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ABSTRACT

Machine learning based gait data
analysis for objective evaluation of

knee osteoarthritis

Soon Bin Kwon
Interdisciplinary Program in Bioengineering
The Graduate School
Seoul National University
Osteoarthritis (OA) is a disease that affects above 30%
of the elderly population aged 60 years and older. Western
Ontario and McMaster Osteoarthritis (WOMAC) and
radiographic—based Kellgren-Lawrence (KL) grade methods
are currently used to evaluate the severity of knee
osteoarthritis (KOA). However, the WOMAC is a subjective
method which cannot be performed to certain patients, and is
not suitable for tracking changes in severity over time. KL
grade requires highly trained experts and is a time consuming

process. This dissertation hypothesized that objective and

biomechanical gait data can supplement unmet needs of current



gold standard. It was hypothesized that specific features from
gait data would reflect the severity of KOA. Therefore, this
study aims to identify key gait features associated with the
severity of KOA and provide a new objective and explainable
evaluation method for KOA based on gait analysis. Features
were extracted from the gait signal and an automated severity
evaluation model was designed based on machine learning
technique for WOMAC severity evaluation model. To develop an
automated severity evaluation algorithm for KL grade, features
were extracted from the plain radiography image using deep
learning network, and machine learning was applied to select
features from the gait data. Both image and gait features were
used to develop a machine learning algorithm for KL grade
evaluation. The evaluation algorithm for WOMAC and KL grade
showed a correlation of 0.741 and an accuracy of 75.2% with
gold standard method, respectively. This dissertation proposed
a new evaluation method for KOA and showed the clinical utility
of the gait data application that was limited in clinical practice

due to the complexity of the signal.

Keywords: Gait analysis, Machine learning, Deep learning, Knee

osteoarthritis
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1. INTRODUCTION



1.1. KNEE OSTEOARTHRITIS

Osteoarthritis (OA) is one of the most prevalent
musculoskeletal disease and is established as a public health
problem [1—3]. It has been reported that 70% to 85% of the
elderly population over 55 are affiliated with OA and 10% of the
world’ s elderly population have severe case of OA [4—6]. The
economic burden associated with osteoarthritis (OA) is high with
1-2% of the gross national product spent on OA-related
healthcare [7, 8]. With the aging of the global population, the
number of patients who suffer from knee osteoarthritis (KOA) is
expected to increase [9].

OA is defined as a clinical condition of joints characterized
by focal areas of degeneration of the articular cartilage with
reactive formation of new bone at the articular margins [10].
This clinical condition of OA is irreversible. Depending on the
underlying cause of this clinical condition, OA is classified into
two types: primary and secondary. Primary OA is more common
of the two. Even though the primary OA is related with age and
genetic factor, there is no definite identifiable underlying cause.

Secondary OA has identified causes of the disease, including



injury, repeated surgery, and obesity [11]. Also, unlike the
primary OA, secondary OA may occur at any age.

Even though OA can affect all joints, it is most common in
hand, hip and knee. Among the three joints, the knee joint is a
complex synovial joint and involves multiple structures to perform
its function. The degeneration of articular -cartilage and
reformation of bone causes the typical symptoms of OA. The
typical symptoms of KOA include pain, stiffness, which worsen in
accordance with an increase in the disease progression [12, 13].
These symptoms occurring at the knee joint could significantly
reduce the gait function and impair functional independence of

individuals.



1.2. SEVERITY EVALUATION OF KNEE

OSTEOARTHRITIS

1.2.1. Symptomatic Severity evaluation

The typical symptoms of knee osteoarthritis (KOA)
include pain, stiffness and decreased joint motion. Even though
there are objective methods to measure the decrease in joint
motion, it is difficult to measure pain and stiffness objectively.
The assessment of pain and stiffness are often performed with
patient reported outcome measures (PROMs).

PROMs are patient self—complete questionnaires to
assess patient’s symptoms and clinical status [14]. PROMs can
be conducted in a written format or verbally and can be translated
into multiple language. PROMs often consist of questions to
measure patient’s symptom and how the symptoms affect the
functionality in daily life activity. There are many disease—
specific PROMs suggested to assess symptomatic and functional
severity of various disease. Several PROMs are used in clinical
practice for KOA such as, the Oxford Knee Score, the Short Form
36 (SF—36), and the Western Ontario and McMaster Universities

Osteoarthritis Index (WOMACQ).
4



Among the number of PROMs suggested for the
assessment of KOA, the WOMAC is most widely used to
determine the symptomatic severity of KOA [15]. There are
total of 24 questions in WOMAC consist of three subscales: pain,
stiffness, and physical function with 5, 2 and 17 questions,
respectively. The WOMAC index has been widely used in clinical

studies as well as clinical practice [16—18].

1.2.2. Structural Severity evaluation

The assessment of structural severity evaluation of KOA
1s performed based on medical image modalities; magnetic
resonance image (MRI), ultrasound (US), optical coherence
tomography (OCT) and radiography. Among these modalities
MRI and radiography have established guidelines system to
evaluate the KOA in clinical practice [19]. The evaluation guides
for MRI includes, the Knee Osteoarthritis Grading System
(KOGS) [20], the Whole—Organ Magnetic Resonance Imagine
Score (WORMS) [21], and the Boston Leeds Osteoarthritis Knee
Score (BLOKS) [22]. Even though MRI provides detailed
information of the knee joint, radiography is the most accessible

and remains as a gold standard for structural severity evaluation



of KOA.

Among various grading system suggested for
radiography modalities [23—25], the Kellgren—Lawrence (KL)
grading system is current gold standard and most widely used in
clinical practice. The KL grading system classifies KOA into five
grades, ranging from 0-4, where Grade O indicates healthy
subjects with no KOA symptoms, and Grade 4 indicates the most
severe cases suitable for total knee arthroplasty (TKA). The KL
grade is determined by observing the presence of joint space
narrowing, osteophytes, bone deformity, and sclerosis from
radiographic images. For the accurate evaluation of the KL
grades, two experts are required to independently conduct
radiographic evaluations without considering other data. If the
evaluation of the two experts are contradictory, the results are

discussed to reach a conclusion.



1.3. UNMET CLINICAL NEEDS

Even though gold standard for both symptomatic and
structural severity evaluation are cost and time efficient method
to assess symptoms and function of patients, there are limitation
with the current gold standards. WOMAC has been validated in
many previous studies to be efficient method in multiple language
in various format [26—28], however, it is limited to the
drawbacks of PROMs. WOMAC, just like other PROMs, is an

unexplainable method. [29, 30].

