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Abstract 

Assessment of Environmental and Economic Impacts 

of Technological Change in the Manufacturing Sector 

Based on the Hybrid Model 

 

Hwarang Lee 

Technology Management, Economics, and Policy Program 

The Graduate School 

Seoul National University 

 

Bottom-up and computable general equilibrium (CGE) models are representative 

approaches in environmental analysis. The bottom-up model is technology-based and 

determines the optimal technology mix of an energy system. Since it is a partial equilibrium 

model, it is inappropriate to observe macro-economic changes due to reduction options. In 

contrast, the CGE model finds the general equilibrium of an economy and explores the 

macro-economic effects of reduction options. Since it offers only a limited description of 

technology, analyzing technology-level changes is difficult. Because of these properties, 

previous studies developed a hybrid model that integrates both models and allows both 

technology-rich and macro-economic analysis. This study develops a hybrid model for the 

manufacturing sector of Korea and explains its advantages in environmental analysis. 
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The bottom-up model is developed using positive mathematical programming, which 

helps to maintain the data consistency of the hybrid model. The CGE model for 

environmental analysis is constructed based on the previous simple model. After 

developing the single models, this study integrates both models using the soft-link approach 

in which the models exchange information that they require. Based on the hybrid model, 

this study explores the environmental and economic impacts of technological change that 

arises from two sources. One source is new technology adoption, which increases the 

number of technology alternatives and sharply improves efficiency. The other is technology 

learning, which gradually improves efficiency based on technology capacity. The hybrid 

model integrates learning through the iterative approach. Although efficiency improvement 

has considerable emissions reduction effects, it also induces an unexpected rebound of 

emissions. This study assesses rebounding emissions due to technology efficiency 

improvement using the hybrid model. 

This study provides a new framework for a comprehensive analysis of the 

environmental and economic impacts of technological change. Moreover, policymakers 

can employ this study’s hybrid model to investigate the impacts of reduction options and 

policies before setting a reduction target. 

 

Keywords: Hybrid model, bottom-up model, CGE model, technological change, 

technology learning, rebound effect 

Student Number: 2015-31042 
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Chapter 1. Introduction 

 

1.1 Research background 

The Paris Agreement calls for global efforts to control the rising global temperature and 

obliges countries to establish their own strategies to reduce greenhouse gas emissions 

(United Nations, 2015). Since the agreement, signatory countries are developing Long-term 

low greenhouse gas Emission Development Strategies (LEDS) to meet their reduction 

targets in 2050 (United Nations, 2020). Accordingly, it has become important to assess the 

environmental and economic impacts of reduction targets and options in advance. 

Previous studies employ bottom-up and top-down models to analyze reduction targets 

and options. The bottom-up model finds the optimal technology mix that supplies energy 

services in an energy system with minimum costs (see Loulou et al., 2016). It usually 

analyzes the energy systems of energy-intensive sectors such as electricity generation, 

manufacturing and transport. The computable general equilibrium (CGE) model, which 

represents a top-down model, finds the optimal prices and quantities that clear all markets 

in the economy and satisfy all economic agents. It describes an economic phenomenon at 

a more aggregated level (Hourcade et al., 2006). 

The bottom-up and CGE models have distinct advantages and disadvantages. The 

bottom-up model can explore technology-level changes because it explicitly describes 

technology (Hourcade et al., 2006). It can analyze energy consumption in a country beyond 
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the sector level (Figure 1.1). By contrast, the CGE model is usually inappropriate for 

disaggregated representation of technology-level changes (Cai et al., 2015) and has 

limitations in explaining energy consumption at the energy service and technology levels. 

However, the CGE model can explore the macro-economic effects of reduction options 

(Sue Wing, 2008). It observes the environmental and economic impacts of reduction 

options in a certain sector on the rest of the economy. By contrast, the bottom-up model 

cannot explain these ripple effects because it is a partial equilibrium model (Helgesen et 

al., 2018). 

 

 

Figure 1.1. Energy consumption in the country 
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Due to the limitations of the single bottom-up and CGE models, previous studies 

attempted to employ only their advantages. The hybrid model integrates both models and 

enables both a technology-rich and macro-economic analysis (Andersen et al., 2019a). For 

example, when a reduction technology is introduced, the hybrid model enables the 

economy to find a new technology mix and move to a new general equilibrium based on 

technological change. It is also useful to observe feedback between technology-level 

changes and macro-economic effects. That is, the hybrid model is an advanced framework 

to assess the environmental and economic impacts of reduction targets and options. 

 

1.2 Research purpose 

This study develops a hybrid model for the manufacturing sector by integrating the 

industrial bottom-up and CGE models and assesses the environmental and economic 

impacts of technological change. The first purpose of this study is to construct a hybrid 

model of Korea’s manufacturing sector and show the advantages of the hybrid model in 

assessing the impacts of technological change. Second, this study explores rebounding 

emissions due to technological change using the hybrid model. Third, this study 

incorporates endogenous technology learning in the hybrid model and investigates the 

environmental and economic impacts of learning. 

This study focuses on ten emission-intensive industries in Korea1  because the 

manufacturing sector is significant in achieving the national reduction target. In 2017, the 

                                            
1 Steel, chemistry, cement, machine, semiconductor & display, electronics, automobile, nonferrous metals, 
glass and textile industries (Korea Environment Institute [KEI], 2019). 
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manufacturing sector generated 43% of global emissions which include those from heat 

and electricity generation (International Energy Agency [IEA], 2019). Additionally, 

Korea’s manufacturing sector accounts for one-third of the 2050 business-as-usual (BAU) 

national emissions (Ministry of Environment, 2020). Although the manufacturing sector 

generates considerable emissions, previous studies generally focus on the electricity sector 

and are less concerned with a technology-level analysis of the manufacturing sector. 

This study considers efficiency improvement as major technological change. Many 

countries are considering efficiency improvement as an option to achieve their reduction 

targets. For example, the United Kingdom planned to improve business and industrial 

efficiency through 162 million GBP of public R&D investments (UK government, 2017). 

Japan planned to adopt highly efficient process technologies to reduce emissions from the 

steel, chemistry and cement industries (The government of Japan, 2019). Korea is also 

expecting to meet 30–40% of the 2050 reduction target in the manufacturing sector through 

high-efficiency capacities and a smart energy management system (Ministry of 

Environment, 2020). 

This study assumes two sources of efficiency improvements. One source is new 

technology adoption based on a government-managed technology database. The other is 

technology learning through experience using technology. Learning is endogenously 

incorporated in the bottom-up model using an iterative approach (Yang et al., 2016). 

Although efficiency improvement contributes to emissions reduction, it also causes a 

rebound in emissions. Since efficiency improvement lowers energy demand and total costs, 
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outputs in the economy rebound. Then, the economy demands more energy to produce the 

rebounding outputs, and emissions thus also rebound. The hybrid model contributes to 

exploring the rebound effects of technology efficiency improvement. 

This study also simulates a carbon tax policy that allows the market to achieve the 

minimum abatement costs and find advanced reduction options (Marron et al., 2015). This 

simulation helps to determine the impacts of efficiency improvements on emissions and 

abatement costs. Efficiency improvements through new technology adoption and learning 

contribute to more emissions reduction with lower abatement costs. 

 

1.3 Outline of the study 

This study proceeds in seven chapters (Figure 1.2). Chapter 2 develops the bottom-up 

models for the ten emission-intensive industries in Korea based on positive mathematical 

programming (PMP). Chapter 3 constructs the recursive dynamic CGE model for Korea 

by modifying an existing CGE model. Chapter 4 integrates the bottom-up and CGE models 

based on a soft-link approach. It explains the integration process and investigates the 

environmental and economic impacts of efficiency improvement through new technology 

adoption. Chapter 5 assesses the rebounding outputs and emissions due to new technology 

adoption. Chapter 6 incorporates learning into the hybrid model and analyzes the 

environmental and economic impacts of learning. Chapter 7 concludes this study and 

explains implications and limitations of this study. 
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Figure 1.2. Outline of the study  
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Chapter 2. Industrial bottom-up model based 

on positive mathematical programming2 

 

2.1 Introduction 

 Research background 

Since their introduction in the 1970s (Herbst et al., 2012), bottom-up models were 

employed to analyze the energy systems of energy-consuming sectors, including the 

electricity, manufacturing, transport, residential and agriculture sectors. The bottom-up 

model is generally based on an optimization (Trutnevyte, 2016) that aims to minimize the 

total cost to provide a given energy demand in an energy system for certain periods. It 

determines the cost-minimizing technology mix that describes the optimal energy 

consumption and capacities of technologies. Since the bottom-up model explicitly 

represents technology, it is appropriate for a technology-rich analysis. It can describe the 

changes in technology competition due to the adoption of low-emission technologies and 

observe the emissions reduction from technology substitution. 

Previous studies generally employ bottom-up models to analyze energy and 

environment policies. Loulou et al. (2016) stated that the detailed technology descriptions 

of the bottom-up model enable researchers to evaluate almost any policy. The bottom-up 

                                            
2 Parts of this chapter were published in Energy, 173, Lee et al., A bottom-up model of industrial energy 

system with positive mathematical programming, 679-690, Copyright Elsevier (2019). 
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model has an advantage in analyzing technology-related policies in particular. For example, 

if the government plans to improve the efficiency of certain technologies or lower the 

investment costs of new technologies, then the bottom-up model is necessary because it 

explicitly describes technology characteristics. If the model is not technology-based, then 

it should explain the changes in technology characteristics at a more aggregated level. 

Representative bottom-up models, such as the Model for Energy Supply System 

Alternatives and their General Environmental Impacts (MESSAGE), Market allocation 

(MARKAL), and the Integrated MARKAL-EFOM System (TIMES), usually solve their 

cost minimization using linear programming (LP).3 LP involves several problems because 

it finds corner solutions. First, LP usually returns an overspecialized or winner-take-all 

technology mix if there are no constraints that prevent corner solutions (Heckelei and Britz, 

2005). It adopts the most cost-efficient technology and excludes the remaining options. 

Second, LP observes radical technological change when an available technology set 

changes. The results may exclude the currently dominant technology from the technology 

mix when a more efficient technology is available, or currently uncompetitive technology 

suddenly becomes the dominant one (Röhm and Dabbert, 2003). 

LP generally depends on supplementary constraints, which are upper and lower bounds 

for technology use, to avoid corner solutions. The number of supplementary constraints 

affects the number of effective technologies in LP (Petsakos and Rozakis, 2009). However, 

although supplementary constraints prevent overspecialization and radical technological 

                                            
3 See International Atomic Energy Agency (2016), Loulou et al. (2004) and Loulou et al. (2016). 
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change, they are difficult to justify (Garnache et al., 2017) because the upper and lower 

bounds induce a technology mix within a certain range. Moreover, LP calibrates the base-

year technology mix using supplementary constraints. Since supplementary constraints, 

which are still included under simulated scenarios, affect policy simulation results 

(Heckelei and Britz, 2005), they disrupt the interpretation of the policy simulation results. 

 

 Research purpose 

This study develops an industrial bottom-up model for the hybrid model. Since the 

hybrid model integrates independent bottom-up and CGE models, it is important to 

maintain consistency between the models. In particular, the capital, labor and energy inputs 

in the base year should be consistent. This study applies PMP (Howitt, 1995), which 

employs a quadratic objective function instead of a linear objective function, to achieve 

consistency. PMP calibrates the base-year technology mix of the industries without adding 

supplementary constraints and helps to maintain base-year consistency in the hybrid model. 

Moreover, PMP avoids an overspecialized technology mix, radical technological change, 

and simulation results bounded by the constraints. 

There is no industrial bottom-up model based on PMP, although the agriculture sector 

has employed PMP for decades. This study develops industrial bottom-up models for the 

ten emission-intensive industries in Korea and explains the application of PMP to the 

manufacturing sector. This study derives equations to modify LP to PMP and suggests a 

method to determine the parameters in the equations. Moreover, this study shows the 
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advantages of PMP empirically. Finally, this study describes technology substitution in the 

bottom-up model using a carbon tax simulation. 

 

2.2 Literature review 

 Previous industrial bottom-up model 

Previous studies usually construct industrial bottom-up models for energy-intensive 

industries such as steel and cement (Table 2.1). Although most industrial bottom-up models 

were based on MARKAL and TIMES models, several previous studies developed their 

own bottom-up models.  

Industrial bottom-up models for one industry generally take a process-oriented 

approach, which describes energy consumption in the order of industrial processes and 

explains sector-specific technologies. Dutta and Mukherjee (2010) considered unique 

processes for three industries in India to investigate their future energy consumption. Chen 

et al. (2014) constructed a TIMES model for China to analyze the steel industry based on 

six steel processes. Li et al. (2017) considered 21 sector-specific reduction technologies in 

the cement industry and examined carbon tax effects. 

By contrast, a service-oriented approach describes the energy consumption of the 

manufacturing sector based on common energy services such as boilers, ovens, and motors. 

This approach can describe the energy consumption of multiple industries using the same 

structure. Kannan et al. (2007) categorized industrial energy demand into five energy 

services. They assumed that the share of each energy service was fixed. Zhou et al. (2013) 
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explained industrial energy demand using six energy services with the assumption that an 

energy service does not replace the other energy services, but rather that the technology 

providing the energy service replaces other such technologies. 

 

Table 2.1. Previous industrial bottom-up models 

Author Country Industry Model Approach 

Dutta and Mukherjee 

(2010) 
India 

Steel, aluminum 

and cement 
MARKAL Process 

Chen et al. (2014) China Iron and steel TIMES Process 

Karali et al. (2014) U.S. Iron and steel 

ISEEM(Industry 

Sector Energy 

Efficiency Modeling) 

Process 

García-Gusano et al. 

(2015) 
Spain Cement TIMES Process 

Li et al. (2017) China Cement TIMES Process 

Tan et al. (2019) China Iron and steel 
Cost-minimizing 

bottom-up 
Process 

Kannan et al. (2007) UK 
Five categorized 

industries 
MARKAL Service 

Zhou et al. (2013) China 
Eleven 

industries 

Service-oriented 

bottom-up 
Service 
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Industrial bottom-up models in Korea also focus on energy-intensive industries (Table 

2.2). These models were developed with a process-oriented approach using MARKAL. 

Korea Energy Economics Institute (KEEI, 2005; KEEI, 2006) developed industrial bottom-

up models for the cement and oil refinery industries. Both studies investigated emission 

and energy reduction potential under reduction scenarios and evaluated the marginal 

abatement costs and cost-effectiveness of the reduction strategies. Ahn et al. (2009) 

examined the role of reduction technologies in the steel industry. They evaluated emissions 

reduction and abatement costs using seven reduction scenarios depending on the reduction 

technology mix.  

 

Table 2.2. Industrial bottom-up models in Korea 

Author Country Industry Model Approach 

KEEI (2005) Korea Cement MARKAL Process 

KEEI (2006) Korea Oil refining MARKAL Process 

Ahn et al. (2009) Korea Steel MARKAL Process 

 

2.3 Data 

 Technology characteristics 

This study employs the database of the Korea Institute of Energy Technology 

Evaluation Planning (KETEP). The KETEP database (KETEP, 2016) provides detailed 
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technology characteristics, including adoption year, lifetime, investment cost, operation 

and maintenance (O&M) cost, efficiency and availability. Descriptions for technology 

characteristics are shown in Table 2.3. 

 

Table 2.3. Descriptions for technology characteristics 

Technology characteristics Description 

Adoption year The year when technology is available 

Lifetime 

The years during which the installed technology 

capacity is available 

Investment cost Unit investment cost to install technology capacity 

Operation and maintenance 

cost 

Unit operation and maintenance cost to manage 

technology capacity 

Efficiency 

The amount of energy output per a unit of energy 

input 

Availability 

The amount of available technology capacity per a 

unit of installed technology capacity 
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The KETEP database chose five representative common technologies, which were 

boilers, motors, kilns, furnaces and dryers, based on their energy consumption, expert 

opinions and importance in policies. KETEP calculated energy consumption of common 

technologies using Energy Consumption Survey (ECS) and identified a future trend by 

reviewing energy technology plans and government reports. 

Since the KETEP database was not officially published, this study shows arbitrary 

values as technology characteristics (Table 2.4). Current technology is introduced in the 

base year.4  New technology is introduced in a future time period. New technology 

generally has higher investment cost and efficiency than current technology. Efficiency and 

availability are a value between 0 and 1. In the model, costs and energy consumption have 

units of billion KRW and thousand ton of oil equivalent (TOE), respectively. 

 

Table 2.4. Example of technology characteristics 

 
Adoption 

year 
Lifetime 

Investment 

cost 

O&M 

cost 
Efficiency Availability 

Current 

technology 
2015 5 0.150 0.015 0.5 0.6 

New 

technology 
2020 5 0.200 0.020 0.8 0.6 

Note: a unit of costs is billion KRW/thousand TOE. 

                                            
4 The base year of the model is 2015. The model years are from 2015 to 2050. 
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 Base-year energy consumption 

A PMP-based bottom-up model requires base-year energy consumption of technology 

for calibration. ECS is published every three years and provides energy consumption of 

industries in Korea. Although the base year of this study is 2015, this study employs energy 

consumption in 2016 from 2017 ECS (KEEI, 2017a). ECS categorized the manufacturing 

sector into 37 industries based on Korean Standard Industrial Classification (KSIC) 

(Statistics Korea, 2020). This study allocates ECS industries into the ten emission-intensive 

industries (Table 2.5).  

 

Table 2.5. Industry matching 

This study Energy Consumption Survey KSIC 

Steel Basic iron and steel 241 

Chemistry 

Basic chemicals 201 

Plastics and synthetic rubber in primary forms 202 

Fertilizers, pesticides, germicides and insecticides 203 

Other chemical products 204 

Pharmaceuticals, medicinal chemical and botanical products 21 

Rubber and plastic products 22 

Cement Cement, lime, plaster and its products 233 

Machine 
Fabricated metal products, except machinery and furniture 25 

Other machinery and equipment 29 



16 
 

Semiconductor 

& display 

Electronic components, computer; visual, sounding and 

communication equipment 
26 

Electronics 

Medical, precision and optical instruments, watches and 

clocks 
27 

Electrical equipment 28 

Automobile Motor vehicles, trailers and semitrailers 30 

Nonferrous 

metals 
Basic precious and non-ferrous metals 242 

Glass Glass and glass products 231 

Textile 

Textiles, except apparel 13 

Wearing apparel, clothing accessories and fur articles 14 

Leather, luggage and footwear 15 

Man-made fibers 205 

Source: Author’s work based on KEEI (2017a) 

 

After the allocation, this study adds energy consumption of the allocated ECS industries 

to obtain energy consumption of the ten emission-intensive industries (Table 2.6). Each cell 

of Table 2.6 means base-year energy consumption of technology in the steel industry 
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Table 2.6. Energy Consumption of the steel industry (Unit: thousand TOE) 

 Boiler Oven Motor 

Own 

Power 

generator 

Dryer 
Feed 

stock 
Total 

Coal 

Anthracite 0 197 0 0 0 673 870 

Bituminous 

coal (fuel) 
16 89 0 0 0 0 105 

Bituminous 

coal 

(feedstock) 

0 0 0 0 0 22,601 22,601 

Coal product 0 9 0 0 0 0 9 

Oil 

Gasoline 0 0 0 0 0 0 0 

Kerosene 0 0 0 0 0 0 0 

Diesel 0 3 0 0 0 0 3 

Heavy oil 0 42 0 0 0 0 42 

LPG 0 21 0 0 2 0 23 

Others 

City gas 268 1,613 0 313 27 0 2,222 

Heat 0 0 0 0 17 0 17 

Electricity 0 674 486 0 1,720 0 2,880 

Total 284 2,647 486 313 1,765 23,274 28,770 

Source: Author’s work based on KEEI (2017a) 
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 Energy service demand and final energy demand 

Technology produces an energy service by consuming fuel. Energy services consist of 

boilers, ovens, motors, own power generators and dryers, which are also common 

technologies. Although feedstock is not a common technology, it is also included in energy 

services. 

Energy service demand is the sum of all energy consumption to produce each energy 

service. For example, the steel industry requires 284 thousand TOE to produce a boiler 

energy service (Table 2.6), which requires 16 thousand TOE bituminous coal and 268 

thousand TOE city gas. 

Final energy demand is the sum of all energy consumption to produce all energy 

services. The sum of all energy consumption of five energy services and feedstock is equal 

to 28,770 thousand TOE in the steel industry. Final energy demand is also the sum of all 

energy service demand. Shares of five energy service demand and feedstock in final energy 

demand are assumed to be unchanged, which implies that each energy service demand is 

not substitutable. These shares are calculated based on Table 2.6. This study assumes that 

energy service and final energy demand grow at an annual rate of 3%, considering 

economic growth. 

Figure 2.1 shows final energy demand of the ten emission-intensive industries. The steel 

industry is the most energy-intensive industry in the manufacturing sector of Korea. 

Feedstock occupies about 80% of final energy demand of the steel industry because the 

steel industry requires a large amount of bituminous coal, which is highly emission-
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intensive, as feedstock (Figure 2.2). The cement, nonferrous metals and glass industries 

highly depends on their oven energy services, while a half of final energy demand of the 

semiconductor and display industries is a dryer energy service. Since there is high 

dependency on a motor energy service in the machine, electronics and automobile 

industries, these three industries require a substantial amount of electricity. 

 

 

Figure 2.1. Final energy demand of ten emission-intensive industries 

Source: Author’s work based on KEEI (2017a) 
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Figure 2.2. Energy service demand of ten emission-intensive industries 

Source: Author’s work based on KEEI (2017a) 

 

That is, importance of each energy service demand in final energy demand is different 

among the industries. This implies that technological change has different impacts 

depending on the industries. For example, when efficiencies of oven technologies are 

improved, the cement, nonferrous metals and glass industries are more affected by 

efficiency improvement because oven energy services occupy more than half of final 

energy demand of these three industries. 

 

 Energy price 

Although energy prices are not technology characteristics, they largely affect the 

industry’s total cost. This study uses energy prices of KEI (2019). KEI (2019) calculated 



21 
 

2015 energy prices based on government reports and statistics (Table 2.7). The bottom-up 

model of this study assumes that energy prices do not change. 

