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Abstract 
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Seoul National University 

The homonuclear 𝐽𝐽 -coupling interaction between 13C nuclei is very important in-

formation for the structure analysis based on NMR spectroscopy of organic com-

pounds especially consisting of carbon skeleton. However, due to the low natural 

abundance of 13C nuclei, its utilization was made in very limited areas. In this study, 

novel NMR analysis methods that can be applied to natural/mixed and metabolite 

analysis using 13C-13C coupling interactions was presented. 

First, the method of generating a high-resolution 13C-13C correlation spectrum 

through a two-dimensional 1H-13C HMBC spectrum was studied and applied to ac-

tual natural compound to evaluate their feasibility of structural analysis. In addition, 



  

    

DECODE procedure was devised for structural analysis of complex natural products 

from this obtained 13C-13C correlation spectrum. It was then confirmed that this could 

be applied to a mixture of actual natural compound to extract 13C spectra of individ-

ual pure compounds from the NMR spectrum of the mixture. When applied to a 

complex natural product mixture of rotenone and brucine with many quaternary car-

bons, the method resolved very close carbon peaks and extracted clean individual 

spectra. Essentially providing molecule-wide 13C connectivity for complex mole-

cules from 1H-detected 2D spectra, our approach should prove useful in many areas 

of NMR analysis. 

Next, novel 1H-13C HSQC method was developed to effectively analyze 𝐽𝐽CC-

coupling information of 13C-isotope labeled compounds commonly used in cellular 

metabolite analysis. To this end, a modification of HSQC pulse sequence which can 

suppress the signal distortion were carried out and 𝐽𝐽 -scaling module which can se-

lectively amplifying the 𝐽𝐽CC interaction also employed to the pulse sequence. The 

usefulness of novel HSQC pulse sequence was evaluated by several types of uni-

formly labeled 13C-isotope compounds such as U-13C acetate and U-13C lactate which 

are frequently encountered in cellular metabolic analysis. As a result, while conven-

tional HSQC spectrum provide phase-distorted and poor-resolution signals, the re-

sulted HSQC spectrum gives pure in-phase 𝐽𝐽CC scaled HSQC signals of 13C-isotope 

labeled compounds. Since the novel HSQC sequence can provide high-resolution 

signals due to 13C-13C interactions within relatively short acquisition time, it could 

be applicable to the real-time NMR metabolomics which limited measurement time. 

 

Keywords: 13C-13C correlation, J-coupling, covariance, spectral deconvolution, 

mixture analysis, natural products 

Student number: 2016-30517 
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13C-13C scalar coupling interaction in NMR spectroscopy 

In a structure analysis of organic compounds consisting of the carbon skeleton, the 

homonuclear 13C-13C scalar coupling interaction between 13C nuclei can give most 

intuitive structural information. But, their extremely low natural abundance limits 

their practical application for the structural analysis. In this thesis, two novel NMR 

acquisition and processing methods regarding to 13C-13C NMR scalar coupling inter-

action. 

Firstly, in chapter 2, it provides a brief description of the theoretical basis of 

NMR used throughout this thesis. Next, in chapter 3, a spectral deconvolution 

method based on the mathematical operation of NMR spectrum called as covariance 

NMR spectroscopy which provides 13C-13C correlation spectrum from usual high-

sensitivity proton detected 1H-13C correlation spectrum and computational pro-

cessing method which is tailored to eigendecomposition operation will be discussed. 

In a following section at chapter 4, novel HSQC pulse sequence which is applicable 

for NMR based cellular metabolic analysis using 13C-isotope labeled compounds. 

Mixture analysis using 13C-13C correlation NMR spectroscopy 

The physical separation of mixed chemical species to obtain a pure structural infor-

mation has been considered as an inevitable step. In particular, natural products 

(NPs), due to its complexity of structure, the structural study with a mixture NMR 

spectrum have been regarded impossible. In general, however, isolation and purifi-

cation steps require not only laborious and time-consuming process but also gives 

rise to loss of chemical component itself. Thus, several approaches in order to extract 

individual signals from mixed spectrum have been developed based on NMR spec-

troscopy.1,2,3,4  



Introduction 

3 

It has been known that PCA analysis of NMR spectrum containing mixed chem-

ical species can give individual spectra in forms of an eigenmode.4 Previous studies, 

however, based on isotropic mixing between proton spins to classify same group of 

spins, have limitations; it is prone to result in spurious data due to degeneracy (1H-
1H TOCSY)5 and only shows part of information on account of the discrete proton 

spin system even with hetero-nuclear correlation spectrum (1H-13C HSQC-

TOCSY).6 This fragmentation, especially, a crucial problem in natural products 

which consist of several discrete proton spin systems. Instead of 1H-1H correlation 

information obtained from 1H-1H TOCSY spectrum, the choice of 13C-13C correlation 

information of individual molecules will give rise to nearly complete structural in-

formation without an ambiguity. 

In this context, in chapter 3, a novel acquisition and processing method (DE-

CODE) will be discussed. It can extract chemical shift information of individual spe-

cies from the spectrum of mixed organic compounds as is. Since the DEOCDE 

method is based on HMBC spectrum, unlike previous methodology based on proton-

based correlation spectroscopy, it can provide overall carbon chemical shift infor-

mation including quaternary carbons. This enables an application of deconvolution 

method to the more complex structures even composed of several discrete proton 

spin systems. The virtue of DECODE is the intuitive structural information of com-

pounds. In most cases, carbon chemical shift information of unknown compounds 

can be directly linked to its structure information by the comparison to spectral da-

tabase. the integrity of results, 13C-13C correlation spectrum and its deconvolution 

spectrum, was evaluated with several model natural product compounds and resulted 

data allowed recovering of almost fully individual information of model compounds 

with moderate structural complexity and spectral overlap. 
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Distortion-free and high-resolution HSQC using 13C-isotope 

Development of the high-field NMR spectrometer has enabled an acquiring of high-

sensitivity and high-resolution NMR spectrum. However, the analysis of 𝐽𝐽 -coupling 

information of the NMR signal in the indirect domain of the two-dimensional NMR 

spectrum such as real-time cell metabolites analysis, which has constraints in meas-

urement time, remains a challenge. 

On the other hands, an employing of 13C-isotope labeled compound for the 

NMR metabolomics can give unique splitting patterns and coupling constants infor-

mation originated from 13C-13C coupling interaction that provide important structural 

information regarding the cellular metabolic process as well as increase of NMR 

signals such as 1H-13C correlation spectrum.7,8,9 But it has been known that due to 
13C-13C interaction undesirable signal distortions, which hamper an analysis of 13C-
13C coupling information, were arisen together.10,11 

In chapter 4, it will show that the development of novel HSQC method which 

can give distortion-free HSQC signal and selective resolution enhancement of 𝐽𝐽CC 

splitting signals. To this end, an analytical solution of HSQC signal which gives sig-

nal distortion with 13C-isotope compound was provided and considerations for an 

introduction of 𝐽𝐽  -scaling pulse sequence12,13,14 increasing of 𝐽𝐽CC  splitting signal 

resolution into the HSQC pulse sequence were discussed. Finally, the feasibility of 

novel HSQC pulse sequence into 13C-isotope labeled compound was presented. 
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Chapter 2 

 

 

 

 

 

 

2 Theoretical basis of NMR spectroscopy
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2.1 Free evolution of the density operator 

2.1.1 The wave function and the density matrix 

The time-dependent Schrödinger equation for the evolution of a state function |𝜓𝜓(𝑡𝑡)⟩ 

is given by 

𝑑𝑑
𝑑𝑑𝑑𝑑

|𝜓𝜓(𝑡𝑡)⟩ = −𝑖𝑖ℋ (𝑡𝑡)|𝜓𝜓(𝑡𝑡)⟩ 

where ℋ (𝑡𝑡)  is the Hamiltonian of the system and the state function 𝜓𝜓(𝑡𝑡) =

∑ 𝑐𝑐𝑖𝑖(𝑡𝑡)|𝑖𝑖⟩
n
i=1 . 

The expectation value of some property, ⟨𝐴𝐴⟩, can be written as 

⟨𝐴𝐴⟩ = ∫ ψ∗𝐀𝐀ψ𝑑𝑑𝑑𝑑 = ⟨ψ|𝐀𝐀|ψ⟩ 

= � 𝑐𝑐𝑚𝑚
∗ 𝑐𝑐𝑛𝑛⟨𝑚𝑚|𝐀𝐀|𝑛𝑛⟩

𝑚𝑚𝑚𝑚
 

The products 𝑐𝑐𝑚𝑚
∗ 𝑐𝑐𝑛𝑛 can be regarded as the elements of a matrix form of an operator 

𝐏𝐏 = |ψ⟩⟨ψ| defined as 

𝑃𝑃𝑚𝑚𝑚𝑚 = ⟨𝑛𝑛|𝐏𝐏|𝑚𝑚⟩ = 𝑐𝑐𝑚𝑚
∗ 𝑐𝑐𝑛𝑛 

Then, using the operator 𝐏𝐏, the expectation value, ⟨𝐴𝐴⟩, can be re-written as 

⟨𝐴𝐴⟩ = � 𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚
∗ ⟨𝑚𝑚|𝐀𝐀|𝑛𝑛⟩

𝑛𝑛𝑛𝑛
 

= �⟨𝑛𝑛|𝐏𝐏|𝑚𝑚⟩⟨𝑚𝑚|𝐀𝐀|𝑛𝑛⟩ = �⟨𝑛𝑛|𝐏𝐏𝐏𝐏|𝑛𝑛⟩
𝑛𝑛𝑛𝑛𝑛𝑛

 

= � 𝑃𝑃𝑛𝑛𝑛𝑛𝐴𝐴𝑛𝑛𝑛𝑛
nm

= �(𝑃𝑃𝑃𝑃)𝑛𝑛𝑛𝑛
𝑛𝑛

 

= Tr(𝐏𝐏𝐏𝐏) 

where Tr() is the trace of a matrix. 
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For the mixed state, the statistical value of the expectation value is obtained by av-

eraging over the probability distribution with a probability density, 𝛲𝛲 (ψ) 

�𝐴𝐴� = ∫ 𝛲𝛲 (ψ)⟨ψ|𝐀𝐀|ψ⟩𝑑𝑑𝑑𝑑 

= � ∫ 𝛲𝛲 (ψ)𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚
∗ 𝑑𝑑𝑑𝑑⟨𝑚𝑚|𝐀𝐀|𝑛𝑛⟩ 

𝑛𝑛𝑛𝑛
 

= � 𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚
∗� ⟨𝑚𝑚|𝐀𝐀|𝑚𝑚⟩

𝑛𝑛𝑛𝑛
 

Here, the ensemble average of coefficients, 𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚
∗� , forms a matrix that is referred to 

as the density matrix and the density matrix is the matrix representation of an opera-

tor 𝜎̂𝜎 referred to as the density operator. 