Limitations also exist for KL grade system. Although the
KL grading system is widely implemented in clinical applications
for the severity evaluation of KOA, it is time consuming and
requires highly trained experts, generally with fellowship
training experiences in arthroplasty or radiography [31]. For the
accurate evaluation of the KL grades, two experts are required
to independently conduct radiographic evaluations without
considering other data. If the evaluation of the two experts are
contradictory, the results are discussed to reach a conclusion,

which requires fair amount of time of the experts. [31, 32].



1.4. GAIT ANALYSIS AND KOA

Modern gait analysis is an effective technique for the
analysis of the biomechanical information of lower joints, and it
provides a temporal signal of each joint and additional gait
information such as cadence, stride length, and step width. The
main purpose of gait analysis is for quantified assessment of

human locomotion.

The gait data is obtained with multiple infrared cameras
and force plates placed on the ground. The gait cycle is composed
of two main phase, stance and swing phase, which can further be
categorized into initial contact, loading response, mid—stance,
terminal stance, pre —swing, initial swing, mid swing, and terminal
swing. Each phases of gait cycle are shown in Figure 1.1. The
obtainable biomechanical parameters from the gait analysis
includes, hip flexion angle, hip adduction angle, hip rotation angle,
hip extension moment, hip abduction moment, hip rotation
moment, hip power, knee flexion angle, knee varus angle, knee
extension moment, knee adduction moment, knee rotation
moment, knee power, ankle flexion angle, ankle plantar—flexion

moment, ankle varus moment, ankle power, pelvic tilt angle,

8



pelvic obliquity angle, pelvic rotation angle, foot progression
angle, foot progression moment, and tibia torsion angle. The
typical signal of healthy subjects of the gait parameter is shown

in Figure 1.2.

One of typical symptoms of KOA is decrease in gait
function. The spatiotemporal gait parameters, such as cadence
and speed, decreases for the KOA patients. Based on these
observation, Thorp.et.al [33] have suggested both functional and
structural distinction between KL grade. Other previous studies
[13, 34, 35] also have analyzed and have shown the relationship
between these gait parameters and the severity of KOA. It was
shown that some traditional features, such as range of motion of
the knee joint, had significant difference between OA and non—
OA subjects. Even though these results suggests possible
application of gait data, the complexity of the gait data remains

as a barrier for application in clinical practice [36].
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Figure 1.2 Gait parameters of control during the gait cycle. Starting from the (A) hip flexion angle (B) hip adduction angle (C)
hip rotation angle (D) hip extension moment (E) hip abduction moment (F) hip rotation moment (G) hip power (H) knee flexion
angle (I) knee varus angle (J) knee extension moment (K) knee adduction moment (L) knee rotation moment (M) knee power
(N) ankle flexion angle (O) ankle plantar—flexion moment (P) ankle varus moment (Q) ankle power (R) pelvic tilt angle (S)
pelvic obliquity angle (Y) pelvic rotation angle (U) foot progression angle (V) foot progression moment (W) tibia torsion angle
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1.5. THESIS OBJECTIVES

KOA is irreversible and cannot be cured. Therefore,
prevention and management of the disease is important. Patients
who suffers from KOA gets TKA or drug treatment, therapy,
reduces the symptoms with appropriate exercises, and
management of the risk factors. For precise treatment of the
disease, accurate and objective severity evaluation is important.
However, there are limitation with current gold standards which
led to the objectives of this dissertation. This dissertation
hypothesized that gait data is closely related with both
symptomatic and structural KOA and can supplement the unmet
clinical needs of current gold standard severity evaluation
methods. It was hypothesized that specific gait features would

reflect the severity of the symptoms. Further, radiographic

12



image and gait data were assumed to be complementary with

each other. Thus, the objective of this dissertation is to suggest

the application of gait data in clinical practice by developing

objective and automated severity evaluation of KOA. The

following aims were investigated to achieve the objective.

(1) Identify gait features related with symptomatic severity

of KOA and develop an objective severity evaluation

algorithm for symptomatic severity of KOA.

(2) Apply features from radiographic image and gait data to
develop an automatic severity evaluation algorithm for

the structural severity of KOA.

13



2. SYMPTOMATIC SEVERITY

OF KNEE

OSTEOARTHRITIS

14



2.1. INTRODUCTION

For many patients, relief from the symptoms of KOA is
important to maintain functional independence. Thus, KOA
therapy is aimed at reducing pain and improving gait function.
The results from pain and gait disorder assessments are used to
develop treatment plans, determine the effectiveness of
treatment, and inform disease prognosis. However, there is no
objective gold standard method exists for the assessment of
symptomatic severity of KOA. The current gold standard for the
assessment of symptomatic severity of KOA relies on a
subjective questionnaire method, WOMAC. A Korean version of
WOMAC is shown in Figure 2.1. As shown in the figure, there
are total of 24 questions, and the score ranges from O to 96.

Previous studies have suggested gait analysis as an
alternative tool for measuring patient disabilities since
symptomatic dysfunction can be evaluated objectively using gait
data [29, 30, 37]. This study anticipates that the analyses

between WOMAC and gait analysis data can provide potentially

15



objective measures of symptoms and provide insight regarding
the relationship between symptomatic severity evaluation of
disease and gait quality. Accordingly, the WOMAC estimation
models based on the gait analysis features would provide an
objective assessment of symptomatic severity of KOA.

This cross—sectional study analyzed the relationship
between gait data and the WOMAC scores of KOA patients. The
WOMAC indices of KOA patients without cognitive impairment,
depression and who were willing to answer accurately, were
included to avoid longitudinal bias and other possible inaccuracies.
This study hypothesized that the WOMAC index and its three

subscales would closely relate to KOA patients’ gait function

and that specific features would change with disease progression.

Overall, the aim of this chapter is to identify the key features
associated with the WOMAC index and its three subscales, and
to apply machine learning algorithms to objectively evaluate the

symptomatic severity of KOA.

