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Abstract
An Essay on Le Cam’s Method

Heejun Lee

Department of Economics
The Graduate School

Seoul National University

In this paper, we consider the threshold linear regression model
y,=zf B+ 276 1[g; > y]+u,, where y, is a dependent variable, z; € R’
are regressors, ¢; 1s a threshold variable, «, is a Gaussian noise, and
B and ¢ are unknown regression vectors. This paper develops three
lower bounds of minimax convergence rates for the estimation of the
unknown threshold location 7y for #,-loss under three different
threshold types. We show that when there is a jump threshold, the

20—1

convergence of minimax risk is lower bounded by # rate, where

n 1S the sample size and ¢ means the diminishing rate of a

2

threshold. In addition, we provide a lower bound of » 2 rate for the

kink threshold. Finally, we prove that if the threshold type 1is

3 rate becomes a lower bound of minimax risk. These

unknown, -
rates are equivalent to the convergence rates of least-square based
estimators.

Our proofs are based on Le Cam’s method which is a technique that
connects the minimax risk to the divergences among parameters. One
of the widely used divergence measures to apply Le Cam’s method is

- 11 -



Kullback-Leibler divergence. We briefly discuss Le Cam’s method
formulated with Kullback-Leibler divergence and the limitation of the

Le Cam’s method.

keywords : Minimax Criterion, Threshold Estimation
Student Number : 2017-26997
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An Essay on Le Cam’s Method

Heejun Lee *

Seoul National University

July, 2020

Abstract

This paper develops three lower bounds of minimax convergence
rates for the estimation of unknown threshold location for ¢;-loss under
three different types of thresholds. In addition, we discuss Le Cam’s
method which is a technique that provides lower bounds of minimax

risks.

1 Introduction

Non-linear effect of independent variables to the dependent variable is one
of the major limitations of the linear regression model. The simplest form
of non-linearity assumes that regression coefficients change at a threshold

point. Consider the canonical threshold regression model:
yi =z} B+ =z} 0l[gi > ) + i,

where y; is a dependent variable, g; is a threshold variable, v is a location
of threshold, x; is a d-dimensional vector of regressors, u; is a noise, and I[']

is the indicator function.

*Department of Economics, Master’s degree thesis.



There are extensive researches on the asymptotic behaviors of least-
square estimators (LSE). One of the most notable facts is that the con-
vergence rate of LSE is susceptible to the type of threshold. For example,
constrained LSE converges in n~1/2 rate for continuous threshold (Hansen,
2017), LSE converges in n~! rate for fixed jump threshold (Chan, 1993),
n?2~! rate for diminishing jump threshold, 6, = ¢-n~® (Hansen, 2000), and
surprisingly, LSE converges in n~1/3 rate for continuous threshold (Hidalgo,
Lee, and Seo, 2019).

After Wald (1939) suggested minimax criterion as a performance mea-
sure of statistical decision procedures, extensive literature adopts this crite-
rion even in recent years; see, for example, Duchi, Jordan, and Wainwright
(2018). However, it is infeasible to propose a minimax estimator under the
classical minimax criterion except for extremely simplistic cases. Therefore,
one usually focuses on finding the minimax convergence rate and relation-
ships between the constant factor and nuisance parameters. Another ap-
proach to circumvent such difficulty is to develop an optimal estimator in
the locally asymptotically minimax (LAM) sense (Hajek, 1972). Yu (2012,
2015) shows the optimality of Bayesian estimators under the LAM crite-
rion for the threshold estimation problem where the threshold has a fixed
discontinuity.

Our major goal in this paper is to justify the n=1/3

convergence rate of
LSE for the continuous threshold. Since we only consider the rate of conver-
gence, we take the classical minimax criterion instead of the LAM criterion.
In this direction, Wang and Samworth (2018) develops a minimax lower
bound of n?*~! rate under the high-dimensional, constant regressors, and
diminishing jump threshold assumption. It also provides an upper bound of

minimax risk that matches the lower bound up to loglog n factor.

