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ABSTRACT

Machine learning based gait data 

analysis for objective evaluation of 

knee osteoarthritis

Soon Bin Kwon

Interdisciplinary Program in Bioengineering

The Graduate School

Seoul National University

Osteoarthritis (OA) is a disease that affects above 30% 

of the elderly population aged 60 years and older. Western 

Ontario and McMaster Osteoarthritis (WOMAC) and 

radiographic-based Kellgren–Lawrence (KL) grade methods 

are currently used to evaluate the severity of knee 

osteoarthritis (KOA). However, the WOMAC is a subjective

method which cannot be performed to certain patients, and is 

not suitable for tracking changes in severity over time. KL 

grade requires highly trained experts and is a time consuming 

process. This dissertation hypothesized that objective and 

biomechanical gait data can supplement unmet needs of current 
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gold standard. It was hypothesized that specific features from 

gait data would reflect the severity of KOA. Therefore, this 

study aims to identify key gait features associated with the 

severity of KOA and provide a new objective and explainable 

evaluation method for KOA based on gait analysis. Features 

were extracted from the gait signal and an automated severity 

evaluation model was designed based on machine learning 

technique for WOMAC severity evaluation model. To develop an 

automated severity evaluation algorithm for KL grade, features 

were extracted from the plain radiography image using deep 

learning network, and machine learning was applied to select

features from the gait data. Both image and gait features were 

used to develop a machine learning algorithm for KL grade 

evaluation. The evaluation algorithm for WOMAC and KL grade 

showed a correlation of 0.741 and an accuracy of 75.2% with 

gold standard method, respectively. This dissertation proposed 

a new evaluation method for KOA and showed the clinical utility 

of the gait data application that was limited in clinical practice 

due to the complexity of the signal.

Keywords: Gait analysis, Machine learning, Deep learning, Knee 

osteoarthritis
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1. INTRODUCTION
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1.1. KNEE OSTEOARTHRITIS

Osteoarthritis (OA) is one of the most prevalent 

musculoskeletal disease and is established as a public health 

problem [1-3]. It has been reported that 70% to 85% of the 

elderly population over 55 are affiliated with OA and 10% of the 

world’s elderly population have severe case of OA [4-6]. The 

economic burden associated with osteoarthritis (OA) is high with 

1-2% of the gross national product spent on OA-related 

healthcare [7, 8]. With the aging of the global population, the 

number of patients who suffer from knee osteoarthritis (KOA) is 

expected to increase [9].

OA is defined as a clinical condition of joints characterized 

by focal areas of degeneration of the articular cartilage with 

reactive formation of new bone at the articular margins [10].

This clinical condition of OA is irreversible. Depending on the 

underlying cause of this clinical condition, OA is classified into 

two types: primary and secondary. Primary OA is more common 

of the two. Even though the primary OA is related with age and 

genetic factor, there is no definite identifiable underlying cause. 

Secondary OA has identified causes of the disease, including 
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injury, repeated surgery, and obesity [11]. Also, unlike the 

primary OA, secondary OA may occur at any age.

Even though OA can affect all joints, it is most common in 

hand, hip and knee. Among the three joints, the knee joint is a 

complex synovial joint and involves multiple structures to perform 

its function. The degeneration of articular cartilage and 

reformation of bone causes the typical symptoms of OA. The 

typical symptoms of KOA include pain, stiffness, which worsen in 

accordance with an increase in the disease progression [12, 13].

These symptoms occurring at the knee joint could significantly 

reduce the gait function and impair functional independence of 

individuals.
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1.2. SEVERITY EVALUATION OF KNEE 

OSTEOARTHRITIS

1.2.1. Symptomatic Severity evaluation

The typical symptoms of knee osteoarthritis (KOA)

include pain, stiffness and decreased joint motion. Even though 

there are objective methods to measure the decrease in joint 

motion, it is difficult to measure pain and stiffness objectively. 

The assessment of pain and stiffness are often performed with 

patient reported outcome measures (PROMs).

PROMs are patient self-complete questionnaires to 

assess patient’s symptoms and clinical status [14]. PROMs can 

be conducted in a written format or verbally and can be translated 

into multiple language. PROMs often consist of questions to 

measure patient’s symptom and how the symptoms affect the 

functionality in daily life activity. There are many disease-

specific PROMs suggested to assess symptomatic and functional 

severity of various disease. Several PROMs are used in clinical 

practice for KOA such as, the Oxford Knee Score, the Short Form 

36 (SF-36), and the Western Ontario and McMaster Universities 

Osteoarthritis Index (WOMAC).
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Among the number of PROMs suggested for the 

assessment of KOA, the WOMAC is most widely used to 

determine the symptomatic severity of KOA [15]. There are

total of 24 questions in WOMAC consist of three subscales: pain, 

stiffness, and physical function with 5, 2 and 17 questions, 

respectively. The WOMAC index has been widely used in clinical 

studies as well as clinical practice [16-18].

1.2.2. Structural Severity evaluation

The assessment of structural severity evaluation of KOA 

is performed based on medical image modalities; magnetic 

resonance image (MRI), ultrasound (US), optical coherence 

tomography (OCT) and radiography. Among these modalities 

MRI and radiography have established guidelines system to 

evaluate the KOA in clinical practice [19]. The evaluation guides 

for MRI includes, the Knee Osteoarthritis Grading System 

(KOGS)[20], the Whole-Organ Magnetic Resonance Imagine 

Score (WORMS) [21], and the Boston Leeds Osteoarthritis Knee 

Score (BLOKS) [22]. Even though MRI provides detailed 

information of the knee joint, radiography is the most accessible 

and remains as a gold standard for structural severity evaluation
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of KOA. 

Among various grading system suggested for 

radiography modalities [23-25], the Kellgren-Lawrence (KL) 

grading system is current gold standard and most widely used in 

clinical practice. The KL grading system classifies KOA into five 

grades, ranging from 0–4, where Grade 0 indicates healthy 

subjects with no KOA symptoms, and Grade 4 indicates the most 

severe cases suitable for total knee arthroplasty (TKA). The KL 

grade is determined by observing the presence of joint space 

narrowing, osteophytes, bone deformity, and sclerosis from 

radiographic images. For the accurate evaluation of the KL 

grades, two experts are required to independently conduct 

radiographic evaluations without considering other data. If the 

evaluation of the two experts are contradictory, the results are 

discussed to reach a conclusion.
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1.3. UNMET CLINICAL NEEDS

Even though gold standard for both symptomatic and 

structural severity evaluation are cost and time efficient method 

to assess symptoms and function of patients, there are limitation

with the current gold standards. WOMAC has been validated in 

many previous studies to be efficient method in multiple language 

in various format [26-28], however, it is limited to the 

drawbacks of PROMs. WOMAC, just like other PROMs, is an 

unexplainable method. [29, 30].

Limitations also exist for KL grade system. Although the 

KL grading system is widely implemented in clinical applications 

for the severity evaluation of KOA, it is time consuming and 

requires highly trained experts, generally with fellowship 

training experiences in arthroplasty or radiography [31]. For the 

accurate evaluation of the KL grades, two experts are required 

to independently conduct radiographic evaluations without 

considering other data. If the evaluation of the two experts are 

contradictory, the results are discussed to reach a conclusion, 

which requires fair amount of time of the experts. [31, 32].



