creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph. D. Dissertation in Engineering

Assessment of Environmental and Economic I mpacts
of Technological Changein the Manufacturing Sector
Based on the Hybrid M oddl

ff

AT Vet @

Hakg SRy A7

o,
2
o,
2
2
2
o%
\ﬁtJ
A\
N
i
o
gt

August 2020

Graduate School of Seoul National University

Technology M anagement, Economics, and Policy Program

Hwarang L ee



Assessment of Environmental and Economic | mpacts
of Technological Changein the Manufacturing Sector
Based on the Hybrid M odd

o15Fe] TGRS =EL AFF

20209 8¢

9 4% qJAE (3
29973 TaE ()
9 2 A ()
9 4 2 9l 3 Q)

do
(o,
N,
oto
oY,
’@




Abstract

Assessment of Environmental and Economic | mpacts
of Technological Changein the Manufacturing Sector
Based on the Hybrid M odd

Hwarang Lee
Technology Management, Economics, and Policy Progra
The Graduate School

Seoul National University

Bottom-up and computable general equilibrium (CGE)dels are representative
approaches in environmental analysis. The bottonmaglel is technology-based and
determines the optimal technology mix of an enexgtem. Since itis a partial equilibrium
model, it is inappropriate to observe macro-ecowarhanges due to reduction options. In
contrast, the CGE model finds the general equilibriof an economy and explores the
macro-economic effects of reduction options. Sihadfers only a limited description of
technology, analyzing technology-level changesifficdlt. Because of these properties,
previous studies developed a hybrid model thapnates both models and allows both
technology-rich and macro-economic analysis. Thidysdevelops a hybrid model for the

manufacturing sector of Korea and explains its athges in environmental analysis.



The bottom-up model is developed using positivehewatatical programming, which
helps to maintain the data consistency of the kylmodel. The CGE model for
environmental analysis is constructed based on piexious simple model. After
developing the single models, this study integriats models using the soft-link approach
in which the models exchange information that thexyuire. Based on the hybrid model,
this study explores the environmental and econampacts of technological change that
arises from two sources. One source is new techgpdadaoption, which increases the
number of technology alternatives and sharply impscefficiency. The other is technology
learning, which gradually improves efficiency basedtechnology capacity. The hybrid
model integrates learning through the iterativeraggh. Although efficiency improvement
has considerable emissions reduction effectssit alduces an unexpected rebound of
emissions. This study assesses rebounding emissioasto technology efficiency
improvement using the hybrid model.

This study provides a new framework for a comprehen analysis of the
environmental and economic impacts of technologiteinge. Moreover, policymakers
can employ this study’s hybrid model to investigdie impacts of reduction options and

policies before setting a reduction target.

Keywords: Hybrid model, bottom-up model, CGE mode, technological change,
technology learning, rebound effect
Student Number: 2015-31042
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Chapter 1. | ntroduction

1.1 Resear ch background

The Paris Agreement calls for global efforts totoalthe rising global temperature and
obliges countries to establish their own strategoeseduce greenhouse gas emissions
(United Nations, 2015). Since the agreement, sggga&buntries are developing Long-term
low greenhouse gas Emission Development StratdgieBS) to meet their reduction
targets in 2050 (United Nations, 2020). Accordinghhas become important to assess the
environmental and economic impacts of reductiogeis and options in advance.

Previous studies employ bottom-up and top-down isomeanalyze reduction targets
and options. The bottom-up model finds the optiteahnology mix that supplies energy
services in an energy system with minimum coste (saulou et al., 2016). It usually
analyzes the energy systems of energy-intensiviorsesuch as electricity generation,
manufacturing and transport. The computable geregrailibrium (CGE) model, which
represents a top-down model, finds the optimalggriend quantities that clear all markets
in the economy and satisfy all economic agentdestcribes an economic phenomenon at
a more aggregated level (Hourcade et al., 2006).

The bottom-up and CGE models have distinct advastand disadvantages. The
bottom-up model can explore technology-level changecause it explicitly describes

technology (Hourcade et al., 2006). It can anagaergy consumption in a country beyond



the sector level (Figure 1.1). By contrast, the CGE model is usually inappropriate for

disaggregated representation of technology-level changes (Cai et al., 2015) and has

limitations in explaining energy consumption at the energy service and technology levels.

However, the CGE model can explore the macro-economic effects of reduction options

(Sue Wing, 2008). It observes the environmental and economic impacts of reduction

options in a certain sector on the rest of the economy. By contrast, the bottom-up model

cannot explain these ripple effects because it is a partial equilibrium model (Helgesen et

al., 2018).

Country level Country
{ Sector level ] Electricity Steel Chemistry Cement Machine
Enekgy sexvice Boiler Oven Motor Crem pover Dryer Feedstock
level generator N
. P City gas .
Technology level Coal boiler Oil boiler boiler Heat boiler

Figure 1.1. Energy consumption in the country



Due to the limitations of the single bottom-up aBGE models, previous studies
attempted to employ only their advantages. Theitlylbodel integrates both models and
enables both a technology-rich and macro-econonatysis (Andersen et al., 2019a). For
example, when a reduction technology is introdudbe, hybrid model enables the
economy to find a new technology mix and move teew general equilibrium based on
technological change. It is also useful to obsdeedback between technology-level
changes and macro-economic effects. That is, thadhgnodel is an advanced framework

to assess the environmental and economic impacéesiattion targets and options.

1.2 Research purpose

This study develops a hybrid model for the manufidicty sector by integrating the
industrial bottom-up and CGE models and assessesihironmental and economic
impacts of technological change. The first purpofthis study is to construct a hybrid
model of Korea’s manufacturing sector and showaitheantages of the hybrid model in
assessing the impacts of technological change.nBledbis study explores rebounding
emissions due to technological change using theridhymodel. Third, this study
incorporates endogenous technology learning inhifiid model and investigates the
environmental and economic impacts of learning.

This study focuses on ten emission-intensive imksstin Kored because the

manufacturing sector is significant in achieving trational reduction target. In 2017, the

1 Steel, chemistry, cement, machine, semiconductdisglay, electronics, automobile, nonferrous nsetal
glass and textile industries (Korea Environmentitate [KEI], 2019).
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manufacturing sector generated 43% of global eoiissivhich include those from heat
and electricity generation (International EnergyeAgy [IEA], 2019). Additionally,
Korea’s manufacturing sector accounts for one-thfrthe 2050 business-as-usual (BAU)
national emissions (Ministry of Environment, 2028)though the manufacturing sector
generates considerable emissions, previous stgdiesally focus on the electricity sector
and are less concerned with a technology-levelyaizabf the manufacturing sector.

This study considers efficiency improvement as magchnological change. Many
countries are considering efficiency improvemena@asption to achieve their reduction
targets. For example, the United Kingdom plannedrtprove business and industrial
efficiency through 162 million GBP of public R&Dwastments (UK government, 2017).
Japan planned to adopt highly efficient proceshrelogies to reduce emissions from the
steel, chemistry and cement industries (The govemrof Japan, 2019). Korea is also
expecting to meet 30—40% of the 2050 reductioretargthe manufacturing sector through
high-efficiency capacities and a smart energy mememt system (Ministry of
Environment, 2020).

This study assumes two sources of efficiency imgnoents. One source is new
technology adoption based on a government-managduhdlogy database. The other is
technology learning through experience using teldgyo Learning is endogenously
incorporated in the bottom-up model using an iteeaapproach (Yang et al., 2016).

Although efficiency improvement contributes to esi®s reduction, it also causes a

rebound in emissions. Since efficiency improvenh@ners energy demand and total costs,



outputs in the economy rebound. Then, the econamnyadds more energy to produce the
rebounding outputs, and emissions thus also rebolimel hybrid model contributes to
exploring the rebound effects of technology efficig improvement.

This study also simulates a carbon tax policy #ilmws the market to achieve the
minimum abatement costs and find advanced reduotitions (Marron et al., 2015). This
simulation helps to determine the impacts of efficy improvements on emissions and
abatement costs. Efficiency improvements through teehnology adoption and learning

contribute to more emissions reduction with lowesitament costs.

1.3 Outline of the study

This study proceeds in seven chapters (Figure ClZpter 2 develops the bottom-up
models for the ten emission-intensive industrieKanea based on positive mathematical
programming (PMP). Chapter 3 constructs the reesirdiynamic CGE model for Korea
by modifying an existing CGE model. Chapter 4 intégs the bottom-up and CGE models
based on a soft-link approach. It explains thegirattion process and investigates the
environmental and economic impacts of efficiencpriavement through new technology
adoption. Chapter 5 assesses the rebounding oatpditsmissions due to new technology
adoption. Chapter 6 incorporates learning into bybrid model and analyzes the
environmental and economic impacts of learning. pfdva7 concludes this study and

explains implications and limitations of this study
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Chapter 2. Industrial bottom-up model based

on positive mathematical programming?

2.1 Introduction

2.1.1 Research background

Since their introduction in the 1970s (Herbst et al., 2012), bottom-up models were
employed to analyze the energy systems of energy-consuming sectors, including the
electricity, manufacturing, transport, residential and agriculture sectors. The bottom-up
model is generally based on an optimization (Trutnevyte, 2016) that aims to minimize the
total cost to provide a given energy demand in an energy system for certain periods. It
determines the cost-minimizing technology mix that describes the optimal energy
consumption and capacities of technologies. Since the bottom-up model explicitly
represents technology, it is appropriate for a technology-rich analysis. It can describe the
changes in technology competition due to the adoption of low-emission technologies and
observe the emissions reduction from technology substitution.

Previous studies generally employ bottom-up models to analyze energy and
environment policies. Loulou et al. (2016) stated that the detailed technology descriptions

of the bottom-up model enable researchers to evaluate almost any policy. The bottom-up

2 Parts of this chapter were published in Energy, 173, Lee et al., A bottom-up model of industrial energy
system with positive mathematical programming, 679-690, Copyright Elsevier (2019).
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model has an advantage in analyzing technologyeet|aolicies in particular. For example,
if the government plans to improve the efficiendycertain technologies or lower the
investment costs of new technologies, then theobotip model is necessary because it
explicitly describes technology characteristicsh# model is not technology-based, then
it should explain the changes in technology charsstics at a more aggregated level.
Representative bottom-up models, such as the MfmdeEnergy Supply System
Alternatives and their General Environmental Impa@lESSAGE), Market allocation
(MARKAL), and the Integrated MARKAL-EFOM System (WIES), usually solve their
cost minimization using linear programming (PP involves several problems because
it finds corner solutions. First, LP usually retsiran overspecialized or winner-take-all

technology mix if there are no constraints thavpre corner solutions (Heckelei and Britz,

2005. It adopts the most cost-efficient technology amdledes the remaining options.

Second, LP observes radical technological changenwdn available technology set
changes. The results may exclude the currently mimitechnology from the technology
mix when a more efficient technology is availaldegcurrently uncompetitive technology
suddenly becomes the dominant one (R6hm and Dal20€3).

LP generally depends on supplementary constrauhiish are upper and lower bounds
for technology use, to avoid corner solutions. Tineber of supplementary constraints
affects the number of effective technologies iBPBtsakos and Rozakis, 2009). However,

although supplementary constraints prevent oveialimation and radical technological

3 See International Atomic Energy Agency (2016), lbotet al. (2004) and Loulou et al. (2016).
8



change, they are difficult to justify (Garnache et al., 2017) because the upper and lower
bounds induce a technology mix within a certain range. Moreover, LP calibrates the base-
year technology mix using supplementary constraints. Since supplementary constraints,
which are still included under simulated scenarios, affect policy simulation results

(Heckelei and Britz, 2005), they disrupt the interpretation of the policy simulation results.

2.1.2 Research purpose

This study develops an industrial bottom-up model for the hybrid model. Since the
hybrid model integrates independent bottom-up and CGE models, it is important to
maintain consistency between the models. In particular, the capital, labor and energy inputs
in the base year should be consistent. This study applies PMP (Howitt, 1995), which
employs a quadratic objective function instead of a linear objective function, to achieve
consistency. PMP calibrates the base-year technology mix of the industries without adding
supplementary constraints and helps to maintain base-year consistency in the hybrid model.
Moreover, PMP avoids an overspecialized technology mix, radical technological change,
and simulation results bounded by the constraints.

There is no industrial bottom-up model based on PMP, although the agriculture sector
has employed PMP for decades. This study develops industrial bottom-up models for the
ten emission-intensive industries in Korea and explains the application of PMP to the
manufacturing sector. This study derives equations to modify LP to PMP and suggests a

method to determine the parameters in the equations. Moreover, this study shows the



advantages of PMP empirically. Finally, this study describes technology substitution in the

bottom-up model using a carbon tax simulation.

2.2 Literaturereview
2.2.1 Previousindustrial bottom-up model

Previous studies usually construct industrial bottom-up models for energy-intensive
industries such as steel and cement (Table 2.1). Although most industrial bottom-up models
were based on MARKAL and TIMES models, several previous studies developed their
own bottom-up models.

Industrial bottom-up models for one industry generally take a process-oriented
approach, which describes energy consumption in the order of industrial processes and
explains sector-specific technologies. Dutta and Mukherjee (2010) considered unique
processes for three industries in India to investigate their future energy consumption. Chen
et al. (2014) constructed a TIMES model for China to analyze the steel industry based on
six steel processes. Li et al. (2017) considered 21 sector-specific reduction technologies in
the cement industry and examined carbon tax effects.

By contrast, a service-oriented approach describes the energy consumption of the
manufacturing sector based on common energy services such as boilers, ovens, and motors.
This approach can describe the energy consumption of multiple industries using the same
structure. Kannan et al. (2007) categorized industrial energy demand into five energy

services. They assumed that the share of each energy service was fixed. Zhou et al. (2013)
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explained industrial energy demand using six ensagyices with the assumption that an
energy service does not replace the other energicss, but rather that the technology

providing the energy service replaces other sudirgogies.

Table 2.1. Previous industrial bottom-up models

Author Country Industry Model Approach
Dutta and Mukherjee Steel, aluminum
India MARKAL Process
(2010) and cement
Chen et al. (2014) China Iron and steel TIMES Pssce

ISEEM(Industry
Karali et al. (2014) U.S. Iron and steel  Sector Energy Process

Efficiency Modeling)

Garcia-Gusano et al.

Spain Cement TIMES Process
(2015)
Li et al. (2017) China Cement TIMES Process
Cost-minimizing
Tan et al. (2019) China Iron and steel Process
bottom-up
Five categorized
Kannan et al. (2007) UK MARKAL Service
industries
Eleven Service-oriented
Zhou et al. (2013) China Service
industries bottom-up

11



Industrial bottom-up models in Korea also focus on energy-intensive industries (Table
2.2). These models were developed with a process-oriented approach using MARKAL.
Korea Energy Economics Institute (KEEI, 2005; KEEI, 2006) developed industrial bottom-
up models for the cement and oil refinery industries. Both studies investigated emission
and energy reduction potential under reduction scenarios and evaluated the marginal
abatement costs and cost-effectiveness of the reduction strategies. Ahn et al. (2009)
examined the role of reduction technologies in the steel industry. They evaluated emissions
reduction and abatement costs using seven reduction scenarios depending on the reduction

technology mix.

Table 2.2. Industrial bottom-up models in Korea

Author Country Industry Model Approach
KEEI (2005) Korea Cement MARKAL Process
KEEI (2006) Korea Oil refining MARKAL Process

Ahn et al. (2009) Korea Steel MARKAL Process
2.3 Data

2.3.1 Technology characteristics
This study employs the database of the Korea Institute of Energy Technology

Evaluation Planning (KETEP). The KETEP database (KETEP, 2016) provides detailed
12
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technology characteristics, including adoption ydifetime, investment cost, operation
and maintenance (O&M) cost, efficiency and avaligbiDescriptions for technology

characteristics are shown in Table 2.3.

Table 2.3. Descriptions for technology characteristics

Technology characteristics Description

Adoption year The year when technology is available

The years during which the installed technology
Lifetime

capacity is available

Investment cost Unit investment cost to instalhtedlogy capacity

Operation and maintenance  Unit operation and maintenance cost to manage

cost technology capacity

The amount of energy output per a unit of energy
Efficiency

input

The amount of available technology capacity per a
Availability

unit of installed technology capacity

13



The KETEP database chose five representative contewmologies, which were
boilers, motors, kilns, furnaces and dryers, basedheir energy consumption, expert
opinions and importance in policies. KETEP caladaénergy consumption of common
technologies using Energy Consumption Survey (E&®) identified a future trend by
reviewing energy technology plans and governmeptrts.

Since the KETEP database was not officially puleltshthis study shows arbitrary
values as technology characteristics (Table 2.4jredt technology is introduced in the
base yeaf. New technology is introduced in a future time ipeér New technology
generally has higher investment cost and efficighap current technology. Efficiency and
availability are a value between 0 and 1. In thelehocosts and energy consumption have

units of billion KRW and thousand ton of oil equiesat (TOE), respectively.

Table 2.4. Example of technology characteristics

Adoption Investment O&M
Lifetime Efficiency Availability

year cost cost
Current

2015 5 0.150 0.015 0.5 0.6
technology
New

2020 5 0.200 0.020 0.8 0.6
technology

Note: a unit of costs is billion KRW/thousand TOE.

4 The base year of the model is 2015. The modekyaar from 2015 to 2050.
14



2.3.2 Base-year energy consumption
A PMP-based bottom-up model requires base-year energy consumption of technology
for calibration. ECS is published every three years and provides energy consumption of
industries in Korea. Although the base year of this study is 2015, this study employs energy
consumption in 2016 from 2017 ECS (KEEI, 2017a). ECS categorized the manufacturing
sector into 37 industries based on Korean Standard Industrial Classification (KSIC)
(Statistics Korea, 2020). This study allocates ECS industries into the ten emission-intensive

industries (Table 2.5).

Table 2.5. Industry matching

This study Energy Consumption Survey KSIC
Steel Basic iron and steel 241
Basic chemicals 201
Plastics and synthetic rubber in primary forms 202
Fertilizers, pesticides, germicides and insecticides 203
Chemistry
Other chemical products 204

Pharmaceuticals, medicinal chemical and botanical products 21

Rubber and plastic products 22
Cement Cement, lime, plaster and its products 233
Fabricated metal products, except machinery and furniture 25
Machine
Other machinery and equipment 29
15



Semiconductor

Electronic compnents, computer; visual, sounding and

26
& display communication equipment
Medical, precision and optical instruments, watcuas
27
Electronics clocks
Electrical equipment 28
Automobile Motor vehicles, trailers and semitrasler 30
Nonferrous
Basic precious and non-ferrous metals 242
metals
Glass Glass and glass products 231
Textiles, except apparel 13
Wearing apparel, clothing accessories and furlastic 14
Textile
Leather, luggage and footwear 15
Man-made fibers 205

Source: Author’s work based on KEEI (2017a)

After the allocation, this study adds energy congstion of the allocated ECS industries

to obtain energy consumption of the ten emissio@Asive industries (Table 2.6). Each cell

of Table 2.6 means base-year energy consumptitacbhology in the steel industry
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Table 2.6. Energy Consumption of the steel industry (Uniausand TOE)

Own
Feed
Boiler Oven Motor Power Dryer Total
stock
generator
Anthracite 0 197 0 0 0 673 870
Bituminous
16 89 0 0 0 0 105
coal (fuel)
Coal Bituminous
coal 0 0 0 0 0 22,601 22,601
(feedstock)

Coal product 0 9 0 0 0 0 9
Gasoline 0 0 0 0 0 0 0
Kerosene 0 0 0 0 0 0 0

Oill Diesel 0 3 0 0 0 0 3
Heavy oll 0 42 0 0 0 0 42
LPG 0 21 0 0 2 0 23
City gas 268 1,613 O 313 27 0 2,222
Others Heat 0 0 0 0 17 0 17

Electricity 0 674 486

0 1,720 O 2,880

Total 284 2,647 486

313 1,765 23,274 28,770

Source: Author’s work based on KEEI (2017a)
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2.3.3 Energy service demand and final energy demand

Technology produces an energy service by consuming fuel. Energy services consist of
boilers, ovens, motors, own power generators and dryers, which are also common
technologies. Although feedstock is not a common technology, it is also included in energy
services.

Energy service demand is the sum of all energy consumption to produce each energy
service. For example, the steel industry requires 284 thousand TOE to produce a boiler
energy service (Table 2.6), which requires 16 thousand TOE bituminous coal and 268
thousand TOE city gas.

Final energy demand is the sum of all energy consumption to produce all energy
services. The sum of all energy consumption of five energy services and feedstock is equal
to 28,770 thousand TOE in the steel industry. Final energy demand is also the sum of all
energy service demand. Shares of five energy service demand and feedstock in final energy
demand are assumed to be unchanged, which implies that each energy service demand is
not substitutable. These shares are calculated based on Table 2.6. This study assumes that
energy service and final energy demand grow at an annual rate of 3%, considering
economic growth.

