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Abstract

This paper develops three lower bounds of minimax convergence

rates for the estimation of unknown threshold location for �1-loss under

three different types of thresholds. In addition, we discuss Le Cam’s

method which is a technique that provides lower bounds of minimax

risks.

1 Introduction

Non-linear effect of independent variables to the dependent variable is one

of the major limitations of the linear regression model. The simplest form

of non-linearity assumes that regression coefficients change at a threshold

point. Consider the canonical threshold regression model:

yi = xTi β + xTi δI[qi > γ] + ui,

where yi is a dependent variable, qi is a threshold variable, γ is a location

of threshold, xi is a d-dimensional vector of regressors, ui is a noise, and I[·]
is the indicator function.

∗Department of Economics, Master’s degree thesis.
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There are extensive researches on the asymptotic behaviors of least-

square estimators (LSE). One of the most notable facts is that the con-

vergence rate of LSE is susceptible to the type of threshold. For example,

constrained LSE converges in n−1/2 rate for continuous threshold (Hansen,

2017), LSE converges in n−1 rate for fixed jump threshold (Chan, 1993),

n2α−1 rate for diminishing jump threshold, δn = c ·n−α (Hansen, 2000), and

surprisingly, LSE converges in n−1/3 rate for continuous threshold (Hidalgo,

Lee, and Seo, 2019).

After Wald (1939) suggested minimax criterion as a performance mea-

sure of statistical decision procedures, extensive literature adopts this crite-

rion even in recent years; see, for example, Duchi, Jordan, and Wainwright

(2018). However, it is infeasible to propose a minimax estimator under the

classical minimax criterion except for extremely simplistic cases. Therefore,

one usually focuses on finding the minimax convergence rate and relation-

ships between the constant factor and nuisance parameters. Another ap-

proach to circumvent such difficulty is to develop an optimal estimator in

the locally asymptotically minimax (LAM) sense (Hájek, 1972). Yu (2012,

2015) shows the optimality of Bayesian estimators under the LAM crite-

rion for the threshold estimation problem where the threshold has a fixed

discontinuity.

Our major goal in this paper is to justify the n−1/3 convergence rate of

LSE for the continuous threshold. Since we only consider the rate of conver-

gence, we take the classical minimax criterion instead of the LAM criterion.

In this direction, Wang and Samworth (2018) develops a minimax lower

bound of n2α−1 rate under the high-dimensional, constant regressors, and

diminishing jump threshold assumption. It also provides an upper bound of

minimax risk that matches the lower bound up to log log n factor.

Le Cam (1973) converts the problem of developing lower bound of min-
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imax risk to the calculations of divergence measures among parameters.

This method has been proven to be successful in capturing the minimax

convergence rate for various estimation problems including threshold esti-

mation (Wang and Samworth, 2018). We briefly discuss Le Cam’s method

and apply it to the threshold regression to provide minimax lower bounds

of n2α−1, n−1/2, and n−1/3 rate for diminishing jump threshold, continuous

threshold, and unknown type threshold, respectively.

2 Le Cam’s Method

2.1 Minimax Framework

We formulate the minimax framework before proceeding to Le Cam’s method.

Let X be a sample space and X 1:n be a n-cartesian product of X . Denote

a model as P which is a class of probability measures on X . For any prob-

ability measure P ∈ P , we denote a product measure of P as P1:n for any

sample size n. We assume that samples are independently and identically

distributed (i.i.d.). Let Θ be a parameter space equipped with a metric ρ.

Finally, we define a function θ : P → Θ. The model P may or may not be

indexed by Θ.

For an unknown distribution P, n-samples are drawn in i.i.d.manner. We

denote these samples asX1, X2, · · · , Xn and defineX1:n := (X1, X2, · · · , Xn)

for convenience. An estimator θ̂ is a measurable function from X n to Θ de-

fined for each sample size n. The performance of an estimator is measured

by its risk at P:

Rn(θ̂, θ(P); ρ) := EP1:n [ρ(θ̂(X1:n), θ(P))],

where EP stands for the expectation with respect to P. Minimax criterion
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evaluates the performance of estimators based on the adversarial choice of

P ∈ P. An estimator is called a minimax estimator if it minimizes maximal

risk among all estimators, and the minimax risk is defined to be the maximal

risk of a minimax estimator:

Mn(θ(P); ρ) := inf
θ̂
sup
P∈P

EP1:n [ρ(θ̂(Xn), θ(P))].