8

1.4. GAIT ANALYSIS AND KOA

Modern gait analysis is an effective technique for the 

analysis of the biomechanical information of lower joints, and it 

provides a temporal signal of each joint and additional gait 

information such as cadence, stride length, and step width. The 

main purpose of gait analysis is for quantified assessment of 

human locomotion.

The gait data is obtained with multiple infrared cameras

and force plates placed on the ground. The gait cycle is composed 

of two main phase, stance and swing phase, which can further be 

categorized into initial contact, loading response, mid-stance, 

terminal stance, pre-swing, initial swing, mid swing, and terminal 

swing. Each phases of gait cycle are shown in Figure 1.1. The 

obtainable biomechanical parameters from the gait analysis 

includes, hip flexion angle, hip adduction angle, hip rotation angle, 

hip extension moment, hip abduction moment, hip rotation 

moment, hip power, knee flexion angle, knee varus angle, knee 

extension moment, knee adduction moment, knee rotation 

moment, knee power, ankle flexion angle, ankle plantar-flexion 

moment, ankle varus moment, ankle power, pelvic tilt angle, 
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pelvic obliquity angle, pelvic rotation angle, foot progression 

angle, foot progression moment, and tibia torsion angle. The 

typical signal of healthy subjects of the gait parameter is shown 

in Figure 1.2. 

One of typical symptoms of KOA is decrease in gait 

function. The spatiotemporal gait parameters, such as cadence 

and speed, decreases for the KOA patients. Based on these 

observation, Thorp.et.al [33] have suggested both functional and 

structural distinction between KL grade. Other previous studies 

[13, 34, 35] also have analyzed and have shown the relationship 

between these gait parameters and the severity of KOA. It was 

shown that some traditional features, such as range of motion of 

the knee joint, had significant difference between OA and non-

OA subjects. Even though these results suggests possible 

application of gait data, the complexity of the gait data remains 

as a barrier for application in clinical practice [36]. 
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Figure 1.1 Gait cycle and gait motion for each phase during the cycle
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Figure 1.2 Gait parameters of control during the gait cycle. Starting from the (A) hip flexion angle (B) hip adduction angle (C)

hip rotation angle (D) hip extension moment (E) hip abduction moment (F) hip rotation moment (G) hip power (H) knee flexion 

angle (I) knee varus angle (J) knee extension moment (K) knee adduction moment (L) knee rotation moment (M) knee power

(N) ankle flexion angle (O) ankle plantar-flexion moment (P) ankle varus moment (Q) ankle power (R) pelvic tilt angle (S)

pelvic obliquity angle (Y) pelvic rotation angle (U) foot progression angle (V) foot progression moment (W) tibia torsion angle
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1.5. THESIS OBJECTIVES

KOA is irreversible and cannot be cured. Therefore, 

prevention and management of the disease is important. Patients 

who suffers from KOA gets TKA or drug treatment, therapy, 

reduces the symptoms with appropriate exercises, and 

management of the risk factors. For precise treatment of the 

disease, accurate and objective severity evaluation is important.

However, there are limitation with current gold standards which

led to the objectives of this dissertation. This dissertation 

hypothesized that gait data is closely related with both 

symptomatic and structural KOA and can supplement the unmet 

clinical needs of current gold standard severity evaluation

methods. It was hypothesized that specific gait features would 

reflect the severity of the symptoms. Further, radiographic 
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image and gait data were assumed to be complementary with 

each other. Thus, the objective of this dissertation is to suggest 

the application of gait data in clinical practice by developing 

objective and automated severity evaluation of KOA. The 

following aims were investigated to achieve the objective.

(1) Identify gait features related with symptomatic severity 

of KOA and develop an objective severity evaluation

algorithm for symptomatic severity of KOA. 

(2) Apply features from radiographic image and gait data to 

develop an automatic severity evaluation algorithm for 

the structural severity of KOA.
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2. SYMPTOMATIC SEVERITY 

OF KNEE 

OSTEOARTHRITIS
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2.1. INTRODUCTION

For many patients, relief from the symptoms of KOA is 

important to maintain functional independence. Thus, KOA 

therapy is aimed at reducing pain and improving gait function. 

The results from pain and gait disorder assessments are used to 

develop treatment plans, determine the effectiveness of 

treatment, and inform disease prognosis. However, there is no 

objective gold standard method exists for the assessment of 

symptomatic severity of KOA. The current gold standard for the 

assessment of symptomatic severity of KOA relies on a 

subjective questionnaire method, WOMAC. A Korean version of 

WOMAC is shown in Figure 2.1. As shown in the figure, there 

are total of 24 questions, and the score ranges from 0 to 96. 

Previous studies have suggested gait analysis as an 

alternative tool for measuring patient disabilities since

symptomatic dysfunction can be evaluated objectively using gait 

data [29, 30, 37]. This study anticipates that the analyses

between WOMAC and gait analysis data can provide potentially 
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objective measures of symptoms and provide insight regarding 

the relationship between symptomatic severity evaluation of 

disease and gait quality. Accordingly, the WOMAC estimation 

models based on the gait analysis features would provide an 

objective assessment of symptomatic severity of KOA. 

This cross-sectional study analyzed the relationship 

between gait data and the WOMAC scores of KOA patients. The 

WOMAC indices of KOA patients without cognitive impairment, 

depression and who were willing to answer accurately, were 

included to avoid longitudinal bias and other possible inaccuracies. 

This study hypothesized that the WOMAC index and its three 

subscales would closely relate to KOA patients’ gait function 

and that specific features would change with disease progression. 

Overall, the aim of this chapter is to identify the key features 

associated with the WOMAC index and its three subscales, and 

to apply machine learning algorithms to objectively evaluate the 

symptomatic severity of KOA.
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Figure 2.1 Korean version of WOMAC index
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2.2. METHODS

2.2.1. Participants

This study was approved by Institutional Review Board (IRB) of 

Seoul National University Hospital (IRB no. 1810-004-974) and 

were performed in accordance with relevant guidelines and 

regulations. Written informed consent was obtained from all 

participants. This study was performed using the gait lab 

database. The database consists of gait reports of KOA patients 

with various degrees of knee pain and healthy volunteers without 

any knee pain from 2013 to 2017. This study excluded subjects 

based on the following criteria: (1) missing some data for both 

legs; (2) aged < 20 years; (3) spine disease, hip, or ankle 

arthritis on x-ray; (4) inflammatory or traumatic arthritis of the 

knee; (5) any prior bone surgery in the lower extremities; and 
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(6) cognitive impairment or depression. After the exclusion, the 

result of first WOMAC evaluation of each subject before any 

surgical procedure were selected. A total of 375 subjects were 

included in the study. Table 1 summarizes the participants’

demographic characteristics and symptomatic severity

Table 1 Subject characteristics of symptomatic KOA patients

Feature
Mild 

(n=140)

Moderate 

(n=182)

Severe 

(n=53)
p-value

Age 62.6(9.1) 63.7(10.2) 63.3(10.2) 0.101

WOMAC 18.9(11.9) 48.5(6.8) 71.7(10.3) <0.0001

Physical 

Function
13.8(8.9) 35.4(5.6) 52.8(7.8) <0.0001

Pain 3.4(3.2) 9.1(2.3) 13.2(3.7) <0.0001

Stiffness 1.7(1.7) 4(4) 5.7(5.7) <0.0001
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2.2.2. Gait Data Collection

All gait analysis data, including kinetic, kinematic and 

spatial-temporal data, were collected at the Human Motion 

Analysis Laboratory of Seoul National University Hospital 

following OrthoTrack 6.6 Reference Manual [38] with daily 

quality check to maintain the error within 1mm. All data collection 

process was performed by an operator with 20 years of 

experience. The subjects has a few minutes to warm up to 

acclimate to the setting and reflective markers were placed on 

the subjects based on the Helen Hayes arrangement. After 

placing the markers, an operator asked the subjects to walk along 

a 9 m track. Motion data were collected using twelve charge-

coupled device cameras with a three-dimensional optical motion 

capture system (Motion Analysis Corp., Santa Rosa, CA, USA) 
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at a sampling frequency of 120 Hz. Two floor-embedded force 

plates were used to obtain the kinetic data. An average of five or 

six trials of the 9 m walk of the kinetic and kinematic data for 

each joint were used in this study. 