Figure 2.1 shows final energy demand of the ten emission-intensive industries. The steel
industry is the most energy-intensive industry in the manufacturing sector of Korea.
Feedstock occupies about 80% of final energy demand of the steel industry because the

steel industry requires a large amount of bituminous coal, which is highly emission-

18



intensive, as feedstock (Figure 2.2). The cement, nonferrous metals and glass industries
highly depends on their oven energy services, while a half of final energy demand of the
semiconductor and display industries is a dryer energy service. Since there is high
dependency on a motor energy service in the machine, electronics and automobile

industries, these three industries require a substantial amount of electricity.
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Figure 2.1. Final energy demand of ten emission-intensive industries

Source: Author’s work based on KEEI (2017a)
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Figure 2.2. Energy service demand of ten emission-intensive industries

Source: Author’s work based on KEEI (2017a)

That is, importance of each energy service demand in final energy demand is different
among the industries. This implies that technological change has different impacts
depending on the industries. For example, when efficiencies of oven technologies are
improved, the cement, nonferrous metals and glass industries are more affected by
efficiency improvement because oven energy services occupy more than half of final

energy demand of these three industries.

2.3.4 Energy price

Although energy prices are not technology characteristics, they largely affect the

industry’s total cost. This study uses energy prices of KEI (2019). KEI (2019) calculated
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2015 energy prices based on government reports and statistics (Table 2.7). The bottom-up

model of this study assumes that energy prices do not change.

Table 2.7. 2015 energy prices (Unit: billion KRW/thousand TOE)

2015 2015
Fuel Fuel

energy price energy price
Anthracite 0.31 Diesel 0.63
Bituminous coal (fuel) 0.12 Heavy oil 0.50
Bituminous coal (feedstock) 0.10 LPG 0.55
Coal product 0.43 City gas 0.66
Gasoline 0.71 Heat 1.00
Kerosene 0.61 Electricity 0.50

Source: KEI (2019)

2.3.5 Emission coefficient

Emission coefficients of fuels are required to calculate emissions from energy
consumption. Fossil fuels generate greenhouse gases during combustion. Heat and
electricity indirectly contributes to an increase in emissions because fossil fuels are used to
generate them. This study considers CO2, CH4 and N20O emissions and converts emission
coefficients of CH4 and N20 into a unit of CO2 equivalent using Global Warming Potential
of Intergovernmental Panel on Climate Change (IPCC, 2001).
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As Figure 2.3 shows, coal (anthracite, bituminous coal and coal product) is the most

emission-intensive fuel, and oil (gasoline, kerosene, diesel, heavy oil and LPG) follows

coal. City gas, heat and electricity have lower CO2 emission coefficients than coal and oil.

Electricity

Heat

City gas

LPG

Heavy oil

Diesel

Kerosene

Gasoline

Coal product
Bituminous coal (feedstock)
Bituminous coal (fuel)

Anthracite

Figure 2.3. Emission coefficients

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Source: Author’s work based on KEEI (2020), Korea District Heating Corporation (2015),

IPCC (2006), IPCC (2001) and Korea Power Exchange (2020)

2.3.6 Other data

A discount rate is used to calculate net present value of the total cost. This study assumes

that a discount rate is 5%. The last year of technology means the year when technology is

unavailable. This study assumes that technology is not expired in the model years and

defines the last year as an arbitrary year out in the model years.
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2.4 Model
2.4.1 Outline of the bottom-up model

The industrial bottom-up model of this study is based on Lee et al. (2019). The bottom-
up model minimizes the net present value of the total cost under several constraints (Figure
2.4). It uses technology characteristics, energy prices, CO2 emission coefficients, and a
discount rate as input data. A PMP-based bottom-up model obtains Lagrange multipliers
by solving the static cost minimization problem for time period 0 and delivers the
multipliers to the dynamic cost minimization problem for all periods. Then, the bottom-up
model solves the dynamic problem and determines the energy consumption, new capacity,
and total capacity of the technology. Based on the solutions, the bottom-up model calculates

the energy demand, emissions, and cost information.

Parameters PMP_based bottom_up model Decision variables
Technology characteristics Energy consumption
; : 2050 i
}:ne_rgy priees min Z Discount, * Total Cost, Neay capasity
Emission coefficients Input £=2015 Solve | Total capacity
Discount rate data
Lagrange multipliers subject to Calculate

Capacity constraint
P Y Major results

Flow conservation constraint E
“nergy demand

Emissions

Total cost

(Capital, labor and energy)

Final energy demand constraint

Figure 2.4. Outline of the bottom-up model
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2.4.2 Reference energy system

A reference energy system (RES) describes energy flows in the bottom-up model
(Figure 2.5). Technology, which is divided into process and demand technologies, uses
energy input to produce energy output. Process technology converts fuel (energy input) into
an energy service (energy output). Demand technology converts an energy service (energy
input) into final energy demand (energy output). Since the bottom-up model of this study
is service-oriented, the ten emission-intensive industries have identical RESs. Although this
model is difficult to describe for sector-specific technologies, it is appropriate to describe
multiple industries based on the use of an identical framework.

The industry satisfies five types of energy service and feedstock demand using process
technologies and final energy demand using demand technology. The energy service and
feedstock demand occupies fixed shares of final energy demand, which implies that this
demand is aggregated by a Leontief function.

The technologies that produce an energy service compete with each other, while
feedstock technologies cannot replace the others. Although only current technologies are
available in the base year, industries adopt new technologies after their introduction. New
oven technology is adopted in 2016. Boiler and dryer technologies are available in 2018.
New own power generator technology is introduced in 2020. New motor technologies are
introduced in 2020, 2025 and 2035. When both current and new technologies are available,
they compete with each other. The share of a competing technology is determined based on

technology characteristics such as efficiency and cost information.
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2.4.3 Objective function

The net present value of the industry’s total cost, which is Eq. (2.1), includes four costs.

First, an industry pays annualized investment costs to install capacity. A capital recovery

factor, which is calculated by Eq. (2.2), annualizes investment costs. Second, operation and

maintenance costs are paid to manage installed capacity. Third, energy costs are required

to purchase fuels to produce an energy service. Fourth, carbon taxes are levied based on

emission coefficients of fuels if there is a carbon tax policy.

An objective function of a PMP-based bottom-up model is quadratic, whereas an LP-

based bottom-up model employs a linear objective function. The last term of Eq. (2.1) is

determined by the squares of energy consumption. The third and last terms of Eq. (2.1)

indicates energy costs and carbon taxes of the industry. The values of these two terms

depends on coefficients argcy ¢ and brgcy ¢, which will be explained in Section 2.4.5 (see

Eq. (2.18)).

35
Min Z Discount; Z [UNVESTrgcy * CRFrpcy e * Yrech e
t=0

XTECH,t:YTECH,t FECHSD
rocess

+ OMrgcy * Yrecu,e + (Arech,: * XTECH ¢

+ 0.5 % brgey * Xfecu )]

Discount, * (1 + Discount,)t/etimerecu
(1 + Discount,)-ifetimerecy — 1

CRFTECH,t =
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TECH: Technology

t: Time period

Xrgch ¢ Energy consumption of technology TECH at time period ¢t

Yrgcn - Total capacity of technology TECH at time period t

Discount,: Discount rate at time period t

Process: Process technology set

INVEST rgcy: Unit investment cost of technology TECH

CRFrgcy ¢ Capital recovery factor of technology TECH at time period t

OMrgcy: Unit operation and maintenance cost of technology TECH

argcn ¢ Intercept of presumed marginal cost of technology TECH at time period t

brgcy t: Slope of presumed marginal cost of technology TECH at time period t

Lifetimergcy: Lifetime of technology TECH

2.4.4 Constraints
Three constraints are generally used in the bottom-up model. Capacity constraints in
Eq. (2.3) mean that the industry should have available capacity more than energy service

production. Although the industry installs capacity Yrgcy ¢, it can use only part of capacity
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based on availabilitydVrgcy .. Technology consumes fuel to produce an energycser
Energy service production is determined by efficie®FFrgcy .. Flow conservation
constrains in Eq. (2.4) implies that technology diocconsume fuel more than energy
service production. A final energy demand constriaifeq. (2.5) indicates that the sum of

energy service production should be greater thaal énergy demand.

EFFrgcnt * XrecHt < AVreche * YrecH,t

Eq. (2.3)
for all process technologies and time periods
Z EFFrgche * Xreche < Z XTECH,t
TECHEP TECHEC Eq. (2.4)
for all time periods
Z EFFrgche * Xrgcue 2 D Eq. (2.5)
TECHEProcess

EFFrgcy - Efficiency of technologyl’'ECH at time periodt
AVrgcen ¢+ Availability of technologyTECH at time periodt
P: Energy production technology set

C: Energy consumption technology set

D: Final energy demand
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2.4.5 Static PM P-based bottom-up model

This section explains a process to obtain coefficients argcy¢ and brgcy: in the
quadratic objective function. To calculate two coefficients, this study assumes a static cost
minimization problem, which is expressed by Eq. (2.6)—(2.9). Eq. (2.6) is a linear objective
function that an LP-based bottom-up model uses. Eq. (2.7)—(2.9) are constraints for the

static cost minimization problem.

Min 2 [INVESTrgcu * CRFrEgcH0 * YrECH, 0
XTECH,0.YTECH,0 ’ ’
TECHEProcess
Eq. (2.6)
+ OMrgcy * Yrecho + EPRICErgcy * XrgcH 0
+ CTAX x COEFrgcy * XrecH,0)
EFFrgcn,o * Xtec0 < AVrecuo * Yrecho
Eq. (2.7)
for all process technologies
2 EFFrgcuo * XrECH0 < 2 XTECH,0 Eq. (2.8)
TECHEP TECHEC
EFFrgch,o * Xrecuo = D Eq. (2.9)
TECHEProcess
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EPRICErgcy: Unit fuel cost of technolog ECH
CTAX: Unit carbon tax

COEFgcy: CO, coefficient of technologyl ECH

At first, the constraint in Eqg. (2.10) is addedinait upper bound of endogenous energy
consumption of technology at time period 0. Becanfsthis constraint, the endogenous
energy consumption is almost equal to base-yeaggm®nsumption that is given from
ECS. This study assumes thats 107°. If Eq. (2.10) is considered, the objective fuoti

is modified to Eq. (2.11).

Xrecuo < (1 + €) * Xrgcmo Eqg. (2.10)

&: Small constant

XrEcH,0- Base-year energy consumption of technol@@CH (given from ECS)

Min 2 [INVESTrgcH * CRFrgch,0 * YrecH,o

XTECH,0.YTECH,0
TECHEProcess

+ OMrgcy * Yrecho + EPRICErgcy * XrEcH 0 Eq. (2.11)

+ CTAX * COEFrgcy * XTECH 0

+ Argcho * (X1ECH0 — (1+e)=* xTECH,o)]
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Areche: Lagrange multiplier of technolog¥ECH at time periodt

After adding the constraint, a quadratic objecfivection is presumed. In Eq. (2.12),
coefficientsargcy o and brgcy o are intercept and slope of the first derivativection of
the quadratic objective function. If coefficietggcy o andbrgcyo are determined to
make solutions of Eq. (2.11) and Eq. (2.12) idetisolutions of Eq. (2.12) calibrate base-
year energy consumptiafyzcy o. Moreover, the solutions avoid overspecializatzoml

radical technological change because the quadibgctive function is used.

Min 2 [INVESTrgcH * CRFrgch,0 * YrecH,o

XTECH,0.YTECH,0
TECHEProcess

Eq. (2.12)
+ OMygcey * Yrecno + (ArechH0 * X1ECH0

+ 0.5 = bTECH,O * sz"ECH,O)]

If the marginal costs of two objective functiong aqual, then solutions of those also
equal. Eqg. (2.14) and Eq. (2.16) are the first-oodaditions with respect to total capacity,
and two conditions are identical. Eq. (2.13) and @qL5) are the first-order conditions
with respect to energy consumption. The numberoaflination of coefficientsirgcy o

and brgcy o, Which satisfies Eq. (2.17), is infinite.
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EPRICE;gcy + CTAX * COEFrgey + Argcro = 0 Eqg. (2.13)

[NVESTTECH * CRFTECH,O + OMTECH = 0 Eq (214)
argcuo t brecuo * Xrecho = 0 Eq. (2.15)
[NVESTTECH * CRFTECH,O + OMTECH = 0 Eq (216)

EPRICE;gcy + CTAX * COEFrgpey + Argcno
Eqg. (2.17)

= argcHo + brecH0 * XTECH0

This study considers identification methods (ID)poévious studies to determine the
coefficients (Table 2.8). The identification methaftects solutions and simulation results
of the bottom-up model. In IDlhrgcy o identifies all parameters excluding a carbon tax
term. A carbon tax linearly increases dependingenergy consumption of technology
becauseargcy identifies a carbon tax term. In ID2, all paraemstare included in
brecuo- A carbon tax is proportional to squares of enegysumption of technology. In
ID3, brgcy,o includes only the Lagrange multiplier. ID4 is dianito ID3, except that both

argcyo andbrgcyo identifies the Lagrange multiplier. This studyopts ID1 as the
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identification method because it is appropriatecimbon tax simulation and calibration of
base-year observations. That is, the quadraticctbgefunction, which is shown as Eq.

(2.1), is expressed as Eq. (2.18).

Table 2.8. Identification methods

Intercept &rech,o0) Slope brech,o)
EPRICE + A
ID 1 CTAX * COEFpgey TECH ~ TTECHO
XTECH,0
b2 . EPRICE gy + Argeno + CTAX * COEFppey
XTECH,0
EPR[CETECH + CTAX ATECHO
ID 3 x—
¢ COEFyper TECH,0
EPRICETECH - ATECH,O ZATECH 0
ID 4 E
+CTAX * COEFrgcy TECH,0

Sources: ID1 (de Frahan et al., 2007), ID2 (P4688), ID3 (Paris, 1988), ID4 (Heckelei
and Britz, 2000)

Note: The identification method affects solutiomsl dimulation results of the bottom-up
model because it changes the objective functioa dtal. (2019) explained the dependence

on the identification method.
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35
Min Z Discount, Z [UNVESTrgcy * CRFrgch e * Yrech s
t=0

FTECH bYTECHt TECHEProcess
+ OMrgcn * Yrecn,e + (CTAX * COEFrgcy * Xrpcn ¢ Eq. (2.18)

5. EPRICErgcy + Arechyo

XTECH,0

72"ECH,t)]

Since Eq. (2.12) calibrates only base-year energy consumption, there are the Lagrange
multipliers only for time period 0. The Lagrange multipliers for future time periods are
unknown. This study assumes that the Lagrange multipliers do not change for all time
periods.

Additionally, it is problematic that there is no Lagrange multiplier of new technology
because the industry uses only current technology in time period 0. This study uses the
Lagrange multiplier of current technology as that of new technology. For example, this
study uses the Lagrange multiplier of current city gas boiler as that of new city gas boiler.
Although the parameter of new technology is arbitrarily determined, new technology

adoption is also affected by technology characteristics.

2.4.6 Decision variables

There are three major decision variables in the bottom-up model of this study. First,
Xrgcne means technology’s energy consumption, which minimizes the total cost and
satisfies energy service demand and final energy demand. Second, new capacity of

technology is the newly installed capacity in each time period to satisfy capacity constraints,
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although it is not expressed in the objective function and constraints. Third, total capacity
of technology Yrgcy ¢ is the sum of installed capacities in the current time period, but does

not include expired capacities.

2.4.7 Scenario

In a business-as-usual (BAU) scenario, there is no reduction policy. Energy service and
final energy demand annually increases at a rate of 3%. New technologies are introduced
in their introduction years. In a carbon tax (CTAX) scenario, the industry should pay
additional costs to use fuel based on energy demand and emission coefficients. This study
assumes 30 thousand KRW/ton CO2eq carbon tax based on a price of emission permission
in 2019 (Korea Exchange, 2020). Since the carbon tax affects technology mix and energy
demand of the industry, emissions of the industry also change. This study identifies effects

of the carbon tax with a focus on emissions, abatement costs and changes in energy demand.

2.4.8 Calculation of major results
Industry’s energy demand for each fuel at time period t is the sum of energy
consumption of technologies that use each fuel in Eq. (2.19). Moreover, industry’s energy
demand for each energy service at time period t is the sum of energy consumption of
technologies that produce each energy service in Eq. (2.20). Additionally, industry’s final
energy demand at time period t is the sum of energy consumption of all technologies in

Eq. (2.21).

35



XTECHt
TECHEFuel Eq. (2.19)

for anthracite, ..., electricity € Fuel

XTECH,t
TECHEEnergy service Eqg. (2.20)

for boiler, ..., feedstock € Energy service

Eq. (2.21)

XTECH,t
TECHEProcess

Industry’s total emissions are obtained based ar{ZEg2). The total emissions are the
sum of technology emissions, which are calculatechbltiplying an emission coefficient

and energy consumption of technology.

COEFrpcy * XreCH Eq. (2.22)

TECHEProcess

The total cost, including capital, labor, energy ararbon costs, of the industry is

calculated using the objective function (see EqL)j2 If the government implements a
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carbon tax policy, the industry chooses new technology mix, which minimizes an increase
in costs due to a carbon tax. The share of low-emission and more efficient technologies in
technology mix increases. The abatement cost is calculated according to Eq. (2.23). The

total cost in calculating the abatement cost excludes the carbon tax.

¥35,CTAX total cost, — BAU total cost,

¥35,CTAX emissions, — BAU emissions;

Abatement cost = — Eq. (2.23)

2.5 Reaults

2.5.1 Calibration of base-year energy consumption

PMP calibrates given base-year energy consumption of technology (X7gcy o) from the
ECS database (Table 2.9). The steel industry uses 18 technologies to produce five energy
service and feedstock demand. Calibration errors for the technologies are less than 1076,
which is an upper bound of a calibration error (see Eq. (2.10)).

Although PMP temporarily adds calibration constraints in Eq. (2.10), the final objective
function in Eq. (2.18) excludes those constraints. Calibration in PMP depends on the
Lagrange multipliers, which are endogenously determined, instead of the calibration
constraints. The calibration constraints do not directly affect the calibration results in Table

2.9. Thus, simulation results of PMP do not depend on the calibration constraints.
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Table 2.9. Calibration of base-year energy consumption of the steel industry (Unit:

thousand TOE)
Calibration error Calibration error
Technology Technology
,0 ,0 ,0™ ,0
( XTECH,0 “XTECH ( XTECH,0 _XTECH
XTECH,0 XTECH,0
Bituminous boiler <107° Electric oven <1078
City gas boiler < 10711 Electric motor 0
City gas
Anthracite oven <1078 0
own power generator
Bituminous oven <1078 LPG dryer 0
Coal product oven <1078 City gas dryer 0
Diesel oven <1078 Heat dryer 0
Heavy oil oven <1078 Electric dryer 0
LPG oven <1078 Anthracite feedstock 0
City gas oven <107° Bituminous feedstock 0

2.5.2 Simultaneous use of multiple technologies
PMP describes
supplementary constraints. Figure 2.6 shows boiler technologies in the steel industry. In the
base year, the steel industry uses current bituminous and city gas boiler technologies to

produce a boiler energy service. More than 90% of the boiler energy service is provided by

simultaneous

use of multiple technologies
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a current city gas technology, which implies that a current city gas boiler technology is
more competitive. Although a current bituminous boiler is less competitive and provides a
small amount of the boiler energy service, it is not excluded from an available boiler
technology set. In 2018, a new city gas boiler technology is adopted. After the adoption of

the new technology, the steel industry still uses the current boiler technologies.

m
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M
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OM’M

2015 2020 2025 2030 2035 2040 2045 2050
Time period

Boiler energy service

—=—Current bituminous boiler—+—=Current city gas boiler

——New city gas boiler
Figure 2.6. Boiler energy service production of boiler technologies in the steel industry

(Unit: thousand TOE)

2.5.3 Gradual technological change
PMP shows gradual technological change without adding supplementary constraints.
Figure 2.7 represents the most competitive current and new technologies in providing
energy services. Although investment, operation and management costs of new technology
are more expensive, new technology substitutes current one in its introduction year because

it is more efficient and lowers energy costs.
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Figure 2.7. Energy service production in the steel industry (Unit: thousand TOE)
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For example, a new electric dryer technology substitutes current dryer technologies in
2018. After the adoption of a new electric dryer technology, a current electric dryer
technology is still operated. That is, PMP avoids complete elimination of current
technology by new technology. Additionally, the difference between current and new
electric dryer technologies gradually increases. This implies that technology substitution in

PMP is gradual rather than radical.

2.5.4 Carbon tax smulation

The manufacturing sector in a BAU scenario generates 10,000 million ton CO2eq
emissions from 2015 to 2050 (Figure 2.8). The steel industry accounts for 64% of emissions
of the manufacturing sector. Although the chemistry and cement industries follow the steel
industry, their emissions are much less than emissions of the steel industry. The three most
emission-intensive industries generate 83% of emissions of the manufacturing sector.

When the government imposes a carbon tax, the manufacturing sector pays additional
costs proportional to emission coefficients of technologies. Since the objective of the
manufacturing sector is to minimize its total cost, the manufacturing sector replaces high-
emission technologies to low-emission technologies and current technologies to new

technologies. These technology mix changes reduce emissions of the manufacturing sector.
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Figure 2.8. BAU emissions (2015-2050) of the manufacturing sector (Unit: million ton

CO2eq)
Note: STE (steel), CHE (chemistry), CEM (cement), MAC (machine), SAD
(semiconductor and display), ELE (electronics), AUT (automobile), NFM (nonferrous

metals), GLA (glass), TEX (textile)

The carbon tax reduces 0.32% of BAU emissions of the manufacturing sector (Figure
2.9). Although emissions reduction effects on the cement, nonferrous metals and glass
industries are much larger than the other industries, those effects on the manufacturing
sector are small because the steel industry has small reduction capacities due to fixed
demand for bituminous coal (feedstock).