 

Table 2.7. 2015 energy prices (Unit: billion KRW/thousand TOE) 

Fuel 
2015 

energy price 
Fuel 

2015 

energy price 

Anthracite 0.31 Diesel 0.63 

Bituminous coal (fuel) 0.12 Heavy oil 0.50 

Bituminous coal (feedstock) 0.10 LPG 0.55 

Coal product 0.43 City gas 0.66 

Gasoline 0.71 Heat 1.00 

Kerosene 0.61 Electricity 0.50 

Source: KEI (2019) 

 

 Emission coefficient 

Emission coefficients of fuels are required to calculate emissions from energy 

consumption. Fossil fuels generate greenhouse gases during combustion. Heat and 

electricity indirectly contributes to an increase in emissions because fossil fuels are used to 

generate them. This study considers CO2, CH4 and N2O emissions and converts emission 

coefficients of CH4 and N2O into a unit of CO2 equivalent using Global Warming Potential 

of Intergovernmental Panel on Climate Change (IPCC, 2001). 
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As Figure 2.3 shows, coal (anthracite, bituminous coal and coal product) is the most 

emission-intensive fuel, and oil (gasoline, kerosene, diesel, heavy oil and LPG) follows 

coal. City gas, heat and electricity have lower CO2 emission coefficients than coal and oil. 

 

 

Figure 2.3. Emission coefficients 

Source: Author’s work based on KEEI (2020), Korea District Heating Corporation (2015), 

IPCC (2006), IPCC (2001) and Korea Power Exchange (2020)  

 

 Other data 

A discount rate is used to calculate net present value of the total cost. This study assumes 

that a discount rate is 5%. The last year of technology means the year when technology is 

unavailable. This study assumes that technology is not expired in the model years and 

defines the last year as an arbitrary year out in the model years. 
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2.4 Model 

 Outline of the bottom-up model 

The industrial bottom-up model of this study is based on Lee et al. (2019). The bottom-

up model minimizes the net present value of the total cost under several constraints (Figure 

2.4). It uses technology characteristics, energy prices, CO2 emission coefficients, and a 

discount rate as input data. A PMP-based bottom-up model obtains Lagrange multipliers 

by solving the static cost minimization problem for time period 0 and delivers the 

multipliers to the dynamic cost minimization problem for all periods. Then, the bottom-up 

model solves the dynamic problem and determines the energy consumption, new capacity, 

and total capacity of the technology. Based on the solutions, the bottom-up model calculates 

the energy demand, emissions, and cost information. 

 

 

Figure 2.4. Outline of the bottom-up model 
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 Reference energy system 

A reference energy system (RES) describes energy flows in the bottom-up model 

(Figure 2.5). Technology, which is divided into process and demand technologies, uses 

energy input to produce energy output. Process technology converts fuel (energy input) into 

an energy service (energy output). Demand technology converts an energy service (energy 

input) into final energy demand (energy output). Since the bottom-up model of this study 

is service-oriented, the ten emission-intensive industries have identical RESs. Although this 

model is difficult to describe for sector-specific technologies, it is appropriate to describe 

multiple industries based on the use of an identical framework. 

The industry satisfies five types of energy service and feedstock demand using process 

technologies and final energy demand using demand technology. The energy service and 

feedstock demand occupies fixed shares of final energy demand, which implies that this 

demand is aggregated by a Leontief function. 

The technologies that produce an energy service compete with each other, while 

feedstock technologies cannot replace the others. Although only current technologies are 

available in the base year, industries adopt new technologies after their introduction. New 

oven technology is adopted in 2016. Boiler and dryer technologies are available in 2018. 

New own power generator technology is introduced in 2020. New motor technologies are 

introduced in 2020, 2025 and 2035. When both current and new technologies are available, 

they compete with each other. The share of a competing technology is determined based on 

technology characteristics such as efficiency and cost information. 
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Figure 2.5. Reference energy system 
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 Objective function 

The net present value of the industry’s total cost, which is Eq. (2.1), includes four costs. 

First, an industry pays annualized investment costs to install capacity. A capital recovery 

factor, which is calculated by Eq. (2.2), annualizes investment costs. Second, operation and 

maintenance costs are paid to manage installed capacity. Third, energy costs are required 

to purchase fuels to produce an energy service. Fourth, carbon taxes are levied based on 

emission coefficients of fuels if there is a carbon tax policy.  

An objective function of a PMP-based bottom-up model is quadratic, whereas an LP-

based bottom-up model employs a linear objective function. The last term of Eq. (2.1) is 

determined by the squares of energy consumption. The third and last terms of Eq. (2.1) 

indicates energy costs and carbon taxes of the industry. The values of these two terms 

depends on coefficients �����,� and �����,�, which will be explained in Section 2.4.5 (see 

Eq. (2.18)). 

 

 

	
��
���,�,�
���,� � �
������� � ������ ���� ∗ "#$����,� ∗ %����,�����∈'()*+,,
-.

�/0 1 2	���� ∗ %����,� 1 3�����,� ∗ 4����,�             
1 0.5 ∗ �����,� ∗ 4����,�9 :; 

Eq. (2.1) 

 

 "#$����,� < �
������� ∗ 31 1 �
�������:>?@+�?A+
���31 1 �
�������:>?@+�?A+
��� B 1  Eq. (2.2) 

 



27 
 

 �"C: Technology 

�: Time period 

4����,�: Energy consumption of technology  �"C at time period � 

%����,�: Total capacity of technology  �"C at time period � 

�
�������: Discount rate at time period � 

DE��F��: Process technology set 

����� ����: Unit investment cost of technology  �"C 

"#$����,�: Capital recovery factor of technology  �"C at time period � 

2	����: Unit operation and maintenance cost of technology  �"C 

�����,�: Intercept of presumed marginal cost of technology  �"C at time period � 

�����,�: Slope of presumed marginal cost of technology  �"C at time period � 

G
HF�
IF����: Lifetime of technology  �"C 

 

 Constraints 

Three constraints are generally used in the bottom-up model. Capacity constraints in 

Eq. (2.3) mean that the industry should have available capacity more than energy service 

production. Although the industry installs capacity %����,�, it can use only part of capacity 
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based on availability J�����,�. Technology consumes fuel to produce an energy service. 

Energy service production is determined by efficiency �$$����,� . Flow conservation 

constrains in Eq. (2.4) implies that technology should consume fuel more than energy 

service production. A final energy demand constraint in Eq. (2.5) indicates that the sum of 

energy service production should be greater than final energy demand. 

 

 
�$$����,� ∗ 4����,� ≤ J�����,� ∗ %����,� 
H�E �LL ME��F�� �F�ℎ��L�O
F� ��P �
IF MFE
�P� 

Eq. (2.3) 

 

 
� �$$����,� ∗ 4����,�����∈' ≤ � 4����,�����∈�  

H�E �LL �
IF MFE
�P� 

Eq. (2.4) 

 

 � �$$����,� ∗ 4����,�����∈'()*+,, ≥ � Eq. (2.5) 

 

�$$����,�: Efficiency of technology  �"C at time period � 

J�����,�: Availability of technology  �"C at time period � 

D: Energy production technology set 

": Energy consumption technology set 

�: Final energy demand 
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 Static PMP-based bottom-up model 

This section explains a process to obtain coefficients �����,�  and �����,�  in the 

quadratic objective function. To calculate two coefficients, this study assumes a static cost 

minimization problem, which is expressed by Eq. (2.6)–(2.9). Eq. (2.6) is a linear objective 

function that an LP-based bottom-up model uses. Eq. (2.7)–(2.9) are constraints for the 

static cost minimization problem. 

 

 

	
��
���,R,�
���,R � ������ ���� ∗ "#$����,0 ∗ %����,0����∈'()*+,,
1 2	���� ∗ %����,0 1 �D#�"����� ∗ 4����,0
1 " JS ∗ "2�$���� ∗ 4����,0; 

Eq. (2.6) 

 

 
�$$����,0 ∗ 4����,0 ≤ J�����,0 ∗ %����,0 

H�E �LL ME��F�� �F�ℎ��L�O
F� 
Eq. (2.7) 

 

 � �$$����,0 ∗ 4����,0����∈' ≤ � 4����,0����∈�  Eq. (2.8) 

 

 � �$$����,0 ∗ 4����,0����∈'()*+,, ≥ � Eq. (2.9) 
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�D#�"�����: Unit fuel cost of technology  �"C 

" JS: Unit carbon tax 

"2�$����: CO2 coefficient of technology  �"C 

 

At first, the constraint in Eq. (2.10) is added to limit upper bound of endogenous energy 

consumption of technology at time period 0. Because of this constraint, the endogenous 

energy consumption is almost equal to base-year energy consumption that is given from 

ECS. This study assumes that T is 10UV. If Eq. (2.10) is considered, the objective function 

is modified to Eq. (2.11). 

 

 4����,0 ≤ 31 1 T: ∗ 4����,0WWWWWWWWW Eq. (2.10) 

 

T: Small constant 

4����,0WWWWWWWWW: Base-year energy consumption of technology  �"C (given from ECS) 

 

 

	
��
���,R,�
���,R � ������ ���� ∗ "#$����,0 ∗ %����,0����∈'()*+,,
1 2	���� ∗ %����,0 1 �D#�"����� ∗ 4����,0
1 " JS ∗ "2�$���� ∗ 4����,0             
1 X����,0 ∗ 34����,0 B 31 1 T: ∗ 4����,0WWWWWWWWW:; 

Eq. (2.11) 
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X����,�: Lagrange multiplier of technology  �"C at time period � 

 

After adding the constraint, a quadratic objective function is presumed. In Eq. (2.12), 

coefficients �����,0 and �����,0 are intercept and slope of the first derivative function of 

the quadratic objective function. If coefficients �����,0  and �����,0  are determined to 

make solutions of Eq. (2.11) and Eq. (2.12) identical, solutions of Eq. (2.12) calibrate base-

year energy consumption 4����,0WWWWWWWWW. Moreover, the solutions avoid overspecialization and 

radical technological change because the quadratic objective function is used.  

 

 

	
��
���,R,�
���,R � ������ ���� ∗ "#$����,0 ∗ %����,0����∈'()*+,,
1 2	���� ∗ %����,0 1 3�����,0 ∗ 4����,0       
1 0.5 ∗ �����,0 ∗ 4����,09 :; 

Eq. (2.12) 

 

If the marginal costs of two objective functions are equal, then solutions of those also 

equal. Eq. (2.14) and Eq. (2.16) are the first-order conditions with respect to total capacity, 

and two conditions are identical. Eq. (2.13) and Eq. (2.15) are the first-order conditions 

with respect to energy consumption. The number of combination of coefficients �����,0 

and �����,0, which satisfies Eq. (2.17), is infinite. 
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 �D#�"����� 1 " JS ∗ "2�$���� 1 X����,0 < 0 Eq. (2.13) 

 

 ����� ���� ∗ "#$����,0 1 2	���� < 0 Eq. (2.14) 

 

 �����,0 1 �����,0 ∗ 4����,0 < 0 Eq. (2.15) 

 

 ����� ���� ∗ "#$����,0 1 2	���� < 0 Eq. (2.16) 

 

 

�D#�"����� 1 " JS ∗ "2�$���� 1 X����,0
< �����,0 1 �����,0 ∗ 4����,0 

Eq. (2.17) 

 

This study considers identification methods (ID) of previous studies to determine the 

coefficients (Table 2.8). The identification method affects solutions and simulation results 

of the bottom-up model. In ID1, �����,0 identifies all parameters excluding a carbon tax 

term. A carbon tax linearly increases depending on energy consumption of technology 

because �����,0  identifies a carbon tax term. In ID2, all parameters are included in 

�����,0. A carbon tax is proportional to squares of energy consumption of technology. In 

ID3, �����,0 includes only the Lagrange multiplier. ID4 is similar to ID3, except that both 

�����,0  and �����,0  identifies the Lagrange multiplier. This study adopts ID1 as the 
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identification method because it is appropriate for carbon tax simulation and calibration of 

base-year observations. That is, the quadratic objective function, which is shown as Eq. 

(2.1), is expressed as Eq. (2.18). 

 

Table 2.8. Identification methods 

 Intercept (�����,0) Slope (�����,0) 

ID 1 " JS ∗ "2�$���� 
�D#�"����� 1 X����,04����,0WWWWWWWWW  

ID 2 0 
�D#�"����� 1 X����,0 1 " JS ∗ "2�$����4����,0WWWWWWWWW  

ID 3 
�D#�"����� 1 " JS 

∗ "2�$���� 

X����,04����,0WWWWWWWWW 

ID 4 
�D#�"����� B X����,0 

1" JS ∗ "2�$���� 

2X����,04����,0WWWWWWWWW  

Sources: ID1 (de Frahan et al., 2007), ID2 (Paris, 1988), ID3 (Paris, 1988), ID4 (Heckelei 

and Britz, 2000) 

Note: The identification method affects solutions and simulation results of the bottom-up 

model because it changes the objective function. Lee et al. (2019) explained the dependence 

on the identification method. 
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��
���,�,�
���,� � �
������� � ������ ���� ∗ "#$����,� ∗ %����,�����∈'()*+,,
-.

�/0 1 2	���� ∗ %����,� 1 3" JS ∗ "2�$���� ∗ 4����,�   
1 0.5 ∗ �D#�"����� 1 X����,04����,0WWWWWWWWW ∗ 4����,�9 :; 

Eq. (2.18) 

 

Since Eq. (2.12) calibrates only base-year energy consumption, there are the Lagrange 

multipliers only for time period 0. The Lagrange multipliers for future time periods are 

unknown. This study assumes that the Lagrange multipliers do not change for all time 

periods.  

Additionally, it is problematic that there is no Lagrange multiplier of new technology 

because the industry uses only current technology in time period 0. This study uses the 

Lagrange multiplier of current technology as that of new technology. For example, this 

study uses the Lagrange multiplier of current city gas boiler as that of new city gas boiler. 

Although the parameter of new technology is arbitrarily determined, new technology 

adoption is also affected by technology characteristics. 

 

 Decision variables 

There are three major decision variables in the bottom-up model of this study. First, 

4����,�  means technology’s energy consumption, which minimizes the total cost and 

satisfies energy service demand and final energy demand. Second, new capacity of 

technology is the newly installed capacity in each time period to satisfy capacity constraints, 
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although it is not expressed in the objective function and constraints. Third, total capacity 

of technology %����,� is the sum of installed capacities in the current time period, but does 

not include expired capacities. 

 

 Scenario 

In a business-as-usual (BAU) scenario, there is no reduction policy. Energy service and 

final energy demand annually increases at a rate of 3%. New technologies are introduced 

in their introduction years. In a carbon tax (CTAX) scenario, the industry should pay 

additional costs to use fuel based on energy demand and emission coefficients. This study 

assumes 30 thousand KRW/ton CO2eq carbon tax based on a price of emission permission 

in 2019 (Korea Exchange, 2020). Since the carbon tax affects technology mix and energy 

demand of the industry, emissions of the industry also change. This study identifies effects 

of the carbon tax with a focus on emissions, abatement costs and changes in energy demand. 

 

 Calculation of major results 

Industry’s energy demand for each fuel at time period �  is the sum of energy 

consumption of technologies that use each fuel in Eq. (2.19). Moreover, industry’s energy 

demand for each energy service at time period �  is the sum of energy consumption of 

technologies that produce each energy service in Eq. (2.20). Additionally, industry’s final 

energy demand at time period � is the sum of energy consumption of all technologies in 

Eq. (2.21). 
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� 4����,�����∈Z[+\  

H�E ���ℎE��
�F, … , FLF��E
�
�^ ∈ $�FL 
Eq. (2.19) 

 

 

� 4����,�����∈�_+(`a ,+(b?*+  

H�E ��
LFE, … , HFFP����c ∈ ��FEO^ �FEd
�F 

Eq. (2.20) 

 

 � 4����,�����∈'()*+,,  Eq. (2.21) 

 

Industry’s total emissions are obtained based on Eq. (2.22). The total emissions are the 

sum of technology emissions, which are calculated by multiplying an emission coefficient 

and energy consumption of technology. 

 

 � "2�$���� ∗ 4����,�����∈'()*+,,  Eq. (2.22) 

 

The total cost, including capital, labor, energy and carbon costs, of the industry is 

calculated using the objective function (see Eq. (2.1)). If the government implements a 
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carbon tax policy, the industry chooses new technology mix, which minimizes an increase 

in costs due to a carbon tax. The share of low-emission and more efficient technologies in 

technology mix increases. The abatement cost is calculated according to Eq. (2.23). The 

total cost in calculating the abatement cost excludes the carbon tax. 

 

 J���FIF�� ���� < B ∑ " JS ����L ����� B fJg ����L �����-.�/0∑ " JS FI
��
���� B fJg FI
��
����-.�/0  Eq. (2.23) 

 

2.5 Results 

 Calibration of base-year energy consumption 

PMP calibrates given base-year energy consumption of technology (4����,0WWWWWWWWW) from the 

ECS database (Table 2.9). The steel industry uses 18 technologies to produce five energy 

service and feedstock demand. Calibration errors for the technologies are less than 10UV, 

which is an upper bound of a calibration error (see Eq. (2.10)).  

Although PMP temporarily adds calibration constraints in Eq. (2.10), the final objective 

function in Eq. (2.18) excludes those constraints. Calibration in PMP depends on the 

Lagrange multipliers, which are endogenously determined, instead of the calibration 

constraints. The calibration constraints do not directly affect the calibration results in Table 

2.9. Thus, simulation results of PMP do not depend on the calibration constraints. 

 

 

 



38 
 

Table 2.9. Calibration of base-year energy consumption of the steel industry (Unit: 

thousand TOE) 

Technology 

Calibration error 

(h�
���,RU�
���,RWWWWWWWWWWW�
���,RWWWWWWWWWWW h) Technology 

Calibration error 

(h�
���,RU�
���,RWWWWWWWWWWW�
���,RWWWWWWWWWWW h) 
Bituminous boiler i 10Uj Electric oven i 10Uk 

City gas boiler i 10Ull Electric motor 0 

Anthracite oven i 10Uk 
City gas 

own power generator 
0 

Bituminous oven i 10Uk LPG dryer 0 

Coal product oven i 10Uk City gas dryer 0 

Diesel oven i 10Uk Heat dryer 0 

Heavy oil oven i 10Uk Electric dryer 0 

LPG oven i 10Uk Anthracite feedstock 0 

City gas oven i 10Uj Bituminous feedstock 0 

 

 Simultaneous use of multiple technologies 

PMP describes simultaneous use of multiple technologies without adding 

supplementary constraints. Figure 2.6 shows boiler technologies in the steel industry. In the 

base year, the steel industry uses current bituminous and city gas boiler technologies to 

produce a boiler energy service. More than 90% of the boiler energy service is provided by 
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a current city gas technology, which implies that a current city gas boiler technology is 

more competitive. Although a current bituminous boiler is less competitive and provides a 

small amount of the boiler energy service, it is not excluded from an available boiler 

technology set. In 2018, a new city gas boiler technology is adopted. After the adoption of 

the new technology, the steel industry still uses the current boiler technologies.  

 

Figure 2.6. Boiler energy service production of boiler technologies in the steel industry 

(Unit: thousand TOE) 

 

 Gradual technological change 

PMP shows gradual technological change without adding supplementary constraints. 

Figure 2.7 represents the most competitive current and new technologies in providing 

energy services. Although investment, operation and management costs of new technology 

are more expensive, new technology substitutes current one in its introduction year because 

it is more efficient and lowers energy costs. 
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Figure 2.7. Energy service production in the steel industry (Unit: thousand TOE) 
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For example, a new electric dryer technology substitutes current dryer technologies in 

2018. After the adoption of a new electric dryer technology, a current electric dryer 

technology is still operated. That is, PMP avoids complete elimination of current 

technology by new technology. Additionally, the difference between current and new 

electric dryer technologies gradually increases. This implies that technology substitution in 

PMP is gradual rather than radical. 

 

 Carbon tax simulation 

The manufacturing sector in a BAU scenario generates 10,000 million ton CO2eq 

emissions from 2015 to 2050 (Figure 2.8). The steel industry accounts for 64% of emissions 

of the manufacturing sector. Although the chemistry and cement industries follow the steel 

industry, their emissions are much less than emissions of the steel industry. The three most 

emission-intensive industries generate 83% of emissions of the manufacturing sector. 

When the government imposes a carbon tax, the manufacturing sector pays additional 

costs proportional to emission coefficients of technologies. Since the objective of the 

manufacturing sector is to minimize its total cost, the manufacturing sector replaces high-

emission technologies to low-emission technologies and current technologies to new 

technologies. These technology mix changes reduce emissions of the manufacturing sector. 
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Figure 2.8. BAU emissions (2015–2050) of the manufacturing sector (Unit: million ton 

CO2eq) 

Note: STE (steel), CHE (chemistry), CEM (cement), MAC (machine), SAD 

(semiconductor and display), ELE (electronics), AUT (automobile), NFM (nonferrous 

metals), GLA (glass), TEX (textile) 

 

The carbon tax reduces 0.32% of BAU emissions of the manufacturing sector (Figure 

2.9). Although emissions reduction effects on the cement, nonferrous metals and glass 

industries are much larger than the other industries, those effects on the manufacturing 

sector are small because the steel industry has small reduction capacities due to fixed 

demand for bituminous coal (feedstock).  

By contrast, the cement industry is the most emission-reducing industry in the 

manufacturing sector. The cement industry uses kiln technologies, which occupy more than 
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80% of total energy consumption of the cement industry and experience significant 

efficiency improvement through new technology adoption. That is, shares of energy service 

demand and a level of technological change affect emissions reduction of the industry. 

 

 

Figure 2.9. Emissions reduction effects of the carbon tax (2015–2050) (Unit: %) 

 

The unit abatement cost excluding the carbon tax is calculated using Eq. (2.23). The 

unit abatement cost of the manufacturing sector is 7 thousand KRW/ton CO2eq (Figure 

2.10). It is comparable between industries because the bottom-up model is service-oriented. 

All industries have an identical technology set, which implies that costs and efficiencies of 

available technologies are similar.  
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Figure 2.10. Unit abatement cost excluding the carbon tax (2015–2050) (Unit: KRW/ton 

CO2eq) 

 

The manufacturing sector changes its technology mix in two ways to avoid the carbon 

tax burden. First, low-emission technologies replace high-emission technologies based on 

emission coefficients. Second, new technologies, which are more efficient, replace current 

technologies. The former effects increase energy demand for low-emission energy and 

decrease energy demand for high-emission energy. The latter effects reduce energy demand 

for all energy because new technologies produce energy services using less fuels. 

Energy demand varies based on two technology substitution effects (Figure 2.11). 

Energy demand for coal decreases because both effects are negative. Since coal has the 

emission coefficient (see Figure 2.3), other technologies replace coal technologies. An 
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increase in new coal technologies due to the carbon tax also induce a decrease in energy 

demand for coal. Energy demand for oil (excluding LPG) also drops for the same reasons. 

Since LPG has a low emission coefficient, the share of LPG technologies rises. By 

contrast, the adoption of new LPG technologies reduces energy demand for LPG. Energy 

demand for LPG increases because the former effects are larger than the latter effects. 

Energy demand for heat also increases, similar to LPG. 

