real-world 

conditions more accurately by analyzing actual decision-making factors using actual adoption 

data. 

 

1.2.1 Innovation Adoption and Adopter Categories 

 

The diffusion of a technological innovation is ultimately a question of whether consumers 

will adopt the innovation. Therefore, diffusion and adoption can be viewed as different 

perspectives on a single problem.  

Research into the diffusion of technological innovations can be broadly divided into macro 

and micro perspectives. In the macro perspective, research focuses on when and how much 

innovations diffuse, with a consequent emphasis on forecasting the demand for new technologies 

[Massiani & Gohs, 2015; Chien et al., 2010; Guidolin & Mortarino, 2010], or the diffusion of 

technology at the country or firm level [Sierzchula et al., 2014; Marques et al., 2010; Lee et al., 

2006; van Everdingen et al., 2005; Ganesh & Kumar, 1997]. 
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In the micro perspective, research focuses on who adopts an innovation and why they do so. 

Because of its usefulness from the marketing point of view, the micro perspective has been 

extensively studied in the business literature. Within the field of innovation-diffusion studies, 

micro-perspective research at the individual or household level is relatively underrepresented 

compared to macro-perspective research. Micro-perspective studies are mainly based on surveys 

because it is difficult to obtain actual purchase status and related data. However, the importance 

of research based on actual purchasing data is being increasingly recognized because consumers’ 

purchasing intentions do not necessarily lead to purchasing decisions. 

Categorizing adopters according to the timing of adoption has frequently been addressed in 

the theoretical literature on diffusion. Although several classification methods have been 

proposed [Zhu and He, 2002; Valente, 1993; Mahajan et al., 1990; Rogers, 1983], a consistent 

finding is the existence of innovators/early adopters who embrace innovation in the early stages 

of technology diffusion and play a very important role in the subsequent diffusion process 

[Martinez et al., 1998]. 

Adopters can be grouped into categories, in such a way that a given category reflects 

individuals that are homogeneous with each other and heterogeneous with respect to all the other 

categories [Martinez et al., 1998]. Demographic and socio-economic variables have most 

frequently been examined in existing research [Cheng et al., 2004; Martinez et al., 1998; 

Martinez & Polo, 1996; Greco & Fields, 1991; Mahajan et al., 1990; Dickerson & Gentry, 1983; 

Ostlund, 1974]. While a few of these studies [Martinez & Polo, 1996; Ostlund, 1974] could not 

confirm that these variables significantly distinguished adopter categories, most of these studies 

[Cheng et al., 2004; Martinez et al., 1998; Greco & Fields, 1991; Mahajan et al., 1990; Dickerson 
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& Gentry, 1983] confirmed that demographic and socio-economic variables are significantly 

related to adoption behavior [Martinez et al., 1998]. In general, innovators are 1) financially 

stable, 2) capable of understanding and applying complex technologies, 3) capable of coping 

with uncertainties in new technologies, and 4) adventurous. 

Independent adoption is vital in the early stages of the life cycle of a new product, simply 

because someone must initiate word-of-mouth communication. To reach a broad spectrum of the 

market within a reasonable time frame, more than just a handful of individuals are needed. To 

initiate market adoption, marketing planners need to be able to identify those people most likely 

to access the product or service independently (in the absence of word of mouth, presumably on 

the basis of mass-media input) and tailor appeals to them, so as to ensure that they hear about it, 

adopt it, and spread the word to others [McDonald & Alpert, 2007]. 

 

1.2.2 Consumer Durables Innovation and Households’ 

Purchase Decision 

 

It is important to identify which consumers buy the innovative consumer durable goods in 

the early stages of diffusion, innovators or early-adopters, in order to study whether those 

innovations will become dominant products that will spread to the entire population. 

Traditionally, neo-classical and ecological economists saw consumer demand as coming from 

private preferences and simply considered it as 'revealed' through their actual choice behavior. 

This view made it possible to analyze the economic system without considering preference 

formation or preference change. As a result, policies aimed at changing consumption patterns of 
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people have become heavily relied on price instruments such as tax exemptions and subsidies 

rather than on policies that may affect people’s preferences [Faber & Frenken, 2009]. 

Consumer durables are characterized by 1) high price, 2) long replacement cycles, and 3) 

time-consuming in information exploration. In marketing literature, it is sometimes said that the 

product involvement is high. The electric vehicles and mini solar power plant on veranda 

(hereinafter, mini-solar PV) analyzed in this thesis also share the same characteristics as these 

consumer durable goods. Moreover, purchase of the electric vehicle or mini-solar PV require 

high upfront cost, but continuous operation cost saving occurs over a long period of time.  
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1.3 Methodology 

 

Two main points must be considered when analyzing count data. The first question is which 

probability mass function best describes the event occurrence probability, and the other is how 

to estimate the model to derive a consistent and optimally efficient estimator. 

The standard model used as a starting point in count data analysis is the Poisson maximum 

likelihood estimation (MLE) model, which is explained in the next section in detail. The Poisson 

regression model contains the assumption of equidispersion, and is the most efficient estimator 

for MLE. However, the estimation is inconsistent if the probability mass function is not specified 

correctly.  

In most cases where the equidispersion assumption is violated, overdispersion occurs rather 

than underdispersion. The main reason for overdispersion is that unobserved heterogeneity is 

not controlled properly. To overcome this problem, an unobserved heterogeneity term (ν) can be 

incorporated into the single parameter μ in a Poisson regression model. 
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1.3.1 Poisson Regression Model 

 

A Poisson regression model is regarded as the fundamental starting point for the analysis of 

count data [Greene et al., 2012]. The Poisson distribution is exponential family of distributions. 

When the number of trials is very large and the probability of occurrence is very small in a 

binomial distribution, it can converge to a Poisson distribution. The basic Poisson regression 

model assumes that y  given 𝕩 ≡ (𝑥1,⋯ , 𝑥𝐾)  has a Poisson distribution. The binomial 

distribution converges in Poisson regression model with increasing number of trials [Hilbe, 

2011]. The probability mass function (pmf) of a Poisson distribution is as follows. 

 

 Prob(Y = 𝑦𝑖|𝑋𝑖) =
𝜇𝑦𝑒−𝜇

𝑦𝑖!
, 𝑦𝑖 = 0, 1, 2,⋯ Equation 1-1 

 

𝑦𝑖: the number of events per unit of time or space 

𝑋𝑖: the regressors (explanatory variables) 

μ: mean parameter 

 

 E[𝑦𝑖|𝑋𝑖] = exp(𝑋𝑖
′𝛽) = 𝜇𝑖 Equation 1-2 

 var[𝑦𝑖|𝑋𝑖] = 𝜔𝑖 Equation 1-3 

 𝜇𝑖 = 𝜔𝑖 Equation 1-4 
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μi is the single parameter in Poisson regression model and represents the mean and the 

variance of 𝑦𝑖.  

The standard estimator for the Poisson regression model is the MLE. The log-likelihood 

function is shown below. 

 

 ℒ(β) =∑{𝑦𝑖𝑋𝑖
′𝛽 − exp(𝑋𝑖′𝛽) − ln 𝑦𝑖!}

𝑛

𝑖=1

 Equation 1-5 

 

Poisson regression models are generally used to model count data, but sometimes it is more 

appropriate to model for the rate of count instead of count data themselves, especially when the 

variable to be modeled is not in the same dimension. For example, it is not appropriate to model 

the same occurrence six events in one year and six events in 10 years. Similarly, taking the 

electric vehicles case as an example, modeling by setting the dependent variable equally to 100 

adoptions out of 10,000 households and those out of 20,000 households for one year is not 

appropriate, it is needed to control the total number of households. Therefore, in this study, we 

designed a Poisson regression model with dependent number of households/yearhousehold as 

a dependent variable. 

 In Equation 1-2 above, when 𝑦𝑖 is the probability of electric vehicle adoption by i first-

tier administrative division and 𝑋𝑖 is the explanatory variable vector that affects electric vehicle 

adoption by i first-tier administrative division, 𝑦𝑖 can be expressed as follows. 
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 𝑦𝑖 =
𝑁𝑖
𝐻𝐻𝑖

 Equation 1-6 

 

𝑁𝑖: the number of households which adopts EVs in i first-tier administrative division 

𝐻𝐻𝑖: total number of households in i first-tier administrative division 

 

 𝑦𝑖 =
𝑁𝑖
𝐻𝐻𝑖

= exp(𝑋𝑖
′𝛽) Equation 1-7 

 

 𝑁𝑖 = 𝐻𝐻𝑖 ∗ exp(𝑋𝑖
′𝛽) = exp(ln(𝐻𝐻𝑖) + 𝑋𝑖

′𝛽) Equation 1-8 

 

 

In statistics, the variable such as the total number of households in the first-tier administrative 

division is called as an exposure variable. The exposure variable was included in the model in 

the form of ln(𝐻𝐻𝑖) where the natural logarithm was taken as the coefficient was restricted to 

1 as above. 

  

1.3.2 Overdispersion 

 

Equality of the mean and variance is called equidispersion and this property is frequently 

violated in real-life data [Cameron & Trivedi, 2013]. In most cases where the equidispersion 

assumption is violated, overdispersion occurs rather than underdispersion. The main reason for 

overdispersion is that unobserved heterogeneity is not controlled properly. If one uses a basic 

Poisson regression model despite overdispersion, the standard error is underestimated and an 
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insignificant explanatory variable is incorrectly shown as a significant predictor in the analysis 

results. Thus, it is important to set up the correct model. The first step in doing so is to check 

whether the data are overdispersed. 

The simplest method to check for overdispersion is to compare the variance of the sample 

mean and the dependent count variable. If the sample variance is more than twice as large as the 

sample mean, the data is likely to be overdispersed even after an analysis including the regressors. 

This is especially true for cross-sectional data, where regressors usually account for less than 

half of the variation [Cameron & Trivedi, 2013].  

Overdispersion can also be determined by statistical calculations. If dividing the Pearson 

statistic by the degrees of freedom yields a value exceeding 1.25, overdispersion is present. If 

the number of observations is large, overdispersion is considered to be present if this ratio even 

exceeds 1.05 [Hilbe, 2011].  

When the maximum likelihood method is used for estimation, overdispersion can be 

determined by comparing restricted and unrestricted models through the Log-likelihood Ratio, 

Wald, and Lagrange Multiplier tests. The restricted model is the Poisson model, the unrestricted 

model is the negative binomial model, and the null hypothesis is equidispersion. 
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1.3.3 Negative Binomial Regression Model 

 

Negative binomial regression is a count data regression model that allows additional 

dispersion by alleviating the assumptions of Equation 1-4. Let us assume the variance function 

shown below. 

 

 𝜔𝑖 = ω(𝜇𝑖, α) Equation 1-9 

 

𝜔𝑖: the conditional variance 

ω: some specified function ω(∙) 

α: a scalar parameter 

 

The general variance function is 

 

 𝜔𝑖 = 𝜇𝑖 + α𝜇𝑖
𝑝

 Equation 1-10 

 

where the constant p is specified. The Poisson regression model is the special case of this 

with α = 0. In the NB1 variance function by Cameron and Trivedi (1986), p is set as 1, which 

is why the model is named NB “1”. Similarly, the NB2 variance function sets p = 2. 
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 NB1:  𝜔𝑖 = 𝜇𝑖 + α𝜇𝑖 Equation 1-11 

 NB2: 𝜔𝑖 = 𝜇𝑖 + α𝜇𝑖
2 Equation 1-12 

 

The probability mass function of a standard negative binomial model [Hausman, Hall, 

Griliches, 1984] is shown below. 

 

 Pr(𝑌𝑖𝑡 = 𝑦𝑖𝑡|𝕩𝑖𝑡 , 𝛿𝑖) =
Γ(𝜆𝑖𝑡 + 𝑦𝑖𝑡)

Γ(𝜆𝑖𝑡)Γ(𝑦𝑖𝑡 + 1)
(

1

1 + 𝛿𝑖
)
𝜆𝑖

(
𝛿𝑖

1 + 𝛿𝑖
)
𝑦𝑖𝑡

 Equation 1-13 

 

For panel data, fixed- and random-effect models can be considered. A fixed-effect model 

considers only variation within each individual, and has the advantage of controlling for the 

heterogeneity of each individual. A random-effect model considers between-variation and 

within-variation, and has the advantage of resulting in less information loss than a fixed-effect 

model. Moreover, since each individual's time-invariant variables cannot be identified in a fixed-

effect model, it is advantageous to use a random-effect model when there are time-invariant 

explanatory variables and estimating the coefficients of these variables is important for the 

purpose of the analysis. 

Fixed-effects enter additively in linear models and multiplicatively in nonlinear models. 

Estimating a consistent β in a small panel is challenging because it is necessary to control for 

the infinite number of fixed effects due to the assumption of the asymptotic theory that n → ∞. 

In a linear model, this is possible. For a Poisson model, this is also possible because it has no 
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incidental parameters problem (IPP) [Lancaster, 2002; Blundell et al., 1999]. However, for some 

nonlinear fixed-effect panel data models, this is not possible because of the IPP and doing so 

may yield an inconsistent 𝛽𝑀𝐿. Hsiao (2003) demonstrated the inconsistency of the MLE for β 

in this case, though it disappears as T → ∞. However, Greene (2004) suggested that for T ≥ 5, 

the bias may not be too severe. 

Hausman, Hall, and Griliches (1984) proposed a negative binomial fixed-effect model. The 

mean ( 𝜇𝑖 ) (dispersion parameter) follows the negative hypergeometric distribution. The 

parameters are estimated by conditional MLE. Allison & Waterman (2002) argued that the HHG 

(1984) model is, strictly speaking, not a true fixed-effect model. In other words, it is not a fixed-

effect analog of a random-effect negative binomial regression model. For more details, please 

refer to Allison & Waterman (2002).  

Many researchers have suggested various alternatives [Allison & Waterman, 2002; 

Guimaraes, 2008; Greene, 2007]. Among those, two simple approaches are preferred. One is the 

simplest approach, suggested by Cameron and Trivedi (2013), is to jointly estimate the 

coefficients of explanatory variables and individual-specific fixed effects. Due to a full set of 

individual-specific dummy variables incorporated, this method is computationally demanding 

especially the number of individuals is large. The other is to estimate a random effects negative 

binomial model with all the time-varying covariates expressed as deviations from the individual-

specific means. This alternative is advantageous in respect that it does not require individual-

specific dummy variables so that the estimated results would not suffer from IPP and that it is 

not computationally demanding. 
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The datasets used in this study are short panels (large N, small T) that cover only five years 

for both electric vehicles (EV) and PV cases. According to Greene (2004), the bias from the IPP 

of a fixed-effect negative binomial model in this analysis seems not to be too severe. Hence, two 

model were applied separately. Firstly, a fixed-effect Poisson model (FEP model) was used to 

guarantees the consistency of estimates. After that, to consider overdispersion characteristics of 

datasets, I ran the random-effect negative binomial model with a full set of individual-specific 

dummy variables (RENBD model) as a true fixed-effect negative binomial model and compared 

the results with that of the prior one. In the case of PV case, because N is too large compared to 

T (N=25), the iteration process did not converge. In that case, I applied the “hybrid method” 

suggested by Allison (2012) of which applies random effect negative binomial model with all 

the time-varying covariates de-meaned from the individual-specific means (RENBM). By using 

modified version of RENB model which in fact are fixed effect models, I was able to get the 

increased efficiency and the ability to model the effects of constant-within-group variables.  
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1.3.4 Models Comparison 

 

In the process of choosing the best model, there is a tradeoff between fit, parsimony, and ease 

of interpretation [Cameron & Trivedi, 2010]. Adding more parameters usually results in a good 

model fit for the data. The purpose of the goodness-of-fit test is to test whether the data follow 

the distribution set in the study, that is, to test whether the model is suitable or not. For that 

reason, improving the goodness-of-fit by increasing the number of parameters that are not very 

relevant for describing the data makes no sense, and also makes it difficult and unclear to 

interpret the results. Therefore, a researcher needs to find out the balance among these 

components, which gives optimal parsimony. Reviewing many previous studies, related data, 

and domestic market conditions, the author selected convincing variables that are considered to 

have an important influence on each innovation adoption. After limiting the explanatory 

variables to those that were crucial, the best model was selected through the goodness-of-fit test 

of each model. 

Poisson model is nested in a negative binomial model, so a likelihood ratio (LR) test is 

possible. As mentioned in 1.3.3, the Poisson model can be seen as a case where α = 0  in 

Equation 1-10. To test whether α is 0—that is, whether a Poisson model is suitable—the LR 

test can be performed using α = 0 as a restricted model which is a Poisson model, and as an 

unrestricted model which is a negative binomial model [Cameron & Trivedi, 2013]. 
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 𝑇𝐿𝑅 = −2[ℒ(𝜃̃𝑟) − ℒ(𝜃𝑢)] Equation 1-14 

 

𝑇𝐿𝑅: LR test statistics 

𝜃̃𝑟: the restricted MLE 

𝜃𝑢: the unrestricted MLE 

 

The LR statistics is distributed asymptotically as 𝜒2(ℎ), where ℎ refers to nonredundant 

constraints. If there is a high chi -square value, the null hypothesis that α is zero is rejected, 

and therefore a negative binomial regression model would seems to be appropriate. 

The standard method for making comparisons between non-nested ML models is to use 

information criteria, the most commonly used of which are the Akaike information criterion 

(AIC) and the Bayesian information criterion (BIC). They are also useful in comparing the 

models with different number of parameters each other. Each is calculated as follows. 

 

 AIC = −2 ln 𝐿 + 2𝑘 Equation 1-15 

 BIC = −2 ln 𝐿 + (ln 𝑛)𝑘 Equation 1-16 

 

𝐿: the maximized value of the likelihood function of the model 

𝑘: the number of parameters in the model 

(that is, the number of explanatory variables including the constant term) 

𝑛: the number of observations 



23 

 

The larger the log-likelihood, the better. The smaller the AIC and BIC, the better. Adding one 

more explanatory variable to the same model increases the likelihood. This follows the same 

logic as increasing the R-squared value by adding an explanatory variable in linear regression. 

However, if the added regressor is not an important variable that explains the characteristics of 

the data well, although the goodness-of-fit may be slightly improved, we cannot tell whether the 

model has improved in terms of parsimony and ease of interpretation. Therefore, by adding a 

penalty term of 2𝑘  to the AIC and (ln 𝑛)𝑘  to the BIC, it is possible to balance the model 

selection criteria of goodness of fit, simplicity, and ease of analysis. As 𝑛 and 𝑘 increase, the 

penalty increases, and the penalty of the BIC is greater than that of the AIC when n is 8 or higher. 

 

1.3.5 Issues Regarding Multicollinearity 

 

This section discusses the multicollinearity problem resulting from probable correlation 

between explanatory variables. By definition, multicollinearity is the existence of one or more 

linear relations among the explanatory variables and the sampling distributions of the coefficient 

estimators may have such large variances by the problem [Judge et al., 1988]. In my model, two 

decisive explanatory variables are the price of the innovative durable goods and technical 

attributes of the product. Due to the properties of the innovative durable goods, technological 

excellence is one of the key attributes of those products so that there is a chance of having linkage 

between the price and the technical attributes variables. 

Multicollinearity is a common problem in empirical econometrics. In fact, it is very strong 

constraint to assume that all independent variables are completely independent of each other. 
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This is due to the fact that the data are generated by the functioning of the economic system, and 

the collinearities reflect merely the nature of that system [Johnston, 1984]. 

In general, the following cases do not concern the correlation between explanatory variables: 

1) in cases where the variables with high VIFs are control variables, and the variables of interest 

do not have high VIFs, 2) in cases where the high VIFs are caused by the inclusion of powers or 

products of other variables, and 3) in cases where the variables with high VIFs are indicator 

(dummy) variables that represent a categorical variable with three or more categories [Allison, 

2012]. In this study, price and range are the variables of interest, so they are not included in the 

above three cases.  

However, even if the variables with collinearity are the specific focus of the research, as in 

the case of this study, many scholars explain that there is no need to pay much attention to this 

[Clyde, 2015; Silva, 2015; Giles, 2011; Goldberg, 1991]. This is because multicollinearity is a 

property of the dataset itself, and we have nothing to do resolve the problem.  

In case of multicollinearity having been found, there is no special remedy, so in many cases, 

the problem is solved by dropping the less important variable among the set of explanatory 

variables detected as having correlation with other variables. However, there is no theoretical 

rationale to remove one variable arbitrarily due to the data showing multicollinearity in the 

model, which has already been theoretically set. Although solutions such as Principal 

Component Analysis (PCA) are also being proposed [Kendall, 1957], as this methodology 

artificially orthogonal transforms high-dimensional data to low-dimensional ones, the meaning 

of explanatory variables is not clear, so it is very abstruse to interpret the results. 

There are even scholars who are skeptical about testing whether multicollinearity exists and 
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how severe it is [Judge et al., 1988; Goldberg, 1991]. In Judge et al. (1988), this issue is discussed 

in more detail. In general, if the simple correlation between two variables is 0.8 or 0.9 or higher, 

there is a probability that multicollinearity may occur, but these cutoff points themselves are 

arbitrary. He also pointed out that pairwise correlation does not give any insight when more 

complex interrelationships exist between the two variables. In using other methods, such as 

variance inflation factors, Theil's multicollinearity effect, and matrix decomposition, there is no 

rationale for fixing a cutoff point to see if it is okay or not. They are defined by just a rule of 

thumb. Therefore, he emphasizes that any of these methods are completely safe to test 

multicollinearity. Another multicollinearity testing methodology [Farrar & Glauber, 1967] is 

based on a strong assumption away from reality (multivariate normality of regressors), so its 

effectiveness may be suspected [Giles, 2011]. 

Goldberg insisted that the problem due to multicollinearity is just similar level as the problem 

arisen from small sample size in empirical analysis and also that the reason why people concern 

it unnecessarily is merely because the term multicollinearity is “an exotic polysyllabic” so that 

using the term makes them feel erudite themselves. Allison also mentioned that if the model is 

correctly specified (with the right covariates and the right functional form) then the issue is, in 

fact, “primarily a matter of statistical power” [Allison, 2012]. He insisted that since the point is 

the variance of the estimated coefficient and the multicollinearity is possible sources of high 

variance, the preferred thing to estimate the coefficient is not low collinearity per se. In addition, 

the larger the sample, the less likely multicollinearity will actually be problematic. 