By contrast, the cement industry is the most emission-reducing industry in the

manufacturing sector. The cement industry uses kiln technologies, which occupy more than
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80% of total energy consumption of the cement industry and experience significant
efficiency improvement through new technology adoption. That is, shares of energy service

demand and a level of technological change affect emissions reduction of the industry.

0.00%

-0.50%

-1.00%

-1.50%

Emissions reduction (%)

-2.00%

-2.50%
’ Industry

Figure 2.9. Emissions reduction effects of the carbon tax (2015-2050) (Unit: %)

The unit abatement cost excluding the carbon tax is calculated using Eq. (2.23). The
unit abatement cost of the manufacturing sector is 7 thousand KRW/ton CO2eq (Figure
2.10). It is comparable between industries because the bottom-up model is service-oriented.
All industries have an identical technology set, which implies that costs and efficiencies of

available technologies are similar.
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Figure 2.10. Unit abatement cost excluding the carbon tax (2015-2050) (Unit: KRW/ton

CO2eq)

The manufacturing sector changes its technology mix in two ways to avoid the carbon
tax burden. First, low-emission technologies replace high-emission technologies based on
emission coefficients. Second, new technologies, which are more efficient, replace current
technologies. The former effects increase energy demand for low-emission energy and
decrease energy demand for high-emission energy. The latter effects reduce energy demand
for all energy because new technologies produce energy services using less fuels.

Energy demand varies based on two technology substitution effects (Figure 2.11).
Energy demand for coal decreases because both effects are negative. Since coal has the

emission coefficient (see Figure 2.3), other technologies replace coal technologies. An
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increase in new coal technologies due to the carbon tax also induce a decrease in energy
demand for coal. Energy demand for oil (excluding LPG) also drops for the same reasons.

Since LPG has a low emission coefficient, the share of LPG technologies rises. By
contrast, the adoption of new LPG technologies reduces energy demand for LPG. Energy
demand for LPG increases because the former effects are larger than the latter effects.
Energy demand for heat also increases, similar to LPG.

Energy demand for city gas, which is low-emission energy, diminishes because the
negative effects of new city gas technologies are larger than the positive effects of the low

emission coefficient. Energy demand for electricity also diminishes for the same reasons.

3000

%2
(=
(=]
(=]

1000

S

A
=
R
(9
%

%,

&
S
SE.

1
IS
(=3
(=3
(=}

'
W
(=3
(=3
(=]

Changes in energy demand (thousand TOE)
)
S
&

!
N
S
S
S

-7000

Energy type

Figure 2.11. Changes in energy demand of the manufacturing sector (2015-2050) (Unit:

thousand TOE)

45

5 4208



Although energy demand for city gas and electricity decreases due to the carbon tax,

the energy demand shares of city gas and electricity increase because their emission

coefficients are low (Figure 2.12). Technology substitution due to the carbon tax causes the

manufacturing sector to depend more on low-emission technologies.
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Chapter 3. Computable general equilibrium

model for environmental analysis

3.1 Introduction
3.1.1 Research background

The computable general equilibrium (CGE) model has its theoretical basis in research
by Arrow and Debreu (1954) (Ross, 2007). Their Walrasian general equilibrium structure
helps to find solutions that clear all markets (Sue Wing, 2009) and describe the optimal
behavior of all economic agents. The CGE model’s solutions satisfy the objectives of all
economic agents.

The CGE model has been used as a tool to assess policy impacts. Although CGE models
generally focus on tax and trade policies (Chisari and Miller, 2015), their applications were
extended to environmental policies (RTI International, 2008). The environmental policies
that the CGE models usually investigate include carbon tax, emissions reduction targets,
and energy efficiency (Babatunde et al., 2017).

These environmental policies induce both environmental and macro-economic changes
in the economy. Emissions are usually generated from energy consumption, which is a
significant input in production activities. As policies affect energy consumption, production
activities also changes. Since the CGE model easily captures these ripple effects, it is a
useful tool for environmental policy analysis.
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3.1.2 Research purpose

This study constructs a recursive dynamic CGE model based on Hosoe et al. (2010).
Hosoe et al. (2010) developed the simple CGE model that includes a household and two
producers. Each producer manufactures a product using capital and the labor supplied by
the household. The household maximizes its utility by consuming products under its budget
constraint. The producers maximize their profits by producing products under their
production functions. Hosoe et al. (2010) extended the simple CGE model to the standard
CGE model, which adds the behavior of other economic agents. Their standard CGE model
includes intermediate inputs, the government, an investment agent, and international trade.

Although Hosoe et al.’s (2010) CGE model allows for a basic analysis, it has limitations
in analyzing environmental policies. This study modifies the standard CGE model for
environmental policy analysis and adds recursive equations to describe the dynamic
changes in the economy. Additionally, this study introduces a more complicated production
nesting structure and adds emission coefficients to investigate emissions from energy
consumption and production activities. Finally, this study explores the effects of carbon tax

policies on the emissions and abatement costs based on the CGE model.

3.2 Data

3.2.1 Social accounting matrix

The CGE model uses a Social Accounting Matrix (SAM), which is a table to describe

the base-year transactions in the economy, as input data. This study constructs an SAM
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using the 2015 Input-Output (10) Table of the BaxfilkKorea (2019). The Bank of Korea

(2019) classifies production into 381 sectors bhasic level. This study reclassifies them
into 41 sectors based on KEI (2015) (Table 3.1).eéxample, the coal sector in this study
incorporates the anthracite (0611) and the bitumsnmal sectors (0612) in the 2015 IO
table. The energy sector includes 14 sectors (1laderding to the energy classification
of the bottom-up model. The manufacturing sectais®is of 18 sectors (15-24 and 26—
33). The service sector is divided into 6 sect8-85 and 37—40). This study does not

disaggregate the agriculture, transport and otheioss because these sectors are small.

Table 3.1. Aggregation of the production sectors in the 2@ 5able

This study 2015 10 Table
Energy 1 Coal 061D612
Energy 2 Coal product 1611612
Energy 3 Gasoline 1622
Energy 4 Kerosene 1624
Energy 5 Diesel 1625
Energy 6 Heavy oil 1626
Energy 7 LPG 1627
Energy 8 City gas 4610
Energy 9 Heat 4620
Energy 10 Electricity 4504505
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Energy 11 Crude oil 0621

Energy 12 Natural gas 0622

Energy 13 Other Oil products 1621, 1628, 1631, 1639

Energy 14 Jet oll 1623
Manufacturing 15 Steel 27112799

Manufacturing

16 Chemistry

1711802, 20002499

Manufacturing

17 Cement

2622699

Manufacturing

18 Machine

30113099, 38163999

19 Semiconductor&

Manufacturing 31013523
display
Manufacturing 20 Electronics 3618799
Manufacturing 21 Automobile 40134032
Manufacturing 22 Nonferrous metals 28312900
Manufacturing 23 Glass 25042509
Manufacturing 24 Textile 11121209, 1900
Agriculture 25 Agriculture 0110402
Manufacturing 26 Other mining 07110729
Manufacturing 27 Food & beverage 0841000
Manufacturing 28 Timber 13141329
Manufacturing 29 Paper & printing 1414500
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Manufacturing

30 Ceramic 2611614

Manufacturing

31 Ship 41034103

32 Other transport

Manufacturing 42104299
equipment
Manufacturing 33 Other manufacturing 43114402
Service 34 Waste 4864920
Service 35 Construction 5048190
Transport 36 Transport 532720
0500, 52065310, 58116599, 6700,
Service 37 Commerce 69116920, 70027490, 76027603,
7702-7703, 7802, 7908229
Service 38 Insurance 6643603
Service 39 Domestic (Housing) 6800
4700, 7001, 75117601, 7701, 7801,
Service 40 Public
7901
Other 41 Other 8300

Sources: Bank of Korea (2019) and KEI (2015)

The shaded elements in the SAM comprises the Il@ {(&gure 3.1). Sectar receives

money from sectof and provides products or factors to segtdBectorj pays money to

sectori and receives products or factors from sec¢tomhe column sum is the total
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expenditure of sectgr and includes the purchases of intermediate inpafstal and labor,
tax payments, and imports. The row sum is the toi@me of sectoi and includes
supplies for intermediate input demand, factor dednéinal demand, and export demand.
The column and row sums of the sector should beticsd, which implies that the total

expenditure is equal to the total income.

Production activity Forei
oreign

sector

T 1 Energy Non-energy Total
(i, J)

Indirect House

Factor Tax Final demand

Coal |, .. .. | Other | capital | Labor tax. Tariff hold
Energy
Jet oil
activity
Steel
Non-
energy
Other
Capital
Factor
Tax
Tariff
Household

Final demand | Government

Investment

Foreign sector | Import

Total

Figure 3.1. Social accounting matrix
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3.2.2 Parameter

Although most of the parameters in the CGE model are calibrated base on the SAM,
several parameters cannot be calibrated. Substitution elasticities, which have significant
impacts on solutions, are usually obtained from the literature because they are difficult to
estimate. This study also adopts the substitution elasticities in the literature (Table 3.2).
Armington and transformation elasticities are assumed to be 2.0 in the range of the previous

elasticities. Substitution elasticities between intermediate inputs are assumed to be 0.5.

Table 3.2. Elasticities

Elasticity Value References

Sue Wing (2003), Lim (2012),

Armington 2.0
Hwang et al. (2014), Yeo (2019)
Transformation 2.0 Sue Wing (2003), Yeo (2019)
CapitalEnergy—Labor 0.5 Okagawa and Ban (2008),
Capital-Energy 0.5 Ge and Lei (2017), Duarte et al. (2018)
Heat—Electricity—Fossil fuels 0.5 Hwang et al. (2014), Oh et al. (2015)
Coal-Liquid fossil fuels 0.5 Kim et al. (2019)
Oil-Gas 0.5 Oh et al. (2015), Duarte et al. (2018)
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A labor endowment growth rate is obtained from KEI (2019) (Table 3.3). KEI (2019)
calculates the total employment for all time periods based on population prospects by age
and the current employment rate by age. A labor endowment growth rate is equal to a total
employment growth rate. The rate has a decreasing trend and is less than 0 after 2030

because total employment decreases due to a decline in the population.

Table 3.3. Labor endowment growth rate (Unit: %)

Time period Growth rate Time period Growth rate
2015 0.9 2019 0.8
2016 1.2 2020-2029 0.1
2017 0.4 2030-2039 -0.4
2018 0.8 2040-2050 -0.6

Source: KEI (2019)

3.2.3 Emission coefficient

Emissions coefficients are calculated based on KEI (2015), which considers emissions
from fuel combustion and production processes. The combustion emission coefficients as
a unit of monetary value were calculated using the Energy Balance of Yearbook of Energy

Statistics (KEEIL 2017b). The Yearbook of Energy Statistics provides a gross calorific value
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of primary energy supply in 2015. This study comwehe gross calorific value into net

calorific value using conversion coefficients (Tald.4). Then, the total emissions from

fuel combustion are calculated by multiplying tlembustion emission coefficients in a

unit of energy by the net calorific value of thenmary energy supply. The combustion

emission coefficients as a unit of monetary value abtained by dividing the total

emissions by the total demand, which includes meéeliate input demand and household

demand.

Table 3.4. Combustion emission coefficients

(net calorific)

IPCC Monetary
Primary Total Total
Fuel emission emission
energy emissions  demand
coefficient coefficient
supply
Coal 79,869 3,892 310,857,745 11,734 26,491
Coal product 2,393 4,437 10,616,734 707 15,013
Gasoline 8,801 2,871 25,268,981 6,396 3,951
Kerosene 2,116 2,977 6,299,346 1,963 3,209
Diesel 20,931 3,069 64,238,210 13,597 4,725
Heavy oll 5,682 3,208 18,228,496 10,028 1,818
LPG 8,545 2,614 22,338,890 6,010 3,717
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City gas 38,996 2,336 91,081,447 27,688 3,290

Oil product 49,707 880 43,754,564 30,393 1,440

Jet ol 4,447 2,963 13,174,079 6,009 2,193

Sources: Author’'s work based on Yearbook of EneStgtistics (KEEI, 2017b), KEEI
(2020) and 10 Table (Bank of Korea, 2019)

Note: Primary energy supply (thousand TOE). IPCCissimn coefficient (ton
CO2eg/thousand TOE). Total emissions (ton CO2eqjalTdemand (billion KRW).
Monetary emission coefficient (ton COZ2eq/billion YRR Moreover, several oil products
do not emit all of the carbon in themselves. Tloeest carbon is excluded from combustion

emissions.

The process emission coefficients are obtained fiioen 2015 National Inventory
Report (Greenhouse Gas Inventory and Research iC@@#5), which assumes that
emissions in Korea are generated from energy, tnduprocesses, agriculture, LULUCF
(Land Use, Land-Use Change and Forestry), or witstdassifies each category more
specifically depending on the emissions sourcess $tudy allocates emissions from
industrial processes, agriculture, and waste tptbduction sectors in the SAM consistent
with the sector specification of National Invent&tgport (Table 3.5). This study assumes

that process emissions are proportional to outpubpse-year output.
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Table 3.5. Process emission coefficients

Production sector

Emissions

This study National Inventory Report ~ [ton CO2eq/billion KRW]
Steel Steel production 2.2
Chemistry Chemistry industry 4.7
Cement Cement production 1800.4
Semiconductor & display ~ Semiconductor production 43.6
Electronics Heavy electronic machine 32.2
SF6 consumption of
Nonferrous metals 2.6
magnesium production
Agriculture Agriculture 351.3
Waste Waste 1110.0

Source: Author’s work based on National Inventory Report (Greenhouse Gas Inventory

and Research Center, 2015)

3.3 Modéd

3.3.1 Outline of the CGE modéd

This study adopts and modifies equations of Hosoe et al. (2010) to reflect Table 3.6.
Although Hosoe et al. (2010) constructed a static CGE model, it did not allow dynamic
changes in the economy. Capital stock is updated based on previous capital stock and

investments. Labor endowment is also adjusted based on the labor endowment growth rate.
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Moreover, the standard CGE model has a simple ptimunesting structure. This study
adopts more complicated production nesting stredimidescribe the substitution between
energy inputs. Additionally, this study consideosnbustion and process emissions of the

production sectors.

Table 3.6. Comparison of the CGE models

Hosoe et al. (2010) This study
Model type Static Recursive dynamic
Production nesting Two-stage Six-stage
Capital Exogenously given and fixed Recursivelyatpd
Labor Exogenously given and fixed Exogenously updiat
Emissions n/a Emission coefficients

The CGE model describes behavior of economic agerte economy. A household
maximizes its utility by consuming products underited income, which is obtained by
providing capital and labor. Producers maximizepitsfits from sales of products, which
are produced using capital, labor and intermedigtets. The government levies taxes on
the household and the producers and purchasesgisodn investment agent makes
investment-saving decisions and consumes prodgitgy lsavings of the household,
government, and foreign sector. Since the econsrapén, the domestic economy exports
domestic products and imports foreign products.
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3.3.2 Household behavior

The household is assumed to maximize the Cobb-Douglas utility function under the
budget constraint (Hosoe et al., 2010). Eq. (3.1) shows household consumption of the
product i (HX;). The household provides capital (KS * RATE) and labor (L) to the
economy and receives capital price (R) and labor price (WAGE). A part of household’s
factor income is saved (HS) or collected as a direct tax (DT). Household’s budget is used
to consume products, and the share of expenditure for the product i is shown as «;. The
household pays price ((1+ HITR;) * PQ; ), which includes price of the Armington

composite product and a household indirect tax, to purchase the product.

a; * (R * KS x RATE + WAGE =L — HS — DT)

HX; = [(1+ HITR,) * PQ;]

Eq. 3.1)

HX;: Household consumption of the product i

a;: Household consumption share for the product i
R: Interest rate (capital price)

KS: Capital stock

RATE': Rate of return

WAGE: Wage (labor price)

L: Labor endowment

HS: Household saving

DT: Direct tax
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HITR;: Household indirect tax rate on the product i

PQ;: Price of the Armington composite product i

3.3.3 Producer behavior

The producer maximizes its profit, which is revenue minus the costs of purchasing
inputs. The producer makes products by aggregating capital, labor and intermediate inputs
based on the six-stage production nesting structure (Figure 3.2). This study employs the
production nesting structure of KEI (2015) (see also Ge and Lei, 2017; Duarte et al., 2018;
Huang et al., 2019).

In the first stage, the producer aggregates oil and gas, which include gasoline, kerosene,
diesel, heavy oil, LPG, crude oil, oil product, jet oil, city gas and natural gas. Oil and gas
are aggregated into liquid fossil fuel (LFF;) based on the constant elasticity of substitution
(CES) function in Eq. (3.2). The substitution between oil and gas is determined by the
substitution parameter 0G7;, which is calculated using the substitution elasticity 0Goj.
Higher substitution elasticity means that inputs are easier to replace each other. The input
share parameter 0G; ; indicates the share of the input i in the liquid fossil fuel. Demand
for the input i (X; ;) is determined by Eq. (3.3). It depends on parameters in the CES

function and the relative price of oil or gas and the liquid fossil fuel.
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Figure 3.2. Production nesting structure



1

0Gni\oGn;
LFFj = LFFVJ' * (Zieoil or gas 0G6i,j * Xi,j ])OGn] Eq' (3-2)

1

oGn ;
[LFij 1x0G8; j*PLFF |

1—0G71j
0, ] * LFF; for i€ oil or gas Eq. (3.3)

Lj
LFF;: Liquid fossil fuel demand of the producgr
LFFy;: Scaling parameter in the liquid fossil fuel demidunction of the producey

0Gé6; j: Share parameter for the inpit(oil or gas) in the liquid fossil fuel demand

function of the producey
X; ;- Demand for the input of the producer
0Gn;: Oil-gas substitution parameter of the produtegi0Gn; = (0Go; — 1)/0G o))

PLFF;: Liquid fossil fuel price of the producer

In the second stage, the producer aggregates ligsgi fuel, coal and coal product.
These are aggregated into fossil fuéF;{ in Eq. (3.4). The substitution between liquid

fossil fuel, coal and coal product is also deteediby the substitution elasticityF o;.
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FFn;
FF; = FF)/,*((Z' COALS;; * X; ; ’)
i€coal or coal product

1 Eq. (3.4)
ey \T
+ LFF&; * LFF, "1>

1

FFnj 1-FFn;
FFy]. ’« COALS; ; * PFF; J
Xij = * I
PQ; Eq. (3.5)
for i € coal or coal product
1
FFnj 1-FFny
FFy, * LFF§; » PFF;
LFF; = ] FF, Eq. (3.6)
J PLFF, SR

FF;: Fossil fuel demand of the producgr
FFy;: Scaling parameter in the fossil fuel demand fiomcof the producey

COALS; ;. Share parameter for the inpiut(coal or coal product) in the fossil fuel demand

function of the producey

LFF§;: Share parameter for the liquid fossil fuel in tbssil fuel demand function of the

producerj

FFn; : Coalliquid fossil fuel substitution parameterf ahe producer j

(FFnj = (FFo; — 1) /FFaj)

PFF;: Fossil fuel price of the producgr

63



In the third stage, the producer makes energy csitgoby combining heat, electricity
and fossil fuel. Similar to the first and secorasts, those inputs are combined by the CES
function. The substitution between heat, electriaihd fossil fuel is determined by the

substitution elasticity{ EFF g;.

ECOMP; = ECOMPy;

i€heat or electricity ’ J Eq. (3.7)
1
\HEFF7;
FFS) » FI?HEFF?],) j
S S
ECOMPy," " x HES, ; » PECOMP; |*"*F 1)
X, = + ECOMP,
PQ; Eq. (3.8)
for i € heat or electricity
1
ECOMPy, """ « FF&; « PECOMP; | EF £q. (3.9)
FF; = ECOMP; s\
] PFP}' * ]

ECOMP;: Energy composite demand of the produger
ECOMPyj;: Scaling parameter in the energy composite derhamation of the producey

HES; j: Share parameter for the input(heat or electricity) in the energy composite

demand function of the producgr

FF§;: Share parameter for the fossil fuel in the ene@yposite demand function of the
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producerj

HEFFn; : Heat-electricity-fossil fuel substitution paraee of the producer j

(HEFFn, = (HEFFa; — 1) /HEFFa;)

PECOMP;: Energy composite price of the produger

The fourth stage describes the aggregation ofalaguid energy composite. Although
many CGE models combine capital with labor, thisdgtemphasizes the substitution
between capital and energy. In the hybrid modeg tottom-up model explains
technological change, which induces changes intadapabor and energy inputs. When
new technology replaces current technology, in Ilegtom-up model, capital input
increases and energy input decreases because ctewltyy is more expensive to install

and more efficient.