Energy demand for city gas, which is low-emission energy, diminishes because the 

negative effects of new city gas technologies are larger than the positive effects of the low 

emission coefficient. Energy demand for electricity also diminishes for the same reasons.  

 

 

Figure 2.11. Changes in energy demand of the manufacturing sector (2015–2050) (Unit: 

thousand TOE) 
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Although energy demand for city gas and electricity decreases due to the carbon tax, 

the energy demand shares of city gas and electricity increase because their emission 

coefficients are low (Figure 2.12). Technology substitution due to the carbon tax causes the 

manufacturing sector to depend more on low-emission technologies. 

 

 

Figure 2.12. Changes in energy demand shares of the manufacturing sector (2015–2050) 

(Unit: %p)  
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Chapter 3. Computable general equilibrium 

model for environmental analysis 

 

3.1 Introduction 

 Research background 

The computable general equilibrium (CGE) model has its theoretical basis in research 

by Arrow and Debreu (1954) (Ross, 2007). Their Walrasian general equilibrium structure 

helps to find solutions that clear all markets (Sue Wing, 2009) and describe the optimal 

behavior of all economic agents. The CGE model’s solutions satisfy the objectives of all 

economic agents. 

The CGE model has been used as a tool to assess policy impacts. Although CGE models 

generally focus on tax and trade policies (Chisari and Miller, 2015), their applications were 

extended to environmental policies (RTI International, 2008). The environmental policies 

that the CGE models usually investigate include carbon tax, emissions reduction targets, 

and energy efficiency (Babatunde et al., 2017). 

These environmental policies induce both environmental and macro-economic changes 

in the economy. Emissions are usually generated from energy consumption, which is a 

significant input in production activities. As policies affect energy consumption, production 

activities also changes. Since the CGE model easily captures these ripple effects, it is a 

useful tool for environmental policy analysis. 
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 Research purpose 

This study constructs a recursive dynamic CGE model based on Hosoe et al. (2010). 

Hosoe et al. (2010) developed the simple CGE model that includes a household and two 

producers. Each producer manufactures a product using capital and the labor supplied by 

the household. The household maximizes its utility by consuming products under its budget 

constraint. The producers maximize their profits by producing products under their 

production functions. Hosoe et al. (2010) extended the simple CGE model to the standard 

CGE model, which adds the behavior of other economic agents. Their standard CGE model 

includes intermediate inputs, the government, an investment agent, and international trade. 

Although Hosoe et al.’s (2010) CGE model allows for a basic analysis, it has limitations 

in analyzing environmental policies. This study modifies the standard CGE model for 

environmental policy analysis and adds recursive equations to describe the dynamic 

changes in the economy. Additionally, this study introduces a more complicated production 

nesting structure and adds emission coefficients to investigate emissions from energy 

consumption and production activities. Finally, this study explores the effects of carbon tax 

policies on the emissions and abatement costs based on the CGE model. 

 

3.2 Data 

 Social accounting matrix 

The CGE model uses a Social Accounting Matrix (SAM), which is a table to describe 

the base-year transactions in the economy, as input data. This study constructs an SAM 
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using the 2015 Input-Output (IO) Table of the Bank of Korea (2019). The Bank of Korea 

(2019) classifies production into 381 sectors at a basic level. This study reclassifies them 

into 41 sectors based on KEI (2015) (Table 3.1). For example, the coal sector in this study 

incorporates the anthracite (0611) and the bituminous coal sectors (0612) in the 2015 IO 

table. The energy sector includes 14 sectors (1–14) according to the energy classification 

of the bottom-up model. The manufacturing sector consists of 18 sectors (15–24 and 26–

33). The service sector is divided into 6 sectors (34–35 and 37–40). This study does not 

disaggregate the agriculture, transport and other sectors because these sectors are small. 

 

Table 3.1. Aggregation of the production sectors in the 2015 IO Table 

This study 2015 IO Table 

Energy 1 Coal 0611–0612 

Energy 2 Coal product 1611–1612 

Energy 3 Gasoline 1622 

Energy 4 Kerosene 1624 

Energy 5 Diesel 1625 

Energy 6 Heavy oil 1626 

Energy 7 LPG 1627 

Energy 8 City gas 4610 

Energy 9 Heat 4620 

Energy 10 Electricity 4501–4505 
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Energy 11 Crude oil 0621 

Energy 12 Natural gas 0622 

Energy 13 Other Oil products 1621, 1628, 1631, 1639 

Energy 14 Jet oil 1623 

Manufacturing 15 Steel 2711–2799 

Manufacturing 16 Chemistry 1711–1802, 2000–2499 

Manufacturing 17 Cement 2620–2699 

Manufacturing 18 Machine 3011–3099, 3810–3999 

Manufacturing 
19 Semiconductor& 

display 
3101–3523 

Manufacturing 20 Electronics 3611–3799 

Manufacturing 21 Automobile 4011–4032 

Manufacturing 22 Nonferrous metals 2811–2900 

Manufacturing 23 Glass 2501–2509 

Manufacturing 24 Textile 1111–1209, 1900 

Agriculture 25 Agriculture 0111–0402 

Manufacturing 26 Other mining 0711–0729 

Manufacturing 27 Food & beverage 0811–1000 

Manufacturing 28 Timber 1311–1329 

Manufacturing 29 Paper & printing 1410–1500 
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Manufacturing 30 Ceramic 2611–2614 

Manufacturing 31 Ship 4101–4103 

Manufacturing 
32 Other transport 

equipment 
4210–4299 

Manufacturing 33 Other manufacturing 4311–4402 

Service 34 Waste 4801–4920 

Service 35 Construction 5010–5190 

Transport 36 Transport 5321–5720 

Service 37 Commerce 

0500, 5200–5310, 5811–6599, 6700, 

6911–6920, 7002–7490, 7602–7603, 

7702–7703, 7802, 7902–8229 

Service 38 Insurance 6601–6603 

Service 39 Domestic (Housing) 6800 

Service 40 Public 
4700, 7001, 7511–7601, 7701, 7801, 

7901 

Other 41 Other 8300 

Sources: Bank of Korea (2019) and KEI (2015) 

 

The shaded elements in the SAM comprises the IO table (Figure 3.1). Sector 
 receives 

money from sector m and provides products or factors to sector m. Sector m pays money to 

sector 
  and receives products or factors from sector 
 . The column sum is the total 
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expenditure of sector m and includes the purchases of intermediate inputs, capital and labor, 

tax payments, and imports. The row sum is the total income of sector 
  and includes 

supplies for intermediate input demand, factor demand, final demand, and export demand. 

The column and row sums of the sector should be identical, which implies that the total 

expenditure is equal to the total income. 

 

 

Figure 3.1. Social accounting matrix 

 



53 
 

 Parameter 

Although most of the parameters in the CGE model are calibrated base on the SAM, 

several parameters cannot be calibrated. Substitution elasticities, which have significant 

impacts on solutions, are usually obtained from the literature because they are difficult to 

estimate. This study also adopts the substitution elasticities in the literature (Table 3.2). 

Armington and transformation elasticities are assumed to be 2.0 in the range of the previous 

elasticities. Substitution elasticities between intermediate inputs are assumed to be 0.5. 

 

Table 3.2. Elasticities 

Elasticity Value References 

Armington 2.0 
Sue Wing (2003), Lim (2012), 

Hwang et al. (2014), Yeo (2019) 

Transformation 2.0 Sue Wing (2003), Yeo (2019) 

CapitalEnergy–Labor 0.5 Okagawa and Ban (2008), 

Ge and Lei (2017), Duarte et al. (2018) Capital–Energy 0.5 

Heat–Electricity–Fossil fuels 0.5 Hwang et al. (2014), Oh et al. (2015) 

Coal–Liquid fossil fuels 0.5 Kim et al. (2019) 

Oil–Gas 0.5 Oh et al. (2015), Duarte et al. (2018) 
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A labor endowment growth rate is obtained from KEI (2019) (Table 3.3). KEI (2019) 

calculates the total employment for all time periods based on population prospects by age 

and the current employment rate by age. A labor endowment growth rate is equal to a total 

employment growth rate. The rate has a decreasing trend and is less than 0 after 2030 

because total employment decreases due to a decline in the population. 

 

Table 3.3. Labor endowment growth rate (Unit: %) 

Time period Growth rate Time period Growth rate 

2015 0.9 2019 0.8 

2016 1.2 2020–2029 0.1 

2017 0.4 2030–2039 -0.4 

2018 0.8 2040–2050 -0.6 

Source: KEI (2019) 

 

 Emission coefficient 

Emissions coefficients are calculated based on KEI (2015), which considers emissions 

from fuel combustion and production processes. The combustion emission coefficients as 

a unit of monetary value were calculated using the Energy Balance of Yearbook of Energy 

Statistics (KEEI, 2017b). The Yearbook of Energy Statistics provides a gross calorific value 
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of primary energy supply in 2015. This study converts the gross calorific value into net 

calorific value using conversion coefficients (Table 3.4). Then, the total emissions from 

fuel combustion are calculated by multiplying the combustion emission coefficients in a 

unit of energy by the net calorific value of the primary energy supply. The combustion 

emission coefficients as a unit of monetary value are obtained by dividing the total 

emissions by the total demand, which includes intermediate input demand and household 

demand. 

 

Table 3.4. Combustion emission coefficients 

Fuel 

(net calorific) 

Primary 

energy 

supply 

IPCC 

emission 

coefficient 

Total 

emissions 

Total 

demand 

Monetary 

emission 

coefficient 

Coal 79,869 3,892 310,857,745 11,734 26,491 

Coal product 2,393 4,437 10,616,734 707 15,013 

Gasoline 8,801 2,871 25,268,981 6,396 3,951 

Kerosene 2,116 2,977 6,299,346 1,963 3,209 

Diesel 20,931 3,069 64,238,210 13,597 4,725 

Heavy oil 5,682 3,208 18,228,496 10,028 1,818 

LPG 8,545 2,614 22,338,890 6,010 3,717 
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City gas 38,996 2,336 91,081,447 27,688 3,290 

Oil product 49,707 880 43,754,564 30,393 1,440 

Jet oil 4,447 2,963 13,174,079 6,009 2,193 

Sources: Author’s work based on Yearbook of Energy Statistics (KEEI, 2017b), KEEI 

(2020) and IO Table (Bank of Korea, 2019) 

Note: Primary energy supply (thousand TOE). IPCC emission coefficient (ton 

CO2eq/thousand TOE). Total emissions (ton CO2eq). Total demand (billion KRW). 

Monetary emission coefficient (ton CO2eq/billion KRW). Moreover, several oil products 

do not emit all of the carbon in themselves. The stored carbon is excluded from combustion 

emissions. 

 

The process emission coefficients are obtained from the 2015 National Inventory 

Report (Greenhouse Gas Inventory and Research Center, 2015), which assumes that 

emissions in Korea are generated from energy, industrial processes, agriculture, LULUCF 

(Land Use, Land-Use Change and Forestry), or waste. It classifies each category more 

specifically depending on the emissions sources. This study allocates emissions from 

industrial processes, agriculture, and waste to the production sectors in the SAM consistent 

with the sector specification of National Inventory Report (Table 3.5). This study assumes 

that process emissions are proportional to output per base-year output. 
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Table 3.5. Process emission coefficients 

Production sector Emissions 

[ton CO2eq/billion KRW] This study National Inventory Report 

Steel Steel production 2.2 

Chemistry Chemistry industry 4.7 

Cement Cement production 1800.4 

Semiconductor & display Semiconductor production 43.6 

Electronics Heavy electronic machine 32.2 

Nonferrous metals 
SF6 consumption of 

magnesium production 
2.6 

Agriculture Agriculture 351.3 

Waste Waste 1110.0 

Source: Author’s work based on National Inventory Report (Greenhouse Gas Inventory 

and Research Center, 2015) 

 

3.3 Model 

 Outline of the CGE model 

This study adopts and modifies equations of Hosoe et al. (2010) to reflect Table 3.6. 

Although Hosoe et al. (2010) constructed a static CGE model, it did not allow dynamic 

changes in the economy. Capital stock is updated based on previous capital stock and 

investments. Labor endowment is also adjusted based on the labor endowment growth rate. 
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Moreover, the standard CGE model has a simple production nesting structure. This study 

adopts more complicated production nesting structure to describe the substitution between 

energy inputs. Additionally, this study considers combustion and process emissions of the 

production sectors. 

 

Table 3.6. Comparison of the CGE models 

 Hosoe et al. (2010) This study 

Model type Static Recursive dynamic 

Production nesting Two-stage Six-stage 

Capital Exogenously given and fixed Recursively updated 

Labor Exogenously given and fixed Exogenously updated 

Emissions n/a Emission coefficients 

 

The CGE model describes behavior of economic agents in the economy. A household 

maximizes its utility by consuming products under limited income, which is obtained by 

providing capital and labor. Producers maximize its profits from sales of products, which 

are produced using capital, labor and intermediate inputs. The government levies taxes on 

the household and the producers and purchases products. An investment agent makes 

investment-saving decisions and consumes products using savings of the household, 

government, and foreign sector. Since the economy is open, the domestic economy exports 

domestic products and imports foreign products.  
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 Household behavior 

The household is assumed to maximize the Cobb-Douglas utility function under the 

budget constraint (Hosoe et al., 2010). Eq. (3.1) shows household consumption of the 

product 
  (CS? ). The household provides capital (n� ∗ #J � ) and labor (GW ) to the 

economy and receives capital price (#) and labor price (oJp�). A part of household’s 

factor income is saved (C�) or collected as a direct tax (� ). Household’s budget is used 

to consume products, and the share of expenditure for the product 
 is shown as q?. The 

household pays price ( 31 1 C� #?: ∗ Dr? ), which includes price of the Armington 

composite product and a household indirect tax, to purchase the product.  

 

 CS? <  q? ∗ 3# ∗ n� ∗ #J � 1 oJp� ∗ GW B C� B � :�31 1 C� #?: ∗ Dr?;  Eq. (3.1) 

 

CS?: Household consumption of the product 
 
q?: Household consumption share for the product 
 
#: Interest rate (capital price) 

n�: Capital stock 

#J �: Rate of return 

oJp�: Wage (labor price) 

GW: Labor endowment 

C�: Household saving 

� : Direct tax 
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C� #?: Household indirect tax rate on the product 
 
Dr?: Price of the Armington composite product 
 

 

 Producer behavior 

The producer maximizes its profit, which is revenue minus the costs of purchasing 

inputs. The producer makes products by aggregating capital, labor and intermediate inputs 

based on the six-stage production nesting structure (Figure 3.2). This study employs the 

production nesting structure of KEI (2015) (see also Ge and Lei, 2017; Duarte et al., 2018; 

Huang et al., 2019). 

In the first stage, the producer aggregates oil and gas, which include gasoline, kerosene, 

diesel, heavy oil, LPG, crude oil, oil product, jet oil, city gas and natural gas. Oil and gas 

are aggregated into liquid fossil fuel (G$$s) based on the constant elasticity of substitution 

(CES) function in Eq. (3.2). The substitution between oil and gas is determined by the 

substitution parameter 2pts, which is calculated using the substitution elasticity 2pus. 

Higher substitution elasticity means that inputs are easier to replace each other. The input 

share parameter 2pv?,s indicates the share of the input 
 in the liquid fossil fuel. Demand 

for the input 
  (S?,s ) is determined by Eq. (3.3). It depends on parameters in the CES 

function and the relative price of oil or gas and the liquid fossil fuel.  

 



61 
 

 

Figure 3.2. Production nesting structure 
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 G$$s <  G$$ws ∗ x∑ 2pv?,s ∗ S?,syz{|?∈)?\ )( `}, ~ ����|  Eq. (3.2) 

 S?,s < �>ZZ�|���|∗yz��,|∗'>ZZ|'�� �
������| ∗ G$$s H�E 
 ∈ �
L �E O�� Eq. (3.3) 

 

G$$s: Liquid fossil fuel demand of the producer m 
G$$ws: Scaling parameter in the liquid fossil fuel demand function of the producer m 
2pv?,s : Share parameter for the input 
  (oil or gas) in the liquid fossil fuel demand 

function of the producer m 
S?,s: Demand for the input 
 of the producer m 
2pts: Oil-gas substitution parameter of the producer m (2pts < 32pus B 1:/2pus) 

DG$$s: Liquid fossil fuel price of the producer m 
 

In the second stage, the producer aggregates liquid fossil fuel, coal and coal product. 

These are aggregated into fossil fuel ($$s) in Eq. (3.4). The substitution between liquid 

fossil fuel, coal and coal product is also determined by the substitution elasticity $$us. 
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$$s <  $$w� ∗ ��� "2JGv?,s ∗ S?,sZZ{|?∈*)}\ )( *)}\ �()�[*� �
1 G$$vs ∗ G$$sZZ{|�

lZZ{|
 

Eq. (3.4) 

 
S?,s < �$$wsZZ{| ∗ "2JGv?,s ∗ D$$sDr? �

llUZZ{| ∗ $$s 

for 
 ∈ ���L �E ���L ME�P��� 

Eq. (3.5) 

 G$$s < �$$wsZZ{| ∗ G$$vs ∗ D$$sDG$$s �
llUZZ{� ∗ $$s Eq. (3.6) 

 

$$s: Fossil fuel demand of the producer m 
$$ws: Scaling parameter in the fossil fuel demand function of the producer m 
"2JGv?,s: Share parameter for the input 
 (coal or coal product) in the fossil fuel demand 

function of the producer m 
G$$vs: Share parameter for the liquid fossil fuel in the fossil fuel demand function of the 

producer m 
$$ts : Coal-liquid fossil fuel substitution parameter of the producer m           

($$ts < 3$$us B 1:/$$us) 

D$$s: Fossil fuel price of the producer m 
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In the third stage, the producer makes energy composite by combining heat, electricity 

and fossil fuel. Similar to the first and second stages, those inputs are combined by the CES 

function. The substitution between heat, electricity and fossil fuel is determined by the 

substitution elasticity C�$$us. 

 

 

�"2	Ds <  �"2	Dws
∗ �3� C�v?,s ∗ S?,s��ZZ{|:?∈�+}� )( +\+*�(?*?�a   
1 $$vs ∗ $$s��ZZ{|� l��ZZ{|

 

Eq. (3.7) 

 
S?,s < ��"2	Dws��ZZ{| ∗ C�v?,s ∗ D�"2	DsDr? �

llU��ZZ{| ∗ �"2	Ds 

for 
 ∈ ℎF�� �E FLF��E
�
�^ 

Eq. (3.8) 

 $$s < ��"2	Dws��ZZ{| ∗ $$vs ∗ D�"2	DsD$$s �
llU��ZZ{| ∗ �"2	Ds Eq. (3.9) 

 

�"2	Ds: Energy composite demand of the producer m 
�"2	Dws: Scaling parameter in the energy composite demand function of the producer m 
C�v?,s : Share parameter for the input 
  (heat or electricity) in the energy composite 

demand function of the producer m 
$$vs: Share parameter for the fossil fuel in the energy composite demand function of the 
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producer m 
C�$$ts : Heat-electricity-fossil fuel substitution parameter of the producer m  

(HE$$ts < 3C�$$us B 1:/HE$$us) 

D�"2	Ds: Energy composite price of the producer m 
 

The fourth stage describes the aggregation of capital and energy composite. Although 

many CGE models combine capital with labor, this study emphasizes the substitution 

between capital and energy. In the hybrid model, the bottom-up model explains 

technological change, which induces changes in capital, labor and energy inputs. When 

new technology replaces current technology, in the bottom-up model, capital input 

increases and energy input decreases because new technology is more expensive to install 

and more efficient. 

 

 n�s <  n�ws ∗ x�"2	Dvs ∗ �"2	Ds��{| 1 nvs ∗ ns��{|~ l��{| Eq. (3.10) 

 �"2	Ds < �n�ws��{| ∗ �"2	Dvs ∗ Dn�sD�"2	Ds �
llU��{| ∗ n�s Eq. (3.11) 

 ns < �n�ws��{| ∗ nvs ∗ Dn�s# �
llU��{| ∗ n�s Eq. (3.12) 
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n�s: Capital-energy composite demand of the producer m 
n�ws: Scaling parameter in the capital-energy composite demand function of the producer m 
�"2	Dvs : Share parameter for the energy composite in the capital-energy composite 

demand function of the producer m 
nvs: Share parameter for the capital in the capital-energy composite demand function of 

the producer m 
n�ts : Capital-energy composite substitution parameter of the producer m       

(n�ts < 3n�us B 1:/n�us) 

ns: Capital demand of the producer m 
Dn�s: Capital-energy composite price of the producer m 

 

The fifth stage explains the aggregation of labor and capital-energy composite. In the 

sixth stage, the producer produces domestic output (�s:  using non-energy inputs (Eq. 

(3.16)) and capital-energy-labor composite (Eq. (3.17)). Domestic output is a Leontief 

composite of non-energy inputs and capital-energy-labor composite. Since the share of 

each input in domestic output is fixed, the sum of share parameters is 1. Eq. (3.18) is the 

zero profit condition for the product m . The left-hand side is the marginal revenue to 

produce domestic output. The right-hand side is the marginal cost to produce domestic 

output. 
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 n�Gs <  n�Gws ∗ xn�vs ∗ n�s��>{| 1 Gvs ∗ Gs��>{|~ l��>{| Eq. (3.13) 

 n�s < �n�Gws��>{| ∗ n�vs ∗ Dn�GsDn�s �
llU��>{| ∗ n�Gs Eq. (3.14) 

 Gs < �n�Gws��>{| ∗ Gvs ∗ Dn�GsoJp� �
llU��>{| ∗ n�Gs Eq. (3.15) 

 

n�Gs: Capital-energy-labor composite demand of the producer m 
n�Gws: Scaling parameter in the capital-energy-labor composite demand function of the 

producer m 
n�vs : Share parameter for the capital-energy composite in the capital-energy-labor 

composite demand function of the producer m 
Gvs: Share parameter for the labor in the capital-energy-labor composite demand function 

of the producer m 
n�Gts : Capital-energy-labor composite substitution parameter of the producer m 
(n�Gts < 3n�Gus B 1:/n�Gus) 

Gs: Labor demand of the producer m 
Dn�Gs: Capital-energy-labor composite price of the producer m 
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 S?,s < J?,s ∗ �s  H�E 
 ∈ ��� B F�FEO^ 
�M��� Eq. (3.16) 

 n�Gs < fs ∗ �s Eq. (3.17) 

 D�s < � J?,s ∗ Dr??∈_)_U+_+(`a ?_�[�, 1 fs ∗ Dn�Gs Eq. (3.18) 

 

J?,s: Share parameter for the non-energy input 
 in the domestic output function m 
fs: Share parameter for the capital-energy-labor composite in the domestic output function m 
�s: Domestic output m 
D�s: Domestic output price m 

 

 Government behavior 

The government consumes products using levied taxes, which are collected from two 

sources. A direct tax (� ) is from household income. Indirect taxes include a production 

tax (D s), an import tariff (� s), a household indirect tax (C� s), an investment indirect tax 

(�� s) and an export indirect tax (�� s). Indirect taxes are paid at the production tax rate 

(D #?), the import tariff rate (� #?), the household indirect tax rate (C� #?), the investment 

indirect tax rate (�� #?) and the export indirect tax rate (�� #?). The government purchases 

products (pS?) using its tax revenue excluding the government saving (p�). The share of 

expenditure for the product 
 is shown as �?. 
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pS? <  �? ∗ 3DT+∑ D ss 1 ∑ � ss 1 ∑ C� ss 1 ∑ �� s 1s
∑ �� ss B p�:/Dr? 