𝑐𝑐𝑛𝑛𝑐𝑐𝑚𝑚
∗� = ⟨𝑛𝑛|𝐏𝐏|𝑚𝑚⟩���� = ⟨𝑛𝑛|𝜎̂𝜎|𝑚𝑚⟩ = 𝜎𝜎𝑛𝑛𝑛𝑛 

2.1.2 The evolution of the density operator 

The evolution of the density operator, 𝜎̂𝜎, can be expressed by following equation 

known as Liouville-von Neumann equation 

𝑑𝑑𝜎̂𝜎(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝑖𝑖[𝐻𝐻� , 𝜎̂𝜎(𝑡𝑡)] 

If the Hamiltonian is time independent, the solution is as follows 

𝜎̂𝜎(𝑡𝑡) = 𝑈̂𝑈 (𝑡𝑡)𝜎̂𝜎(0)𝑈̂𝑈 (𝑡𝑡)−1 where 𝑈̂𝑈 (𝑡𝑡) = exp (−𝑖𝑖𝐻𝐻� 𝑡𝑡) 
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2.2 Rotations of the density operator 

2.2.1 Transformation of the spin density operator 

The transformation of the spin density operator by RF pulse along a 𝑥𝑥-axis with field 

strength, 𝜔𝜔1, during a delay, 𝜏𝜏, could be analyzed by cyclic commutation relation-

ships of the angular momentum operators  

𝜎̂𝜎(𝜏𝜏) = 𝑅̂𝑅𝑥𝑥(𝜃𝜃)𝜎̂𝜎(0)𝑅̂𝑅𝑥𝑥(−𝜃𝜃) ; 𝜃𝜃 = 𝜔𝜔1𝜏𝜏  

where the rotation operator 𝑅̂𝑅 is 

𝑅̂𝑅𝑥𝑥(𝜃𝜃) = exp�−𝜔𝜔1𝜏𝜏𝐼𝐼𝑥̂𝑥� 

𝑅̂𝑅𝑦𝑦(𝜃𝜃) = exp (−𝜔𝜔1𝜏𝜏𝐼𝐼𝑦̂𝑦)  

Since 𝑅̂𝑅𝑥𝑥(𝜃𝜃) is expressed by  

𝑅̂𝑅𝑥𝑥(𝜃𝜃) = E cos �
𝜃𝜃
2� − 2𝑖𝑖𝐼𝐼𝑥̂𝑥 sin �

𝜃𝜃
2� 

A matrix representation of 𝑅̂𝑅𝑥𝑥(𝜃𝜃) and 𝑅̂𝑅𝑥𝑥(−𝜃𝜃) has following forms 

𝑅̂𝑅𝑥𝑥(𝜃𝜃) =
⎣
⎢
⎢
⎡ cos �

𝜃𝜃
2� −𝑖𝑖 sin �

𝜃𝜃
2�

−𝑖𝑖 sin �
𝜃𝜃
2� cos �

𝜃𝜃
2� ⎦

⎥
⎥
⎤

, 𝑅̂𝑅𝑥𝑥(−𝜃𝜃) =
⎣
⎢
⎢
⎡cos �

𝜃𝜃
2� 𝑖𝑖 sin �

𝜃𝜃
2�

𝑖𝑖 sin �
𝜃𝜃
2� cos �

𝜃𝜃
2� ⎦

⎥
⎥
⎤
 

Similar analysis of 𝑅̂𝑅𝑦𝑦(𝜃𝜃) and 𝑅̂𝑅𝑦𝑦(−𝜃𝜃) gives 

𝑅̂𝑅𝑦𝑦(𝜃𝜃) =
⎣
⎢
⎢
⎡cos �

𝜃𝜃
2� − sin �

𝜃𝜃
2�

sin �
𝜃𝜃
2� cos �

𝜃𝜃
2� ⎦

⎥
⎥
⎤

, 𝑅̂𝑅𝑦𝑦(−𝜃𝜃) =
⎣
⎢
⎢
⎡ cos �

𝜃𝜃
2� sin �

𝜃𝜃
2�

− sin �
𝜃𝜃
2� cos �

𝜃𝜃
2�⎦

⎥
⎥
⎤
 

For 1/2-spin, matrix representations of Cartesian spin angular momentum operators 

are 

𝐼𝐼𝑥̂𝑥 = 1
2 �

0 1
1 0�, 𝐼𝐼𝑦̂𝑦 = 1

2 �
0 −𝑖𝑖
𝑖𝑖 0 �, 𝐼𝐼𝑧̂𝑧 = 1

2 �
1 0
0 −1� 
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For example, applying a pulse of angle 𝜃𝜃 around the 𝑥𝑥 axis to 𝐼𝐼𝑦̂𝑦 gives 

𝑅̂𝑅𝑥𝑥(𝜃𝜃)𝐼𝐼𝑦̂𝑦𝑅̂𝑅𝑥𝑥(−𝜃𝜃) = 𝐼𝐼𝑦̂𝑦 cos(𝜃𝜃) + 𝐼𝐼𝑧̂𝑧 sin(𝜃𝜃) 

Using the cyclic commutation relationships of angular momentum operators, one can 

obtain results as below 

↻ �𝐼𝐼𝛼̂𝛼, 𝐼𝐼𝛽̂𝛽� = 𝑖𝑖𝐼𝐼𝛾̂𝛾  

𝑅̂𝑅𝛼𝛼(𝜃𝜃)𝐼𝐼𝛽̂𝛽𝑅̂𝑅𝛼𝛼(−𝜃𝜃) = 𝐼𝐼𝛽̂𝛽 cos(𝜃𝜃) + 𝐼𝐼𝛾̂𝛾 sin(𝜃𝜃) 

𝑅̂𝑅𝛽𝛽(𝜃𝜃)𝐼𝐼𝛼̂𝛼𝑅̂𝑅𝛽𝛽(−𝜃𝜃) = 𝐼𝐼𝛼̂𝛼 cos(𝜃𝜃) − 𝐼𝐼𝛾̂𝛾 sin(𝜃𝜃) 

 

2.2.2 Effect of non-selective inversion for the bilinear operator 

The effect of non-selective inversion operator,  

𝑅̂𝑅𝛾𝛾�𝜋𝜋𝛾𝛾� exp�−𝜋𝜋�𝐼𝐼𝛾̂𝛾 + 𝑆𝑆𝛾̂𝛾�� (𝛾𝛾 = 𝑥𝑥 𝑜𝑜𝑜𝑜 𝑦𝑦) 

for the 𝐽𝐽 -coupling operator, 2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧, is evaluated by 

𝑅̂𝑅𝑥𝑥(𝜋𝜋) 2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧𝑅̂𝑅𝑥𝑥(−𝜋𝜋) = exp�−𝜋𝜋�𝐼𝐼𝑥̂𝑥 + 𝑆𝑆𝑥̂𝑥�� 2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧exp�𝜋𝜋�𝐼𝐼𝑥̂𝑥 + 𝑆𝑆𝑥̂𝑥��

= 2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼 exp�−𝜋𝜋𝐼𝐼𝑥̂𝑥�𝐼𝐼1̂𝑧𝑧 exp�𝜋𝜋𝐼𝐼𝑥̂𝑥����������������������������

−𝐼𝐼𝑧̂𝑧

exp�−𝜋𝜋𝑆𝑆𝑥̂𝑥� 𝑆𝑆𝑧̂𝑧 exp�𝜋𝜋𝑆𝑆𝑥̂𝑥����������������������������

−𝑆𝑆𝒛̂𝒛

= 2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼(−𝐼𝐼𝑧̂𝑧)(−𝑆𝑆𝑧̂𝑧)

= 2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧
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2.3 Evolution of the Cartesian operator 

2.3.1 Free precession 

Under the chemical shift Hamiltonian, 𝐻𝐻� =  Ω𝐼𝐼𝐼𝐼𝑧̂𝑧, an evolution of the product op-

erator during a delay, 𝑡𝑡, is expressed by has the form,  

𝐼𝐼𝑥̂𝑥
Ω𝐼𝐼 𝐼𝐼𝑧̂𝑧���→ 𝐼𝐼𝑥̂𝑥 cos(𝛺𝛺𝐼𝐼𝑡𝑡1) + 𝐼𝐼𝑦̂𝑦 sin(Ω𝐼𝐼𝑡𝑡1) 

𝐼𝐼𝑦̂𝑦
Ω𝐼𝐼 𝐼𝐼𝑧̂𝑧���→ 𝐼𝐼𝑦̂𝑦 cos(𝛺𝛺𝐼𝐼 𝑡𝑡1) − 𝐼𝐼𝑥̂𝑥 sin(Ω𝐼𝐼𝑡𝑡1) 

𝐼𝐼𝑧̂𝑧
Ω𝐼𝐼 𝐼𝐼𝑧̂𝑧���→ 𝐼𝐼𝑧̂𝑧 

For a weakly coupled two spins, 𝐼𝐼  and 𝑆𝑆, with the where 𝐽𝐽𝐼𝐼𝐼𝐼  is the 𝐽𝐽 -coupling 

constant. Under the 𝐽𝐽 -coupling Hamiltonian, 𝐻𝐻� = 2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧, an evolution of the 

Cartesian operator during delay, 𝑡𝑡, is expressed by 

𝐼𝐼𝑥̂𝑥
2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼 𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧𝑡𝑡
������������→ 𝐼𝐼𝑥̂𝑥 cos(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) + 2𝐼𝐼𝑦̂𝑦𝑆𝑆𝑧̂𝑧 sin(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) 

𝐼𝐼𝑦̂𝑦
2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼 𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧𝑡𝑡
������������→ 𝐼𝐼𝑦̂𝑦 cos(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) − 2𝐼𝐼𝑥̂𝑥𝑆𝑆𝑧̂𝑧 sin(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) 

𝐼𝐼𝑧̂𝑧
2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼 𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧𝑡𝑡
������������→ 𝐼𝐼𝑧̂𝑧 

2𝐼𝐼𝑥̂𝑥𝑆𝑆𝑧̂𝑧
2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧𝑡𝑡
������������→ 2𝐼𝐼𝑥̂𝑥𝑆𝑆𝑧̂𝑧 cos(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) + 𝐼𝐼𝑦̂𝑦 sin(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) 

2𝐼𝐼𝑦̂𝑦𝑆𝑆𝑧̂𝑧
2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧𝑡𝑡
������������→ 2𝐼𝐼𝑦̂𝑦𝑆𝑆𝑧̂𝑧 cos(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) − 𝐼𝐼𝑥̂𝑥 sin(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) 

2.3.2 Chemical shift and J-coupling evolution of the density operator 

Evolution of the density operator with a time independent Hamiltonian, 𝐻𝐻�0, in a 

rotating frame during 𝑡𝑡 has a form  

𝜌𝜌(̂𝑡𝑡) = exp�−𝑖𝑖𝐻𝐻�0𝑡𝑡� 𝜎̂𝜎(0) exp (𝑖𝑖𝐻𝐻�0𝑡𝑡) 

where 𝐻𝐻�0 = 𝐻𝐻�1 + 𝐻𝐻�2; 𝐻𝐻�1 = 𝛺𝛺1𝐼𝐼𝑧̂𝑧 + 𝛺𝛺2𝑆𝑆𝑧̂𝑧 and 𝐻𝐻�2 = 2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧 
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Here 𝐻𝐻�1 is a Zeeman interaction (chemical shift) Hamiltonian in a rotating frame 

and 𝐻𝐻�2 is a 𝐽𝐽 -coupling Hamiltonian of two weakly coupled spin 𝐼𝐼  and 𝑆𝑆. 