1
KE; = KEy; « (ECOMPS; « ECOMP ™" + K&; « K" ¥ Eq. (3.10)
1
KEy ®" « ECOMPS, » PKE,|" ¥E"
ECOMP; = |—~ ’ / « KE, Eq. (3.11)
g PECOMP; J

1
KEm; 1-KEn;
KEYy, * K§; x PKE; J

K; = J - ’ 4 « KE Eq. (3.12)
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KE;: Capital-energy composite demand of the prodycer
KEy;: Scaling parameter in the capital-energy compaigteand function of the producgr

ECOMPS;: Share parameter for the energy composite inctpstal-energy composite

demand function of the producgr

K§;: Share parameter for the capital in the capitakgy composite demand function of

the producerj

KEn; : Capital-energy composite substitution parametr the producer j

(KEn; = (KEgj — 1)/KEa;)

K;: Capital demand of the producgr

PKE;: Capital-energy composite price of the produger

The fifth stage explains the aggregation of labut eapital-energy composite. In the
sixth stage, the producer produces domestic oyt using non-energy inputs (Eg.
(3.16)) and capital-energy-labor composite (EqL{B. Domestic output is a Leontief
composite of non-energy inputs and capital-eneatppd composite. Since the share of
each input in domestic output is fixed, the sunstdre parameters is 1. Eq. (3.18) is the
zero profit condition for the produgt The left-hand side is the marginal revenue to
produce domestic output. The right-hand side isniaeginal cost to produce domestic

output.
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1
KEL; = KELy; » (KE§; » KE; " + Lgj « L™ ) <P Eq. (3.13)

1

KELn;j 1-KEL7;
KELy, "« KES; * PKEL; J
KE; = ] KEL- Eq. (3.14)
j PKE, REY
1
KELn; T-KEL7;
KELy, * LO; x PKEL; J
L = U ’ 4 * KEL: Eq. (3.15)
J WAGE J

KEL;: Capital-energy-labor composite demand of the pred j

KELy;: Scaling parameter in the capital-energy-labor pasite demand function of the

producerj

KE§; : Share parameter for the capital-energy compdsitéhe capital-energy-labor

composite demand function of the produger

Lé;: Share parameter for the labor in the capital@abor composite demand function

of the producerj

KELn; : Capital-energy-labor composite substitution peter of the producerj

(KELn; = (KELo; — 1)/KELa))

L;: Labor demand of the producgr

PKEL;: Capital-energy-labor composite price of the pesy
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Xij=Ayj*Zj for i €non— energy inputs Eq. (3.16)

iEnon—energy inputs

A; j: Share parameter for the non-energy input i in the domestic output function j
B;: Share parameter for the capital-energy-labor composite in the domestic output function j
Z;: Domestic output j

PZ;: Domestic output price j

3.3.4 Government behavior

The government consumes products using levied taxes, which are collected from two
sources. A direct tax (DT) is from household income. Indirect taxes include a production
tax (PT;), an import tariff (IT}), a household indirect tax (HIT}), an investment indirect tax
(IIT;) and an export indirect tax (EIT;). Indirect taxes are paid at the production tax rate
(PTR;), the import tariff rate (ITR;), the household indirect tax rate (HITR;), the investment
indirect tax rate (/ITR;) and the export indirect tax rate (EITR;). The government purchases
products (GX;) using its tax revenue excluding the government saving (GS). The share of

expenditure for the product i is shown as y;.

68



GX; = = (DT+Y; PT;+X; ITj+ X, HIT;+¥; IIT; +
Y; EIT; — GS)/PQ;

DT = DTR * (WAGE =L + R * KS * RATE)

PT; = PTR; * PZ; * Z;
IT, = ITR; * PM; * M;
HIT; = HITR, * PQ; * HX;
IIT; = IITR; * PQ; * IX;

EIT; = EITR; * epsilon * PWE; x E;

GX;: Government consumption of the product
u;: Government consumption share for the product
PT;: Production tax from the producgr

IT;: Import tariff from the producey

HIT;: Household indirect tax for the product
IIT;: Investment indirect tax for the product
EIT;: Export indirect tax for the produat

GS: Government saving

DTR: Direct tax rate

PTR;: Production tax rate for the producgr
PZ;: Price of the producf

Z;: Domestic output of the produgt
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ITR;: Import tariff rate for the product j

PM;: Import price in a local currency for the product j

M;: Import of the product j

IITR;: Investment indirect tax rate for the product i

IX;: Investment demand for the product i

EITR;: Export indirect tax rate for the product i

epsilon: Exchange rate

PWE;: Export price in a foreign currency for the product i

E;: Export of the product i

3.3.5 Investment behavior

The investment agent gathers savings of the household (HS), the government (GS) and
the foreign sector (FS). As Eq. (3.26) indicates, total expenditure for investments is equal
to total savings. The share of expenditure for the product i always maintains the base-year
share based on Eq. (3.29) (KEIL, 2015). The investment agent pays price ((1 + IITR;) *
PQ;), which includes price of the Armington composite product and the investment indirect
tax, to purchase the product. The household and the government save income and tax
revenue at the rates of HSR and GSR, respectively. The foreign sector saves its export

revenue excluding expenditure to import domestic products (see Eq. (3.32)).
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Z (1 + IITR;) * PQ; * IX; = HS 4+ GS + epsilon * FS Eq. (3.26)
i

HS = HSR * (WAGE * L + R * KS x RATE) Eq. (3.27)
GS = GSR « (DT+Y,; PTy+ ¥, ITj+ ¥, HITj+ ¥, IIT; + %, EIT) Eq.(3.28)

IX; = 1X, = A Eq. (3.29)

FS: Foreign saving in a foreign currency

HSR: Average propensity for household saving
GSR: Average propensity for government saving
IX,: Base-year investment demand for the product i

A: Investment adjustment variable

3.3.6 International trade

Although the CGE model of this study is a national model, international trade is
described because the domestic economy exchanges with the foreign sector. World export
price (PWE;) and world import price (PW M;) are excahnged to domestic export price (PE;)
and domestic import price (PM;) using an exchange rate (epsilon). The domestic economy
receives world export price excluding the export indirect tax (Eq. (3.30)) and pays world
import price to purchase products of the foreign sector (Eq. (3.31)). The foreign sector
generates income by selling the products and uses its income to purchase products of the
domestic economy. The rest of the income is saved in Eq. (3.32).

Products in the domestic economy can be domestically produced or imported. The CGE
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model usually assumes that the domestic economguoees the Armington composite
product, which is an aggregation of domestic pregland imports. The aggregation is done
based on the CES function in Eq. (3.33). The subth elasticityAo; influences on the
substitution between domestic products and imports.

The domestic economy can sell products to domestioreign consumers. Domestic
demand and exports relies on the transformatioctimmin Eq. (3.36). The transformations

is done based on the transformation paramgger

PE; = (1 — EIT;) * epsilon « PWE; Eqg. (3.30)
PM; = epsilon * PWM; Eqg. (3.31)
FS+Y; (1 + EIT)) « PWE; «E; = ¥; PWM; = M; Eq. (3.32)
S
Qi = Ay; * (M8 * M/ + D&, » D)4 Eq. (3.33)
p 1
: ni i |1-An;
M, = |2 Mo« PO, £ 0, Eq. (3.34)
P 1
_ |Avx Do PO Eq. (3.35)
DL * Ql
PD;
1
Zi= 6+ (Ep;+ B + Dy + DY) Eq. (3.36)

1
1-¢;

*7; Eq. (3.37)

6 Ep; « (1 + PTR) * PZ;
L PE;/(1 — EITR,)
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1
6P« Dp; * (1 + PTR;) » PZ;|*~%: Eq. (3.38)
= PD; "
L

D;

PE;: Export price in a local currency for the product i

PW M;: Import price in a foreign currency for the product i

Q;: Armington composite product i

Ay;: Scaling parameter in the Armington composite function of the product i
M§;: Import share parameter for the product i

D§;: Domestic demand share parameter for the product i

D;: Domestic demand for the product i

An;: Substitution parameter of the product i (An; = (Ao; — 1)/Agy;)
PD;: Price of the domestic demand i

0;: Scaling parameter in the transformation function of the product i
E;: Export share parameter for the product i

Di;: Domestic demand share parameter for the product i

¢;: Transformation parameter of the product i (¢; = (EDo; — 1)/EDoy)

3.3.7 Market clearing

Eq. (3.39) is the market clearing condition for the Armington composite product. The
producer supplies Q; in the market. The household (HX;), the government (G X;) and the

investment agent (IX;) consumes the Armington composite product. Producers purchase
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the Armington composite product and employ it as intermediate input (X; ;). Eq. (3.40) and
Eq. (3.41) show the market clearing condition for the capital and labor markets. All capital
should be employed by producers, and all labor should be hired by producers.

Eq. (3.39) excludes the market clearing condition for the Other sector. When there is n
markets in the economy, the market clearing of the n — 1 markets assures the market
clearing of the nth market due to Walras’s law. The CGE model generally excludes the
market clearing condition for one market to test the model. If left-hand and right-hand sides
of the market clearing condition for the Other sector is equal, the model is considered to be

consistent.

Qi = HXL + GXL + [XL +z] Xi,j

Eq. (3.39)
for i€ all products excluding Other
2]_ Kj = KS « RATE Eq. (3.40)
2]_ Li=L Eq. (3.41)

L: Labor endowment

3.3.8 Consumer priceindex

The CGE model adopts the relative price system. This study considers the consumer

price index (CPI) as the numeraire price. The CPI is derived in Eq. (3.42). The CPI is the
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weighted price of the products that the household consumes. The CPI weight is the share

of household consumption of the product i in total household consumption.
CPI = 2 CPIWEIGHT; = PQ; Eq. (3.42)
i

CPI: Consumer price index

CPIWEIGHT: Consumer price index weight

3.3.9 Recursive equation

There is no time subscript in the previous equations because the recursive dynamic CGE
model iteratively solves static problems. This study assumes that capital stock is updated
based on solutions of previous time period, and labor endowment is updated based on the
exogenous growth rate (see Table 3.3). As Eq. (3.43) indicates, capital stock at time period
t + 1 (KS;;) is the sum of depreciated capital stock at time period t ((1 — DEPR) * KS;)
and all new investments (},; IX;). A depreciation rate and a rate of return is calculated
based on KEI (2015). Labor endowment at time period t + 1 (L;4;) grows depending on

the labor endowment growth rate (LGROWTH,, ) in Eq. (3.44).

KS;o; = (1 — DEPR) + KS, + Z IX,, Eq. (3.43)
i

Lr+1 = (1+ LGROWTH,,,) * L, Eq. (3.44)
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K S,: Capital stock at time period ¢t

DEPR: Depreciation rate

1X; ;: Investment demand for the product i at time period t
L,: Labor endowment at time period t

LGROWTH;,: Labor endowment growth rate at time period ¢ + 1

3.3.10Adjustment of labor productivity and energy efficiency

Gross domestic product (GDP) represents the scale of the economy. Since emissions
increase depending on the scale of the economy, it is necessary to calibrate future GDP in
the CGE model. This study adopts the GDP outlook, which the Ministry of Environment
employs to establish the LEDS (Ministry of Environment, 2020).

As Eq. (3.45) indicates, this study assumes that labor productivity improves for the
calibration of GDP. Labor endowment at time period t + 1 (L) grows based on a labor
endowment growth rate (LGROWTH,,,) and labor productivity at time period ¢t + 1
(LPROD;41).® Labor productivity improvement induces an increase in labor endowment

and GDP growth.

Lrs1 = LPROD;, * (1 + LGROWTH,,,) * L, Eq. (3.45)

5 Assuming that labor productivity grows at an annual rate of 1.65%, labor productivity in 2050 is 1.7 times
greater than the base-year labor productivity. Additionally, the labor productivity of the manufacturing sector
of Korea doubled from 2000 to 2019 (Korea Productivity Center, 2020).
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LPROD,,: Labor productivity at time period t + 1

The LEDS predicted emissions in 2050 under the assumption that energy efficiency
would improve. Due to improving energy efficiency, the estimated BAU national emissions
in 2050 are 761.4 million ton CO2eq (Ministry of Environment, 2020), which is
comparable with national emissions 692.3 million ton CO2eq in 2015 (Greenhouse Gas
Inventory and Research Center, 2015). To prevent emissions in the CGE model from
growing with a GDP growth path, this study assumes energy efficiencies of all sectors
excluding the energy sector improves based on an Autonomous Energy Efficiency
Improvement (AEEI) parameter in Eq. (3.46). The AEEI parameter does not improve
energy efficiency of the energy sector because it may cause energy output of the energy
sector to be inconsistent with the laws of thermodynamics (Sue Wing and Eckaus, 2007).
Moreover, this study assumes that process emission coefficients annually decrease at a rate

of 3%.

ECOMPYj 41 = AEEl 4 * ECOMPY;;
Eq. (3.46)
for j € all sectors excluding the energy sector

3.3.11Carbon tax

With the carbon tax, the household and the producers pay additional costs to consume

energy and produce products. The producer pays PQCTAX;, which includes the price of
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the Armington composite product and the carbonttaxonsume products of the energy
sector. The carbon tax is proportional to a combostmission coefficient in Eq. (3.47).

Additionally, if there are process emissions, thedpcer pays the carbon tax, which is
proportional to a process emission coefficientEs (3.48) indicates, this carbon tax is
included in the producer’'s marginal cost. Moreotee, household pays the carbon tax to
consume products of the energy sector. The equitidescribe household consumption is
modified as Eqg. (3.49). This study assumes thatalbon taxes that the government

collects are transferred to the household.
PQCTAX;=PQ; + CO2E; x CTAX = CPI for i € Energy sector Eq. (3.47)

PQCTAX;: Price of the Armington composite productincluding a carbon tax
CO2E;: Combustion emission coefficient for the energydurct i

CTAX: Unit carbon tax

iEnon—energy inputs
+CO2P; * CTAX = CPI Eq. (3.48)

for j € non — zero process emission sectors

CO2P;: Process emission coefficient for the prodyict
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a; * (R * KS * RATE + WAGE * L + TCTAX — HS — DT)

HXL' =
Eq. (3.49)

for i € Energy sector

TCTAX: Total carbon tax

3.3.12Scenario

This study adopts a carbon tax policy as a representative reduction policy and assess its
impacts on emissions and abatement costs. The government is assumed to impose a 30
thousand KRW/ton CO2eq carbon tax in 2015. The carbon tax linearly and annually

increases until 360 thousand KRW/ton CO2eq in 2050 (Figure 3.3).°
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Figure 3.3. Carbon tax (Unit: thousand KRW/ton CO2eq)

6 This carbon tax level achieves the lowest 2050 target (40% reduction) of the LEDS (Ministry of
Environment, 2020).
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Table 3.7 summarizes the scenarios in this chapter. CGEONLY BAU is the BAU
scenario without the carbon tax. CGEONLY CTAX is the carbon tax scenario, which

imposes the carbon tax in Figure 3.3.

Table 3.7. Scenario description

Scenario Description

CGE model
CGEONLY_BAU
No carbon tax

CGE model

CGEONLY_CTAX
Carbon tax: 30-360 thousand KRW/ton CO2eq (2015-2050)

3.4 Results
3.4.1 BAU

The CGE model calibrates the 2050 BAU national emissions of the LEDS. As Figure
3.4 shows, national emissions slowly increase from 689 million ton CO2eq in 2015 to 776
million ton CO2eq in 2050. By contrast, GDP in 2050 is two times larger than the GDP in
2015 (Figure 3.5). Although the CGE model does not calibrate national emissions and GDP
for all periods, it calibrates these LEDS values for 2050.

The base-year emissions in the CGE model calibrate the 2015 National Inventory
Report (Figure 3.6). Since this study does not allocate the rest of industrial process

emissions, the CGE model has smaller base-year industrial process emissions.
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Figure 3.4. BAU national emissions (Unit: million ton CO2eq)
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Figure 3.5. BAU GDP (Unit: billion KRW)
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Figure 3.6. Comparison of 2015 emissions in the CGE model and National Inventory

Report (Unit: million ton CO2eq)

Sources: The CGE model of this study and Greenhouse Gas Inventory and Research Center
(2015)

If emissions from heat and electricity generation are allocated to each sector, then the
ten emission-intensive industries are the largest emission sources (Figure 3.7). One-third
of the base-year national emissions are generated by these industries. The service sector
follows the emission-intensive industries and generates 23.7% of the base-year national
emissions. The rest of the manufacturing sector excluding the emission-intensive industries
is also a large emission source and generates 15.8% of the base-year national emissions.
The transport, agriculture, energy, and other sectors accounts for small shares of the base-

year national emissions. If the energy sector includes emissions from heat and electricity
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generation, then it would be a significant emission source. However, due to the allocation

of indirect emissions, the energy sector generates only 3.0% of the base-year national

emissions.

35.0%

30.0%
25.0%
20.0%
15.0%
10.0%

5.0%

0.0%

Share of emissions (%)

Sector

Figure 3.7. Share of emissions of each sector in 2015 (Unit: %)

3.4.2 Carbon tax simulation
With the carbon tax, capital input replaces energy inputs. When the price of energy
increases because of the carbon tax, capital replaces energy because both inputs compete
in the capital-energy composite nest. The substitution of energy by capital is determined by
the substitution elasticity.
As Figure 3.8 shows, the energy input share decreases 1.5%p, but the shares of capital

and labor inputs increase 1.2%p and 1.7%p, respectively. An increase in the labor input
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share is caused by a decrease in the shares of energy and non-energy inputs because labor
endowment is fixed. Although non-energy inputs in the sector are fixed by the Leontief
function, the non-energy input share can change because of the changes in the production

structure.

60.0%
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362% 4 g,

50.0%

40.0%

30.0%

0.9% 1.4%
19.79 19.79
20.0% 9.792 9.7%

10.0%

0,
4.462.9%

oo | I
Energy Non-energy Capital Labor
BCGEONLY_BAU OCGEONLY_CTAX

Figure 3.8. Changes in the input share in 2050 due to the carbon tax (Unit: %)

Moreover, the carbon tax leads to the substitution of high-emission energy with low-
emission energy (Figure 3.9). Although all energy demand drops because of the rise in
energy prices, they decreases at different levels. The energy demand for high-emission
energy such as coal, coal product, and gasoline drop more steeply than do low-emission

energy such as heavy oil and heat.
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Figure 3.9. Changes in energy demand in 2050 due to the carbon tax (Unit: %)

Additionally, a decrease in domestic outputs due to the carbon tax also reduces
emissions. Production of less domestic outputs by producers mitigates emissions because
the producers consume less energy and generates less process emissions. Process emissions
are generated from the steel, chemistry, cement, semiconductor & display, electronics,
nonferrous metals, agriculture, and waste sectors. The domestic outputs of these eight
sectors decreases with the carbon tax (Figure 3.10), and process emissions also decrease.

As the carbon tax rises, the gap between CGEONLY BAU and CGEONLY CTAX
national emissions increases (Figure 3.11). In 2050, with a 360 thousand KRW/ton CO2eq
carbon tax, the estimated reduction rate of national emissions is 54.2% (Figure 3.12).

However, the slopes of the reduction rates are less steep, which implies that the reduction

effects of an additional carbon tax decrease.
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Figure 3.10. Domestic output change in the process emission sectors (Unit: %)
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Figure 3.12. Emission change due to the carbon tax (Unit: %)

The government imposes the carbon tax and transfers it to the household. The
household uses the carbon tax payment for its consumption and saving. Although this
transfer does not incur social welfare losses, the carbon tax does affect GDP.

A low carbon tax does not have significant impacts on GDP (Figure 3.13). In 2026, the
economy experiences 1% loss of GDP with a 133 thousand KRW/ton CO2eq carbon tax.
As the carbon tax rises, GDP loss increases compared to the CGEONLY BAU scenario. In
2050, with a 360 thousand KRW/ton CO2eq carbon tax, GDP decreases 2.4%.

The unit abatement cost is average GDP loss under the carbon tax to reduce a unit of

emissions (Figure 3.14).” In 2015, the unit abatement cost is not large (19 thousand

7 Abatement cost can be defined in the bottom-up and CGE models. This study calculates abatement cost
using GDP and emissions in the CGE model. The value of abatement cost can be positive or negative

depending on the use of the carbon tax. Moreover, unit abatement cost in this study means average abatement
cost.
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KRW/ton CO2eq), but it increases with the carbon tax. In 2050, the economy should accept

165 thousand KRW to mitigate one unit of emissions.

0.0%

-0.5%

-1.0%

-1.5%

GDP loss (%)

-2.0%

-2.5%

-3.0%

D’i\\ZiZO 2025 2030 2035 2040 2045 2050

™~

S

Sa

T~

Time period

=~CGEONLY_CTAX

Figure 3.13. GDP loss due to the carbon tax (Unit: %)
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Figure 3.14. Unit abatement cost (Unit: KRW/ton CO2eq)
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Chapter 4. A hybrid model to assess
environmental and economic impacts of

technological change in the manufacturing sector

4.1 I ntroduction
Chapter 1 briefly explains the advantages and disadvantages of the bottom-up and CGE

models. This section describes these characteristics in more detail.