2.2.3. Statistical Analysis and WOMAC Estimation Model

All data analyses and classification were performed using 

MATLAB 2019b (MathWorks, Natick, MA). The gait analysis 

data were used to extract kinetic and kinematic data of hip, pelvic 

area, knee and ankle. These features included, but were not 

limited to, area under the curve, maximum value of swing phase, 

and minimum value of the curve. An additional 16 gait 

characteristics (i.e., velocity and cadence) were also selected as 

classification model features. Only the right leg was included to 



22

avoid statistical dependency from multiple observations of single 

individuals [39].

To statically analyze the relationship between the 

WOMAC score and gait features, the severity of WOMAC was 

classified into three classless: mild, moderate, and severe. Each 

WOMAC questions are answered into 5 different answers: none 

(0), mild (1), moderate (2), severe (3) and extreme (4). To 

divide the WOMAC score into three different severities, 1.5, the 

midpoint between mild to moderate, and 2.5, the midpoint 

between moderate to severe, were chosen as the decision point 

and were multiplied by the number of WOMAC questionnaires 

(24). The cut points adopted in this study is similar with other 

cut points used in previous studies [40, 41]. These studies 

applied 4 and 6 as cut points in scale of 0-10, which is 1.6 and 

2.4 in scale of each WOMAC questionnaire (0-4). Accordingly, 
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WOMAC scores below 36 was classified as mild, scores between 

36 and 60 were classified as moderate, and the scores above 60 

were classified as severe. The WOMAC subscales were divided 

into three classes using the same procedure. 

A one-way analysis of variance (ANOVA) with a 

significance level of 0.0001 was performed. A student t-test was 

used to analyze class differences between each severity groups 

for features with significant difference as the result of ANOVA. 

For a multiple-comparison correction, a new alpha value of  

0.00003 was used as significance level according to Bonferroni 

correction [42]. Features that were significant for all three 

comparisons between each classes were selected as key 

features.

Two different machine learning algorithm, random forest 

and support vector machine, were used to build regression model 
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to estimate WOMAC score using the selected features as input. 

A random forest algorithm is an ensemble learning method 

constructed with multiple decision trees. Support vector machine 

is also widely used machine learning algorithm including the 

medical practice [43]. To resolve dataset imbalances, this study

performed a down-sampling method.

The hold-out method was used for model validation. 

Seventy percent of the data were randomly selected to train the 

model and the other thirty percent of data were used for 

validation. The model was analyzed by observing correlation.
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2.3. RESULTS

A total of 1083 features (of 23 gait parameters) were 

extracted from the gait analysis dataset and 44 features (12 hip, 

1 pelvic, 17 knee, 9 ankle, 1 foot, and 4 spatiotemporal) were 

selected according to ANOVA and t-test results. The gait 

parameter features included hip rotation moment, hip flexion 

angle, hip adduction angle, hip power, pelvic obliquity angle, knee 

extension moment, knee flexion angle, knee power, knee varus 

angle, ankle plantarflexion moment, ankle power, foot 

progression angle, total speed, duration of single limb support 

phase (% of gait cycle), timing of initial double limb support (% 

of gait cycle), and timing of weight acceptance (% of gait cycle). 

Physical function was significantly related to all features, except 

for hip power. Pain differed significantly in relation to hip 
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adduction angle, hip power, knee power, knee varus angle, ankle 

plantarflexion moment, and ankle power. Stiffness was 

significantly different in relation to hip rotation moment, hip 

adduction angle, knee flexion angle, and knee varus angle. 

Table 2 summarizes the key WOMAC features and 

statistical results. The representative mean values of parameters 

for each group were divided according to WOMAC score (Figure 

2.2). The correlation between actual and estimated WOMAC 

score was 0.725 and the 0.741, respectively for support vector 

machine and random forest (Figure 2.3).
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Figure 2.2 Mean values of representative gait parameters for 

each symptomatic severity of KOA where features were extracted from 

the a) ankle power, b) hip adduction angle, c) knee flexion angle, and 

d) knee varus angle.



28

Figure 2.3 Regression result for WOMAC results using a) support vector 

machine b) the random forest algorithm and identified key features.
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Table 2 List of gait features related with symptomatic severity of KOA

Joint Parameter Feature PF PN SF

Hip

Rotation 

Moment
Standard Deviation O O

Flexion Angle
Lower Bound of Autocorrelation O

Bandwidth Frequency Bounds O

Adduction 

Angle

Area Under the Curve during Stance Phase O O O

Standard Deviation of Absolute Value O

Power

Minimum Value during Mid-Stance O

Maximum Value during Terminal Stance O

Area Under the Curve O

Maximum - Minimum O O

Distance between Stance and Swing Phase using 

Dynamic Time Wrapping
O

Maximum Value during Mid-Swing O

Minimum Value during Terminal Swing

Pelvic Obliquity Angle
Minimum value during Terminal Stance to Pre-

Swing
O
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Knee

Extension 

Moment

Kurtosis O

Peak2RMS O

Flexion Angle

Variance O O

Standard Deviation O O

Maximum - Minimum O O

Area Under the Curve of Power Spectral Density O O

Power Maximum Value during Terminal Swing O

Varus Angle

Maximum Value during Mid-Stance O O O

Maximum Value during Terminal Stance O O

Area Under the Curve of Stance Phase O O O

Area Under the Curve O O O

Root Mean Square (RMS) O O

Peak2RMS O O O

Mid-reference level O O O

Area Under the Curve of Power Spectrum O O

Maximum Value during Terminal Swing O O O

Minimum Value during Loading Response O O O

Ankle
Plantarflexion 

Moment

Minimum Value during Loading Response O O

Maximum value during initial Swing O
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Maximum - Minimum O

Power

Kurtosis O

Peak2RMS O

Maximum - Minimum O

Lower Bound of Autocorrelation O

Occupied Bandwidth O

Bandwidth frequency bound O

Foot
Progression 

Angle
Average of Absolute Value O

Spatiotemporal

Total Speed O

Duration of single limb support phase O

Timing of initial double limb support O

Timing of weight acceptance O

PF=Physical Function; PN=Pain; SF=Stiffness.
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Table 3 Example of gait features showing difference among patients with same WOMAC score

Feature Subject 1 Subject 2 Subject 3

Total WOMAC Score 52 52 52

WOMAC-Physical 

Function

35 35 34

WOMAC- Pain 11 11 14

WOMAC - Stiffness 6 6 4

Hip Power Maximum -

Minimum

10.55 11.51 9.84

Knee Varus Angle Area 

Under the Curve of 

Stance Phase

8.11 12.64 1.26

Knee Varus Angle Area 

Under the Curve

8.36 12.59 0.99
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Knee Varus Angle 

Peak2RMS

458 681.23 21.19

Knee Varus Angle Mid-

reference level

7.11 9.38 1.51

Knee Varus Angle 

Maximum value during 

Terminal Swing

1.56 1.35 2.68

Knee Varus Angle 

Maximum during Loading 

Response

1.47 3.24 0.02

Ankle Plantarflexion 

Moment Minimum Value 

during Loading Response

11.12 10.17 4.05

Total WOMAC Score 52 52 52



34

2.4. DISCUSSION

While previous studies [30, 44, 45] have reported the 

relationship between spatiotemporal gait features, such as speed 

and stride length, and WOMAC indices of KOA or hip OA patients, 

this is the first study to analyze the relationship between kinetic 

and kinematic gait parameters and the WOMAC indices. 