Since two Hamiltonian operators 𝐻𝐻�1  and 𝐻𝐻�2  are commute, the evolution of the 

density operator can be expressed as follows, 

𝜌𝜌(̂𝑡𝑡) = exp�−𝑖𝑖𝐻𝐻�2𝑡𝑡� exp�−𝑖𝑖𝐻𝐻�1𝑡𝑡� 𝜎̂𝜎(0) exp�𝑖𝑖𝐻𝐻�1𝑡𝑡�������������������������������� exp�𝑖𝑖𝐻𝐻�2𝑡𝑡� 

         𝜌𝜌(̂𝑡𝑡1) 

Assuming the density operator has a form of 𝐼𝐼𝑥̂𝑥, after free precession with 𝐻𝐻�1 

𝜎̂𝜎(𝑡𝑡1) = exp�−𝑖𝑖𝐻𝐻�1𝑡𝑡� 𝐼𝐼𝑥̂𝑥 exp�𝑖𝑖𝐻𝐻�1𝑡𝑡� 

= exp�−𝑖𝑖�Ω𝐼𝐼𝐼𝐼𝑧̂𝑧 + Ω𝑆𝑆𝑆𝑆𝑧̂𝑧�𝑡𝑡� 𝐼𝐼𝑥̂𝑥 exp�−𝑖𝑖�Ω𝐼𝐼𝐼𝐼𝑧̂𝑧 + Ω𝑆𝑆𝑆𝑆𝑧̂𝑧�𝑡𝑡� 

= exp�−𝑖𝑖Ω𝐼𝐼𝐼𝐼𝑧̂𝑧𝑡𝑡� 𝐼𝐼1̂𝑥𝑥 exp�𝑖𝑖Ω𝐼𝐼𝐼𝐼𝑧̂𝑧𝑡𝑡� exp�−𝑖𝑖Ω𝑆𝑆𝑆𝑆𝑧̂𝑧𝑡𝑡� exp�−𝑖𝑖Ω𝑆𝑆𝑆𝑆𝑧̂𝑧𝑡𝑡��������������������������������������
𝐸𝐸

 

= 𝐼𝐼𝑥̂𝑥 cos(Ω𝐼𝐼𝑡𝑡) + 𝐼𝐼𝑦̂𝑦 sin(Ω𝐼𝐼𝑡𝑡) 

Then, 𝐽𝐽 -coupling evolution of the density operator with 𝐻𝐻�2 gives 

𝜎̂𝜎(𝑡𝑡) = exp�−𝑖𝑖𝐻𝐻�2𝑡𝑡� 𝜌𝜌(̂𝑡𝑡1) exp�𝑖𝑖𝐻𝐻�2𝑡𝑡� 

= exp�−𝑖𝑖𝐻𝐻�2𝑡𝑡� 𝐼𝐼𝑥̂𝑥 cos(Ω𝐼𝐼𝑡𝑡) exp�𝑖𝑖𝐻𝐻�2𝑡𝑡� + exp�−𝑖𝑖𝐻𝐻�2𝑡𝑡� 𝐼𝐼𝑦̂𝑦 sin(Ω𝐼𝐼𝑡𝑡) exp�𝑖𝑖𝐻𝐻�2𝑡𝑡� 

= exp�−𝑖𝑖2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧𝑡𝑡� 𝐼𝐼𝑥̂𝑥 cos(Ω𝐼𝐼𝑡𝑡) exp�𝑖𝑖2𝜋𝜋𝐽𝐽𝐼𝐼𝑆𝑆𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧𝑡𝑡�

+ exp�−𝑖𝑖2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧𝑡𝑡� 𝐼𝐼𝑦̂𝑦 sin(Ω𝐼𝐼𝑡𝑡) exp�𝑖𝑖2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧𝑡𝑡� 

= cos(Ω𝐼𝐼𝑡𝑡) �𝐼𝐼𝑥̂𝑥 cos(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) + 2𝐼𝐼𝑦̂𝑦 sin�2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑆𝑆𝑧̂𝑧𝑡𝑡��

+ sin(Ω𝐼𝐼𝑡𝑡) �𝐼𝐼𝑦̂𝑦 cos(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) − 2𝐼𝐼𝑥̂𝑥 sin�2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑆𝑆𝑧̂𝑧𝑡𝑡�� 

= 𝐼𝐼𝑥̂𝑥 cos(Ω𝐼𝐼𝑡𝑡) cos(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) + 2𝐼𝐼𝑦̂𝑦𝑆𝑆ẑ cos(Ω𝐼𝐼𝑡𝑡) sin(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) + 𝐼𝐼𝑦̂𝑦 sin(Ω𝐼𝐼𝑡𝑡) cos(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡)

− 2𝐼𝐼𝑥̂𝑥𝑆𝑆𝑧̂𝑧 sin(ΩI𝑡𝑡) sin(𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡) 

2.3.3 Spin-echo pulse sequence 

Let us consider weakly coupled two spin system with a Hamiltonian in the rotating 

frame reference 
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𝐻𝐻�0 = 𝐻𝐻�1 + 𝐻𝐻�2; 𝐻𝐻�1 = 𝛺𝛺1𝐼𝐼𝑧̂𝑧 + 𝛺𝛺2𝑆𝑆𝑧̂𝑧 and 𝐻𝐻�2 = 2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧 

 

After a free evolution during 𝜏𝜏1, if one applying a pulse of angle 𝜋𝜋 around the 𝑥𝑥 

axis followed by free evolution during 𝜏𝜏2, the total evolution of density operator is 

described by  

 

𝜎̂𝜎(𝜏𝜏1 + 𝜏𝜏2)

= exp�−𝑖𝑖𝐻𝐻�0𝜏𝜏2� 𝑅̂𝑅𝑥𝑥(𝜋𝜋) exp�−𝑖𝑖𝐻𝐻�0𝜏𝜏1� 𝜎̂𝜎(0) exp�𝑖𝑖𝐻𝐻�0𝜏𝜏1� 𝑅̂𝑅𝑥𝑥(−𝜋𝜋) exp�𝑖𝑖𝐻𝐻�0𝜏𝜏2�

= exp�−𝑖𝑖(𝐻𝐻�1+𝐻𝐻�2)𝜏𝜏2� 𝑅̂𝑅𝑥𝑥(𝜋𝜋) exp�−𝑖𝑖(𝐻𝐻�1+𝐻𝐻�2)𝜏𝜏1� 𝑅̂𝑅𝑥𝑥(−𝜋𝜋)𝑅̂𝑅𝑥𝑥(𝜋𝜋)

× 𝜎̂𝜎(0)𝑅̂𝑅𝑥𝑥(−𝜋𝜋)𝑅̂𝑅𝑥𝑥(𝜋𝜋) exp{𝑖𝑖�𝐻𝐻�1 + 𝐻𝐻�2�𝜏𝜏1} 𝑅̂𝑅𝑥𝑥(−𝜋𝜋) exp�𝑖𝑖(𝐻𝐻�1+𝐻𝐻�2)𝜏𝜏2�

= exp�−𝑖𝑖𝐻𝐻�2𝜏𝜏2� exp�−𝑖𝑖𝐻𝐻�1𝜏𝜏2� 𝑅̂𝑅𝑥𝑥(𝜋𝜋) exp�−𝑖𝑖𝐻𝐻�1𝜏𝜏1�

× 𝑅̂𝑅𝑥𝑥(−𝜋𝜋)𝑅̂𝑅𝑥𝑥(𝜋𝜋) exp�−𝑖𝑖𝐻𝐻�2𝜏𝜏1� 𝑅̂𝑅𝑥𝑥(−𝜋𝜋)𝜎̂𝜎(0)𝑅̂𝑅𝑥𝑥(𝜋𝜋) exp�𝑖𝑖𝐻𝐻�1𝜏𝜏1�

× 𝑅̂𝑅𝑥𝑥(−𝜋𝜋)𝑅̂𝑅𝑥𝑥(𝜋𝜋) exp�𝑖𝑖𝐻𝐻�2𝜏𝜏1� 𝑅̂𝑅𝑥𝑥(−𝜋𝜋) exp�𝑖𝑖𝐻𝐻�1𝜏𝜏2� exp�𝑖𝑖𝐻𝐻�2𝜏𝜏2�

= exp�−𝑖𝑖𝐻𝐻�2(𝜏𝜏2 + 𝜏𝜏1)� exp�−𝑖𝑖𝐻𝐻�1(𝜏𝜏2 − 𝜏𝜏1)� 𝑅̂𝑅𝑥𝑥(𝜋𝜋)𝜎̂𝜎(0)

× 𝑅̂𝑅𝑥𝑥(−𝜋𝜋) exp�𝑖𝑖𝐻𝐻�1(𝜏𝜏2 − 𝜏𝜏1)� exp�𝑖𝑖𝐻𝐻�2(𝜏𝜏2 + 𝜏𝜏1)�

= 𝑅̂𝑅𝑥𝑥(𝜋𝜋) exp�−𝑖𝑖𝐻𝐻�2(𝜏𝜏2 + 𝜏𝜏1)� exp�−𝑖𝑖𝐻𝐻�1(𝜏𝜏2 − 𝜏𝜏1)� 𝜎̂𝜎(0)

× exp�𝑖𝑖𝐻𝐻�1(𝜏𝜏2 − 𝜏𝜏1)� exp�𝑖𝑖𝐻𝐻�2(𝜏𝜏2 + 𝜏𝜏1)� 𝑅̂𝑅𝑥𝑥(−𝜋𝜋) 

Assuming, 𝜎̂𝜎(0) = 𝐼𝐼𝑥̂𝑥 then,  

𝜎̂𝜎(𝜏𝜏1 + 𝜏𝜏2) = 𝐼𝐼𝑥̂𝑥 cos{Ω𝐼𝐼(𝜏𝜏2 − 𝜏𝜏1)} cos{𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼(𝜏𝜏2 + 𝜏𝜏1)}

+ 2𝐼𝐼𝑦̂𝑦𝑆𝑆ẑ cos{Ω𝐼𝐼(𝜏𝜏2 − 𝜏𝜏1)} sin{𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼(𝜏𝜏2 + 𝜏𝜏1)}

− 𝐼𝐼𝑦̂𝑦 sin{Ω𝐼𝐼(𝜏𝜏2 − 𝜏𝜏1)} cos{𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼(𝜏𝜏2 + 𝜏𝜏1)}

+ 2𝐼𝐼𝑥̂𝑥𝑆𝑆𝑧̂𝑧 sin{Ω𝐼𝐼(𝜏𝜏2 − 𝜏𝜏1)} sin{𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼(𝜏𝜏2 + 𝜏𝜏1)} 

 

If 𝜏𝜏1 = 𝜏𝜏2, 𝜎̂𝜎(2𝜏𝜏1) = 𝐼𝐼1̂𝑥𝑥 cos{𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼(2𝜏𝜏1)} + 2𝐼𝐼𝑦̂𝑦𝑆𝑆ẑ sin{𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼(2𝜏𝜏1)} 
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2.4 Frequency discrimination and lineshape in 2D NMR  

2.4.1 Properties of the indirect domain signal in 2D NMR   

In the two-dimensional NMR the modulation in the 𝑡𝑡1  domain is cosine or sine 

modulated15. Consider a cosine modulated signal, cos(Ω𝑡𝑡1), in the 𝑡𝑡1 domain. Then, 

we obtain a two-dimensional signal 

𝑆𝑆(𝑡𝑡1, 𝑡𝑡2) = cos(Ω1𝑡𝑡1) exp(𝑖𝑖 Ω2𝑡𝑡2) exp(−𝑅𝑅2
1𝑡𝑡1) exp(−𝑅𝑅2

2 𝑡𝑡2) 

Using a property, 

cos(Ω1𝑡𝑡1) = 1
2

{exp(𝑖𝑖Ω1𝑡𝑡1) + exp(−𝑖𝑖Ω1𝑡𝑡1)} 

Then, 

𝑆𝑆(𝑡𝑡1, 𝑡𝑡2) = 1
2

{exp(𝑖𝑖Ω1𝑡𝑡1) exp(𝑖𝑖 Ω2𝑡𝑡2) + exp(−𝑖𝑖Ω1𝑡𝑡1) exp(𝑖𝑖 Ω2𝑡𝑡2)}

× exp(−𝑅𝑅2
1𝑡𝑡1) exp(−𝑅𝑅2

2 𝑡𝑡2) 

A complex Fourier transformation of complex time-domain signal gives spectrum 

consist of real and imaginary frequency-domain signals  

𝑆𝑆(𝜔𝜔) = ℱ {𝑆𝑆(𝑡𝑡)} = � exp(𝑖𝑖𝜔𝜔0𝑡𝑡) exp(−𝑖𝑖ω𝑡𝑡) exp(𝑅𝑅𝑅𝑅) 𝑑𝑑𝑑𝑑
∞

−∞
 

= 𝑅𝑅
(𝜔𝜔0 − 𝜔𝜔)2 + 𝑅𝑅2�������������

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

− 𝑖𝑖
(𝜔𝜔0 − 𝜔𝜔)

(𝜔𝜔0 − 𝜔𝜔)2 + 𝑅𝑅2���������������
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

 

The real part of the spectrum is a peak with absorption mode Lorentzian lineshape, 

𝐴𝐴(𝜔𝜔), whereas the imaginary part gives rise to dispersive Lorentzian lineshape, 𝐷𝐷(𝜔𝜔). 