These threads of discussions show why other problems in the empirical econometric analyses 

such as heteroskedasticity or endogeneity have exact tests to test its existence and typical 
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solutions for it while multicollinearity has not been reached on consensus whether we would be 

able to test multicollinearity by which methods and even the problem actually matters itself. 

Nevertheless, still some researchers concern about that issue, I tried testing multicollinearity 

for my two datasets in each case to figure out the existence and the severity of it. In the next step, 

I dropped the variable with multicollinearity, if any, from the model and analyzed again. The 

comparison of the results from before and after dropping the explanatory variables will be shown 

in each chapter.  

To test multicollinearity, I choose variance inflation factors (VIF) method because of its 

simplicity and clarity. VIFs are divided into centered VIFs and uncentered VIFs. In the case of 

centered VIFs, it may be fail to discover collinearity by a constant term [Belsley, 1991]. To solve 

this problem, uncentered VIFs can be used. Uncentered VIFs treat constants as a legitimate 

explanatory variable in a regression model, allowing constant terms to have VIF values. The 

formula for each centered and uncentered VIFs is as follows.  

 

 𝑉𝐼𝐹𝑐(𝑥𝑗) =
1

1 − 𝑅̂𝑗
2
 Equation 1-17 

 

𝑅̂𝑗
2 : the square of the centered multiple correlation coefficient that results when 𝑥𝑗  is 

regressed with intercept against all the other explanatory variables 

 

 𝑉𝐼𝐹𝑢𝑐(𝑥𝑗) =
1

1 − 𝑅̃𝑗
2 Equation 1-18 
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𝑅̃𝑗
2 : the square of the uncentered multiple correlation coefficient that results when 𝑥𝑗  is 

regressed with intercept against all the other explanatory variables including the constant term 

 

Since there is no strict guideline that multicollinearity exists when VIFs are within a certain 

range, most analysts rely on the rules of thumb to determine the value of VIFs [Chatterjee & 

Hadi, 2006]. According to this rule of thumb, multicollinearity may exist when the value of VIFs 

exceeds 10 [Jansson et al., 2010; Hair et al., 2006]. In the case of conservative scoping, the 

threshold is sometimes set to 30. More clearly, if VIFs have a high value as described above and 

significant changes in estimated coefficients occur when the explanatory variable suspected of 

multicollinearity is removed, this can be considered as strong evidence of multicollinearity. Of 

course, there is still no theoretically established rule on how significant a significant change 

should be. 
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1.4 Organization of the Thesis 

 

The organization of the thesis is as follows. Chapter 2 presents an analysis of the 

determinants of electric vehicle adoption by domestic consumers based on the research 

framework and methodology described in Chapter 1. It further examines policies to promote 

electric vehicle adoption in Korea and the specificity of the domestic market, and reviews the 

findings of existing studies to obtain useful lessons from them. The next step is to conduct an 

empirical analysis using the selected variables and acquired data, and to identify the 

determinants of electric vehicle adoption by domestic consumers based on the results of the 

analysis. Policy implications are derived as well. 

In Chapter 3, in the same manner as Chapter 2, I investigate what drives people in Seoul to 

install veranda-type mini-solar PV (hereafter, mini-solar PV). After reviewing the background, 

progress, and status of the introduction of the mini-solar PV diffusion policy in Seoul, ways to 

fill the gap are identified by reviewing prior research. The next step is to conduct an empirical 

analysis using the selected variables and acquired data, and to identify the determinants of mini-

solar PV adoption by residents of Seoul based on the results of the analysis. Policy implications 

are also derived. 

Chapter 4 summarizes these two analyses and draws overall conclusions. Similarities and 

differences between the two cases of electric vehicles and PV are discussed. Directions for 

further research as well as the contributions and significance of the dissertation, are also 

presented in this chapter.  
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Chapter 2. Electric Vehicle Adoption by South 

Korean Households 

2  

2.1 Background 

 

The electric vehicle2 (EV) market in the Republic of Korea formed somewhat later than 

those in most developed countries, but the domestic market is nonetheless rapidly increasing. 

Apart from the late formation of the EV market, Korea has already enacted the “Act on the 

Promotion of Development and Distribution of Environment-friendly Automobiles” in 2004, 

predicting the era of EVs. Through this act, the government tried to establish an institutional 

foundation for the development and dissemination of environment-friendly vehicles and secure 

future advanced technologies. 

The specific policy for the activation of the EV industry and diffusion of EVs began as the 

Lee Myung-bak government announced “Low Carbon Green Growth” as a slogan for National 

growth strategy. In 2009, the “Activation Plan for the Electric Vehicle Industry” was announced, 

which included tasks such as technological development, demonstration projects, and phased 

promotion of EV diffusion. Ministry of Knowledge Economy (currently Ministry of Trade, 

Industry and Energy) mainly has been responsible for technology development, and Ministry of 

                                                      

2 Electric vehicles (EVs) refers to battery electric vehicles (BEVs), excluding plug-in hybrid electric 

vehicles (PHEVs) and hybrid electric vehicles (HEVs) in this study. 
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Environment has been in charge of the overall diffusion of EVs. Investigating R&D data for EV 

technology acquired through information disclosure, it does not appear that there has been a 

control tower that manages overall research and development programs regarding EVs. Rather, 

several organizations have been involved in R&D for EVs such as Korea Evaluation Institute of 

Industrial Technology (under Ministry of Trade, Industry and Energy), Korea Agency for 

Infrastructure Technology Advancement (under Ministry of Land, Infrastructure and Transport), 

and Center for Environmentally Friendly Vehicle (under Ministry of Environment). Examining 

the list of tasks which are in progress or were completed, we cannot say that R&D has been 

extensively conducted in terms of R&D scale and core technology development, compared to 

the early established legislation and policy roadmap for supporting technology development and 

diffusion of EVs. 

Ministry of Environment began providing subsidies for purchasing EVs to local governments 

and public institutions in 2011. After supporting the public sector for two years as a 

demonstration, a full-scale EV diffusion policy was implemented for the private sector from 

2013. Consumers who purchase EVs were provided with subsidies to purchase EVs and 

subsidies to install non-public 3  level 2 4  chargers, and tax benefits such as individual 

                                                      

3 Non-public chargers refer to not-freely-accessible chargers that are not registered on the Ministry 

of Environment Electric Vehicle Charging Stations website, a comprehensive system providing the 

location of all public charging stations in Korea. Public chargers can be searched for on the website and 

are publicly accessible. 

4 Generally, level 2 chargers are known as “slow chargers” in Korea, but in this study, it is labeled 

“level 2 chargers” to avoid any confusion. 
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consumption tax and acquisition tax were also given. The total amount of these financial aids is 

significantly high compared to other countries, and as of 2017, Norway and South Korea are the 

only countries with a purchase subsidy of more than $10,000 [Ministry of Trade, Industry and 

Energy Korea Trade Commission & P&P Patent & Law Firm, 2017]. The total number and the 

share of registered EVs in Korea from 2011 to 2019 are shown in Figure 2. 
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Figure 2. Total registered electric vehicles (2011-2019)5

                                                      

5 Source: Ministry of Land, Infrastructure and Transport 
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Of particular note, in 2017, the annual sales of EVs increased twofold compared to the figures 

in 2016, with over 13,800 vehicles sold. Experts have stated that the announcement that the 

Ministry of Environment would reduce EV purchase subsidies in 2018 compared to 2017 

encouraged consumers who wanted to benefit more from the subsidy to buy EVs ahead of 

schedule, leading to the surge of EV demand in 2017 [MOTIE & KEA, 2017]. Concerns about 

the possibility of pouring cold water on the growth of the EV market were raised. As the Korean 

EV market was still in the early stages of market development, it seemed to be a bad decision 

for the government to cut EV subsidies. However, this dire prediction has not materialized, as 

11,866 EVs were sold in only the first half of 2018, close to the total number of EVs sold in 

2017, and many anticipate that the EV sales volume in 2018 will exceed 20,000 vehicles. This 

means that the market has responded unexpectedly to the curtailment, although many studies 

have pointed out that purchasing subsidies are among the most critical factors driving EV 

adoption [Hardman et al., 2017; She et al., 2017; Vassileva & Campillo, 2017; Mersky et al., 

2016; Sang & Bekhet, 2015; Zhang et al., 2013; Zhang et al., 2011]. 

EVs need charging stations to fill up their batteries. However, the behavior of the EV owners 

regarding “refilling” must be significantly different from that of international combustion engine 

vehicle (ICEV) owners, since the current technology of charging an EV still requires from 30 

minutes to several hours to reach a full charge. At the early stages of EV market formation, 

considerable uncertainty surrounding market circumstances has made private operators reluctant 

to enter the EV charging market. Accordingly, there is a growing demand from the automobile 

industry, the media, and academia for the government to expand the charging infrastructure.  

However, the question arises of whether providing sufficient charging infrastructure would 
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lead to a dramatic increase in the adoption of EVs. As mentioned above, although the subsidy 

was reduced in 2018 compared to 2017, the sales volume of EVs nearly doubled. Thus, the 

decrease in the subsidy did not decrease the annual sales of EVs. Furthermore, 19,304 non-public 

level 2 chargers have been installed supported by local governments through the Korea 

Environment Corporation as of 2017, yielding a total of 21,914 combined with the public fast 

chargers installed by the Ministry of Environment and other public institutions. The cumulative 

number of registered EVs through 2017 is 25,593. Therefore, it would seem that the charging 

infrastructure is not actually in short supply. 

The Korean government is aiming to boost the EV market share to 6.3% of new car sales by 

2025. To achieve this goal, it is imperative to analyze the factors that determine EV adoption 

with actual data, and the results of this study can provide policy implications for other countries 

where the EV market has not yet formed. Therefore, this study aims to analyze the determinants 

of EV adoption based on actual data starting in 2013, the year of the EV adoption policy 

implemented for the public in Korea.  

I would like to clarify the contribution of this chapter that it analyzed actual sales data (i.e., 

revealed preference). As the EV market is emerging, the amount of publicly available data is 

somewhat lacking. For this reason, existing studies in the literature mostly carried out surveys 

regarding the specific circumstances in which consumers would buy EVs. However, there is an 

“attitude-action gap” among consumers in emerging markets, especially for green innovation 

products [Lane & Potter, 2007; Kollmuss & Agyeman, 2002]. Even if consumers have a 

tendency to purchase eco-friendly products based on environmental protection or economic 

feasibility, there is a large gap between the intent to purchase and the actual purchase. For 



35 

 

instance, according to a recent survey of 500 adult men and women in Korea, 94% of 

respondents responded “yes” when asked whether they would be willing to buy an EV in the 

future. Meanwhile, the share of EVs among all registered non-commercial vehicles as of 2018 

in Korea was only 0.3% [MOLIT, 2019]. This huge gap between the two figures is an example 

of the “attitude-action gap.” Therefore, when examining the key drivers of EV adoption, it is 

more appropriate to use revealed preferences—that is, actual sales data—not stated preferences. 

Although the observations do not represent a significant number, the data used herein are the 

best figures that are publicly available, since EV adoption by general consumers in Korea started 

in 2013 and the minimal unit of data from the National Statistical Office is at the municipality 

level. Moreover, it is worthwhile to review the key drivers of EV adoption in Korea in the early 

stages of the introduction of EVs. 
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2.2 Literature Review 

 

Due to the nature of this emerging market, there is an obvious limit to the data regarding the 

EV that can be obtained. Therefore, the majority of previous studies have analyzed the stated 

preference of consumers through surveys, mainly in countries in which EVs are relatively more 

deployed than others. For example, the US [Lane et al., 2018; Carley et al., 2013; Egbue & Long, 

2012; Hidrue et al., 2011; Brownstone et al., 2000], China [Wang et al., 2018; Wang et al., 2017; 

Zhang et al., 2013], Norway [Bjerkan et al., 2016], Sweden [Vassileva & Campillo, 2017; 

Langbroek et al., 2016], Netherlands [Hoen & Koetse, 2014], the UK [Schuitema et al., 2013], 

Germany [Plötz et al., 2014], and Spain [Junquera et al., 2016] were studied and some research 

has been conducted from a global perspective [Hardman et al., 2016; Lieven, 2015]. In the eco-

car market, the consumer’s “attitude-action gap” is significant [Lane & Potter, 2007; Kollmuss 

& Agyeman, 2002], so research based on stated preferences has limitations in that these 

preferences are often far from what is actually happening in the actual market [Sierzchula et al., 

2014; Brownstone et al., 2000]. Thus, there is a growing need for research based on revealed 

preferences. 

Several studies presenting empirical analyses of revealed preferences can be found [Wang et 

al., 2019; Kim et al., 2017; Sierzchula et al., 2014]. However, as the characteristics of the 

automobile market vary from country to country, it is more appropriate to analyze one country 

during a certain period than to compare many countries at once. A few studies have examined 

revealed preferences in Norway and the US [Wee et al., 2018; Mersky et al., 2016]. As these two 

countries are the leading EV markets, the likelihood of obtaining comprehensive data is strong. 
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By and large, EV adoption in Korea has not been studied comprehensively, because little 

time has passed since EVs have been sold in earnest and the relevant policies have been 

implemented. Even so, it is relatively difficult to find any existing studies that analyzed the 

factors related with adoption of EVs. In recent studies, EV diffusion was reviewed based on 

stated preferences [Byun et al., 2018; Kim et al., 2018; Kwon et al., 2018].  

A conjoint analysis has dealt with consumers’ preferences for EVs and fuel-cell vehicles with 

regard to their adoption potential [Byun et al., 2018]. The questionnaire was administered to a 

driver group and a non-driver group. For both groups, the vehicle purchase price was the most 

crucial factor for vehicle selection. The second most important factor was the number of 

charging stations in the driver group and CO2 emissions in the non-driver group. However, on 

the basis of their analysis, the authors calculated the market share of EVs in 2016 as 13.52%, 

which is far from the actual value of 0.72%. 

In [Kwon et al., 2018], consumers’ perceptions of EV policies were analyzed among actual 

EV users residing in Jeju Special Self-Governing Province (hereafter, Jeju) in Korea. In contrast 

with the existing literature on the survey of potential users [Jensen et al., 2013; Hidrue et al., 

2011], the marginal willingness-to-pay for charging time reduction was very high, indicating 

that actual users felt very uncomfortable about charging EVs. 

Using revealed preference data from Korea has two main advantages. First, the amount of 

the purchase subsidy and the vehicle tax exemption for EVs in Korea does not depend on the 

purchaser’s income level. Therefore, it is possible to examine the effect of financial incentives 

on EV adoption more clearly than is possible when using data from countries that give financial 

incentives depending on the recipient’s income. Secondly, revealed preference data capture what 
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is actually happening in the market better than stated preference data because consumers’ stated 

willingness to pay does not always match their actual purchases. 

The order of this study is as follows. In Chapter 2.3, data and variables are explained, and 

then results are presented in 2.4. Finally, I suggested the summary and discussions in 2.5. 
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2.3 Data and Variables 

 

In this study, I analyze factors influencing EV diffusion based on data from 17 first-tier 

administrative divisions in Korea. Korea’s EV diffusion policy focused on a strategy to create 

an initial market through demonstration projects and public sector-oriented pilot distribution 

from 2010 to 2012. Since the policy that was implemented for the public started, practically 

speaking, in 2013, the analysis period was set to run from 2013 to 2017. 

Seven explanatory variables were selected because they showed a statistically significant 

influence on EV diffusion in previous studies (Table 2). These explanatory variables can be 

classified into EV-intrinsic factors and EV-extrinsic factors. EV-intrinsic factors are classified 

into user-intrinsic and user-extrinsic attributes, while EV-extrinsic factors are categorized into 

technical and non-technical attributes (Figure 3). In addition to the variables discussed in this 

study, other factors might affect EV diffusion. However, the analysis was limited to these seven 

variables because including a large number of less critical variables could dilute the results as 

explained in chapter 1.3.4. The descriptive statistics of the explanatory variables are presented 

in Chapter 2.4 (Table 4). 
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Figure 3. Conceptual framework of key attributes in EV adoption 
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Table 2. Explanatory variables for EV adoption 

Group Attributes Variables Literature 

EV- 

intrinsic 

factors 

Technical Range 

She et al. (2017), Hardman et al. (2016), Langbroek et 

al. (2016), Junquera et al. (2016), Sang & Bekhet (2015), 

Krupa et al. (2014), Carley et al. (2013), Jensen et al. 

(2013), Schuitema et al. (2013), Christensen et al. 

(2012), Egbue & Long (2012), Hidrue et al. (2011) 

Non-

technical 
Price 

Hardman et al. (2016), Junquera et al. (2016), 

Langbroek et al. (2016), Carley et al. (2013), Zhang et 

al. (2013), Christensen et al. (2012), Hidrue et al. (2011),  

EV- 

extrinsic 

factors 

User- 

intrinsic 

Income 
Mersky et al. (2016), Sang & Bekhet (2015), Zhang et 

al. (2013), Zhang et al. (2011) 

Eco-

friendliness 

Vasilleva & Campillo, (2018), Hardman et al. (2016), 

Hidrue et al. (2011) 

User- 

extrinsic 

Subsidy 

Hardman et al. (2017), She et al. (2017), Vassileva & 

Campillo (2017), Mersky et al. (2016), Sang & Bekhet 

(2015), Zhang et al. (2013), Zhang et al. (2011) 

Public 

charging 

infrastructure 

She et al. (2017), Vassileva & Campillo (2017), 

Hardman et al. (2016), Junquera et al. (2016), 

Langbroek et al.(2016), Mersky et al. (2016), Sang & 

Bekhet (2015), Krupa et al. (2014), Carley et al. (2013), 

Jensen et al. (2013), Hidrue et al. (2011) 

Gasoline 

price 

Vassileva & Campillo (2017), Hardman et al. (2016), 

Sang & Bekhet (2015), Plötz et al. (2014), Carley et al. 

(2013), Schuitema et al. (2013), Zhang et al. (2013), 

Christensen et al. (2012), Hidrue et al. (2011), Zhang et 

al. (2011) 
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2.3.1 EV-intrinsic Variables 

 

2.3.1.1 Range 

 

Technical attributes refer to the technologically innovative attributes of EVs themselves. The 

commonly analyzed technical attributes of EVs are the possible driving distance per single 

charge, electricity efficiency (km/kWh), and the available number of models. First, the possible 

driving distance per single charge is an important factor that is always considered at the first 

stage when discussing the adoption of EVs [Kim & Heo, 2019; Jensen et al., 2013]. Because of 

the short driving distance per full charge, preparations need to be made for refueling EVs. 

Furthermore, although EVs were first invented more than 30 years before ICEVs, they have not 

played a remarkable role in the market, although the release of the Nissan Leaf in 2009 drew 

considerable attention.  

Secondly, electricity efficiency (km/kWh) is a concept that corresponds to the fuel efficiency 

of ICEVs. Fuel efficiency is measured with reference to the distance traveled using the same 

amount of fuel, while electricity efficiency is measured based on the distance that can be traveled 

using a certain amount of electricity. Lastly, it is reasonable to assume that the presence of a 

greater variety of products on the market will increase the likelihood of consumers finding a 

satisfactory car. Needless to say, extensive efforts into R&D are needed to diversify the product 

line. In [Higgins et al., 2017], the authors divided Canadian consumers into groups according to 

the vehicle body type they anticipated buying for their next vehicle (economy, intermediate-size 

sedan, full-size sedan, luxury sedan, minivan/crossover, sport utility vehicle (SUV), and pickup 
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truck), and unlike the HEVs, each group showed different preferences for PHEVs and BEVs. I 

expect that it will be easier for consumers to find the cars that meet their needs if there is 

sufficient variety in the body type of available EVs. 

Among three candidates, the average of driving range of each EV model available in a given 

year was used to represent this technical attribute variable in consideration of representativeness 

and data availability. The driving range is based on the distance traveled at room temperature 

(20–30℃) with a full charge. The driving range increased by approximately 85% during the 

analysis period, from 120 km per full charge to 223 km. Of particular note, in 2017, EV models 

with an extended range such as the BMW i3 (200 km), GM Bolt (383 km) and Tesla Model S 

90D (470 km) were launched, substantially increasing the average driving range of EV models 

(Table 3). 

 

  



44 

 

Table 3. Electric vehicles in Korea: models, prices, and specifications6 

Year Model 

Driving 

range7 

(km) 

Battery 

capacity 

(kWh) 

Price 

(10K KRW) 

Battery 

efficiency 

(km/kWh) 

2013 

KIA RAY EV 91 16.4 3500 5.0 

Renault-Samsung 

SM3 Z.E. EV 
135 24 4250 4.4 

GM SPARK EV 135 21.4 3990 5.6 

2014 

KIA RAY EV 91 16.4 3500 5.0 

Renault-Samsung 

SM3 Z.E. EV 
135 26.6 4250 4.4 

GM SPARK EV 135 21.4 3990 5.6 

KIA SOUL EV 148 27 4250 5.0 

BMW i3 132 21.3 6320 5.9 

Nissan LEAF 132 24 5480 5.4 

2015 

KIA RAY EV 91 16.4 3500 5.0 

Renault-Samsung 

SM3 Z.E. EV 
135 26.6 4190 4.4 

GM SPARK EV 135 21.4 3990 6.0 

BMW i3 132 21.3 6320 5.9 

KIA SOUL EV 148 27 4150 5.0 

Nissan LEAF 132 24 5480 5.2 

 

                                                      

6 Source: Ministry of Environment, Naver Auto 

7 Driving range refers to the distance traveled at room temperature (20–30℃) with a full charge by 

the model EV. 
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Table 3. Electric vehicles in Korea: models, prices, and specifications (continued) 

Year Model 
Driving range 

(km) 

Battery 

capacity 

(kWh) 

Price 

(10K KRW) 

Battery 

efficiency 

(km/kWh) 

2016 

KIA RAY EV 91 16.4 3500 5.0 

Renault-Samsung 

SM3 Z.E. 
135 26.6 4000 4.4 

GM SPARK EV 128 18.3 3990 6.0 

BMW i3 132 21.3 6000 5.9 

KIA SOUL EV 148 27 4275 5.0 

Nissan Leaf 132 24 4885 5.2 

Hyundai Ioniq EV 169 28 4150 6.3 

2017 

KIA RAY EV 91 16.4 3500 5.0 

Renault-Samsung 

SM3 Z.E. EV 
135 22 4050 4.5 

BMW i3 200 33 6060 5.4 

KIA SOUL EV 180 30 4140 5.2 

Nissan Leaf 132 21.3 4885 5.2 

Hyundai Ioniq EV 191 28 4150 6.3 

Chevrolet Bolt 383 60 4779 5.5 

Tesla Model S 90D 470 87.5 11570 4.3 
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2.3.1.1 Price of EVs 

 

The price of EVs was also used as an explanatory variable. Fundamental principles of 

economics predict that higher EV prices reduce the likelihood of EV adoption. EVs have not yet 

achieved price competitiveness compared to ICEVs, as they cost approximately 20 million KRW 

more than the equivalent model of ICEVs. For example, the price of the KIA SOUL EV in 2017 

was 41,400k KRW and that of the KIA SOUL (gasoline) in 2017 was 19,960k KRW, meaning 

that the price gap between the two models was 21,440k KRW. This price gap is gradually 

narrowing with technological developments. Table 3 shows the types and prices of EVs that 

consumers could purchase with subsidies during the analysis period (2013 to 2017). 
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2.3.2 EV-extrinsic Variables 

  

2.3.2.1 User-intrinsic Variables 

 

The first user-intrinsic variable is local gross income per capita. Higher levels of consumer 

income increase the probability of the consumer purchasing an EV, considering the relatively 

high price of EVs. Many studies have found that high income increases the probability of 

adopting innovative products [Diaz-Rainey & Ashton, 2011; Dobre et al., 2009; Im et al., 2003; 

Eastlick & Lotz, 1999; Martinez et al., 1998]. 