Biomechanical intervention is recognized an alternative method 

to control pain and improve physical function [46]. Gait analysis 

provides meaningful KOA biomechanical information, but its 

complexity has limited its clinical applicability [36, 47]. Here, 

this study statistically analyzed key gait cycle features and 

identified critical KOA biomechanical information. In addition, 

this study built machine learning estimation models for the 

WOMAC index based on the identified features. While PROM 
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methods are cheap, easy and quick, they are not applicable to 

patients who are unable or unwilling to perform the task. Despite 

the ability of gait analysis to provide valuable information about 

KOA biomechanical properties, a standardized method is not 

available for clinical use. The estimation model provides 

objective and reliable symptomatic results and has utility as a 

consistent method for evaluating gait analysis data. Finally, this 

study has identified key features based on both conventional 

methods and novel engineering methods. Conventional features, 

such as peak and minimum gait data values, are limited to load or 

motion at a single time point during the gait cycle and do not 

contain information over the gait cycle [48]. This study has

developed methods that include information over the entire gait 

cycle, such as area under the curve, root mean square (RMS) 

and power spectrum. This study also conducted detailed feature 
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analysis during gait cycle sub-phases: loading response, mid-

stance, terminal-stance and pre-swing of stance phase, and 

initial swing mid-swing and terminal swing of swing phase.

This study identified well-known joint parameters that 

are specific to KOA patients and function in gait performance 

(listed in Table 2). Ankle dorsiflexion moment, for example, is 

an ankle joint movement involved in supination and pronation and 

three-dimensional ankle joint motions [49]. Previous studies 

have shown that knee varus angle changes are closely related to 

KOA [50, 51]. Lo and colleagues reported an association 

between knee varus angle and knee pain during weight bearing 

activities, most likely due to narrowing of the medial joint space, 

opening of the lateral space or increased lateral soft tissue

pretension. This study found that hip, knee and ankle joint power, 

the product of torque and angular velocity, differed significantly 
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according to WOMAC severity. Similarly, Segal et al. [52]

reported joint power differences between symptomatic KAO 

patients and high-functioning controls. Ro et al. [53] have 

reported the difference between maximum and minimum value of 

both hip flexion angle and hip adduction angle were smaller in 

KOA patients compared with control group. Weidow et al. have 

reported that [54] the maximum value of hip rotation moment 

significantly differed between symptomatic and asymptomatic 

group. KOA patients was reported to have significantly lower 

knee flexion range of motion in swing and stance phase during 

gait cycle, which is in agreement with our findings [55]. 

McCarthy et al [56] claimed that knee extension moment is also 

an important gait characteristic to analyze the relationship 

between KOA and gait data. Bechard et al [57] reported that 

toe-out angle of foot progression angle was significantly smaller 
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in patients with KOA and pelvic obliquity angle was reported to 

be correlated with symptoms of KOA.

In this study, physical function was influenced by the 

greatest number of features (43 from 14 parameters), indicating 

that WOMAC is a comprehensive score that incorporates the 

movement of many joints. This is reasonable given that KOA also 

effects the kinetic and kinematics of hip and ankle joints. Thus, 

to improve the physical function of patients, it is important to 

train not just the knee joint but also other KOA-affected joints 

[58]. The results of the study could provide guidelines for KOA 

exercise and rehabilitation (Table 2). Pain and stiffness were 

most related to knee-specific parameters. This pattern is 

demonstrated by tibiofemoral OA, which is a fairly common form 

of OA related to varus alignment. Tibiofemoral OA patients 

report higher pain levels than patellofemoral OA patients. Knee 
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extension moment was not significantly related to pain. However, 

the WOMAC pain questionnaire only included one stair-related 

question, which may have influenced this result.  In addition, the 

questionnaire also lacked questions related to knee adduction 

moment. Stiffness showed a significant relationship with knee 

flexion angle, a sagittal plane parameter. This is notable because 

the main movement of the knee, extension and flexion, is included 

in the sagittal plane. Also as shown in Table 3, gait features 

showed clear difference among patients with same WOMAC 

score but with different subscale scores. 

A limitation of this study was that it was validated 

internally; to validate the model for overfitting it should be 

subjected to external validation. In addition, the features 

identified in this study were not applied to actual rehabilitation. 
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Future studies should apply the key features to patient 

rehabilitation and determine the therapeutic effects.
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2.5. CONCLUSION

In conclusion, this study has identified features 

associated with the WOMAC its subscales and built estimation 

models for the WOMAC index. The features have been extracted 

using a feature engineering technique and statistically selected 

and validated. The estimation models were generated by 

traditional linear regression and random forest regression

models. The estimation model and list of key features represents 

an objective and alternative option for KOA symptom severity 

evaluation.
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3. STRUCTURAL SEVERITY 

OF KNEE 

OSTEOARTHRITIS
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3.1. INTRODUCTION

For a brief review, the current gold standard for the 

structural severity evaluation of KOA is the Kellgren–Lawrence 

(KL) grading system [23]. An example of a knee radiographic 

image of each KL grade is shown in Figure 3.1. As shown in the 

figure, even though the difference in KL grade 0 and 4 is distinct, 

it is difficult to observe the difference between each consecutive 

KL grades. Thus, highly trained experts are required to make 

radiographic assessment. However, the accurate severity 

evaluation process of KL grade is time consuming process for the 

experts. An automated severity evaluation system can decrease 

the time-consumption, thus allowing for the clinicians to direct 

their attention toward clinical findings.
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Accordingly, deep learning models were proposed in 

previous studies for automated KOA severity evaluation using 

radiographic imaging [31, 59, 60]. Deep learning is an effective 

technique for the analysis and classification of images, which is 

widely applied in various fields such as the medical field, and 

demonstrates excellent performances. Besides, the deep learning 

approach did not demonstrate a satisfactory performance when it 

was applied to the classification of KOA based on radiographic

images. Although deep learning demonstrated a satisfactory 

performance for binary classification between OA and non-OA 

cases, with an area under the curve (AUC) of 0.92, the overall 

results of the multi-class severity evaluation of KOA were 

unsatisfactory, with an accuracy [31]; when compared with the 

accurate results of the deep learning approaches in other fields of 

application [61-64]. The low performance of deep learning can 
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be attributed to the fact that a fair amount of radiography images 

is not perfectly adequate for KL grade classification. Even though 

it is important to obtain clear visualization of all compartments of 

knee joints for suitable radiography image for both tibiofemoral 

OA and patellofemoral OA classification, a considerable number of 

images do not satisfy all conditions. Previous studies [31, 60]

have trained and validated the models with large dataset, each with 

8892 and 5960 knees, the multi-class accuracy of the models 

were 57.4% and 66.7%, respectively.