Therefore, after Fourier transformation along the both time domain, the frequency-

domain signal is  

𝑆𝑆(𝜔𝜔1, 𝜔𝜔2) = 1
2

{𝐴𝐴(Ω1) + 𝑖𝑖𝑖𝑖(Ω1) + 𝐴𝐴(−Ω1) + 𝑖𝑖𝑖𝑖(−Ω1)}{𝐴𝐴(Ω2) + 𝑖𝑖𝑖𝑖(Ω2)} 
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= 1
2 �𝐴𝐴(Ω1)𝐴𝐴(Ω2) + 𝑖𝑖𝑖𝑖(Ω1)𝐷𝐷(Ω2) + 𝑖𝑖𝑖𝑖(Ω1)𝐴𝐴(Ω2) − 𝐷𝐷(Ω1)𝐷𝐷(Ω2)�

= + 1
2 �𝐴𝐴(−Ω1)𝐴𝐴(Ω2) + 𝑖𝑖𝑖𝑖(−Ω1)𝐷𝐷(Ω2) + 𝑖𝑖𝑖𝑖(−Ω1)𝐴𝐴(Ω2) − 𝐷𝐷(−Ω1)𝐷𝐷(Ω2)� 

= 1
2 �𝐴𝐴(Ω1)𝐴𝐴(Ω2) − 𝐷𝐷(Ω1)𝐷𝐷(Ω2)������������������������������������

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (Ω1, Ω2)

+ 𝑖𝑖�𝐴𝐴(Ω1)𝐷𝐷(Ω2) + (Ω1)𝐴𝐴(Ω2)����������������������������������
𝐼𝐼𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (Ω1, Ω2)

= + 1
2 �𝐴𝐴(−Ω1)𝐴𝐴(Ω2) − 𝐷𝐷(−Ω1)𝐷𝐷(Ω2)������������������������������������������

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (−Ω1, Ω2)

+ 𝑖𝑖�𝐴𝐴(−Ω1)𝐷𝐷(Ω2) + (−Ω1)𝐴𝐴(Ω2)����������������������������������������
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (−Ω1, Ω2)

 

Thus, cosine or sine modulation of two-dimensional NMR signal with respect to 𝑡𝑡1 

will not only lead to lack the frequency discrimination in the 𝐹𝐹1 domain but give a 

phase-twist lineshapes in the resulted two-dimensional spectrum. 

2.4.2 The States-Haberkorn-Ruben (SHR) method 

The principle of hypercomplex method or SHR method16 is as follows 

Consider the cosine modulated two-dimensional NMR signal, 𝑆𝑆c(𝑡𝑡1, 𝑡𝑡2), 

𝑆𝑆c(𝑡𝑡1, 𝑡𝑡2) = cos(Ω1𝑡𝑡1) exp(𝑖𝑖 Ω2𝑡𝑡2) exp(−𝑅𝑅2
1𝑡𝑡1) exp(−𝑅𝑅2

2 𝑡𝑡2) 

Using the previous notation, Fourier transformation of signal with respect to 𝑡𝑡2, 

𝑆𝑆c(𝑡𝑡1, Ω2) = cos(Ω1𝑡𝑡1) exp�−𝑅𝑅2
1𝑡𝑡1� {𝐴𝐴(Ω2) + 𝑖𝑖𝑖𝑖(Ω2)} 

Discarding the imaginary part of the signal gives 

𝑆𝑆c,Re(𝑡𝑡1, Ω2) = cos(Ω1𝑡𝑡1) exp�−𝑅𝑅2
1𝑡𝑡1� 𝐴𝐴(Ω2) 

Again, same process could be applied for sine modulated signal 

𝑆𝑆s,Re(𝑡𝑡1, Ω2) = sin(Ω1𝑡𝑡1) exp�−𝑅𝑅2
1𝑡𝑡1� 𝐴𝐴(Ω2) 

Combining the real part of the cosine and sine modulated signals forms a new signal 

form 𝑆𝑆SHR(𝑡𝑡1, Ω2) 
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𝑆𝑆SHR(𝑡𝑡1, Ω2) = 𝑆𝑆c,Re(𝑡𝑡1, Ω2) + 𝑖𝑖𝑆𝑆s,Re(𝑡𝑡1, Ω2) 

= {cos(Ω1𝑡𝑡1) + 𝑖𝑖 sin(Ω1𝑡𝑡1)}���������������������������
exp(𝑖𝑖Ω1𝑡𝑡1)

exp�−𝑅𝑅2
1𝑡𝑡1� 𝐴𝐴(Ω2) 

= exp(𝑖𝑖Ω1𝑡𝑡1) exp�−𝑅𝑅2
1𝑡𝑡1� 𝐴𝐴(Ω2) 

Finally, Fourier transformation of 𝑆𝑆SHR(𝑡𝑡1, Ω2) along the 𝑡𝑡1 gives 

𝑆𝑆SHR(Ω1, Ω2) = {𝐴𝐴(Ω1) + 𝑖𝑖𝑖𝑖(Ω1)}𝐴𝐴(Ω2) 

= 𝐴𝐴(Ω1)𝐴𝐴(Ω2) + 𝑖𝑖𝑖𝑖(Ω1)𝐴𝐴(Ω2) 

And the real part of the 𝑆𝑆SHR(Ω1, Ω2)  provide a doubly absorptive lineshape, 

𝐴𝐴(Ω1)𝐴𝐴(Ω2). 

2.4.3 Time-Proportional Phase-Incrementation (TPPI) method 

The principle of TPPI method17 is as follows  

Let us consider a cosine modulated signal of which phase shifted signal by 𝜙𝜙 =

𝜔𝜔add𝑡𝑡1  

𝑆𝑆(𝜙𝜙, 𝑡𝑡1, 𝑡𝑡2) = cos(Ω1𝑡𝑡1 + 𝜙𝜙) exp(𝑖𝑖 Ω2𝑡𝑡2) exp(−𝑅𝑅2
1𝑡𝑡1) exp(−𝑅𝑅2

2 𝑡𝑡2) 

If re-write the 𝜙𝜙 as an 𝜔𝜔add𝑡𝑡1 

𝑆𝑆(𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎, 𝑡𝑡1, 𝑡𝑡2) = cos{(Ω1 + 𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎)𝑡𝑡1} exp(𝑖𝑖 Ω2𝑡𝑡2) exp(−𝑅𝑅2
1𝑡𝑡1) exp(−𝑅𝑅2

2 𝑡𝑡2) 

In the two-dimension NMR acquisition, the signal in 𝑡𝑡1 is recoded at evenly spaced 

in Δ1, where Δ1 is the 1
2𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

 in second.  

𝑆𝑆(𝜙𝜙, 𝑛𝑛Δ, 𝑡𝑡2) = cos{(Ω1 + 𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎)𝑛𝑛Δ1} exp(𝑖𝑖 Ω2𝑡𝑡2) exp(−𝑅𝑅2
1𝑛𝑛Δ1) exp(−𝑅𝑅2

2 𝑡𝑡2) 

By adding 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 Hz to the Ω1, all of offsets are changed to positive and a maximum 

frequency 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  and an interval Δ1 �= 1
2𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚�  are also changed to 2𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  and 

Δ1
′

�= 1
4𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚� respectively.  
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𝑆𝑆(𝑛𝑛Δ′, 𝑡𝑡2) = cos �(Ω1 + 2𝜋𝜋𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚) 𝑛𝑛
4𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚� exp(𝑖𝑖 Ω2𝑡𝑡2) exp�−𝑅𝑅2

1𝑛𝑛Δ′� exp(−𝑅𝑅2
2 𝑡𝑡2) 

𝑆𝑆(𝑛𝑛Δ, 𝑡𝑡2) = cos �Ω1𝑛𝑛Δ′ + 𝑛𝑛𝑛𝑛
2 � exp(𝑖𝑖 Ω2𝑡𝑡2) exp(−𝑅𝑅2

1𝑛𝑛Δ′) exp(−𝑅𝑅2
2 𝑡𝑡2)  

Therefore, incrementing the phase of the cosine modulated signal by π
2 results in 

frequency discrimination in the 𝐹𝐹1 domain 

𝑆𝑆TPPI(Ω1, Ω2) = 1
2

⎩⎪
⎨
⎪⎧𝐴𝐴(Ω1) + 𝑖𝑖𝑖𝑖(Ω1) + 𝐴𝐴(−Ω1) + 𝑖𝑖𝑖𝑖(−Ω1)�������������������

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ⎭⎪
⎬
⎪⎫ 𝐴𝐴(Ω2) 

= 1
2

{𝐴𝐴(Ω1)𝐴𝐴(Ω2) + 𝑖𝑖𝑖𝑖(Ω1)𝐴𝐴(Ω2)} 

In the same manner, the real part of the 𝑆𝑆TPPI(Ω1, Ω2) provide a doubly absorptive 

lineshape, 1
2 𝐴𝐴(Ω1)𝐴𝐴(Ω2). 
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2.5 Coherence selection by PFG 

In modern NMR spectroscopy, there are two methods in which this selection of re-

quired signals is achieved. The phase cycling18,19 procedure, firstly, selectively re-

tains only the desirable signal through the accumulation of free construction decays 

resulted from the changing of the RF pulse for each experiment, and cancels out the 

unwanted signals. The second procedure employs field gradient pulse20,21. With a 

short-duration field gradient pulse which result in a field inhomogeneity, any coher-

ences present will be de-phased. By a careful choice of the subsequent gradient 

pulses, however, within a pulse sequence one can ensure that refocusing of only the 

desired coherences.  

2.5.1 Magnetic field gradient 

If a field gradient, 𝐺𝐺, is applied to the magnetic field, 𝐵𝐵0 then,  

𝐵𝐵z = 𝐵𝐵0 + 𝐺𝐺𝑧𝑧 

where 𝐺𝐺 is the magnetic field gradient, in units Tm-1, and 𝑧𝑧 is the coordinate along 

the field direction, measured (in unit cm) from the centre of the sample. 