16
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2.2. METHODS

2.2.1. Participants

This study was approved by Institutional Review Board (IRB) of
Seoul National University Hospital (IRB no. 1810-004—-974) and
were performed in accordance with relevant guidelines and
regulations. Written informed consent was obtained from all
participants. This study was performed using the gait lab
database. The database consists of gait reports of KOA patients
with various degrees of knee pain and healthy volunteers without
any knee pain from 2013 to 2017. This study excluded subjects
based on the following criteria: (1) missing some data for both
legs; (2) aged < 20 years; (3) spine disease, hip, or ankle
arthritis on x—ray; (4) inflammatory or traumatic arthritis of the

knee; (5) any prior bone surgery in the lower extremities; and

18



(6) cognitive impairment or depression. After the exclusion, the

result of first WOMAC evaluation of each subject before any

surgical procedure were selected. A total of 375 subjects were

included in the study. Table 1 summarizes the participants’

demographic characteristics and symptomatic severity

Table 1 Subject characteristics of symptomatic KOA patients

Mild

Moderate

Severe

Feat “val
eature 1=140) (=182  (a=53) ° '*ue
Age 62.6(9.1) 63.7(10.2) 63.3(10.2) 0.101
WOMAC 18.9(11.9) 48.5(6.8) 71.7(10.3) <0.0001
Physical
YSIC T 139(8.9)  35.4(5.6) 52.8(7.8)  <0.0001
Function
Pain 3.4(3.2)  9.1(23)  13.2(3.7)  <0.0001
Stiffness  1.7(1.7) 4(4) 57(5.7)  <0.0001
19



2.2.2. Gait Data Collection

All gait analysis data, including kinetic, kinematic and

spatial—temporal data, were collected at the Human Motion

Analysis Laboratory of Seoul National University Hospital

following OrthoTrack 6.6 Reference Manual [38] with daily

quality check to maintain the error within 1mm. All data collection

process was performed by an operator with 20 years of

experience. The subjects has a few minutes to warm up to

acclimate to the setting and reflective markers were placed on

the subjects based on the Helen Hayes arrangement. After

placing the markers, an operator asked the subjects to walk along

a 9 m track. Motion data were collected using twelve charge—

coupled device cameras with a three—dimensional optical motion

capture system (Motion Analysis Corp., Santa Rosa, CA, USA)

20



at a sampling frequency of 120 Hz. Two floor—embedded force

plates were used to obtain the kinetic data. An average of five or

six trials of the 9 m walk of the kinetic and kinematic data for

each joint were used in this study.

2.2.3. Statistical Analysis and WOMAC Estimation Model

All data analyses and classification were performed using

MATLAB 2019b (MathWorks, Natick, MA). The gait analysis

data were used to extract kinetic and kinematic data of hip, pelvic

area, knee and ankle. These features included, but were not

limited to, area under the curve, maximum value of swing phase,

and minimum value of the curve. An additional 16 gait

characteristics (i.e., velocity and cadence) were also selected as

classification model features. Only the right leg was included to

21



avoid statistical dependency from multiple observations of single

individuals [39].

To statically analyze the relationship between the

WOMAC score and gait features, the severity of WOMAC was

classified into three classless: mild, moderate, and severe. Each

WOMAC questions are answered into 5 different answers: none

(0), mild (1), moderate (2), severe (3) and extreme (4). To

divide the WOMAC score into three different severities, 1.5, the

midpoint between mild to moderate, and 2.5, the midpoint

between moderate to severe, were chosen as the decision point

and were multiplied by the number of WOMAC questionnaires

(24). The cut points adopted in this study is similar with other

cut points used in previous studies [40, 41]. These studies

applied 4 and 6 as cut points in scale of 0—10, which is 1.6 and

2.4 in scale of each WOMAC questionnaire (0—4). Accordingly,

22



WOMAC scores below 36 was classified as mild, scores between

36 and 60 were classified as moderate, and the scores above 60

were classified as severe. The WOMAC subscales were divided

into three classes using the same procedure.

A one—way analysis of variance (ANOVA) with a

significance level of 0.0001 was performed. A student t—test was

used to analyze class differences between each severity groups

for features with significant difference as the result of ANOVA.

For a multiple—comparison correction, a new alpha value of

0.00003 was used as significance level according to Bonferroni

correction [42]. Features that were significant for all three

comparisons between each classes were selected as key

features.

Two different machine learning algorithm, random forest

and support vector machine, were used to build regression model

23
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to estimate WOMAC score using the selected features as input.

A random forest algorithm is an ensemble learning method

constructed with multiple decision trees. Support vector machine

is also widely used machine learning algorithm including the

medical practice [43]. To resolve dataset imbalances, this study

performed a down—sampling method.

The hold—out method was used for model validation.

Seventy percent of the data were randomly selected to train the

model and the other thirty percent of data were used for

validation. The model was analyzed by observing correlation.

24



2.3. RESULTS

A total of 1083 features (of 23 gait parameters) were
extracted from the gait analysis dataset and 44 features (12 hip,
1 pelvic, 17 knee, 9 ankle, 1 foot, and 4 spatiotemporal) were
selected according to ANOVA and t—test results. The gait
parameter features included hip rotation moment, hip flexion
angle, hip adduction angle, hip power, pelvic obliquity angle, knee
extension moment, knee flexion angle, knee power, knee varus
angle, ankle plantarflexion moment, ankle power, foot
progression angle, total speed, duration of single limb support
phase (% of gait cycle), timing of initial double limb support (%
of gait cycle), and timing of weight acceptance (% of gait cycle).
Physical function was significantly related to all features, except

for hip power. Pain differed significantly in relation to hip
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adduction angle, hip power, knee power, knee varus angle, ankle

plantarflexion moment, and ankle power. Stiffness was

significantly different in relation to hip rotation moment, hip

adduction angle, knee flexion angle, and knee varus angle.

Table 2 summarizes the key WOMAC features and

statistical results. The representative mean values of parameters

for each group were divided according to WOMAC score (Figure

2.2). The correlation between actual and estimated WOMAC

score was 0.725 and the 0.741, respectively for support vector

machine and random forest (Figure 2.3).
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Figure 2.2 Mean values of representative gait parameters for

each symptomatic severity of KOA where features were extracted from

the a) ankle power, b) hip adduction angle, c) knee flexion angle, and

d) knee varus angle.
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Figure 2.3 Regression result for WOMAC results using a) support vector

machine b) the random forest algorithm and identified key features.