Many demographic factors, such as the consumer’s age and education level, were included 

as explanatory variables in previous studies, but were not included in this study. This is because 

those demographic factors—such as age, education level and marital status—are recognized as 

important factors affecting income level in the microeconomic literature. Including these 

demographic factors and analyzing them together with income would pose a risk of 

multicollinearity. To avoid this problem, I did not include those variables. 

The other user-intrinsic variable is the eco-friendliness of consumers. Electric vehicles have 

a positive impact on the environment in terms of climate change and air quality because the 

tailpipe emissions emitted during vehicle operation are zero, larger power generation leads to an 

increase in efficiency, and pollutant treatment is easy. For this reason, several previous studies 

have determined that consumers’ eco-friendliness had a positive effect on EV adoption and 

included it as an explanatory variable [Vasilleva & Campillo, 2018]. Nonetheless, pro-

environmental tendencies are often less important to consumers than vehicle cost and 
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performance attributes such as range and charge time [Sierzchula et al., 2014; Egbue & Long, 

2012; Lane & Potter, 2007]. In this study, I included and analyzed eco-friendliness as an 

explanatory variable to confirm whether pro-environmental tendencies affected EV adoption by 

consumers.  

Measuring eco-friendliness is quite challenging, because it is a highly subjective and 

individual characteristic, and there is no absolute standard to measure it quantitatively. Previous 

studies on consumer adoption of EVs have included Sierra Club membership [Gallagher & 

Muehlegger, 2011], Environmental Performance Index [Sierzchula et al., 2014], and self-

statements [White & Sintov, 2017; Hardman et al., 2016; Carley et al., 2013; Hidrue et al., 2011; 

Turrentine et al., 2011] as proxy variables for representing eco-friendliness. In this study, 

considering data availability and multicollinearity, the ratio of Green Party votes in the election 

for the 20th National Assembly in the middle of 2016 was used as a proxy variable for eco-

friendliness. 
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2.3.2.2 User-extrinsic Variables 

 

The first and the most important user-extrinsic variable is the economic incentive from 

central and local governments that alleviates consumers’ financial burden. Subsidies and tax 

exemptions are critical drivers of EV adoption. Due to the low price-competitiveness of EVs 

compared to ICEVs, governments provide a subsidy and a tax benefit for EVs, thereby making 

them cost-competitive. Subsidies consist of both central and local government expenditures. 

Central government expenditures provide a uniform level of support nationwide, whereas the 

level of local governments’ support differs according to each locality, with corresponding 

impacts on the annual sales of EVs by region. As of 2017, an EV buyer in Korea will enjoy 

various tax benefits of 4.6 million KRW (approximately 4066 USD according to the exchange 

rate as of November 26, 2018 (1131 KRW= 1 USD)), including an individual consumption tax 

of KRW 2 million, an education tax of KRW 600,000, and an acquisition tax of KRW 2 million, 

and the annual vehicle tax for EVs is KRW 130,000 regardless of the engine displacement. Tax 

benefits such as an individual consumption tax occur once at the time of purchase, while 

exemption from the vehicle tax is an annual benefit. For example, the owner of a standard 

medium-sized passenger car (2000 cc) with an internal combustion engine is required to pay a 

vehicle tax of KRW 520,000 per year, whereas EV owners can save KWR 390,000 per year. In 

this study, the sum of all tax benefits and subsidies was used as an explanatory variable relating 

to the economic incentives for EV adoption.  

Another key factor in decision of EV adoption is public charging infrastructure, which has 

been consistently mentioned as a main barrier in discussions of widespread EV adoption. Many 
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previous studies have used charging station infrastructure as an explanatory variable [She et al., 

2017; Vassileva & Campillo, 2017; Hardman et al., 2016; Junquera et al., 2016; Langbroek et 

al., 2016; Mersky et al., 2016; Sang & Bekhet, 2015; Krupa et al., 2014; Carley et al., 2013; 

Jensen et al., 2013; Christensen et al., 2012; Hidrue et al., 2011]. The reason for this is “range 

anxiety,” an issue that has been always discussed with regard to the spread of EVs. This term 

refers to the psychological anxiety that arises from the relatively short possible driving distance 

of EVs compared to ICEVs and the lack of sufficient charging infrastructure compared to 

gasoline station. In addition, the development of space- and time-free charging infrastructure, 

which is not limited to fixed places such as residential or working areas, can reduce anxiety. By 

doing so, such infrastructure can make it more likely that consumers will accept EVs. 

The average daily driving distance by domestic passenger car drivers is 33.6 km as of 2017; 

the Kia RAY EV has the shortest driving range of the EVs that are available to be purchased by 

consumers, with 90 km per single charge in 2013. This means that the current technical level of 

all EVs can cover daily trips. However, anxiety about scenarios such as having to travel long 

distances or dealing with an emergency situation can be a barrier to EV adoption. 

In this study, the cumulative number of fast chargers installed by the Ministry of 

Environment was used as a proxy variable for public charging infrastructure. Charging takes at 

least 30 minutes, so charging availability is limited when there are far more cars to charge than 

available chargers. To consider this issue of competition for charging infrastructure, the number 

of chargers was divided by total number of EVs registered in the region. 

The last, but not least, user-extrinsic explanatory variable is the retail gasoline price. EVs 

can achieve higher economic benefits over their life through reduced fuel costs relative to ICEVs. 
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Therefore, the lower fuel costs of EVs likely increase consumers’ preference for the purchase of 

EVs, a conclusion that has been drawn in several previous studies [Vassileva & Campillo, 2017; 

Hardman et al., 2016; Link et al., 2012; Hidrue et al., 2011], although their analyses were based 

on stated preferences. However, other views also exist. Several studies have shown that 

consumers tend to incorrectly gauge the magnitude of fuel economy benefits [Sierzchula et al., 

2014; Sovacool & Hirsh, 2009; Heffner et al., 2007; Turrentine & Kurani, 2007], to such an 

extent that they are unaware of the potential cost savings [She et al., 2017; Carley et al., 2013; 

Zhang et al., 2013], and in most cases the fuel cost savings are not the primary attribute 

governing the vehicle purchase decision [Carley et al., 2013; Egbue & Long, 2012]. During the 

analysis period, oil prices had stabilized around the world, and domestic gasoline prices steadily 

decreased; therefore, it is possible to investigate how declining retail gasoline prices influenced 

EV adoption in Korea.  

The descriptive statistics of explanatory variables are presented in Chapter 2.4 (Table 4). 
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2.4 Empirical Results 

 

The number of registered EVs by year was very overdispersed. The reason for high within-

variation is that EVs were just entering the market in Korea during 2013 to 2017. As the market 

was expanding very rapidly, within-variation was naturally high. High between-variation 

occurred because this study used data from 17 first-tier administrative divisions in Korea, with 

differences in area, population, income level, and regional characteristics that influenced the 

frequency of EV adoption. 
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Table 4. Descriptive statistics of dependent and independent variables (EV) 

Variable 
 

Mean Std. Dev. Min Max Observation 

EV Overall 288.26 716.02 1 4112 N = 85 

 Between8  468.18 12.6 1795.4 n = 17 

 Within9  551.29 -1347.14 3288.06 T = 5 

Price Overall 4588.40 480.24 3913 5392 N = 85 

 Between  0 4588.40 4588.40 n = 17 

 Within  480.24 3913 5392 T = 5 

Income Overall 4195.82 563.03 3187 5548 N = 85 

 Between  505.53 3570.6 5248 n = 17 

 Within  322.21 3111.78 5331.58 T = 5 

Range Overall 147 38.49 120 223 N = 85 

 Between  0 147 147 n = 17 

 Within  38.49 120 223 T = 5 

Grant Overall 2399.24 329.00 1849 3369 N = 85 

 Between  222.32 2133 2845 n = 17 

 Within  247.32 1815.24 3155.24 T = 5 

Gasoline 

price 
Overall 1632.75 207.11 1382.69 2002.96 N = 85 

 Between  27.07 1607.34 1720.80 n = 17 

 Within  205.42 1400.55 1930.85 T = 5 

                                                      

8 ‘Between’ refers to the values of 𝑥𝑖̅, or individual means. 

9 ‘Within’ refers to the values of 𝑥𝑖𝑡 − 𝑥𝑖̅ + 𝑥̿, where 𝑥̿ denotes the global mean. 
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Table 4. Descriptive statistics of dependent and independent variables (EV) (continued) 

Variable 
 

Mean Std. Dev. Min Max Observation 

Eco-

friendliness 
Overall .65 .17 .45 1.11 N = 85 

 Between  .18 .45 1.11 n = 17 

 Within  0 .65 .65 T = 5 

Public 

charging 

infrastructure 

Overall .16 .16 0 .79 N = 85 

Between  .11 .05 .41 n = 17 

Within  .11 -.14 .57 T = 5 
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First, the variance inflation factor (VIF) was calculated to check for multicollinearity for 

each variable. The results of the test are shown below (Table 5). Since the test values of all 

variables did not exceed 10, the problem of multicollinearity between variables can be 

considered negligible. 

 

 

Table 5. VIF test results of EVs 

Variable VIF 1/VIF 

Range 5.28 0.1896 

Price 4.88 0.2047 

Subsidy 1.46     0.6863 

Public 

charging infrastructure 
1.15     0.8679 

Gasoline price 1.47     0.6808 

Income 1.25     0.7969 

Eco-friendliness 1.11     0.8998 

Mean VIF 2.37  
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As described in 1.3.3, I applied an FE Poisson (hereafter, FEP) model and RE negative 

binomial model with individual-specific dummies (hereafter, RENBD), and compared the 

results from each.  

The fit of the model cannot be judged solely by the significance of the regressors. Even if 

the coefficients of the key variables show very low p-values, a test for goodness-of-fit is 

necessary because the model may not properly describe the data. Strictly speaking, a model 

without a fit test can be said to be statistically useless [Hilbe, 2011].  

First, comparing the AIC and BIC values of the FEP model and the RENBD model, the 

goodness-of-fit was significantly improved by using the RENBD model compared to using the 

FEP model (Table 6). This indicates that the negative binomial regression model was more 

appropriate than the Poisson regression model because the data were overdispersed. The eco-

friendliness variable was dropped from the FE Poisson model because it was time-invariant. 
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Table 6. Summary of Results from Poisson and negative binomial models (EV) 

Model FEP RENBD 

Range 
1.0199*** 

(0.0006) 

1.0195*** 

(0.0042) 

Price 
0.9991*** 

(0.0001) 

0.9997 

(0.0004) 

Subsidy 
1.0022*** 

(0.0001) 

1.0013** 

(0.0003) 

Income 
1.0012*** 

(0.0000) 

1.0003* 

(0.0002) 

Gasoline price 
0.9955*** 

(0.0001) 

0.9979*** 

(0.0005) 

Public 

charging 

infrastructure 

0.0484*** 

(0.0097) 

0.3763 

(0.2641) 

Eco-friendliness - 
2.1871 

(5.7015) 

AIC 3565.878 937.871 

BIC 3580.534 998.937 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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In order to facilitate the interpretation of the results of the regression analysis, the IRR value 

obtained by converting the regression coefficient value into the eβ form is displayed. The IRR 

represents the relative change in the incidence rate according to a change in the value of an 

explanatory variable. The estimated IRR is interpreted as the rate of increase (%) of the 

dependent variable as the explanatory variable increases by one unit. It is encouraged to use the 

IRR rather than the estimated coefficient itself in order to facilitate a more precise interpretation 

for explaining the relative change of the dependent variable due to changes in the explanatory 

variables [Cameron & Trivedi, 2013]. 

 

 IRR =
𝑒ln(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑖(𝑥𝑖+1)+⋯+𝛽𝑘𝑥𝑘

𝑒ln(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑖𝑥𝑖+⋯+𝛽𝑘𝑥𝑘
= e𝛽𝑖  Equation 2-1 

 

An analysis using the FEP model (Table 7) showed that range had a statistically significant 

positive effect on EV adoption in all models. Unsurprisingly, price had a negative effect on EV 

adoption and income had the opposite effect. Overall, the significance of all variables was high, 

which can be interpreted as reflecting the fact that the standard error tends to be underestimated 

when overdispersed data are analyzed by a Poisson model. This can be seen by comparing the 

results of the RENBD model to those of the FENB model.  
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Table 7. Summary of Results (FEP - EV) 

FEP Model 1 Model 2 

Range 
1.0199*** 

(0.0006) 

1.0204*** 

(0.00062) 

Price 
0.9991*** 

(0.0001 

0.9992*** 

(5.79E-05) 

Subsidy 
1.0022*** 

(0.0001) 

1.0022*** 

(0.000056) 

Income 
1.0012*** 

(0.0000) 

1.0013*** 

(.0000372) 

Gasoline price 
0.9955*** 

(0.0001) 

0.9950*** 

(.0000727) 

Public 

charging 

infrastructure 

0.0484*** 

(0.0097) 
- 

AIC 3565.878 3801.769     

BIC 3580.534 3813.982 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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Table 8 presents the results of the analysis using the RENBD model. The AIC and BIC show 

that the RENBD model was considerably improved in terms of goodness-of-fit compared to the 

FEP model presented earlier. The direction of the estimated IRR coefficient of each variable was 

generally consistent with the results of the FEP model. For price, the estimated IRR coefficient 

was less than 1, as in the FEP model, but statistical significance was lost. Public charging 

infrastructure and eco-friendliness variable did not have statistically significant IRRs. The 

estimated IRR of the gasoline price was below 1, corresponding to a negative impact on EV 

adoption. 
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Table 8. Summary of Results (RENBD - EV) 

RENBD Model 1 Model 2 Model 3 

Range 
1.0195*** 

(0.0042) 

1.0195*** 

(0.0042) 

1.0187*** 

(0.0043) 

Price 
0.9997 

(0.0004) 

0.9997 

(0.0004) 

0.9999 

(0.0004) 

Subsidy 
1.0013*** 

(0.0003) 

1.0013*** 

(0.0003) 

1.0013*** 

(0.0003) 

Income 
1.0003* 

(0.0002) 

1.0003* 

(0.0002) 

1.0003 

(0.0002) 

Gasoline price 
0.9979*** 

(0.0005) 

0.9979*** 

(0.0005) 

0.9980*** 

(0.0004) 

Public 

charging 

infrastructure 

0.3763 

(0.2641) 

0.3763 

(0.2641) 
- 

Eco-

friendliness 

2.1871 

(5.7015) 
- - 

AIC 937.810 937.871 937.870 

BIC 998.937 998.937 996.494 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01  
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Figure 4 shows the number of EV adoptions divided by the number of households in each 

first-tier administrative division. As can be seen from the bar graph displayed in red, Jeju had a 

significantly higher number than other first-tier administrative divisions, so it can be considered 

to be an outlier. Including the outlier in the analysis could lead to inconsistencies in the overall 

results; therefore, I removed the observations on Jeju from the entire dataset and conducted the 

same analysis as above on a total of 16 first-tier administrative divisions. 
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Figure 4. The number of registered EVs per 10,000 households by region10 

  

                                                      

10 Source: Ministry of Environment, KOSIS 
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Table 9 shows the descriptive statistics of the dataset excluding Jeju. Before excluding the 

observations from Jeju, the average number of registered EVs was 288 and the standard 

deviation was 716. After excluding the observations of Jeju, the average number of registered 

EVs was 194 with a standard deviation of 516. Overdispersion was still present, because the 

between-variation of EV adoption among first-tier administrative divisions was large, but the 

within-variation was also large. 
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Table 9. Descriptive statistics of dependent and independent variables (EV) (without Jeju) 

Variable 
 

Mean Std. Dev. Min Max Observation 

EV Overall 194.06 516.1947 1 4112 N = 80 

 Between11  270.0186 12.6 1112.2 n = 16 

 Within12  444.1154 -706.1375 3193.863 T = 5 

Price Overall 4588.4 480.4237 3913 5392 N = 80 

 Between  0 4588.4 4588.4 n = 17 

 Within  480.4237 3913 5392 T = 5 

Income Overall 4347.262 576.7065 3187 5548 N = 80 

 Between  484.5081 3665.8 5248 n = 17 

 Within  331.2527 3157.462 5377.262 T = 5 

Range Overall 147 38.5089 120 223 N = 80 

 Between  0 147 147 n = 17 

 Within  38.5089 120 223 T = 5 

Grant Overall 2378.375 326.3273 1849 3369 N = 80 

 Between  211.729 2133 2845 n = 17 

 Within  252.8441 1794.375 3134.375 T = 5 

Gasoline 

price 
Overall 1630.372 208.0023 1382.69 2002.96 N = 80 

 Between  26.0655 1607.336 1720.798 n = 17 

 Within  206.446 1398.172 1928.472 T = 5 

                                                      

11 ‘Between’ refers to the value of 𝑥𝑖̅, or the individual mean. 

12 ‘Within’ refers to the value of 𝑥𝑖𝑡 − 𝑥𝑖̅ + 𝑥̿, where 𝑥̿ denotes the global mean. 
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Table 9. Descriptive statistics of dependent and independent variables (EV) (without Jeju)  

       (continued) 

Variable 
 

Mean Std. Dev. Min Max Observation 

Eco-

friendliness 
Overall 0.6314 0.1554 0.4518 1.1124 N = 80 

 Between  0.1595 0.4518 1.1124 n = 17 

 Within  0 0.6314 0.6314 T = 5 

Public 

charging 

infrastructure 

Overall 0.17 0.1580 0 0.79 N = 80 

Between  0.1094 0.054 0.412 n = 17 

 Within  0.1167 -0.134 0.576 T = 5 
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According to the results of the FEP model excluding the observations from Jeju, the 

goodness-of-fit in the model based on AIC and BIC significantly improved (Table 10). Although 

the model described the data well, the estimated IRR coefficient of each variable did not change 

significantly compared to the results of the FEP model that included the observations from Jeju. 

The results indicate that public charging infrastructure and retail gasoline price still showed 

negative effects on EV adoption, although the estimated coefficient of retail gasoline price was 

not statistically significant. Thus, the reason for these unexpected results may not have been the 

inclusion of the observations from Jeju. I conducted a further analysis with the RENBD model 

in consideration of overdispersion of data and interpreted the results. 
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Table 10. Summary of results from Poisson regression models (EV) (without Jeju) 

FEP With Jeju Without Jeju 

Range 
1.0199*** 

(0.0006) 

1.0212*** 

(0.0008) 

Price 
0.9991*** 

(0.0001) 

0.9996*** 

(0.0001) 

Subsidy 
1.0022*** 

(0.0001) 

1.0013*** 

(0.0001) 

Income 
1.0012*** 

(0.0000) 

1.0005*** 

(0.0000) 

Gasoline price 
0.9955*** 

(0.0001) 

0.9973*** 

(0.0001) 

Public 

charging 

infrastructure 

0.0484*** 

(0.0097) 

0.2685*** 

(0.0573) 

Eco-friendliness - - 

AIC 3565.878 2369.780 

BIC 3580.534 2384.072 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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Table 11. Summary of results from Poisson and negative binomial models (EV) (without Jeju) 

Model FEP RENBD 

Range 
1.0212*** 

(0.0008) 

1.0212*** 

(0.0038) 

Price 
0.9996*** 

(0.0001) 

0.9997 

(0.0003) 

Subsidy 
0.0013*** 

(0.0001) 

1.0010*** 

(0.0003 

Income 
1.0005*** 

(0.0000) 

1.0003 

(0.0002) 

Gasoline price 
0.9973*** 

(0.0001) 

0.9981*** 

(0.0004) 

Public 

charging 

infrastructure 

0.2685*** 

(0.0573) 

0.3402 

(0.2584) 

Eco-friendliness - 
1.4654 

(7.7546) 

AIC 2369.780 841.266 

BIC 2384.072 898.435 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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The results of the RENBD model show that the goodness-of-fit was greatly improved 

compared to the FEP model, as in the previous results including the observations from Jeju 

(Table 11). This likely reflects overdispersal of the data. 

The range and subsidy variables had statistically significant and positive impacts on EV 

adoption in all models (Table 12). The range variable showed robust, strong, and positive effect 

on EV adoption. Higher prices were associated with worse EV adoption, but this relationship 

was not statistically significant. Income had a positive effect on EV adoption, but also lost 

statistical significance. Below, the results for each variable are interpreted and the robustness of 

each variable is checked. 
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Table 12. Summary of results (RENBD without Jeju - EV) 

RENBD Model 1 Model 2 Model 3 

Range 
1.0212*** 

(0.0038) 

1.0212*** 

(0.0038) 

1.0206*** 

(0.0040) 

Price 
0.9997 

(0.0003) 

0.9997 

(0.0003) 

0.9998 

(0.0003) 

Subsidy 
1.0010*** 

(0.0003) 

1.0010*** 

(0.0003) 

1.0011*** 

(0.0003) 

Income 
1.0003 

(0.0002) 

1.0003 

(0.0002) 

1.0002 

(0.0002) 

Gasoline price 
0.9981*** 

(0.0004) 

0.9981*** 

(0.0004) 

0.9982*** 

(0.0004) 

Public 

charging 

infrastructure 

0.3402 

(0.2584) 

0.3402 

(0.2584) 
- 

Eco-

friendliness 

1.4654 

(7.7546) 
- - 

AIC 841.266 841.266 841.408 

BIC 898.435 898.435 896.194 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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The average EV price from each year was used as the price variable. EVs with good 

performance and popularity are likely to have high prices, and to be sold more than other models. 