Eq. (3.19) 

 � < � # ∗ 3oJp� ∗ GW 1 # ∗ n� ∗ #J �: Eq. (3.20) 

 D ? < D #? ∗ D�? ∗ �? Eq. (3.21) 

 � ? < � #? ∗ D	? ∗ 	? Eq. (3.22) 

 C� ? < C� #? ∗ Dr? ∗ CS? Eq. (3.23) 

 �� ? < �� #? ∗ Dr? ∗ �S? Eq. (3.24) 

 �� ? < �� #? ∗ FM�
L�� ∗ Do�? ∗ �? Eq. (3.25) 

 

pS?: Government consumption of the product 
 
�?: Government consumption share for the product 
  

D s: Production tax from the producer m 
� s: Import tariff from the producer m 
C� ?: Household indirect tax for the product 
 
�� ?: Investment indirect tax for the product 
 
�� ?: Export indirect tax for the product 
 
p�: Government saving 

� #: Direct tax rate 

D #s: Production tax rate for the producer m 
D�s: Price of the product m 
�s: Domestic output of the product m 
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� #s: Import tariff rate for the product m 
D	s: Import price in a local currency for the product m 
	s: Import of the product m 
�� #?: Investment indirect tax rate for the product 
 
�S?: Investment demand for the product 
 
�� #?: Export indirect tax rate for the product 
 
FM�
L��: Exchange rate  

Do�?: Export price in a foreign currency for the product 
 
�?: Export of the product 
 

 

 Investment behavior 

The investment agent gathers savings of the household (C�), the government (p�) and 

the foreign sector ($�). As Eq. (3.26) indicates, total expenditure for investments is equal 

to total savings. The share of expenditure for the product 
 always maintains the base-year 

share based on Eq. (3.29) (KEI, 2015). The investment agent pays price (31 1 �� #?: ∗
Dr?), which includes price of the Armington composite product and the investment indirect 

tax, to purchase the product. The household and the government save income and tax 

revenue at the rates of C�# and p�#, respectively. The foreign sector saves its export 

revenue excluding expenditure to import domestic products (see Eq. (3.32)). 
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 � 31 1 �� #?: ∗ Dr? ∗ �S?? < C� 1 p� 1 FM�
L�� ∗ $� Eq. (3.26) 

 C� < C�# ∗ 3oJp� ∗ GW 1 # ∗ n� ∗ #J �: Eq. (3.27) 

 p� < p�# ∗ 3DT+∑ D ss 1 ∑ � ss 1 ∑ C� ss 1 ∑ �� s 1 ∑ �� sss : Eq. (3.28) 

 �S? < �S�WWWW ∗ X Eq. (3.29) 

 

$�: Foreign saving in a foreign currency 

C�#: Average propensity for household saving 

p�#: Average propensity for government saving 

�S�WWWW: Base-year investment demand for the product 
 
X: Investment adjustment variable 

 

 International trade 

Although the CGE model of this study is a national model, international trade is 

described because the domestic economy exchanges with the foreign sector. World export 

price (Do�?) and world import price (Do	?) are excahnged to domestic export price (D�?) 
and domestic import price (D	?) using an exchange rate (FM�
L��). The domestic economy 

receives world export price excluding the export indirect tax (Eq. (3.30)) and pays world 

import price to purchase products of the foreign sector (Eq. (3.31)). The foreign sector 

generates income by selling the products and uses its income to purchase products of the 

domestic economy. The rest of the income is saved in Eq. (3.32). 

Products in the domestic economy can be domestically produced or imported. The CGE 
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model usually assumes that the domestic economy consumes the Armington composite 

product, which is an aggregation of domestic products and imports. The aggregation is done 

based on the CES function in Eq. (3.33). The substitution elasticity Ju? influences on the 

substitution between domestic products and imports.  

The domestic economy can sell products to domestic or foreign consumers. Domestic 

demand and exports relies on the transformation function in Eq. (3.36). The transformations 

is done based on the transformation parameter �?. 
 

 D�? < 31 B �� ?: ∗ FM�
L�� ∗ Do�? Eq. (3.30) 

 D	? <  FM�
L�� ∗ Do	? Eq. (3.31) 

 FS+∑ 31 1 �� ?: ∗ Do�? ∗ �? <  ∑ Do	? ∗ 	???  Eq. (3.32) 

 r? <  Jw? ∗ �	v? ∗ 	?�{� 1 �v? ∗ �?�{�� l�{� Eq. (3.33) 

 	? < �Jw?�{� ∗ 	v? ∗ Dr?31 1 � #?: ∗ D	? �
llU�{� ∗ r? Eq. (3.34) 

 �? < �Jw?�{� ∗ �v? ∗ Dr?D�? �
llU�{� ∗ r? Eq. (3.35) 

 �? <   ? ∗ x�¡? ∗ �?¢� 1 �¡? ∗ �?¢�~ l¢� Eq. (3.36) 

 �? < � ?¢� ∗ �¡? ∗ 31 1 D #?: ∗ D�?D�?/31 B �� #?: �
llU¢� ∗ �? Eq. (3.37) 
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 �? < � ?¢� ∗ �¡? ∗ 31 1 D #?: ∗ D�?D�? �
llU¢� ∗ �? Eq. (3.38) 

 

D�?: Export price in a local currency for the product 
 
Do	?: Import price in a foreign currency for the product 
 
r?: Armington composite product 
 
Jw?: Scaling parameter in the Armington composite function of the product 
 
	v?: Import share parameter for the product 
 
�v?: Domestic demand share parameter for the product 
 
�?: Domestic demand for the product 
 
Jt?: Substitution parameter of the product 
 (Jt? < 3Ju? B 1:/Ju?) 
D�?: Price of the domestic demand 
 
 ?: Scaling parameter in the transformation function of the product 
 
�¡?: Export share parameter for the product 
 
�¡?: Domestic demand share parameter for the product 
 
�?: Transformation parameter of the product 
 (�? < 3��u? B 1:/��u?) 

 

 Market clearing 

Eq. (3.39) is the market clearing condition for the Armington composite product. The 

producer supplies r? in the market. The household (CS?), the government (pS?) and the 

investment agent (�S?) consumes the Armington composite product. Producers purchase 



74 
 

the Armington composite product and employ it as intermediate input (S?,s). Eq. (3.40) and 

Eq. (3.41) show the market clearing condition for the capital and labor markets. All capital 

should be employed by producers, and all labor should be hired by producers. 

Eq. (3.39) excludes the market clearing condition for the Other sector. When there is � 

markets in the economy, the market clearing of the � B 1  markets assures the market 

clearing of the �th market due to Walras’s law. The CGE model generally excludes the 

market clearing condition for one market to test the model. If left-hand and right-hand sides 

of the market clearing condition for the Other sector is equal, the model is considered to be 

consistent. 

 

 
r? < CS? 1 pS? 1 �S? 1 � S?,ss   

H�E 
 ∈ �LL ME�P���� F4�L�P
�O 2�ℎFE 

Eq. (3.39) 

 � nss < n� ∗ #J � Eq. (3.40) 

 � Gss <  GW Eq. (3.41) 

 

GW: Labor endowment 

 

 Consumer price index 

The CGE model adopts the relative price system. This study considers the consumer 

price index (CPI) as the numeraire price. The CPI is derived in Eq. (3.42). The CPI is the 
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weighted price of the products that the household consumes. The CPI weight is the share 

of household consumption of the product 
 in total household consumption. 

 

 "D� < � "D�o��pC ? ∗? Dr? Eq. (3.42) 

 

"D�: Consumer price index 

"D�o��pC : Consumer price index weight 

 

 Recursive equation 

There is no time subscript in the previous equations because the recursive dynamic CGE 

model iteratively solves static problems. This study assumes that capital stock is updated 

based on solutions of previous time period, and labor endowment is updated based on the 

exogenous growth rate (see Table 3.3). As Eq. (3.43) indicates, capital stock at time period 

� 1 1 (n��£l) is the sum of depreciated capital stock at time period � (31 B ��D#: ∗ n��) 

and all new investments (∑ �S?,�? ). A depreciation rate and a rate of return is calculated 

based on KEI (2015). Labor endowment at time period � 1 1 (G�£lWWWWWW) grows depending on 

the labor endowment growth rate (Gp#2o C�£l) in Eq. (3.44).  

 

 n��£l < 31 B ��D#: ∗ n�� 1 � �S?,�?  Eq. (3.43) 

 G�£lWWWWWW < 31 1 Gp#2o C�£l: ∗ G�¤  Eq. (3.44) 
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n��: Capital stock at time period � 

��D#: Depreciation rate 

�S?,�: Investment demand for the product 
 at time period � 

G�¤ : Labor endowment at time period � 

Gp#2o C�£l: Labor endowment growth rate at time period � 1 1 

 

 Adjustment of labor productivity and energy efficiency 

Gross domestic product (GDP) represents the scale of the economy. Since emissions 

increase depending on the scale of the economy, it is necessary to calibrate future GDP in 

the CGE model. This study adopts the GDP outlook, which the Ministry of Environment 

employs to establish the LEDS (Ministry of Environment, 2020). 

As Eq. (3.45) indicates, this study assumes that labor productivity improves for the 

calibration of GDP. Labor endowment at time period � 1 1 (G�£lWWWWWW) grows based on a labor 

endowment growth rate (Gp#2o C�£l ) and labor productivity at time period � 1 1 

(GD#2��£l).5 Labor productivity improvement induces an increase in labor endowment 

and GDP growth. 

 

 G�£lWWWWWW < GD#2��£l ∗ 31 1 Gp#2o C�£l: ∗ G�¤  Eq. (3.45) 

 

                                            
5 Assuming that labor productivity grows at an annual rate of 1.65%, labor productivity in 2050 is 1.7 times 

greater than the base-year labor productivity. Additionally, the labor productivity of the manufacturing sector 

of Korea doubled from 2000 to 2019 (Korea Productivity Center, 2020). 
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GD#2��£l: Labor productivity at time period � 1 1 

 

The LEDS predicted emissions in 2050 under the assumption that energy efficiency 

would improve. Due to improving energy efficiency, the estimated BAU national emissions 

in 2050 are 761.4 million ton CO2eq (Ministry of Environment, 2020), which is 

comparable with national emissions 692.3 million ton CO2eq in 2015 (Greenhouse Gas 

Inventory and Research Center, 2015). To prevent emissions in the CGE model from 

growing with a GDP growth path, this study assumes energy efficiencies of all sectors 

excluding the energy sector improves based on an Autonomous Energy Efficiency 

Improvement (AEEI) parameter in Eq. (3.46). The AEEI parameter does not improve 

energy efficiency of the energy sector because it may cause energy output of the energy 

sector to be inconsistent with the laws of thermodynamics (Sue Wing and Eckaus, 2007). 

Moreover, this study assumes that process emission coefficients annually decrease at a rate 

of 3%. 

 

 
�"2	Dws,�£l < J����£l ∗ �"2	Dws,�   

H�E m ∈ �LL �F���E� F4�L�P
�O �ℎF F�FEO^ �F���E 
Eq. (3.46) 

 

 Carbon tax 

With the carbon tax, the household and the producers pay additional costs to consume 

energy and produce products. The producer pays Dr" JS?, which includes the price of 
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the Armington composite product and the carbon tax, to consume products of the energy 

sector. The carbon tax is proportional to a combustion emission coefficient in Eq. (3.47). 

Additionally, if there are process emissions, the producer pays the carbon tax, which is 

proportional to a process emission coefficient. As Eq. (3.48) indicates, this carbon tax is 

included in the producer’s marginal cost. Moreover, the household pays the carbon tax to 

consume products of the energy sector. The equation to describe household consumption is 

modified as Eq. (3.49). This study assumes that all carbon taxes that the government 

collects are transferred to the household. 

 

 Dr" JS?=Dr? 1 "22�? ∗ " JS ∗ "D� H�E 
 ∈ ��FEO^ �F���E Eq. (3.47) 

 

Dr" JS?: Price of the Armington composite product 
 including a carbon tax 

"22�?: Combustion emission coefficient for the energy product 
 
" JS: Unit carbon tax  

 

 

D�s < � J?,s ∗ Dr??∈_)_U+_+(`a ?_�[�, 1 fs ∗ Dn�Gs 

     1"22Ds ∗ " JS ∗ "D�  

H�E m ∈ ��� B ¥FE� ME��F�� FI
��
�� �F���E� 

Eq. (3.48) 

 

"22Ds: Process emission coefficient for the product m 
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CS? <  q? ∗ 3# ∗ n� ∗ #J � 1 oJp� ∗ GW 1  " JS B C� B � :�31 1 C� #?: ∗ Dr? 1 3Dr" JS? B Dr?:;   

H�E 
 ∈ ��FEO^ �F���E 

Eq. (3.49) 

 

 " JS: Total carbon tax 

 

 Scenario 

This study adopts a carbon tax policy as a representative reduction policy and assess its 

impacts on emissions and abatement costs. The government is assumed to impose a 30 

thousand KRW/ton CO2eq carbon tax in 2015. The carbon tax linearly and annually 

increases until 360 thousand KRW/ton CO2eq in 2050 (Figure 3.3).6 

 

 

Figure 3.3. Carbon tax (Unit: thousand KRW/ton CO2eq) 

                                            
6 This carbon tax level achieves the lowest 2050 target (40% reduction) of the LEDS (Ministry of 

Environment, 2020). 
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Table 3.7 summarizes the scenarios in this chapter. CGEONLY_BAU is the BAU 

scenario without the carbon tax. CGEONLY_CTAX is the carbon tax scenario, which 

imposes the carbon tax in Figure 3.3. 

 

Table 3.7. Scenario description 

Scenario Description 

CGEONLY_BAU 
CGE model 

No carbon tax 

CGEONLY_CTAX 

CGE model 

Carbon tax: 30–360 thousand KRW/ton CO2eq (2015–2050) 

 

3.4 Results 

 BAU 

The CGE model calibrates the 2050 BAU national emissions of the LEDS. As Figure 

3.4 shows, national emissions slowly increase from 689 million ton CO2eq in 2015 to 776 

million ton CO2eq in 2050. By contrast, GDP in 2050 is two times larger than the GDP in 

2015 (Figure 3.5). Although the CGE model does not calibrate national emissions and GDP 

for all periods, it calibrates these LEDS values for 2050. 

The base-year emissions in the CGE model calibrate the 2015 National Inventory 

Report (Figure 3.6). Since this study does not allocate the rest of industrial process 

emissions, the CGE model has smaller base-year industrial process emissions. 
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Figure 3.4. BAU national emissions (Unit: million ton CO2eq) 

 

 

Figure 3.5. BAU GDP (Unit: billion KRW) 
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Figure 3.6. Comparison of 2015 emissions in the CGE model and National Inventory 

Report (Unit: million ton CO2eq) 

Sources: The CGE model of this study and Greenhouse Gas Inventory and Research Center 

(2015) 

 

If emissions from heat and electricity generation are allocated to each sector, then the 

ten emission-intensive industries are the largest emission sources (Figure 3.7). One-third 

of the base-year national emissions are generated by these industries. The service sector 

follows the emission-intensive industries and generates 23.7% of the base-year national 

emissions. The rest of the manufacturing sector excluding the emission-intensive industries 

is also a large emission source and generates 15.8% of the base-year national emissions. 

The transport, agriculture, energy, and other sectors accounts for small shares of the base-

year national emissions. If the energy sector includes emissions from heat and electricity 
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generation, then it would be a significant emission source. However, due to the allocation 

of indirect emissions, the energy sector generates only 3.0% of the base-year national 

emissions. 

 

 

Figure 3.7. Share of emissions of each sector in 2015 (Unit: %) 

 

 Carbon tax simulation 

With the carbon tax, capital input replaces energy inputs. When the price of energy 

increases because of the carbon tax, capital replaces energy because both inputs compete 

in the capital-energy composite nest. The substitution of energy by capital is determined by 

the substitution elasticity. 

As Figure 3.8 shows, the energy input share decreases 1.5%p, but the shares of capital 

and labor inputs increase 1.2%p and 1.7%p, respectively. An increase in the labor input 
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share is caused by a decrease in the shares of energy and non-energy inputs because labor 

endowment is fixed. Although non-energy inputs in the sector are fixed by the Leontief 

function, the non-energy input share can change because of the changes in the production 

structure. 

 

 

Figure 3.8. Changes in the input share in 2050 due to the carbon tax (Unit: %) 

 

Moreover, the carbon tax leads to the substitution of high-emission energy with low-

emission energy (Figure 3.9). Although all energy demand drops because of the rise in 

energy prices, they decreases at different levels. The energy demand for high-emission 

energy such as coal, coal product, and gasoline drop more steeply than do low-emission 

energy such as heavy oil and heat. 
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Figure 3.9. Changes in energy demand in 2050 due to the carbon tax (Unit: %) 

 

Additionally, a decrease in domestic outputs due to the carbon tax also reduces 

emissions. Production of less domestic outputs by producers mitigates emissions because 

the producers consume less energy and generates less process emissions. Process emissions 

are generated from the steel, chemistry, cement, semiconductor & display, electronics, 

nonferrous metals, agriculture, and waste sectors. The domestic outputs of these eight 

sectors decreases with the carbon tax (Figure 3.10), and process emissions also decrease. 

As the carbon tax rises, the gap between CGEONLY_BAU and CGEONLY_CTAX 

national emissions increases (Figure 3.11). In 2050, with a 360 thousand KRW/ton CO2eq 

carbon tax, the estimated reduction rate of national emissions is 54.2% (Figure 3.12). 

However, the slopes of the reduction rates are less steep, which implies that the reduction 

effects of an additional carbon tax decrease.  



86 
 

 

 

Figure 3.10. Domestic output change in the process emission sectors (Unit: %) 

 

 

Figure 3.11. National emissions (Unit: million ton CO2eq) 
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Figure 3.12. Emission change due to the carbon tax (Unit: %) 

 

The government imposes the carbon tax and transfers it to the household. The 

household uses the carbon tax payment for its consumption and saving. Although this 

transfer does not incur social welfare losses, the carbon tax does affect GDP. 

A low carbon tax does not have significant impacts on GDP (Figure 3.13). In 2026, the 

economy experiences 1% loss of GDP with a 133 thousand KRW/ton CO2eq carbon tax. 

As the carbon tax rises, GDP loss increases compared to the CGEONLY_BAU scenario. In 

2050, with a 360 thousand KRW/ton CO2eq carbon tax, GDP decreases 2.4%. 

The unit abatement cost is average GDP loss under the carbon tax to reduce a unit of 

emissions (Figure 3.14).7  In 2015, the unit abatement cost is not large (19 thousand 

                                            
7 Abatement cost can be defined in the bottom-up and CGE models. This study calculates abatement cost 

using GDP and emissions in the CGE model. The value of abatement cost can be positive or negative 

depending on the use of the carbon tax. Moreover, unit abatement cost in this study means average abatement 

cost. 
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KRW/ton CO2eq), but it increases with the carbon tax. In 2050, the economy should accept 

165 thousand KRW to mitigate one unit of emissions. 

 

 

Figure 3.13. GDP loss due to the carbon tax (Unit: %) 

 

Figure 3.14. Unit abatement cost (Unit: KRW/ton CO2eq) 
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Chapter 4. A hybrid model to assess 

environmental and economic impacts of 

technological change in the manufacturing sector 

 

4.1 Introduction 

Chapter 1 briefly explains the advantages and disadvantages of the bottom-up and CGE 

models. This section describes these characteristics in more detail. 

 

 Research background 

The bottom-up and CGE models are representative tools to explore the environmental 

and economic impacts of reduction options. Since the bottom-up model has the advantage 

of providing a detailed technology description (Hourcade et al., 2006), it is appropriate to 

describe new technology adoption. If technology characteristics and the price of the energy 

it uses are known, then the bottom-up model identifies the substitution of current 

technology by new technology and changes in the total cost, energy demand and emissions. 

By contrast, the CGE model has limitations in describing effects of new technology 

adoption because it depends on the substitution elasticity to explain energy substitution 

(Böhringer and Rutherford, 2008). The substitution elasticity is estimated using historical 

data (see Hourcade et al., 2006), which do not include information about the new 

technology. That is, the CGE model explains changes due to new technology based on the 
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estimated elasticity before new technology adoption. 

Moreover, the bottom-up model can describe the adoption of new technology using new 

energy that does not exist in the base year, if price of the new energy is known. However, 

the CGE model has difficulty in explaining new energy adoption. Since the CGE model 

calibrates parameters using base-year data, there is no information to calibrate the 

parameters of the new energy. 

Additionally, the bottom-up model can investigate a wide range of technology-level 

reduction options (Loulou et al., 2016) such as efficiency improvements and a decrease in 

the investment costs of technology. By contrast, the CGE model reflects the technology-

level reduction options at a more aggregated level. 

Since the CGE model finds the optimal quantities and prices in the economy (Andersen 

et al., 2019a), it is appropriate to observe output changes due to relative price changes and 

the ripple effects of the output changes. By contrast, the bottom-up model cannot observe 

output changes because the output and final energy demand in the model are given, 

although the bottom-up model employs the new technology mix and observes the changes 

in production costs. 

Moreover, the bottom-up model does not assure the equilibrium of the sectors besides 

the one under analysis (Helgesen et al., 2018). Additionally, the bottom-up model assumes 

that the energy prices are given, and overlooks changes in the energy prices due to the 

changes in energy demand, although a new technology mix induces such changes. 
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 Research purpose 

The hybrid model overcomes problems of the single models and employs the 

advantages of both models. It is an advanced framework that allows both technology-based 

and macro-economic analysis. 

This study constructs a hybrid model for the manufacturing sector of Korea using the 

soft-link approach, which helps to exploit the full advantages of both models. This study 

explains a method to construct the hybrid SAM and to modify the single models for 

integration and information exchange. After constructing the hybrid model, this study 

investigates the impacts of new technology adoption. New technology induces 

technological change in the manufacturing sector and affects the whole economy. The 

effects of new technology on emissions and abatement costs under a carbon tax policy are 

also explored. 