Le Cam (1973) converts the problem of developing lower bound of min-



imax risk to the calculations of divergence measures among parameters.
This method has been proven to be successful in capturing the minimax
convergence rate for various estimation problems including threshold esti-
mation (Wang and Samworth, 2018). We briefly discuss Le Cam’s method

and apply it to the threshold regression to provide minimax lower bounds

20-1 p=1/2 and n~Y/3 rate for diminishing jump threshold, continuous

of n n

threshold, and unknown type threshold, respectively.

2 Le Cam’s Method

2.1 Minimax Framework

We formulate the minimax framework before proceeding to Le Cam’s method.
Let X be a sample space and X" be a n-cartesian product of X. Denote
a model as P which is a class of probability measures on X'. For any prob-
ability measure P € P, we denote a product measure of P as P for any
sample size n. We assume that samples are independently and identically
distributed (i.i.d.). Let © be a parameter space equipped with a metric p.
Finally, we define a function 6 : P — ©. The model P may or may not be
indexed by O.

For an unknown distribution P, n-samples are drawn in 4.7.d. manner. We
denote these samples as X1, Xo, - -+ , X, and define X 5" := (X1, Xo,--- , X,,)
for convenience. An estimator 6 is a measurable function from X™ to © de-
fined for each sample size n. The performance of an estimator is measured

by its risk at P:

~

R (0, 0(P); p) := Eprn [o(0(X ), 0(P))],

where Ep stands for the expectation with respect to P. Minimax criterion



evaluates the performance of estimators based on the adversarial choice of
P € P. An estimator is called a minimaz estimator if it minimizes maximal
risk among all estimators, and the minimax risk is defined to be the maximal

risk of a minimax estimator:

M (0(P); p) := inf sup Epin [p(0(X™), 0(P))).

2.2 Le Cam’s Method

We explain Le Cam’s method which will be employed to derive a lower
bound of the minimax risk for threshold estimation. This technique is some-
times called reduction to (Bayesian) testing argument. The idea of Le Cam
(1973) is that if there is a sequence of indistinguishable parameter sets, no
estimator can converge faster than the minimal distance among the ele-
ments of parameter sets. To derive the sharpest lower bound, one wants to
maximize the minimal distance under the indistinguishability restriction.
Mathematically speaking, we approximate the parameter space © with
a 20,-separated set {07,605, -- 0}, } for each sample size n, which means
,0(9{”,0?) > 20, for all i # j. Consider the statistical problem of guessing
the true parameter among {67,65,--- 0%, }. Let J, be a uniform random
variable distributed on {1,2,---, M,}. Then, n-samples, X", are gener-
ated from Pyn such that 07 = Q(IP’Q?) if J, is realized to be j. Observing
Xbn one guesses the true parameter from which samples are generated. To
quantify the difficulty of this problem, we denote a joint probability measure
of (X1 J,) as Q, and any guessing function from X" — {1,2, .-, M,}

as 1. The indistinguishability is measured by the minimal average error



probability:

iﬁf Qu(XE™) # ).

If the average error probability does not tend to 0, that is, the parameter
sets remain indistinguishable, the convergence rate of the minimal distance

dn gives a lower bound of minimax convergence rate.

Proposition 1 (Le Cam’s Bound). For any choice of 26, -separated sets,

the sequence of minimaz risks is lower bounded as
Mn(O(P); p) 2 on 10f Qu[(X™) # Jn).
If infy, Qu[(X™) # Ju] > ¢ for all n, for some positive constant c,
M, (0(P); p) > ey

In this paper, we always set ¢ to be 1/4. For the proof of the proposition,
refer Wainwright (2019) where we borrowed the notations and the problem
setup.