2.2 Le Cam’s Method

We explain Le Cam’s method which will be employed to derive a lower

bound of the minimax risk for threshold estimation. This technique is some-

times called reduction to (Bayesian) testing argument. The idea of Le Cam

(1973) is that if there is a sequence of indistinguishable parameter sets, no

estimator can converge faster than the minimal distance among the ele-

ments of parameter sets. To derive the sharpest lower bound, one wants to

maximize the minimal distance under the indistinguishability restriction.

Mathematically speaking, we approximate the parameter space Θ with

a 2δn-separated set {θn1 , θn2 , · · · , θnMn
} for each sample size n, which means

ρ(θni , θ
n
j ) ≥ 2δn for all i �= j. Consider the statistical problem of guessing

the true parameter among {θn1 , θn2 , · · · , θnMn
}. Let Jn be a uniform random

variable distributed on {1, 2, · · · ,Mn}. Then, n-samples, X1:n, are gener-

ated from Pθnj such that θnj = θ(Pθnj ) if Jn is realized to be j. Observing

X1:n, one guesses the true parameter from which samples are generated. To

quantify the difficulty of this problem, we denote a joint probability measure

of (X1:n, Jn) as Qn and any guessing function from X n → {1, 2, · · · ,Mn}
as ψ. The indistinguishability is measured by the minimal average error
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probability:

inf
ψ

Qn[ψ(X
1:n) �= Jn].

If the average error probability does not tend to 0, that is, the parameter

sets remain indistinguishable, the convergence rate of the minimal distance

δn gives a lower bound of minimax convergence rate.

Proposition 1 (Le Cam’s Bound). For any choice of 2δn-separated sets,

the sequence of minimax risks is lower bounded as

Mn(θ(P); ρ) ≥ δn inf
ψ

Qn[ψ(X
n) �= Jn].

If infψ Qn[ψ(X
n) �= Jn] ≥ c for all n, for some positive constant c,

Mn(θ(P); ρ) ≥ cδn.

In this paper, we always set c to be 1/4. For the proof of the proposition,

refer Wainwright (2019) where we borrowed the notations and the problem

setup.

In many cases of parametric estimation problems, the binary approxima-

tion, Mn = 2 for all n, is enough to capture the minimax rate. The minimal

average error probability of binary approximation is simply expressed as:

inf
ψ

Qn[ψ(X
n) �= Jn] =

1− dTV (P
1:n
θn0
,P1:n

θn1
)

2
,

where dTV (P,Q) stands for the total variation between P and Q. However,

the total variation behaves badly as the sample size grows. So, we formulate

Le Cam’s bound with Kullback-Leibler (KL) divergence.
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2.3 KL-version Le Cam’s Method

Unlike total variation, KL-divergence has a nice decoupling property:

dKL(P
1:n,Q1:n) = ndKL(P,Q),

where dKL(P,Q) is KL-divergence from P to Q. To relate the Le Cam’s

bound to KL-divergence, we need the following inequality:

Lemma 2 (Pinsker’s Inequality). Let P,Q be any probability measures.

Then the total variation is upper bounded by KL-divergence as

dTV (P,Q) ≤
√

1

2
dKL(P,Q).

Refer Tsybakov (2009) for the proof. Observing Le Cam’s bound, the

total variation representation of error probability, and Pinsker’s inequality,

it is straightforward to show that the following proposition holds.

Proposition 3 (KL-version Le Cam’s Bound). Assume that there are two

sequences of parameters, {θ10, θ20, θ30, · · · } and {θ11, θ21, θ31, · · · } such that

ρ(θn0 , θ
n
1 ) ≥ 2δn and

dKL(θ
n
0 , θ

n
1 ) ≤

1

2n
.

Then, the minimax risk is lower bounded as

Mn(θ(P); ρ) ≥ 1

4
δn.
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Proof. Note that we slightly abused the notation of KL-divergence. Then,

Mn(θ(P); ρ) ≥ δn
1− dTV (P

1:n
θn0
,P1:n

θn1
)

2

≥ δn
1−

√
1
2dKL(P

1:n
θn0
,P1:n

θn1
)

2

= δn
1−

√
n
2dKL(Pθn0 ,Pθn1 )

2
≥ 1

4
δn,

where the first inequality is a consequence of Le Cam’s bound and total

variation representation of minimal average error probability, the second

inequality is Pinsker’s inequality, and the last inequality follows from our

construction of parameter sequences.

Remark. Consider the case where the metric ρ is equivalent to square-root

KL-divergence. For example, �2-prediction error in the regression model with

Gaussian noise is equivalent to square-root KL-divergence as we will show

in the next chapter. Note that the best lower bound that can be obtained by

KL-version Le Cam’s method is of n−1/2 rate. However, it is known that the

minimax rate for �2-prediction error of the regression function is n−1/3 for

the 1-dimensional, bounded Lipschitz continuous regression function, which

means that binary approximation is not enough to capture the complexity of

nonparameteric estimation problem.