28



Table 2 List of gait features related with symptomatic severity of KOA

Joint Parameter Feature PF PN SF
Rotation _
Standard Deviation 0O 0
Moment
) Lower Bound of Autocorrelation 0]
Flexion Angle ]

Bandwidth Frequency Bounds 0]
Adduction Area Under the Curve during Stance Phase O O @)

Angle Standard Deviation of Absolute Value O

- Minimum Value during Mid—Stance O

1p
Maximum Value during Terminal Stance O
Area Under the Curve O
Maximum — Minimum O O
Power ) ) )
Distance between Stance and Swing Phase using o
Dynamic Time Wrapping
Maximum Value during Mid—Swing 0]
Minimum Value during Terminal Swing
) o Minimum value during Terminal Stance to Pre—
Pelvic Obliquity Angle O

Swing
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Extension

Moment

Flexion Angle

Power

Knee
Varus Angle
Plantarflexion
Ankle
Moment

Kurtosis
PeakZ2RMS
Variance
Standard Deviation
Maximum — Minimum
Area Under the Curve of Power Spectral Density
Maximum Value during Terminal Swing
Maximum Value during Mid—Stance
Maximum Value during Terminal Stance
Area Under the Curve of Stance Phase
Area Under the Curve
Root Mean Square (RMS)
PeakZ2RMS
Mid—reference level
Area Under the Curve of Power Spectrum
Maximum Value during Terminal Swing
Minimum Value during Loading Response
Minimum Value during Loading Response

Maximum value during initial Swing
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Maximum — Minimum
Kurtosis
Peak2RMS
Maximum — Minimum
Power .
Lower Bound of Autocorrelation
Occupied Bandwidth
Bandwidth frequency bound
Progression
Foot Average of Absolute Value
Angle
Total Speed
) Duration of single limb support phase
Spatiotemporal o o ]
Timing of initial double limb support

Timing of weight acceptance

o O O O O O O

@)

o O O O

PF=Physical Function; PN=Pain; SF=Stiffness.
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Table 3 Example of gait features showing difference among patients with same WOMAC score

Feature Subject 1 Subject 2 Subject 3
Total WOMAC Score 52 52 52
WOMAC-Physical 35 35 34
Function
WOMAC- Pain 11 11 14
WOMAC - Stiffness 6 6 4
Hip Power Maximum - 10.55 11.51 9.84
Minimum
Knee Varus Angle Area 8.11 12.64 1.26
Under the Curve of
Stance Phase
Knee Varus Angle Area 8.36 12.59 0.99

Under the Curve
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Knee Varus Angle
Peak2RMS
Knee Varus Angle Mid-
reference level
Knee Varus Angle
Maximum value during
Terminal Swing
Knee Varus Angle
Maximum during Loading
Response
Ankle Plantarflexion
Moment Minimum Value
during Loading Response

Total WOMAC Score

458

7.11

1.56

1.47

11.12

52

681.23

9.38

1.35

3.24

10.17

52

21.19

1.51

2.68

0.02

4.05

o2
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2.4. DISCUSSION

While previous studies [30, 44, 45] have reported the
relationship between spatiotemporal gait features, such as speed
and stride length, and WOMAC indices of KOA or hip OA patients,
this is the first study to analyze the relationship between kinetic
and kinematic gait parameters and the WOMAC indices.
Biomechanical intervention is recognized an alternative method
to control pain and improve physical function [46]. Gait analysis
provides meaningful KOA biomechanical information, but its
complexity has limited its clinical applicability [36, 47]. Here,
this study statistically analyzed key gait cycle features and
identified critical KOA biomechanical information. In addition,
this study built machine learning estimation models for the

WOMAC index based on the identified features. While PROM

34



methods are cheap, easy and quick, they are not applicable to

patients who are unable or unwilling to perform the task. Despite

the ability of gait analysis to provide valuable information about

KOA biomechanical properties, a standardized method is not

available for «clinical use. The estimation model provides

objective and reliable symptomatic results and has utility as a

consistent method for evaluating gait analysis data. Finally, this

study has identified key features based on both conventional

methods and novel engineering methods. Conventional features,

such as peak and minimum gait data values, are limited to load or

motion at a single time point during the gait cycle and do not

contain information over the gait cycle [48]. This study has

developed methods that include information over the entire gait

cycle, such as area under the curve, root mean square (RMS)

and power spectrum. This study also conducted detailed feature
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analysis during gait cycle sub—phases: loading response, mid—

stance, terminal—stance and pre—swing of stance phase, and

initial swing mid—swing and terminal swing of swing phase.

This study identified well—known joint parameters that

are specific to KOA patients and function in gait performance

(listed in Table 2). Ankle dorsiflexion moment, for example, is

an ankle joint movement involved in supination and pronation and

three—dimensional ankle joint motions [49]. Previous studies

have shown that knee varus angle changes are closely related to

KOA [50, 51]. Lo and colleagues reported an association

between knee varus angle and knee pain during weight bearing

activities, most likely due to narrowing of the medial joint space,

opening of the lateral space or increased lateral soft tissue

pretension. This study found that hip, knee and ankle joint power,

the product of torque and angular velocity, differed significantly
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according to WOMAC severity. Similarly, Segal et al. [52]

reported joint power differences between symptomatic KAO

patients and high—functioning controls. Ro et al. [563] have

reported the difference between maximum and minimum value of

both hip flexion angle and hip adduction angle were smaller in

KOA patients compared with control group. Weidow et al. have

reported that [54] the maximum value of hip rotation moment

significantly differed between symptomatic and asymptomatic

group. KOA patients was reported to have significantly lower

knee flexion range of motion in swing and stance phase during

gait cycle, which is in agreement with our findings [55].

McCarthy et al [56] claimed that knee extension moment is also

an important gait characteristic to analyze the relationship

between KOA and gait data. Bechard et al [57] reported that

toe—out angle of foot progression angle was significantly smaller

37



in patients with KOA and pelvic obliquity angle was reported to

be correlated with symptoms of KOA.

In this study, physical function was influenced by the

greatest number of features (43 from 14 parameters), indicating

that WOMAC is a comprehensive score that incorporates the

movement of many joints. This is reasonable given that KOA also

effects the kinetic and kinematics of hip and ankle joints. Thus,

to improve the physical function of patients, it is important to

train not just the knee joint but also other KOA—affected joints

[58]. The results of the study could provide guidelines for KOA

exercise and rehabilitation (Table 2). Pain and stiffness were

most related to knee—specific parameters. This pattern is

demonstrated by tibiofemoral OA, which is a fairly common form

of OA related to varus alignment. Tibiofemoral OA patients

report higher pain levels than patellofemoral OA patients. Knee
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extension moment was not significantly related to pain. However,

the WOMAC pain questionnaire only included one stair—related

question, which may have influenced this result. In addition, the

guestionnaire also lacked questions related to knee adduction

moment. Stiffness showed a significant relationship with knee

flexion angle, a sagittal plane parameter. This is notable because

the main movement of the knee, extension and flexion, is included

in the sagittal plane. Also as shown in Table 3, gait features

showed clear difference among patients with same WOMAC

score but with different subscale scores.