For a nucleus with the gyromagnetic ratio, 𝛾𝛾, the Larmor frequency can be described 

as 

−𝛾𝛾𝐵𝐵z = −𝛾𝛾𝐵𝐵0 − 𝛾𝛾𝐺𝐺𝑧𝑧 

Ω𝑧𝑧 = Ω0 − 𝛾𝛾𝐺𝐺𝑧𝑧 

2.5.2 Phase evolution of the coherence in magnetic field gradient 

Considering the only spatially dependent part, Ω(𝑧𝑧), the evolution of the lowering 

operator (coherence order -1, 𝐼𝐼−̂) with Ω(𝑧𝑧) during 𝑡𝑡 is as follows 
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𝐼𝐼−̂
Ω(𝑧𝑧)𝐼𝐼𝑧̂𝑧������→ exp(𝑖𝑖 Ω(𝑧𝑧)𝑡𝑡)𝐼𝐼−̂ 

For the multiple quantum coherence, for example 𝐼𝐼1̂−𝐼𝐼2̂−; double quantum coher-

ence operator, the evolution spatially dependent part, Ω(𝑧𝑧), during 𝑡𝑡 is 

𝐼𝐼1̂−𝐼𝐼2̂−
Ω(𝑧𝑧)(𝐼𝐼1̂𝑧𝑧+𝐼𝐼2̂𝑧𝑧)
��������������→ exp(2𝑖𝑖 Ω(𝑧𝑧)𝑡𝑡)𝐼𝐼1̂−𝐼𝐼2̂− 

The generalized expression of an acquired phase in the spatially dependent part, 𝜙𝜙(𝑧𝑧), 

for the coherence order 𝑝𝑝 due to field gradient, 𝐺𝐺𝑧𝑧 during 𝑡𝑡 is 

𝜙𝜙(𝑧𝑧) = −𝑝𝑝 × 𝛾𝛾𝐺𝐺z𝑡𝑡 

 

2.5.3 Acquiring a spatially dependent phase by the PFG 

 

Figure 2.1 Pulse sequence for coherence selection PFG 

Black-wide bar indicates 𝝅𝝅-inversion pulse. G1 and G2 denotes strength of gradient pulse along the 
z-axis. 𝛕𝛕𝟏𝟏 and 𝝉𝝉𝟐𝟐 means duration of gradient pulse G1 and G2 respectively. p1 and p2 denote coher-
ence order of the polarization. 
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The acquired phase 𝜙𝜙1(𝑧𝑧) of a 𝑝𝑝1-order coherence during the first field gradi-

ent pulse 𝐺𝐺1 during 𝜏𝜏1 is 

𝜙𝜙1(𝑧𝑧) = −𝑝𝑝1𝛾𝛾𝐺𝐺1𝜏𝜏1 

After applying RF, the acquired phase of 𝑝𝑝2-order coherence during the second field 

gradient pulse 𝐺𝐺2 during 𝜏𝜏2 is 

𝜙𝜙2(𝑧𝑧) = −𝑝𝑝2𝛾𝛾𝐺𝐺2𝜏𝜏2 

Therefore, final acquired spatially dependent phase is 

𝜙𝜙1+2(𝑧𝑧) = −𝑝𝑝1𝛾𝛾𝐺𝐺1𝜏𝜏1 − 𝑝𝑝2𝛾𝛾𝐺𝐺2𝜏𝜏2 

2.5.4 Dephasing by the field gradient 

Consider −1-quantum coherence operator with the spatially dependent phase factor, 

𝜙𝜙 = 𝛾𝛾𝐺𝐺𝑧𝑧𝑡𝑡 

exp(𝑖𝑖𝑖𝑖𝐺𝐺𝑧𝑧𝑡𝑡) 𝐼𝐼−̂ 

One can evaluate the intensity of residual observable signals by simply adding up 

the acquired phase, exp(𝑖𝑖𝑖𝑖𝐺𝐺𝑧𝑧𝑡𝑡), in along the 𝑧𝑧-axis in a detection range, L. 

𝑆𝑆obs(𝑡𝑡) = 1
L � exp(𝑖𝑖𝑖𝑖𝐺𝐺𝑧𝑧𝑡𝑡)

+1
2L

−1
2L

𝑑𝑑𝑑𝑑 

=
sin �

1
2 𝛾𝛾𝐺𝐺𝑧𝑧L𝑡𝑡�

1
2 𝛾𝛾𝐺𝐺𝑧𝑧L𝑡𝑡

= sin 𝑥𝑥
𝑥𝑥

= sinc(𝑥𝑥), where 𝑥𝑥 = 1
2

𝛾𝛾𝐺𝐺𝑧𝑧L𝑡𝑡 

𝑆𝑆obs(𝑡𝑡) has a form of the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 function decayed over the time 𝑡𝑡. 

For the proton nucleus, if 𝐺𝐺𝑧𝑧 = 20 G cm-1 and L = 1 cm, then 𝑆𝑆obs(𝑡𝑡) = 3.7×10−6

𝑡𝑡 .  

At 𝑡𝑡 = 0.37 ms, 𝑆𝑆obs(𝑡𝑡) ≈ 0.01 
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2.5.5 Selection of P-type and N-type spectra by the PFG 

The P-type or anti-echo spectrum refers to its coherence order in 𝑡𝑡1 is of same sign 

to that in 𝑡𝑡2 whereas the N-type or echo spectrum is of opposite sign to that. Since 

the 𝑀𝑀+ = 𝛾𝛾𝐼𝐼+  is the only observable magnetization and the expectation value of 

certain operator is defined as 

〈𝑀𝑀+〉(𝑡𝑡) = Tr�𝑀𝑀+𝜎̂𝜎(𝑡𝑡)� where 𝜎̂𝜎 is the density operator. 

Thus, the only observable density operator has −1-coherence order, thereby P-type 

spectrum has −1-coherence order and N-type spectrum has +1-coherence order in 

𝑡𝑡1 respectively. 

Let us consider, a Cartesian spin operator, −𝐼𝐼𝑦̂𝑦. Using an identity, 𝐼𝐼𝑦̂𝑦 = 1
2 (𝐼𝐼+̂ − 𝐼𝐼−̂), 

after a free evolution during 𝑡𝑡1 followed by applying the pulsed field gradient, 𝐺𝐺𝑎𝑎 

during 𝜏𝜏𝑧𝑧 gives, 

− 1
2 �𝐼𝐼+̂ − 𝐼𝐼−̂�

Ω𝐼𝐼𝑧𝑧𝑡𝑡1����→
Ω𝐼𝐼𝑧𝑧𝜏𝜏𝑧𝑧+𝛾𝛾𝐺𝐺𝑎𝑎𝜏𝜏𝑧𝑧��������������→ − 1

2 �exp{−𝑖𝑖(Ω𝑡𝑡1 + 𝛾𝛾𝐺𝐺𝑎𝑎𝜏𝜏𝑧𝑧)} 𝐼𝐼+̂ − exp{𝑖𝑖(Ω𝜏𝜏1 + 𝛾𝛾𝐺𝐺𝑎𝑎𝜏𝜏𝑧𝑧} 𝐼𝐼−̂� 

Since an inversion pulse simply reverse the sign of the coherence order, after the 𝜋𝜋-

pulse rotation along the 𝑥𝑥-axis the operator has a form, 

− 1
2 �exp{−𝑖𝑖(Ω𝑡𝑡1 + Ω𝜏𝜏𝑧𝑧 + 𝛾𝛾𝐺𝐺𝑎𝑎𝜏𝜏𝑧𝑧)} 𝐼𝐼+̂ exp{𝑖𝑖(Ω𝑡𝑡1 + Ω𝜏𝜏𝑧𝑧 + 𝛾𝛾𝐺𝐺𝑎𝑎𝜏𝜏𝑧𝑧} 𝐼𝐼−̂�

𝜋𝜋𝐼𝐼𝑥̂𝑥�→ − 1
2 �exp{−𝑖𝑖(Ω𝑡𝑡1 + Ω𝜏𝜏𝑧𝑧 + 𝛾𝛾𝐺𝐺𝑎𝑎𝜏𝜏𝑧𝑧)} 𝐼𝐼−̂ − exp{𝑖𝑖(Ω𝑡𝑡1 + Ω𝜏𝜏𝑧𝑧 + 𝛾𝛾𝐺𝐺𝑎𝑎𝜏𝜏𝑧𝑧} 𝐼𝐼+̂� 

Then, after applying the second pulse field gradient, 𝐺𝐺𝑎𝑎 during 𝜏𝜏𝑧𝑧, followed by the 

free evolution during 𝑡𝑡2, the observable density operator has a form of 

− 1
2 �exp{−𝑖𝑖(Ω𝑡𝑡1 + Ω𝜏𝜏𝑧𝑧 + 𝛾𝛾𝐺𝐺𝑎𝑎𝜏𝜏𝑧𝑧)} 𝐼𝐼−̂�

Ω𝐼𝐼𝑧𝑧𝜏𝜏𝑧𝑧+𝛾𝛾𝐺𝐺𝑎𝑎𝜏𝜏𝑧𝑧��������������→ − 1
2

{exp(−𝑖𝑖Ω𝑡𝑡1) 𝐼𝐼−̂}

Ω𝐼𝐼𝑧𝑧𝑡𝑡2����→ − 1
2

{exp(−𝑖𝑖Ω𝑡𝑡1) exp(𝑖𝑖Ω𝑡𝑡2) 𝐼𝐼−̂} 
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𝑆𝑆obs(𝑡𝑡1, 𝑡𝑡2) = − 1
2

{exp(−𝑖𝑖Ω𝑡𝑡1) exp(𝑖𝑖Ω𝑡𝑡2)} Tr�𝐼𝐼+̂𝐼𝐼−̂������
1

 

= − 1
2

{exp(−𝑖𝑖Ω𝑡𝑡1) exp(𝑖𝑖Ω𝑡𝑡2)} 

The resulted operator which has an opposite sign of coherence order is the N-type or 

echo spectrum in the two-dimensional NMR acquisition scheme.  

Conversely, omitting of rotation or 2𝑘𝑘𝑘𝑘-rotation along the 𝑥𝑥-axis give the P-type 

spectrum. 
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2.6 Adiabatic fast passage 

A spin–inversion is important element in modern NMR experiment. For the spin-

inversion, in lieu of applying the radio-frequency pulse, an adiabatic inversion has 

been employed for spin-inversion of nuclei which has a wide-range of chemical shift 

such as 13C nucleus22,23,24,25,26,27. 

2.6.1 Adiabatic condition 

If one sweeping a continuous radio-frequency field 𝐵𝐵1  through resonance, from 

positive offset to negative offset, then the effective field 𝐵𝐵eff  moves along the arc 

in the 𝑥𝑥𝑥𝑥-plane from 𝑧𝑧-axis to – 𝑧𝑧-axis. 

Let us consider a magnetization aligned with 𝑧𝑧-axis. Since the spin only under-

goes 𝐵𝐵eff , at equilibrium the spin aligned with 𝐵𝐵eff . When an adiabatic condition is 

satisfied, the spin continuously aligned with 𝐵𝐵eff  in spites of the 𝐵𝐵1 field sweeping 

Adiabatic condition is defined as19 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 � ≪  𝜔𝜔eff = 𝛾𝛾𝐵𝐵eff  

where 𝐵𝐵eff  is an effective field, 𝜔𝜔eff  is the effective larmor frequency and 𝜃𝜃 is an 

inclination of 𝐵𝐵eff  with respect to the 𝑥𝑥-axis. If the sweep rate is fast enough to 

compare with 𝑇𝑇1 and 𝑇𝑇2 time of the spin (Adiabatic fast passage), then a complete 

spin inversion could be obtained.  