Due to the degradation of gait functions in accordance 

with the progression of the disease, the relationship between gait 

analysis and the severity of KOA based on radiographic images 

has received significant research attention [13, 35, 48]. Kean et 

al. [65] reported that the knee adduction moment (KAM) impulse 

was positively correlated with the severity of disease. 
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Spatiotemporal gait parameters, including speed, cadence, and 

duration of the stance phase, differ significantly in KOA patients 

and asymptomatic groups [66]. However, most previous studies 

concentrated on specific joints, such as KAM, and features were 

separated into trends, unsuited for clinical application. To make 

gait data more applicable clinically, this study first sought to 

extract as many features from various joints as possible and then 

to identify key features by Kellgren-Lawrence (KL) grade.

This cross-sectional study analyzed the gait data of 

subjects ranging from no KOA to end-stage KOA. This study 

hypothesized that the patients’ gait function would decrease 

gradually with the stage of KOA and specific features would 

change with the progression. Also, the radiographic images and 

gait data were hypothesized to contain critical and

complementary information with respect to the knee joint and the 
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severity of the disease; thus, the use of both data improves the 

classification accuracy of the model. Overall, the aim of this 

chapter was to find key features that can be used as mechanical 

biomarkers of KOA progression and features were extracted 

from radiographic images using a deep learning network, and 

then a classification model was developed for KOA based on 

image features and gait features identified as KOA-related 

features.
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Figure 3.1 Example of representative knee radiographic image of each KL grade from KL 0 to 4 and explanation of how the 

severity evaluation was made for each grade.
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3.2. METHODS

3.2.1. Participants

This study was approved by our Institutional Review 

Board (IRB no. 1810-004-974). Written informed consent was 

obtained from all participants This study was performed with the 

database of our gait lab. The database consists of the gait reports 

of the various degrees of knee OA patients and healthy 

volunteers from 2012 to 2017. The inclusion criteria of the 

database were healthy volunteers or knee OA patients who 

decided to participate the gait analysis and x ray analysis. The 

subjects’ medical records were obtained, and all participants 

underwent a physical examination and standing, knee-extended 

position, full-limb radiography of the knee. This study excluded 

subjects based on the following criteria: (1) patients who lacked 
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some data for both legs; (2) patients aged or < 20 years; (3) 

spine disease, hip, or ankle arthritis on x-ray; (4) inflammatory 

or traumatic arthritis of the knee ; (5) any prior bone surgery in 

the lower extremities ; and (6) All participants with equal KL 

grades for both knees. Consequently, 227 unilateral subjects 

with KOA participated in this study for gait feature identification. 

The degree of KOA was determined using the KL grading system. 

Table 4 summarizes the participants’ demographic 

characteristics and walking speed. For the classification model, 

participants with criteria (6) were not excluded and each limb 

was counted as separate data, and a total of 728 limbs were 

included in this study.
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Table 4 Subject characteristics for structural KOA patients

KL 0 KL 1 KL 2 KL 3 KL 4 p-value

age 28.7(5.8) 64.6(4.1) 67.3(7.4) 69.2(7) 69.3(6.6) <0.01

height 167.5(8.7) 156.3(7.9) 156.7(8) 154.3(7) 153.8(7.5) <0.01

weight 63.2(12.3) 59.4(9.1) 62.8(10.8) 63.4(9.6) 63.9(10.2) 0.014

BMI 22.4(2.9) 24.3(3) 25.5(3.3) 26.6(3.2) 27(3.5) <0.01

TS 124.1(7.6) 106.9(15.3) 88.4(23.1) 84(21.2) 78.9(20.1) <0.01

Gender

Ratio
95:92 46:48 85:22 97:22 97:152 N/A
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3.2.2. Gait Data Collection

All gait analysis data, including kinetic, kinematic and 

spatial-temporal, were collected at the Human Motion Analysis 

Laboratory of Seoul National University Hospital. The subjects 

were asked to walk for a few minutes to get used to the setting. 

After warming up, an operator with 19 years of experience 

placed reflective markers on the subjects based on the Helen 

Hayes set. The subjects were asked to walk along a 9-m track. 

Motion data were collected using twelve charge-coupled device 

cameras with a three-dimensional optical motion capture system 

(Motion Analysis Corp., Santa Rosa, CA, USA) at a sampling 

frequency of 120 Hz. The kinetic data was obtained with two 

force plates which is embedded in the floor. The kinetic and 
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kinematic data for each joint were averaged after five or six trials 

of the 9-m walk and then used as study data.

3.2.3. Radiographic Assessment

All the full limb radiographic images used in this study 

were digitally obtained using an image archiving and 

communication system (Maroview 5.4; INFINITT Healthcare, 

Seoul, Korea). The radiographic evaluations were conducted 

independently, in accordance with the KL grading system, by two 

experts with fellowship training experience in arthroplasty. The 

two experts did not consider the other information related to the 

subjects. When the evaluation results were contradictory, the 

grading was discussed to reach a conclusion. The inter-observer 
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reliability of the radiographic assessments was satisfactory 

(intra-class correlation coefficient, 0.93).

3.2.4. Feature Extraction and Classification

All data analyses and classifications were performed 

using MATLAB 2019b (MathWorks, Natick, MA). In all, 149 

features were extracted from the kinetic and kinematic data for 

the hip, knee, and ankle in the gait analysis data. The 

representative gait parameters are shown in Figure 3.2. These 

features are extracted by calculating the area under the curve, 

maximum value during swing phase, Kurtis, area of absolute 

value of the curve, and other characteristic of the kinetic and 

kinematic curves. An additional 16 gait characteristics were 

selected as features for the classification model, such as velocity 
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and cadence. All features were extracted only from the right leg. 

This study analyzed only the right leg to remove statistical 

dependency from multiple observation from single individuals 

[39]. Neighborhood component feature selection [67] was 

performed to reduce the number of features. Neighborhood 

component analysis (NCA) feature selection performs 

regularization to obtain feature weights by minimizing the error 

for leave-one-out classification. Leave-one-out classification 

is conducted using one sample as a test set and the remaining 

data as a training set. This process is repeated until every sample 

has been used as a test set. Features with approximately zero 

feature weight were excluded. The remaining features were 

identified as key features and were used for the classification 

model. The student’s t-test was performed to identify 

differences in the features among KL grades.
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The Inception-ResNet-v2, which is a pre-trained 

convolutional neural network based on the ImageNet database, 

was used for two purpose: 1) To extract the features from 

radiographic images; 2) Classification model to compare our 

proposed SVM model. The Inception-ResNet-v2 combines the 

Inception architecture with a residual connection for the 

acceleration of the training and the improvement of the accuracy 

of the network [68]. It consists of 164 layers with image input 

dimensions of 299 × 299, and is considered as an effective and 

efficient network. The full limb radiographic images obtained from 

subjects were cropped around the knee and resized into 

dimensions of 299 × 299. The features were extracted after the 

final average pooling layer before the Softmax layer. A NCA was 

then conducted after the feature extraction using a deep learning 

network. For the selected gait and image features, the Student’s 
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t-test was conducted to determine the significantly different 

features between two different KL grades (p < 0.0001). This 

analysis provides information on the features that significantly 

influence the classification of KL grades. 
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Figure 3.2 Mean values of representative gait parameters for each KL grade where 

features were extracted from the a) knee abduction moment, b) knee flexion angle, 

c) hip abduction moment, and d) ankle dorsiflexion moment. All three moments 

were normalized using weight × height.
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A support vector machine (SVM) with the cubic kernel 

function was used for final classification. A hold-out validation 

was conducted to train and test the model. The data were split into 

train and test sets with a ratio of 7:3. The training set was used 

to train the SVM model, and the remainder of the unknown data 

was used for the test. A diagram of the study flowchart is shown 

in Figure. 3.3.