Due to data accessibility issues, the average value of the price of the EVs available in each year 

was used, but averaging may cause bias. To overcome this limitation, I sought to confirm the 

result by changing the price variable to the maximum value of the EV price for each year. 

In the robustness analysis, increasing prices had a negative relationship with EV adoption, 

which is consistent with the results for the original price, though statistically insignificant, as 

was the case when the average values were used (Table 13). Since consumers recognize the 

amount actually paid as the actual price of the product, not the list price, the subsidy was 

subtracted from the original price and an analysis was performed using the price to be paid as 

the price variable. This analysis confirmed that the paid price had a negative and significant 

impact on EV adoption. 
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Table 13. Robustness test for the price variable (RENBD without Jeju - EV) 

RENBD Model 1 Price_av  Price_max 
Price_av  Paid price 

(price - subsidy) 

Range 
1.0212*** 

(0.0038) 

1.0254*** 

(0.0086) 

1.0265*** 

(0.0019) 

Price 
0.9997 

(0.0003) 

0.9999 

(0.0001) 

0.9993*** 

(0.0002) 

Subsidy 
1.0010*** 

(0.0003) 

1.0010*** 

(0.0003) 
- 

Income 
1.0003 

(0.0002) 

1.0003 

(0.0002) 

1.0002 

(0.0002) 

Gasoline price 
0.9981*** 

(0.0004) 

0.9981*** 

(0.0004) 

0.9980*** 

(0.0004) 

Public 

charging 

infrastructure 

0.3402 

(0.2584) 

0.3402 

(0.2582) 

0.3166 

(0.2260) 

Eco-

friendliness 

1.4654 

(7.7546) 

1.4545 

(7.6997) 

0.0702 

(0.3768) 

AIC 841.266 841.254 864.546 

BIC 898.435 898.423 919.333 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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In some previous survey-based studies, fuel cost reduction was the biggest cause of EV 

adoption, but the results of this study showed the opposite tendency (Table 14). The two largest 

factors driving fuel cost savings are lower filling prices and longer driving distances. Assuming 

that the price of fuel is the same, the longer the driving distance, the more the fuel cost is reduced. 

Therefore, instead of retail gasoline prices, annual travel distance was used to represent the fuel 

cost savings from using EVs. The annual travel distance appeared to have a positive effect on 

EV adoption, but it was not statistically significant. The results were the same when the retail 

gasoline price and the annual mileage were included together. In order to directly investigate the 

effect of fuel costs, I attempted to conduct an analysis using the retail gasoline price multiplied 

by the annual travel distance, but the calculation did not reach convergence. 
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Table 14. Robustness test for the gasoline price variable (RENBD without Jeju - EV) 

RENBD Model 1 

Gasprice  

Vehicle miles 

traveled 

Gasprice & 

Vehicle miles 

traveled 

Gasprice   

Fuel cost 

Range 
1.0212*** 

(0.0038) 

1.0210*** 

(0.0047) 

.0207*** 

(0.0041) 
N.A.13 

Price 
0.9997 

(0.0003) 

1.0000 

(0.0004) 

0.9998 

(0.0003) 
N.A. 

Subsidy 
1.0010*** 

(0.0003) 

1.0007*** 

(0.0003) 

.0011*** 

(0.0003) 
N.A. 

Income 
1.0003 

(0.0002) 

1.0001 

(0.0002) 

1.0002 

(0.0002) 
N.A. 

Gasoline price 
0.9981*** 

(0.0004) 

1.0006 

(0.0007) 

0.9982*** 

(0.0004) 
N.A 

Public 

charging 

infrastructure 

0.3402 

(0.2584) 
- 

1.0002 

(0.0006) 
N.A. 

Eco-

friendliness 

1.4654 

(7.7546) 
- - - 

AIC 841.266 864.546 843.310 - 

BIC 898.435 919.333 900.479 - 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 

                                                      

13 N.A.: Not available due to the inability of convergence 
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During the analysis period of 2013 to 2017, oil prices steadily decreased (Table 15). However, 

it is unreasonable to infer that the reduction in oil prices promoted EV adoption. There are three 

possible interpretations regarding the cause of this outcome.  

First, people who have significantly higher mileage per year may have been more likely to 

buy an EV. When the annual travel distance was included instead of the retail gasoline price, it 

appeared to have a positive effect, albeit statistically insignificant. As mentioned earlier, higher 

mileage traveled corresponds to higher fuel costs, meaning that consumers have a strong 

economic incentive to purchase an EV. For those who travel greater distances than average, it is 

still beneficial to purchase an EV even if the oil price is low. This is especially true if oil prices 

are expected to rise in the future. Currently, only aggregated data are available, so it is difficult 

to verify this possibility directly. If microdata regarding EV adoption and EV adopters becomes 

available in the future, this conjecture could be confirmed. 

Second, as generous financial incentives in Korea significantly alleviated the initial purchase 

cost and the charging fees of public fast chargers are very low, the economic payback period of 

EVs might be shortened to a reasonable range. Fuel cost savings are important for EVs because 

they can offset the high initial cost relative to that of ICEVs. Over time, buying an EV is more 

economical than buying an ICEV. In 2016, the retail gasoline price was lowest and the charging 

rates were the highest during the analysis period; therefore, I calculated fuel cost savings and 

payback periods based on the price and rates in 2016 (Table 16). 
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Table 15. Yearly retail gasoline price (national average)14 

Year 2013 2014 2015 2016 2017 

KRW/L 1,924.4 1,826.1 1,511.7 1,405.3 1,494.9 

 

 

Table 16. ICEVs versus EVs: fuel cost saving15 (2016 Seoul) 

2016 

Seoul 

ICEVs 

Retail 

gasoline price 
 

(KRW/L) 

Fuel efficiency  
 

(km/L) 

Yearly vehicle 

miles traveled 

(km) 
 

11205.5 

Fuel cost 
 

(KRW) 

1,165,943  

 

1499.8 14.4 

EVs 

Charging fee 

(Public fast) 
 

(KRW/kWh) 

Fuel efficiency 
 

(km/kWh) 
Fuel cost 

 

(KRW) 
601,454 

313.1 5.8 

  
Fuel cost saving (KRW) 564,489 

 

  

                                                      

14 Source: Petronet 

15 Source: Petronet, Naver Auto, Ministry of Environment, KOSIS (author’s calculation) 
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During the first three years of the analysis period (2013 to 2015), public fast chargers were 

free to use, and in 2016, it was decided to charge EV owners at 313.1 KRW/kWh; however, in 

2017, the charge was again lowered to 173.8 KRW/kWh.  

According to Table 16, as of 2016, fuel costs can be reduced by about 560,000 KRW per year 

when using an EV rather than using an ICEV. The price of a Hyundai Ioniq EV, which was an 

EV model launched in 2016, was 41,500k KRW, and the difference in price from a Hyundai 

Avante (19,130k KRW), an ICEV in the same class, was 22,370k KRW. A substantial proportion 

of this difference can be covered by subsidies (Ministry of Environment 12,000k KRW, Seoul 

metropolitan government 4,500k KRW) and the tax reduction (4,390k KRW), so the initial cost 

to be paid in comparison to the comparable ICEV is actually 1,480k KRW. 

According to the above calculation, the initial cost paid in addition to the equivalent class of 

an ICEV can be compensated by reduced fuel costs after approximately two and a half years. 

Although no official statistics exist on the car replacement cycle in Korea in recent years, EV 

use would be advantageous even with only a 3-year replacement cycle, which is at the low end 

of car replacement cycles, which usually range from 3 to 10 years. The incentive for EV adoption 

is stronger if the owner’s annual mileage is much higher than average or if there is an expectation 

that gasoline prices will rise in the future. 

Third, because people are sensitive to price increases and have an asymmetrical tendency 

toward price perceptions to react insensitively to price declines, they may not have responded 

specifically to falling gasoline prices during the analysis period. Some previous studies have 

reported that people tend to incorrectly estimate the magnitude of fuel economy benefits [Cherif 

et al., 2017; Mersky et al., 2016; Helveston et al., 2015; Sierzchula et al., 2014; Turrentine & 
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Kurani, 2007]. If longer time series data are obtained and there is a rise and fall in oil prices 

during the period, it will be possible to analyze whether consumers actually react differently to 

rises and falls in oil prices by comparing the elasticity between periods of rising and falling 

gasoline prices. 

In the RENBD model, it was found that the number of chargers per number of EVs registered 

had a negative effect on EV adoption, but it was not statistically significant (Table 17). As a 

robustness test, the cumulative number of public fast chargers installed by the Ministry of 

Environment was divided by the area of each first-tier administrative division, and the relative 

density of chargers was analyzed as a proxy of public charging infrastructures. The cumulative 

number of public chargers and the relative density of the fast charger in each municipality are 

shown in Table 18 and 19 respectively. 
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Table 17. Robustness test for the public charging infrastructure variable (RENBD without Jeju - EV) 

 Model 1 

Chargers per EV 

 chargers per 

area 

Chargers per EV 

 detached houses 

Chargers per EV 

 chargers per 

area & detached 

houses 

Range 
1.0212*** 

(0.0038) 

1.0167*** 

(0.0048) 

1.0241*** 

(0.0041) 

1.0204*** 

(0.0046) 

Price 
0.9997 

(0.0003) 

0.9999 

(0.0004) 

0.9999 

(0.0003) 

1.0000 

(0.0003) 

Subsidy 
1.0010*** 

(0.0003) 

1.0011*** 

(0.0003) 

1.0010*** 

(0.0003) 

1.0010*** 

(0.0003) 

Income 
1.0003 

(0.0002) 

1.0000 

(0.0002) 

1.0002 

(0.0002) 

1.0001 

(0.0002) 

Gasoline price 
0.9981*** 

(0.0004) 

0.9984*** 

(0.0003) 

0.9974*** 

(0.0005) 

0.9976*** 

(0.0004) 

Public 

charging 

infrastructure 

0.3402 

(0.2584) 

1.0464** 

(0.0210) 
- 

1.0358** 

(0.0183) 

Detached 
1.4654 

(7.7546) 
- 

1.3887*** 

(0.1415) 

1.3432*** 

(0.1372) 

AIC 841.266 838.562 834.663 832.826 

BIC 898.435 895.731 891.832 892.377 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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Table 18. The cumulative number of public chargers16 (units) 

Year  Seoul Busan Daegu Incheon 
Gwang-

ju 
Daejeon Ulsan Sejong 

Gyeong-

gi 
Gang-

won 
Chung-

buk 
Chung-

nam 
Jeon-

buk 
Jeon-

nam 
Gyeong-

buk 
Gyeong-

nam 

2013 32 10 1 10 6 2 1 1 27 8 1 9 1 8 8 13 

2014 40 15 1 11 9 2 1 1 41 9 2 13 2 11 12 18 

2015 40 15 4 11 9 2 4 1 56 13 13 17 15 31 28 29 

2016 47 16 11 13 9 3 9 1 65 24 27 42 34 48 47 46 

2017 99 29 16 24 9 14 9 1 132 66 62 70 62 71 98 72 

 

Table 19. The cumulative number of public chargers divided by the area of each first-tier administrative division17 (units per km2) 

Year  Seoul Busan Daegu Incheon 
Gwang-

ju 
Daejeon Ulsan Sejong 

Gyeong-

gi 

Gang-

won 

Chung-

buk 

Chung-

nam 

Jeon-

buk 

Jeon-

nam 

Gyeong-

buk 

Gyeong-

nam 

2013 0.053 0.013 0.001 0.009 0.012 0.004 0.001 0.002 0.003 0.000 0.000 0.001 0.000 0.001 0.000 0.001 

2014 0.066 0.019 0.001 0.010 0.018 0.004 0.001 0.002 0.004 0.001 0.000 0.002 0.000 0.001 0.001 0.002 

2015 0.066 0.019 0.005 0.010 0.018 0.004 0.004 0.002 0.005 0.001 0.002 0.002 0.002 0.003 0.001 0.003 

2016 0.078 0.021 0.012 0.012 0.018 0.006 0.009 0.002 0.006 0.001 0.004 0.005 0.004 0.004 0.002 0.004 

2017 0.164 0.038 0.018 0.023 0.018 0.026 0.009 0.002 0.013 0.004 0.008 0.009 0.008 0.006 0.005 0.007 

                                                      

16 Source: Ministry of Environment 

17 Source: Ministry of Environment, KOSIS 
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In order to understand the cause of these contradictory results, the current usage pattern of 

public fast chargers by EV owners was examined. The information is provided by the Ministry 

of Environment through an information disclosure claim (Table 20). The average number of 

usages of public fast chargers per registered non-business EV was 0.77 times nationwide. Of the 

17 first-tier administrative divisions, the usage count of public fast chargers per EV was below 

1 in 11 first-tier administrative divisions (64.7%).  

As of 2018, the average battery capacity of EVs that consumers can purchase is 42.5 kWh. 

The charge amount of fast chargers per EV per month in 10 first-tier administrative divisions 

was less than 10 kWh, which is approximately less than 25% of the full charge on average. Only 

four first-tier administrative divisions—Chungcheongbuk-do, Chungcheongnam-do, 

Gyeongsangbuk-do, and Jeju— showed an average charge amount of about 20 kWh, which is 

half the average battery capacity. These data show that the public fast chargers were not 

extensively used by EV owners. 

In this study, considering the fact that it takes at least 30 minutes to charge, the total number 

of public fast chargers was adjusted by the total number of registered EVs in each first-tier 

administrative division. However, the usage statistics of the public fast chargers indicate that 

competition with other EVs was very low, because public fast chargers were hardly used. Thus, 

it seems that adjusting the number of public fast chargers by the number of EVs was indeed 

meaningless, which may explain why the coefficient of the original variable (cumulative public 

chargers divided by the number of registered EVs) was statistically insignificant. 
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Table 20. Statistics of rapid charging use by EV owners18 

Metropolitan 

municipalities 

(as of August 

2018) 

Monthly average Number of EVs 

registered 

(non-business 

use) 

Number of 

charges per 

EV 

Charge 

amount  

per EV 

(kWh) 

Number of 

charges 

Charge 

amount 

(kWh) 

Seoul 2,835 35,767 3,753 0.76 9.53 

Busan 644 8,311 1,114 0.58 7.46 

Daegu 951 12,493 4,327 0.22 2.89 

Incheon 540 7,262 1,104 0.49 6.58 

Gwangju 263 3,530 1,012 0.26 3.49 

Daejeon 250 3,861 796 0.31 4.85 

Ulsan 286 3,664 581 0.49 6.31 

Sejong 28 380 248 0.11 1.53 

Gyeonggi 3,659 48,773 4,801 0.76 10.16 

Gangwon 954 14,000 881 1.08 15.89 

Chungbuk 855 12,478 672 1.27 18.57 

Chungnam 1,051 14,959 780 1.35 19.18 

Jeonbuk 693 10,030 662 1.05 15.15 

Jeonnam 1,047 13,899 1,583 0.66 8.78 

Gyeongbuk 2,093 30,140 1,491 1.40 20.21 

Gyeongnam 1,201 15,008 1,687 0.71 8.90 

Jeju 14,398 175,416 9,232 1.56 19.00 

 

 

                                                      

18 Source: Ministry of Environment 
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Since charger density had a positive effect on EV adoption, it can be assumed that public 

chargers were actively used where the charger density was high. However, as shown in Table 20, 

the frequency and the amount of public fast charger usage in Seoul, Busan, Daegu, Incheon, and 

Gwangju, which are the five areas with the densest distribution of public fast chargers, were 

quite low. Meanwhile, previous studies based on stated preferences argued that public charging 

infrastructure is a key factor in EV adoption [She et al., 2017; Vassileva & Campillo, 2017; 

Junquera et al., 2016; Sang & Bekhet, 2015; Carley et al., 2013].  

Based on these points, the fact that the public fast chargers exist at a short distance may have 

a positive effect on the adoption of EVs by creating a psychological feeling of relief in consumers, 

who recognize that there is a place to charge at any time, even if the actual usage of these 

chargers is infrequent. 

The next question is then where EV users charge their EVs. According to the “2017 Energy 

Consumption Survey—Electric Vehicles Owners Survey Report” by the Korea Energy Agency, 

EV users who answered the questionnaire were found to charge their EVs mainly at public 

organizations’ charging stations (31.0%), homes (27.9%), charging stations of private charging 

service providers (24.0%), and workplaces (15.3%) (Figure 5). 

As of October 25, 2018, there are a total of 4,986 public charging stations that can be 

searched on the Ministry of Environment's EV charging station website. According to these 

statistics, chargers installed by public institutions such as the Ministry of Environment are 

primarily fast chargers, which account for 81.6% of chargers, while 18.4% are level 2 chargers 

(Table 21). In contrast, the charging stations installed by private operators are mainly level 2 

chargers, which account for 94.9%, whereas only 5.1% are fast chargers. Therefore, the charging 
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stations installed by public institutions such as the Ministry of Environment are mainly fast 

chargers, and charging stations installed by private operators are mainly level 2 chargers. As will 

be explained again later, considering the convenience of charging, the price of the charger, and 

governmental support, it is reasonable to assume that all chargers installed in residential areas 

are level 2 chargers. The same can be said for workplaces. By a rough calculation, the results of 

the 2017 survey show that EV users utilize fast chargers and level 2 chargers at a ratio of about 

7:3. 
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Table 21. Type of chargers by operating organization19 

 
Fast chargers 

(%) 

Level 2 chargers 

(%) 
Total 

Public organization 81.6 18.4 100 

Charging service providers 5.1 94.9 100 

 

 

Figure 5. The distribution of charging places used by EV users20 

  

                                                      

19 Ministry of Environment Electric Vehicle Charging Stations Website. Available online: 

www.ev.or.kr (accessed on 5 November 2018). 

20 Source: Ministry of Trade, Industry, and Energy & Korea Energy Agency (2017) 

http://www.ev.or.kr/
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In Korea, the Ministry of Environment provides an installation subsidy for one non-public 

(private use only) level 2 charger for one purchase of an EV from 2013 to 2018 (Table 22). In 

some first-tier administrative divisions, the subsidy eligibility criterion is “who owns (leases) a 

parking space to install a level 2 charger” (2013 Jeju, 2015 & 2016 Busan, etc.). In the 

“Guidelines for Distributing Electric Vehicles and Charging Infrastructures Construction Project 

Subsidies,” it is written that it is necessary to examine whether the recipient of the subsidy has 

a charger installed for operating the EV. This statement was maintained from 2013 to 2016 and 

disappeared in 2017. Under these circumstances, it is likely that most EV buyers have non-public 

level 2 chargers, reducing the need for public fast chargers. 

 

 

Table 22. Subsidy for non-public level 2 chargers from the Ministry of Environment21 

Year 2013 2014 2015 2016 2017 2018 

1,000 KRW 8,000 7,000 6,000 4,000 3,000 1,500 

 

  

                                                      

21 Source: Ministry of Environment 
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Since the cost of installing non-public level 2 chargers is mostly covered by governmental 

subsidies, the main barrier to installation of the charger is the presence or absence of an 

installation space. If one lives in a detached house, it is much easier to install the charger. People 

living in multi-dwelling units need to get permission at a residents’ meeting to install the charger 

in the public parking lot. Therefore, a high proportion of detached houses in the area can be 

considered to favor the adoption of EVs, at least for the installation of non-public level 2 chargers. 

To verify this conjecture, the same analysis was performed using the ratio of detached houses 

by region instead of charger density (Table 17, Model 3). The ratio of detached homes was found 

to have a strong positive effect on the adoption of EVs. 

The above discussion can be summarized as follows. First, because EV users did not utilize 

public fast chargers extensively, competition due to the existence of other EVs was very low, 

which is presumed to be the cause of the statistically insignificant coefficient of the total of 

public fast chargers divided by the number of registered EVs. Second, EV adopters did not 

actually use public fast chargers frequently, but the fact that public fast chargers existed nearby 

had a positive effect on EV adoption by reducing range anxiety. Third, during the analysis period, 

the government’s support for non-public level 2 chargers favored EV adoption by people living 

in single-family homes. 

 

 

 

 

  



89 

 

Table 23. Robustness test for the eco-friendliness variable (RENBD without Jeju - EV) 

RENBD Model 1 
Green Party votes  

Democratic Party votes 
Eco-friendliness excluded 

Range 
1.0212*** 

(0.0038) 

1.0212*** 

(0.0038) 

1.0212*** 

(0.0038) 

Price 
0.9997 

(0.0003) 

0.9997 

(0.0003) 

0.9997 

(0.0003) 

Subsidy 
1.0010*** 

(0.0003) 

1.0010*** 

(0.0003) 

1.0010*** 

(0.0003) 

Income 
1.0003 

(0.0002) 

1.0003^ 

(0.0002) 

1.0003^ 

(0.0002) 

Gasoline price 
0.9981*** 

(0.0004) 

0.9981*** 

(0.0004) 

0.9981*** 

(0.0004) 

Public 

charging 

infrastructure 

0.3402 

(0.2584) 

0.3402 

(0.2584) 

0.3402 

(0.2584) 

Eco-

friendliness 

1.4654 

(7.7546) 

1.0050 

(0.0695) 
- 

AIC 841.266 841.266 841.266 

BIC 898.435 898.435 898.435 

 

^: p-value < 0.15 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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Eco-friendliness, as represented by Green Party votes, was not statistically significant Table 

23). The reason for this result may be that the Green Party is too small of a minority and that 

Korea’s political system is almost bipartisan. To test the robustness of the results, I reanalyzed 

the data with the ratio of Democratic Party vote instead of Green Party votes. Democratic parties 

tend to support pro-environmental policies in general [Crago & Chernyakhovskiy, 2017]. 