A limitation of this study was that it was validated

internally; to validate the model for overfitting it should be

subjected to external wvalidation. In addition, the features

identified in this study were not applied to actual rehabilitation.
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Future studies should apply the key features to patient

rehabilitation and determine the therapeutic effects.
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2.5. CONCLUSION

In conclusion, this study has identified features
associated with the WOMAUC its subscales and built estimation
models for the WOMAC index. The features have been extracted
using a feature engineering technique and statistically selected
and validated. The estimation models were generated by
traditional linear regression and random forest regression
models. The estimation model and list of key features represents
an objective and alternative option for KOA symptom severity

evaluation.
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3. STRUCTURAL SEVERITY
OF KNEE
OSTEOARTHRITIS
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3.1. INTRODUCTION

For a brief review, the current gold standard for the
structural severity evaluation of KOA is the Kellgren—Lawrence
(KL) grading system [23]. An example of a knee radiographic
image of each KL grade is shown in Figure 3.1. As shown in the
figure, even though the difference in KL grade O and 4 is distinct,
it is difficult to observe the difference between each consecutive
KL grades. Thus, highly trained experts are required to make
radiographic assessment. However, the accurate severity
evaluation process of KL grade is time consuming process for the
experts. An automated severity evaluation system can decrease
the time—consumption, thus allowing for the clinicians to direct

their attention toward clinical findings.
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Accordingly, deep learning models were proposed in

previous studies for automated KOA severity evaluation using

radiographic imaging [31, 59, 60]. Deep learning is an effective

technique for the analysis and classification of images, which is

widely applied in various fields such as the medical field, and

demonstrates excellent performances. Besides, the deep learning

approach did not demonstrate a satisfactory performance when it

was applied to the classification of KOA based on radiographic

images. Although deep learning demonstrated a satisfactory

performance for binary classification between OA and non—0OA

cases, with an area under the curve (AUC) of 0.92, the overall

results of the multi—class severity evaluation of KOA were

unsatisfactory, with an accuracy [31]; when compared with the

accurate results of the deep learning approaches in other fields of

application [61—64]. The low performance of deep learning can
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be attributed to the fact that a fair amount of radiography images

1s not perfectly adequate for KL grade classification. Even though

it is important to obtain clear visualization of all compartments of

knee joints for suitable radiography image for both tibiofemoral

OA and patellofemoral OA classification, a considerable number of

images do not satisfy all conditions. Previous studies [31, 60]

have trained and validated the models with large dataset, each with

8892 and 5960 knees, the multi—class accuracy of the models

were 57.4% and 66.7%, respectively.

Due to the degradation of gait functions in accordance

with the progression of the disease, the relationship between gait

analysis and the severity of KOA based on radiographic images

has received significant research attention [13, 35, 48]. Kean et

al. [65] reported that the knee adduction moment (KAM) impulse

was positively correlated with the severity of disease.
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Spatiotemporal gait parameters, including speed, cadence, and

duration of the stance phase, differ significantly in KOA patients

and asymptomatic groups [66]. However, most previous studies

concentrated on specific joints, such as KAM, and features were

separated into trends, unsuited for clinical application. To make

gait data more applicable clinically, this study first sought to

extract as many features from various joints as possible and then

to identify key features by Kellgren—Lawrence (KL) grade.

This cross—sectional study analyzed the gait data of

subjects ranging from no KOA to end—stage KOA. This study

hypothesized that the patients’ gait function would decrease

gradually with the stage of KOA and specific features would

change with the progression. Also, the radiographic images and

gait data were hypothesized to contain critical and

complementary information with respect to the knee joint and the
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severity of the disease; thus, the use of both data improves the
classification accuracy of the model. Overall, the aim of this
chapter was to find key features that can be used as mechanical
biomarkers of KOA progression and features were extracted
from radiographic images using a deep learning network, and
then a classification model was developed for KOA based on
image features and gait features identified as KOA-related

features.
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KL grade 0

end deformity

KL grade 1 KL grade 2 KL grade 3 KL grade 4
* No symptoms of [ Doubtful JSN [+ Possible JSN * Definite JSN * Marked JSN
KOA » Possible » Definite * Moderate + Large
osteophytic osteophytes osteophytes osteophytes
lipping * Some sclerosis [+ Severe
» Possible bone- sclerosis

Definite bone
ends deformity

Figure 3.1 Example of representative knee radiographic image of each KL grade from KL 0 to 4 and explanation of how the

severity evaluation was made for each grade.
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3.2. METHODS

3.2.1. Participants

This study was approved by our Institutional Review
Board (IRB no. 1810—004—974). Written informed consent was
obtained from all participants This study was performed with the
database of our gait lab. The database consists of the gait reports
of the wvarious degrees of knee OA patients and healthy
volunteers from 2012 to 2017. The inclusion criteria of the
database were healthy volunteers or knee OA patients who
decided to participate the gait analysis and x ray analysis. The
subjects’ medical records were obtained, and all participants
underwent a physical examination and standing, knee —extended
position, full—limb radiography of the knee. This study excluded

subjects based on the following criteria: (1) patients who lacked
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some data for both legs; (2) patients aged or < 20 years; (3)
spine disease, hip, or ankle arthritis on x—ray; (4) inflammatory
or traumatic arthritis of the knee ; (5) any prior bone surgery in
the lower extremities ; and (6) All participants with equal KL
grades for both knees. Consequently, 227 unilateral subjects
with KOA participated in this study for gait feature identification.
The degree of KOA was determined using the KL grading system.
Table 4 summarizes the participants’ demographic
characteristics and walking speed. For the classification model,
participants with criteria (6) were not excluded and each limb
was counted as separate data, and a total of 728 limbs were

included in this study.
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Table 4 Subject characteristics for structural KOA patients

KL O KL1 KL2 KL3 KL 4 p-value

age  28.7(5.8) 64.6(4.1) 67.3(7.4) 69.2(7) 69.3(6.6) <0.01

height 167.5(8.7) 156.3(7.9) 156.7(8) 154.3(7) 153.8(7.5) <0.01

weight 63.2(12.3) 59.4(9.1) 62.8(10.8) 63.4(9.6) 63.9(10.2) 0.014

BMI  22.4(2.9) 243(3) 25.53.3) 26.6(32) 273.5) <0.01

TS 124.1(7.6) 106.9(15.3) 88.4(23.1) 84(21.2) 78.9(20.1) <0.01

Gender
Ratio

95:92 46:48 85:22 97:22 97:152 N/A
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3.2.2. Gait Data Collection

All gait analysis data, including kinetic, kinematic and

spatial—temporal, were collected at the Human Motion Analysis

Laboratory of Seoul National University Hospital. The subjects

were asked to walk for a few minutes to get used to the setting.

After warming up, an operator with 19 years of experience

placed reflective markers on the subjects based on the Helen

Hayes set. The subjects were asked to walk along a 9—m track.