After Hasminskii (1978), Le Cam’s bound with Mn ≥ 3 was widely used

to derive a lower bound of minimax risk for the nonparametric estimation

problem. The minimal average error probability of multiple parameter sets

can be lower bounded by Fano’s inequality (Fano, 1961), and Birgé (1983,

1986) formalized the method to apply Fano’s inequality to minimax lower

bound which is called generalized Fano’s method.

Yang and Barron (1999) proved that if the metric ρ is equivalent to
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square-root KL-divergence, packing entropy and covering entropy is equiv-

alent, and metric entropy M(ε) satisfies the richness condition, that is,

lim infε→0M(ε/2)/M(ε) > 1, then the equation

nε2n =M(εn)

determines the minimax rate, εn. Assuming that M(ε) → ∞ as ε → 0, we

can see that εn/n
− 1

2 → ∞, which means that the minimax rate is slower

than the n−1/2 rate derived by KL-version Le Cam’s bound. Since the pa-

rameter space of threshold estimation is a closed interval in R1, the richness

condition does not hold, which is one of the reasons we use KL-version Le

Cam’s bound instead of the approximation by multiple parameters.

3 Applications to Threshold Estimation

In this chapter, we derive lower bounds of minimax risks for threshold esti-

mations. Consider the threshold linear regression problem:

yi = xTi β + xTi δI[qi > γ] + ui.

The threshold location is denoted as γ and we assume that γ lies in a

closed interval Γ := [η, 1 − η] in [0, 1] for 0 < η < 1/3. For convenience,

we decompose the vector of regressors and the threshold effect δ such that

xi = (1, x2i, qi), δ = (δ1, δ
T
2 , δ3)

T , and xTi δ = δ1 + xT2iδ2 + δ3qi. The model

P is determined by the collection of (β, δ, γ). We assume that θ : P → Γ is

well-defined so that θ(P(β,δ,γ)) = γ, and ρ(γ1, γ2) = |γ2 − γ1|.
Also, we assume that (yi, xi, ui) are drawn in i.i.d. manner, xi and ui are

independent, and ui is a univariate normal random variable with variance
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σ2. Let f(·) denote the density of the threshold variable qi.

To exclude the case where the threshold effect is meaningless, we as-

sume that E[x2ix
T
2i|qi = γ] is continuous and positive in Γ. Denote D(γ) =

E[xix
T
i |qi = γ]. For the continuity of D(γ), we assume that E[x2i|qi = γ]

is continuous in Γ. Finally, we assume that f(·) is continuous in Γ and

infγ∈Γ f(γ) > 0, and denote f̄ = supγ∈Γ f(γ).

Before proceeding, we show that KL-divergence can be simply expressed

by �2-norm for the regression model:

Lemma 4. Assume that x ∼ PX and u ∼ N (0, σ2). Let y = f(x) + u.

Then, KL-divergence from the joint distribution determined by the regression

function f0 to f1 is

dKL(f0, f1) =
1

2σ2
‖f1 − f0‖2	2(PX).

Proof. Assume that PX has a density p(·). The joint density of (y, x) is

1

σ
φ(
y − f(x)

σ
)p(x),

where φ is a density function of standard normal random variable. Then the

KL-divergence from f0 to f1 is

dKL(f0, f1) =

∫∫
1

σ
φ(
y − f0(x)

σ
)p(x) log

φ((y − f0(x))/σ)

φ((y − f1(x))/σ)
dydx

=

∫∫
1

σ
φ(
y − f0(x)

σ
)p(x)

(− (y − f0(x))
2 − (y − f1(x))

2

2σ2
)
dydx

=
1

2σ2

∫∫
1

σ
φ(
y − f0(x)

σ
)
(
2(f0(x)− f1(x))y − f20 (x) + f21 (x)

)
dyp(x)dx

=
1

2σ2

∫
(f0(x)− f1(x))

2p(x)dx.
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3.1 Jump Threshold

We mention that this section is influenced by the proof of Wang and Sam-

worth (2018) for the constant regressor case. To extend this proof, we impose

a restriction on the parameter space as follows:

Assumption 1. Fix κ > 0. Let δTD(γ)δ ≥ κ for some γ ∈ Γ.