In many cases of parametric estimation problems, the binary approxima-
tion, M,, = 2 for all n, is enough to capture the minimax rate. The minimal

average error probability of binary approximation is simply expressed as:

_ 1:n mplin
1 —dry Py, Pgil)
2 )

inf Qu[i(X") £ J] =

where dry (P, Q) stands for the total variation between P and Q. However,

the total variation behaves badly as the sample size grows. So, we formulate

Le Cam’s bound with Kullback-Leibler (KL) divergence.



2.3 KL-version Le Cam’s Method

Unlike total variation, KL-divergence has a nice decoupling property:
dKL(lea Ql:n) = ndKLUP)a Q)v

where dir(P,Q) is KL-divergence from P to Q. To relate the Le Cam’s

bound to KL-divergence, we need the following inequality:

Lemma 2 (Pinsker’s Inequality). Let P,Q be any probability measures.

Then the total variation is upper bounded by KL-divergence as

drv(P,Q) < %dKL(Pa Q).

Refer Tsybakov (2009) for the proof. Observing Le Cam’s bound, the
total variation representation of error probability, and Pinsker’s inequality,

it is straightforward to show that the following proposition holds.

Proposition 3 (KL-version Le Cam’s Bound). Assume that there are two
sequences of parameters, {05, 63, 03, ---} and {01, 03, 63, ---} such that

p(0,07) > 26, and
n n 1
Then, the minimaz risk is lower bounded as

M (0(P); p) =



Proof. Note that we slightly abused the notation of KL-divergence. Then,

1 — dry (Pg, Pgi")

M, (6(P); p) > &

- n 2
1— \/%dKL(Pgé?,IP;?)
> Op

2
1-— \/%dKL(Peg,]P’ey) 1
= 5n 9 > Zéna

where the first inequality is a consequence of Le Cam’s bound and total
variation representation of minimal average error probability, the second
inequality is Pinsker’s inequality, and the last inequality follows from our

construction of parameter sequences. O

Remark. Consider the case where the metric p is equivalent to square-root
KL-divergence. For example, £2-prediction error in the regression model with
Gaussian noise is equivalent to square-root KL-divergence as we will show
in the next chapter. Note that the best lower bound that can be obtained by
KL-version Le Cam’s method is of n=/? rate. However, it is known that the
minimaz rate for ly-prediction error of the regression function is n=Y3 for
the 1-dimensional, bounded Lipschitz continuous regression function, which
means that binary approrimation is not enough to capture the complexity of
nonparameteric estimation problem.

After Hasminskii (1978), Le Cam’s bound with M, > 3 was widely used
to derive a lower bound of minimax risk for the nonparametric estimation
problem. The minimal average error probability of multiple parameter sets
can be lower bounded by Fano’s inequality (Fano, 1961), and Birgé (1983,
1986) formalized the method to apply Fano’s inequality to minimax lower
bound which is called generalized Fano’s method.

Yang and Barron (1999) proved that if the metric p is equivalent to



square-root KL-divergence, packing entropy and covering entropy s equiv-
alent, and metric entropy M (g) satisfies the richness condition, that is,

liminf, o M(e/2)/M(e) > 1, then the equation

determines the minimaz rate, €,. Assuming that M(e) — oo as e — 0, we
can see that 5n/n7% — 00, which means that the minimaz rate is slower
than the n=Y2 rate derived by KL-version Le Cam’s bound. Since the pa-
rameter space of threshold estimation is a closed interval in RY, the richness
condition does not hold, which is one of the reasons we use KL-version Le

Cam’s bound instead of the approximation by multiple parameters.

3 Applications to Threshold Estimation

In this chapter, we derive lower bounds of minimax risks for threshold esti-

mations. Consider the threshold linear regression problem:

Y = :rfﬁ + x?(ﬂl[% > ]+ u;.

The threshold location is denoted as v and we assume that + lies in a
closed interval I' := [n,1 — ] in [0,1] for 0 < n < 1/3. For convenience,
we decompose the vector of regressors and the threshold effect § such that
z; = (1,72, ), 6 = (61,64,03)T, and 276 = 61 + 22,62 + 83g;. The model
P is determined by the collection of (3, d,~). We assume that 6 : P — I is
well-defined so that 0(P(g5.)) =7, and p(v1,72) = |72 — 7.