One can define the adiabatic condition as an adiabaticity factor 𝑄𝑄 

𝑄𝑄 =
𝜔𝜔eff

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 �
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2.6.2 Pros of the adiabatic fast passage 

The spin-inversion by the adiabatic fast passage has an advantage respect to RF-

pulse. It can achieve a wideband spin-inversion effectively with a limited 𝐵𝐵1 field 

strength. Thus, it is especially useful for nuclei with a wide-range of the chemical 

shift at modern high-field NMR spectrometer. Furthermore, since the adiabatic 

pulses can tolerate a wide-range of 𝐵𝐵1, it is quite insensitive to spatial inhomogene-

ity25,28,29,30,31,32,33,34,35,36 in 𝐵𝐵1 or 𝐵𝐵0. It is widely used in broadband decoupling pulse 

sequence. 

 

2.6.3 Cons of the adiabatic fast passage 

Although the adiabatic fast passage can invert wide-range of bandwidth and has 

higher tolerance to the field inhomogeneity than even compare to best composite 

pulses, it requires much more duration (milliseconds) to perform than simple rectan-

gular pulse or composite pulses. Thus, during the relatively long adiabatic passage, 

the coherence of spins which has very short 𝑇𝑇2 times, could be attenuated severely. 

In addition, the adiabatic passage inverts spins of different chemical shift values at 

different time, it gives rise to cumulative phase errors in case of plane rotations of 

magnetization (i.e. the spin-echo pulse sequence of transverse magnetization)26,27. 
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Chapter 3 

 

 

 

 

 

 

3 DECODE procedure for spectral deconvolution 
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3.1 Introduction 

NMR has been the widely used in studying molecular structures of organic 

compounds. Thus, various pulse sequences have been developed for structure 

elucidation of small molecules so far37,38,39,40,41,42,43,44. Among those, the spectrum 

which has a direct correlation information of 13C-13C connectivity may be the most 

useful and intuitive type of spectrum for structure analysis of organic compounds; 

Such as 13C-13C COSY45, 13C-13C TOCSY46 or INADEQUATE47. But, this is 

inherently not possible, in general, on account of the low natural abundance (0.01%) 

of NMR-active 13C nucleus. Therefore, it has been required a great deal of effort to 

elucidation of the structures of complex natural products (NP). Currently, proton-

detected experiments, such as 1H-13C HMBC48, are mostly employed in the 13C 

information as an indirect manner. However, some inefficiencies of the pulse 

sequence, heterogeneous 𝐽𝐽CH values49, and the poor resolution of indirect domain 

(𝐹𝐹1) in HMBC deterioriate a quality of the spectrum. Furthermore, less intuitive type 

of information comparing to correlation spectroscopy (COSY) or total-correlation 

spectroscopy (TOCSY)5 have been difficulties for interpretation of the HMBC 

spectrum. Alternatively, indirect covariance (iCov) operation on 1H-13C HSQC-

TOCSY50 has been proposed to yield a synthetic direct 13C-13C correlation spectrum. 

However, the inherent problems of proton TOCSY have limited its application to 

molecules with a single proton spin system without quaternary carbons. iCov 

operation on HMBC also has been proposed51, but the above-noted problems of 

HMBC are all inherited, and, therefore, its use is currently impractical for complex 

NP molecules. 

Another important issue in NMR analysis is related to the difficulty in obtaining 

a purely single compound. As NMR signals, in principle, reflect all spins in sample 

simultaneously, undesired or unexpected impurities also present resulted spectrum. 
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Thus, in case of spectra even more than two-dimension also suffer a signal 

overlap problem which interferes extracting true information of chemical species. 

Therefore, to obtain an unambiguous structural information with NMR spectra a 

physical purification process prior to analysis has been regarded as an inevitable step. 

Often, however, an isolation and purification process require not only laborious and 

time-consuming process but also gives rise to loss of chemical component itself. 

Several approaches, hence, to extract individual signals from mixed spectrum as is, 

have been considered1,2,3,4. Commonly, previous studies have exploited a proton 𝐽𝐽 -

coupling network of a mixed 1H-1H TOCSY or 1H-13C HSQC-TOCSY spectra to 

classify same group of spins, but have several limitations; it is prone to result in 

spurious data due to a signal overlap (1H-1H TOCSY) and only shows part of 

information on account of lack of quaternary carbon information even in 1H-13C 

HSQC-TOCSY spectrum. This fragmented spin information, especially, is a crucial 

problem in NPs which in general consist of several discrete proton spin systems. In 

case of the structure elucidation of NPs, furthermore, possessing a high-structure 

complexity, it requires information of chemical shift and correlation with high-

fidelity than an ordinary metabolite analysis. However, if one switches point of view 

characterizing a single chemical species from between proton spins correlation to 

proton and carbon spin correlation many problems can be solved. In most of organic 

compounds, the information inherent in type of HMBC spectrum can be translated 

into nearly complete 13C-13C correlation the cluster of 13C signals of single chemical 

species regardless of fractional proton spin systems.  

Hence, through choosing a proper deconvolution method one can expect an 

extraction of overall carbon spin information of individual species from the mixed 

spectrum. This is because of spectral features of HMBC correlations which provides 
1H-13C correlations including the quaternary carbon which is never appeared other 

type of spectrum (e.g., TOCSY, HSQC-TOCSY). In a carbon dimension, 
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furthermore, its wider spectral range than a proton can take advantage in terms of 

spectral resolution. Thereby, one can reasoned that new approaches might be built 

on the old HMBC principle. The remained problem is from the HMBC-type 

spectrum how can we construct the reliable 13C-13C correaltion close to true 13C-13C 

correlation map and extract carbon information of individual compound avoiding an 

interference between heterogeneous species. In this study, an approach involving 

non-uniform sampling (NUS)52,53,54,55,56,57,58,59,60,61 and novel signal processing along 

with iCov-eigendecomposition to address two important issues in NMR structure 

analysis will be discussed. 
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3.2 Theoretical and experimental backgrounds in DECODE 

3.2.1 Covariance NMR Spectroscopy 

One of the major constraints in the two-dimensional NMR spectroscopy is a multiple 

repetition of same pulse sequence, with a series of constant time increment 𝑡𝑡1. Be-

cause the total experiment time of the two-dimensional NMR is proportional to the 

repetition number, 𝑁𝑁1, which affects the spectral resolution of the indirect 𝑡𝑡1 do-

main signal, 𝑁𝑁1 is typically smaller than actual sampling points in the time domain 

𝑡𝑡2 and it gives rise to a poor-resolution of 𝑡𝑡1 domain signal than the 𝑡𝑡2 time-do-

main signal. In 2004, brüschweiler et al.62 reported an alternative two-dimensional 

NMR processing method called, Covariance NMR spectroscopy. Since, in the co-

variance NMR spectrum, the spectral resolution of the indirect domain, 𝐹𝐹1, is iden-

tical to the direct domain 𝐹𝐹2 regardless of 𝑁𝑁1. Thereby, the covariance method can 

obtain high-resolution two-dimensional spectrum without the number of sampling 

of points in the indirect 𝑡𝑡1 domain. 

3.2.2 Theory of the covariance NMR spectroscopy 

Consider a set of 1D spectra with varying the evolution time 𝑡𝑡1 between every free 

induction decays (FIDs). Then, a time-domain matrix 𝑠𝑠(𝑘𝑘1, 𝑡𝑡2), where, 𝑘𝑘1 = 1, … , 𝑁𝑁1 

is the number of the experiment with evolution time 𝑡𝑡1 = 𝑘𝑘1 ⋅ Δ𝑡𝑡1, can be constructed. 

After Fourier transformation along 𝑡𝑡2 yields a data matrix containing the 1D ab-

sorption spectra as below 

𝑆𝑆(𝑘𝑘1, 𝜔𝜔2) = 𝑅𝑅𝑅𝑅 � 𝑑𝑑𝑡𝑡2
𝑡𝑡2,𝑚𝑚𝑚𝑚𝑚𝑚

0
exp(−𝑖𝑖𝜔𝜔2𝑡𝑡2) 𝑠𝑠(𝑘𝑘1, 𝑡𝑡2)  

Since the FID is sampled digitally, the actual frequency domain, 𝑡𝑡2, spectrum is cal-

culated by discrete Fourier transformation 
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� 𝑠𝑠(𝑘𝑘1, 𝑗𝑗Δ𝑡𝑡2)
𝑁𝑁2−1

𝑗𝑗=0
exp(−𝑖𝑖

2𝜋𝜋𝜋𝜋𝑘𝑘2
𝑁𝑁2

) = 𝑆𝑆(𝑘𝑘1, 2𝜋𝜋𝑘𝑘2/𝑁𝑁2Δ𝑡𝑡2) 

= 𝑆𝑆(𝑘𝑘1, 𝜔𝜔2(𝑙𝑙)) 

… 𝜔𝜔 = 𝑘𝑘2 ⋅ 𝜔𝜔0, 𝜔𝜔0; 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2𝜋𝜋
𝑁𝑁   

where, 𝑁𝑁2  is the number of data points in the frequency domain, 𝑡𝑡2 , Δ𝑡𝑡2  is the 

sampling interval, 𝑘𝑘2 = −𝑁𝑁2/2, … , 𝑁𝑁2/2 and 𝑙𝑙 = 1, … , 𝑁𝑁2. 

Then, a mathematical covariance between two data arrays is given by 

𝐶𝐶𝑖𝑖𝑖𝑖 = 1
𝑁𝑁1 − 1 � {𝑆𝑆(𝑘𝑘1, 𝑖𝑖) − ⟨𝑆𝑆(𝑖𝑖)⟩}{𝑆𝑆(𝑘𝑘1, 𝑗𝑗) − ⟨𝑆𝑆(𝑗𝑗)⟩}

𝑁𝑁1

𝑘𝑘1=1

where 𝑆𝑆(𝑘𝑘1, 𝑖𝑖) = 𝑆𝑆(𝑘𝑘1, 𝜏𝜏𝑚𝑚, 𝜔𝜔2(𝑙𝑙)) and the average spectrum ⟨𝑆𝑆(𝑖𝑖)⟩ is given by 

⟨𝑆𝑆(𝑖𝑖)⟩ = 1
𝑁𝑁1 � 𝑆𝑆(𝑘𝑘, 𝑖𝑖)

𝑁𝑁1

𝑘𝑘=1

3.2.3 Relationship between 2D NMR and Covariance NMR 

In practical case such as 𝑆𝑆(𝑘𝑘1, 𝜔𝜔2(𝑙𝑙)) is zero/near zero or 𝜔𝜔2(𝑙𝑙) is far from the on-

resonance frequency (rapidly oscillating function), ⟨𝑆𝑆(𝑘𝑘1, 𝜔𝜔2(𝑙𝑙)) ⟩ ≅ 0. Then, the co-

variance calculation can be expressed as 

𝐶𝐶𝑖𝑖𝑖𝑖 = � ⟨𝑆𝑆(𝑘𝑘1, 𝑖𝑖)𝑆𝑆(𝑘𝑘1, 𝑗𝑗)⟩
𝑁𝑁1

𝑘𝑘1=1
 

and 𝑆𝑆(𝑘𝑘1, 𝑖𝑖) is real valued function. Thus, from the well-known Parserval’s theorem 

as bellow 

� 𝑓𝑓(𝑡𝑡)
∞

−∞
𝑔𝑔∗(𝑡𝑡)𝑑𝑑𝑑𝑑 = 1

2𝜋𝜋 � 𝐹𝐹 (𝜔𝜔)
∞

−∞
𝐺𝐺∗(𝜔𝜔)𝑑𝑑𝑑𝑑 

where 𝐹𝐹 (𝜔𝜔) and 𝐺𝐺∗(𝜔𝜔) are the complex Fourier transforms of 𝑓𝑓(𝑡𝑡) and 𝑔𝑔∗(𝑡𝑡). 
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A following relationship is deduced 

𝐶𝐶𝑖𝑖𝑖𝑖 = 𝐶𝐶𝜔𝜔𝑖𝑖𝜔𝜔𝑗𝑗
∝ � 𝑆𝑆(𝑘𝑘1, 𝜔𝜔𝑖𝑖)𝑆𝑆�𝑘𝑘1, 𝜔𝜔𝑗𝑗�  

𝑁𝑁1

𝑘𝑘1=1
 

Thus, the inner product of two columns of two-dimensional NMR data matrix, 

𝑆𝑆(𝑘𝑘1, 𝜔𝜔𝑖𝑖) , is proportional to the covariance of time-domain signals of 𝑆𝑆(𝑘𝑘1, 𝑖𝑖) . 