Figure 3.3 Flow diagram of deep learning approach with X-ray image input
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For a comparison of the proposed SVM model, using both 

gait and image features as input, with deep learning methods using 

the same dataset as input, a deep learning network was trained 

and validated using the Inception-ResNet-v2. An Adam optimizer 

and a cross-entropy loss function were used with a mini-batch 

size of 32. A learning rate of 1e-4 was set to stochastically 

optimize the network. Radiographic images cropped used feature 

extraction was used as input to train and validate the model. A 

hold-out validation method was used to test the model by splitting 

dataset into train and test sets with a ratio of 7:3. The total number 

of iteration was 900. The two models were examined by 

calculating the AUC of the receiver operating characteristic (ROC), 

sensitivity, precision, and F1-score. The sensitivity, precision, 

and F1-score were calculated using Equations 1–3, respectively:
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The occlusion map [69], which indicates the relative 

significance of the 2D area for classification, was also observed to 

validate if the deep learning model uses the appropriate location 

for decision-making. The occlusion map is generated by covering 

a small portion of image with a mask, which moves across the 

image. The changes in the probability score for each mask location 

were measured and used to identify the relative significant area 

from an image.
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3.3. RESULTS

3.3.1. Features Analysis

Among the 165 features extracted from the gait analysis

data, 20 features (9 from the knee, 7 from the hip, 2 from the 

ankle joint, and 2 spatiotemporal parameters) remained after the 

NCA feature selection and were selected as the final features. 

The selected features are shown in Table 5 and the NCA result 

of gait features in shown in Figure 3.4. The gait parameters 

included as key features were: knee extension moment, knee 

abduction moment, knee rotational moment, knee flexion angle, 

hip abduction moment, hip extension moment, hip extension angle, 

ankle dorsiflexion moment, cadence and stride length. Among the 

1,536 features extracted from a deep learning model, 65 features 

were selected.
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Table 5 List of gait features related with structural severity of KOA

Joint
Paramete

r
Feature KL 0 KL 1 KL 2 KL 3 KL 4

Kne

e

Abductio

n Moment

Area of the 

absolute 

value

131.95(67.29)1,2,

3,4

159.03(50.85)0,3

,4

176.11(80.12)0

,3,4

217.71(96.29)0

,1,2

227.56(105.93

)0,1,2

Rotational 

Moment

Area during 

the stance 

phase

-28.89(14.16)3,4
-

27.52(12.37)3,4

-

32.59(17.38)3,4

-

43.24(24.3)0,1,2

-

44.25(25.24)0,1,

2

Area of the 

absolute 

value

34.87(13.57)3,4 31.73(11.01)3,4 35.14(16.83)3,4
45.14(23.36)0,1,

2

46.31(24.06)0,1,

2

Flexion 

Angle

Maximum 

value during 

the late 

phase

17.87(5.46)1,2,3,4 22.75(5.38)0 22.65(5.81)0 22.65(6.88)0 22.7(9.98)0

Area of the 

absolute 

746.6(195.64)1,2,

3,4

1001.29(260.6)0

,2,3,4

1181.12(370.5

9)0,1

1215.46(434.1

)0,1

1319.04(643.9

2)0,1
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value during 

the stance 

phase

RMS
747.82(193.53)1,

2,3,4

1004.04(254.4)0

,2,3,4

1182.74(366.9

8)0,1

1217.82(429.0

8)0,1

1347.81(586.7

5)0,1

Mean
2456.06(318.88)

1,2,3,4

2740.38(373.73

)0

2748.77(413.9

8)0

2723.97(545.1

4)0

2831.74(753.1

4)0

Kurtosis 418.56(68.6)2,3,4
397.76(79.73)2,3

,4

321.93(102.7)0

,1,3,4

270.92(99.42)0

,1,2

235.18(143.73

)0,1,2

Lower 

boundary of 

autocorrelat

ion

62.1(4.95)2,3,4 61.39(5.85)2,3,4 55.87(8.2)0,1,3,4
50.45(9.57)0,1,2,

4

45.53(13.51)0,1,

2,3

Hip
Abductio

n Moment

Area under 

the curve

259.31(81.26)1.2,

3
300.41(69.67)0,4

312.54(108.92

)0,4

302.46(116.57

)0,4

253.61(114.71

)1,2,3

Area of the 

absolute 

value during 

260.3(82.77)1,2,3 298.62(68.76)0,4
310.33(107.3)0

,4

303.29(114.78

)0,4

255.1(113.41)1

,2,3
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the stance 

phase

Area of the 

absolute 

value

261.35(80.45)1,2 301.16(70.07)0
315.08(108.46

)0,4

305.65(116.3)0

,4

260.99(111.01

)2,3

RMS
276.24(84.27)1,2,

3
313.48(72.8)0

326.76(111.15

)0,4

316.89(118.3)0

,4

272.52(113.01

)2,3

Rotational 

Moment

Area under 

the curve

-

4.06(11.55)1,2,3,4
14.41(13.84)0 16.5(19.41)0 15.44(23.91)0 17.01(27.12)0

Area of the 

absolute 

value during 

the stance 

phase

-

6.61(12.42)1,2,3,4
11.5(13.78)0 14.48(19.36)0 14.2(24.12)0 16.06(26.71)0

Extension 

Moment

Area of the 

absolute 

value during 

the stance 

phase

-42.54(66.77)4 -52.78(81.97)4 -20.92(95.27) -25.38(97.62) 4.9(95.89)0,1
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Area of the 

absolute 

value

200.38(64.15)1,2 171.32(53.08)0 167.09(59.19)0 161.22(70.37) 163.09(69)

RMS
264.04(83.91)1,2,

3,4

214.53(65.79)0,3

,4
207.91(71.17)0

196.99(80.54)0

,1
203.7(82.13)0,1

Extension 

Angle

Area under 

the curve

697.99(331.89)1,

2,3,4

852.54(376.38)0

,4

1057.45(545.4

3)0

1055.03(447.1

1)0

1241.66(582.1

3)0,1

Area of the 

absolute 

value during 

the stance 

phase

1803.47(562.39)

1,2,3,4

2016.5(586.61)0

,4

2173.77(740.0

4)0

2145.6(641.98

)0

2375.54(804)0,

1

Area of the 

absolute 

value

927.25(174.42)1,

2,3,4

1047.72(227.79

)0

1184.9(419.96

)0

1164.55(332.6

8)0

1316.83(488.8

9)0

RMS
2050.86(371.88)