However, the results did not change. Several studies have found that consumers’ environmental 

concerns encourage them to adopt vehicle types with less environmental impact [Axsen et al., 

2015; Jensen et al., 2013], but this was not the case in this study. It is difficult, however, to 

conclude that eco-friendliness did not affect EV adoption, because both of these variables were 

very comprehensive measures of political inclination [Allan & McIntyre, 2017]. However, as 

mentioned in several previous studies, a pro-environmental tendency does not necessarily lead 

to the purchase of eco-friendly products [Sierzchula et al., 2014; Egbue & Long, 2012; Lane & 

Potter, 2007]. From the perspective of widespread diffusion or marketing, care is needed when 

choosing publicity for eco-friendliness as a principal measure. If a proxy variable can be found 

that represents eco-friendliness of consumers more accurately, is easily quantifiable, and is 

suitable for obtaining many observations, a more sophisticated analysis of the effect of eco-

friendliness of consumers on EV adoption will be possible. 
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2.5 Summary and Discussion 

 

In chapter 2, I attempt to identify drivers of EV adoption using actual data on EVs purchased 

in Korea from 2013 to 2017. The analysis showed that the estimated IRR of each variable had a 

similar direction, magnitude, and statistical significance in the FEP and RENBD models.  

The findings of this study are as follows. As the range with a full charge and total economic 

incentives from the government appeared to have a robust and positive effect in all models, it 

can be concluded that these two variables had the most important influence on the adoption of 

EVs in Korea from 2013 to 2017, and this result is consistent with the literature. Since the price 

of EVs has a negative effect on EV adoption, automobile manufacturers should make efforts to 

lower prices through technological innovation and mass production. Consumers’ income did not 

have a statistically significant effect on EV adoption, most likely due to the availability of 

various financial products and installment programs related to automobile purchases, which 

minimize the impact of the consumer's ability to pay. In this study, it was found that eco-

friendliness, as measured by voter turnout for the Green Party or Democratic Party, was 

insignificant, in contrast to the previous literature. 

EV adoption increased despite a steady decline in oil prices during the analysis period, which 

does not align with the findings of previous studies based on stated preferences [Vassileva & 

Campillo, 2017; Hardman et al., 2016; Link et al., 2012; Hidrue et al., 2011]. There are multiple 

reasons. First, people who have an annual mileage that is significantly higher than average may 

have been more likely to purchase an EV. For those who travel a greater distance than the average 

mileage, it is still beneficial to purchase an EV even if the oil price is slightly lower. Second, as 
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generous financial incentives in Korea significantly alleviated the initial purchase cost and the 

charging fees for public fast chargers were very low, the economic payback period of EVs might 

have been shortened enough to make the purchase of an EV reasonable. Third, because people 

are sensitive to price increases, while they have an asymmetrical tendency to react insensitively 

to price declines, they may not have reacted specifically to falling gasoline prices during the 

analysis period. 

Regarding public charging infrastructure, the number of public fast chargers adjusted by the 

total number of EVs in the area showed a negative effect, whereas the value adjusted by the area 

of the municipality showed a positive effect. To interpret this, it should first be noted that the 

competition due to the presence of other EVs was not significant because the actual use rate of 

public fast chargers by EV users was very low, which might explain why the estimated 

coefficient of the variable was insignificant. Second, although EV adopters did not actually 

utilize public fast chargers frequently, the fact that public fast chargers existed nearby may have 

had a positive effect on EV adoption by relieving range anxiety. Third, with governmental 

support for non-public level 2 chargers, EV adoption was favorable for people living in single-

family homes. 

The following policy implications can be derived from the above findings. First, more efforts 

should be invested into making EVs themselves competitive. Since range had strong positive 

effects on EV adoption, R&D efforts should be made by automobile manufacturers to reduce the 

inconvenience of charging and range anxiety, and to reach a sufficient quality for competition 

with ICEVs. 
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Second, although public charging infrastructure has not been used extensively, it is still 

important for widespread EV adoption. It has regularly been claimed that the lack of public 

chargers is an obstacle to the spread of EVs. In that regard, the government also provides 

generous subsidies for the installation of non-public level 2 chargers in addition to efforts to 

expand the public fast charging infrastructure. Examining the results of the analysis and 

reviewing the literature, it can be seen that until now, most people who bought EVs were those 

who can install a level 2 charger or who can charge an EV at their workplace. However, the 

diffusion of EVs will be inherently limited if only people in such circumstances purchase EVs. 

It is important to build a sufficient charging infrastructure because public charging infrastructure 

has a positive impact on people, both practically and psychologically. In particular, considering 

that people mainly use slow charging at their homes or workplaces, it seems necessary to 

supplement them systematically, so that “parking is charging.” 

This study has some limitations in terms of data due to the emerging market characteristics 

of EVs and the relatively short history of EV policy implementation in Korea. A more accurate 

analysis is likely to be available when more comprehensive and extended time-series data are 

obtained in the near future. However, it should be pointed out that the dataset used in this 

research is one of the best options so far. 

The data used in this study are short panel discrete data. As the unit root test for discrete data 

has not been well established academically yet [Park, 2015], and time series analysis of panel 

data assumes a large T [Baltagi, 2013], it was difficult to apply time-series methodologies such 

as panel cointegration in this study. Trend variables that take into account the effects of time are 

generally used to capture technological progress [Münzel et al., 2019; Crago & Chernyakhovskiy, 
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2014]. This study already included a variable for technical attributes, which represent 

technological improvement over time. It is expected that the panel time series analysis method 

will become applicable as data accumulate over time and T increases. Some issues could not be 

analyzed because they have not yet been observed. For instance, examining the asymmetries of 

EV adoption when gasoline prices rise and fall will yield a better understanding of the impact of 

operating costs when purchasing innovative durables. 

Another point to keep in mind is that the government has a targeted number of EVs to supply 

each year. Carefully examining the data, it is found that during the analysis period of this study, 

the target set by the government was unmet each year due to low public interest. When analyzing 

the data by region and year, the target was exceeded or matched only in a few instances. However, 

demand for EVs will increase as the performance of EVs improves and the models are diversified. 

It may be increasingly common that people who want to buy EVs with governmental support 

have to give up the purchase due to budgetary constraints. The government can draw up revised 

supplementary budgets to respond to the excess demand, in which case a simultaneous equation 

model should be used because EV adoption and the budget are determined simultaneously. In 

this study, this methodology was not applied since those cases are negligible and the benefit of 

using the complicated methodologies with a small dataset is imperceptible. Nevertheless, these 

points should be considered in further studies analyzing EV adoption in the mature phase. 

As aggregate-level data were used rather than disaggregated data, some aspects remain 

incompletely understood. For example, the available data did not allow a determination of 

whether people with higher mileage per year actually bought more EVs than those with a lower 

annual mileage.  
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An interesting research topic for the near future is vehicle body type. Koreans have distinct 

preferences for vehicle body type, as the two most preferred body types are large sedans and 

small SUVs. During the introductory phase of EV adoption from 2013 to 2017, the EV models 

available were light, small, and semi-medium sedans, and there was no large sedan segment until 

the Tesla S 90D became available for purchase in 2017. The release of the KONA EV and NIRO 

EV in 2018 seems to have attracted a great deal of demand from those who had not bought an 

EV because they preferred small SUVs. The mileage, needless to say, has also significantly 

improved, to approximately 400 km per full charge. If more detailed data can be obtained, the 

effect of the body type of EVs on the adoption of consumers can also be analyzed. I tried to 

analyze this effect by incorporating the number of selectable models as a variable, but it was not 

included in the final analysis due to multicollinearity. Therefore, it is expected that when the 

market is more mature and more data are accumulated, it will be possible to conduct additional 

studies of the interesting issues mentioned above. 
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Chapter 3. Residential Photovoltaic Adoption by 

South Korean Households 

3  

3.1 Background 

 

Residential solar photovoltaic (PV) installations have been successfully established in 

several countries, such as Germany, Australia, and Japan. In comparison, the conditions of Korea 

are unfavorable, with more than 60% of the population living in multi-dwelling units and the 

highest population density among OECD countries (approximately 530 people per square 

kilometer in 2018), followed by Netherlands (approx. 508 people per square kilometer). 

Therefore, the next best alternative to emerge onto the market is the veranda-type solar mini-

power plant (hereafter, mini-solar PV). The Seoul Metropolitan Government has encouraged the 

use of renewable energy by citizens since 2014 by implementing the “Reduce One Nuclear 

Power Plant” policy. The city of Seoul comprises only 0.6% of the total land area of Korea, but 

is inhabited by about 19% of the country's population. As such, its population density is quite 

high (15,984 people per square kilometer as of 2018), and it is the densest metropolitan city 

among any of the 17 first-tier administrative divisions in Korea (with a population density 177 

times higher than that of Gangwon-do, the region with the lowest population density) (Figure 6). 

The majority (63%) of residents of Seoul live in multi-family houses, and it was the first area 

in the nation to adopt a mini-solar PV distribution policy. Mini-solar PV units generally have a 

much smaller capacity (250-500 kW) than typical residential solar PV units (3-10 kW). As the 
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panel is small, it has the advantage of being possible to fix and mount on the balcony railing of 

an apartment, even if no large area is available, such as the roof of a detached house. 

In order to encourage the installation of mini-solar PV units, citizens are provided differential 

subsidies based on capacity from the Seoul Metropolitan Government since 2014 based on 

“Energy Ordinance Article 25.” Several gu22 governments also provide additional subsidies for 

mini-solar PV installation. 

 

 

 

 

  

                                                      

22 Gu denotes the districts of Seoul. 
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Figure 6. Population density by region23 

 

 

Figure 7. The ratio of multi-dwelling units by region24 

                                                      

23 Source: KOSIS 

24 Source: KOSIS 
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Efforts have been made to identify factors contributing to residential solar PV adoption. 

However, studies have mainly focused on countries where residential solar PV installations are 

already actively spreading, such as the United States and Germany [Crago & Chernyakhovskiy, 

2017; Dharshing, 2017; Rai & McAndrews, 2012]. However, the profitability of residential solar 

PV is strongly affected by solar irradiation, the electricity rate structure, and the policy support 

system. Therefore, it is meaningful to analyze factors contributing to residential solar PV 

adoption in a country-specific manner. 

There are also several advantages to limiting the scope of analysis to Seoul, rather than to 

the national level. It is difficult to analyze the effectiveness of a single policy when multiple 

policies are implemented simultaneously. In the case of Seoul, the installation of mini-solar PV 

in a multi-family house is only supported by a subsidy for installation costs during the initial 

installation. Therefore, these circumstances provide optimal conditions for analyzing the effects 

of the policy. Furthermore, since retail electricity sales are exclusive to the KEPCO and the 

household electricity rate system is the same for all households, the analysis is easier than in 

other countries where multiple utility options are available. 

In particular, the most demanding aspect of empirical analysis is that it is always necessary 

to control for unobserved heterogeneity, but doing so is very difficult because unobserved 

heterogeneity is, by definition, unobserved. Therefore, care is taken to select as many models as 

possible including the major factors affecting the dependent variable, or to exclude the effects 

of heterogeneity. The social and demographic characteristics of the citizens of Seoul are more 

homogeneous than those of all residents of Korea, so unobserved heterogeneity can be better 

controlled. In addition, the city of Seoul has a small area (605 km2). Since the distance from the 
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north end to the south end of Seoul is only 30.3 km, the solar irradiation in each gu can be 

considered to be almost the same, which can eliminate another source of uncertainty in the 

analysis. Furthermore, external shocks (e.g., typhoon damage, abnormal temperatures, or legal 

changes affecting PV adoption) can be assumed to affect mini-solar PV use in Seoul relatively 

evenly. 
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3.2 Literature Review 

 

 

Existing research on innovation diffusion policy for solar photovoltaics was mainly focused 

on expanding the share of renewable energy at the national level [Kim & Heo, 2016; Li et al., 

2015; Smith & Urpelainen, 2014; Zhao et al., 2013; Dong, 2012]. This is because there was a 

high demand to change the energy mix to cope with climate change, and there was lack of 

economic benefits for residential buildings to install solar panels due to low price 

competitiveness compared to the traditional energy resources. However, as technology advances 

and learning effects occurs within the industry, the PV module cost has reached nearly a tenth 

from $2 per W (global benchmark) in 2010 to $0.23 per W in the first half of 2019 [Bloomberg 

NEF, 2019]. Accordingly, through various national support policies, it was possible to obtain 

economic advantages by installing solar PV in residential sector. 

Prior studies on residential solar PV have been conducted mainly in countries where 

residential solar is most extensively deployed, such as Germany [Candas et al., 2019; Dharshing, 

2017; Klein & Deissenroth, 2017; Schaffer & Brun, 2015], United States [Crago & 

Chernyakhovskiy, 2017; Robinson & Rai, 2015; Chen et al., 2013; Krasko & Doris, 2013], and 

Australia [Zander et al., 2019; Agnew et al., 2018; Simpson & Clifton, 2017; Chapman et al., 

2016; Simpson & Clifton, 2016; Nelson et al., 2011]. 

In analyzing the adoption factors of residential solar PV, economic factors are generally 

considered to be the most important factors so that there are many studies related to them. 

Examples include papers that calculate the payback time of residential solar PV systems through 
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simulation [Hirvonen et al., 2015], that study economic viability of residential solar PV through 

net present value (NPV) and internal rate of return (IRR) calculations [Klein & Deissenroth, 

2017; La Monaca & Ryan, 2017; Hagerman et al., 2016], and that analyze factors which lower 

installation costs, such as price transparency and soft costs [O’Shaughnessy & Margolis, 2018; 

Morris et al., 2014; Seel et al., 2014]. In recent years, studies on positive feedback have been 

published that the demand for electricity from the grid decreased due to the increase in residential 

solar PV, which increases electricity prices, which in turn leads to more of consumers' residential 

solar PV adoption [Chesser et al., 2018; Laws et al., 2017; Cai et al., 2013]. 

The study of factors affecting the adoption of residential solar PV can be largely divided into 

the studies based on stated preferences and those based on revealed preferences. The policy 

supporting the dissemination of residential solar PV has a longer history than that for EVs in 

many countries, so that we can find the studies based on revealed preference more easily [Allan 

& McIntyre, 2017; Briguglio & Formosa, 2017; Crago & Chernyakhovskiy, 2017; Dharshing, 

2017; Kwan, 2012]. Besides, a large number of studies based on stated preferences in the EV 

literatures have analyzed the intention to purchase EVs for potential adopters, while in the case 

of residential solar PV, many studies have been conducted a survey to adopters who already 

installed solar panels [Simpson & Clifton, 2017; Sommerfeld et al., 2017; Rai & McAndrews, 

2012]. 

In Simpson & Clifton (2017), the authors investigated what encourages early majority of 

adopters to decide to install residential solar panels from 2013 to 2015 in Australia through mail-

out survey and in-depth interviews. According to the results, financial incentives are the most 

priority in the decision-making process for residential solar PV adopters, which makes early 
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majority distinguishable to early adopters who generally cares technical or environmental 

reasons more than financial incentives. However, a study that conducted in-depth interviews on 

22 households with residential solar PV installations between 2008 and 2015 showed that the 

concern for the environment was the least discussed motivation and economic motivation was 

the highest installation factor [Sommerfeld et al., 2017]. Nonetheless, comparing those who 

installed residential solar PV between 2008 and 2012 and those who installed thereafter, larger 

percentage of former households answered that the concern for the environment had an effect 

on installation decisions than that of latter households. 

Studies based on revealed preference attempted to identify factors affecting adoption using 

econometric methods including adopters’ demographic and socioeconomic factors as well as the 

policy and institutional factors. Economic factors such as income, subsidies, and electricity 

prices have largely been found to be important, and some studies have shown that adopters’ eco-

friendliness have had a positive impact on residential solar adoption [Crago & Chernyakhovskiy, 

2017; Bollinger & Gillingham, 2012]. There are studies that pro-government sentiment has a 

greater impact than eco-friendliness on the adoption of residential solar PV [Briguglio & 

Formosa, 2017]. Although such various variables were included in the empirical analysis, studies 

dealing with the properties of the photovoltaic panel itself are very rare excepting Chen et al. 

(2013), which used machine learning methodology to extract the main attributes of solar panel. 

Considering the importance of the product's intrinsic technical properties as an innovative 

durable household goods, they were surprisingly rarely covered in prior studies. This study fills 

the gap of the existing literature in that module efficiency is used as the most representative 

technical property of solar panels for one of the explanatory variable. 
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Studies focusing domestic markets also dealt with residential solar PV on the rooftops of 

detached houses before Seoul Metropolitan governments launched the diffusion policy for mini 

solar PV on veranda railing of the multi-dwelling units. There is an early study that analyzed 

citizens' perceptions on the distribution of solar power in domestic residential sector [Ban & Lee, 

2010]. The questionnaire was aimed at general citizens, civil servants, and workers in the solar 

PV industry, and asked about the general perception of the policy for residential solar PV 

diffusion. The respondents said that the governments should implement the diffusion policy in 

consistent manner over the long term and the module efficiency needs to be improved to 

widespread diffusion of residential solar PV. Also, they expect that residential solar PV would 

be the solution to environmental problems and the landscape would not be severely destroyed.  

There is a study of Green Home residents surveying housing choice factors and residential 

satisfaction [Park et al., 2014]. According to the results, Green Home residents considered 

economic benefit as the most important factors for housing choice. Factors affecting residential 

satisfaction were also found in order of economic benefit, ease of maintenance, and ease of 

installation. In An & Chung (2018), solar energy acceptability for rural residents was analyzed 

based on Rogers' theory of innovative diffusion. The authors found that economic benefit as a 

relative advantage brings the adoption even if the adopter is not aware well regarding complexity 

and compatibility of the innovative product.  

Recently, a small number of studies have been published on mini-solar PV. The authors of 

Baek & Yun (2015) surveyed the citizens in Nowon-gu of Seoul city, which has implemented a 

leading diffusion policy for the installation of mini solar PV in multi-dwelling housing. The 

survey showed that the electricity bill savings, installation subsidies, and the concern for the 
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environment were main factors that affected the installation. 31.9 percent of the respondents said 

module efficiency should be increased to generate more electricity, indicating that citizens have 

a high demand for technological improvement. There is also an analysis of the stringency 

determinants of the mini-solar PV policy of each autonomous Gu-district rather than the 

consumer's adoption factors [Han & Yun, 2019]. Lee & Shepley (2020) surveyed low-income 

families living in social housing on the support policy for installing mini solar energy.  The 

results showed that electricity bill reduction and government funding for the system were the 

most important motivations for installation of mini solar PV.  

Thorough reviewing the existing literatures, this study has the following significances. First, 

this study considers the technical attributes of solar panel as an important explanatory variable 

in examining factors for mini-solar PV adoption. Although the technical excellence of solar 

panels is crucial and many respondents who already adopted mini-solar PV answered that 

increase in module efficiency is needed, few study investigated the effect of technical excellence 

of solar panels on its adoption. Second, this study utilized the revealed preference for mini-solar 

PV adoption. There are, of course, limitations due to lack of data availability because it is in the 

early stages of market introduction. Nonetheless, the results of a study analyzed based on actual 

adoption data are significant in that they can enable us to find out new facts that were not seen 

in studies which only deal with stated preferences through comparison and contrast with studies 

based on surveys. 

Third, this study focused on mini-solar PV. There have been many previous studies analyzed 

on residential solar PV, but mini-solar PV has not yet been fully researched because it is not 

spurred in many countries yet and the market history is short. Also, in a dense city like Seoul, 
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mini-solar PV can be a good alternative when it is necessary to increase the ratio of renewable 

energy in energy mix, so that it is meaningful to analyze what encourage consumers’ adoption 

of mini-solar PV.  
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3.3 Data and Variables 

 

The explanatory variables used in this study are shown below (Table 24). They were selected 

according to the results of previous studies, data availability, and suitability for residents of Seoul. 

Explanatory variables can be grouped into PV-intrinsic factors and PV-extrinsic factors. PV-

intrinsic factors are classified into user-intrinsic and user-extrinsic attributes, while PV-extrinsic 

factors are categorized into technical and non-technical attributes (Figure 8). 
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Figure 8. Conceptual framework of key attributes for PV adoption 
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Table 24. Explanatory variables for EV adoption 

Group Attributes Variables Literature 

PV- 

intrinsic 

Factors 

Technical Efficiency 
Hirvonen et al. (2015), Chen et al. (2013), Shih & 

Chou (2011) 

Non-

technical 
Price 

Candas et al. (2019), Lee et al. (2018), Islam (2014), 

Shih & Chou (2011) 

PV- 

extrinsic 

factors 

User- 

intrinsic 

Income 

Allan & McIntyre (2017), Briguglio & Formosa 

(2017), Crago & Chernyakhovskiy (2017), Dharshing 

(2017), Robinson & Rai (2015), Schaffer & Brun 

(2015), Sardianou & Genoudi (2013), Bollinger and 

Gillingham (2012), Kwan (2012), Rai & McAndrews 

(2012) 

Eco-

friendliness 

Allan & McIntyre (2017), Briguglio & Formosa 

(2017), Crago & Chernyakhovskiy (2017), Dharshing 

(2017), Schaffer & Brun (2015), Bollinger and 

Gillingham (2012), Kwan (2012) 

Housing 

tenure 

choice 

Candas et al. (2019), Allan & McIntyre (2017), 

Briguglio & Formosa (2017), Bollinger and 

Gillingham (2012) 

Electricity 

consumption 

Crago & Chernyakhovskiy (2017), Kwan (2012), Shih 

& Chou (2011) 

User- 

extrinsic 
Subsidy 

Bauner & Crago (2015), Cherrington et al. (2013), 

Jenner et al. (2013), Krasko & Doris (2013), Kwan 

(2012), Hsu (2012) 
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3.3.1 PV-intrinsic Variables 

 

3.3.1.1 Efficiency 

 

A mini-solar power plant consists of modules, inverters, monitoring devices, and other 

materials. However, despite the importance of technical attributes of solar panels, few papers 

dealing with solar PV adoption have addressed them. It is not realistic to include variables for 

all technical attributes in the analysis. In this study, after assessing three key attributes based on 

the study of Chen et al. (2013), the conversion efficiency of the module was set as a technical 

attribute variable based on two criteria: representativeness and data availability. 