Motion data were collected using twelve charge—coupled device

cameras with a three—dimensional optical motion capture system

(Motion Analysis Corp., Santa Rosa, CA, USA) at a sampling

frequency of 120 Hz. The kinetic data was obtained with two

force plates which is embedded in the floor. The kinetic and
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kinematic data for each joint were averaged after five or six trials

of the 9—m walk and then used as study data.

3.2.3. Radiographic Assessment

All the full limb radiographic images used in this study

were digitally obtained wusing an image archiving and

communication system (Maroview 5.4; INFINITT Healthcare,

Seoul, Korea). The radiographic evaluations were conducted

independently, in accordance with the KL grading system, by two

experts with fellowship training experience in arthroplasty. The

two experts did not consider the other information related to the

subjects. When the evaluation results were contradictory, the

grading was discussed to reach a conclusion. The inter—observer
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reliability of the radiographic assessments was satisfactory

(intra—class correlation coefficient, 0.93).

3.2.4. Feature Extraction and Classification

All data analyses and classifications were performed

using MATLAB 2019b (MathWorks, Natick, MA). In all, 149

features were extracted from the kinetic and kinematic data for

the hip, knee, and ankle in the gait analysis data. The

representative gait parameters are shown in Figure 3.2. These

features are extracted by calculating the area under the curve,

maximum value during swing phase, Kurtis, area of absolute

value of the curve, and other characteristic of the kinetic and

kinematic curves. An additional 16 gait characteristics were

selected as features for the classification model, such as velocity
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and cadence. All features were extracted only from the right leg.

This study analyzed only the right leg to remove statistical

dependency from multiple observation from single individuals

[39]. Neighborhood component feature selection [67] was

performed to reduce the number of features. Neighborhood

component analysis (NCA) feature selection performs

regularization to obtain feature weights by minimizing the error

for leave—one—out classification. Leave—one—out classification

1s conducted using one sample as a test set and the remaining

data as a training set. This process is repeated until every sample

has been used as a test set. Features with approximately zero

feature weight were excluded. The remaining features were

identified as key features and were used for the classification

model. The student’s ¢—test was performed to identify

differences in the features among KL grades.
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The Inception—ResNet—vZ2, which is a pre—trained

convolutional neural network based on the ImageNet database,

was used for two purpose: 1) To extract the features from

radiographic images; 2) Classification model to compare our

proposed SVM model. The Inception—ResNet—vZ2 combines the

Inception architecture with a residual connection for the

acceleration of the training and the improvement of the accuracy

of the network [68]. It consists of 164 layers with image input

dimensions of 299 X 299, and is considered as an effective and

efficient network. The full limb radiographic images obtained from

subjects were cropped around the knee and resized into

dimensions of 299 X 299. The features were extracted after the

final average pooling layer before the Softmax layer. A NCA was

then conducted after the feature extraction using a deep learning

network. For the selected gait and image features, the Student’s
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t—test was conducted to determine the significantly different
features between two different KL grades (p < 0.0001). This
analysis provides information on the features that significantly

influence the classification of KL grades.
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Figure 3.2 Mean values of representative gait parameters for each KL grade where

features were extracted from the a) knee abduction moment, b) knee flexion angle,

¢) hip abduction moment, and d) ankle dorsiflexion moment. All three moments

were normalized using weight x height.
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A support vector machine (SVM) with the cubic kernel

function was used for final classification. A hold—out validation

was conducted to train and test the model. The data were split into

train and test sets with a ratio of 7:3. The training set was used

to train the SVM model, and the remainder of the unknown data

was used for the test. A diagram of the study flowchart is shown

in Figure. 3.3.

Feature
Extraction

Gait Data

KL Gradea
Classiffcation

OA
uiiagnosis,

Deeplegrning
2gture extractif

Figure 3.3 Flow diagram of deep learning approach with X-ray image input
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For a comparison of the proposed SVM model, using both

gait and image features as input, with deep learning methods using

the same dataset as input, a deep learning network was trained

and validated using the Inception—ResNet—v2. An Adam optimizer

and a cross—entropy loss function were used with a mini—batch

size of 32. A learning rate of 1e—4 was set to stochastically

optimize the network. Radiographic images cropped used feature

extraction was used as input to train and validate the model. A

hold—out validation method was used to test the model by splitting

dataset into train and test sets with a ratio of 7:3. The total number

of iteration was 900. The two models were examined by

calculating the AUC of the receiver operating characteristic (ROC),

sensitivity, precision, and F1—score. The sensitivity, precision,

and F1—score were calculated using Equations 1-3, respectively:
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ey True Positive
Sensitivity = 1
y (True Positive+False Negative) ( )

.. True Negatives
Precision = - — 2
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The occlusion map [69], which indicates the relative
significance of the 2D area for classification, was also observed to
validate if the deep learning model uses the appropriate location
for decision—making. The occlusion map is generated by covering
a small portion of image with a mask, which moves across the
image. The changes in the probability score for each mask location

were measured and used to identify the relative significant area

from an image.
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3.3. RESULTS

3.3.1. Features Analysis

Among the 165 features extracted from the gait analysis
data, 20 features (9 from the knee, 7 from the hip, 2 from the
ankle joint, and 2 spatiotemporal parameters) remained after the
NCA feature selection and were selected as the final features.
The selected features are shown in Table 5 and the NCA result
of gait features in shown in Figure 3.4. The gait parameters
included as key features were: knee extension moment, knee
abduction moment, knee rotational moment, knee flexion angle,
hip abduction moment, hip extension moment, hip extension angle,
ankle dorsiflexion moment, cadence and stride length. Among the
1,536 features extracted from a deep learning model, 65 features

were selected.
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Table 5 List of gait features related with structural severity of KOA

Paramete
Joint Feature KL O KL 1 KL 2 KL 3 KL 4
r
~ Area of the Lo 03 0 0
Abductio 131.95(67.29) > 159.03(50.85)"°176.11(80.12)Y 217.71(96.29)" 227.56(105.93
n Moment absolute 3.4 4 3.4 1.2 )0.1.2
value

Area during -

the stance —28.89(14.16)** » » 010 44.25(25.24)%0
27.52(12.37)>" 32.59(17.38)"" 43.24(24.3)"" 5
Rotational ~ phase

Moment Area of the

e 3.4 3.4 24 45.14(23.36)%146.31(24.06)%"
absolute  34.87(13.57)>* 31.73(11.01)>" 35.14(16.83)> ’ 2
e
value
Maximum

value during Loa4 0 0 0 0
17.87(5.46) > 22.75(5.38) 22.65(5.81) 22.65(6.88) 22.7(9.98)
Flexion the late