 

4.2 Literature review 

 Integration approach 

There are three approaches to develop the hybrid model (see Böhringer and Rutherford, 

2008). The reduced form approach simplifies one model and incorporates the simplified 

model into the other model. The hybrid model based on this approach has usually simplified 

the macro-economic model (Table 4.1). This approach is appropriate for global analysis 

rather than regional analysis (Krook-Riekkola et al., 2017) because several details of the 

models disappear. Moreover, it is not a complete approach for the hybrid model because 
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one of two models is reduced. 

 

Table 4.1. Previous hybrid models 

Author Country 
Integration 

approach 

Bottom-up 

model 

Top-down 

model 

Messner and Schrattenholzer 

(2000) 
Global 

Reduced 

form 

MESSAGE-Macro 

(reduced top-down model) 

Strachan and Kannan (2008) UK 
Reduced 

form 

MARKAL-Macro 

(reduced top-down model) 

Kypreos and Lehthila (2015) Global 
Reduced 

form 

TIAM-Macro 

(reduced top-down model) 

Proença and Aubyn (2013) Portugal MCP  

Rasuch and Mowers (2014) U.S. MCP  

Fortes et al. (2014) Portugal Soft-link TIMES 
CGE 

(GEM-E3) 

Krook-Riekkola et al. (2017) Sweden Soft-link TIMES 
CGE 

(EMEC) 

Andersen et al. (2019a) Denmark Soft-link TIMES CGE 
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The mixed complementarity problem (MCP) and soft-link approaches integrate the 

bottom-up and CGE models without reducing one model. The MCP approach expresses 

two models using an MCP format to incorporate technology details in the CGE model 

(Böhringer and Löschel, 2006). This approach maintains coherence of the hybrid model, 

but the large number of equations in the model induces a dimensionality problem 

(Böhringer and Rutherford, 2009). 

The soft-link approach relies on information exchange between the bottom-up and CGE 

models. In this approach, each model delivers information that the other model requires. 

These information exchanges continue until solutions of the hybrid model converge. 

Although this approach allows to employ characteristics of independent two models 

(Martinsen, 2011), it is difficult to maintain coherence of the hybrid model because two 

models are developed based on different assumptions (Böhringer and Rutherford, 2008). 

 

 Previous hybrid model 

Several countries have developed the hybrid models to evaluate impacts of energy and 

environmental policies (see Table 4.1). Previous hybrid models generally focus on energy 

consumption (Messner and Schrattenholzer, 2000; Strachan and Kannan, 2008; Dai et al., 

2016; Andersen et al., 2019a) and emissions (Strachan and Kannan, 2008; Rausch and 

Mowers, 2014; Krook-Riekkola et al., 2017; Helgesen et al., 2018). Technology details of 

the hybrid model allowed to analyze technology mix changes due to the policies (Proença 

and Aubyn, 2013; Rausch and Mowers, 2014; Helgesen et al., 2018). Moreover, macro-
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economic aspects of the hybrid model enabled to identify changes in macro-economic 

variables including GDP and welfare (Proença and Aubyn, 2013; Rausch and Mowers, 

2014). 

Fortes et al. (2014), Krook-Riekkola et al. (2017) and Andersen et al. (2019a) developed 

the hybrid model based on the soft-link approach. Although three studies adopted different 

CGE models, they integrated the CGE models with TIMES models. Fortes et al. (2014) 

employed General Equilibrium Model for Economy, Energy, Environment (GEM-E3), 

while Krook-Riekkola et al. (2017) used Environmental Medium term Economic model 

(EMEC). 

Andersen et al. (2019a) points out that previous soft-linked hybrid models adopted the 

bottom-up and CGE models, which were already developed. Contrary to the previous 

models, they newly developed two models considering an integration. This study also 

adopts the soft-link approach and newly develops the bottom-up and CGE models for an 

integration. 

 

4.3 Model 

 Outline of the hybrid model 

Based on Böhringer and Rutherford (2009) and KEI (2018)8 , this study develops a 

hybrid model of ten emission intensive industries (Figure 4.1). The CGE model is 

                                            
8  KEI (2018) modified equations of the single bottom-up and CGE models, derived equations for 

information exchanges between the models and explained the integration process. This study adopts the 

equations and the integration process of KEI (2018). 
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recursively solved from 2015 to 2050. It saves and delivers the information that the bottom-

up model requires. The bottom-up model recursively solves the cost minimization problems 

of the industries. It saves and delivers the information that the CGE model requires. These 

information exchanges finish when the differences in the linked variables in the previous 

and current iterations converge. 

 

 

Figure 4.1. Outline of the hybrid model 

Source: Author’s work based on KEI (2018) 
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 Hybrid social accounting matrix 

The base-year energy, capital and labor inputs of the manufacturing sector in the 

bottom-up and CGE models are inconsistent because each model uses different data sources. 

However, these inputs in the hybrid model should be consistent at least for the base year. A 

hybrid SAM is an adjusted SAM that helps to maintain the base-year consistency. This 

study develops a hybrid SAM based on KEI (2017). 

This study describes the construction of the hybrid SAM for the steel industry as an 

example (Figure 4.2). As the first step, the industry column in the SAM is divided into two 

parts. The linked column includes the CGE inputs explained by the bottom-up model. The 

unlinked column records the rest of the CGE inputs that the bottom-up model does not 

explain. 

As the second step, the energy, capital and labor inputs in the SAM are allocated in the 

hybrid SAM. Before the allocation, the bottom-up and CGE inputs in the base year are 

compared (Table 4.2). If the CGE input is larger, then bottom-up input is recorded in the 

linked column, and the difference between the CGE and bottom-up inputs is recorded in 

the unlinked column (see coal in Figure 4.2). If the bottom-up input is larger, then the linked 

column is equal to the bottom-up input, and the unlinked column is 0 (see city gas in Figure 

4.2). If the CGE input is not 0, but the bottom-up input is 0, then the linked column is equal 

to the CGE input, and the unlinked column is 0 (see gasoline in Figure 4.2). 
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Figure 4.2. Hybrid SAM construction (Unit: billion KRW) 
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Table 4.2. Energy, capital and labor inputs of the steel industry in the base year (Unit: 

billion KRW) 

Input CGE Bottom-up Comparison 

Coal 3624 2536 CGE > BU 

Coal product 327 4 CGE > BU 

Gasoline 10 0 CGE > 0 and BU = 0 

Kerosene 9 0 CGE > 0 and BU = 0 

Diesel 23 2 CGE > BU 

Heavy oil 47 21 CGE > BU 

LPG 36 12 CGE > BU 

City gas 639 1466 BU > CGE 

Heat 0 17 BU > CGE 

Electricity 4728 1452 CGE > BU 

Capital 11631 114 CGE > BU 

Labor 6041 65 CGE > BU 

Source: Author’s work based on the SAM and bottom-up model output 

 

In the third step, the non-energy inputs in the SAM are allocated. This study assumes 

that only the linked column uses non-energy inputs, which means that the unlinked column 

does not use non-energy inputs. In the fourth step, the indirect tax and imports in the SAM 

are allocated based on the weights of the linked and unlinked columns. The weight is the 
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sum of energy, capital, labor, and non-energy inputs in the hybrid SAM. The ratio between 

the two weights is about 2.80 for the steel industry. In the fifth step, the industry row in the 

SAM is also divided into the linked and unlinked rows. Finally, the row in the SAM is 

allocated to the linked and unlinked rows in the hybrid SAM by weight.  

This adjustment processes are identical for the other nine linked industries. However, 

the column and row sums in the hybrid SAM are not identical after the adjustment. This 

study adjusts the differences between the column and row sums in the intermediate inputs 

to maintain consistency in the hybrid SAM. 

 

 Modification of the bottom-up model 

At first, the objective function of the bottom-up model is modified. Eq. (4.1) shows the 

modified objective function based on Böhringer and Rutherford (2009). Whereas the 

previous objective function aims to minimize the total cost, the modified objective function 

aims to maximize the sum of consumer and producer surplus.  

 

 max©�,�
���,�,�
���,� � �ª�������WWWWWWWWWWWWW ∗ ��EML���-.
�/0  Eq. (4.1) 

 «�: Industry supply at time period � 4����,�: Energy consumption of technology  �"C at time period � %����,�: Total capacity of technology  �"C at time period � 

�ª�������WWWWWWWWWWWWW: Discount rate at time period � (given from the CGE model) ��EML���: Consumer and producer surplus at time period � 
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The surplus at a certain quantity is defined as the height of the consumer’s inverse 

demand function minus the producer’s total cost in Eq. (4.2). As Eq. (4.3) indicates, this is 

represented as given price, given demand, price elasticity of demand, endogenous supply, 

capital cost, labor cost and energy cost. Although the single bottom-up model, which is not 

developed for the hybrid model, assumes that quantity of product is given, industry supply 

(«�) is an endogenous variable in the bottom-up model for the integration. 

 

 ��EML��� < ¬ D��3«�:P«� B  ���L ����� Eq. (4.2) 

 D��3«�:: Inverse demand function at time period �  ���L �����: Total cost of the industry at time period � 

 

 
��EML��� < D��WWWWW ∗ «� ∗ ­1 B «� B 2 ∗ «�¤2 ∗ �GJ�� ∗ «�¤ ®      

B 3"�M
��L ����� 1 G���E ����� 1 ��FEO^ �����: 

Eq. (4.3) 

 D��WWWWW: Price of the industrial product at time period � (given from the CGE model) «�¤ : Industry demand at time period � (given from the CGE model) �GJ��: Price elasticity of the industrial product demand at time period �9 "�M
��L �����: Capital cost of the industry at time period � G���E �����: Labor cost of the industry at time period � ��FEO^ �����: Energy cost of the industry at time period � 

                                            
9 This elasticity is a step size to find solutions of the hybrid model and affects convergence speed. Elasticities 
of all linked industries excluding the cement industry are assumed to be 1. The elasticity of the cement 
industry is assumed to be 0.5 for the convergence of the cement industry. 
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max©�,�
���,�,�
���,� � �ª�������WWWWWWWWWWWWW ∗ �D��WWWWW ∗ «� ∗ ­1 B «� B 2 ∗ «�¤2 ∗ �GJ�� ∗ «�¤ ®-.

�/0
B 3"�M
��L ����� 1 G���E ����� 1 ��FEO^ �����:; Eq. (4.4) 

 

The industrial bottom-up model endogenously finds industry supply, energy 

consumption and total capacity based on delivered CGE information such as industry 

demand, price indices, an interest rate and a wage index. Capital, labor, energy and non-

energy inputs of the linked industries are obtained after finding solutions of the bottom-up 

model. The bottom-up model delivers input information to the CGE model. 

Eq. (4.5) explains capital cost of the industry in the bottom-up model. Similar to the 

single bottom-up model, capital cost is determined by total capacity. However, unlike the 

single bottom-up model, a capital recovery factor depends on an interest rate from the CGE 

model. Eq. (4.6) describes labor cost of the industry in the bottom-up model. Labor cost is 

also dependent on total capacity. A wage index from the CGE model also affects labor cost.  

 

 "�M
��L ����� < � ����� ���� ∗ "#$����,� ∗ %����,�����∈'()*+,,  Eq. (4.5) 

 ����� ����: Unit investment cost of technology  �"C "#$����,�: Capital recovery factor of technology  �"C at time period  

 

 G���E ����� < � ¯�WWW ∗ 2	���� ∗ %����,�����∈'()*+,,  Eq. (4.6) 
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¯�WWW: Wage index at time period � (given from the CGE model) 2	����: Unit operation and maintenance cost of technology  �"C 

 

Eq. (4.7) shows energy cost of the industry in the bottom-up model. Energy cost is 

determined by fuel price index, which is also from the CGE model. The single bottom-up 

model employs given predictive values for an interest rate, a wage index and fuel price 

indices. By contrast, in the hybrid model, price indices are endogenously determined in the 

CGE model and delivered to the bottom-up model. 

 

 

��FEO^ �����     < � 0.5 ∗ �����,� ∗ 4����,�9����∈'()*+,,

< � 0.5 ∗ D�����,�WWWWWWWWWW ∗ �D#�"����� 1 X����,�4����,0WWWWWWWWW ∗ 4����,�9����∈'()*+,,  

Eq. (4.7) 

 �����,�: Slope of presumed marginal cost of technology  �"C at time period � 

D�����,�WWWWWWWWWW: Fuel price index of technology  �"C at time period � (given from the CGE 

model) �D#�"�����: Unit fuel price of technology  �"C X����,�: Lagrange multiplier of technology  �"C at time period � 

4����,0WWWWWWWWW: Base-year energy consumption of technology  �"C 

 

The CGE model explains non-energy inputs and taxes as well as the capital, labor and 

energy inputs. By contrast, the bottom-up model explains linked industries’ capital, labor 

and energy inputs based on the optimal technology mix, and there is no information about 

non-energy inputs and taxes in the bottom-up model. That is, the bottom-up model explains 
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industry supply using only parts of industry demand, which does not include non-energy 

inputs and taxes that occupy large parts of industry demand.  

This study solves this problem based on KEI (2019). KEI (2019) added dummy 

technologies to describe CGE inputs that are not explained with the bottom-up model. Table 

4.3 shows linked industry’s inputs in each model. The linked industry in the bottom-up 

model pays capital, labor and energy costs to provide final energy demand (� thousand 

TOE). The linked industry in the CGE model pays J 1 f 1 " 1 �  billion KRW to 

produce domestic output. From the second row in Table 4.3, the ratio between energy 

consumption and money is derived. The ratio is �/J thousand TOE/billion KRW. 

Table 4.4 shows decisions on energy consumption of dummy technologies. Unknown 

information in Table 4.3 is calculated using the ratio. Dummy technology for unknown 

energy inputs consumes f ∗ }� thousand TOE. Since the share of tax in linked industry’s 

demand is small, tax is incorporated with non-energy inputs. Dummy technology for non-

energy inputs and tax in the bottom-up model consumes 3" 1 �: ∗ }� thousand TOE. As 

the ratios for all inputs are equivalent, final energy demand of the bottom-up model 

increases from � thousand TOE to 3J 1 f 1 " 1 �: ∗ }� thousand TOE. 

While the CGE model uses multiple non-energy inputs, the bottom-up model explains 

the non-energy inputs using one dummy technology. Although the bottom-up model 

calculates cost information of one dummy technology, it divides the information depending 

on the share of non-energy inputs in the CGE model.  
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Table 4.3. Linked industry’s inputs in each model 

 
Bottom-up 

(Unit: thousand TOE) 

CGE 

(Unit: billion KRW) 

Capital, labor and energy inputs � J 

Energy inputs 

(unknown in the bottom-up model) 
Unknown f 

Non-energy inputs Unknown " 

Tax Unknown � 

Total � J 1 f 1 " 1 � 

 

Table 4.4. Decisions on energy consumption of dummy technologies 

 
Bottom-up 

(Unit: thousand TOE) 

CGE 

(Unit: billion KRW) 

Capital, labor and energy inputs � J 

Energy inputs 

(unknown in the bottom-up model) 
f ∗ �J f 

Non-energy inputs and tax 3" 1 �: ∗ �J " 1 � 

Total 3J 1 f 1 " 1 �: ∗ �J J 1 f 1 " 1 � 
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 Modification of the CGE model 

The CGE model is modified as follows. First, linked industries’ inputs and domestic 

outputs, which are endogenous variables in the CGE model, are parameterized, and the 

production nests of the linked industries are eliminated in the hybrid model. The bottom-

up model endogenously determines linked industries’ inputs and domestic outputs and 

delivers them to the CGE model as parameters. Second, additional profits of the linked 

industries are transferred to the household. The profits of the linked industries may be larger 

than 0 because the bottom-up model, which does not consider zero profit conditions, 

determines linked industries’ inputs and domestic outputs. Since the CGE model assumes 

that producers’ profits are equal to 0, the additional profits are inconsistent with the 

assumption of the CGE model. To handle this problem, KEI (2015) assumed that the 

household used the additional profits. 

Eq. (4.8) shows linked industries’ capital inputs. In the CGE model, capital input is 

determined in the capital-energy composite nest. However, in the hybrid model, the bottom-

up model determines capital input depending on technology mix. Linked industries’ capital 

inputs are n°,�WWWW. 

 

 ns,� < n°,�WWWW H�E m ∈ G
�cFP 
�P���E
F� Eq. (4.8) 

 

Eq. (4.9) shows linked industries’ labor inputs. Although labor input is determined in 

the energy-value added composite nest of the CGE model, the hybrid model obtains labor 
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input based on technology mix of the bottom-up model. Linked industries’ labor inputs are 

G°,�WWWW. 

 

 Gs,� < G°,�WWWW H�E m ∈ G
�cFP 
�P���E
F� Eq. (4.9) 

 

Eq. (4.10) explains linked industries’ energy inputs. The CGE model employs energy 

inputs to produce energy composite. However, in the hybrid model, technology mix of the 

bottom-up model determines energy inputs. Linked industries’ production nest structures 

are not employed in the hybrid model. Linked industries’ energy inputs are S�,°,�WWWWWW. 

 

 S?,s,� < S�,°,�WWWWWW H�E 
 ∈ ��FEO^ �F���E ��P m ∈ G
�cFP 
�P���E
F� Eq. (4.10) 

 

Eq. (4.11) describes linked industries’ non-energy inputs. The producer in the CGE 

model uses more non-energy inputs to produce more domestic output. In the hybrid model, 

the bottom-up model determines non-energy inputs, which are proportional to industry 

supply. Linked industries’ non-energy inputs are S�,°,�WWWWWW. 

 

 
S?.s,� < S�,°,�WWWWWW H�E 
 ∈ ��� B F�FEO^ �F���E 

��P m ∈ G
�cFP 
�P���E
F� 
Eq. (4.11) 

 

Eq. (4.12) shows linked industries’ domestic outputs (industry demand). The CGE 
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model determines domestic output depending on its price and the zero profit condition. The 

producer produces more domestic output when its price is higher. In the hybrid model, the 

bottom-up model determines industry supply and delivers this information to the CGE 

model as industry demand. This study eliminates the zero profit condition and assumes that 

linked industries’ domestic outputs are �°,�WWWW. 

 

 �s,� < �°,�WWWW Eq. (4.12) 

 

Eq. (4.13) shows the additional profits of the linked industries. The producer earns D�s 

for a unit of domestic output. The producer uses capital, labor, energy and non-energy 

inputs to produce domestic output and pays #, oJp�, Dr" JS? and Dr? for a unit of 

input, respectively. Eq. (4.14) is modified household consumption. In the hybrid model, the 

additional profits (J��D#2$� ) of the linked industries are transferred to the household. 

 

 

J��D#2$� � < � �D�s ∗ �s B # ∗ ns B oJp� ∗ Gss∈>?_±+� ?_�[,�(?+,
B � Dr" JS? ∗ S?.s?∈�_+(`a ,+*�)(
B � Dr? ∗ S?,s?∈²)_U+_+(`a ,+*�)( B "22Ds ∗ " JS ∗ "D� ∗ �s; 

Eq. (4.13) 
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CS?

< q? ∗ 3# ∗ n� ∗ #J � 1 oJp� ∗ GW 1  " JS 1 J��D#2$� � 1 BC� B � :�31 1 C� #?: ∗ Dr? 1 3Dr" JS? B Dr?:;  

Eq. (4.14) 

 

 Information delivery from the bottom-up model to the 

CGE model 

The bottom-up model endogenously determines energy consumption of technology, 

total capacity of technology and industry supply. Capital, labor, energy intermediate and 

non-energy inputs are calculated based on energy consumption and total capacity of 

technology. 

Eq. (4.15) explains the calculation of capital inputs. The producer pays capital costs, 

which are the annualized investment costs to install capacity of technology. The bottom-up 

model calculates capital inputs by dividing capital costs with an interest rate. 

 

 

n°,�WWWW < "�M
��L ����s,�#�
< ∑ ������ s,���� ∗ "#$s,����,� ∗ %s,����,�;����∈'()*+,, #�  

Eq. (4.15) 

 

Labor inputs are calculated as per Eq. (4.16). The producer pays labor costs, which are 

costs to operate and manage capacity of technology. The bottom-up model calculates labor 

inputs by dividing labor costs with a wage index. 
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 G°,�WWWW < G���E ����s,�oJp�� < ∑ �¯�WWW ∗ 2	s,���� ∗ %s,����,�;����∈'()*+,, oJp��  Eq. (4.16) 

 

Eq. (4.17) calculates energy inputs. Energy costs are determined depending on the 

energy consumption of the producer and scaled using the scale coefficient ���"JG�?,s 

for consistency. The scale coefficient is calculated by dividing initial energy input at time 

period 0 with initial energy cost at time period 0 in Eq. (4.18). It is based on the assumption 

that initial ratio between two variables at time period 0 is maintained over time and iteration. 

 

 

S�,°,�WWWWWW < ���"JG�?,s ∗ ��FEO^ ����?,s,�
< ���"JG�?,s ∗ � D�����,�WWWWWWWWWWW����∈? ∗ �D#�"�����
∗ 4s,����,� H�E 
 ∈ ��FEO^ �F���E 

Eq. (4.17) 

 

 ���"JG�?,s < S0?,s,0��FEO^ ����0?,s,0 Eq. (4.18) 

 

���"JG�?,s: Scale coefficient for the energy input 
 of the linked industry m 
S0?,s,0: Demand for the energy input 
 of the linked industry m at time period 0 (initial 

iteration) 

��FEO^ ����0?,s,0: Energy cost for the energy input 
 of the linked industry m at time 

period 0 (initial iteration) 
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Non-energy inputs are calculated based on Eq. (4.19). The producer determines 

consumption of non-energy dummy technology in the bottom-up model. Non-energy costs 

are adjusted with the scale coefficient ����"JG�?,s and distributed to each non-energy 

input depending on ����CJ#�?,s. The share and the scale coefficient are calculated using 

Eq. (4.20) and Eq. (4.21). They are determined depending on initial non-energy input at 

time period 0. 