To include the diminishing threshold model of Hansen (2000), we let

κ = cn−α for some positive real number c. It means that our parameter

space grows as the sample size increases. Then the following proposition

follows:

Proposition 5. Assume that Assumption 1. is satisfied. If κ = cn−α for

some 0 ≤ α < 1/2, the minimax risk is lower bounded as

Mn ≥ σ2

32f̄ c2
n2α−1,

for sufficiently large n.

From our lower bound, we can see that the minimax risk increases as

the noise σ2 increases, the jump size c decreases, or f̄ decreases. Note that

the small f̄ generally implies that there are fewer samples such that qi ∈ Γ,

so it is reasonable that the minimax risk is inversely related to f̄ .

Proof. In fact, our proof is redundant if regressors contain the constant term.

However, our proof can be applied even in the case where the constant term

is dropped.

To use KL-version Le Cam’s bound, we want to find two sequences of

parameters θn0 := (βn0 , δ
n
0 , γ

n
0 ), θ

n
1 := (βn1 , δ

n
1 , γ

n
1 ) such that dKL(θ

n
0 , θ

n
1 ) ≤

1
2n . If β

n
0 �= βn1 or δn0 �= δn1 , slope coefficients contain some information on

γ in general. Therefore, we set βn0 = βn1 and δn0 = δn1 . After rescailing, we
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can choose (δ0, γ0) such that
(
δT0 D(γ0)δ0

)1/2
= 3c/2. From the continuity

of D(γ), there exists a positive real number ε such that

c ≤ (
δT0 D(γ)δ0

)1/2 ≤ 2c,

for all γ ∈ [γ0−ε, γ0+ε]∩Γ. Let δn0 = δn1 = δ0 ·n−α, and choose βn0 = βn1 = β

arbitrarily. Note that

κ = cn−α ≤ (
(δ0 · n−α)TD(γ)(δ0 · n−α)

)1/2 ≤ 2κ.

Fix γn0 = γ0 arbitrarily. If we let γn1 → γ0, then γ
n
1 ∈ [γ0 − ε, γ0 + ε] ∩ Γ for

sufficiently large n, so our construction of parameter sequences is justified.

Let γn1 = σ2

4f̄ c2
n2α−1 + γ0. Since 2α− 1 < 0, γn1 → γ0. In addition,

dKL(θ
n
0 , θ

n
1 ) =

1

2σ2

∫
[γ0,γn1 ]

(δ0 · n−α)TD(γ)(δ0 · n−α)f(γ)dγ

≤ 1

2σ2
(4c2n−2αf̄)(γn1 − γ0) =

1

2n
.

Applying KL-version Le Cam’s bound, we get the desired result.

3.2 Kink Threshold

We construct a probability model of the kink threshold case:

Assumption 2. Let ‖δ‖2 ≥ κ > 0, δ2 = 0. Assume that δ1 + δ3γ = 0 for

some γ.

Note that κ is fixed over n, that is, we do not consider the diminishing

kink case. We develop a minimax lower bound for this model:

Proposition 6. Assume that Assumption 2. is satisfied. The minimax
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risk is lower bounded as

Mn ≥ σ√
128ηf̄κ

n−1/2,

for sufficiently large n.

Relationships between the minimax risk and the nuisance parameters

f̄ , σ2, κ are the same as in the jump threshold case. In addition, note that

large η implies small parameter space Γ, so the estimation problem is easier

for bigger η.

Proof. We start by constructing two sequences of parameters whose KL-

divergence is smaller than 1
2n and ρ(γn0 , γ

n
1 ) is as large as possible.

Let two parameter sequences be θn0 := (β, (−δ30γn0 , 0, · · · , 0, δ30), γn0 ),
θn1 := (β, (−δ31γn1 , 0, · · · , 0, δ31), γn1 ). Let γn1 < γn0 . If we set δ30 = δ31 = κ,

then ‖δn0 ‖2, ‖δn1 ‖2 ≥ κ, hence the assumption 2 is satisfied. Set γn0 = 1− η,

γn1 = γn0 − (
σ2

2nηf̄κ2

)1/2
. Observe that γn1 ≥ 1− 2η for sufficiently large n.

Then, KL-divergence from θn0 to θn1 is

dKL(θ
n
0 , θ

n
1 ) ≤

1

2σ2

∫
[γn1 ,1]

(κ(γn0 − γn1 ))
2f(γ)dγ

≤ 2ηf̄

2σ2
κ2(γn0 − γn1 )

2 =
1

2n
.

Therefore, we can apply the KL-version Le Cam’s bound.

3.3 Unknown Threshold

In this section, we consider the case where we know there is a threshold but

do not know whether it is a jump type threshold or kink type threshold.