In Chen et al. (2013), data from small-scale PV systems installed from 2007 to 2011 were 

obtained from the California Solar Initiative database. After selecting the top 140 panels with 

the highest market share out of a total of 586 panel types, a list of 34 product attributes was 

constructed by combining the electrical, physical, certification, warranty, and economic 

properties of these panels. As expected, the expanded list of attributes exhibited a high degree 

of multicollinearity, meaning that the attributes were highly correlated. This is a problem, as it 

decreases the accuracy of the model. To reduce parameter correlation between the attributes and 

to improve the multiple regression model, the redundant attributes were identified using a 

variance inflation factor (VIF) calculation, which quantifies the severity of multicollinearity in 

an ordinary least squares regression analysis. This method was chosen because of the ease of 

comparing multicollinearity between attributes. Eight attributes with a VIF over 20 were 

removed, resulting in a list with a total of 26 attributes. Using three machine learning methods—
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an artificial neural network, random forest decision trees, and gradient boosted regression—for 

each attribute, three key attributes were identified: power warranty, efficiency, and the length of 

time that the panel has been on the market. Power warranty is linked to consumer confidence, 

as well as the reliability of the solar panel. Efficiency is a reflection of the performance of the 

technology, in this case the panel’s ability to convert solar PV into electricity. Weight per watt 

is a measure of the ease of installation of the panel, and hence points toward the influence of the 

installation process on the consumer’s purchasing decision. 
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Figure 9. Best research-cell efficiencies of solar module25 

                                                      

25 Source: NREL 



113 

 

Silicon solar cells, which are commonly used for residential PV installations, have reached 

a theoretical power generation efficiency of 26-27% and are known to be a mature technology 

(Figure 9). However, this figure only reflects the best research-cell efficiencies, and is different 

from the efficiency of solar panels that consumers can install. In this study, attempts were made 

to obtain data on the level of efficiency of solar panels actually installed by consumers, but such 

data could not be obtained. Therefore, the following two variables were used. 

If a solar module-related organization provides conversion efficiency for each module type, 

this information can be used as a representative proxy of the technical attributes of mini-solar 

PV. However, no domestic institutions have provided conversion efficiency data for each module 

type in a time series as a unified indicator. In fact, since there are so many efficiency values for 

each country and each product, it is challenging to find a representative number for each year 

and time series data. In this study, after a long search, the choice was made to use the 

monocrystalline and polycrystalline conversion efficiency figures for silicon solar cells provided 

by Bloomberg New Energy Finance, which were re-quoted and used by the Korea Export-Import 

Bank (2018) (Figure 10). 

A polycrystalline solar panel has a lower conversion efficiency than a monocrystalline solar 

panel, but has high price competitiveness. According to a report from Energysage, which 

provides an online estimate service for solar power generation, 96% of US residential PV 

estimates are for monocrystalline panels [re-quoted by the Korea Institute of Information and 

Communication Planning and Evaluation (2019)]. In general, polycrystalline panels are 

preferred for large-scale power generation, and monocrystalline panels are preferred for 

residential use in small areas. In fact, there are no statistics regarding the types of panels that 
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were used in Seoul for the veranda-type mini-solar PVs. Therefore, in this study, the conversion 

efficiency of a mono-crystal panel was first analyzed as a variable, and then the conversion 

efficiency of a polycrystalline panel was checked as a robustness test. According to the BNEF, 

the efficiency of monocrystalline panels increased from 19.4% to 21.1% and that of 

polycrystalline panels increased from 17.8% to 19.1% during the analysis period of this study. 
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Figure 10. Trends in silicon solar cell efficiency26 

  

                                                      

26 Source: Bloomberg NEF 
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3.3.1.2 Installation Cost 

 

Few studies have analyzed the effect of the cost of mini-solar PV as a factor influencing 

adoption. Studies focusing on the costs of mini-solar PV have mainly analyzed economic 

viability by calculating the levelized cost of electricity [Say et al., 2018; Hagerman et al., 2016; 

Holdermann et al., 2014; Reichelstein & Yorston, 2013], soft cost reduction [Morris et al., 2014; 

Seel et al., 2014], or price transparency [O'Shaughnessy & Margolis, 2018]. 

The system cost of the mini-solar PV can compensate for the investment by cost-savings 

during continuous operation, instead of high upfront costs, as is the case for EVs. Islam (2014) 

used the theory of disruptive innovation to predict the diffusion of solar PV for household level 

electricity generation, and showed that the cost of installation played an important role in PV 

diffusion. The total cost for mini-solar PV installation was expressed as the installation cost in 

this study because the cost for installing a solar panel in Korea, unlike in other countries such as 

Germany and United States, is expressed as a lump sum cost without discrimination between the 

system cost and the soft cost.  

The installation cost is especially important in the adoption of mini-solar PV in Korea. Unlike 

general residential solar PV installations, the electricity generated from mini-solar PV 

installations cannot be fed into the grid, so that the main remuneration mechanism is electricity 

bill savings resulting from the generated electricity being used as soon as it is generated to avoid 

consumption from the grid. Of course, in some cases, the cost per kWh may be lowered by 

reducing costs through the progressive system of electricity pricing due to a decrease in total 

electricity consumption. As will be further explained in the user-intrinsic variables section below, 
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the amount of electricity that can be produced from a mini-solar PV installation in a month is 

about 24.3 kWh on average. Therefore, only households with 200-224 kWh or 400-424 kWh of 

electricity consumption per month can benefit from reduced costs through the progressive 

system of electricity pricing. For this reason, the cost reduction due to reduced electricity usage 

is the main benefit; thus, the higher the installation cost, the longer the payback period, hindering 

mini-solar PV installation. 

The Seoul Metropolitan Government discloses the specifications and prices of each mini-

solar PV installation company and each product on the Seoul Solarmap website. Citizens can 

freely access the website and obtain information. In this study, the price information published 

on this website was used. 
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3.3.2 PV-extrinsic Variables 

 

3.3.2.1 User-intrinsic Variables 

 

In this study, income, owner-occupancy, electricity consumption, and eco-friendliness were 

selected as user-intrinsic variables. 

First, income level was used as an explanatory variable because higher income is linked to a 

consciousness of low financial risks. Many studies have found that high income leads to a high 

probability of adopting innovative products [Diaz-Rainey and Ashton, 2011; Dobre et al., 2009; 

Im et al., 2003; Eastlick & Lotz, 1999; Martinez et al., 1998], although some researchers have 

insisted that income is not a proper factor to describe adoption behavior [McDonald et al., 2003; 

Flynn & Goldsmith, 1993]. 

Previous studies related to solar PV adoption have also shown that in most cases, income-

related variables had a positive effect on PV adoption [Briguglio & Formosa, 2017; Crago & 

Chernyakhovskiy, 2017; Dharshing, 2017; Schaffer & Brun, 2015; Sardianou & Genoudi, 2013; 

Kwan, 2012, Rai & McAndrews, 2012], although a few studies have presented different opinions 

[Allan, McIntyre, 2017]. 

Median income [Dharshing, 2017; Schaffer & Brun, 2015; Sardianou & Genoudi, 2013; 

Kwan, 2012, Rai & McAndrews, 2012], median home value [Crago & Chernyakhovskiy, 2017; 

Kwan, 2012; Rai & McAndrews, 2012], and employment/unemployment rate [Allan & 

McIntyre, 2017; Briguglio & Formosa, 2017; Dharshing, 2017] have been used as variables 

representing income in previous studies. However, even when the same variable is used, its 
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meaning may be different. Crago & Chernyakhovskiy (2017) set the median home value as a 

proxy for median income and stated that the reason for doing so was that median income is 

highly correlated with other demographic variables. In contrast, Kwan (2012) saw home values 

as a kind of collateral; in other words, the higher the median home value, the more collateral 

will be used to procure costs for solar PV projects. In contrast, Briguglio & Formosa (2017) 

chose to use the unemployment rate. 

Allan & McIntyre (2017) analyzed income and assets separately. The employment rate was 

selected as an income-related variable, while the owned-mortgage ratio was used as a variable 

for assets. The former had no effect, while the latter had a positive effect. Based on these results, 

the authors argued that housing wealth is more important for PV uptake than earned income. 

Although Kwan (2012) did not specify that it a distinction was made between income and assets, 

as in Allan & McIntyre (2017), Kwan (2012) included both median income and median home 

values, and showed that both variables had an effect. 

In this analysis, the average income per household for each gu was set as a proxy for income 

to facilitate comparisons with previous studies. The Seoul Survey publishes monthly average 

income data per household by gu through annual sample surveys. A limitation is that the data 

are not panel survey data, but this is the only source of available data for each gu. 

The second user-intrinsic variable was owner-occupancy. The higher the owner-occupancy 

rate, the higher the incentive to install mini-solar PV. A veranda-type mini-solar PV is installed 

on the veranda railing in an apartment complex. Tenants must obtain permission from the owner. 

From the owner's point of view, all the benefits of installing a mini-solar PV accrue to the tenants, 

so there is a possibility that the owner will not allow mini-solar PV installation due to concerns 
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about damage to the veranda or typhoons. Moving after installation will make it necessary to 

relocate the mini-solar PV, incurring separate costs. These factors might collectively have a 

negative impact of PV adoption by non-homeowners. For these reasons, previous studies also 

showed that the owner-occupancy rate was an important explanatory variable with a positive 

effect on PV adoption [Allan & McIntyre, 2017; Bruguglio & Formosa, 2017; Schaffer & Brun, 

2015]. 

In general, the key variables that determine the type of housing occupancy are holding assets, 

income, and housing cost by housing type. In particular, many previous studies have shown that 

assets and income are important variables [Jung, 2017; Lee & Jung, 2016; Lee & Lee, 2016; 

Nam & Kim, 2015; Kim & Yoo, 2013; Kang & Ma, 2009; Lee et al., 2009; Choi et al., 2002]. 

This is a reasonable result, in that sufficient assets must be accumulated in order to purchase a 

house that costs several times the annual income, and a stable income for long-term loan 

repayment is required [Lee & Lee, 2016]. 

Therefore, there is a risk of multicollinearity when analyzing income and the owner-

occupancy rate simultaneously as explanatory variables. As shown in Table 29, the results of the 

VIF test showed that multicollinearity was not a problem. However, since multicollinearity 

test—including the VIF test itself—does not have an absolute standard, a rule of thumb 

determines the presence or absence of multicollinearity. It is difficult to completely rule out this 

possibility. Therefore, in this study, we first conducted an analysis including both income and 

owner-occupancy, and then checked the robustness by comparing the results separately. 

Since data on the type of occupancy for multi-dwelling units are not released every year, 20% 

of the 2015 census data provided by the National Statistical Office was used as a time-invariant 
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variable with the results of the sample survey (Table 25). 
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Table 25. Owner-occupancy ratio of multi-dwelling housing units by gu27 

gu 
Self-

occupancy 

Yearly 

rentals 

Monthly 

rentals 
Others28 Total 

Owner-

occupancy ratio  

(%) 

Jongno 15,233 5,989 5,556 1,273 28,051 54.3 

Jung 13,913 8,264 6,180 471 28,828 48.3 

Yongsan 21,132 14,406 9,494 2,385 47,417 44.6 

Seongdong 35,441 18,264 10,604 1,681 65,990 53.7 

Gwangjin 34,749 15,652 8,324 1,117 59,842 58.1 

Dongdaemun 45,192 15,158 9,804 1,432 71,586 63.1 

Jungnang 49,601 15,125 10,127 710 75,563 65.6 

Seongbuk 59,729 23,243 11,407 2,883 97,262 61.4 

Gangbuk 40,788 15,086 12,324 1,296 69,494 58.7 

Dobong 63,563 15,695 9,308 1,945 90,511 70.2 

Nowon 97,240 38,479 34,421 3,567 173,707 56.0 

Eunpyeong 70,428 30,134 13,321 2,722 116,605 60.4 

Seodaemun 39,152 16,936 10,869 1,837 68,794 56.9 

Mapo 44,839 28,201 19,826 2,298 95,164 47.1 

Yangcheong 70,387 34,086 14,323 2,211 121,007 58.2 

Gangseo 84,866 39,815 32,183 3,622 160,486 52.9 

Guro 65,728 22,753 10,679 2,059 101,219 64.9 

Geumcheon 30,298 8,113 5,730 1,902 46,043 65.8 

Yeongdeungpo 45,220 17,646 9,400 2,611 74,877 60.4 

Dongjak 51,892 22,404 12,263 3,038 89,597 57.9 

Gwanak 54,368 21,631 16,552 2,751 95,302 57.0 

Seocho 55,904 34,787 19,699 2,944 113,334 49.3 

Gangnam 63,593 47,177 40,392 3,494 154,656 41.1 

Songpa 84,577 49,499 32,870 4,177 171,123 49.4 

Gangdong 54,653 31,549 14,211 1,116 101,529 53.8 

Total 1,292,486 590,092 379,867 55,542 2,317,987 55.8 

                                                      

27 Source: KOSIS 

28 Official residences, company housing, etc. are included. 
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The third user-intrinsic variable was electricity consumption. The main remuneration scheme 

of mini-solar PV installations is largely bill-saving due to self-consumption and financial 

benefits due to additional incentive mechanisms. The greater the benefits of remuneration, the 

more PV adoption is advantageous to the consumer. 

First, the most important factor in calculating the profits from self-consumption is the rate 

structure of electricity. If one pays a flat rate, the profit from self-consumption is limited to the 

avoided costs from grid electricity. However, under an increasing block pricing tariff system like 

that in Korea (referred to as the “progressive system” elsewhere in this chapter), self-

consumption can lower total power consumption, thereby accruing a benefit by shifting a 

household down to a lower pricing block. 

In Korea, a progressive system is applied to residential power, in which households with 

higher levels of power consumption are subject to higher demand charges and energy charges to 

induce energy-saving behavior. Social demands have been made to restructure the existing six-

phase progressive system, which has been maintained for 12 years, due to heat waves in 2016. 

However, for consumers towards the bottom of pricing blocks, there is a considerable incentive 

to use mini-solar PV to drop down to the pricing block directly below (Table 26). 
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Table 26. Residential tariffs in Korea: before and after the reform in 201629 

Before reform (until 2016.11.30) 

Stage 
Demand charge 

(KRW/households) 

Energy charge 

(KRW/kWh) 

≤ 100 kWh 410 60.7 

101 – 200 kWh 910 125.9 

201 – 300 kWh 1,600 187.9 

301 – 400 kWh 3,850 280.6 

401 – 500 kWh 7,300 417.7 

≥ 501 kWh 12,940 709.5 

After reform (2016.12.1 to the present) 

Stage 
Demand charge 

(KRW/households) 

Energy charge 

(KRW/kWh) 

≤ 200 kWh 910 93.3 

201 – 400 kWh 1,600 187.9 

≥  401 kWh 7,300 280.6 

 

  

                                                      

29 Source: KEPCO 
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When using only mini-solar PV without a battery, the generation time and the usage time 

must match. Even if power generation and usage time coincide, bill-saving due to self-

consumption does not occur beyond consumers’ consumption. Therefore, the high retail rate of 

electricity is an important factor in maximizing profits from self-consumption. Several previous 

studies have shown that electricity price has a positive effect on PV adoption [Crago & 

Chernyakhovskiy, 2017; Sardianou & Genoudi, 2013; Kwan, 2012]. During the analysis period, 

retail rate of electricity did not change and it is relatively low compared to that of other countries. 

The possibility of gaining additional profits depends on the remuneration scheme. In the 

region where net metering is implemented, when excessive generation occurs, it can be sold to 

the grid and compensated at a retail rate [La Monaca & Ryan, 2017; Hagerman et al., 2016; 

Krasko & Doris, 2013]. In areas where FIT schemes are applied to residential solar energy, tariffs 

can be received for excessive generation [Allan & McIntyre, 2017; Klein & Deissenroth, 2017; 

La Monaca & Ryan, 2017; Sommerfeld et al., 2017; Hirvonen et al., 2015; Islam, 2014], where 

renewable energy credits are available in areas covered by the RPS scheme [Candas et al., 2019; 

Crago & Chernyakhovskiy, 2017; Krasko & Doris, 2013]. In Seoul, mini-solar PV installations 

cannot provide power to the grid, so the remuneration scheme described above cannot be applied. 

In general, the power consumption of the previous year can be a positive incentive to install 

PV, but the PV installation amount of the corresponding year can be a negative factor for the 

power consumption of the next year. Therefore, including this variable in the model raises the 

possibility of endogeneity. 

The problem is that only aggregated data for each gu are available. In terms of individual 

households, the logic above may be plausible. According to the Seoul Metropolitan 



126 

 

Government’s announcement in 2014, a 200–260 W standard module produces 292 kWh per 

year, which is similar to the annual consumption of a 900-liter double-door refrigerator. Since 

the average monthly electricity use for residential power in Seoul from 2014 to 2018 was 416.6 

kWh per household, the amount of electricity used by a household for one year is 4999.2 kWh. 

The amount of electricity produced by a 200–260 W standard mini-solar power unit therefore 

accounts for 5.84% of a household's annual power consumption. 

As of 2018, the district in which the largest number of households had installed veranda-type 

mini-solar PV units was Dobong-gu. Of the total 95,894 multi-dwelling units in Dobong-gu, 

4,172 households had installed a mini-solar PV and the percentage of households with mini-

solar PV was 4.35%. The total number of households in Dobong-gu was 105,526, and the total 

amount of electricity used for residential use in Dobong-gu in 2018 was 527,545,579.2 kWh. In 

2018, 4,172 households produced 1,218,224 kWh from 260 W panels, corresponding to 0.23% 

of the total electricity consumption in Dobong-gu. This value calculated for 2018 is expected to 

be much higher than the value from 2017, as new installations accounted for approximately 43% 

of the cumulative number of households with mini-solar PV installations in 2018. Therefore, the 

analysis was conducted in light of the finding that the reduction of power consumption from the 

grid due to the installation of mini-solar PV units was negligible, and power consumption was 

therefore regarded as an exogenous variable. Of course, this assumption will need to be changed 

when households with a mini-solar PV installation eventually become the majority over time 

and panel efficiency improves, resulting in a mature phase of power generation. 

The last user-intrinsic variable is eco-friendliness. In previous studies that conducted surveys 

on the social characteristics of consumers, it was found that higher eco-friendliness led to a 
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higher probability of adopting mini-solar PV [Crago & Chernyakhovskiy, 2017; Bollinger & 

Gillingham, 2012]. Since mini-solar PV does not emit greenhouse gases in the process of 

generating electricity, it is helpful for overcoming climate change; as such, people with eco-

friendly tendencies are more likely to adopt mini-solar PV. 

Measuring eco-friendliness is quite tricky because it is highly subjectively evaluated on an 

individual level and there is no absolute standard for quantitatively measuring it. However, for 

the reasons mentioned above, it is thought that eco-friendliness is likely to affect PV adoption. 

Several previous studies have attempted to quantitatively measure eco-friendliness, using proxy 

variables such as hybrid vehicle adoption [Crago & Chernyakhovskiy, 2017; Bollinger & 

Gillingham, 2012], Green (or Democratic) Party voting [Allan & McIntyre, 2017; Briguglio & 

Formosa, 2017; Crago & Chernyakhovskiy, 2017; Dharshing, 2017], and recycling rate [Allan 

& McIntyre, 2017, Briguglio & Formosa, 2017]. 

In the literature related to hybrid vehicle adoption, it has been found that the adoption of 

hybrid vehicles is positively influenced not only by economic benefits, but also by pro-

environmental preferences [Gallagher & Muehlegger, 2011; Kahn, 2007], which became the 

basis for using hybrid vehicle adoption as a proxy for eco-friendliness. Crago & 

Chernyakhovskiy (2017) and Bollinger & Gillingham (2012) used hybrid vehicle adoption as a 

proxy for environmental preferences. In both studies, eco-friendliness—operationalized as 

hybrid vehicle adoption—had a large and highly statistically significant effect. However, careful 

interpretation of these findings is needed, because the analyses included several variables that 

affect hybrid vehicle adoption (income, education, and long commute). For example, income 

and age variables were shown to have a significant positive effect on hybrid vehicle adoption by 



128 

 

Gallagher & Muehlegger (2011), and these variables were used along with hybrid vehicle 

adoption in both studies. 

Voting for the Green Party is a fairly comprehensive proxy for representing eco-friendliness. 

Studies that used the Green Party vote as a proxy for eco-friendliness have also mentioned this 

point [Allan & McIntyre, 2017], while Crago & Chernyakhovskiy (2017) used Democratic Party 

votes as a proxy instead of Green Party votes, since the logic was the same as for Green Party 

votes. In general, the Democratic Party cares about environmental issues and supports legislation 

to address climate change, so that if someone votes for the Democratic Party, we can consider 

that she also supports the stance of the party regarding environmental issues. 

The recycling rate is a somewhat country-specific proxy. In the UK, since the government 

does not give financial incentives for households to recycle or levy financial penalties for not 

recycling, the number of households recycling should directly reflect environmental sentiments 

[Allan & McIntyre, 2017]. However, in Korea, it is impossible to find households that do not 

recycle, and if food and recycled products are mixed in a “pay-as-you-go bag,” a fine will be 

imposed according to the Waste Management Act and the bag will not be collected. Therefore, 

the recycling rate is a variable that does not fit the situation of Korea. 

However, eco-friendliness has also been shown not to be a particularly significant variable 

[Allan & McIntyre, 2017; Dharshing, 2017; Sommerfeld et al., 2017; Schaffer & Brun, 2015]. 

Allan & McIntyre (2017) sought to determine whether the environmental sentiment of British 

consumers could help explain variation between local authorities in PV uptake. In their study, 

three proxies were used. The first was whether the UK Green Party did not field candidates for 

local authority elections in the region, the second was the recycling rate, and final one was the 
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proportional representative vote rate of the Green Party in the 2009 European Parliament 

election. Of course, voting entails complex decision-making and making strategic choices, but 

the authors viewed voting for the Green Party as generally representing environmentalism. An 

econometric analysis showed insignificant results for all three variables. Sommerfeld et al. (2017) 

attempted to confirm motivations for installation through in-depth interviews with 

representatives of 22 households in Australia that had installed and used solar PV. The authors 

divided motivations into economic, social, and environmental. Economic motivations were the 

strongest and environmental issues were the least discussed motivation among interviewees. 

Several methods could be used to determine the real significance of eco-friendliness, such as 

conducting a meta-analysis of previous studies focusing on this variable. Doing so would be 

beyond the scope of this study; however, since there are clearly some research results showing 

that eco-friendliness has a significant effect, the effect of this variable should be checked (in 

other words, it would be inappropriate to exclude this variable from the analysis a priori).  