 

 

S�,°,�WWWWWW < ����CJ#�?,s ∗ ����"JG�?,s ∗ ���FEO^ ����?,s,�
< ����CJ#�?,s ∗ ����"JG�?,s
∗ � D�����,�WWWWWWWWWWW����∈? ∗ �D#�"����� ∗ 4s,����,�  

H�E 
 ∈ ��� B F�FEO^ �F���E 

Eq. (4.19) 

 

 
����CJ#�?,s < S0?,s,0∑ S0?,s,0?∈²)_U+_+(`a ,+*�)(   

H�E 
 ∈ ��� B F�FEO^ �F���E 

Eq. (4.20) 

 

 
����"JG�?.s < S0?,s,0����CJ#�?,s ∗ ���FEO^ ����?,s,0  

H�E 
 ∈ ��� B F�FEO^ �F���E 

Eq. (4.21) 

 

����CJ#�?,s: Share of the non-energy input 
 of the linked industry m 
����"JG�?,s: Scale coefficient for the non-energy input 
 of the linked industry m 
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���FEO^ ����?,s,�: Non-energy cost of the non-energy input 
 of the linked industry m 

at time period � 

S0?,s,0 : Demand for the non-energy input 
  of the linked industry m  at time period 0 

(initial iteration) 

���FEO^ ����0?,s,0: Non-energy cost for the non-energy input 
 of the linked industry m 

at time period 0 (initial iteration) 

 

According to Eq. (4.1), industry supply is endogenously determined in the bottom-up 

model. Eq. (4.22) explains delivery of industry supply to the CGE model. The CGE model 

uses industry supply from the bottom-up model as domestic output. 

 

 �°,�WWWW < «� Eq. (4.22) 

 

 Information delivery from the CGE model to the 

bottom-up model 

The CGE model endogenously determines an interest rate, a wage index, price indices 

and industry demand. The bottom-up model requires this information to solve its 

optimization problem. The bottom-up model updates parameters based on delivered 

information. 

Eq. (4.23) shows the discount rates, which is calculated using the interest rates. In the 

single bottom-up model, an interest rate is a constant value, which does not change 
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depending on capital stock, savings and investments, and cannot reflect the impacts of 

economic changes on the interest rate. In the hybrid model, the CGE model gives the 

endogenously determined interest rate to the bottom-up model. 

�ª�������WWWWWWWWWWWWW < 131 1 #�:� Eq. (4.23) 

 

The bottom-up model requires a wage index to calculate labor costs and inputs. When 

technology mix in the bottom-up model changes, labor demand also changes because 

operation and management costs depend on technology mix. Although the wage index is 

affected by labor demand and supply, it is generally given in the bottom-up model. As Eq. 

(4.24) indicates, in the hybrid model, the bottom-up model uses the wage index from the 

CGE model. 

 

 ¯�WWW < oJp�� Eq. (4.24) 

 

Similar to the interest rate and the wage index, the bottom-up model cannot reflect 

endogenous changes in energy prices. Endogenously determined energy prices in the CGE 

model are delivered to the bottom-up model according to Eq. (4.25). The bottom-up model 

updates technology mix and the slope of the marginal cost function based on energy price 

indices. 
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D�����,�WWWWWWWWWWW < Dr" JS?.� H�E  �"C ∈ 
 Eq. (4.25) 

 

The bottom-up model solves its surplus maximization problem and obtains industry 

supply. The bottom-up model determines new quantity («�) based on previous quantity («�¤ ) 

from the CGE model. Eq. (4.26) describes the delivery of industry demand to the bottom-

up model. 

 

 «°,�WWWW < �s,� Eq. (4.26) 

 

 Convergence test 

At the end of each iteration, the hybrid model tests whether the linked variables are at 

a convergence level. If the difference of the linked variables in the previous and current 

iterations are less than 0.1%, then the hybrid model ends the information exchange process. 

That is, the values of the linked variables in the last iteration are the solutions of the hybrid 

model. 

 

I�4s,� ³G�s,�,?�+( B G�s,�,?�+(UlG�s,�,?�+(Ul ∗ 100´ i 0.1% 

H�E �LL L
�cFP d�E
��LF� 

Eq. (4.27) 

 

G�s,�,?�+(: Linked variables of the linked industry m at time period � and iteration 
�FE 
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 Calibration of domestic output 

It is necessary to set appropriate BAU domestic output in the hybrid model because 

emissions largely depend on production scale. This study employs the calibration method 

of KEI (2019), which calibrates linked industries’ domestic outputs in the single CGE 

model. 

This study uses PMP to calibrate the BAU domestic outputs of the linked industries. 

Whereas the single bottom-up model calibrates energy consumption in time period 0, the 

hybrid model reproduces energy consumption in all time periods. Since only base-year 

energy consumption is observable, energy consumption in other time periods is projected 

using the domestic output of the single CGE model. This study assumes that energy 

consumption in future time periods increases based on an increase in the domestic output 

of the single CGE model. Eq. (4.28) shows the projection of energy consumption of 

technology in future time periods. 

 

 4°,����,�WWWWWWWWWW <  4°,����,0WWWWWWWWWWW ∗ �°,�WWWW�°,0WWWW Eq. (4.28) 

 

Eq. (4.29) is the constraint that forces the bottom-up model to calibrate 4°,����,�WWWWWWWWWW. The 

bottom-up model solves its surplus maximization problem and obtains solutions around 

4°,����,�WWWWWWWWWW. Then, industry supply calibrates the domestic output of the single CGE model 

because the sum of energy consumption of each technology is equal to final energy demand. 

After solving the surplus maximization problem under Eq. (4.29), the Lagrange multipliers 
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for all periods are obtained. 

 

 4s,����,�  ≤ 31 1 T: ∗ 4°,����,�WWWWWWWWWW Eq. (4.29) 

 

 Scenario 

Table 4.5 summarizes the scenarios in this chapter. LINK_BAU is the BAU scenario, 

which excludes new technology and the carbon tax. This scenario compulsorily prevents 

the adoption of new technology that should be adopted in the future. In the LINK_NEW 

scenario, the linked industries adopts new technology based on the KETEP database 

without the carbon tax. The LINK_BAU_CTAX and LINK_NEW_CTAX scenarios 

introduces the carbon tax in Chapter 3 to investigate impacts of new technology adoption 

on emissions and abatement costs. 

 

Table 4.5. Scenario description 

Scenario Description 

LINK_BAU 

Hybrid model 

Only current technology 

No carbon tax 

LINK_NEW 

Hybrid model 

New technology adoption (Linked industries) 

No carbon tax 
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LINK_BAU_CTAX 

Hybrid model 

Only current technology 

Carbon tax: 30–360 thousand KRW/ton CO2eq (2015–2050) 

LINK_NEW_CTAX 

Hybrid model 

New technology adoption (Linked industries) 

Carbon tax: 30–360 thousand KRW/ton CO2eq (2015–2050) 

 

4.4 Results 

 BAU 

Table 4.6 shows the deviations of the linked variables between the previous and current 

iterations and explains the convergence process in the BAU scenario. The deviations in the 

first and second iterations are almost equal, which implies that information exchange until 

the second iteration does not narrow the deviations. In the third and fourth iteration, the 

deviations sharply decrease. An interest rate and a wage index already satisfy the 

convergence condition. As the deviations decrease, all linked variables excluding an output 

price index converge in the seventh iteration. An output price index, which has the slowest 

convergence speed, converges in the tenth iteration. Solutions of the other scenarios also 

converge based on a similar process of convergence of the BAU scenario. 
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Table 4.6. Convergence process of the hybrid model (BAU) (Unit: %) 

Iteration 

number 

Energy 

input 

Non-

energy 

input 

Capital 

input 

Labor 

input 

Interest 

rate 

Wage 

index 

Domestic 

output 

Output 

price 

index 

1 3.22 2.96 3.11 2.54 2.91 5.60 2.96 20.55 

2 3.22 2.96 3.11 2.54 2.91 5.60 2.96 20.55 

3 1.45 1.38 1.15 1.13 0.06 0.16 1.37 9.91 

4 0.70 0.66 0.45 0.44 0.03 0.07 0.66 4.93 

5 0.34 0.32 0.19 0.19 0.01 0.02 0.31 2.29 

6 0.17 0.15 0.09 0.09 0.00 0.01 0.15 1.11 

7 0.08 0.07 0.04 0.04 0.00 0.00 0.07 0.53 

8 0.04 0.03 0.02 0.02 0.00 0.00 0.03 0.25 

9 0.03 0.02 0.01 0.01 0.00 0.00 0.02 0.12 

10 0.01 0.03 0.00 0.00 0.00 0.00 0.01 0.06 

 

National emissions are higher in the hybrid model (Figure 4.3). Since there is no 

production nests of the linked industries in the hybrid model, the energy efficiency of the 

linked industries does not improve based on the AEEI. Thus, the 2050 national emissions 

in the hybrid model are 33% higher than those in the CGE model. Assuming that technology 

efficiency in the bottom-up model improves, national emissions in the hybrid model can be 

lower. However, it is less meaningful to use an explicit technology database if bottom-up 
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technology efficiency is adjusted. 

 

 

Figure 4.3. National emissions in the CGEONLY_BAU and LINK_BAU scenarios (Unit: 

million ton CO2eq) 

 

Contrary to national emissions, GDP is lower in the hybrid model (Figure 4.4). The 

AEEI induces a domestic output increase because it contributes to a more efficient 

production of the energy composite. This change in domestic output leads to GDP growth. 

Since the AEEI of the linked industries in the hybrid model does not improve, they have a 

higher domestic output in the CGE model. Thus, GDP is larger in the CGE model. 
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Figure 4.4. GDP in the CGEONLY_BAU and LINK_BAU scenarios (Unit: billion KRW) 

 

 Impacts of new technology adoption 

The liked industries adopt new technology in future periods. New technology adoption 

induces efficiency improvement in energy service technology (Figure 4.5). The relative 

efficiency is derived based on the reference efficiency, which is the initial efficiency of the 

energy service technology in LINK_BAU. 

In LINK_BAU, the relative efficiency is almost unchanged because only the current 

technologies are employed.10 By contrast, in LINK_NEW, the relative efficiency improves 

in the year that the new technology is introduced. Moreover, it improves when the current 

technology expires and is replaced by the new technology. 

 

 

                                            
10 This study uses the steel industry as an example to explain technology-level results. 
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Figure 4.5. Relative efficiency of energy service technology in the steel industry 

(Unit: %) 
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The linked industries produce more energy services per energy consumption through 

new technology adoption. The efficiency improvement of oven technology is the most 

significant, while the boiler, motor, and own power generator technologies experience 

efficiency improvements of less than 10%. 

When the steel industry does not adopt new technology, the share of new technology is 

0% (Figure 4.6). By contrast, in LINK_NEW, the share increases and is kinked in several 

time periods. In 2016, the new oven technology is introduced, and the share increases from 

0% to 30%. Since the new oven technology has significantly higher efficiency than the 

current technology, the share steeply rises. In 2018, new boiler and dryer technologies are 

introduced, and the share steeply rises as well. That is, the technology mix sharply changes 

when industries adopt new technology. The degree of change depends on a level of 

efficiency improvement. 

 

 

Figure 4.6. Share of new technology in the steel industry (Unit: %) 
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Efficiency improvement due to new technology contributes to domestic output 

increases as well as emissions reduction. Since the marginal costs of the linked industries 

decrease due to efficiency improvement, the linked industries expand their production 

(Figure 4.7 and Figure 4.8). Additionally, due to decreases in the marginal costs, the prices 

of the domestic outputs of the linked industries also decrease (Figure 4.9 and Figure 4.10).11 

Since the unlinked sectors employ the products of the linked industries as intermediate 

inputs, they experience indirect effects. 

 

 

Figure 4.7. Domestic output change in the linked industries (compared to LINK_BAU) 

(Unit: %) 

 

                                            
11 oF
Oℎ�FP P�IF��
� ���M�� ME
�F <  ∑ ¶�∗'¶��∈·�¸¹º» �¸»¼½�¾�º½∑ ¶��∈·�¸¹º» �¸»¼½�¾�º½  
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Figure 4.8. Domestic output of the linked industries (Unit: billion KRW) 

 

 

Figure 4.9. Changes in weighted domestic output price of the linked industries (compared 

to LINK_BAU) (Unit: %) 
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Figure 4.10. Weighted domestic output price of the linked industries 

 

New technology reduces energy consumption in the linked industries. A decrease in the 

energy demand of the linked industries reduces total energy demand (Figure 4.11). Due to 

adoption of new oven technologies in 2016, the total energy demand for the linked fuels12 

decreases 1.3%p. As the linked industries introduce other new technologies, the total 

energy demand for the linked fuels decreases. Since energy prices rely on energy demand, 

the weighted energy price for the linked fuels also drops (Figure 4.12). The unlinked sectors 

experience indirect effects of new technology adoption in the linked industries through 

changes in energy prices. 

 

                                            
12 Coal, coal product, gasoline, kerosene, diesel, heavy oil, LPG, city gas, heat and electricity. 
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Figure 4.11. Changes in total energy demand for the linked fuels (compared to LINK_BAU) 

(Unit: %) 

 

 

Figure 4.12. Changes in weighted energy price of the linked fuels (compared to 

LINK_BAU) (Unit: %) 
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 Carbon tax simulation 

When the government imposes a carbon tax, the production sectors replace their energy 

inputs with capital input and reduces their production activities. The household also 

decreases its energy consumption. These changes in the production sectors and the 

household decreases energy consumption and emissions in the economy. 

Without new technology, the emissions of the linked industries in 2015 decrease by 4.3% 

(Figure 4.13). As the government imposes more carbon tax, its reduction effects are more 

significant. In 2050, the linked industries that use only current technologies reduces 21.2% 

of their BAU emissions, although the effects of additional carbon taxes gradually diminish. 

In LINK_NEW_CTAX, the emissions of the linked industries in 2015 are equivalent to 

the emissions of LINK_BAU_CTAX. However, the linked industries have more potential 

to mitigate their emissions after 2016 due to the introduction of new technology. In 2016, 

the linked industries that adopt new oven technologies achieve 50% more emissions 

reductions compared to LINK_BAU_CTAX. In 2050, the efficiency improvement in the 

linked industries induces a 1.2%p increase in the reduction rate. 

Although new technology helps to reduce more emissions, its impacts decline due to 

the rebound effect. Efficiency improvement reduces the production costs of the linked 

industries. Then, their outputs and emissions rebound. Rebounding emissions decrease the 

reduction effects of new technology. Chapter 5 will investigate the rebound effect in detail. 
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Figure 4.13. Changes in emissions of the linked industries (compared to LINK_BAU) 

(Unit: %) 

 

The adoption of new technology by the linked industries also affects national emissions 

(Figure 4.14). Since the linked industries generate about 30% of national emissions, new 

technology directly decreases national emissions. Moreover, the production sectors 

excluding the linked industries change their production activities because the prices of the 

products of the linked industries drop. Changes in the production activities of the unlinked 

sectors indirectly affect national emissions. 

With new technology and the carbon tax, 40.7% of the 2050 national emissions are 

mitigated, which implies that the linked industries have less potential for emissions 

reduction. Since the linked industries are integrated, the technology mix in the bottom-up 
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model determines their emissions. For example, the steel industry uses a large and fixed 

amount of bituminous coal as raw material. Although the price of bituminous coal rises due 

to the carbon tax, the steel industry cannot reduce its use of bituminous coal. That is, the 

linked industries may reduce emissions to a lesser extent because of constrains in the 

bottom-up model. 

 

 

Figure 4.14. Changes in national emissions (compared to LINK_BAU) (Unit: %) 

 

Although the government collects the carbon tax and transfers it to the household, GDP 

decreases because it restricts production activities (Figure 4.15). In LINK_BAU_CTAX, 

the GDP loss constantly decreases, and the carbon tax reduces 1.4% of GDP in 2050. 

New technology mitigates GDP loss because domestic outputs of the linked industries 
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increase (see Figure 4.7). Moreover, decreases in the prices of the products of the linked 

industries and energy prices due to new technology also help the production activities of 

the unlinked sectors. That is, the impacts of new technology adoption in Section 4.4.2 

reduce a carbon tax shock.  

In 2016, the GDP loss in LINK_NEW_CTAX is kinked because the efficiency of new 

oven technologies significantly improves, which implies that the positive effects of the new 

oven technologies on GDP mitigate GDP losses due to the carbon tax. In 2050, the new 

technologies in the linked industries contribute to a 0.3%p decrease in GDP loss. 

 

 

Figure 4.15. GDP loss due to the carbon tax (compared to LINK_BAU) (Unit: %) 
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The economy accepts the GDP loss to reduce emissions under a carbon tax policy. The 

unit abatement cost shows GDP loss to mitigate a unit of emissions (Figure 4.16). With 

new technology, the economy has lower costs compared to LINK_BAU_CTAX. The unit 

abatement cost is kinked in 2016 for the same reason that GDP loss is kinked in 2016. Due 

to efficiency improvement based on new technology adoption in the linked industries, the 

unit abatement cost of the economy decreases from 92 thousand KRW/ton CO2eq to 73 

thousand KRW/ton CO2eq. 

 

 

Figure 4.16. Unit abatement cost (compared to LINK_BAU) (Unit: KRW/ton CO2eq) 
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Chapter 5. Assessment of the rebound effect of 

efficiency improvement in the manufacturing 

sector based on the hybrid model 

 

5.1 Introduction 

 Research background 

The manufacturing sector reportedly emitted one-third of all 2017 global emissions if 

the calculation includes indirect emissions from heat and electricity (IEA, 2019). Since the 

manufacturing sector is a major emission source, managing its emissions are receiving 

increasing attention. 

Efficiency improvement is one of the most promising reduction options for the 

manufacturing sector (de Pee et al., 2018). After the Paris Agreement, the UK and Japan 

designed efficiency improvement plans for their manufacturing sectors (UK government, 

2017; The government of Japan, 2019). The Korean government also selected efficiency 

improvement plans to achieve about one-third of the manufacturing sector’s reduction 

target in 2050 (Ministry of Environment, 2020). 

Efficiency improvement mitigates emissions by reducing the energy consumed to 

provide energy services. However, efficiency improvement involves an unexpected 

increase in energy consumption. Efficiency improvement reduces producers’ energy 

demand, implying that their total costs decrease. Then, energy service prices drop, which 
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leads to an increase in energy service demand (Greening et al., 2000). The rebound effect 

indicates the unexpected rebound of energy consumption, which partially cancels out the 

effects of efficiency improvement (Berkhout et al., 2000). Assessing the rebound effect is 

important because it can be a potential obstacle to implementing efficiency improvement 

policies (Sorrell and Dimitropoulos, 2008). 

Although the bottom-up and CGE models are representative models to investigate 

environmental policies, they are insufficient to assess the rebound effects of technology 

efficiency improvement. The bottom-up model explains technology efficiency 

improvement, but it does not describe the rebound of energy demand. The CGE model 

explores the changes in energy demand and ripple effects of efficiency improvement, but 

reflects technology efficiency improvement at a more aggregated level. 

 

 Research purpose 

The hybrid model allows researchers to assess the rebound effect more precisely by 

adopting the advantages of the bottom-up and CGE models. It explicitly represents 

technological change in the manufacturing sector and explains the supply and demand 

changes in the economy. 

This study assesses the rebounding emissions due to technology efficiency 

improvement in the manufacturing sector. Efficiency improves through new technology 

adoption. Since new technology is more efficient, it reduces energy consumption and 

affects the total costs in the manufacturing sector. The manufacturing sector changes its 
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output, which in turn affects the rest of the economy. This study considers the rebound 

effects from the efficiency-improving sector and those outside of the efficiency-improving 

sector. Moreover, this study explores the factors that cause rebound effects and shows the 

impacts of the rebound effects on the reduction target. Finally, this study tests the impacts 

of the substitution elasticities in the CGE model on the rebound effects to identify the extent 

to which the results depend on the assumption of the CGE model. 

  

5.2 Literature review 

 Classification of the rebound effect 

As Turner (2013) mentioned an insufficient consensus regarding the rebound effect, 

previous studies have employed their own definition and classification of the rebound effect. 

The classification of Greening et al. (2000) has been adopted by many previous studies (see 

Sorrell and Dimitropoulos, 2008; Barker et al., 2009; Turner, 2013; Broberg et al., 2015; 

Lu et al., 2017) and included four rebound effects. A direct effect means that falling energy 

service prices induce more energy service demand. A secondary effect indicates that the 

price changes help to save expenditure for energy services and energy service demand 

changes based on the savings. An economy-wide effect measures the rebound effect 

because of the adjustment of the equilibrium in the economy. A transformational effect is 

the rebound effect from varying characteristics of consumers and institutions. 

Böhringer and Rivers (2018) classified the rebound effect into partial and general 

equilibrium effects. Direct and indirect rebound effects are sorted as the partial equilibrium 
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effect. An economy-wide rebound effect is classified as the general equilibrium effect. They 

reported that two-thirds of the rebound effects of efficiency improvement in the 

manufacturing sector were the partial equilibrium effect, whereas one-third of the rebound 

effects was the general equilibrium effect. 

 

 Approaches to assess the rebound effect 

Jin and Kim (2019) explained approaches to assess the rebound effects. The CGE model 

reflects efficiency improvement by reducing energy consumption or prices and has an 

advantage in evaluating the general equilibrium effect. Panel and time-series analysis is 

also used to assess the rebound effects. In these analysis, energy prices are used as 

independent variables, which measure efficiency improvement that is difficult to observe. 

A macro-economic growth approach evaluates the rebound effects by calculating potential 

and actual energy savings. The rebound effects are represented as the differences between 

potential and actual energy savings. In this approach, efficiency is measured through 

changes in energy intensity. 

Although these approaches are general in the literature, they have limitations in 

discussing technology efficiency improvement and exploring energy consumption at a 

technology level. If the approach cannot describe technologies in the manufacturing sector, 

it has difficulty in precisely assessing the rebound effects of technology efficiency 

improvement. 
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 Previous studies on the rebound effect 

There is no specific range for the rebound effects in the manufacturing sector (Table 

5.1). Barker et al. (2007) employed an econometric model to investigate the rebound effects 

in the UK industries. They divided the UK industries into the energy-intensive industries 

and the other industry. They showed that the rebound effects were larger in the energy-

intensive industries (27.0%) than the other industry (14.0%) in 2010. Lin and Li (2014) and 

Lin and Tian (2016) employed the dynamic ordinary least squares approach to estimate the 

rebound effects in Chinese heavy and light industries, respectively. According to their 

estimation, the rebound effects in the heavy industry (74.3%) were two times larger than 

the light industry (37.7%). Li et al. (2016) explored the rebound effects of the Chinese 

industrial sectors using the output distance function. They considered 36 industrial sectors 

and estimated the rebound effects as 88.4%. 

There are several studies that tried to employ advantages of the bottom-up and top-

down models. Barker et al. (2007) explored the rebound effects in the UK economy by 

partially combining both models. However, their efforts are insufficient to fully employ 

advantages of both models because their model less specifically describes bottom-up 

aspects. Howells et al. (2010) adopted the approach to deliver economic feedbacks to the 

bottom-up model to explore the Korean electricity sector. Their model employed input-

output multipliers for the integration of economic feedbacks in the bottom-up model. 