For this case, it is implausible to assume that the jump size is larger than

a positive constant when the threshold is jump type. Instead, we impose a
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restriction on the size of threshold effect as we did in the kink threshold

model.

Assumption 3. Let ‖δ‖2 ≥ κ > 0. Assume that δTD(γ)δ > 0 or δ1+δ3γ =

0; δ2 = 0 for some γ ∈ Γ.

Note that we are assuming the fixed threshold case, that is, threshold

effect δ cannot diminish because of the condition ‖δ‖2 ≥ κ > 0. For the

fixed jump threshold, we derived n−1 lower bound, and for the fixed kink

threshold, we derived a lower bound of n−1/2 rate. We develop a slower n−1/3

rate lower bound of the minimax risk for the unknown threshold model.

Proposition 7. Assume that Assumption 3. is satisfied. The minimax

risk is lower bounded as

Mn ≥ σ2/3

6f̄1/3κ2/3
n−1/3

Proof. To capture the complexity of the enlarged parameter space, we pick

one parameter sequence to represent the kink threshold and the other one

to represent the jump threshold. θn0 := (β, (−δ30γn0 , 0, · · · , 0, δ30), γn0 ), θn1 :=

(β, (−δ31γn0 , 0, · · · , 0, δ31), γn1 ). Let γn0 < γn1 . Set γ
n
0 = η, δ30 = δ31 = κ.

Then θn0 has a kink threshold, θn1 has a jump threshold, and θn0 , θ
n
1 satisfy

the assumption 3. Choose γn1 = η+
(

3σ2

nf̄κ2

)1/3
. KL-divergence from θn0 to θn1

is computed as

dKL(θ
n
0 , θ

n
1 ) =

1

2σ2

∫
[η,γn1 ]

(κ(γ − η))2 · f(γ)dγ

≤ f̄κ2

6σ2
(γn1 − η)3 =

1

2n
.

Therefore, we can apply KL-version Le Cam’s bound. Since 31/3

8 ≥ 1
6 , we

get the desired result.
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4 Conclusion

At the early stage of this paper, we observed that the approximation by

multiple sets can improve the KL-version Le Cam’s bound if the parameter

space is rich enough. Based on this observation, we used binary approxi-

mations of the parameter space to derive minimax lower bounds of various

threshold models. To summarize, we proved that the minimax convergence

rate is lower bounded by n−1 rate for the fixed jump threshold, n−1/2 rate

for the fixed kink threshold, and n−1/3 rate for the unknown threshold type.

Further studies on the upper bound of minimax risk will complete the proof

for the minimax rate.
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5 국문 초록

본 논문은 임계점이 있는선형 회귀 모형을 분석한다. 대표적인 임계점 회귀분

석 모형은 다음과 같이 기술된다:

yi = xTi β + xTi δI[qi > γ] + ui.

임계점의 위치, γ를 추정함에 있어서의 근본적인 한계를 분석하는 것은 기존

에 존재하는 추정 방법을 평가함에 보완적인 견해를 줄 수 있다. 본 논문은

임계점 추정에서 최대최소 수렴속도의 하한을 계산하여 임계점 모형에 관한

연구에 기여한다. 특히 기존에 존재하는 추정 방법들의 수렴 속도가 임계점의

성질에 영향을 받는다는 것에 주목하여 임계점의 성질에 따른 세 가지 모형을

제시하고 각각의 경우에 대해 최대최소 수렴속도의 하한을 구한다.

본 논문의 증명은 Le Cam (1973) 이 제시한 방법론에 기초한다. 따라서,

임계점 모형의 분석에 들어가기 앞서 Le Cam의 방법론을 적용하는 방법과 그

한계에 관하여 간략하게 논의한다.

핵심어 : 최대최소 추정, 임계점 모형

학번 : 2017 - 26997

17


	1. Introduction   
	2. Le Cam’s Method   
	2. 1 Minimax Framework   
	2. 2 Le Cam’s Method   
	2. 3 KL-version Le Cam’s Method   

	3. Applications to Threshold Estimation   
	3. 1 Jump Threshold   
	3. 2 Kink Threshold   
	3. 3 Unknown Threshold Type   

	4. Conclusion  
	References  
	국문초록  


<startpage>7
1. Introduction    1
2. Le Cam’s Method    3
 2. 1 Minimax Framework    3
 2. 2 Le Cam’s Method    4
 2. 3 KL-version Le Cam’s Method    6
3. Applications to Threshold Estimation    8
 3. 1 Jump Threshold    10
 3. 2 Kink Threshold    11
 3. 3 Unknown Threshold Type    12
4. Conclusion   14
References   15
국문초록   17
</body>