Angle phase
Area of the 746.6(195.64)"* 1001.29(260.6)° 1181.12(370.5 1215.46(434.1 1319.04(643.9
absolute 3.4 23,4 9)01 )01 2)0!
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value during

the stance
phase
747.82(193.53)" 1004.04(254.4)° 1182.74(366.9 1217.82(429.0 1347.81(586.7
RM 2,3,4 ,2,3,4 8)0,1 8)0,1 5)0,1
2456.06(318.88) 2740.38(373.73 2748.77(413.9 2723.97(545.1 2831.74(753.1
Mean
1,2,3,4 )0 8)0 4)0 4)0
. L 44 397.76(79.73)%°321.93(102.7)" 270.92(99.42) 235.18(143.73
Kurtosis 418.56(68.6)%" M Y 1y Jouz
Lower
boundary of 50.45(9.57)%1245.53(13.51)%%
62.1(4.95)%%"  61.39(5.85)*"* 55.87(8.2)%"** , -
autocorrelat -

ion

Area under 259.31(81.26)'* 300.41(69.67)%4 312.54(108.92 302.46(116.57 253.61(114.71
Abduct the curve 3 ' ' )0.4 )04 yL23
uctio
Hip Area of the 0 1
nMoment o 0.3(82.77) 129 208.62(68 76)04310.33(107.3) 303.29(114.78 255.1(113.41)
absolute . . o . . '

value during

4 )0,4 2,3
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the stance

phase

Area of the

absolute  261.35(80.45)12
value
RS 276.24(84.27)1*

3

Area under _
the curve 4.06(11.55)"*%*

) Area of the
Rotational
absolute
Moment e duri -
value during
6.61(12.42) 1234
the stance

phase
Area of the
) absolute
Extension ) .
value during —42.54 (66.77)
Moment
the stance

phase

315.08(108.46 305.65(116.3)? 260.99(111.01

301.16(70.07)°

)0,4 4

)2,3

326.76(111.15 316.89(118.3)% 272.52(113.01

313.48(72.8)°

)0,4 4

14.41(13.84)% 16.5(19.41)° 15.44(23.91)°

11.5(13.78)%  14.48(19.36)° 14.2(24.12)°

—52.78(81.97)* —20.92(95.27) —25.38(97.62)

65

)2,3

17.01(27.12)°

16.06(26.71)°

4.9(95.89)%!



Area of the
absolute 200.38(64.15)% 171.32(53.08)Y 167.09(59.19)° 161.22(70.37) 163.09(69)
value
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4

’ Significantly different with KLL grade O ;1 Significantly different with KL grade 1; ’ Significantly
different with KL grade 2 ;3 Significantly different with KLL grade 3 ;4 Significantly different with KL
grade 4;

p<0.001
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Figure 3.4 NCA result for gait features

Figure 3.5 represents the NCA result of radiographic image

features. Table 6 presents the numbers of significantly different

image and gait features based on comparisons between two KL

grade groups. In 5 out of 10 binary comparisons, more than 30%

of a total of 20 gait features were significantly different.

However, less than 30% of image features were significantly
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different in the two cases of the 6 comparisons (KL1 vs. KL3

and KL2 vs. KLL4). With respect to the image features, more than

30% of total 65 image features were significantly different in 6

out of 10 binary comparisons. However, no significantly different

gait features were observed in the three cases of those 6

comparisons (KL1 vs. KL2, KL 2 vs. KL3 and KL3 vs. KL4).

With respect to the radiographic image and gait features, more

than 30% were significant, namely, KLO vs. KL3, KLO vs. KL4,

and KL1 vs. KL4.
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Figure 3.5 NCA result for radiographic image features

Table 6 List of gait features related with structural severity of KOA

Groups # image features # gait features
compared significantly different significantly different
KLO — KL1 11(17%) 4(20%)
KLO — KL2 11(17%) 5(25%)
KLO — KL3 20(31%) 11(55%)
KLO — KL4 36(55%) 17(85%)
KL1 — KL2 46(70%) 2(10%)
KL1 — KL3 4(6%) 10(50%)
KL1 — KL4 28(43%) 14(70%)
KLZ2 — KL3 42(65%) 3(15%)
KL2 — KL4 10(15%) 7(35%)
KL3 — KL4 26(40%) 2(10%)
71
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3.3.2. Deep Learning Approach Based on Radiographic

Images

Figure. 3.6 presents a cropped radiographic image of the

knee used as an input, in addition to an occlusion map of the

model. Table 7 presents the confusion matrix of the validation

result of the model and the AUC results, which were 0.93, 0.80,

0.85, 0.78, and 0.97 for KL Grades 0-4, respectively. The

sensitivity, precision, and F1—score of the model were 0.55, 0.60

and 0.55, respectively. Figure. 3.7 (A) presents an ROC curve

for the results obtained using the deep learning approach based

on radiographic images.

72

’



(A)

Figure 3.6 a) Cropped radiographic image of knee, used as an
input to the deep learning network for radiographic feature
extraction and KOA classification model to compare with proposed
algorithm. b) An occlusion map indicating the relative spatial
significance of features of a 2D image obtained as output of the
deep learning classification model. The red area is the significant
region, as indicated by the deep learning network, which is

consistent with the ROI for KOA severity evaluation.
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Table 7 Confusion matrix for deep learning approach with X—ray input

KL 0 KL 1 KL 2 KL 3 KL 4
KL O 60 6 0 1
KL 1 27 18 3 0
KL 2 3 5 5) 1
KL 3 3 8 18
KL 4 0 0 0 3 48

3.3.3. Proposed Model Based on Gait Data and Radiographic

Images

Table 8 presents the confusion matrix and AUC for the

SVM model with total of 85 gait and radiographic image features.

The AUC results for KL Grades 0-4 were 0.93, 0.82, 0.83, 0.88,

and 0.97, respectively. The sensitivity, precision, and F1—score

of the model were 0.70 0.76, and 0.71, respectively. Figure. 3.7

(B) presents the ROC of the classification result.
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Table 8 Confusion matrix for proposed method using gait features and

X—ray image as inputs

KL 0 KL 1 KL 2 KL 3 KL 4

KL O 60 6 0 1
KL 1 27 18 3 0
KL 2 3 5) 5) 1
KL 3 3 8 18
KL 4 0 0 0 3 48
(A) B)

o3

Figure 3.7 ROC curve for (A) deep learning approach using
radiography image as input (B) Proposed method using both gait

and radiography image as input
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3.4. DISCUSSION

This study shows that gait function decreased gradually as
the severity of KOA increased by identifying key gait features and
demonstrated that the machine learning approach based on gait
and radiographic image features can improve the classification
performance of KOA at the KL grading scale when compared with
the use of only radiographic images. The proposed model is based
on gait analysis data and radiographic images of the knee, whereas
the models proposed in previous studies utilized only one of the
data types. Moreover, it was demonstrated that gait data can be
used in clinical applications. Although gait data includes significant
information on joints, its application is limited due to its complexity
[21]. This paper proposes a method for the application of gait data

to the severity evaluation of KOA, in combination with
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radiographic images. Moreover, the proposed method

demonstrated an improved performance in the classification of

KOA when compared with the methods proposed in previous

studies. In particular, the proposed method demonstrated a

relatively high accuracy, AUC, and F1l-—score, among other

metrics.