1,2,3,4

2221.47(425.62

)0

2305.05(604.0

1)0

2260.31(521.5

1)0

2454.9(701.22

)0

STD 251(41.27)2,3,4
255.34(62.95)2,3

,4

208.15(72.01)0

,1,4
205(66.52)0,1

181.84(65.51)0

,1,2
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Upper 

boundary of 

autocorrelat

ion

44.81(3.64)2,3,4 45.89(5.59)2,3,4 41.53(7.28)0,1 41.66(6.4)0,1 40.02(7.41)0,1

Ankl

e

Dorsiflexi

on 

Moment

Area of the 

absolute 

value during 

the stance 

phase

347.33(106.16)1,

2,3,4
224.32(79.11)0 255.43(98.49)0

257.85(110.66

)0

257.13(114.13

)0

RMS
368.43(109.38)1,

2,3,4
255.86(72.06)0 277.03(98.73)0 275.1(111.32)0 271.62(111.4)0

STD
26.24(14.86)1,2,3,

4
12.34(6.83)0 13.78(8.48)0 13.3(8.67)0 11.81(7.73)0

Spatial-

temporal

Total Speed
124.12(7.58)1,2,3,

4

106.9(15.27)0,2,3

,4

88.38(23.14)0,1,

4
83.99(21.19)0,1

78.86(20.09)0,1,

2

Total Stride 

Length

131.19(7.92)1,2,3,

4

113.5(12.24)0,2,3

,4

98.81(20.74)0,1,

4
96.35(18.42)0,1

91.48(16.98)0,1,

2

Step Width 65.47(4.48)1,2,3,4 56.67(6.51)0,2,3,4 49.54(10.76)0,1, 48.2(9.35)0,1 45.7(8.63)0,1,2
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4

0
Significantly different with KL grade 0 ;

1 
Significantly different with KL grade 1; 

2
Significantly 

different with KL grade 2 ;
3 
Significantly different with KL grade 3 ;

4
Significantly different with KL 

grade 4;
*
p<0.001
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Figure 3.4 NCA result for gait features

Figure 3.5 represents the NCA result of radiographic image 

features. Table 6 presents the numbers of significantly different 

image and gait features based on comparisons between two KL 

grade groups. In 5 out of 10 binary comparisons, more than 30% 

of a total of 20 gait features were significantly different. 

However, less than 30% of image features were significantly 
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different in the two cases of the 6 comparisons (KL1 vs. KL3 

and KL2 vs. KL4). With respect to the image features, more than 

30% of total 65 image features were significantly different in 6 

out of 10 binary comparisons. However, no significantly different 

gait features were observed in the three cases of those 6 

comparisons (KL1 vs. KL2, KL 2 vs. KL3 and KL3 vs. KL4). 

With respect to the radiographic image and gait features, more 

than 30% were significant, namely, KL0 vs. KL3, KL0 vs. KL4, 

and KL1 vs. KL4.
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Figure 3.5 NCA result for radiographic image features

Table 6 List of gait features related with structural severity of KOA

Groups 

compared

# image features 

significantly different

# gait features 

significantly different

KL0 - KL1 11(17%) 4(20%)

KL0 - KL2 11(17%) 5(25%)

KL0 - KL3 20(31%) 11(55%)

KL0 - KL4 36(55%) 17(85%)

KL1 - KL2 46(70%) 2(10%)

KL1 - KL3 4(6%) 10(50%)

KL1 - KL4 28(43%) 14(70%)

KL2 - KL3 42(65%) 3(15%)

KL2 - KL4 10(15%) 7(35%)

KL3 - KL4 26(40%) 2(10%)
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3.3.2. Deep Learning Approach Based on Radiographic 

Images

Figure. 3.6 presents a cropped radiographic image of the 

knee used as an input, in addition to an occlusion map of the 

model. Table 7 presents the confusion matrix of the validation 

result of the model and the AUC results, which were 0.93, 0.80, 

0.85, 0.78, and 0.97 for KL Grades 0–4, respectively. The 

sensitivity, precision, and F1-score of the model were 0.55, 0.60, 

and 0.55, respectively. Figure. 3.7 (A) presents an ROC curve 

for the results obtained using the deep learning approach based 

on radiographic images.
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Figure 3.6 a) Cropped radiographic image of knee, used as an 

input to the deep learning network for radiographic feature 

extraction and KOA classification model to compare with proposed 

algorithm. b) An occlusion map indicating the relative spatial 

significance of features of a 2D image obtained as output of the 

deep learning classification model. The red area is the significant 

region, as indicated by the deep learning network, which is 

consistent with the ROI for KOA severity evaluation.
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Table 7 Confusion matrix for deep learning approach with X-ray input

KL 0 KL 1 KL 2 KL 3 KL 4

KL 0 60 6 0 1 0

KL 1 27 18 3 0 2

KL 2 3 5 5 1 3

KL 3 0 1 3 8 18

KL 4 0 0 0 3 48

3.3.3. Proposed Model Based on Gait Data and Radiographic 

Images

Table 8 presents the confusion matrix and AUC for the 

SVM model with total of 85 gait and radiographic image features. 

The AUC results for KL Grades 0–4 were 0.93, 0.82, 0.83, 0.88, 

and 0.97, respectively. The sensitivity, precision, and F1-score 

of the model were 0.70 0.76, and 0.71, respectively. Figure. 3.7

(B) presents the ROC of the classification result.
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Table 8 Confusion matrix for proposed method using gait features and 

X-ray image as inputs

KL 0 KL 1 KL 2 KL 3 KL 4

KL 0 60 6 0 1 0

KL 1 27 18 3 0 2

KL 2 3 5 5 1 3

KL 3 0 1 3 8 18

KL 4 0 0 0 3 48

Figure 3.7 ROC curve for (A) deep learning approach using 

radiography image as input (B) Proposed method using both gait 

and radiography image as input
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3.4. DISCUSSION

This study shows that gait function decreased gradually as 

the severity of KOA increased by identifying key gait features and 

demonstrated that the machine learning approach based on gait 

and radiographic image features can improve the classification 

performance of KOA at the KL grading scale when compared with 

the use of only radiographic images. The proposed model is based 

on gait analysis data and radiographic images of the knee, whereas 

the models proposed in previous studies utilized only one of the 

data types. Moreover, it was demonstrated that gait data can be 

used in clinical applications. Although gait data includes significant 

information on joints, its application is limited due to its complexity

[21]. This paper proposes a method for the application of gait data 

to the severity evaluation of KOA, in combination with 
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radiographic images. Moreover, the proposed method 

demonstrated an improved performance in the classification of 

KOA when compared with the methods proposed in previous 

studies. In particular, the proposed method demonstrated a 

relatively high accuracy, AUC, and F1-score, among other 

metrics.

The parameters listed in Table 5 are well-known joint 

parameters that have significantly different values at each stage 

of the disease. Kean et al. [65] reported that a feature extracted 

from the KAM during gait can distinguish individuals with 

different KL grades. Thorp et al. [70] reported that the same 

feature extracted from the KAM differed significantly among the 

control (KL grade 0 or 1), mild (KL grade 2), and moderate (KL 

grade 3) groups. Other parameters in Table 5 have also been 

reported [71-73]. Weidow et al. [74] reported that the 
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maximum hip extension angle was smaller for OA patients 

compared with controls and that the peak hip flexion moment was 

also smaller in patients. They also showed that the knee flexion 

angle decreased in lateral OA patients. Astephen et al. [72]

reported that the range of peak knee flexion angle differed 

significantly for severe OA patients and that the peak knee 

flexion angle during stance phase significantly differed 

progressively. They also reported that the minimum hip flexion 

moment during late stance differed significantly for all OA and 

that the hip flexion angle range significantly differed 

progressively. The peak and minimum ankle flexion moments 

were also reported to differ significantly for patients with severe 

OA [71].