In this study, in consideration of multiple studies, data availability, and multicollinearity with 

other variables, the proportion of votes for the Green Party for each gu was set as a proxy. The 

election of the National Assembly of the Republic of Korea adopts a proportional representation 

system at the national level. Voters vote for one candidate running in a district and one vote for 

their preferred party. A party with a national proportion of the vote not exceeding 3.0% cannot 

elect a proportional representative. The Green Party was founded in 2012 and first ran candidates 

in the 2012 19th National Assembly election. However, the Green Party failed in all districts, 

with a nationwide share of the vote of 0.48% and a share of the vote of 0.61% in Seoul. Given 

these precedents, if a voter in the 20th Congressional Election held in 2016 aimed to vote 
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strategically, the likelihood of voting for a Green Party candidate would be quite low, because 

such votes would be meaningless except as a symbolic gesture. Therefore, the share of votes for 

the Green Party in the election of the 20th National Assembly was used to represent the eco-

friendliness of the local residents. Incorporating this variable into the model can provide clues 

as to how environmentally friendly propensity plays a role in overcoming barriers to product 

selection in the absence of sufficient information in the early stages of the proliferation of 

innovative durable goods or in the absence of user experience. The analysis period of this study 

was 2014-2018, and the voter turnout rate for each gu in the 20th congressional election in 2016 

was set as a time-invariant variable for eco-friendliness. As a robustness test, the analysis was 

also conducted using the turnout rate for the Democratic Party. 
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3.3.2.2 User-extrinsic Variables 

 

In Seoul, a rebate is provided for the initial installation cost to supply mini-solar PV. The city 

is focusing on subsidies, and in addition, additional rewards of 50-100k KRW are provided by 

each gu office. The remuneration scheme is only for self-consumption because it is impossible 

to feed power into the grid using mini-solar PV units. These conditions make it more difficult to 

compensate for the system cost. This is because, as described above, the time when the consumer 

uses electricity must match the time when power generation occurs. Even if the power 

consumption level is high, the benefits due to mini-solar PV are limited since the main usage 

time is the evening. This is especially true considering the fact that domestic electricity bills in 

Korea are set at a relatively low level and a fixed price is paid regardless of season or time. 

Therefore, a rebate program that lowers the initial cost is essential for PV diffusion. La Monaca 

& Ryan (2017) also pointed out that it is important to sufficiently lower the system cost when 

additional remuneration due to excessive generation is low. 

The process of installing a mini-solar PV unit and receiving subsidies is shown in Figure 11 

below. Among households living in multi-family houses, those who wish to install a mini-solar 

PV unit select the installation company directly and conduct a consultation and installation. 

When the installation is completed, the company signs a form confirming the installation by the 

household and submits it to the gu office along with the standard installation contract, subsidy 

application, and on-site inspection table. After confirming the documents, the gu office takes the 

documents to Seoul city office, and after review at Seoul city office, subsidies are paid to the 

company. Consumers only need to pay the amount of money excluding subsidies, so the subsidy 
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is not provided after the consumer pays the actual price. This is a more convenient system for 

consumers. 
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Figure 11. Mini-solar PV installation process by agents 
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3.4 Empirical Results 

 

Descriptive statistics (Table 27) showed apparent overdispersion in the number of PV 

adoptions by year. As with EVs, the high within-variation appears to have been due to the fact 

that veranda-type mini-solar PV units had just been introduced. The high between-variation 

seems to have been caused by differences in factors such as the population, number of 

apartments, subsidies, and income in each gu. 
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Table 27. Descriptive statistics of dependent and independent variables (PV) 

Variable 
 

Mean Std. Dev. Min Max Observation 

PV 

Overall 312.416 368.4912 6 2194 N = 125 

Between30  193.0128 56.2 834.4 n = 25 

Within31  315.8062 -467.0 1672.0 T = 5 

Efficiency 

Overall 20.2 0.6189 19.4 21.1 N = 125 

Between  0 20.2 20.2 n = 25 

Within  0.6189 19.4 21.1 T = 5 

Installation 

cost 

Overall 683.406 35.5590 636.05 739.64 N = 125 

Between  0 683.41 683.41 n = 25 

Within  35.5590 636.05 739.64 T = 5 

Subsidy 

Overall 416.4 89.2554 300 542 N = 125 

Between  20.5487 369.6 451.6 n = 25 

Within  86.9362 264.8 548.8 T = 5 

Income 

Overall 438.5361 74.56525 308.3777 669.5399 N = 125 

Between  37.145 394.4902 535.6031 n = 25 

Within  64.9980 337.2824 671.1760 T = 5 

Owner-

occupancy 

Overall 56.37053 6.984355 41.119 70.2268 N = 125 

Between  7.099807 41.119 70.2268 n = 25 

Within  0 56.3705 56.3705 T = 5 

 

                                                      

30 ‘Between’ refers to the value of 𝑥𝑖̅, or the individual mean. 

31 ‘Within’ refers to the value of 𝑥𝑖𝑡 − 𝑥𝑖̅ + 𝑥̿, where 𝑥̿ denotes the global mean. 
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Table 27. Descriptive statistics of dependent and independent variables (PV) (continued) 

Variable 
 

Mean Std. Dev. Min Max Observation 

Electricity 

consumption 

Overall 430.9884 108.9989 251.8140 693.50 N = 125 

Between  110.2194 261.2203 677.73 n = 25 

Within  11.1507 406.9148 473.39 T = 5 

Eco-

friendliness 

Overall 0.0114 0.0041 0.0073 0.0222 N = 125 

Between  0.0041 0.0073 0.0222 n = 25 

Within  0 0.0114 0.0114 T = 5 
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Table 28. The number of mini-solar PV installations in Seoul (2014-2018)32 

 2014 2015 2016 2017 2018 Total Average Std. Dev. 

Jongno 36 77 75 47 106 341 68 24.65 

Jung 10 42 52 74 113 291 58 34.28 

Yongsan 25 17 20 13 206 281 56 75.00 

Seongdong 40 25 150 196 538 949 190 185.72 

Gwangjin 24 39 6 377 422 868 174 185.29 

Dongdaemun 79 159 287 666 1,539 2,730 546 535.80 

Jungnang 33 58 178 234 866 1,369 274 305.29 

Seongbuk 119 237 393 705 1,051 2,505 501 338.05 

Gangbuk 41 88 115 177 418 839 168 132.60 

Dobong 55 111 425 1,387 2,194 4,172 834 830.93 

Nowon 466 208 276 670 1,774 3,394 679 570.74 

Eunpyeong 58 102 84 642 1,050 1,936 387 396.45 

Seodaemun 28 72 329 647 874 1,950 390 327.47 

Mapo 66 110 240 483 690 1,589 318 235.99 

Yangcheong 57 426 442 622 1,007 2,554 511 308.69 

Gangseo 70 94 106 273 479 1,022 204 154.95 

Guro 91 410 316 392 448 1,657 331 127.65 

Geumcheon 90 39 325 447 776 1,677 335 266.37 

Yeongdeungpo 39 91 177 507 521 1,335 267 206.48 

Dongjak 74 54 226 769 726 1,849 370 314.37 

Gwanak 50 60 128 549 604 1,391 278 245.65 

Seocho 37 29 55 98 251 470 94 82.05 

Gangnam 30 29 22 388 242 711 142 148.48 

Songpa 53 176 334 375 429 1,367 273 138.76 

Gangdong 106 41 340 418 900 1,367 361 303.85 

Total 1,777 2,794 5,101 11,156 18,224 39,052 - 

Average 71 112 204 446 729 
- 

Std. Dev. 84.87 106.35 133.18 290.77 501.03 

                                                      

32 Source: Seoul Metropolitan government  
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First, a VIF test was performed to check for multicollinearity among variables. The results 

of the test are shown below (Table 29). Since the test values of all variables did not exceed 10, 

the problem of multicollinearity between variables was considered negligible. 

 

 

Table 29. VIF test results of PVs 

Variable VIF 1/VIF 

Efficiency 6.29 0.1589 

Installation cost 2.59 0.3863 

Subsidy 5.17 0.1934 

Income 2.04 0.4906 

Owner-occupancy 1.48 0.6761 

Electricity consumption 1.33 0.7508 

Eco-friendliness 1.31 0.7617 

Mean VIF 2.89  
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As described in 1.3.3, due to the limitations of the fixed-effect negative binomial model, a 

random-effect negative binomial model with individual-specific dummies was applied and 

analyzed in the EV case of Chapter 2. However, for PVs, it was necessary to target 25 gus, so 

the calculation to be performed when the RENBD model is applied exceeds the computing 

capacity of a typical computer.  

Therefore, for PVs, the second alternative [Allison, 2012] described in Section 1.3.3, was 

analyzed; specifically, an RE negative binomial model with demeaned time-varying covariates 

(hereafter, RENBM) was applied, and the results were compared with those of the FEP model. 

After changing from the FEP model to the RENBM model, goodness-of-fit measured by AIC 

and BIC was significantly improved. It seems more desirable to use the RENBM model in 

consideration of overdispersion. Owner-occupancy and eco-friendliness were dropped in the 

FEP model because they are time-invariant variables. 

As shown in Table 30, the results were generally consistent between the two models. In both 

models, efficiency, subsidy, and electricity consumption had positive effects on PV adoption. 

Both price and income had negative effects on PV adoption. For both variables, the estimated 

IRR coefficient was statistically significant in the FEP model, but the significance was lost in 

the RENBM model. This seems to have been due to underestimation of the standard error, 

because overdispersion is not considered in the FEP model. Owner-occupancy and eco-

friendliness were shown to have a positive effect on PV adoption in the RENBM model. 
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Table 30. Summary of results from the FEP and RENBM models (PV) 

Model FEP RENBM 

Monocrystalline 

efficiency 

2.0249*** 

(0.0628) 

1.8203*** 

(0.3549) 

Price 
0.9989*** 

(0.0004) 

0.9975 

(0.0022) 

Subsidy 
1.0041*** 

(0.0002) 

1.0042*** 

(0.0012) 

Income 
0.9988*** 

(0.0001) 

0.9994 

(0.0009) 

Owner-occupancy - 
1.0707*** 

(0.0114) 

Electricity 

consumption 

1.0108*** 

(0.0007) 

1.0076* 

(0.0041) 

Eco-friendliness - 
1.4827** 

(0.2612) 

AIC 4728.604 1509.507 

BIC 4742.745 1537.79 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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As mentioned in Section 3.3.1.1, since no efficiency indicators are currently readily available 

for Korea, the global module efficiency indicators provided by BNEF were used in this study. 

First, the conversion efficiency of monocrystalline panel was used in the analysis as the 

efficiency variable, and then it was replaced with that of the polycrystalline panels to check 

robustness. 

The results of the analyses using the FEP model and RENBM model are as follows (Table 

31, 32). In both models, both efficiency variables had a positive effect on PV adoption. In terms 

of goodness-of-fit, the indicators of polycrystalline modules better described the data. However, 

it is not possible to infer whether or not polycrystalline modules are mainly installed in Seoul 

based on these results. 
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Table 31. Robustness test for the efficiency variable (FEP - PV) 

FEP Monocrystalline efficiency  Polycrystalline efficiency 

Efficiency 
2.0249*** 

(0.0628) 

2.8094*** 

(0.1029) 

Price 
0.9989*** 

(0.0004) 

0.9992** 

(0.0003) 

Subsidy 
1.0041*** 

(0.0002) 

1.0042*** 

(0.0002) 

Income 
0.9988*** 

(0.0001) 

0.9982*** 

(0.0001) 

Electricity 

consumption 

1.0108*** 

(0.0007) 

1.0078*** 

(0.0007) 

AIC 4728.604 4421.030 

BIC 4742.745 4435.172 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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Table 32. Robustness test for the efficiency variable (RENBM - PV) 

RENBM Monocrystalline efficiency  Polycrystalline efficiency 

Efficiency 
1.8203*** 

(0.3549) 

2.4094*** 

(0.5302) 

Installation 

cost 

0.9975 

(0.0022) 

0.9977 

(0.0020) 

Subsidy 
1.0042*** 

(0.0012) 

1.0043*** 

(0.0009) 

Income 
0.9994 

(0.0009) 

0.9989 

(0.0009) 

Owner-

occupancy 

1.0707*** 

(0.0114) 

1.0715*** 

(0.0112) 

Electricity 

consumption 

1.0076* 

(0.0041) 

1.0052 

(0.0041) 

Eco-

friendliness 

1.4827** 

(0.2612) 

1.4746** 

(0.2595) 

AIC 1509.507 1503.523 

BIC 1537.790 1531.806 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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The installation cost was found to have a negative effect on PV adoption in both the FEP and 

RENBM models, but it did not have statistical significance in the RENBM model. In this case, 

it can be suspected that the standard error was underestimated in the FEP model.  

Since consumers respond to the amount actually paid as the actual price of the product, not 

the original price, the subsidy was subtracted from the original price and an analysis was 

performed using the price to be paid as the installation cost variable (Table 33). As a result, the 

actual amount paid obtained statistical significance, which can be interpreted as showing that 

consumers are reluctant to adopt PV units with a higher installation cost. 
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Table 33. Robustness test for the price variable (RENBM - PV) 

RENBM Installation cost Installation cost  paidprice 

Efficiency 
1.8203*** 

(0.3549) 

1.7484*** 

(0.3325) 

Installation 

cost 

0.9975 

(0.0022) 

0.9958*** 

(0.0012) 

Subsidy 
1.0042*** 

(0.0012) 
- 

Income 
0.9994 

(0.0009) 

0.9997 

(0.0008) 

Owner-

occupancy 

1.0707*** 

(0.0114) 

1.0686*** 

(0.0111) 

Electricity 

consumption 

1.0076* 

(0.0041) 

1.0056* 

(0.0033) 

Eco-

friendliness 

1.4827** 

(0.2612) 

1.4581** 

(0.2560) 

AIC 1509.507 1508.283 

BIC 1537.790 1533.738 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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The subsidy showed a robust, positive, statistically significant relationship. If there was no 

subsidy, the price of a 300W mini-solar panel, which is the most widely installed type, was 

around mid-600,000 KRW as of 2018, and was 850,000 KRW in 2015. When the initial cost is 

high, the payback period for offsetting the cost with the remuneration scheme becomes very 

long.   

For example, if a 260 W mini-solar panel costing 650,000 KRW is installed with 300,000 

KRW of support from the city government, the payback period is 23.3 months, assuming that 

the gains obtained by self-consumption and price block shifts in the progressive system are about 

15,000 KRW per month. In other words, in less than two years, the entire amount invested is 

recovered and its subsequent use is purely profitable. However, without a subsidy, it would take 

about 43.3 months (more than three years and seven months) to reach the break-even point, 

corresponding to almost twice the time needed when the installation is subsidized. Therefore, 

the subsidy is an important installation incentive for consumers, as shown by both models. 

The estimated IRR coefficient of the income variable was less than 1, which is interpreted as 

showing that the higher the income, the more reluctant consumers were to adopt a mini-solar PV 

unit. This relationship was statistically significant in the FEP model, but not in the RENBM 

model. In general, if a consumer’s income is high, all else being equal, the probability of 

purchasing certain goods is the same or higher. 

Approximately 1.5% of all multi-dwelling households have mini-solar PV systems installed 

(39,052 households out of 2,541,982 households as of the end of 2018). According to Rogers’ 

(1965) adopter categories, people who have adopted mini-solar PV by 2018 belong to the 

innovator group. Innovators are generally known to 1) have substantial financial resources, 
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which can absorb the possible losses from an unprofitable innovation, 2) have the ability to 

understand and apply complex technologies, 3) be able to cope with the uncertainty of new 

technologies, and 4) be adventurous. Higher income itself enables consumers to purchase 

innovative goods, and also tends to raise the probability of 3) and 4). 
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Table 34. Robustness test for the income variable (RENBM - PV) 

RENBM Income Assets Income & assets Income excluded 

Monocrystalline 

efficiency 

1.8203*** 

(0.3549) 

1.7032* 

(0.5573) 

1.7690* 

(0.5830) 

1.7295*** 

(0.3170) 

Installation cost 
0.9975 

(0.0022) 

0.9965** 

(0.0018) 

0.9975 

(0.0022) 

0.9965** 

(0.0018) 

Subsidy 
1.0042*** 

(0.0012) 

1.0046*** 

(0.0012) 

1.0043*** 

(0.0012) 

1.0046*** 

(0.0011) 

Income 
0.9994 

(0.0009) 
- 

0.9994 

(0.0009) 
- 

Asset - 
1.0007 

(0.0122) 

1.0013 

(0.0122) 
- 

Owner-

occupancy 

1.0707*** 

(0.0114) 

1.0691*** 

(0.0112) 

1.0708*** 

(0.0114) 

1.0691*** 

(0.0112) 

Electricity 

consumption 

1.0076* 

(0.0041) 

1.0067 

(0.0049) 

1.0073 

(0.0050) 

1.0068* 

(0.0039) 

Eco-friendliness 
1.4827** 

(0.2612) 

1.4686** 

(0.2590) 

1.4840** 

(0.2618) 

1.4678** 

(0.2584) 

AIC 1509.507 1510.037 1511.495 1508.040 

BIC 1537.790 1538.320 1542.607 1533.495 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01  
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The author investigated various studies to explore possible reasons for the counterintuitive 

effects of the income variable. The possibilities that can be drawn from the previous studies 

reviewed in Section 3.3.2.1 are as follows. 

First, assets should be considered in addition to income. Income and assets may both be 

important for PV adoption [Kwan, 2012], or it may be the case that assets, not income, have a 

more significant effect on PV adoption [Allan & McIntyre, 2017]. In this study, the apartment 

sale price index by year was set and analyzed as a proxy for assets. Table 34 summarizes the 

results of analyzing three types of models that included only income, only assets, and both 

income and assets. Although it was not statistically significant, it was found that assets had a 

positive effect on PV adoption. 

Second, the multicollinearity between income and other variables was checked [Crago & 

Chernyakhovskiy, 2017]. According to Table 29, income is unlikely to be multicollinear with 

other variables. However, as income is replaced by assets, the VIF exceeds 20, and the 

multicollinearity problem becomes significant (Table 35). When the scope of VIF is set 

conservatively, a safe value is less than 30. However, Crago & Chernyakhovskiy (2017) stated 

that income was found to be highly correlated with other demographic variables. In the literature 

on income and owner-occupancy in Korea, several studies have pointed out that income is the 

main factor in determining owner-occupancy [Jung, 2017; Lee & Lee, 2016; Lee & Jung, 2016; 

Nam & Kim, 2015; Kim & Yoo, 2013; Kang & Ma, 2009; Lee et al., 2009; Park et al., 2009].  

In consideration of these prior studies' claims and multicollinearity, income variables were 

dropped (Table 34). As a result, owner-occupancy remains positive and significant, and the 

goodness-of-fit and the significance of each variable increases. 
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Table 35. VIF test results of PVs (Income replaced by assets) 

Variable VIF 1/VIF 

Efficiency 20.76 0.04817 

Installation cost 11.72 0.08533 

Subsidy 5.76 0.17355 

Asset 1.65 0.60597 

Self-occupancy 1.59 0.62849 

Electricity consumption 1.32 0.76015 

Eco-friendliness 1.27 0.78660 

Mean VIF 6.30  
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Owner-occupancy had a robust positive association with PV adoption, regardless of whether 

all models and other dependent variables were included. Previous studies using owner-

occupancy as an explanatory variable confirmed that it generally promotes PV adoption. 

However, Dharshing (2017) did not find a clear relationship between owner-occupancy and 

residential PV adoption in a study conducted in Germany, which the author explained as 

reflecting the relatively long housing tenure period in Germany. 

According to the Korea Housing Survey released by the Ministry of Land, Infrastructure, 

and Transport in 2018, the average residence period in rental households was 3.4 years, while 

that of owner-occupied households was 10.7 years. In other words, the residence period is about 

three times longer for owner-occupied households. This characteristic can be considered as a 

very serious obstacle to the installation of veranda-type solar PV units because one has to 

relocate the solar PV when he or she moves out, which will cost time and effort, constituting a 

barrier to PV adoption by renters. Therefore, owner-occupancy had a strong positive effect on 

PV adoption in Korea. 

For electricity consumption, as described in Section 3.3.2.4, the financial benefit that offsets 

the high upfront cost is large, so the higher the electricity usage, the stronger the incentive for 

PV adoption. Unfortunately, due to data limitations, it was not possible to analyze whether 

individuals tended to install mini-solar PV to drop down to a lower pricing block in the 

progressive system. A detailed analysis would have been possible if microdata had been 

available. 

Eco-friendliness had positive effects on PV adoption at statistically significant levels (Table 

36). To test the robustness of the result, I conducted a reanalysis with the ratio of Democratic 
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Party votes instead of that of Green Party votes. This is because Democratic parties tend to 

support pro-environmental policies in general [Crago & Chernyakhovskiy, 2017]. Using the 

Democratic Party ratio, the estimated IRR coefficient value showed positive, though it was not 

statistically insignificant. Taken together, eco-friendliness seems to have a positive impact on 

PV adoption, as I could not find any other better variable to quantify eco-friendliness. 
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Table 36. Robustness test for eco-friendliness variable (RENBM - PV) 

Model Income excluded 
Green Party votes  

Democratic Party votes 

Eco-friendliness 

excluded 

Mono-crystalline 

efficiency 

1.7295*** 

(0.3170) 

1.7108*** 

(0.3130) 

1.7270*** 

(0.3147) 

Price 
0.9965** 

(0.0018) 

0.9964** 

(0.0017) 

0.9962** 

(0.0018) 

Subsidy 
1.0046*** 

(0.0011) 

1.0045*** 

(0.0011) 

1.0045*** 

(0.0011) 

Owner-occupancy 
1.0691*** 

(0.0112) 

1.0525*** 

(0.0138) 

1.0596*** 

(0.0106) 

Electricity 

consumption 

1.0068* 

(0.0039) 

1.0068* 

(0.0039) 

1.0065* 

(0.0039) 

Eco-friendliness 
1.4678** 

(0.2584) 

1.0404 

(0.0495) 
- 

AIC 1508.040 1511.579 1510.294 

BIC 1533.495 1537.033 1532.920 

 

*: p-value < 0.1 

**: p-value < 0.05 

***: p-value < 0.01 
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3.5 Summary and Discussion 

 

In Chapter 3, I attempted to identify what encouraged mini-solar PV adoption using actual 

adoption data in Seoul from 2014 to 2018. The estimated IRR of each variable had a similar 

direction, magnitude, and statistical significance in the FEP and RENBM models. 