4.1.1 Research background

The bottom-up and CGE models are representative tools to explore the environmental
and economic impacts of reduction options. Since the bottom-up model has the advantage
of providing a detailed technology description (Hourcade et al., 2006), it is appropriate to
describe new technology adoption. If technology characteristics and the price of the energy
it uses are known, then the bottom-up model identifies the substitution of current
technology by new technology and changes in the total cost, energy demand and emissions.
By contrast, the CGE model has limitations in describing effects of new technology
adoption because it depends on the substitution elasticity to explain energy substitution
(Bohringer and Rutherford, 2008). The substitution elasticity is estimated using historical
data (see Hourcade et al., 2006), which do not include information about the new

technology. That is, the CGE model explains changes due to new technology based on the
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estimated elasticity before new technology adoption

Moreover, the bottom-up model can describe the @mlopf new technology using new
energy that does not exist in the base year, ¢epof the new energy is known. However,
the CGE model has difficulty in explaining new emeadoption. Since the CGE model
calibrates parameters using base-year data, tilsemso iinformation to calibrate the
parameters of the new energy.

Additionally, the bottom-up model can investigatavidle range of technology-level
reduction options (Loulou et al., 2016) such agieificy improvements and a decrease in
the investment costs of technology. By contrast, GIGE model reflects the technology-
level reduction options at a more aggregated level.

Since the CGE model finds the optimal quantitiess ces in the economy (Andersen
et al., 2019a), it is appropriate to observe outhainges due to relative price changes and
the ripple effects of the output changes. By catirne bottom-up model cannot observe
output changes because the output and final ergegyand in the model are given,
although the bottom-up model employs the new teldgyomix and observes the changes
in production costs.

Moreover, the bottom-up model does not assuredhdilerium of the sectors besides
the one under analysis (Helgesen et al., 2018)itidddlly, the bottom-up model assumes
that the energy prices are given, and overlooksigda in the energy prices due to the

changes in energy demand, although a new technatdginduces such changes.
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4.1.2 Research purpose

The hybrid model overcomes problems of the single models and employs the
advantages of both models. It is an advanced framework that allows both technology-based
and macro-economic analysis.

This study constructs a hybrid model for the manufacturing sector of Korea using the
soft-link approach, which helps to exploit the full advantages of both models. This study
explains a method to construct the hybrid SAM and to modify the single models for
integration and information exchange. After constructing the hybrid model, this study
investigates the impacts of new technology adoption. New technology induces
technological change in the manufacturing sector and affects the whole economy. The
effects of new technology on emissions and abatement costs under a carbon tax policy are

also explored.

4.2 Literaturereview

4.2.1 Integration approach

There are three approaches to develop the hybrid model (see Bohringer and Rutherford,
2008). The reduced form approach simplifies one model and incorporates the simplified
model into the other model. The hybrid model based on this approach has usually simplified
the macro-economic model (Table 4.1). This approach is appropriate for global analysis
rather than regional analysis (Krook-Riekkola et al., 2017) because several details of the

models disappear. Moreover, it is not a complete approach for the hybrid model because

91



one of two models is reduced.

Table4.1. Previous hybrid models

Integration  Bottom-up  Top-down

Author Country
approach model model
Messner and Schrattenholzer Reduced MESSAGE-Macro
Global
(2000) form (reduced top-down model)
Reduced MARKAL-Macro
Strachan and Kannan (2008) UK
form (reduced top-down model)
Reduced TIAM-Macro
Kypreos and Lehthila (2015) Global
form (reduced top-down model)

Proenca and Aubyn (2013) Portugal MCP

Rasuch and Mowers (2014) U.S. MCP
CGE
Fortes et al. (2014) Portugal  Soft-link TIMES
(GEM-E3)
CGE
Krook-Riekkola et al. (2017) Sweden  Soft-link TIMES
(EMEC)
Andersen et al. (2019a) Denmark  Soft-link TIMES CGE
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The mixed complementarity problem (MCP) and soft-link approaches integrate the
bottom-up and CGE models without reducing one model. The MCP approach expresses
two models using an MCP format to incorporate technology details in the CGE model
(Bohringer and Loschel, 2006). This approach maintains coherence of the hybrid model,
but the large number of equations in the model induces a dimensionality problem
(Bohringer and Rutherford, 2009).

The soft-link approach relies on information exchange between the bottom-up and CGE
models. In this approach, each model delivers information that the other model requires.
These information exchanges continue until solutions of the hybrid model converge.
Although this approach allows to employ characteristics of independent two models
(Martinsen, 2011), it is difficult to maintain coherence of the hybrid model because two

models are developed based on different assumptions (Bohringer and Rutherford, 2008).

4.2.2 Previous hybrid model
Several countries have developed the hybrid models to evaluate impacts of energy and
environmental policies (see Table 4.1). Previous hybrid models generally focus on energy
consumption (Messner and Schrattenholzer, 2000; Strachan and Kannan, 2008; Dai et al.,
2016; Andersen et al., 2019a) and emissions (Strachan and Kannan, 2008; Rausch and
Mowers, 2014; Krook-Riekkola et al., 2017; Helgesen et al., 2018). Technology details of
the hybrid model allowed to analyze technology mix changes due to the policies (Proenca

and Aubyn, 2013; Rausch and Mowers, 2014; Helgesen et al., 2018). Moreover, macro-
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economic aspects of the hybrid model enabled to identify changes in macro-economic
variables including GDP and welfare (Proenga and Aubyn, 2013; Rausch and Mowers,
2014).

Fortes et al. (2014), Krook-Riekkola et al. (2017) and Andersen et al. (2019a) developed
the hybrid model based on the soft-link approach. Although three studies adopted different
CGE models, they integrated the CGE models with TIMES models. Fortes et al. (2014)
employed General Equilibrium Model for Economy, Energy, Environment (GEM-E3),
while Krook-Riekkola et al. (2017) used Environmental Medium term Economic model
(EMEC).

Andersen et al. (2019a) points out that previous soft-linked hybrid models adopted the
bottom-up and CGE models, which were already developed. Contrary to the previous
models, they newly developed two models considering an integration. This study also
adopts the soft-link approach and newly develops the bottom-up and CGE models for an

integration.

4.3 Model
4.3.1 Outline of the hybrid model

Based on Bohringer and Rutherford (2009) and KEI (2018)8, this study develops a

hybrid model of ten emission intensive industries (Figure 4.1). The CGE model is

8 KEI (2018) modified equations of the single bottom-up and CGE models, derived equations for
information exchanges between the models and explained the integration process. This study adopts the
equations and the integration process of KEI (2018).
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recursively solved from 2015 to 2050. It saves and delivers the information that the bottom-
up model requires. The bottom-up model recursively solves the cost minimization problems
of the industries. It saves and delivers the information that the CGE model requires. These
information exchanges finish when the differences in the linked variables in the previous

and current iterations converge.

Top-down (CGE)

t=0 t=1 t=2 t=35 )
(2015) ) (2016) ) (2017) 1 - [ (2050) )
Interest rate (R;) Capital input @)
Wage index (WAGE,) Labor input (L; ;)
Price index (PQj¢) Energy and non-energy inputs (X; ;)
Industry demand (Z; ;) Industry supply (Z;,)
Bottom-up
Steel [ C.hem —»{ Cement || Machine | :::::;
istry display
Nonfer
—» tlf)l:iccs > n:l::i(:e —> rousl —»| Glass [P Textile
metals

Figure 4.1. Outline of the hybrid model

Source: Author’s work based on KEI (2018)
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4.3.2 Hybrid social accounting matrix

The base-year energy, capital and labor inputs of the manufacturing sector in the
bottom-up and CGE models are inconsistent because each model uses different data sources.
However, these inputs in the hybrid model should be consistent at least for the base year. A
hybrid SAM is an adjusted SAM that helps to maintain the base-year consistency. This
study develops a hybrid SAM based on KEI (2017).

This study describes the construction of the hybrid SAM for the steel industry as an
example (Figure 4.2). As the first step, the industry column in the SAM is divided into two
parts. The linked column includes the CGE inputs explained by the bottom-up model. The
unlinked column records the rest of the CGE inputs that the bottom-up model does not
explain.

As the second step, the energy, capital and labor inputs in the SAM are allocated in the
hybrid SAM. Before the allocation, the bottom-up and CGE inputs in the base year are
compared (Table 4.2). If the CGE input is larger, then bottom-up input is recorded in the
linked column, and the difference between the CGE and bottom-up inputs is recorded in
the unlinked column (see coal in Figure 4.2). If the bottom-up input is larger, then the linked
column is equal to the bottom-up input, and the unlinked column is O (see city gas in Figure
4.2). If the CGE input is not 0, but the bottom-up input is 0, then the linked column is equal

to the CGE input, and the unlinked column is 0 (see gasoline in Figure 4.2).
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SAM Hybrid SAM

Steel Steel (linked) Steel (unlinked)
— Coal 3624 Step 2 Coal 2536 1088
Coal product 327 Coal product 4 323
Gasoline 10 Gasoline 10 0
Kerosene 9 Kerosene 9 0
Energy Diesel 23 Diesel 2 21
input Heavy oil 47 Heavy oil 21 26
LPG 36 LPG 12 24
City gas 639 City gas 1466 0
Heat 0 Heat 17 0
L Electricity 4728 Step 1 Electricity 1452 3276
—— | Other intermediate 1 0 Other intermediate 1 0 0
Step 3
Non-energy Steel 26884 Steel 26884 0
input
L—— | Other intermediate 30 67 Other intermediate 30 67 0
Capital 11631 Step 2 Capital 114 11517
Labor 6041 Labor 65 5976
Indirect tax 200 Step 4 Indirect tax 147 52
Household 0 Household 0 0
Government 0 Government 0 0
Investment 0 Investment 0 0
Import 19890 Import 14661 5229
Steel Steel
e . . e Household | Government | Investment Export
(linked) | (unlinked) P
Steel 26884 0 0 0 -4132 26277
Step 5
Step 6 Y
Steel Steel
v . . e Household | Government | Investment |  Export
(linked) | (unlinked) P
Steel
. 19816 0 0 0 -3046 19369
(linked)
Steel
. 7068 0 0 0 -1086 6908
(unlinked)

Figure 4.2. Hybrid SAM construction (Unit: billion KRW)
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Table 4.2. Energy, capital and labor inputs of the steel stduin the base year (Unit:

billion KRW)
Input CGE Bottom-up Comparison
Coal 3624 2536 CGE > BU
Coal product 327 4 CGE >BU
Gasoline 10 0 CGE>0andBU =0
Kerosene 9 0 CGE>0andBU=0
Diesel 23 2 CGE >BU
Heavy oll 47 21 CGE >BU
LPG 36 12 CGE > BU
City gas 639 1466 BU > CGE
Heat 0 17 BU > CGE
Electricity 4728 1452 CGE >BU
Capital 11631 114 CGE >BU
Labor 6041 65 CGE >BU

Source: Author’s work based on the SAM and bottgnmodel output

In the third step, the non-energy inputs in the SaM allocated. This study assumes
that only the linked column uses non-energy inputsch means that the unlinked column
does not use non-energy inputs. In the fourth skepindirect tax and imports in the SAM

are allocated based on the weights of the linketustinked columns. The weight is the
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sum of energy, capital, labor, and non-energy inputs in the hybrid SAM. The ratio between
the two weights is about 2.80 for the steel industry. In the fifth step, the industry row in the
SAM is also divided into the linked and unlinked rows. Finally, the row in the SAM is
allocated to the linked and unlinked rows in the hybrid SAM by weight.

This adjustment processes are identical for the other nine linked industries. However,
the column and row sums in the hybrid SAM are not identical after the adjustment. This
study adjusts the differences between the column and row sums in the intermediate inputs

to maintain consistency in the hybrid SAM.

4.3.3 Modification of the bottom-up model
At first, the objective function of the bottom-up model is modified. Eq. (4.1) shows the
modified objective function based on Bohringer and Rutherford (2009). Whereas the
previous objective function aims to minimize the total cost, the modified objective function

aims to maximize the sum of consumer and producer surplus.

35

max Discount; * Surplus; Eq. (4.1
qeXTECH,t.YTECH,t t=0 q. (4.1)

q;: Industry supply at time period ¢t

Xrgcy,t: Energy consumption of technology TECH at time period t
YrEecn +: Total capacity of technology TECH at time period t
Discount,: Discount rate at time period t (given from the CGE model)

Surplus;: Consumer and producer surplus at time period ¢t
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The surplus at a certain quantity is defined ashiight of the consumer’s inverse
demand function minus the producer’s total coidn(4.2). As Eq. (4.3) indicates, this is
represented as given price, given demand, prictigtst of demand, endogenous supply,
capital cost, labor cost and energy cost. Althaihgisingle bottom-up model, which is not
developed for the hybrid model, assumes that giyasttiproduct is given, industry supply

(gq;) is an endogenous variable in the bottom-up mfmtehe integration.

Surplus; = JPZt(qt)dqt — Total cost; Eq. (4.2)

PZ.(q;): Inverse demand function at time period

Total cost;: Total cost of the industry at time periad

e —2+*qy )

Surplust = PZt * (e * (1 - m

Eq. (4.3)
— (Capital cost; + Labor cost; + Energy cost;)

PZ,: Price of the industrial product at time period(given from the CGE model)
d:: Industry demand at time periad (given from the CGE model)

ELAS,: Price elasticity of the industrial product dematdime periodt®

Capital cost,: Capital cost of the industry at time period

Labor cost;: Labor cost of the industry at time period

Energy cost,: Energy cost of the industry at time period

9 This elasticity is a step size to find solutiofish® hybrid model and affects convergence spekedtiEities
of all linked industries excluding the cement intysire assumed to be 1. The elasticity of the cgme
industry is assumed to be 0.5 for the convergehtieccement industry.
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35
max z Discount; = [PZ; = q; * (1

At XTECH,t-YTECH ¢ t=0

e —2*q; )

 2+ELAS, %G, Eq. (4.4)

— (Capital cost, + Labor cost, + Energy cost;)]

The industrial bottom-up model endogenously findslustry supply, energy
consumption and total capacity based on deliver&€&E nformation such as industry
demand, price indices, an interest rate and a \algx. Capital, labor, energy and non-
energy inputs of the linked industries are obtaiaker finding solutions of the bottom-up
model. The bottom-up model delivers input inforroatio the CGE model.

Eq. (4.5) explains capital cost of the industrythe bottom-up model. Similar to the
single bottom-up model, capital cost is determibgdotal capacity. However, unlike the
single bottom-up model, a capital recovery facepehds on an interest rate from the CGE
model. Eq. (4.6) describes labor cost of the irmgustthe bottom-up model. Labor cost is

also dependent on total capacity. A wage index fterCGE model also affects labor cost.

Capltal COStt = 2 INVESTTECH * CRFTECH,t * YTECH,t Eq (45)
TECHEProcess

INVESTrgcn: Unit investment cost of technolodyECH

CRFrgcn ¢ Capital recovery factor of technolod§yECH at time period

Labor cost, = Z Wt * OMrgcn * Yrecu e Eq. (4.6)
TECHEProcess
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w;: Wage index at time period (given from the CGE model)

OMygcy: Unit operation and maintenance cost of technolGgy’ H

Eq. (4.7) shows energy cost of the industry in tb#om-up model. Energy cost is
determined by fuel price index, which is also frima CGE model. The single bottom-up
model employs given predictive values for an irgerate, a wage index and fuel price
indices. By contrast, in the hybrid model, pricdiaes are endogenously determined in the

CGE model and delivered to the bottom-up model.

Energy cost, = Z 0.5 * brgc,e * XFgcuye
TECHEProcess

Eq. (4.7)

_ Z Plrgcue * EPRICErgcy + Argeny .,
= 0.5 % *
TECHEPTocess

— XTECH,t
XTECH,0

brecu ¢ Slope of presumed marginal cost of technol@WCH at time periodt

Plrgey e Fuel price index of technolog§ECH at time periodt (given from the CGE
model)

EPRICErgcy: Unit fuel price of technologyTECH

Arech,e: Lagrange multiplier of technolog¥ECH at time periodt

XrECH,0- Base-year energy consumption of technol@WCH

The CGE model explains non-energy inputs and tazesell as the capital, labor and
energy inputs. By contrast, the bottom-up modelarp linked industries’ capital, labor
and energy inputs based on the optimal technoldgyand there is no information about

non-energy inputs and taxes in the bottom-up mddwlt is, the bottom-up model explains
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industry supply using only parts of industry demantlich does not include non-energy
inputs and taxes that occupy large parts of inglud#mand.

This study solves this problem based on KEI (20kH! (2019) added dummy
technologies to describe CGE inputs that are rotéed with the bottom-up model. Table
4.3 shows linked industry’s inputs in each modéle Tinked industry in the bottom-up
model pays capital, labor and energy costs to geofinal energy demand (thousand
TOE). The linked industry in the CGE model pajst B + C + D billion KRW to
produce domestic output. From the second row irleTdlB, the ratio between energy
consumption and money is derived. The ratiajg thousand TOE/billion KRW.

Table 4.4 shows decisions on energy consumptia@uofmy technologies. Unknown
information in Table 4.3 is calculated using thdoraDummy technology for unknown
energy inputs consume&*% thousand TOE. Since the share of tax in linkedistry’s
demand is small, tax is incorporated with non-epémguts. Dummy technology for non-
energy inputs and tax in the bottom-up model comsuf@ + D) *% thousand TOE. As
the ratios for all inputs are equivalent, final ejyedemand of the bottom-up model
increases fromu thousand TOE t§A + B + C + D) *% thousand TOE.

While the CGE model uses multiple non-energy inpthis bottom-up model explains
the non-energy inputs using one dummy technolodthatigh the bottom-up model
calculates cost information of one dummy technaldglivides the information depending

on the share of non-energy inputs in the CGE model.

103



Table 4.3. Linked industry’s inputs in each model

Bottom-up

(Unit: thousand TOE)

CGE

(Unit: billion KRW)

Capital, labor and energy inputs a A
Energy inputs
Unknown B
(unknown in the bottom-up model)
Non-energy inputs Unknown C
Tax Unknown D
Total a A+B+C+D
Table 4.4. Decisions on energy consumption of dummy techrietog
Bottom-up CGE

(Unit: thousand TOE)

(Unit: billion KRW)

Capital, labor and energy inputs a A
Energy inputs a
(unknown in the bottom-up model)
a
Non-energy inputs and tax (C+ D)= 1 C+D
a
Total (A+B+C+D)*Z A+B+C+D
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4.3.4 Modification of the CGE model

The CGE model is modified as follows. First, linked industries’ inputs and domestic
outputs, which are endogenous variables in the CGE model, are parameterized, and the
production nests of the linked industries are eliminated in the hybrid model. The bottom-
up model endogenously determines linked industries’ inputs and domestic outputs and
delivers them to the CGE model as parameters. Second, additional profits of the linked
industries are transferred to the household. The profits of the linked industries may be larger
than O because the bottom-up model, which does not consider zero profit conditions,
determines linked industries’ inputs and domestic outputs. Since the CGE model assumes
that producers’ profits are equal to 0, the additional profits are inconsistent with the
assumption of the CGE model. To handle this problem, KEI (2015) assumed that the
household used the additional profits.

Eq. (4.8) shows linked industries’ capital inputs. In the CGE model, capital input is
determined in the capital-energy composite nest. However, in the hybrid model, the bottom-
up model determines capital input depending on technology mix. Linked industries’ capital

inputs are K ;.

Kj¢ = m for j € Linked industries Eq. (4.8)

Eq. (4.9) shows linked industries’ labor inputs. Although labor input is determined in

the energy-value added composite nest of the CGE model, the hybrid model obtains labor
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input based on technology mix of the bottom-up nhddaked industries’ labor inputs are

it

Ny

Ly =L, for j€ Linked industries Eqg. (4.9)

Eq. (4.10) explains linked industries’ energy irgouthe CGE model employs energy
inputs to produce energy composite. However, irhgfi@id model, technology mix of the
bottom-up model determines energy inputs. Linketligtries’ production nest structures

are not employed in the hybrid model. Linked indest energy inputs arg, , ;.

Xije =X, for i € Energy sector and j € Linked industries Eq. (4.10)

Eq. (4.11) describes linked industries’ non-enargputs. The producer in the CGE
model uses more non-energy inputs to produce narestic output. In the hybrid model,
the bottom-up model determines non-energy inputdchware proportional to industry

supply. Linked industries’ non-energy inputs atg ;.

Xijt =X, for i € Non —energy sector
Eq. (4.11)
and j € Linked industries

Eq. (4.12) shows linked industries’ domestic outp(ihdustry demand). The CGE
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model determines domestic output depending omiite pnd the zero profit condition. The
producer produces more domestic output when icepsi higher. In the hybrid model, the
bottom-up model determines industry supply andvdedi this information to the CGE

model as industry demand. This study eliminatezéne profit condition and assumes that

linked industries’ domestic outputs afg, .
Zj,t = Z],t Eq (412)

Eg. (4.13) shows the additional profits of the édkndustries. The producer earps;
for a unit of domestic output. The producer usqstah labor, energy and non-energy
inputs to produce domestic output and pByIVAGE, PQCTAX; and PQ; for a unit of
input, respectively. Eq. (4.14) is modified houddlemnsumption. In the hybrid model, the

additional profits ADDPROFIT) of the linked industries are transferred to tbadehold.