Also, we assume that (y;, x;, u;) are drawn in 4.i.d. manner, z; and u; are

independent, and u; is a univariate normal random variable with variance



o%. Let f(-) denote the density of the threshold variable g;.

To exclude the case where the threshold effect is meaningless, we as-
sume that E[ze;21|g; = 7] is continuous and positive in I'. Denote D(v) =
E[z;z)|q; = ~]. For the continuity of D(7y), we assume that E[ze;|q = 7]
is continuous in I'. Finally, we assume that f(-) is continuous in I'" and
infyer f(v) > 0, and denote f = sup,er f(7)-

Before proceeding, we show that KL-divergence can be simply expressed

by ¢2-norm for the regression model:

Lemma 4. Assume that x ~ Px and u ~ N(0,0%). Let y = f(z) + u.
Then, KL-divergence from the joint distribution determined by the regression

function fo to fi is

1
drr(fo, f1) = @Hfl — f0||?2(19>x)-

Proof. Assume that Px has a density p(-). The joint density of (y,x) is

Lo =@y,

g o

where ¢ is a density function of standard normal random variable. Then the

KL-divergence from fy to fi is

[ h@), = @)
(o ) = [ Sot" =2 pteton o= s

— oz — ()2 — (1 — Fi ()2
By E S OIS (G R G P

202

g dydz

- T; // igb(y_gm)(Q(fO(x) — fi(@)y = f3(x) + fi(z))dyp(z)dx

=55 [ (@) = f1(@) (e



3.1 Jump Threshold

We mention that this section is influenced by the proof of Wang and Sam-
worth (2018) for the constant regressor case. To extend this proof, we impose

a restriction on the parameter space as follows:
Assumption 1. Fiz x > 0. Let 67 D(y)d > & for some y € T

To include the diminishing threshold model of Hansen (2000), we let
k = cn~® for some positive real number c. It means that our parameter
space grows as the sample size increases. Then the following proposition

follows:

Proposition 5. Assume that Assumption 1. is satisfied. If k = cn™% for

some 0 < a < 1/2, the minimax risk is lower bounded as

2
g 20—1

mn> PNy )
- 32f02n

for sufficiently large n.

From our lower bound, we can see that the minimax risk increases as

2 increases, the jump size ¢ decreases, or f decreases. Note that

the noise o
the small f generally implies that there are fewer samples such that ¢; € T,

so it is reasonable that the minimax risk is inversely related to f.

Proof. In fact, our proof is redundant if regressors contain the constant term.
However, our proof can be applied even in the case where the constant term
is dropped.

To use KL-version Le Cam’s bound, we want to find two sequences of
parameters 0F = (67,04,70), 07 = (BT, 07,71) such that dgr(67,07) <
5. If B # BT or & # 67, slope coefficients contain some information on

v in general. Therefore, we set 37 = 31 and d; = 67. After rescailing, we

10



can choose (dp, 7o) such that (55D(70)50)1/2 = 3¢/2. From the continuity

of D(v), there exists a positive real number ¢ such that
c< (50TD(7)50)1/2 < 2c,

for all v € [yo—e,v0+¢]NT. Let 6§ = 67 = dp-n~%, and choose 5 = B} =

arbitrarily. Note that
k=cn" < ((6o-n~*) D)0 - n~))"* < 2.

Fix v = 7o arbitrarily. If we let 4" — o, then 4] € [y0 —e,7 +¢] NT for

sufficiently large n, so our construction of parameter sequences is justified.

Let 77" = 4‘}; n2e=L 4+ ~g. Since 2 — 1 < 0, 47 — 0. In addition,

1

d1(05,07) = 5 3 (80 - =) D(3)(do - n™*) f(7)dy
7" St

1 = 1
(4 2., —2a no_ ——
5,2 (4 ) = 0) = o

IN

Applying KL-version Le Cam’s bound, we get the desired result. O

3.2 Kink Threshold

We construct a probability model of the kink threshold case:

Assumption 2. Let ||6]|2 > k > 0, 02 = 0. Assume that §1 + I3y = 0 for

some 7.