The features listed in Table 5 have different abilities to 

discriminate the severity of disease. Some differed significantly 
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for all severities, while others differed only in the controls, mild 

OA, or severe OA. The stride length differed significantly 

progressively, while maximum value during the late swing phase 

of hip extension moment differed significantly for KL grades 3 

and 4. In comparison, area under the curve of hip abduction 

moment differed significantly between the most severe groups, 

KL grades 3 and 4, whereas all features extracted from the hip 

extension moment differed significantly between the control 

group.

Features like the peak and minimum values of gait data 

are reported to be limited to load or motion at an instance during 

the gait cycle and cannot contain information on the duration [65]. 

Features with duration information, such as the KAM impulse, 

are better discriminators than features without duration 

information, such as the peak KAM [65, 70]. Most of the features 
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extracted in this study, such as the variance, RMS, and area 

under the curve, contain duration information. The variance and 

RMS are well-known, widely used parameters that contain 

overall information on the signal. Area under the curve is an 

integral of the signal and is also a representative parameter.

As shown in 3.6b, the occlusion map directs the region of 

interest (ROI), which indicates that the model was suitably trained. 

Tiulpin et al [31] presented an attention map that accurately 

determined the ROI and demonstrated a similar classification 

performance to the proposed deep learning model. However, the 

classification performance of the deep learning network based on 

radiographic images was not sufficient for the accurate severity 

evaluation of KOA using the KL grading system. Therefore, 

instead of limiting the applicability of the deep learning method as 

a classifier, deep learning was used to extract features from the 
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radiographic images. Given that the deep learning pointed ROI as 

relatively important features on spatial location of 2D radiographic

image, the features that were extracted using deep learning also 

contain information on the ROI. The combined gait and 

radiographic image features demonstrated a superior performance 

when compared with the deep learning method. The accuracy of 

the combined model was 75.2%, whereas that of the deep learning 

method was 64.7%.

As shown in Table 6, the radiographic image and gait data 

features were found to be complementary. For example, with 

respect to KL Grades 1–3, half of the 20 gait features were 

significantly different; whereas there were only four significantly 

different features among the 65 image features. Moreover, only 

two significant differences were observed between the gait data 

features at KL Grades 1 and 2. However, 46 features image 
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features, which constituted more than half of the total number of 

features, were found to be significantly different. The results 

support the hypothesis, in that the gait data and radiographic

image features are complementary for the distinction of the KL 

grades. It should be noted that the number of input features in 

the proposed model is significant less than that of the deep 

learning network based on radiographic images, which 

demonstrates a poorer classification performance. With 

reference to the literature, this was the first study wherein KOA 

was evaluated based on the KL grading system using both gait 

and radiographic image features.
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3.5. CONCLUSION

In conclusion, the proposed model based on gait data and 

radiographic images was demonstrated to improve the accuracy 

of to evaluate the severity of KOA using the KL grading system. 

The automated classification of KOA using the proposed method 

can reduce the work of the clinician and improve the reliability of 

the KL grading system.
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5. CONCLUSION
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5.1. THESIS SUMMARY AND CONTRIBUTIONS

Modern gait analysis is a powerful technique that 

provides various biomechanical information of each joints in the 

lower body. Even though the degradation of gait function is clear 

along with the progression of KOA, the large volume and 

complexity of the data was a significant barrier for its application 

in actual clinical practice. With the development of artificial 

intelligence, it is now possible to extract as many features as 

possible from the data, and apply machine learning technique for 

feature selection to find significant features. Thus, in this this 

dissertation, various algorithm was applied to gait data for its 

application in clinical practice. 

For application of gait data in clinical practice, automatic 

severity evaluation algorithm for both symptomatic and 
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structural severity of KOA have developed. Key gait features 

associated with both severity of KOA have been identified. The 

feature selection method was performed based on machine 

learning algorithm and traditional statistical method. The 

estimation algorithms have successfully estimated the severity 

of KOA. For WOMAC estimation, the algorithm has shown the 

correlation of 0.741. The proposed model using radiography 

image and gait data as input has shown accuracy of 75.2% for 

discriminating the severity of KOA. 

In conclusion, this dissertation has shown that gait data 

can be applied in clinical practice for KOA severity evaluation. 

The identified gait features are objective and repeatable, which 

can cover the limitations of current gold standards for 

assessment of KOA. The classification algorithm can contribute 

as an extra tool for KOA evaluation to obtain more detail 
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information of the joint function.

5.2. FUTURE DIRECTIONS

As a next step of the study, it would be meaningful to 

design a wearable system optimized for knee joint kinematic 

measurement. The optimized wearable system should be light 

weighted, efficient with power consumption and convenient for 

both long and short term measurement. With the data collected 

from the wearable sensor, validation of the KOA severity 

evaluation algorithm would be suitable. 

While this dissertation focused on the relationship 

between gait data and current severity of KOA, a study analyzing 

the relationship between gait data and the progression of disease 

would also be notable. An appropriately designed long term 

clinical study for mild KOA patient is needed. The difference 
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between the patients with the disease progression and without 

the progression can reveal the biomechanical pathology of KOA. 

The result of this study might prevent the progression of the 

disease by modifying the gait habit and would provide useful 

information for rehabilitation for patients with knee joint disease.
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Abstract in Korean

국문 초록

퇴행성 관절염은 60세 이상의 노인 인구 약 30%에서

발병하는 질병이다. 현재 퇴행성 슬 관절염의 진단은 Western 

Ontario and McMaster Osteoarthritis (WOMAC) 방법과 방사선

촬영 기반의 Kellgren–Lawrence (KL) grade 방법이 사용되고

있다. 그러나 WOMAC 환자의 주관적인 판단을 토대로 중증도를

정량화하는 방법이어서 일부 환자들에게 적용이 불가능하고, 수술

후의 중증도를 반영하지 못한다는 단점이 있다. KL grade은 고도로

훈련된 전문가를 필요로 하며, 정확한 진단을 위하여서는 많은

시간을 필요로 한다. 반면 보행 신호는 환자의 보행에 따른

객관적인 생체 역학 신호를 제공하며, 보행이 가능한 모든 사람에게

적용이 가능하며, 주기적인 추적 관찰에 용의하다. 따라서 본

연구는 보행 신호를 이용하여 객관적이며, 결과에 대한 생체 역학적



99

이유를 알 수 있는 퇴행성 슬 관절염의 새로운 분석 방법을

제시함에 있다. 먼저 자동으로 WOMAC 방법을 진단하기 위해

보행신호에서 특징들을 추출하고 기계학습 기법을 이용하여

평가하는 모델을 개발하였다. 또한 KL grade 방법을 평가하기 위해

방사선 영상에서 딥러닝 알고리즘으로 추출한 특징들과

보행신호에서 추출한 특징들을 기계학습 기법을 이용하였다. 

제안하는 퇴행성 슬 관절염의 평가 방법은 WOMAC 및 KL grade 

방법과 각각 상관관계 0.741, 정확도 75.2%를 보였다. 본 연구는

퇴행성 슬 관절염의 새로운 평가 방법을 제시하였으며, 신호의

복잡성으로 인하여 임상에서 사용되지 못했던 보행 신호의 임상적

활용성을 보여주었다.

핵심어 : 기계학습, 보행 신호, 퇴행성 슬 관절염, 딥러닝
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