Although Lehr et al. (2011) explored the rebound effects in Germany based on macro-

econometric model as well as the bottom-up model, two models were not fully integrated. 
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Giraudet et al. (2012) investigated the rebound effects from French households by 

recursively solving two models. However, their model considered limited feedbacks of 

household and energy. Andersen et al. (2019b) developed the Danish hybrid model based 

on the soft-link approach and investigated impacts of energy efficiency policies. They 

considered a subsidy for investments in energy savings and a decrease in the barrier for the 

investments as the energy efficiency policies. According to their results, the rebound effect 

of the policies was 12.5%. 

 

Table 5.1. Previous studies on the rebound effect in the manufacturing sector 

Author Country and sector Period Rebound effect 

Bentzen (2004) US manufacturing 1949-1999 24.0% 

Barker et al. 

(2007) 
UK industries 2000-2010 

15.0–30.0% (2005) 

14.0–27.0% (2010) 

Lin and Li 

(2014) 
Chinese heavy industry 1980-2011 74.3% 

Lin and Tian 

(2016) 
Chinese light industry 1980-2012 37.7% 

Li et al. (2016) Chinese industrial sectors 1998-2011 88.4% 

Lin and Zhao 

(2016) 
Chinese textile industry 1990-2012 20.9% 
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5.3 Rebound effect 

 Scenario 

This study examines the scenarios in Chapter 4 to assess the rebound effects of 

technology efficiency improvement (Table 5.2). In the BAU scenario, the linked industries 

employs only the current technology and do not adopt new technology. In the LINK_NEW 

scenario, the linked industries introduce new technology based on its introduction year in 

the KETEP database. In the LINK_NEWNR scenario, the rebound effects are not 

considered and emissions are calculated based on the LINK_BAU and LINK_NEW 

scenarios. 

 

Table 5.2. Scenario description 

Scenario Description 

LINK_BAU 
Hybrid model 

Only current technology 

LINK_NEW 

Hybrid model 

New technology adoption (Linked industries) 

With rebound effects 

LINK_NEWNR 

Hybrid model 

New technology adoption (Linked industries) 

Without rebound effects 
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 Calculation of the rebound effect 

This study considers two rebound effects based on their sources. A direct rebound effect 

is the rebounding emissions of the linked industries (efficiency-improving sectors) due to 

linked industries’ efficiency improvement. An indirect rebound effect is the rebounding 

emissions of the unlinked sectors and the household energy consumption (the rest of the 

economy) due to linked industries’ efficiency improvement. 

Emission intensity is defined as emissions to produce a unit of output. When the linked 

industry m  adopts new technology, emissions and output of the linked industry m  also 

change. Eq. (5.1) shows emission intensity of the linked industry m  in LINK_NEW. 

Emission intensity decreases if emissions are reduced or output increases. 

 

 ��s²�¿ < Fs²�¿/�s²�¿ Eq. (5.1) 

 

��s²�¿: Emission intensity of the linked industry m in LINK_NEW 

Fs²�¿: Emissions of the linked industry m in LINK_NEW 

�s²�¿: Output of the linked industry m in LINK_NEW 

 

If there are no rebound effects, which means that output of the linked industry m does 

not rebound, emissions of the linked industry m is calculated by Eq. (5.2). Since output 

does not change, it maintains output in LINK_BAU. That is, emissions of the linked 

industry m drop based on a decrease in emission intensity. 
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 Fs²À < �sÁ�Â ∗ ��s²�¿ Eq. (5.2) 

 

Fs²À: Emissions of the linked industry m in LINK_NEWNR (without rebound effects) 

�sÁ�Â: Output of the linked industry m in LINK_BAU  

 

If there are rebound effects, which means that output of the linked industry m rebounds, 

a direct rebound effect is calculated by Eq. (5.3). The linked industry produces more output 

when the marginal cost drops due to new technology. Although new technology reduces 

emissions of the linked industry, its reduction effects are offset because of output expansion. 

A direct rebound ratio is calculated based on Eq. (5.4) and means the share of rebounding 

emissions in potential reduction. 

 

 

�
EF�� EF����P FHHF�� 

< ����s²�¿ B �sÁ�Â� ∗ ��s²�¿;s < ��∆�s ∗ ��s²�¿;s  
Eq. (5.3) 

 �
EF�� EF����P E��
� < Fs²�¿ B Fs²À
FsÁ�Â B Fs²À  Eq. (5.4) 

 

Eq. (5.5) calculates the indirect rebound effect. Changes in the linked industries also 

affects emission of the unlinked sectors and the household energy consumption. The 

indirect rebound effects are emission differences between LINK_BAU and LINK_NEW. 

The first and second terms indicates the indirect rebound effects from the unlinked sector 
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and the household energy consumption, respectively. 

 

 ��P
EF�� EF����P FHHF�� < �3Fs²�¿ B FsÁ�Â:s 1 3F�²�¿ B F�Á�Â: Eq. (5.5) 

 

Fs²�¿: Emissions of the unlinked sector m in LINK_NEW 

FsÁ�Â: Emissions of the unlinked sector m in LINK_BAU 

F�²�¿: Emissions of the household energy consumption in LINK_NEW F�Á�Â: Emissions of the household energy consumption in LINK_BAU 

 

5.4 Results 

 Impacts of efficiency improvement 

In Section 4.4.2, this study investigated the impacts of new technology adoption. When 

the linked industries introduces new technology (Figure 4.6), their efficiency improves 

(Figure 4.5). Efficiency improvement causes the marginal costs and domestic output prices 

in the linked industries to drop (Figure 4.9). Due to decreasing prices, the linked industries 

expand their outputs (Figure 4.7). Moreover, new technology reduces energy demand 

(Figure 4.11) and energy prices (Figure 4.12). 

Since the domestic outputs of the linked industries rebound, their emissions also 

rebound. Moreover, the domestic outputs and emissions of the unlinked sectors rebound 

because their costs drop based on the lower prices of intermediate inputs. Furthermore, 

decreasing energy prices cause the household to use more energy. 
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 Direct rebound effect 

In LINK_BAU, the 2050 emissions of the linked industries are 470.4 million ton CO2eq 

(Figure 5.1). In LINK_NEW, new technology adoption reduces 4.2% (19.8 million ton 

CO2eq) of the emissions from the linked industries. Although the outputs of the linked 

industries rebound, emissions decreases because the energy efficiency improvement 

reduces energy consumption. 

 

 

Figure 5.1. Emissions of the linked industries in 2050 (Unit: million ton CO2eq) 

 

Emission intensity and output rebound are the two main factors that determine the 

extent of mitigation. More efficient new technology decreases emission intensity and 

contributes positively to mitigation, while the output rebound contributes negatively to 
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mitigation. If there is no direct rebound effect (LINK_NEWNR), which implies that only 

the positive impact is considered, then the linked industries reduce 5.9% (27.6 million ton 

CO2eq) of their emissions. However, because of the direct rebound effects, 7.8 million ton 

CO2eq rebound, and there is a reduction of only 19.8 million ton CO2eq. That is, about 28% 

of the expected reduction is offset by output rebound. 

Direct rebound effects tend to be large in emission-intensive industries (Table 5.3). The 

steel and chemistry industries, which occupy 77% of the emissions of the linked industries 

in LINK_BAU, generate 88% of the total direct rebound effect. Direct rebound effects in 

the other linked industries are not large because their emissions are low. 

As Eq. (5.3) indicates, the direct rebound effects depend on the output rebound 

(�s²�¿ B �sÁ�Â ) and new emission intensity (��s²�¿ ). The direct rebound effect in the 

chemistry industry is the largest because it experiences the largest output rebound (Table 

5.4). Although new emission intensity in the chemistry industry is around the average new 

emission intensity of the linked industries (253 ton CO2eq/billion KRW), its output 

rebound is almost three times larger than that of the steel industry. The direct rebound effect 

in the steel industry is also large because it has the largest new emission intensity due to its 

use of bituminous coal as raw material. 

The cement industry has the second largest new emission intensity, but its direct 

rebound effect is small because its output rebound is much smaller than that of the steel 

and chemistry industries. That is, both the output rebound and new emission intensity are 

significant in determining the direct rebound effect. 
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Table 5.3. Direct rebound effects in 2050 (Unit: million ton CO2eq) 

Industry 

Emissions 

Direct 

rebound 

effect 

Direct 

rebound 

effect 

ratio 

LINK_BAU  LINK_NEW LINK_NEWNR 

Steel 152.81 150.44 146.99 3.44 59% 

Chemistry 210.16 206.84 203.37 3.47 51% 

Cement 53.26 45.09 44.57 0.52 6% 

Machine 10.64 9.51 9.46 0.05 4% 

Semiconductor 

& display 
11.96 11.11 11.03 0.08 9% 

Electronics 5.13 4.80 4.79 0.01 4% 

Automobile 7.84 7.08 7.05 0.03 3% 

Nonferrous 

metals 
9.21 7.46 7.36 0.10 5% 

Glass 2.77 2.36 2.27 0.10 19% 

Textile 6.69 5.99 5.94 0.05 7% 

Total 470.47 450.68 442.84 7.84 28% 
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Table 5.4. Changes in the linked industries in 2050 (Unit: billion KRW, ton CO2eq/billion 

KRW) 

Industry �sÁ�Â �s²�¿ ∆�s ��sÁ�Â ��s²�¿ 

Steel 116,568 119,300 2,732 (2.3%) 1,311 1,261 

Chemistry 603,820 614,115 10,295 (1.7%) 348 337 

Cement 38,078 38,522 444 (1.2%) 1,399 1,170 

Machine 260,941 262,190 1,250 (0.5%) 41 36 

Semiconductor & 

display 
181,830 183,156 1,326 (0.7%) 66 61 

Electronics 137,999 138,390 391 (0.3%) 37 35 

Automobile 252,973 253,948 975 (0.4%) 31 28 

Nonferrous metals 54,895 55,623 728 (1.3%) 168 134 

Glass 8,506 8,865 359 (4.2%) 325 267 

Textile 109,791 110,723 932 (0.8%) 61 54 

Total 1,765,401 1,784,833 19,432 (1.1%) 266 253 

 

Output rebound largely depends on the energy input share because new technology 

affects the energy costs of the industry. Since the marginal cost of the energy-intensive 

industry fluctuates more after new technology adoption, the output price reduction in such 
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industries is more significant (Figure 5.2).13 Energy-intensive industries such as the cement 

and glass industries experience large output price changes. 

 

 

Figure 5.2. Energy input share and output price change (Unit: %) 

 

When the output price drops, output rebounds due to the higher demand for this output. 

Output rebound tends to be proportional to output price change (Figure 5.3). For example, 

the glass industry, the most energy-intensive industry, experiences the largest output price 

change, and its output rebound is also the largest. 

 

                                            
13 The energy input share considers only linked fuels. 
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Figure 5.3. Output price change and output rebound (Unit: %) 

 

The black line in Figure 5.4 shows the emissions differences between LINK_BAU and 

LINK_NEW. Since new technology reduces the steel industry’s emissions, several points 

of the line are kinked in the introduction years. The blue line in Figure 5.4 shows the 

emissions differences between LINK_BAU and LINK_NEWNR. If there is no rebound 

effect, then the steel industry can reduce more of its emissions. Rebounding emissions are 

measured as the differences between the two lines. 
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Figure 5.4. Emission changes in the steel industry (Unit: million ton CO2eq) 

 

 Indirect rebound effect 

The indirect rebound effect occurs in the unlinked sectors and household energy 

consumption (Figure 5.5). Since new technology adoption in the linked industries leads to 

lower prices in the linked industries and energy products, the unlinked sectors and 

household can save their expenditures and increase their outputs or energy consumption 

(Figure 5.6). 

The service sector, which includes the waste, construction, commercial, insurance, 

domestic and public sectors, occupies 33% of the indirect rebound effects because of its 

large output rebound. After new technology adoption, more than half of the rebounding 

emissions in the service sector arise from the commercial sector (0.4 million ton CO2eq), 
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which accounts for about 70% of service sector output. 

The indirect rebound effects in the manufacturing sector (excluding the linked 

industries) are comparable to those in the service sector, although its output does not change 

much. Output rebound in the energy sector is also small, but its rebounding emissions are 

considerable because its new emission intensity (185 ton CO2eq/billion KRW) is twice the 

average new emission intensity of the unlinked sectors (88 ton CO2eq/billion KRW). The 

transport, agriculture, and other sectors do not contribute much to the indirect rebound 

effects, although the emissions of these sectors rebound. 

 

 

Figure 5.5. Indirect rebound effects in 2050 (Unit: million ton CO2eq) 
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Figure 5.6. Changes in output and household energy consumption in 2050 (Unit: billion 

KRW) 

 

 Total rebound effect 

The total rebound effect, which is a sum of direct and indirect rebound effects, is 9.9 

million ton CO2eq (Figure 5.7). About 80% of the total rebound effect occurs from the 

linked industries. As outputs of the linked industries expand, their emissions are also 

rebounded. About 20% of the total rebound effect arises from the unlinked sectors and the 

household energy consumption. As changes in the linked industries induce economy-wide 

changes, the unlinked sectors and the household find new equilibrium and generate 

additional emissions. 

Without the rebound effects, new technology adoption reduces 27.6 million ton CO2eq 
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in the linked industries (see Figure 5.1). However, with the rebound effects, 9.9 million ton 

CO2eq is rebounded, and the net reduction effects are 17.7 million ton CO2eq. Thus, the 

reduction effects of new technology adoption is overestimated if the rebound effects are 

not considered. 

 

 

Figure 5.7. Total rebound effect in 2050 (Unit: million ton CO2eq) 

 

 Sensitivity test 

Substitution elasticities in the production nest of the CGE model can influence the 

rebound effects. When the linked industries introduce new technology, energy prices drop 

because they demand less energy. After this price reduction, the unlinked sectors tend to 

use more energy inputs. Since the substitution between inputs depends on substitution 

elasticities, this study tests the effects of substitution elasticities on the rebound effects. 
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Although previous sections assume substitution elasticities of 0.5, this section assumes 

substitution elasticities of 30% lower (0.35) and higher (0.65) than this original benchmark. 

As the substitution elasticities increase, the economy tends to expand its domestic 

output and generate more emissions. Since higher substitution elasticities enable the 

production sectors to more easily replace inputs, their outputs increase. National emissions 

in 2050 also rise with outputs (Figure 5.8). 

As Figure 5.9 shows, there is an increasing trend in the direct and indirect rebound 

effects with the substitution elasticities, but the sizes of two effects are not reversed. That 

is, although the sizes of the rebound effects can differ based on the substitution elasticities, 

the implications regarding the rebound effects from the previous sections do not change. 

 

 

Figure 5.8. Effects of the substitution elasticities on the 2050 national emissions (Unit: 

million ton CO2eq) 
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Figure 5.9. Effects of the substitution elasticities on the rebound effects (Unit: million ton 

CO2eq) 
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Chapter 6. Assessment of environmental and 

economic impacts of endogenous technology 

learning in the manufacturing sector based on the 

hybrid model 

 

6.1 Introduction 

 Research background 

Technological change is a significant issue in designing sustainable environmental 

policies (Popp, 2005). The introduction of new technology and changes in the 

characteristics of technology affect the amount of both combustion and process emissions. 

Additionally, technological change contributes to reducing abatement costs (see 

Dowlatabadi, 1998; Carlson et al., 2000; Jaccard et al., 2004). Thus, it is important to 

appropriately reflect technological change in environmental analysis. 

In reflecting technological change, it is also significant to adopt an appropriate method 

because the method largely affects the results of an environmental analysis (Gillingham et 

al., 2008). The bottom-up and CGE models are representative models that incorporate 

technological change (Löschel, 2002). Since the bottom-up model is technology-based, it 

can handle technological change at the technology level. It easily describes the changes in 

technology characteristics and the emergence of new technology. That is, it explains both 
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gradual and radical technological changes that Grübler et al. (1999) mentioned.  

However, the bottom-up model cannot examine ripple effects of technological change 

on the economy. When there is technological change, the bottom-up model finds a new 

technology mix, which leads to changes in output and energy demand. These changes affect 

the rest of the economy through price changes, but the bottom-up model assures only partial 

equilibrium. Because of this disadvantage, the bottom-up model has limitations in 

identifying the impacts of technological change on national emissions and abatement costs. 

The CGE model can clarify the macro-economic impacts of technological change 

because it describes the relationship between the sectors in the economy. However, the 

CGE model handles technological change at a more aggregated level. As mentioned in 

Chapter 4, it has limitations in representing radical technological change such as the 

adoption of new technology using new fuel. Moreover, although technological change 

affects energy substitution, the CGE model explains this substitution using previously 

estimated substitution elasticities. 

 

 Research purpose 

The hybrid model helps researchers use the advantages of the bottom-up and CGE 

models in exploring the impacts of technological change. The bottom-up model helps to 

describe technological change at the technology level. The CGE model receives 

information about technological change from the bottom-up model and identifies the ripple 

effects of technological change. 
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This study incorporates technological change through endogenous learning in the 

hybrid model. With learning, technology performance improves based on the accumulation 

of experience. This study assumes that technology efficiency improves based on the 

technology capacity of the bottom-up model. Learning is incorporated using the iterative 

approach (Yang et al., 2016), which updates the technology characteristics based on the 

solutions of the bottom-up model. 

After reflecting endogenous learning, this study investigates the changes in national 

emissions and abatement costs due to learning. Additionally, this study identifies the 

impacts of speed of learning on national emissions and abatement costs. 

 

6.2 Literature review 

 Technological change in the bottom-up model 

New technology has significant impacts on emissions and abatement costs because it 

usually reduces energy consumption to provide an energy service. Since new technology 

requires more investment, operation and management costs, it tends to be less attractive 

than expected in its introduction year. New technology can be more competitive in the 

future if its costs are reduced based on an increase of its adoption rate (see Söderholm and 

Sundqvist, 2007). 

The bottom-up model has analyzed cost reduction of new technology using learning, 

which means that accumulated knowledge from technology use experience induces the cost 

reduction (Viguier et al., 2006). Although technology use experience is diversely measured 
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based on characteristics of learning (see Samadi, 2018), the bottom-up model usually 

considers cumulative capacity of technology to measure technology use experience.  

Although the total cost of the bottom-up model includes investment, operation, 

management and energy costs, previous studies generally assumed that the investment cost 

was affected by learning (Messner, 1997; Kypreos and Bahn, 2003; Kim et al., 2012; Huang 

et al., 2017). If the share of the investment cost in the total cost is high, reduced investment 

cost largely affects new technology adoption, emissions and abatement costs. For example, 

in cases of photovoltaic and wind power technologies, most of their total costs are 

investment costs, whereas energy costs are zero. Learning promotes the adoption of both 

technologies because their total costs are largely affected by learning. 

By contrast, technology used in the manufacturing sector consumes energy to produce 

an energy service. If the share of the energy costs in the total cost is high, an adoption rate 

of new technology does not change much through reduction of the investment cost because 

the energy costs are more dominant in determining technology mix. 

Several previous studies stated that learning also affected efficiency of technology 

(Barreto and Klaassen, 2004; Loulou et al., 2004; Junginger et al., 2008). As technology 

capacity is accumulated, energy consumption can be reduced through efficiency 

improvement. Previous studies generally described energy consumption reduction, instead 

of efficiency improvement, depending on cumulative capacity (Ramírez and Worrell, 2006; 

Weiss et al., 2008; Weiss et al., 2010). 

A learning curve shows the relationship between technology use experience and a 
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performance indicator of learning. This relationship is differently formulated based on 

characteristics of learning (see Grosse et al., 2015). Technology performance was usually 

assumed to be exponentially proportional to cumulative capacity or production (Ibenholt, 

2002; Kypreos and Bahn, 2003; Wand and Leuthold, 2011; Lin and He, 2016). Some 

previous studies assumed that the performance improved based on cumulative capacity 

over initially installed capacity (Kim et al., 2012; Moser et al., 2016; Huang et al., 2017). 

 

 Technological change in the CGE model 

The CGE model generally adopts an AEEI parameter to reflect technological change. 

The AEEI is exogenously determined and reduces energy consumption. The AEEI is either 

estimated or assumed to remain over time (Löschel, 2002). However, the AEEI overlooks 

the factors that induce technological change (Gillingham et al., 2008) and neglects the 

processes and costs to improve efficiency. Moreover, the AEEI is not affected by changes 

in the economy because it is a parameter (see Jaccard et al., 2004). 

Backstop technology is also employed to model exogenous technological change in the 

CGE model. Backstop technology is generally adopted after depletion of current 

technology (Nordhaus et al., 1973). Although backstop technology is less competitive in 

its initial stage, it provides energy infinitely after cost reduction (Löschel, 2002). However, 

since the cost reduction of backstop technology is usually assumed to depend on time 

(Gillingham et al., 2008), it also has limitations in explaining complicated technological 

change. 
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Several CGE models adopts the endogenous methods to reflect technological change 

instead of exogenous methods. Wang et al. (2009) considered knowledge capital input in 

the CGE model and explained that accumulated knowledge capital based on R&D induced 

technological change. Jin (2012) also adopted knowledge and R&D concepts to represent 

technological change in the CGE model endogenously. Kemfert and Troung (2007) 

assumed that R&D induced efficiency improvement and explored the environmental and 

economic impacts of endogenous technological change. Although the CGE model reflects 

technological change endogenously, it is difficult to explain technological change at the 

technology level. 

 

 Technological change in the hybrid model 

Martinsen (2011) investigated the impacts of learning on the electricity sector using a 

hybrid model that integrates national bottom-up and macro-economic models and a global 

bottom-up model. The model contributed to overcoming the limitations of the bottom-up 

and macro-economic models by reflecting technological change, and was used to explore 

the environmental impacts of technological change. 

Learning was assumed to diffuse from the global bottom-up model to the national 

bottom-up model. Although the national bottom-up model exchanges information with the 

macro-economic model, its solutions do not affect learning. That is, learning occurred 

regardless of the domestic technology mix and energy consumption.  
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6.3 Model 

 Outline of the hybrid model with learning 

As Figure 6.1 shows, the hybrid model is modified to include learning. Although the 

overall structure is maintained, the bottom-up model now includes convergence processes. 

 

 

Figure 6.1. Outline of the hybrid model with learning 

 

The CGE model obtains its solutions and delivers the information required by the 

bottom-up model. Each bottom-up model solves its cost minimization problem using the 
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CGE information and updates the efficiencies of new technologies based on the cumulative 

capacities of the technologies. The bottom-up model again solves its cost minimization 

problem using the updated efficiencies. The bottom-up model repeats this process until its 

solutions converge at the level of 0.1%. After convergence, the bottom-up model delivers 

the information that the CGE model requires. The hybrid model repeats the information 

exchanges until all linked variables converge. 