Thereby, the covariance matrix 𝐂𝐂 can be expressed as a matrix operation of the sig-

nal data matrix 𝑆𝑆(𝑘𝑘1, 𝜔𝜔𝑖𝑖) and is given by 

𝐂𝐂 ∝  𝐒𝐒T𝐒𝐒 

From the 𝑁𝑁1 × 𝑁𝑁1 covariance matrix 𝐂𝐂, a symmetric two-dimensional like spec-

trum can be acquired from following operation63 

𝐒𝐒𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐂𝐂1/2 

And the square root operation of covariance matrix 𝐒𝐒𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐂𝐂1/2, can be obtained by 

a following matrix diagonalization operation (=eigen-decomposition) 

𝐂𝐂 = 𝐔𝐔𝐔𝐔𝐔𝐔−1 

Thus, the nth power of 𝐂𝐂 is calculated as,  

𝐂𝐂𝑛𝑛 = �𝐔𝐔𝐔𝐔𝐔𝐔−1�
𝑛𝑛 

= (𝐔𝐔𝐔𝐔𝐔𝐔−1) ⋯ (𝐔𝐔𝐔𝐔𝐔𝐔−1)�����������������������
𝑛𝑛

 

Since, 𝐔𝐔−1𝐔𝐔 = 𝟏𝟏, the square-root of 𝐂𝐂 is 

𝐂𝐂1/2 = 𝐔𝐔𝚲𝚲1/2𝐔𝐔−1 

where 𝐔𝐔 is the eigenvector matrix of 𝐂𝐂 and 𝚲𝚲 is the diagonal eigenvalue matrix 

of 𝐂𝐂. 
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3.2.4 Speeding up the eigen-decomposition by SVD 

While the computation of covariance operation requires O(𝑁𝑁1𝑁𝑁2
2/2) operations, for 

the square-root operation during the matrix diagonalization process it requires 

O(𝑁𝑁2
3)  operations. Therefore, the number of sampling point, 𝑁𝑁2  is linearly in-

creased, whereas the required operation will be increased exponentially. Trbovic et 

al.64 reported a more time-efficient computational operation method based on singu-

lar value decomposition method. 

For an any matrix 𝐒𝐒T, the singular value decomposition is given by 

𝐒𝐒T = 𝐔𝐔𝐔𝐔𝐕𝐕T 

where both of 𝐔𝐔 and V are orthogonal matrix and 𝚺𝚺 is a diagonal matrix with non-

negative valued elements. 

The covariance matrix 𝐂𝐂 of the matrix 𝐒𝐒T is defined as 

𝐂𝐂 = 𝐒𝐒T𝐒𝐒 = 𝐔𝐔𝐔𝐔𝐕𝐕T�𝐔𝐔𝐔𝐔𝐕𝐕T�
T 

= 𝐔𝐔𝐔𝐔 𝐕𝐕T𝐕𝐕�
𝟏𝟏

𝚺𝚺𝐔𝐔T 

= 𝐔𝐔𝚺𝚺2𝐔𝐔T 

Consequently, the symmetric matrix S𝑠𝑠𝑠𝑠𝑠𝑠 can be express as 

𝐒𝐒𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐂𝐂1/2 = 𝐔𝐔𝐔𝐔𝐔𝐔T 

The principal advantage of SVD over the eigendecomposition method is that it only 

requires O(𝑁𝑁1
2𝑁𝑁2) operations. In practice, the number of 𝑁𝑁1 (sampling points of 

the 𝑡𝑡1-time domain) is typically smaller than 𝑁𝑁2 (sampling points of the 𝑡𝑡2-time 

domain). Thus, for most of the square-roots operation can benefit from time-efficient 

of SVD operation.  
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3.2.5 Indirect Covariance NMR spectroscopy 

According to Parserval’s theorem in 2.2.3, the covariance calculation also applica-

ble for between the frequency domain signal, 𝑆𝑆(𝜔𝜔), rather than the time-domain sig-

nal, 𝑠𝑠(𝑡𝑡). Moreover, if one interchange order of the matrix calculation (𝐅𝐅T𝐅𝐅 → 𝐅𝐅𝐅𝐅T), 

it results in a ‘indirect’ covariance spectrum in which both axes consist of the indirect 

domain (ΩC) of spectrum 𝐅𝐅. Thus, for example, the covariance calculation of a het-

ero-nuclear correlation spectrum such as 1H-13C HSQC-TOCSY or 1H-13C HMBC 

spectrum also can be performed. Because the 𝐽𝐽 -coupling correlation between low 

natural abundance nuclei (13C, 15N etc.) is hard to acquire, it has an enormous ad-

vantage in aspect to sensitivity. Zhang et al.50 reported this alternative covariance 

NMR paper where they showed indirect-covariance of the several 1H-13C HSQC-

TOCSY spectra of oligo-peptides can yield thereof 13C-13C TOCSY spectra. Since 

the spectral resolution of the indirect covariance of 1H-13C correlation spectrum is 

determined by the spectral resolution of the 𝐹𝐹1{13C}domain, it is important to set-

up the number of 𝑡𝑡1 increments proper to desired spectral resolution of the indirect 

covariance spectrum. 

 

Figure 3.1 Comparison of 2D NMR and its indirect covariance spectrum 

(A) 1H-13C HSQC-TOCSY spectrum of cyclosporine and (B) its indirect covariance spectrum 
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3.3 Spectral deconvolution of mixture using Covariance NMR 

3.3.1 Relationship between PCA and Covariance NMR  

Principal Component Analysis (PCA)65 is the multivariate analysis technique where 

it can give an information best explaining the    

PCA of certain data matrix 𝐗𝐗, can be done by following two-step operations. 

1. Calculating the covariance matrix, 𝐂𝐂, of the data matrix 𝐗𝐗 

2. Eigen-decomposition of the matrix 𝐂𝐂 = 𝐒𝐒𝐒𝐒𝐒𝐒−𝟏𝟏 

where, 𝐒𝐒 is the eigenvector matrix and 𝚲𝚲 is the eigenvalue matrix of 𝐂𝐂 

respectively which satisfy 𝐂𝐂𝐒𝐒𝑛𝑛 = λ𝑛𝑛 and the vectors thus obtained are then 

ordered such that λ1 ≥ λ2 … ≥ 0. 

Back to the covariance NMR, the indirect/direct-covariance calculation of cer-

tain type of spin-spin correlation spectra (i.e. 1H-1H TOCSY, 1H-13C HSQC-TOCSY) 

is can be regarded as an intermediate form of PCA calculation. Therefore, the eigen-

decomposition of covariance NMR spectrum can give an eigenvector matrix which 

contains eigenvector, 𝑆𝑆1, which best explains the its original form of one-dimen-

sional NMR spectrum. 

3.3.2 NMR mixture analysis using PCA 

In case of a chemical species mixture, the eigenvectors of covariance NMR matrix 

which correspond to dominant eigenvalues can be depicted as their individual one-

dimensional NMR spectra. Considering mixture samples with n-chemical species, 

one can select n-eigenvectors in order of their corresponding eigenvalues. It is 



DECODE procedure for spectral deconvolution 

 34  

demonstrated that using model mixture containing some amino acids every individ-

ual 1H NMR spectra were extracted from the covariance matrix of 1H-1H TOCSY 

spectra with varying mixing times4. 
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3.4 High-quality HMBC spectra using NUS-mHMBC 

Though the 1H-13C HMBC spectrum provides wide-range of connectivity between 

proton and carbon spins including quaternary carbons, however, it remains several 

limitations which hampers constructing the 13C-13C correlation spectrum by indirect 

covariance operation. The following description discusses the problems of HMBC 

measurement sequences that impede the creation of desirable 13C-13C correlation 

spectra by the indirect covariance operation, and to address the design of modified 

HMBC pulse sequence and their application to actual natural compound. 

3.4.1 Resolution enhancement of the indirect domain 

The line-shape of indirect covariance spectrum is similar to general two-dimensional 

Fourier Transform spectrum and can be expressed as 

𝐶𝐶𝑚𝑚,Ω ∝ � 𝑆𝑆(𝑚𝑚, 𝑘𝑘)
𝑁𝑁1

𝑘𝑘=1
⋅ 𝑆𝑆(Ω, 𝑘𝑘) 

Assume 𝑁𝑁1 = 1, then 𝐶𝐶𝑚𝑚,Ω = 𝑆𝑆(𝑚𝑚) ⋅ 𝑆𝑆T(Ω) where 𝑆𝑆(𝑚𝑚) = 𝛿𝛿 > 0 and 𝑆𝑆(Ω) ≥ 0 

Therefore, the actual line shape of 𝐶𝐶Ω (;Ωth row vector of the matrix C) is propor-

tional to distribution of non-zero entities (≈ line width) of 𝑆𝑆(Ω).  

𝐶𝐶Ω = 𝛿𝛿 ⋅ 𝑆𝑆(Ω) 

Thus, the actual line-shape along the 𝐹𝐹2  domain of covariance signal 𝐶𝐶𝑚𝑚,𝑛𝑛 

(𝐶𝐶𝑚𝑚;mth row vector of the matrix C) follows line-shape of cross peak at 𝑆𝑆(𝑘𝑘, 𝑛𝑛) along 

the 𝐹𝐹1 domain vice versa. Likewise, both line-shape of the indirect covariance sig-

nal is related to the line-shape of the indirect domain of the template spectrum. In 

other words, the symmetric indirect covariance operation using the 1H-13C HMBC 

spectrum yields 13C-13C correlation spectrum where both of frequency domain fea-

tures were originated from the indirect domain (𝐹𝐹1) of template spectrum. In general, 
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however, the indirect domain has a poor spectral resolution due to the limited number 

of 𝑡𝑡1  increments. The truncation of FID due to limited 𝑡𝑡1  sampling points gives 

undesired ripples around signal the peak after Fourier transformation, thus a convo-

lution of the truncated signal with the several types of window function performed 

which eventually induce severe line broadening. To alleviate truncate effect and re-

lated line-broadening, the acquisition time, 𝑡𝑡1,𝑚𝑚𝑚𝑚𝑚𝑚,  should be increased. But, the 

sampling points in the indirect domain are typically limited small than thereof 𝑡𝑡2 

time domain. To improve the spectral resolution of the indirect domain, therefore, 

NUS acquisition was employed instead of the uniform sampling. Yet, reduced total 

number of 𝑡𝑡1 sampling points also decrease the total volume of the signal envelope, 

for many cases in dealt with small molecule, it provides a reasonable sensitivity in 

resulted NUS spectrum. 