Note that x is fixed over n, that is, we do not consider the diminishing

kink case. We develop a minimax lower bound for this model:

Proposition 6. Assume that Assumption 2. is satisfied. The minimaz

11



risk is lower bounded as

g

—-1/2
M, > ——=n1/2,

V1280 fk

for sufficiently large n.

Relationships between the minimax risk and the nuisance parameters
f,o?% K are the same as in the jump threshold case. In addition, note that
large n implies small parameter space I', so the estimation problem is easier

for bigger 7.

Proof. We start by constructing two sequences of parameters whose KL-
divergence is smaller than i and p(7{,~7) is as large as possible.

Let two parameter sequences be 67 = (8, (—03074,0,---,0,930),7)s
07 = (B, (—03177,0,---,0,031),77). Let 77" < 7. If we set 039 = 031 = &,
then |63 ]2, |07 |l2 > &, hence the assumption 2 is satisfied. Set 7 = 1 — 7,
M=% — (271;]2%2)1/2

Then, KL-divergence from 6 to 07 is

. Observe that 7 > 1 — 27 for sufficiently large n.

di (0, 07)

IN

277f 2 2
T‘z“ (73 - )= m

IA

Therefore, we can apply the KL-version Le Cam’s bound. O

3.3 Unknown Threshold

In this section, we consider the case where we know there is a threshold but
do not know whether it is a jump type threshold or kink type threshold.
For this case, it is implausible to assume that the jump size is larger than

a positive constant when the threshold is jump type. Instead, we impose a

12



restriction on the size of threshold effect as we did in the kink threshold

model.

Assumption 3. Let ||0]|2 > x > 0. Assume that 57 D(y)6 > 0 or §; + 03y =
0; 62 =0 for some v €T.

Note that we are assuming the fixed threshold case, that is, threshold
effect 0 cannot diminish because of the condition ||d]]2 > > 0. For the
fixed jump threshold, we derived n~! lower bound, and for the fixed kink
threshold, we derived a lower bound of n=/2 rate. We develop a slower n~1/3

rate lower bound of the minimax risk for the unknown threshold model.

Proposition 7. Assume that Assumption 3. is satisfied. The minimaz
risk is lower bounded as

2/3

g —-1/3
n 6]?1/3ﬁ2/3n

m
Proof. To capture the complexity of the enlarged parameter space, we pick
one parameter sequence to represent the kink threshold and the other one
to represent the jump threshold. 6f := (3, (—d307,0,- -+ ,0,030),77), 07 :=
(57 (_531’7”707'” 707631)77?)' Let ’761 < ’7? Set 7(7)1 =, (530 = 531 = K.

Then 6§ has a kink threshold, 67 has a jump threshold, and 6, 07 satisfy

52 \1/3
)

the assumption 3. Choose 7] = n+ ( . KL-divergence from 6 to 07

is computed as

n n 1
dicr(05,07) = 55 2/ (k(y —m)* - f(7)dy
9% I
fTHZ n 3 1
< LI (A —p)P= —
< oz —m)t= o

. . 1/3
Therefore, we can apply KL-version Le Cam’s bound. Since % > %, we

get the desired result. O

13



4 Conclusion

At the early stage of this paper, we observed that the approximation by
multiple sets can improve the KL-version Le Cam’s bound if the parameter
space is rich enough. Based on this observation, we used binary approxi-
mations of the parameter space to derive minimax lower bounds of various
threshold models. To summarize, we proved that the minimax convergence

—1/2 rate

rate is lower bounded by n~! rate for the fixed jump threshold, n
for the fixed kink threshold, and n~1/3 rate for the unknown threshold type.
Further studies on the upper bound of minimax risk will complete the proof

for the minimax rate.

14
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