The parameters listed in Table 5 are well—known joint

parameters that have significantly different values at each stage

of the disease. Kean et al. [65] reported that a feature extracted

from the KAM during gait can distinguish individuals with

different KL grades. Thorp et al. [70] reported that the same

feature extracted from the KAM differed significantly among the

control (KL grade O or 1), mild (KL grade 2), and moderate (KL

grade 3) groups. Other parameters in Table 5 have also been

reported [71-73]. Weidow et al [74] reported that the
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maximum hip extension angle was smaller for OA patients

compared with controls and that the peak hip flexion moment was

also smaller in patients. They also showed that the knee flexion

angle decreased in lateral OA patients. Astephen et al [72]

reported that the range of peak knee flexion angle differed

significantly for severe OA patients and that the peak knee

flexion angle during stance phase significantly differed

progressively. They also reported that the minimum hip flexion

moment during late stance differed significantly for all OA and

that the hip flexion angle range significantly differed

progressively. The peak and minimum ankle flexion moments

were also reported to differ significantly for patients with severe

OA [71].

The features listed in Table 5 have different abilities to

discriminate the severity of disease. Some differed significantly
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for all severities, while others differed only in the controls, mild

OA, or severe OA. The stride length differed significantly

progressively, while maximum value during the late swing phase

of hip extension moment differed significantly for KL grades 3

and 4. In comparison, area under the curve of hip abduction

moment differed significantly between the most severe groups,

KL grades 3 and 4, whereas all features extracted from the hip

extension moment differed significantly between the control

group.

Features like the peak and minimum values of gait data

are reported to be limited to load or motion at an instance during

the gait cycle and cannot contain information on the duration [65].

Features with duration information, such as the KAM impulse,

are better discriminators than features without duration

information, such as the peak KAM [65, 70]. Most of the features
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extracted in this study, such as the variance, RMS, and area

under the curve, contain duration information. The variance and

RMS are well-known, widely used parameters that contain

overall information on the signal. Area under the curve is an

integral of the signal and is also a representative parameter.

As shown in 3.6b, the occlusion map directs the region of

interest (ROI), which indicates that the model was suitably trained.

Tiulpin et al [31] presented an attention map that accurately

determined the ROI and demonstrated a similar classification

performance to the proposed deep learning model. However, the

classification performance of the deep learning network based on

radiographic images was not sufficient for the accurate severity

evaluation of KOA using the KL grading system. Therefore,

instead of limiting the applicability of the deep learning method as

a classifier, deep learning was used to extract features from the
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radiographic images. Given that the deep learning pointed ROI as

relatively important features on spatial location of 2D radiographic

image, the features that were extracted using deep learning also

contain information on the ROI. The combined gait and

radiographic image features demonstrated a superior performance

when compared with the deep learning method. The accuracy of

the combined model was 75.2%, whereas that of the deep learning

method was 64.7%.

As shown in Table 6, the radiographic image and gait data

features were found to be complementary. For example, with

respect to KL Grades 1-3, half of the 20 gait features were

significantly different; whereas there were only four significantly

different features among the 65 image features. Moreover, only

two significant differences were observed between the gait data

features at KL Grades 1 and 2. However, 46 features image
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features, which constituted more than half of the total number of

features, were found to be significantly different. The results

support the hypothesis, in that the gait data and radiographic

image features are complementary for the distinction of the KL

grades. It should be noted that the number of input features in

the proposed model is significant less than that of the deep

learning network based on radiographic 1images, which

demonstrates a poorer classification performance. With

reference to the literature, this was the first study wherein KOA

was evaluated based on the KL grading system using both gait

and radiographic image features.
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3.5. CONCLUSION

In conclusion, the proposed model based on gait data and
radiographic images was demonstrated to improve the accuracy
of to evaluate the severity of KOA using the KL grading system.
The automated classification of KOA using the proposed method
can reduce the work of the clinician and improve the reliability of

the KL grading system.
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5. CONCLUSION
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5.1. THESIS SUMMARY AND CONTRIBUTIONS

Modern gait analysis 1s a powerful technique that

provides various biomechanical information of each joints in the

lower body. Even though the degradation of gait function is clear

along with the progression of KOA, the large volume and

complexity of the data was a significant barrier for its application

in actual clinical practice. With the development of artificial

intelligence, it 1S now possible to extract as many features as

possible from the data, and apply machine learning technique for

feature selection to find significant features. Thus, in this this

dissertation, various algorithm was applied to gait data for its

application in clinical practice.

For application of gait data in clinical practice, automatic

severity evaluation algorithm for both symptomatic and
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structural severity of KOA have developed. Key gait features

associated with both severity of KOA have been identified. The

feature selection method was performed based on machine

learning algorithm and traditional statistical method. The

estimation algorithms have successfully estimated the severity

of KOA. For WOMAC estimation, the algorithm has shown the

correlation of 0.741. The proposed model using radiography

image and gait data as input has shown accuracy of 75.2% for

discriminating the severity of KOA.

In conclusion, this dissertation has shown that gait data

can be applied in clinical practice for KOA severity evaluation.

The identified gait features are objective and repeatable, which

can cover the limitations of current gold standards for

assessment of KOA. The classification algorithm can contribute

as an extra tool for KOA evaluation to obtain more detail
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information of the joint function.

5.2. FUTURE DIRECTIONS

As a next step of the study, it would be meaningful to

design a wearable system optimized for knee joint kinematic

measurement. The optimized wearable system should be light

weighted, efficient with power consumption and convenient for

both long and short term measurement. With the data collected

from the wearable sensor, validation of the KOA severity

evaluation algorithm would be suitable.

While this dissertation focused on the relationship

between gait data and current severity of KOA, a study analyzing

the relationship between gait data and the progression of disease

would also be notable. An appropriately designed long term

clinical study for mild KOA patient is needed. The difference

87



between the patients with the disease progression and without

the progression can reveal the biomechanical pathology of KOA.

The result of this study might prevent the progression of the

disease by modifying the gait habit and would provide useful

information for rehabilitation for patients with knee joint disease.
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