ADDPROFITS = Z [PZ; + Z; — R * K; — WAGE * L

j€ELinked industries
—Z PQCTAX; * X; Eq. (4.13)
i€EEnergy sector

_Z PQ; *X;j — CO2P; » CTAX = CPI * Z;]
iENon—energy sector
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HX,

- Eq. (4.14
gk (R * KS * RATE + WAGE * L + TCTAX + ADDPROFITS + —HS — DT) a- ( )

[(1+ HITR,) * PQ; + (PQCTAX; — PQ))]

4.3.5 Information delivery from the bottom-up model to the
CGE mode

The bottom-up model endogenously determines energy consumption of technology,
total capacity of technology and industry supply. Capital, labor, energy intermediate and
non-energy inputs are calculated based on energy consumption and total capacity of
technology.

Eq. (4.15) explains the calculation of capital inputs. The producer pays capital costs,
which are the annualized investment costs to install capacity of technology. The bottom-up

model calculates capital inputs by dividing capital costs with an interest rate.

—— _ Capital cost;,

)t R,

Eq. (4.15)
_ YrECHeProcess IN VEST]',TECH *C RFj recht * Yj,TECH,t]
= R,

Labor inputs are calculated as per Eq. (4.16). The producer pays labor costs, which are
costs to operate and manage capacity of technology. The bottom-up model calculates labor

inputs by dividing labor costs with a wage index.
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m _ Lalﬁ;;;;;gtj,t _ ZTECHEProcess[W;VZ?;IE\Zj,TECH * Y rEcH t] Eq. (4.16)
t t

Eq. (4.17) calculates energy inputs. Energy cosgsdatermined depending on the
energy consumption of the producer and scaled usiegcale coefficienENSCALE;
for consistency. The scale coefficient is calculdtg dividing initial energy input at time
period O with initial energy cost at time perioth(Eg. (4.18). It is based on the assumption
that initial ratio between two variables at timeipé O is maintained over time and iteration.

Xt = ENSCALE; ; x Energy cost; j;

= ENSCALELJ * Z P[TECH,t * EPRICETECH Eq (417)
TECHEL

* XjrecHe for i€ Energy sector

X0; 0
Energy cost0;

ENSCALE;; = Eq. (4.18)
ENSCALE; j: Scale coefficient for the energy inputof the linked industryj

X0;j,0: Demand for the energy input of the linked industryj at time period O (initial
iteration)

Energy cost0; . Energy cost for the energy inputof the linked industryj at time

period O (initial iteration)
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Non-energy inputs are calculated based on Eq. X4.18e producer determines
consumption of non-energy dummy technology in thidm-up model. Non-energy costs
are adjusted with the scale coefficieWENSCALE; ; and distributed to each non-energy
input depending oNENSHARE; ;. The share and the scale coefficient are calalilzing
Eq. (4.20) and Eq. (4.21). They are determined nidipg on initial non-energy input at
time period 0.

m = NENSHARE; j * NENSCALE; ; x NEnergy cost;

= NENSHARE; ; * NENSCALE;

Eqg. (4.19)
* Z _PITECH,t * EPRICErgcy * XjrECH t
TECHE(
for i € Non — energy sector
Xol’],o
NENSHARE; ; =
ZieNon—energy sector XOi,j,O Eq. (4_20)
for i € Non — energy sector
NENSCALE; ; = X0ij0
“/" NENSHARE; ; * NEnergy cost; Eq. (4.21)

for i € Non — energy sector

NENSHARE; j: Share of the non-energy inputof the linked industry;

NENSCALE; ;. Scale coefficient for the non-energy inputof the linked industryj
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NEnergy cost; j;: Non-energy cost of the non-energy input i of the linked industry j
at time period t
X0;j0: Demand for the non-energy input i of the linked industry j at time period 0
(initial iteration)
NEnergy cost0; jo: Non-energy cost for the non-energy input i of the linked industry j

at time period O (initial iteration)

According to Eq. (4.1), industry supply is endogenously determined in the bottom-up
model. Eq. (4.22) explains delivery of industry supply to the CGE model. The CGE model

uses industry supply from the bottom-up model as domestic output.

N

t = qt Eq. (4.22)

4.3.6 Information delivery from the CGE model to the
bottom-up model
The CGE model endogenously determines an interest rate, a wage index, price indices
and industry demand. The bottom-up model requires this information to solve its
optimization problem. The bottom-up model updates parameters based on delivered
information.
Eq. (4.23) shows the discount rates, which is calculated using the interest rates. In the

single bottom-up model, an interest rate is a constant value, which does not change
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depending on capital stock, savings and investmamtd cannot reflect the impacts of
economic changes on the interest rate. In the tiyiondel, the CGE model gives the

endogenously determined interest rate to the bettomodel.

1

DlSCO'U.Tltt = m
t

Eq. (4.23)

The bottom-up model requires a wage index to catedhbor costs and inputs. When
technology mix in the bottom-up model changes, fatbtemand also changes because
operation and management costs depend on technaipgylthough the wage index is
affected by labor demand and supply, it is genggillen in the bottom-up model. As Eq.
(4.24) indicates, in the hybrid model, the bottopmmodel uses the wage index from the

CGE model.

W, = WAGE, Eq. (4.24)

Similar to the interest rate and the wage indeg, ibttom-up model cannot reflect
endogenous changes in energy prices. Endogencetglynined energy prices in the CGE
model are delivered to the bottom-up model accorthrEq. (4.25). The bottom-up model
updates technology mix and the slope of the makrgivst function based on energy price

indices.

112



PITECH,t == PQCTAXlt fOT TECH € l Eq (425)

The bottom-up model solves its surplus maximization problem and obtains industry
supply. The bottom-up model determines new quantity (g, ) based on previous quantity (g;)
from the CGE model. Eq. (4.26) describes the delivery of industry demand to the bottom-

up model.

95 = Zjt Eq. (4.26)

4.3.7 Convergencetest
At the end of each iteration, the hybrid model tests whether the linked variables are at
a convergence level. If the difference of the linked variables in the previous and current
iterations are less than 0.1%, then the hybrid model ends the information exchange process.

That is, the values of the linked variables in the last iteration are the solutions of the hybrid

model.
LV:¢iter — LV: ¢ iteor—
max j.titer J.titer—1 «100| < 0-1%
Jt LV; ¢ iter—1

Eq. (4.27)

for all linked variables

LV ¢ iter: Linked variables of the linked industry j at time period t and iteration iter
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4.3.8 Calibration of domestic output

It is necessary to set appropriate BAU domestic output in the hybrid model because
emissions largely depend on production scale. This study employs the calibration method
of KEI (2019), which calibrates linked industries’ domestic outputs in the single CGE
model.

This study uses PMP to calibrate the BAU domestic outputs of the linked industries.
Whereas the single bottom-up model calibrates energy consumption in time period 0, the
hybrid model reproduces energy consumption in all time periods. Since only base-year
energy consumption is observable, energy consumption in other time periods is projected
using the domestic output of the single CGE model. This study assumes that energy
consumption in future time periods increases based on an increase in the domestic output
of the single CGE model. Eq. (4.28) shows the projection of energy consumption of

technology in future time periods.

Z

— ]t
X)TECH,t = X)TECH,0 * 5— Eq. (4.28)
7,0

N

Eq. (4.29) is the constraint that forces the bottom-up model to calibrate X, rzcp . The
bottom-up model solves its surplus maximization problem and obtains solutions around
X, rEcH:- Then, industry supply calibrates the domestic output of the single CGE model
because the sum of energy consumption of each technology is equal to final energy demand.

After solving the surplus maximization problem under Eq. (4.29), the Lagrange multipliers
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for all periods are obtained.

Xjrecut < (1+ &) *X rgcuy Eq. (4.29)

4.3.9 Scenario

Table 4.5 summarizes the scenarios in this chapter. LINK BAU is the BAU scenario,
which excludes new technology and the carbon tax. This scenario compulsorily prevents
the adoption of new technology that should be adopted in the future. In the LINK NEW
scenario, the linked industries adopts new technology based on the KETEP database
without the carbon tax. The LINK BAU CTAX and LINK NEW _CTAX scenarios
introduces the carbon tax in Chapter 3 to investigate impacts of new technology adoption

on emissions and abatement costs.

Table 4.5. Scenario description

Scenario Description
Hybrid model
LINK BAU Only current technology

No carbon tax

Hybrid model
LINK NEW New technology adoption (Linked industries)

No carbon tax

115



Hybrid model
LINK BAU CTAX Only current technology

Carbon tax: 30—-360 thousand KRW/ton CO2eq (2015-2050)

Hybrid model

LINK NEW CTAX New technology adoption (Linked industries)

Carbon tax: 30—-360 thousand KRW/ton CO2eq (2015-2050)

4.4 Results
4.4.1 BAU

Table 4.6 shows the deviations of the linked variables between the previous and current
iterations and explains the convergence process in the BAU scenario. The deviations in the
first and second iterations are almost equal, which implies that information exchange until
the second iteration does not narrow the deviations. In the third and fourth iteration, the
deviations sharply decrease. An interest rate and a wage index already satisfy the
convergence condition. As the deviations decrease, all linked variables excluding an output
price index converge in the seventh iteration. An output price index, which has the slowest
convergence speed, converges in the tenth iteration. Solutions of the other scenarios also

converge based on a similar process of convergence of the BAU scenario.
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Table 4.6. Convergence process of the hybrid model (BAU) (i)

Non- Output
Iteration Energy Capital Labor Interest Wage Domestic
energy price
number input input  input rate  index output
input index
1 3.22 2.96 3.11 2.54 2.91 5.60 2.96 20.55
2 3.22 2.96 3.11 2.54 291 5.60 2.96 20.55
3 1.45 1.38 1.15 1.13 0.06 0.16 1.37 9.91
4 0.70 0.66 0.45 0.44 0.03 0.07 0.66 4.93
5 0.34 0.32 0.19 0.19 0.01 0.02 0.31 2.29
6 0.17 0.15 0.09 0.09 0.00 0.01 0.15 111
7 0.08 0.07 0.04 0.04 0.00 0.00 0.07 0.53
8 0.04 0.03 0.02 0.02 0.00 0.00 0.03 0.25
9 0.03 0.02 0.01 0.01 0.00 0.00 0.02 0.12
10 0.01 0.03 0.00 0.00 0.00 0.00 0.01 0.06

National emissions are higher in the hybrid mod&ggre 4.3). Since there is no
production nests of the linked industries in therity model, the energy efficiency of the
linked industries does not improve based on thelAERus, the 2050 national emissions
in the hybrid model are 33% higher than those&QGBE model. Assuming that technology
efficiency in the bottom-up model improves, naticgraissions in the hybrid model can be

lower. However, it is less meaningful to use anliekgechnology database if bottom-up
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technology efficiency is adjusted.
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Figure 4.3. National emissions in the CGEONLY_ BAU and LINK BAU scenarios (Unit:

million ton CO2eq)

Contrary to national emissions, GDP is lower in the hybrid model (Figure 4.4). The
AEEI induces a domestic output increase because it contributes to a more efficient
production of the energy composite. This change in domestic output leads to GDP growth.
Since the AEEI of the linked industries in the hybrid model does not improve, they have a

higher domestic output in the CGE model. Thus, GDP is larger in the CGE model.
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Figure 4.4. GDP in the CGEONLY BAU and LINK BAU scenarios (Unit: billion KRW)

4.4.2 I mpactsof new technology adoption

The liked industries adopt new technology in future periods. New technology adoption
induces efficiency improvement in energy service technology (Figure 4.5). The relative
efficiency is derived based on the reference efficiency, which is the initial efficiency of the
energy service technology in LINK BAU.

In LINK BAU, the relative efficiency is almost unchanged because only the current
technologies are employed.'® By contrast, in LINK_NEW, the relative efficiency improves
in the year that the new technology is introduced. Moreover, it improves when the current

technology expires and is replaced by the new technology.

10 This study uses the steel industry as an example to explain technology-level results.
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The linked industries produce more energy services per energy consumption through
new technology adoption. The efficiency improvement of oven technology is the most
significant, while the boiler, motor, and own power generator technologies experience
efficiency improvements of less than 10%.

When the steel industry does not adopt new technology, the share of new technology is
0% (Figure 4.6). By contrast, in LINK NEW, the share increases and is kinked in several
time periods. In 2016, the new oven technology is introduced, and the share increases from
0% to 30%. Since the new oven technology has significantly higher efficiency than the
current technology, the share steeply rises. In 2018, new boiler and dryer technologies are
introduced, and the share steeply rises as well. That is, the technology mix sharply changes
when industries adopt new technology. The degree of change depends on a level of

efficiency improvement.
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Figure 4.6. Share of new technology in the steel industry (Unit: %)
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Efficiency improvement due to new technology contributes to domestic output
increases as well as emissions reduction. Since the marginal costs of the linked industries
decrease due to efficiency improvement, the linked industries expand their production
(Figure 4.7 and Figure 4.8). Additionally, due to decreases in the marginal costs, the prices
of the domestic outputs of the linked industries also decrease (Figure 4.9 and Figure 4.10).11
Since the unlinked sectors employ the products of the linked industries as intermediate

inputs, they experience indirect effects.
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Figure 4.7. Domestic output change in the linked industries (compared to LINK BAU)

(Unit: %)
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New technology reduces energy consumption in the linked industries. A decrease in the
energy demand of the linked industries reduces total energy demand (Figure 4.11). Due to
adoption of new oven technologies in 2016, the total energy demand for the linked fuels*?
decreases 1.3%p. As the linked industries introduce other new technologies, the total
energy demand for the linked fuels decreases. Since energy prices rely on energy demand,
the weighted energy price for the linked fuels also drops (Figure 4.12). The unlinked sectors
experience indirect effects of new technology adoption in the linked industries through

changes in energy prices.

12 Coal, coal product, gasoline, kerosene, diesel, heavy oil, LPG, city gas, heat and electricity.
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4.4.3 Carbon tax smulation

When the government imposes a carbon tax, the production sectors replace their energy
inputs with capital input and reduces their production activities. The household also
decreases its energy consumption. These changes in the production sectors and the
household decreases energy consumption and emissions in the economy.

Without new technology, the emissions of the linked industries in 2015 decrease by 4.3%
(Figure 4.13). As the government imposes more carbon tax, its reduction effects are more
significant. In 2050, the linked industries that use only current technologies reduces 21.2%
of their BAU emissions, although the effects of additional carbon taxes gradually diminish.

In LINK NEW_CTAX, the emissions of the linked industries in 2015 are equivalent to
the emissions of LINK BAU CTAX. However, the linked industries have more potential
to mitigate their emissions after 2016 due to the introduction of new technology. In 2016,
the linked industries that adopt new oven technologies achieve 50% more emissions
reductions compared to LINK BAU CTAX. In 2050, the efficiency improvement in the
linked industries induces a 1.2%p increase in the reduction rate.

Although new technology helps to reduce more emissions, its impacts decline due to
the rebound effect. Efficiency improvement reduces the production costs of the linked
industries. Then, their outputs and emissions rebound. Rebounding emissions decrease the

reduction effects of new technology. Chapter 5 will investigate the rebound effect in detail.
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The adoption of new technology by the linked industries also affects national emissions
(Figure 4.14). Since the linked industries generate about 30% of national emissions, new
technology directly decreases national emissions. Moreover, the production sectors
excluding the linked industries change their production activities because the prices of the
products of the linked industries drop. Changes in the production activities of the unlinked
sectors indirectly affect national emissions.

With new technology and the carbon tax, 40.7% of the 2050 national emissions are
mitigated, which implies that the linked industries have less potential for emissions

reduction. Since the linked industries are integrated, the technology mix in the bottom-up
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model determines their emissions. For example, the steel industry uses a large and fixed
amount of bituminous coal as raw material. Although the price of bituminous coal rises due
to the carbon tax, the steel industry cannot reduce its use of bituminous coal. That is, the
linked industries may reduce emissions to a lesser extent because of constrains in the

bottom-up model.

0.0%

2015 2020 2025 2030 2035 2040 2045 2050
-5.0%

-10.0%

ions (%)

-15.0%

-20.0%

-25.0%

-30.0%

-35.0%

Changes in national emiss

-40.0%

-45.0%

Time period

-=-LINK_BAU CTAX ==LINK NEW _CTAX

Figure 4.14. Changes in national emissions (compared to LINK BAU) (Unit: %)

Although the government collects the carbon tax and transfers it to the household, GDP
decreases because it restricts production activities (Figure 4.15). In LINK BAU CTAX,
the GDP loss constantly decreases, and the carbon tax reduces 1.4% of GDP in 2050.

New technology mitigates GDP loss because domestic outputs of the linked industries
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increase (see Figure 4.7). Moreover, decreases in the prices of the products of the linked
industries and energy prices due to new technology also help the production activities of
the unlinked sectors. That is, the impacts of new technology adoption in Section 4.4.2
reduce a carbon tax shock.

In 2016, the GDP loss in LINK NEW_ CTAX is kinked because the efficiency of new
oven technologies significantly improves, which implies that the positive effects of the new
oven technologies on GDP mitigate GDP losses due to the carbon tax. In 2050, the new

technologies in the linked industries contribute to a 0.3%p decrease in GDP loss.
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Figure 4.15. GDP loss due to the carbon tax (compared to LINK _BAU) (Unit: %)
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The economy accepts the GDP loss to reduce emissions under a carbon tax policy. The
unit abatement cost shows GDP loss to mitigate a unit of emissions (Figure 4.16). With
new technology, the economy has lower costs compared to LINK BAU CTAX. The unit
abatement cost is kinked in 2016 for the same reason that GDP loss is kinked in 2016. Due
to efficiency improvement based on new technology adoption in the linked industries, the
unit abatement cost of the economy decreases from 92 thousand KRW/ton CO2eq to 73

thousand KRW/ton CO2eq.
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Figure 4.16. Unit abatement cost (compared to LINK BAU) (Unit: KRW/ton CO2eq)
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Chapter 5. Assessment of the rebound effect of
efficiency improvement in the manufacturing

sector based on the hybrid model

5.1 Introduction

5.1.1 Research background

The manufacturing sector reportedly emitted one-third of all 2017 global emissions if
the calculation includes indirect emissions from heat and electricity (IEA, 2019). Since the
manufacturing sector is a major emission source, managing its emissions are receiving
increasing attention.

Efficiency improvement is one of the most promising reduction options for the
manufacturing sector (de Pee et al., 2018). After the Paris Agreement, the UK and Japan
designed efficiency improvement plans for their manufacturing sectors (UK government,
2017; The government of Japan, 2019). The Korean government also selected efficiency
improvement plans to achieve about one-third of the manufacturing sector’s reduction
target in 2050 (Ministry of Environment, 2020).

Efficiency improvement mitigates emissions by reducing the energy consumed to
provide energy services. However, efficiency improvement involves an unexpected
increase in energy consumption. Efficiency improvement reduces producers’ energy

demand, implying that their total costs decrease. Then, energy service prices drop, which
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leads to an increase in energy service demand (Greening et al., 2000). The rebound effect
indicates the unexpected rebound of energy consumption, which partially cancels out the
effects of efficiency improvement (Berkhout et al., 2000). Assessing the rebound effect is
important because it can be a potential obstacle to implementing efficiency improvement
policies (Sorrell and Dimitropoulos, 2008).

Although the bottom-up and CGE models are representative models to investigate
environmental policies, they are insufficient to assess the rebound effects of technology
efficiency improvement. The bottom-up model explains technology efficiency
improvement, but it does not describe the rebound of energy demand. The CGE model
explores the changes in energy demand and ripple effects of efficiency improvement, but

reflects technology efficiency improvement at a more aggregated level.

5.1.2 Research purpose

The hybrid model allows researchers to assess the rebound effect more precisely by
adopting the advantages of the bottom-up and CGE models. It explicitly represents
technological change in the manufacturing sector and explains the supply and demand
changes in the economy.

This study assesses the rebounding emissions due to technology efficiency
improvement in the manufacturing sector. Efficiency improves through new technology
adoption. Since new technology is more efficient, it reduces energy consumption and

affects the total costs in the manufacturing sector. The manufacturing sector changes its
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output, which in turn affects the rest of the economy. This study considers the rebound
effects from the efficiency-improving sector and those outside of the efficiency-improving
sector. Moreover, this study explores the factors that cause rebound effects and shows the
impacts of the rebound effects on the reduction target. Finally, this study tests the impacts
of the substitution elasticities in the CGE model on the rebound effects to identify the extent

to which the results depend on the assumption of the CGE model.

5.2 Literaturereview
5.2.1 Classification of therebound effect

As Turner (2013) mentioned an insufficient consensus regarding the rebound effect,
previous studies have employed their own definition and classification of the rebound effect.
The classification of Greening et al. (2000) has been adopted by many previous studies (see
Sorrell and Dimitropoulos, 2008; Barker et al., 2009; Turner, 2013; Broberg et al., 2015;
Luetal., 2017) and included four rebound effects. A direct effect means that falling energy
service prices induce more energy service demand. A secondary effect indicates that the
price changes help to save expenditure for energy services and energy service demand
changes based on the savings. An economy-wide effect measures the rebound effect
because of the adjustment of the equilibrium in the economy. A transformational effect is
the rebound effect from varying characteristics of consumers and institutions.

Bohringer and Rivers (2018) classified the rebound effect into partial and general

equilibrium effects. Direct and indirect rebound effects are sorted as the partial equilibrium
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effect. An economy-wide rebound effect is classified as the general equilibrium effect. They
reported that two-thirds of the rebound effects of efficiency improvement in the
manufacturing sector were the partial equilibrium effect, whereas one-third of the rebound

effects was the general equilibrium effect.