The main findings of this study are as follows. Module efficiency had a strong positive and 

significant effect on PV adoption. The subsidy also showed a positive, and highly statistically 

significant effect on mini-solar PV adoption. Subsidies promote PV adoption as a mechanism to 

shorten the payback period by reducing the initial cost. Owner-occupancy had robust, positive 

effects on PV adoption. As the residence period varies by about three times depending on 

whether a housing unit is owner-occupied, the lifetime costs of mini-solar PV units are higher 

for tenants than for owner-occupants. Unlike previous studies, which reported that income was 

a good predictor of residential PV adoption [Crago & Chernyakhovskiy, 2017; Dharshing, 2017; 

Schaffer & Brun, 2015, Sardianou, & Genoudi, 2013; Kwan, 2012; Rai & McAndrews, 2012;], 

owner-occupancy was a better predictor of mini-solar PV adoption in Seoul than income due to 

the short tenure of residents in Seoul. In the case of electricity consumption, it was found that it 

is has a positive effect on PV adoption. However, the magnitude and statistical significance were 

not very strong. This is presumed to be due to the analysis of those who can drop the block of 

pricing and those who cannot at once, by using aggregate data. Eco-friendliness is likely to have 

a positive impact as well.  

The following policy implications can be derived from the above findings. First, the 

reduction of subsidies can significantly inhibit mini-solar PV adoption since they had an 
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important effect on PV adoption, and there is no remuneration scheme other than self-

consumption or a decrease in the progressive system of electricity pricing due to Korea's 

electricity rate structure. Second, considering that owner-occupancy had a significant effect on 

PV adoption, policy measures other than subsidies may be required for widespread diffusion. 

For tenants, the incentive to install a mini-solar PV is significantly reduced in terms of ease of 

installation and payback period. Policies such as obliging the installation of solar PV systems in 

new apartment construction would be helpful. Last but not least, there is still room for improving 

mini-solar panel efficiency and reducing the system cost, so that more R&D efforts on the 

supply-side are needed.  

Notwithstanding the useful insights, there are some limitations of this study. The data used 

in this study are short panel discrete data. As the unit root test for discrete data has not been well 

established academically [Park, 2015], and the time series analysis of panel data assumes a large 

T [Baltagi, 2013], it was difficult to apply time-series methodologies such as panel cointegration 

in this study. Trend variables that take into account the effects of time are generally used to 

capture technological progress [Münzel et al., 2019; Crago & Chernyakhovskiy, 2014]. This 

study included a variable for technical attributes already, which represented technological 

improvement over time. It is expected that the panel time series analysis method can be applied 

as data accumulates over time and T increases. 
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Chapter 4. Overall Conclusion 

4.1 Summary of the Study 

 

This study investigated the factors associated with consumer adoption of EVs and residential 

solar PV in Korea. These demand-side innovations are game-changing technologies opening the 

doors to possible new business models and successive innovations in the energy industry. The 

widespread adoption of innovative consumer technologies is a prerequisite for fundamental 

changes in the energy industry—that is, to move from a supplier-oriented system to a consumer-

oriented system—as well as to fulfill the need for a low-carbon future due to climate change. 

Therefore, it is necessary to identify the factors of consumer adoption to promote the widespread 

adoption of EVs and PVs. 

In Chapter 2, the drivers of EV adoption in Korea from 2013 to 2017 were analyzed. The 

range with a full charge had robust and strong positive effects in all models, and can therefore 

be considered to have the most important influence on the adoption of EVs in Korea from 2013 

to 2017. Total economic incentives from the government also showed positive effect on EV 

adoption. Since the price of EVs had a negative effect on EV adoption, automobile 

manufacturers should make efforts to lower prices through technological innovation and mass 

production. The income of the consumers did not have a statistically significant effect on EV 

adoption, because there are various financial products and installment programs related to 

automobile purchases, so that the consumer’s ability to pay may not be a major obstacle. Eco-

friendliness, as measured by the voter turnout for the Green Party or Democratic Party, was 
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found to be insignificant. EV adoption increased despite a steady decline in oil prices during the 

analysis period. Regarding public charging infrastructure, it was found that EV adopters did not 

actually utilize public fast chargers frequently, but the fact that public fast chargers existed at a 

close distance had a positive effect on EV adoption by relieving range anxiety. 

In Chapter 3, the factors encouraging mini-solar PV adoption in Seoul from 2014 to 2018 

were investigated. Efficiency and the subsidy from the government had positive and significant 

effects on PV adoption. Owner-occupancy had a robust positive effect on PV adoption. As the 

residence period varies by about three times depending on owner-occupancy, the lifetime costs 

of mini-solar PV units are higher for tenants than for owner-occupants. Moreover, owner-

occupancy described mini-solar PV adoption in Seoul better than income. Electricity 

consumption had a positive effect on PV adoption, but its magnitude and statistical significance 

were not very strong. This is presumed to be due to the use of aggregated data, which cannot 

separate the consumers who can drop to a lower pricing block by installing a mini-solar PV and 

those who cannot. Eco-friendliness has a positive impact on mini-solar PV adoption. 
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4.2 Discussion of Results 

 

4.2.1 Connecting Two Dots: EVs and PVs 

 

The following conclusions can be drawn from the results of the analysis of the factors of EV 

and mini-solar PV adoption in Chapter 2 and Chapter 3 of this study. First, technical attributes 

are among the most decisive factors of consumer adoption for both EVs and PVs. According to 

the results, variables relating to technical attributes were statistically significant and robustly 

positive in both cases. The media and academia have focused on economic incentives for the 

widespread adoption of both EVs and PVs, and policies have also been oriented towards 

financial incentive measures. According to the “2017 Energy Consumption Survey—Electric 

Vehicles Owners Survey Report” of the Ministry of Trade, Industry, and Energy and Korea 

Energy Agency, the reason why more than twice as many EVs were sold in 2017 than in the 

previous year was because consumers moved up their purchases in response to a notice that the 

subsidies would be reduced in 2018. However, despite the reduction in subsidies in 2018, more 

than twice the number of EVs were sold as in 2017, so the reduction in subsidies does not 

necessarily impede the adoption of technological innovation. 

Sophisticated users, such as the adopters of EVs or PVs in this study, lead early diffusion, 

and then less sophisticated users additionally adopt an innovation, leading to mass diffusion 

[Faber & Franken, 2009]. In order to reach the level of mass diffusion, innovation should go 

beyond the threshold of quality. For EVs, there is considerable room for improvement in terms 

of the range per full charge, which is one of the most important technical attributes, and the 
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diversification of size, body type, and brand will also be an important improvement for 

exceeding the threshold of quality for many members of the general public. 

For PVs, although the efficiency of solar panels in laboratories has almost reached the 

theoretical limit [NREL, 2019], there remains space for improvement by more than 7%p 

compared to the efficiency of households’ PV panels. An increase in efficiency will lead to more 

electricity production, which in turn will enable greater electricity bill cuts, thereby allowing 

more households to benefit economically from the installation of solar panels.  

In the survey results of mini-solar PV adopters in Seoul, 40.5% of all respondents answered 

that the efficiency of equipment should be increased to promote PV adoption in the future. This 

figure is more than twice the number of respondents (19.6%) who replied that the amount of 

subsidies should be increased. Improvement of the efficiency of solar panels means that one can 

generate the same power by installing a smaller panel. Improved efficiency would make it 

possible to reduce the likelihood of conflict with neighbors (e.g., prospect rights and solar rights) 

and to improve ventilation and aesthetic requirements. All of these factors are thought to help 

meet the minimal quality requirements of the early majority with diverse needs, as distinct from 

early innovators. Thus, in summary, a diffusion policy to accelerate diffusion of EVs and PVs 

with price instruments alone may not be successful if the quality of innovative products is not 

improved. 

Second, income explained the adoption of EVs well, but did not have a clear effect on PV 

adoption. In general, a higher income is expected to have a positive effect on the purchase of 

products because it expands the consumer's budget constraints. In particular, high-income 

households have a higher probability of adoption because they are resilient to potential losses 
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due to the uncertainty of new technologies with innovative durable goods. For this reason, 

previous studies have shown that income has generally positive effects on each innovation. 

However, in this study, income showed a positive effect for EVs, but not for PV, for which a 

statistically insignificant negative effect was observed. 

The primary reason for this may relate to the average price and the method of payment that 

consumers must pay to purchase each good. In 2016, the average monthly income of all 

households was 3,652,121 KRW, and the average price of EVs for purchase was 44 million KRW. 

Since the average of subsidies and tax benefits is 22.5 million won, consumers pay about 20 

million won on average. This corresponds to approximately 6 months of salary. If there was no 

financial support, one would need to pay an amount equivalent to a full year of income. As such, 

initial costs are quite expensive; therefore, when a car is purchased, one generally pays a down 

payment, followed by a monthly payment for the next few years. While there are no official 

statistics on the average number of months of car purchase payments in installments, one agency 

for second-hand cars surveyed car owners and showed that a 36-month duration of payments 

was most widely preferred. It is possible to accumulate the initial down payment and to pay the 

remaining installments only when a consumer consistently earns a certain income. In that sense, 

income is an important explanatory variable to explain the purchase of EVs. 

In contrast, for PVs, although the installation cost varies depending on the capacity, a 260 W 

panel (which is one of the most widely installed) cost an average of 670,000 KRW in total in 

2016. Considering the installation subsidies from Seoul Metropolitan City (approximately 

310,000 KRW) and the additional subsidies of 50,000 to 100,000 KRW provided by the district 

governmental office, the actual amount paid will be about 260,000 won. This amount 
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corresponds to about 7% of the average monthly income of all households in 2016. It would be 

18.3% of monthly income even without financial support from the government. As with EVs, 

there are no official statistics on payments of the PVs installation. It would seem to be possible 

to use the installment program provided by card companies because it is possible to pay the 

installation cost of PVs by credit card. Nonetheless, it is not common to purchase mini-solar PV 

units using the same pattern as in an EV purchase. Therefore, the differences between these 

goods in terms of the average price and method of payment likely resulted in the difference in 

the explanatory power of the income variable. 

Of course, in both cases, aggregated data at the first-tier administrative division- or gu- levels 

were used, rather than microdata from individual consumers, so that we cannot completely rule 

out the possibility that these factors were not captured in the data, although gus with high 

household incomes tended to show a high rate of PV installation. However, as can be seen in the 

figure below, although there is a tendency for owner-occupancy to become more common as 

household income increases in general, the Housing Database dataset of the OECD pointed out 

that the share of homeowner households hardly varies with the income quartile in Korea. As 

examining the effect of income on owner-occupancy is outside the scope of this study, no further 

analysis was performed. However, this trend may also disrupt the effect of income on the 

adoption of PVs. Overall, these highly specific characteristics of the housing market and 

residential patterns in Korea underscore the importance of an analysis limited to Korea, rather 

than a comparative analysis of various countries. 
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Figure 12. Share of homeowner households (with and without outstanding mortgage) by income 

quintile33 

 

  

                                                      

33 Source: OECD 
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4.2.2 Revealed Preferences and Stated Preferences 

 

In this study the factors for adopting technological innovation were analyzed based on 

revealed preferences. Such studies are significant because they can discover new facts that are 

not seen in the studies only based on stated preferences, through comparisons and contrasts with 

studies based on stated preferences. 

First, the results of the effect of gasoline price on the adoption of EVs are different from 

those presented in research using stated preferences. EV adoption increased despite a steady 

decline in oil prices during the analysis period, unlike what has been reported in previous studies 

based on stated preferences [Vassileva & Campillo, 2017; Hardman et al., 2016; Link et al., 2012; 

Hidrue et al., 2011]. The reasons for this are as follows. First, people who have an annual mileage 

that is significantly higher than average may have been more likely to purchase an EV, because 

under such circumstances, it is still beneficial to purchase an EV even if the oil price is slightly 

lower. Secondly, as generous financial incentives in Korea significantly alleviated the initial 

purchase cost and the charging fees of public fast chargers were very low, the economic payback 

period of EVs might have been shortened to a reasonable range. Third, because people are 

sensitive to oil price increases, while they have an asymmetrical tendency in terms of price 

perceptions to react insensitively to price declines, they may not have reacted specifically to 

falling gasoline prices. 

In surveys of domestic consumers regarding their propensity for purchasing eco-friendly 

vehicles based on price and fuel economy, approximately 85% of respondents said that they 
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valued fuel economy [Woo, 2015]. In the “2017 Energy Consumption Survey—Electric Vehicles 

Owners Survey Report,” 43.6% of EV users chose fuel cost reduction as the most important 

purchasing decision factor. However, the economic benefits from reducing fuel costs can only 

be achieved through a long payback period. Numerous studies have shown that people tend to 

incorrectly estimate the size of fuel economy benefits [Sierzchular et al., 2014; Turrentine & 

Kurani, 2007], perceive the payback period as very short [Turrentine & Kurani, 2007], and 

hardly concern themselves with the potential cost savings when making a vehicle purchase 

decision [Carley et al., 2013]. Altogether, in contrast with survey results, fuel costs did not 

significantly affect consumers’ actual adoption of EVs. 

The impact of public charging infrastructure on the adoption of EVs can also be explored in 

more detail by comparing the results of this study with the results of surveys and actual public 

charger usage data.  

According the consumer survey by Woo (2015), the possibility of early dissemination of 

public charging infrastructure (35.31%) was the most important factor for consumers to purchase 

an eco-friendly car, followed by eco-friendliness (26.51%), safety and ease of use (20.57%), and 

a reasonable price (16.65%). Other survey-based studies in Korea pointed out that drivers 

perceived the public charging infrastructure as a vital factor in EV adoption [Byun et al., 2018] 

and that consumers were concerned about the charging time of an EV [Kwon et al., 2018]. 

Previous studies of countries other than Korea based on stated preferences also reported that 

public charging infrastructure was a key factor in EV adoption [She et al., 2017; Vassileva & 

Campillo, 2017; Junquera et al., 2016; Sang & Bekhet, 2015; Carley et al., 2013]. 

In this study, an analysis was performed using the number of public fast chargers per 
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registered EVs as a public charging infrastructure variable, but it was found that it did not 

significantly affect the adoption of EVs. An analysis using charger density, defined as the number 

of public fast chargers divided by the area of the first-tier administrative division, showed a 

positive effect on the adoption of EVs, but it was not statistically significant. Since charger 

density had a positive effect on EV adoption, it might be assumed that public chargers were 

actively used where the charger density was high. However, the frequency and the amount of 

public fast charger usage were quite low. Instead, it appears that when people have nearby public 

charging infrastructure, their range anxiety is lowered, making them more likely to adopt EVs, 

even though they do not actually use public fast chargers frequently since they can charge their 

EVs at home or workplaces. 

The results in Chapter 3 are quite similar to the survey results of people who actually installed 

mini-solar PVs, but by connecting and interpreting the two sets of findings, it is possible to 

obtain a more accurate picture of reality.  

First, eco-friendliness, which did not have a significant impact on EV adoption, had a 

significant positive effect on mini-solar PV adoption. As described above, since the mini-solar 

PV installation costs about 7% of the average monthly income, the eco-friendliness of consumers 

can drive the installation decision even if the installation does not provide a major economic 

benefit. The rationale for this interpretation can be found in the results of a survey of people who 

had installed mini-solar PV units [Seoul Metropolitan Government, 2017; Baek & Yun, 2015]. 

In the two surveys, the main reasons for the PV installation for consumers were saving electricity 

bills, which accounted for 81.4% in Seoul Metropolitan Government (2017) and 61% in Baek 

& Yun (2015), followed by the concern for the environment. 
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Although economic aspects were considered to be decisive factors for mini-solar PV 

adoption in both surveys, the proportion of households with less than 8,000 KRW in electricity 

bill savings after installation reached about 47%, and the proportion of those who said they did 

not know how much they had saved was about 30%, according to data from the Seoul 

Metropolitan Government (2017). Baek & Yoon (2015) also found that the correlation between 

overall satisfaction and the monthly average electricity bills saving was not statistically 

significant after the installation of mini-solar PV units. In contrast, the analysis of this study 

found that the power consumption per household had a positive effect on the adoption of mini-

solar PV units. 

Taken together, it seems that even though consumers are concerned about economic factors 

such as electricity bill savings when deciding whether to install a mini-solar PV unit, they do not 

tend to maximize profits through accurate calculations; instead, they tend to be satisfied with the 

fact that they have installed a mini-solar PV unit, despite not clearly recognizing the amount of 

savings or the slight amount of the benefit. Thus, a possible interpretation is that consumers 

respond sensitively to the initial cost, but relatively less sensitively to operating costs, as with 

fuel costs for EVs. It can therefore be concluded that focusing on reducing the initial cost, rather 

than operating costs, when designing a technology innovation diffusion policy in the future will 

be more effective for promoting the widespread diffusion of an innovation. 
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Abstract (Korean) 

 

 

전기자동차와 가정용 태양광 발전은 대표적인 분산형 에너지 자원 (decentralized 

energy resources, DER)이자 소비자들이 직접 채택할 수 있는 가정용 혁신 내구재이

다. 이 제품들을 소비자가 직접 시장에서 구매할 수 있게 되면서, 친환경기기의 공

급 확대는 물론, 기존 공급자 중심의 에너지 시스템이 상당부분 수요자 위주의 에

너지 시스템으로 전환시킬 수 있는 전기를 마련하였다. 또한 이 기술들이 널리 채

택되면 새로운 비즈니스 모델과 추가적인 기술혁신이 가능하다. 이에, 이 두 제품

의 시장에서의 선택 여부에 대한 연구는 향후 에너지 관련 산업의 변화를 촉진할 

기술혁신에 대한 연구라고 할 수 있다.  

우리나라 정부 역시 이들 기기의 보급이 가지는 이러한 중요성을 인식하고 20

세기 말부터 경제적 인센티브 중심의 보급 정책을 시행하였으며, 학계에서도 소비

자의 채택 요인에 대해 규명하려는 연구가 시도되었다. 선행연구에서는 초기 시장

의 특성상 설문조사 기반의 연구가 주로 이루어졌는데, 실제 데이터를 바탕으로 

분석한 한 연구의 결과는 설문조사를 기반으로 한 연구와의 비교대조를 통해 한 

측면만으로 보지 못했던 새로운 사실을 확인할 수 있다는 점에서 의의를 가진다. 

따라서 본 연구에서는 전기자동차와 베란다형 미니 태양광 실제 채택 데이터를 바

탕으로 분석을 수행하였다. 또한 이 두 혁신 내구재의 수요는 해당 국가 소비자의 
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특성이나 시장 여건, 전기요금 체계 및 정책 등에 영향을 많이 받기 때문에 국제

비교분석으로는 규명하기 어려운 부분이 존재한다. 이러한 점에서 특정 한 국가를 

대상으로 분석하는 것에 의의가 있다고 할 수 있다. 

본 연구에서는 국내 소비자의 전기자동차와 베란다형 미니 태양광 채택 요인에 

대해 각각 분석을 수행하였다. 기술혁신의 채택은 소비자들의 선택으로 이루어지

는 가산 자료이기 때문에 포아송 회귀 모형과 음이항 회귀 모형을 사용하여 분석

하였다. 먼저 첫 번째 에세이에서는 2013년부터 2017년까지 국내 각 지방자치단체

별 전기자동차 채택 요인 분석을 수행하였다. 현재까지 전기자동차의 보급 확산에 

대해 학계 및 언론의 관심이 주로 보조금과 충전 인프라 구축에 초점이 맞춰져 있

던 것에 비해, 분석 결과 1회 충전 시 주행 가능 거리로 대표되는 기술적 우수성

이 강건한 긍정적인 영향을 미친다고 나타났다. 이는 2015년 대비 2016년, 그리고 

2017년 대비 2018년 전기자동차 한 대당 지급되는 보조금의 금액이 감소했음에도 

불구하고 각각 전년대비 두 배 이상 판매량이 증가했다는 점에서도 알 수 있다. 

충전 인프라의 경우 충전에 많은 시간이 소요되는 바, 지자체별 전기차 등록대수

로 조정된 충전기 대수를 변수로 사용하였으나 부정적이면서 유의하지 않은 결과

가 나타났다. 반면 지자체 면적으로 조정한 충전기 밀도 변수로 강건성 검정을 한 

결과 긍정적인 영향을 나타냈다고 나타났다. 이는 실제 지자체별 공공 급속충전기

의 낮은 사용 현황과 분석 기간 동안 지급된 비공용 완속충전기 설치 보조금을 고

려했을 때, 전기자동차 채택자들은 실제로 공공 급속충전기를 잘 이용하지는 않았
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으나 가까운 거리에 공공 급속충전기가 존재한다는 사실이 주행거리불안(range 

anxiety)을 경감시켜 전기자동차 채택에 긍정적인 영향을 미친 것으로 해석할 수 

있다. 

두 번째 에세이에서는 2014년부터 2018년까지 서울시 베란다형 미니 태양광 채

택 요인 분석을 수행하였다. 분석 결과 태양광 패널의 효율이 시민들의 베란다형 

미니 태양광 채택에 강한 긍정적인 영향을 미친다고 나타나, 전기자동차의 경우와 

마찬가지로 기술적 우수성이 채택의 중요한 요인이라는 점을 확인하였다. 이는 베

란다형 미니 태양광 설치 가구를 대상으로 한 설문조사에서도 추후 개선점에 대해 

패널 효율성의 향상이 가장 높은 비율의 응답을 얻은 데에서도 찾아볼 수 있다. 

소득 변수는 기존 선행연구에서와는 다르게 베란다형 미니 태양광의 채택에 대해 

잘 설명해주지 못하는데, 한번 설치하면 이동에 제약이 있는 태양광 패널의 특성

상 소득 보다는 자가 점유 상태가 더 중요한 영향을 미치기 때문인 것으로 판단된

다. 이는 자가 소유가 아닌 경우 다른 국가에 비해 상대적으로 거주 기간이 짧은 

국내 거주 특성을 반영한 결과라고 할 수 있다. 친환경성의 경우 전기자동차의 경

우와는 달리 혁신 채택에 유의한 긍정적인 영향을 미쳤다고 나타났다. 이는 전기

자동차에 비해 상대적으로 낮은 가격과, 소비자들이 초기 구매 비용에 비해 운영 

비용에 덜 민감한 특성으로 인해 나타나는 현상으로 해석할 수 있다. 

이 연구는 아직 시장 도입 초기 단계인 전기자동차와 베란다형 미니 태양광을 

대상으로 실제 데이터로 분석을 수행하였다는 점에서 의의를 가지나, 그렇기 때문
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에 데이터의 한계로 인해 보다 정교한 분석에 대해 한계가 존재한다. 향후 두 혁

신 내구재의 시장이 성숙기로 들어서고 소비자 선택에 대한 미시적 데이터의 확보

가 가능해질 때 본 분석의 결과가 시사점을 제공할 수 있을 것으로 기대한다. 

 

 

주요어 : 혁신 내구재, 전기자동차, 베란다형 미니 태양광, 기술혁신 채택 요인 

학  번 : 2014-30284 
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