 

 Learning in the bottom-up model 

A learning domain is various depending on technology characteristics. Learning 

basically occurs in individual technology in the industry. Moreover, learning occasionally 

occurs in common technologies. For example, boiler technologies can share technology use 

experience because these technologies belong to the same common technology. 

Additionally, effects of learning can be diffused between industries. For example, since 

industries in a service-oriented bottom-up model use the same technologies, the 

technologies in different industries can share technology use experience. This study 

considers learning of individual technology and excludes spillovers between common 

technologies and industries. 

As Eq. (6.1) indicates, this study assumes that efficiency of only new technology 

improves based on its cumulative capacity.14 Efficiency increases as a power function of 

cumulative capacity over initially installed capacity. If initially installed capacity of new 

                                            
14 More precisely, learning reduces new technology’s energy consumption to produce a unit of energy 

service. 
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technology is small, its efficiency improvement may be excessively large. This study 

avoids this problem because new technology in the KETEP database is sufficiently 

competitive in its introduction year. A rate of efficiency improvement depends on a learning 

parameter Ä, which is determined based on Eq. (6.2) and Eq. (6.3). 

Although there is no learning, current technology is replaced by new technology. 

Leaning intensifies this technology substitution because new technology is more 

competitive due to learning. 

 

 �$$����,� < �$$����,�̅ ∗ �""����,�""����,�̅�
Æ
 Eq. (6.1) 

 

 G# < 1 B D# Eq. (6.2) 

 

 D# < 2UÆ Eq. (6.3) 

 

�$$����,�̅: Efficiency of technology  �"C in its introduction year 

""����,�̅: Capacity of technology  �"C in its introduction year 

""����,�: Cumulative capacity of technology  �"C at time period � 

Ä: Learning parameter 

G#: Learning rate 

D#: Progress rate 
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 Iterative approach 

The hybrid model of this study is complicated because the objective function of the 

bottom-up model is quadratic and there is a convergence process. Thus, this study adopts 

the iterative approach, which helps to avoid computation burden in endogenizing learning 

(Karali et al., 2017).15 

There are two approaches to iteratively reflect learning in the model. Karali et al. (2017) 

recursively solved their cost minimization problem and updated technology’s unit cost in 

the following period using cumulative activity in the current period. The unit costs in the 

future periods were iteratively updated based on this process until the end of the period. 

Yang et al. (2016) modeled learning in a forward-looking optimization problem. They 

obtained cumulative capacities in all periods by solving the problem and updated the unit 

investment costs in all periods using the cumulative capacities. The investment costs were 

iteratively updated until all investment costs were in a convergence level. This study adopts 

Yang et al. (2016) and updates efficiency of new technology until solutions of the bottom-

up model are in a convergence level. 

 

 Learning rate 

To estimate the learning rate, capacity and efficiency data are required. However, it is 

difficult to obtain these data for the manufacturing sector and find already estimated 

learning rate in the literature. Thus, this study considers the learning rate as a scenario 

                                            
15 See Kim et al. (2020) for more explanation of the iterative approach. 
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parameter. 

According to Kahouli-Brahmi (2008), an average learning rate of conventional 

technology is 4%, which is lower than new renewable technology. This study determines 

5% as a mid-level learning rate. To identify the role of the learning rate, this study 

determines 1% and 10% as low-level and high-level learning rates, respectively. 

 

 Scenario 

Table 6.1 summarizes the scenarios in this chapter. In LINK_NEWLR5, the linked 

industries adopt new technologies whose efficiencies improve at a rate of 5%. This study 

considers 1% (LINK_NEWLR1) and 10% (LINK_NEWLR10) learning rates for the 

sensitivity test.  

Moreover, this study imposes the carbon tax in Chapter 3 to investigate the impacts of 

learning on emissions and abatement costs. LINK_BAU_ADDCTAX and 

LINK_NEW_ADDCTAX determine the carbon tax levels to achieve the 2050 national 

emissions with learning when there is no learning. Additionally, LINK_NEWLR5NR is the 

scenario to calculate the rebound effects with learning. 
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Table 6.1. Scenario description 

Scenario Description 

LINK_NEWLR1 

LINK_NEWLR5 

LINK_NEWLR10 

Hybrid model 

New technology adoption with learning (1, 5, 10%) 

(Linked industries) 

No carbon tax 

LINK_NEWLR1_CTAX 

LINK_NEWLR5_CTAX 

LINK_NEWLR10_CTAX 

Hybrid model 

New technology adoption with learning (1, 5, 10%) 

(Linked industries) 

Carbon tax: 30–360 thousand KRW/ton CO2eq (2015–2050) 

LINK_BAU_ADDCTAX  

Hybrid model 

Only current technology 

Carbon tax: 30–386 thousand KRW/ton CO2eq (2015–2050) 

LINK_NEW_ADDCTAX 

Hybrid model 

New technology adoption (Linked industries) 

Carbon tax: 30–376 thousand KRW/ton CO2eq (2015–2050) 

LINK_NEWLR5NR 

Hybrid model 

New technology adoption with learning (1, 5, 10%) 

(Linked industries) 

No carbon tax 

Without rebound effects 
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6.4 Results 

 Impacts of technological change through learning 

The efficiency of new technology is constant without learning. By contrast, with 

learning, efficiency improves based on the cumulative capacity of the technology (Figure 

6.2). The reference of relative efficiency is the initial efficiency of LINK_BAU. 

Although LINK_NEW introduces new technology, it does not consider learning. The 

relative efficiencies of all energy service technologies (excluding motor technology) are 

almost constant after their introduction. The relative efficiency of the motor technology 

improves because three types of new motors are adopted in different years. 

In LINK_NEWLR5, there is an increasing trend in the relative efficiency because the 

cumulative capacity of the new technology continuously increases. Moreover, a stepwise 

increase in the relative efficiency is observed. Since the lifetime of already installed 

capacity is finite, a large amount of capacity is installed periodically, and the relative 

efficiency also improves cyclically. For example, the relative efficiency of boiler 

technology rises steeply every seven years.  
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Figure 6.2. Relative efficiency of energy service technology in the steel industry 

(Unit: %) 
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Learning also affects the share of new technology (Figure 6.3). For the first ten years, 

since the cumulative capacity of new technology is insufficient to induce significant 

efficiency improvement, the share of new technology is almost unchanged. However, 

learning causes the gap between LINK_NEW and LINK_NEWLR5 to grow after 2026. 

 

 

Figure 6.3. Share of new technology in the steel industry (Unit: %) 

 

The linked industries expand their production with learning because the additional 

efficiency improvement allows an additional reduction in the marginal costs (Figure 6.4). 

Furthermore, since domestic output expands, the weighted domestic output price in the 

linked industries drops further in LINK_NEWLR5 (Figure 6.5). Since the unlinked sectors 

purchase the products of the linked industries, they also save costs and tend to expand their 

production. Changes in the linked industries due to learning affect GDP loss due to the 

carbon tax through two sources. First, the increase in the domestic outputs of the linked 
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industries mitigates the GDP loss. Second, the increase in the domestic outputs of the 

unlinked sectors mitigates the GDP loss. 

 

 

Figure 6.4. Domestic output change in the linked industries (compared to LINK_BAU) 

(Unit: %) 

 

 

Figure 6.5. Changes in weighted domestic output price of the linked industries (compared 

to LINK_BAU) (Unit: %) 
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Efficiency improvement enables the linked industries to produce their outputs while 

consuming less energy. With learning, both the energy demand of the linked industries and 

the total energy demand decreases (Figure 6.6). Energy prices also drop because of a 

decrease in total energy demand (Figure 6.7). 

Since lower energy prices decrease costs in the unlinked sectors and helps to expand 

their production, these changes also mitigate GDP loss due to the carbon tax. That is, 

although learning occurs in the linked industries, it affects the rest of the economy indirectly. 

These macro-economic effects of learning can be observed using the hybrid model. 

 

 

Figure 6.6. Changes in total energy demand for the linked fuels (compared to LINK_BAU) 

(Unit: %) 
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Figure 6.7. Changes in weighted energy price of the linked fuels (compared to LINK_BAU) 

(Unit: %) 

 

 Carbon tax simulation 

The emissions of the linked industries in LINK_NEWLR5_CTAX until 2026 are 

similar to those in LINK_NEW_CTAX (Figure 6.8). As learning effects are enhanced after 

2026, the reduction rate in the linked industries gradually increases. In 2050, the additional 

efficiency improvement reduces 1.2%p of emissions in the linked industries compared to 

LINK_NEW_CTAX. 

Moreover, learning mitigates the rebound effects of new technology adoption. In 

LINK_NEW_CTAX, the slope of the reduction rate considerably decreases due to the 

rebound effects. By contrast, with learning, the decreasing trend in the slope is less 



171 
 

remarkable. 

Learning in the linked industries also affects national emissions, although its effects are 

not large (Figure 6.9). Since the emissions of the linked industries are mitigated, national 

emissions are also mitigated. Additionally, the macro-economic effects of learning affect 

the production and emissions of the linked sectors. 

 

 

Figure 6.8. Changes in emissions of the linked industries (Unit: %) 
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Figure 6.9. Changes in national emissions (Unit: %) 

 

Since the carbon tax raises energy prices, it increases the production costs in the 

production sectors and interrupts their production. These carbon tax effects reduce the 

domestic outputs of the production sectors and induces a further GDP loss. 

Without learning (LINK_NEW_CTAX), the economy experiences a 1.14% GDP loss 

compared to LINK_BAU (Figure 6.10). With learning, (LINK_NEWLR5_CTAX), the 

estimated GDP loss for the economy is 1.04% compared to LINK_BAU. That is, learning 

helps to reduce negative economic effects of the carbon tax. Since the hybrid model 

observes both macro-economic effects and technology-level changes, it can explain the 

output changes in the production sectors, including the unlinked sectors. Thus, the hybrid 

model helps to more precisely assess economic impacts of learning. 
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Figure 6.10. GDP loss due to the carbon tax (Unit: %) 

 

Figure 6.11 shows the unit abatement cost to mitigate one unit of emissions. As the 

government imposes more carbon tax, the unit abatement cost also rises in the three 

scenarios. Moreover, the differences between LINK_NEW_CTAX and 

LINK_NEWLR5_CTAX gradually increase because the effects of learning on efficiency 

improvement increase over time. In 2050, the unit abatement costs without and with 

learning are 73 thousand KRW/ton CO2eq and 66 thousand KRW/ton CO2eq, respectively. 

That is, the unit abatement cost with learning is 10% lower (7 thousand KRW/ton CO2eq). 

The economy pays about 3,000 billion KRW more to reduce 424 million ton CO2eq in 

2050 if there is no learning. 
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Figure 6.11. Unit abatement cost (Unit: KRW/ton CO2eq) 

 

 Sensitivity test 

This section tests the robustness of learning effects on emissions and unit abatement 

cost by adjusting the learning rate. A higher learning rate means more efficiency 

improvement of new technology. As the linked industries are more efficient, they can 

contributes to reducing the national emissions and mitigating the negative economic effects 

of the carbon tax to a greater extent (Figure 6.12 and Figure 6.13). 
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Figure 6.12. Changes in national emissions at 1%, 5% and 10% learning rates (Unit: %) 

 

 

Figure 6.13. GDP losses due to the carbon tax at 1%, 5% and 10% learning rates (Unit: %) 
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The learning rate also affects the unit abatement cost due to its environmental and 

economic effects (Figure 6.14). The unit abatement costs in 2050 are 72 thousand KRW/ton 

CO2eq and 58 thousand KRW/ton CO2eq at 1% and 10% learning rates, respectively. For 

every 4–5% increase in the learning rate, the unit abatement cost in 2050 decreases as much 

as approximately 70 thousand KRW/ton CO2eq, which implies a consistent pattern 

depending on a learning rate. 

In the range of the considered learning rates, the unit abatement cost difference is 14 

thousand KRW/ton CO2eq. This means that the economy pays about 6,000 billion KRW 

more to reduce 424 million ton CO2eq in 2050 if the learning rate is low. 

 

 

Figure 6.14. Unit abatement costs at 1%, 5% and 10% learning rates (Unit: KRW/ton 

CO2eq) 
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 Additional carbon tax simulation 

Without learning, the government should impose additional carbon taxes to meet the 

national emissions level it would achieve with learning. This section determines carbon tax 

levels to achieve the 2050 national emissions in LINK_NEWLR5_CTAX when there is no 

learning. 

In LINK_BAU_CTAX and LINK_NEW_CTAX, the government should impose 

additional 26 thousand KRW/ton CO2eq and 16 thousand KRW/ton CO2eq of carbon taxes, 

respectively, in 2050 to achieve the national emissions level with learning. Although 

national emissions under the additional carbon taxes until 2040 are slightly different with 

those of LINK_NEWLR5_CTAX, the 2050 national emissions are well-fitted (Figure 6.15). 

 

 

Figure 6.15. National emissions with additional carbon taxes (Unit: million ton CO2eq) 
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In every time period, the economy experiences additional GDP losses due to the carbon 

taxes (Figure 6.16 and Figure 6.17). In LINK_BAU_ADDCTAX and 

LINK_NEW_ADDCTAX, the economy should accept 0.10%p and 0.06%p GDP losses in 

2050, respectively, to meet the national emissions level it would achieve with learning. The 

additional GDP losses from higher carbon taxes are not large because learning occurs only 

in the linked industries. However, the additional carbon tax burden on the economic agents 

who generate emissions increases considerably (Figure 6.18). Without new technology and 

learning, the additional burden increases by about 16,000 billion KRW in 2050. 

 

 

Figure 6.16. GDP loss due to additional carbon tax (LINK_BAU_CTAX) (Unit: %) 
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Figure 6.17. GDP loss due to additional carbon tax (LINK_NEW_CTAX) (Unit: %) 

 

 

Figure 6.18. Additional carbon tax burden (Unit: billion KRW) 
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 The rebound effect of learning 

As Figure 6.19 shows, both the direct and indirect rebound effects increase with 

learning. Since the efficiency of the linked industries additionally improve, learning 

intensifies their output and emission rebound. Moreover, the additional price reduction in 

the linked industries and energy products stimulates indirect rebound effects in the unlinked 

sectors and household energy consumption. 

The total rebound effect in 2050 increases by 6.7% (0.6 million ton CO2eq) due to the 

effect of learning on efficiency improvements. Half of additional total rebound effect arises 

from the linked industries (0.3 million ton CO2eq). Furthermore, the rebound effect from 

the household increases 0.2 million ton CO2eq, which is larger than the additional rebound 

effect from the unlinked sectors (0.1 million ton CO2eq). 

 

 

Figure 6.19. Comparison of total rebound effect in 2050 (Unit: million ton CO2eq) 
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Chapter 7. Conclusion 

 

7.1 Concluding remarks and implications 

This study developed a hybrid model for ten emission-intensive industries in Korea. 

The bottom-up model was developed based on PMP, which maintains base-year 

consistency in the hybrid model and avoids an overspecialized technology mix and radical 

technological change. The recursive dynamic CGE model was developed to analyze the 

reduction options and carbon tax effects. The bottom-up and CGE models were integrated 

based on the soft-link approach. Advantages of the hybrid model were explained, and 

practical problems in the integration process were also addressed. Moreover, both the direct 

and indirect rebounding emissions due to technology efficiency improvement were 

measured using the hybrid model, and the causes of rebound effects were described. This 

study also incorporated learning into the hybrid model with an iterative approach. The 

effects of learning on efficiency improvement, national emissions, and abatement costs 

were explored. 

This study offers several contributions to the literature. First, this study shows the 

advantages of the hybrid model in environmental analysis. The hybrid model can 

investigate technology-level changes and macro-economic effects, including ripple effects 

due to changes in the analyzed sectors. Moreover, the hybrid model allows for feedback 

between technology-level changes and macro-economic effects, whereas the single models 
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have difficulty observing feedback effects. 

Second, this study assesses the rebound effects due to efficiency improvement using the 

hybrid model. Since the hybrid model allows for technology efficiency improvement, it can 

overcome methodological limitations of previous studies. Additionally, this study measures 

the rebound effects within and beyond the efficiency-improving sectors and explains the 

process by which emissions rebound. 

Third, this study incorporates technological change in the hybrid model endogenously. 

Although single bottom-up and CGE models reflect technological change, they are 

inappropriate for a comprehensive analysis of technological change due to their limitations 

as the single models. In the hybrid model, the bottom-up model enables researchers to 

endogenize technological change at a technology level, and the CGE model helps to explore 

the macro-economic effects of technological change. Moreover, this study shows that the 

soft-linked hybrid model can converge despite including the additional convergence 

process for endogenous learning. 

The government can apply the hybrid model of this study as a new framework to 

investigate emissions reduction options and policies. The government should predict the 

environmental and economic impacts of reduction options and policies before establishing 

a reduction target. The hybrid model helps to evaluate these impacts at the technology- and 

macro-economic levels. Additionally, the hybrid model with learning can provide the 

government with opportunities to explain technological change in the future and predict its 

environmental and economic impacts. Since technological change is a promising reduction 
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option, the need for a method to assess technological change will be higher.  

Moreover, the government can assess unexpected rebound effects using the hybrid 

model before implementing efficiency improvement policies. As Sorrell and Dimitropoulos 

(2008) mentioned, rebound effects may be a barrier to the government’s reduction target. 

If the government ignores rebound effects, then actual reduction effects of efficiency 

improvement will be below expectations. The government should understand that the 

reduction effects of efficiency improvement may be overestimated and aim to determine 

the precise reduction effects. Additionally, the government should comprehend that the 

reduction options for one sector can cause an increase in the emissions of other sectors. 

Although the government may successfully achieve the reduction target of the 

manufacturing sector, it may fail to achieve the national reduction target because of indirect 

rebound effects. Thus, the government should prepare options to handle rebounding 

emissions. 

Furthermore, the iterative approach can be applied to hybrid models of the other sectors, 

although this study employs the iterative approach for the manufacturing sector. For 

example, the electricity sector can apply the iterative approach to explain changes in the 

characteristics of renewable energy technologies. Since the investment costs of these 

technologies are high, the adoption rate and reduction effects of such technologies may be 

less than expected. A hybrid model for the electricity sector with the iterative approach can 

explain the reduction in the investment costs and assess the macro-economic effects of the 

diffusion of the renewable energy. 
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7.2 Limitations and future research 

This section discusses the limitations of this study and suggests future research 

directions. First, this study includes the bottom-up model for the manufacturing sector only. 

The hybrid model can incorporate the bottom-up models for other sectors such as the 

electricity, transport and residential sectors. Considering the technological change in these 

sectors can change the national emissions and abatement cost estimates. Future research 

should integrate the CGE model with bottom-up models for multiple sectors. 

Second, the learning rate in this study is a scenario parameter. Although this study 

shows that learning contributes to reducing national emissions and abatement costs, the 

learning rate is not an estimated value. Estimating the learning rates of common 

technologies in the manufacturing sector will provide a more precise estimate of the effects 

of learning.  

Third, this study does not consider spillovers of learning. Technology use experience 

can diffused from one industry to other industries because all industries use common 

technologies in the service-oriented bottom-up model. These spillovers enable additional 

efficiency improvement for less competitive technologies. Including the spillovers of 

learning between industries in future research can reveal more significant effects of 

learning. 
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Abstract (Korean) 

상향식 모형과 CGE 모형은 온실가스 감축수단과 감축정책의 효과를 

분석하는 대표적인 모형이다. 상향식 모형은 기술을 명시적으로 표현할 수 

있다는 장점을 가지고 있으며, 에너지시스템의 최적 기술조합을 찾아낸다. 

그러나 상향식 모형은 부분균형모형이기 때문에 감축수단의 거시경제적 효과 

분석에 어려움을 가진다. 반면, CGE 모형은 경제의 일반균형을 찾는 모형으로 

감축수단의 파급효과 분석에 이용되어 왔다. 그러나 CGE 모형은 기술에 대한 

설명이 제한적이기 때문에 기술 레벨 변화의 분석에 한계가 있다. 

두 모형이 가지는 장점과 단점으로 인해 기존연구들은 두 모형을 결합하는 

통합모형을 구축하기 위해 노력해왔다. 이러한 통합모형은 기술 레벨 효과와 

거시경제적 효과를 모두 분석할 수 있다는 장점을 가진다. 본 연구는 국내 

제조업 부문에 대해 통합모형을 구축하고 감축수단 분석에 있어 통합모형이 

가지는 장점을 설명하고자 한다. 

상향식 모형은 두 모형 간 기준연도 자료의 일치성을 확보하는 데에 

유리한 positive mathematical programming 방법을 이용하여 구축되었다. 이 

방법에 기반한 상향식 모형은 다중 기술선택과 점진적인 기술변화를 설명하는 

데에 유리하다. CGE 모형은 이미 구축되어 있는 단순한 형태의 CGE 모형을 

변형하여 배출량과 탄소세 효과를 분석할 수 있도록 구축되었다. 단독 모형을 

구축한 후에는 두 모형 간 필요한 정보를 교환하는 연성 결합 방법을 

이용하여 통합모형을 구축하였다. 
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본 연구는 구축된 통합모형을 이용하여 기술변화의 환경적•경제적 영향을 

평가하였다. 먼저 기술변화는 신기술 도입으로 인해 발생할 수 있는데, 

신기술 도입은 제조업 내 기술대안의 수를 증가시키고 급격하게 기술의 

효율을 향상시킨다. 그리고 기술이용 경험이 축적됨에 따라 효율이 

점진적으로 개선되는 기술학습의 형태로 기술변화가 발생할 수도 있다. 본 

연구에서는 통합모형 내에 기술학습을 반영하기 위해서 모형의 해에 따라 

기술특성치를 반복적으로 갱신하는 방법을 이용하였다. 

효율 개선은 동일한 에너지서비스를 산출하기 위한 에너지소비량을 줄이기 

때문에 국가 배출량을 줄이는 데에 기여하지만, 경제 내 산출 증가를 

유도하여 배출량을 반등시키기도 한다. 본 연구는 기술 효율 개선으로 

발생하는 배출량 반등을 통합모형을 이용하여 평가하였다. 

본 연구는 기술변화의 환경적•경제적 영향을 종합적으로 분석하는 새로운 

모형을 제시하였다. 통합모형은 기존 단독 모형의 단점을 극복하고, 

감축수단과 기술변화의 효과를 방법론적인 제한 없이 분석할 수 있도록 한다. 

따라서 본 연구가 제시하는 통합모형은 정부의 감축목표 달성을 위한 

감축수단과 감축정책의 선제적 평가에 기여할 것으로 기대된다. 

 

주요어 : 통합모형, 상향식 모형, 하향식 모형, 기술변화, 기술학습, 반등효과 

학  번 : 2015-31042 
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