5.2.2 Approachesto assessthe rebound effect

Jin and Kim (2019) explained approaches to assess the rebound effects. The CGE model
reflects efficiency improvement by reducing energy consumption or prices and has an
advantage in evaluating the general equilibrium effect. Panel and time-series analysis is
also used to assess the rebound effects. In these analysis, energy prices are used as
independent variables, which measure efficiency improvement that is difficult to observe.
A macro-economic growth approach evaluates the rebound effects by calculating potential
and actual energy savings. The rebound effects are represented as the differences between
potential and actual energy savings. In this approach, efficiency is measured through
changes in energy intensity.

Although these approaches are general in the literature, they have limitations in
discussing technology efficiency improvement and exploring energy consumption at a
technology level. If the approach cannot describe technologies in the manufacturing sector,
it has difficulty in precisely assessing the rebound effects of technology efficiency

improvement.
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5.2.3 Previousstudieson therebound effect

There is no specific range for the rebound effects in the manufacturing sector (Table
5.1). Barker et al. (2007) employed an econometric model to investigate the rebound effects
in the UK industries. They divided the UK industries into the energy-intensive industries
and the other industry. They showed that the rebound effects were larger in the energy-
intensive industries (27.0%) than the other industry (14.0%) in 2010. Lin and Li (2014) and
Lin and Tian (2016) employed the dynamic ordinary least squares approach to estimate the
rebound effects in Chinese heavy and light industries, respectively. According to their
estimation, the rebound effects in the heavy industry (74.3%) were two times larger than
the light industry (37.7%). Li et al. (2016) explored the rebound effects of the Chinese
industrial sectors using the output distance function. They considered 36 industrial sectors
and estimated the rebound effects as 88.4%.

There are several studies that tried to employ advantages of the bottom-up and top-
down models. Barker et al. (2007) explored the rebound effects in the UK economy by
partially combining both models. However, their efforts are insufficient to fully employ
advantages of both models because their model less specifically describes bottom-up
aspects. Howells et al. (2010) adopted the approach to deliver economic feedbacks to the
bottom-up model to explore the Korean electricity sector. Their model employed input-
output multipliers for the integration of economic feedbacks in the bottom-up model.
Although Lehr et al. (2011) explored the rebound effects in Germany based on macro-

econometric model as well as the bottom-up model, two models were not fully integrated.
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Giraudet et al. (2012) investigated the rebouncotff from French households by

recursively solving two models. However, their miodensidered limited feedbacks of

household and energy. Andersen et al. (2019b) dpgdlthe Danish hybrid model based

on the soft-link approach and investigated impadtenergy efficiency policies. They

considered a subsidy for investments in energyngavand a decrease in the barrier for the

investments as the energy efficiency policies. Adicw to their results, the rebound effect

of the policies was 12.5%.

Table 5.1. Previous studies on the rebound effect in the fiaabwring sector

Author Country and sector

Period Rebound effect

Bentzen (2004) US manufacturing

1949-1999 24.0%

15.0-30.0% (2005)

Barker et al.
UK industries 2000-2010 14.0-27.0% (2010)
(2007)
Lin and Li
Chinese heavy industry 1980-2011 74.3%
(2014)
Lin and Tian
Chinese light industry 1980-2012 37.7%
(2016)
Li et al. (2016) Chinese industrial sectors 1998-2011 88.4%
Lin and Zhao
Chinese textile industry 1990-2012 20.9%
(2016)
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5.3 Rebound effect
5.3.1 Scenario

This study examines the scenarios in Chapter 4 to assess the rebound effects of
technology efficiency improvement (Table 5.2). In the BAU scenario, the linked industries
employs only the current technology and do not adopt new technology. In the LINK NEW
scenario, the linked industries introduce new technology based on its introduction year in
the KETEP database. In the LINK NEWNR scenario, the rebound effects are not

considered and emissions are calculated based on the LINK BAU and LINK NEW

scenarios.

Table 5.2. Scenario description

Scenario Description

Hybrid model
LINK BAU
Only current technology

Hybrid model
LINK NEW New technology adoption (Linked industries)

With rebound effects

Hybrid model
LINK NEWNR New technology adoption (Linked industries)

Without rebound effects

137



5.3.2 Calculation of therebound effect

This study considers two rebound effects based on their sources. A direct rebound effect
is the rebounding emissions of the linked industries (efficiency-improving sectors) due to
linked industries’ efficiency improvement. An indirect rebound effect is the rebounding
emissions of the unlinked sectors and the household energy consumption (the rest of the
economy) due to linked industries’ efficiency improvement.

Emission intensity is defined as emissions to produce a unit of output. When the linked
industry j adopts new technology, emissions and output of the linked industry j also
change. Eq. (5.1) shows emission intensity of the linked industry j in LINK NEW.

Emission intensity decreases if emissions are reduced or output increases.

E I]NEW _ e]NEW / Z]NEW Eq. (5.1)

EINFY: Emission intensity of the linked industgy in LINK_NEW
e/'*": Emissions of the linked industry in LINK_NEW
Z'*W: Output of the linked industry in LINK_NEW

If there are no rebound effects, which means that output of the linked industry j does
not rebound, emissions of the linked industry j is calculated by Eq. (5.2). Since output
does not change, it maintains output in LINK BAU. That is, emissions of the linked

industry j drop based on a decrease in emission intensity.
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eNR = zBAU  pINEW Eq. (5.2)

ej'": Emissions of the linked industry in LINK_NEWNR (without rebound effects)

ZP4U: Output of the linked industry in LINK_BAU

If there are rebound effects, which means thatudwipthe linked industry rebounds,
a direct rebound effect is calculated by Eq. (5I8k linked industry produces more output
when the marginal cost drops due to new technolaljiyough new technology reduces
emissions of the linked industry, its reductioreef§ are offset because of output expansion.
A direct rebound ratio is calculated based on Edt)(and means the share of rebounding

emissions in potential reduction.

Direct rebound effect

Eq. (5.3)
= Z[(Z}VEW —ZPA)  ELVEY ] = Z[Azj * ELVE]
J J
eNEW _ ,NR
Direct rebound ratio = e]jB“w——e];VR Eq. (5.4)

Eq. (5.5) calculates the indirect rebound effettai@es in the linked industries also
affects emission of the unlinked sectors and thesébold energy consumption. The
indirect rebound effects are emission differencatsvben LINK_BAU and LINK_NEW.

The first and second terms indicates the indirelsbund effects from the unlinked sector
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and the household energy consumption, respectively.

Indirect rebound effect = Z(eJNEW —ef) + (effFW —ef?’)  Eq.(5.5)
J

NEW
i

ef“U: Emissions of the unlinked sectgrin LINK_BAU

: Emissions of the unlinked sectgrin LINK_NEW

eNEW: Emissions of the household energy consumptidrdNiK_NEW

eB4U: Emissions of the household energy consumptidriNiK_BAU

5.4 Results
5.4.1 Impactsof efficiency improvement

In Section 4.4.2, this study investigated the impacts of new technology adoption. When
the linked industries introduces new technology (Figure 4.6), their efficiency improves
(Figure 4.5). Efficiency improvement causes the marginal costs and domestic output prices
in the linked industries to drop (Figure 4.9). Due to decreasing prices, the linked industries
expand their outputs (Figure 4.7). Moreover, new technology reduces energy demand
(Figure 4.11) and energy prices (Figure 4.12).

Since the domestic outputs of the linked industries rebound, their emissions also
rebound. Moreover, the domestic outputs and emissions of the unlinked sectors rebound
because their costs drop based on the lower prices of intermediate inputs. Furthermore,
decreasing energy prices cause the household to use more energy.
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5.4.2 Direct rebound effect

In LINK BAU, the 2050 emissions of the linked industries are 470.4 million ton CO2eq
(Figure 5.1). In LINK_NEW, new technology adoption reduces 4.2% (19.8 million ton
CO2eq) of the emissions from the linked industries. Although the outputs of the linked
industries rebound, emissions decreases because the energy efficiency improvement

reduces energy consumption.
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Figure 5.1. Emissions of the linked industries in 2050 (Unit: million ton CO2eq)

Emission intensity and output rebound are the two main factors that determine the
extent of mitigation. More efficient new technology decreases emission intensity and

contributes positively to mitigation, while the output rebound contributes negatively to
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mitigation. If there is no direct rebound effectNK_NEWNR), which implies that only
the positive impact is considered, then the linkellistries reduce 5.9% (27.6 million ton
CO2eq) of their emissions. However, because ofiiteet rebound effects, 7.8 million ton
CO2eq rebound, and there is a reduction of onlg fillion ton CO2eq. That is, about 28%
of the expected reduction is offset by output retabu

Direct rebound effects tend to be large in emisaitensive industries (Table 5.3). The
steel and chemistry industries, which occupy 77%efemissions of the linked industries
in LINK_BAU, generate 88% of the total direct relnoueffect. Direct rebound effects in
the other linked industries are not large becdusie €émissions are low.

As Eg. (5.3) indicates, the direct rebound effedtpend on the output rebound
(ZNFW — ZP4Y) and new emission intensit{ I'*"). The direct rebound effect in the
chemistry industry is the largest because it eepegs the largest output rebound (Table
5.4). Although new emission intensity in the chearngisndustry is around the average new
emission intensity of the linked industries (253 t602eq/billion KRW), its output
rebound is almost three times larger than thati®steel industry. The direct rebound effect
in the steel industry is also large because ith@s$argest new emission intensity due to its
use of bituminous coal as raw material.

The cement industry has the second largest newsEmisntensity, but its direct
rebound effect is small because its output rebasimduch smaller than that of the steel
and chemistry industries. That is, both the outpbbund and new emission intensity are

significant in determining the direct rebound efffec

142



Table5.3. Direct rebound effects in 2050 (Unit: million t@D2eq)

Emissions
Direct
Direct
rebound
Industry rebound
LINK_ BAU LINK_NEW LINK_NEWNR effect
effect
ratio
Steel 152.81 150.44 146.99 3.44 59%
Chemistry 210.16 206.84 203.37 3.47 51%
Cement 53.26 45.09 4457 0.52 6%
Machine 10.64 9.51 9.46 0.05 4%
Semiconductor
11.96 11.11 11.03 0.08 9%
& display
Electronics 5.13 4.80 4,79 0.01 4%
Automobile 7.84 7.08 7.05 0.03 3%
Nonferrous
9.21 7.46 7.36 0.10 5%
metals
Glass 2.77 2.36 2.27 0.10 19%
Textile 6.69 5.99 5.94 0.05 7%
Total 470.47 450.68 442 .84 7.84 28%
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Table 5.4. Changes in the linked industries in 2050 (Unillidn KRW, ton CO2eq/billion

KRW)
Industry zpay zVEw AZ; EIPAU EINEW
Steel 116,568 119,300 2,732 (2.3%) 1,311 1,261
Chemistry 603,820 614,115 10,295 (1.7%) 348 337
Cement 38,078 38,522 444 (1.2%) 1,399,170
Machine 260,941 262,190 1,250 (0.5%) 41 36
Semiconductor &
181,830 183,156 1,326 (0.7%) 66 61
display
Electronics 137,999 138,390 391 (0.3%) 37 35
Automobile 252,973 253,948 975 (0.4%) 31 28
Nonferrous metals 54,895 55,623 728 (1.3%) 168 134
Glass 8,506 8,865 359 (4.2%) 325 267
Textile 109,791 110,723 932 (0.8%) 61 54
Total 1,765,401 1,784,833 19,432 (1.1%) 266 253

Output rebound largely depends on the energy ispate because new technology

affects the energy costs of the industry. Sincentlaeginal cost of the energy-intensive

industry fluctuates more after new technology amopthe output price reduction in such
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industries is more significant (Figure 52)Energy-intensive industries such as the cement

and glass industries experience large output ghieages.
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Figure5.2. Energy input share and output price change (9tijt:

When the output price drops, output rebounds dtieetdigher demand for this output.
Output rebound tends to be proportional to outpigepchange (Figure 5.3). For example,
the glass industry, the most energy-intensive itrgusxperiences the largest output price

change, and its output rebound is also the largest.

13 The energy input share considers only linked fuels
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Figure5.3. Output price change and output rebound (Unit: %)

The black line in Figure 5.4 shows the emissiofferdinces between LINK_BAU and
LINK_NEW. Since new technology reduces the stegligtry’s emissions, several points
of the line are kinked in the introduction yearseTblue line in Figure 5.4 shows the
emissions differences between LINK _BAU and LINK_NEW. If there is no rebound

effect, then the steel industry can reduce moits@missions. Rebounding emissions are

measured as the differences between the two lines.
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Figure 5.4. Emission changes in the steel industry (Unit: million ton CO2eq)

5.4.3 Indirect rebound effect

The indirect rebound effect occurs in the unlinked sectors and household energy
consumption (Figure 5.5). Since new technology adoption in the linked industries leads to
lower prices in the linked industries and energy products, the unlinked sectors and
household can save their expenditures and increase their outputs or energy consumption
(Figure 5.6).

The service sector, which includes the waste, construction, commercial, insurance,
domestic and public sectors, occupies 33% of the indirect rebound effects because of its
large output rebound. After new technology adoption, more than half of the rebounding

emissions in the service sector arise from the commercial sector (0.4 million ton CO2eq),
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which accounts for about 70% of service sector output.

The indirect rebound effects in the manufacturing sector (excluding the linked
industries) are comparable to those in the service sector, although its output does not change
much. Output rebound in the energy sector is also small, but its rebounding emissions are
considerable because its new emission intensity (185 ton CO2eq/billion KRW) is twice the
average new emission intensity of the unlinked sectors (88 ton CO2eq/billion KRW). The
transport, agriculture, and other sectors do not contribute much to the indirect rebound

effects, although the emissions of these sectors rebound.
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Figure 5.5. Indirect rebound effects in 2050 (Unit: million ton CO2eq)
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Figure 5.6. Changes in output and household energy consumption in 2050 (Unit: billion

KRW)

5.4.4 Total rebound effect

The total rebound effect, which is a sum of direct and indirect rebound effects, is 9.9
million ton CO2eq (Figure 5.7). About 80% of the total rebound effect occurs from the
linked industries. As outputs of the linked industries expand, their emissions are also
rebounded. About 20% of the total rebound effect arises from the unlinked sectors and the
household energy consumption. As changes in the linked industries induce economy-wide
changes, the unlinked sectors and the household find new equilibrium and generate
additional emissions.

Without the rebound effects, new technology adoption reduces 27.6 million ton CO2eq
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in the linked industries (see Figure 5.1). However, with the rebound effects, 9.9 million ton
CO2e¢q is rebounded, and the net reduction effects are 17.7 million ton CO2eq. Thus, the
reduction effects of new technology adoption is overestimated if the rebound effects are

not considered.
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Figure 5.7. Total rebound effect in 2050 (Unit: million ton CO2eq)

5.4.5 Sensitivity test

Substitution elasticities in the production nest of the CGE model can influence the
rebound effects. When the linked industries introduce new technology, energy prices drop
because they demand less energy. After this price reduction, the unlinked sectors tend to
use more energy inputs. Since the substitution between inputs depends on substitution

elasticities, this study tests the effects of substitution elasticities on the rebound effects.

150

Al 2 off 8



Although previous sections assume substitution elasticities of 0.5, this section assumes
substitution elasticities of 30% lower (0.35) and higher (0.65) than this original benchmark.

As the substitution elasticities increase, the economy tends to expand its domestic
output and generate more emissions. Since higher substitution elasticities enable the
production sectors to more easily replace inputs, their outputs increase. National emissions
in 2050 also rise with outputs (Figure 5.8).

As Figure 5.9 shows, there is an increasing trend in the direct and indirect rebound
effects with the substitution elasticities, but the sizes of two effects are not reversed. That
is, although the sizes of the rebound effects can differ based on the substitution elasticities,

the implications regarding the rebound effects from the previous sections do not change.
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Figure 5.8. Effects of the substitution elasticities on the 2050 national emissions (Unit:

million ton CO2eq)
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Chapter 6. Assessment of environmental and
economic impacts of endogenous technology
lear ning in the manufacturing sector based on the

hybrid model

6.1 Introduction
6.1.1 Research background

Technological change is a significant issue in designing sustainable environmental
policies (Popp, 2005). The introduction of new technology and changes in the
characteristics of technology affect the amount of both combustion and process emissions.
Additionally, technological change contributes to reducing abatement costs (see
Dowlatabadi, 1998; Carlson et al., 2000; Jaccard et al., 2004). Thus, it is important to
appropriately reflect technological change in environmental analysis.

In reflecting technological change, it is also significant to adopt an appropriate method
because the method largely affects the results of an environmental analysis (Gillingham et
al., 2008). The bottom-up and CGE models are representative models that incorporate
technological change (Ldschel, 2002). Since the bottom-up model is technology-based, it
can handle technological change at the technology level. It easily describes the changes in

technology characteristics and the emergence of new technology. That is, it explains both
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gradual and radical technological changes that Griibler et al. (1999) mentioned.

However, the bottom-up model cannot examine ripple effects of technological change
on the economy. When there is technological change, the bottom-up model finds a new
technology mix, which leads to changes in output and energy demand. These changes affect
the rest of the economy through price changes, but the bottom-up model assures only partial
equilibrium. Because of this disadvantage, the bottom-up model has limitations in
identifying the impacts of technological change on national emissions and abatement costs.

The CGE model can clarify the macro-economic impacts of technological change
because it describes the relationship between the sectors in the economy. However, the
CGE model handles technological change at a more aggregated level. As mentioned in
Chapter 4, it has limitations in representing radical technological change such as the
adoption of new technology using new fuel. Moreover, although technological change
affects energy substitution, the CGE model explains this substitution using previously

estimated substitution elasticities.

6.1.2 Research purpose
The hybrid model helps researchers use the advantages of the bottom-up and CGE
models in exploring the impacts of technological change. The bottom-up model helps to
describe technological change at the technology level. The CGE model receives
information about technological change from the bottom-up model and identifies the ripple

effects of technological change.
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This study incorporates technological change through endogenous learning in the
hybrid model. With learning, technology performance improves based on the accumulation
of experience. This study assumes that technology efficiency improves based on the
technology capacity of the bottom-up model. Learning is incorporated using the iterative
approach (Yang et al., 2016), which updates the technology characteristics based on the
solutions of the bottom-up model.

After reflecting endogenous learning, this study investigates the changes in national
emissions and abatement costs due to learning. Additionally, this study identifies the

impacts of speed of learning on national emissions and abatement costs.

6.2 Literaturereview
6.2.1 Technological changein the bottom-up model

New technology has significant impacts on emissions and abatement costs because it
usually reduces energy consumption to provide an energy service. Since new technology
requires more investment, operation and management costs, it tends to be less attractive
than expected in its introduction year. New technology can be more competitive in the
future if its costs are reduced based on an increase of its adoption rate (see Soderholm and
Sundgqvist, 2007).

The bottom-up model has analyzed cost reduction of new technology using learning,
which means that accumulated knowledge from technology use experience induces the cost

reduction (Viguier et al., 2006). Although technology use experience is diversely measured
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based on characteristics of learning (see Samadi8)2 the bottom-up model usually
considers cumulative capacity of technology to meagchnology use experience.

Although the total cost of the bottom-up model imlds investment, operation,
management and energy costs, previous studiesaligreessumed that the investment cost
was affected by learning (Messner, 1997; Kypreos and Bahn, 2003; Kim et al., 2012; Huang
et al., 2017). If the share of the investment ao#hte total cost is high, reduced investment
cost largely affects new technology adoption, eibissand abatement costs. For example,
in cases of photovoltaic and wind power technolegimost of their total costs are
investment costs, whereas energy costs are zeapnibg promotes the adoption of both
technologies because their total costs are laafédgted by learning.

By contrast, technology used in the manufacturgma consumes energy to produce
an energy service. If the share of the energy ¢ogstee total cost is high, an adoption rate
of new technology does not change much throughctamuof the investment cost because
the energy costs are more dominant in determim@algrtology mix.

Several previous studies stated that learning affarted efficiency of technology
(Barreto and Klaassen, 2004; Loulou et al., 2004; Junginger et al., 2008). As technology
capacity is accumulated, energy consumption canrdmhiced through efficiency
improvement. Previous studies generally descrilpetdgy consumption reduction, instead
of efficiency improvement, depending on cumulatigpacity (Rartrez and Worrell, 2006;
Weiss et al., 2008; Weiss et al., 2010).

A learning curve shows the relationship betweemnelbgy use experience and a
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performance indicator of learning. This relationship is differently formulated based on
characteristics of learning (see Grosse et al., 2015). Technology performance was usually
assumed to be exponentially proportional to cumulative capacity or production (Ibenholt,
2002; Kypreos and Bahn, 2003; Wand and Leuthold, 2011; Lin and He, 2016). Some
previous studies assumed that the performance improved based on cumulative capacity

over initially installed capacity (Kim et al., 2012; Moser et al., 2016; Huang et al., 2017).

6.2.2 Technological changein the CGE model

The CGE model generally adopts an AEEI parameter to reflect technological change.
The AEEI is exogenously determined and reduces energy consumption. The AEEI is either
estimated or assumed to remain over time (Loschel, 2002). However, the AEEI overlooks
the factors that induce technological change (Gillingham et al., 2008) and neglects the
processes and costs to improve efficiency. Moreover, the AEEI is not affected by changes
in the economy because it is a parameter (see Jaccard et al., 2004).

Backstop technology is also employed to model exogenous technological change in the
CGE model. Backstop technology is generally adopted after depletion of current
technology (Nordhaus et al., 1973). Although backstop technology is less competitive in
its initial stage, it provides energy infinitely after cost reduction (Ldschel, 2002). However,
since the cost reduction of backstop technology is usually assumed to depend on time
(Gillingham et al., 2008), it also has limitations in explaining complicated technological

change.
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Several CGE models adopts the endogenous methods to reflect technological change
instead of exogenous methods. Wang et al. (2009) considered knowledge capital input in
the CGE model and explained that accumulated knowledge capital based on R&D induced
technological change. Jin (2012) also adopted knowledge and R&D concepts to represent
technological change in the CGE model endogenously. Kemfert and Troung (2007)
assumed that R&D induced efficiency improvement and explored the environmental and
economic impacts of endogenous technological change. Although the CGE model reflects
technological change endogenously, it is difficult to explain technological change at the

technology level.

6.2.3 Technological changein the hybrid model

Martinsen (2011) investigated the impacts of learning on the electricity sector using a
hybrid model that integrates national bottom-up and macro-economic models and a global
bottom-up model. The model contributed to overcoming the limitations of the bottom-up
and macro-economic models by reflecting technological change, and was used to explore
the environmental impacts of technological change.

Learning was assumed to diffuse from the global bottom-up model to the national
bottom-up model. Although the national bottom-up model exchanges information with the
macro-economic model, its solutions do not affect learning. That is, learning occurred

regardless of the domestic technology mix and energy consumption.
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6.3 Model
6.3.1 Outlineof the hybrid model with learning
As Figure 6.1 shows, the hybrid model is modified to include learning. Although the

overall structure is maintained, the bottom-up model now includes convergence processes.

Top-down (CGE)

t=0 t=1 t=2 t=35 <

201s) [ @o1e) [ eoin [T ] 2050
Interest rate (R,) Capital iﬂP“t@)
Wage index (WAGE,) Labor input (L;,)
Price index (PQ; ;) Energy and non-energy inputs (X; ;)
Industry demand (Z; ;) Industry supply (Z;,)

Bottom-up
Steel |« Textile |«
> Efficiency _ Efficiency] —» - —» |Efficiency _ Efficiency
»| Steel »| Textile

Figure 6.1. Outline of the hybrid model with learning

The CGE model obtains its solutions and delivers the information required by the

bottom-up model. Each bottom-up model solves its cost minimization problem using the
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CGE information and updates the efficiencies of new technologies based on the cumulative
capacities of the technologies. The bottom-up model again solves its cost minimization
problem using the updated efficiencies. The bottom-up model repeats this process until its
solutions converge at the level of 0.1%. After convergence, the bottom-up model delivers
the information that the CGE model requires. The hybrid model repeats the information

exchanges until all linked variables converge.

6.3.2 Learningin the bottom-up model

A learning domain is various depending on technology characteristics. Learning
basically occurs in individual technology in the industry. Moreover, learning occasionally
occurs in common technologies. For example, boiler technologies can share technology use
experience because these technologies belong to the same common technology.
Additionally, effects of learning can be diffused between industries. For example, since
industries in a service-oriented bottom-up model use the same technologies, the
technologies in different industries can share technology use experience. This study
considers learning of individual technology and excludes spillovers between common
technologies and industries.

As Eq. (6.1) indicates, this study assumes that efficiency of only new technology
improves based on its cumulative capacity.}* Efficiency increases as a power function of

cumulative capacity over initially installed capacity. If initially installed capacity of new

14 More precisely, learning reduces new technology’s energy consumption to produce a unit of energy
service.
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technology is small, its efficiency improvement mbg excessively large. This study
avoids this problem because new technology in tl&'KP database is sufficiently
competitive in its introduction year. A rate ofieféncy improvement depends on a learning
parametelf, which is determined based on Eq. (6.2) and E).(6

Although there is no learning, current technologyréplaced by new technology.
Leaning intensifies this technology substitutioncduesse new technology is more

competitive due to learning.

B
CCrechyt
EFFrgcn: = EFFrpen * <CC— Eq. (6.1)
TECH,E
LR=1-PR Eq. (6.2)
PR=27B Eq. (6.3)

EFFrgcy ;- Efficiency of technologyTECH in its introduction year
CCrgcn ¢ Capacity of technologyECH in its introduction year
CCrgcn¢. Cumulative capacity of technologyECH at time periodt
B: Learning parameter

LR: Learning rate

PR: Progress rate
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6.3.3 Iterative approach

The hybrid model of this study is complicated because the objective function of the
bottom-up model is quadratic and there is a convergence process. Thus, this study adopts
the iterative approach, which helps to avoid computation burden in endogenizing learning
(Karali et al., 2017).1°

There are two approaches to iteratively reflect learning in the model. Karali et al. (2017)
recursively solved their cost minimization problem and updated technology’s unit cost in
the following period using cumulative activity in the current period. The unit costs in the
future periods were iteratively updated based on this process until the end of the period.
Yang et al. (2016) modeled learning in a forward-looking optimization problem. They
obtained cumulative capacities in all periods by solving the problem and updated the unit
investment costs in all periods using the cumulative capacities. The investment costs were
iteratively updated until all investment costs were in a convergence level. This study adopts
Yang et al. (2016) and updates efficiency of new technology until solutions of the bottom-

up model are in a convergence level.

6.3.4 Learningrate
To estimate the learning rate, capacity and efficiency data are required. However, it is
difficult to obtain these data for the manufacturing sector and find already estimated

learning rate in the literature. Thus, this study considers the learning rate as a scenario

15 See Kim et al. (2020) for more explanation of the iterative approach.
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parameter.

According to Kahouli-Brahmi (2008), an average learning rate of conventional
technology is 4%, which is lower than new renewable technology. This study determines
5% as a mid-level learning rate. To identify the role of the learning rate, this study

determines 1% and 10% as low-level and high-level learning rates, respectively.

6.3.5 Scenario

Table 6.1 summarizes the scenarios in this chapter. In LINK NEWLRS, the linked
industries adopt new technologies whose efficiencies improve at a rate of 5%. This study
considers 1% (LINK NEWLRI1) and 10% (LINK NEWLRI10) learning rates for the
sensitivity test.

Moreover, this study imposes the carbon tax in Chapter 3 to investigate the impacts of
learning on emissions and abatement costs. LINK BAU ADDCTAX and
LINK NEW_ADDCTAX determine the carbon tax levels to achieve the 2050 national
emissions with learning when there is no learning. Additionally, LINK NEWLRSNR is the

scenario to calculate the rebound effects with learning.
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Table 6.1. Scenario description

Scenario Description

Hybrid model

LINK_NEWLR1
New technology adoption with learning (1, 5, 10%)
LINK_NEWLRS5
(Linked industries)

LINK_NEWLR10
No carbon tax

Hybrid model

LINK_NEWLR1_CTAX
New technology adoption with learning (1, 5, 10%)

LINK_NEWLR5_CTAX
(Linked industries)

LINK_NEWLR10_CTAX
Carbon tax: 38360 thousand KRW/ton CO2eq (26P950)

Hybrid model

LINK_BAU_ADDCTAX Only current technology

Carbon tax: 36386 thousand KRW/ton CO2eq (26:2950)

Hybrid model

LINK_NEW_ADDCTAX New technology adoption (Linked industries)

Carbon tax: 38376 thousand KRW/ton CO2eq (26PD50)

Hybrid model
New technology adoption with learning (1, 5, 10%)
LINK_NEWLR5NR (Linked industries)
No carbon tax

Without rebound effects
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6.4 Results
6.4.1 Impacts of technological change through learning

The efficiency of new technology is constant without learning. By contrast, with
learning, efficiency improves based on the cumulative capacity of the technology (Figure
6.2). The reference of relative efficiency is the initial efficiency of LINK BAU.

Although LINK NEW introduces new technology, it does not consider learning. The
relative efficiencies of all energy service technologies (excluding motor technology) are
almost constant after their introduction. The relative efficiency of the motor technology
improves because three types of new motors are adopted in different years.

In LINK NEWLRS, there is an increasing trend in the relative efficiency because the
cumulative capacity of the new technology continuously increases. Moreover, a stepwise
increase in the relative efficiency is observed. Since the lifetime of already installed
capacity is finite, a large amount of capacity is installed periodically, and the relative
efficiency also improves cyclically. For example, the relative efficiency of boiler

technology rises steeply every seven years.
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Learning also affects the share of new technology (Figure 6.3). For the first ten years,
since the cumulative capacity of new technology is insufficient to induce significant
efficiency improvement, the share of new technology is almost unchanged. However,

learning causes the gap between LINK_NEW and LINK NEWLRS to grow after 2026.
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Figure 6.3. Share of new technology in the steel industry (Unit: %)

The linked industries expand their production with learning because the additional
efficiency improvement allows an additional reduction in the marginal costs (Figure 6.4).
Furthermore, since domestic output expands, the weighted domestic output price in the
linked industries drops further in LINK NEWLRS (Figure 6.5). Since the unlinked sectors
purchase the products of the linked industries, they also save costs and tend to expand their
production. Changes in the linked industries due to learning affect GDP loss due to the

carbon tax through two sources. First, the increase in the domestic outputs of the linked
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industries mitigates the GDP loss. Second, the increase in the domestic outputs of the

unlinked sectors mitigates the GDP loss.
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Figure 6.4. Domestic output change in the linked industries (compared to LINK BAU)
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Efficiency improvement enables the linked industries to produce their outputs while
consuming less energy. With learning, both the energy demand of the linked industries and
the total energy demand decreases (Figure 6.6). Energy prices also drop because of a
decrease in total energy demand (Figure 6.7).

Since lower energy prices decrease costs in the unlinked sectors and helps to expand
their production, these changes also mitigate GDP loss due to the carbon tax. That is,
although learning occurs in the linked industries, it affects the rest of the economy indirectly.

These macro-economic effects of learning can be observed using the hybrid model.
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Figure 6.6. Changes in total energy demand for the linked fuels (compared to LINK BAU)

(Unit: %)
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6.4.2 Carbon tax smulation

The emissions of the linked industries in LINK NEWLRS CTAX until 2026 are
similar to those in LINK NEW_ CTAX (Figure 6.8). As learning effects are enhanced after
2026, the reduction rate in the linked industries gradually increases. In 2050, the additional
efficiency improvement reduces 1.2%p of emissions in the linked industries compared to
LINK NEW_CTAX.

Moreover, learning mitigates the rebound effects of new technology adoption. In
LINK NEW _ CTAX, the slope of the reduction rate considerably decreases due to the

rebound effects. By contrast, with learning, the decreasing trend in the slope is less
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remarkable.

Learning in the linked industries also affects national emissions, although its effects are
not large (Figure 6.9). Since the emissions of the linked industries are mitigated, national
emissions are also mitigated. Additionally, the macro-economic effects of learning affect

the production and emissions of the linked sectors.
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Figure 6.8. Changes in emissions of the linked industries (Unit: %)
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Since the carbon tax raises energy prices, it increases the production costs in the
production sectors and interrupts their production. These carbon tax effects reduce the
domestic outputs of the production sectors and induces a further GDP loss.

Without learning (LINK NEW_ CTAX), the economy experiences a 1.14% GDP loss
compared to LINK BAU (Figure 6.10). With learning, (LINK NEWLRS5 CTAX), the
estimated GDP loss for the economy is 1.04% compared to LINK BAU. That is, learning
helps to reduce negative economic effects of the carbon tax. Since the hybrid model
observes both macro-economic effects and technology-level changes, it can explain the
output changes in the production sectors, including the unlinked sectors. Thus, the hybrid

model helps to more precisely assess economic impacts of learning.
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Figure 6.10. GDP loss due to the carbon tax (Unit: %)

Figure 6.11 shows the unit abatement cost to mitigate one unit of emissions. As the
government imposes more carbon tax, the unit abatement cost also rises in the three
scenarios.  Moreover, the differences between LINK NEW CTAX and
LINK NEWLR5 CTAX gradually increase because the effects of learning on efficiency
improvement increase over time. In 2050, the unit abatement costs without and with
learning are 73 thousand KRW/ton CO2eq and 66 thousand KRW/ton CO2eq, respectively.
That is, the unit abatement cost with learning is 10% lower (7 thousand KRW/ton CO2eq).
The economy pays about 3,000 billion KRW more to reduce 424 million ton CO2eq in

2050 if there is no learning.
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Figure 6.11. Unit abatement cost (Unit: KRW/ton CO2eq)

6.4.3 Sensitivity test

This section tests the robustness of learning effects on emissions and unit abatement
cost by adjusting the learning rate. A higher learning rate means more efficiency
improvement of new technology. As the linked industries are more efficient, they can
contributes to reducing the national emissions and mitigating the negative economic effects

of the carbon tax to a greater extent (Figure 6.12 and Figure 6.13).

174



-10.0%

-15.0%

.2 -20.0%

-25.0%

-30.0%

-35.0%

Changes in national emissions (%)

-40.0%

-45.0%

2

\

N,

M

Time period

——LINK_NEWLRI1_CTAX =+LINK NEWLRS5_CTAX
——LINK_NEWLR10 CTAX

Figure 6.12. Changes in national emissions at 1%, 5% and 10% learning rates (Unit: %)

0.0%

-0.2%

-0.4%

-0.6%

GDP loss (%)

-0.8%

-1.0%

-1.2%

2

R

~2

Time period

——LINK NEWLRI CTAX —+LINK NEWLR5 CTAX
——~LINK_NEWLR10_CTAX

)\5 2020 2025 2030 2035 2040 2045 2050

MO 2025 2030 2035 2040 2045 2050

Figure 6.13. GDP losses due to the carbon tax at 1%, 5% and 10% learning rates (Unit: %)

175



The learning rate also affects the unit abatement cost due to its environmental and
economic effects (Figure 6.14). The unit abatement costs in 2050 are 72 thousand KRW/ton

CO2eq and 58 thousand KRW/ton CO2eq at 1% and 10% learning rates, respectively. For

every 4—5% increase in the learning rate, the unit abatement cost in 2050 decreases as much

as approximately 70 thousand KRW/ton CO2eq, which implies a consistent pattern
depending on a learning rate.

In the range of the considered learning rates, the unit abatement cost difference is 14
thousand KRW/ton CO2eq. This means that the economy pays about 6,000 billion KRW

more to reduce 424 million ton CO2eq in 2050 if the learning rate is low.
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6.4.4 Additional carbon tax ssmulation

Without learning, the government should impose additional carbon taxes to meet the
national emissions level it would achieve with learning. This section determines carbon tax
levels to achieve the 2050 national emissions in LINK NEWLRS5 CTAX when there is no
learning.

In LINK BAU CTAX and LINK NEW_CTAX, the government should impose
additional 26 thousand KRW/ton CO2eq and 16 thousand KRW/ton CO2eq of carbon taxes,
respectively, in 2050 to achieve the national emissions level with learning. Although
national emissions under the additional carbon taxes until 2040 are slightly different with

those of LINK NEWLR5 CTAX, the 2050 national emissions are well-fitted (Figure 6.15).
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In every time period, the economy experiences additional GDP losses due to the carbon
taxes (Figure 6.16 and Figure 6.17). In LINK BAU ADDCTAX and
LINK NEW_ADDCTAX, the economy should accept 0.10%p and 0.06%p GDP losses in
2050, respectively, to meet the national emissions level it would achieve with learning. The
additional GDP losses from higher carbon taxes are not large because learning occurs only
in the linked industries. However, the additional carbon tax burden on the economic agents
who generate emissions increases considerably (Figure 6.18). Without new technology and

learning, the additional burden increases by about 16,000 billion KRW in 2050.
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Figure 6.16. GDP loss due to additional carbon tax (LINK_BAU_ CTAX) (Unit: %)
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6.4.5 Therebound effect of learning

As Figure 6.19 shows, both the direct and indirect rebound effects increase with
learning. Since the efficiency of the linked industries additionally improve, learning
intensifies their output and emission rebound. Moreover, the additional price reduction in
the linked industries and energy products stimulates indirect rebound effects in the unlinked
sectors and household energy consumption.

The total rebound effect in 2050 increases by 6.7% (0.6 million ton CO2eq) due to the
effect of learning on efficiency improvements. Half of additional total rebound effect arises
from the linked industries (0.3 million ton CO2eq). Furthermore, the rebound effect from
the household increases 0.2 million ton CO2eq, which is larger than the additional rebound

effect from the unlinked sectors (0.1 million ton CO2eq).
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Figure 6.19. Comparison of total rebound effect in 2050 (Unit: million ton CO2eq)
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Chapter 7. Conclusion

7.1 Concluding remarks and implications

This study developed a hybrid model for ten emissitensive industries in Korea.
The bottom-up model was developed based on PMPchwhiaintains base-year
consistency in the hybrid model and avoids an pemislized technology mix and radical
technological change. The recursive dynamic CGEaha@s developed to analyze the
reduction options and carbon tax effects. The bottip and CGE models were integrated
based on the soft-link approach. Advantages ofhytaid model were explained, and
practical problems in the integration process vadse addressed. Moreover, both the direct
and indirect rebounding emissions due to technolefficiency improvement were
measured using the hybrid model, and the causexbotind effects were described. This
study also incorporated learning into the hybriddelowith an iterative approach. The
effects of learning on efficiency improvement, patil emissions, and abatement costs
were explored.

This study offers several contributions to theréitare. First, this study shows the
advantages of the hybrid model in environmentallysig|a The hybrid model can
investigate technology-level changes and macro@aoaneffects, including ripple effects
due to changes in the analyzed sectors. Moredwehybrid model allows for feedback

between technology-level changes and macro-econgffieicts, whereas the single models
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have difficulty observing feedback effects.

Second, this study assesses the rebound effects dtiriency improvement using the
hybrid model. Since the hybrid model allows forhbeclogy efficiency improvement, it can
overcome methodological limitations of previousists. Additionally, this study measures
the rebound effects within and beyond the efficjeimaproving sectors and explains the
process by which emissions rebound.

Third, this study incorporates technological chaimggne hybrid model endogenously.
Although single bottom-up and CGE models refleathtelogical change, they are
inappropriate for a comprehensive analysis of teldgical change due to their limitations
as the single models. In the hybrid model, thedmotip model enables researchers to
endogenize technological change at a technology,land the CGE model helps to explore
the macro-economic effects of technological chaMyeover, this study shows that the
soft-linked hybrid model can converge despite idirlg the additional convergence
process for endogenous learning.

The government can apply the hybrid model of thiglg as a new framework to
investigate emissions reduction options and pdicide government should predict the
environmental and economic impacts of reductiomogtand policies before establishing
a reduction target. The hybrid model helps to eatalthese impacts at the technology- and
macro-economic levels. Additionally, the hybrid mbdvith learning can provide the
government with opportunities to explain technatagjchange in the future and predict its

environmental and economic impacts. Since techimabghange is a promising reduction
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option, the need for a method to assess technalogli@ange will be higher.

Moreover, the government can assess unexpectedmrebeffects using the hybrid
model before implementing efficiency improvemeniges. As Sorrell and Dimitropoulos
(2008) mentioned, rebound effects may be a bawiénie government’s reduction target.
If the government ignores rebound effects, themacteduction effects of efficiency
improvement will be below expectations. The goveenmshould understand that the
reduction effects of efficiency improvement mayderestimated and aim to determine
the precise reduction effects. Additionally, thevggmment should comprehend that the
reduction options for one sector can cause anaser@n the emissions of other sectors.
Although the government may successfully achieve teduction target of the
manufacturing sector, it may fail to achieve thegaral reduction target because of indirect
rebound effects. Thus, the government should peepg@tions to handle rebounding
emissions.

Furthermore, the iterative approach can be appiégibrid models of the other sectors,
although this study employs the iterative approtmhthe manufacturing sector. For
example, the electricity sector can apply the itleeaapproach to explain changes in the
characteristics of renewable energy technologi@sceSthe investment costs of these
technologies are high, the adoption rate and remtueffects of such technologies may be
less than expected. A hybrid model for the eleityrigector with the iterative approach can
explain the reduction in the investment costs asgss the macro-economic effects of the

diffusion of the renewable energy.
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7.2 Limitations and future research

This section discusses the limitations of this gtahd suggests future research
directions. First, this study includes the bottopnruodel for the manufacturing sector only.
The hybrid model can incorporate the bottom-up nwder other sectors such as the
electricity, transport and residential sectors. Sidering the technological change in these
sectors can change the national emissions andrabatecost estimates. Future research
should integrate the CGE model with bottom-up medel multiple sectors.

Second, the learning rate in this study is a scer@arameter. Although this study
shows that learning contributes to reducing nati@nsissions and abatement costs, the
learning rate is not an estimated value. Estimating learning rates of common
technologies in the manufacturing sector will pdeva more precise estimate of the effects
of learning.

Third, this study does not consider spilloversezfrhing. Technology use experience
can diffused from one industry to other industriesause all industries use common
technologies in the service-oriented bottom-up rhobeese spillovers enable additional
efficiency improvement for less competitive teclomiés. Including the spillovers of
learning between industries in future research wareal more significant effects of

learning.
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