3.4.2 Modification of the HMBC pulse sequence 

Pulse sequence for the modified HMBC (mHMBC) is shown in Figure 2.2. In case 

of the usual HMBC pulse sequence, it gives a phase-twisted line shape due an ab-

sence of reverse INEPT66 and 13C decoupling pulse sequence.  

Assume that the density operator at a beginning of an acquisition in the conven-

tional HMBC pulse sequence has a form of 

𝜌𝜌(̂𝑡𝑡1, 0) = � 𝐴𝐴𝑘𝑘𝐼𝐼−̂𝑆𝑆𝑧̂𝑧 cos(Ω𝑘𝑘,𝑠𝑠𝑡𝑡1)
𝑘𝑘

 

where a Hamiltonian 𝐻𝐻�0 = Σk2𝜋𝜋𝐽𝐽IS𝑘𝑘
𝐼𝐼𝑧̂𝑧𝑆𝑆𝑘̂𝑘,𝑧𝑧  and 𝐽𝐽ISk

  is a 𝐽𝐽  -coupling constant be-

tween proton-spin (𝑰𝑰) and carbon-spins (𝐒𝐒𝑘𝑘) and 𝐴𝐴𝑘𝑘 is a polarization transfer effi-

ciency from 𝑰𝑰  to 𝐒𝐒𝑘𝑘 according to sin(𝜋𝜋𝐽𝐽𝐼𝐼𝑆𝑆𝑘𝑘
𝜏𝜏). 

During the acquisition, 𝑡𝑡2, the evolution of density operator is given by  
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𝜌𝜌(̂𝑡𝑡1, 𝑡𝑡2) = � 𝐴𝐴𝑘𝑘𝐼𝐼−̂𝑆𝑆𝑧̂𝑧 cos(Ω𝑘𝑘,𝑠𝑠𝑡𝑡1)
𝑘𝑘

cos�𝜋𝜋𝐽𝐽ISk
𝑡𝑡2� + 𝑖𝑖 � 𝐴𝐴𝑘𝑘𝐼𝐼−̂ cos(Ω𝑘𝑘,𝑠𝑠𝑡𝑡1)

𝑘𝑘
sin�𝜋𝜋𝐽𝐽ISk

𝑡𝑡2� 

And the observable magnetization is computed by 

𝑀𝑀+(𝑡𝑡1, 𝑡𝑡2) ∝ Tr(𝐼𝐼+𝜌𝜌(̂𝑡𝑡1, 𝑡𝑡2)) 

Since the trace of 𝐼𝐼−̂𝑆𝑆𝑧̂𝑧 = 0 

𝑀𝑀+(𝑡𝑡1, 𝑡𝑡2) ∝ Tr�𝐼𝐼+𝜌𝜌(̂𝑡𝑡1, 𝑡𝑡2)� 

∝ 𝑖𝑖 � 𝐴𝐴𝑘𝑘 cos(Ω𝑘𝑘,𝑠𝑠𝑡𝑡1)
𝑘𝑘

sin�𝜋𝜋𝐽𝐽IS𝑘𝑘𝑡𝑡2� 

Thus, each of HMBC peaks exhibits the anti-phase 𝐽𝐽CH
𝑛𝑛  modulation along the 

𝐹𝐹2 domain according to its 1H-13C correlations. It turns out that additional 𝐽𝐽CH
𝑛𝑛  

splitting and different 𝐽𝐽 -splitting patterns of HMBC peaks stem from identical pro-

ton are undesirable for the latter spectral deconvolution processing procedure. 

Thereby, decoupled-HMBC67 type pulse sequence was chosen to template pulse se-

quence. As stated above, the line width of the indirect covariance spectrum depends 

on the line width of the indirect domain of template spectrum. Since the magnitude 

processing along the indirect domain will broaden the line width, absorptive Lo-

rentzian line shape was retained by employing the echo-antiecho68,69 type acquisition 

mode. On the other hands, in general, to remove undesired one-bond correlation, 

𝐽𝐽CH
1 , peak from the HMBC spectrum the Low-Pass J filter (LPJF)70 has been in-

cluded in the pulse sequence of HMBC. Conversely, LPJF was omitted in modified 

HMBC pulse sequence to preserve one-bond correlation peak. The one-bond C-H 

correlation peak was found to be useful for constructing a 13C-13C correlation through 

covariance calculations while its incomplete suppression by LPJF, in the absence of 
13C-decoupling sequence, can result in a spurious correlation during the indirect co-

variance operation. 



DECODE procedure for spectral deconvolution 

 38  

 

Figure 3.2 Pulse sequence for mHMBC 

For rotenone, ∆ was 62.5 ms (nJCH = 8 Hz). For rotenone and brucine mixture, (A) with ∆ of 62.5 ms (nJCH = 8 Hz) and ∆ of 125 ms (nJCH = 4 
Hz) were used. The semi-ellipsoid boxes represent 180° shaped pulses for inversion or refocusing of 13C magnetization. Narrow and wide 
bars represent 90° and 180° hard pulses, respectively. For the phase-sensitive acquisition in the indirect domain, an echo-antiecho detection 
mode was employed. Phases of Ф1 and Фrec were shifted by 180° at every even-numbered increment. Blank semi-ellipse boxes in the gradi-
ent channel represent gradient pulses for odd-numbered increments and gray semi-ellipse boxes for even-numbered increments. All pulses 
are of phase, x unless otherwise indicated. The phase cycling is as follows. Ф1 = x, -x; Ф2 = -x, -x, x, x; Фrec = -x, x, x, -x. Gradient ratios: 
G1 : G2 = 5 : -3 (odd-numbered) and -3 : 5 (even-numbered).
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3.5 Experimental section 

3.5.1 NMR measurements 

All NMR spectra were measured at 298 K with 850 or 800 MHz Bruker Avance III 

HD spectrometers equipped with 5 mm CPTCI CryoProbes (Bruker BioSpin, 

Germany). For the rotenone sample, 2 mg of rotenone (Sigma-Aldrich, MO, USA) 

was dissolved in 600 μL of chloroform-d. For 2D NMR experiments, the pulse 

sequence in Figure-2.2 was used. For apodization, cosine-squared function (𝐹𝐹1) and 

cosine function (𝐹𝐹2) were employed and zero-filling was applied to both dimensions. 

All spectra were processed in phased mode along the 𝐹𝐹1 domain, while 𝐹𝐹2 domain 

was processed in either phased or magnitude mode as necessary. For the HMBC of 

rotenone with NUS, the actual time-domain points were 2048×72 (t2×t1) complex 

points with the final 4096×4096 (t2×t1) complex points after NUS reconstruction and 

zero-filling. The spectral width was 9615×46280 Hz (F2×F1) and the frequency 

offsets were 4001 Hz and 22133 Hz for 1H and 13C nuclei respectively. For mHMBC 

( 𝐽𝐽CH
𝑛𝑛  = 8 Hz; delay Δ : 62.5 ms), the number of scans was 32 and the total 

experiment time was about 1 hr 46 min. For US-mHMBC, actual time-domain points 

were 2048×72 (𝑡𝑡2 ×𝑡𝑡1 ) complex points with the final 4096×4096 (𝑡𝑡2 ×𝑡𝑡1 ) complex 

points after zero-filling and linear prediction. For 1, n-ADEQUATE71, ‘adeq1netgp’ 

in the Bruker pulse library was used with standard parameters. The inter-scan delay 

was 1.0 s, the number of scans was 32, and the actual time-domain points were 

1024×72 (𝑡𝑡2×𝑡𝑡1) complex points. The spectral width was 11904×51314 Hz and the 

total experiment time of the 1, n-ADEQUATE was about 1 hr 40 min. 

3.5.2 NUS sampling schedule.  

The NUS sampling schedule was generated by Schedule Generator Version 3.0 

(available at http://gwagner.med.harvard.edu/in tranet/hmsIST/gensched _new.html) 
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with 7% sampling density. A total of 72 NUS sampling points was used to give final 

1024 complex points in the indirect dimension. The data were processed with 

nmrPipe72 on CentOS 6.5 with the NUS data reconstruction performed by hmsIST73 

script provided by the above site. 
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3.6 Results and discussion 

3.6.1 High-resolution mHMBC specrtrum with NUS acquisition 

Figure 2.3 compares the effect of NUS acquisition and pulse modification. Each 

spectrum was obtained with rotenone (Figure 2.3A and B), a complex natural product 

consisting of 23 carbons with 10 quaternary carbons74. For NUS acquisition the sam-

pling schedule was obtained using the hmsIST algorithm73 and featured a 7% sam-

pling rate with 72 𝑡𝑡1 complex points corresponding to 1024 𝑡𝑡1 complex points in 

US acquisition scheme. For the uniform sampling, 𝑡𝑡1 complex points were identical 

to NUS acquisition (72 complex points. Visually, the peaks were not resolved in the 

US spectrum were baseline-resolved in the NUS spectrum. The removal of splitting 

sideband by mHMBC pulse sequence is also shown in Figure 2.3C and D, which 

should be helpful in suppressing artifacts during thereof downstream covariance op-

eration. 



DECODE procedure for spectral deconvolution 

 42  

 

Figure 3.3 The effect of mHMBC and NUS on rotenone. 

(A and B) Comparison of mHMBC spectra using NUS sampling (A) and conventional US-sampling 
(B). FWHHs of the carbon signals were obtained from each trace at 188.02 ppm by a positive projec-
tion along F1 (Dashed rectangles). (C and D) Comparison of undesired 1JCH splitting on cHMBC (C) 
and mHMBC (D) spectra. (E) Structure of rotenone. 
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3.6.2 iCov on NUS-mHMBC for 13C-13C correlation spectrum 

The high-resolution HMBC spectrum thus obtained followed by indirect covariance 

operation to acquire direct 13C-13C connectivity information. As stated, the resolution 

of the original spectrum is crucial for an indirect covariance (iCov) operation, as an 

overlap can give rise to a spurious correlation. As shown in Figure 2.4A and B, the 

iCov on the NUS spectrum clearly gave much high-resolution iCov spectrum and 

more resolved peaks than that of US spectrum. Three successive carbon off-diagonal 

peaks around the diagonal region just spaced by 0.36 and 0.39 ppm (ca. 78 and 84 

Hz), were clearly resolved in the iCov spectrum using NUS spectrum. However, they 

were shown as converged single peak in the iCov spectrum using US spectrum. The 

superiority of NUS approach in peak assignment for the structure elucidation was 

proved in Figure 2.5 as an example with rotenone. Two carbon signals showed very 

small chemical shift difference (Δ𝛿𝛿c=0.09 ppm, 20 Hz), but correlated thereof signals 

were clearly identifiable as an individual peak, thereby removing ambiguity in NMR 

assignment of complex natural product, rotenone. On the other hands, there are dif-

ferent types of NMR experiment which can give direct 13C-13C correlation infor-

mation such as 1,n-ADEQUATE71. It should be note that such experiment did not 

provide any signals from the same sample within the same experimental time (Figure 

2.6). In summary, NUS-mHMBC approach should be useful in signal assignment 

between adjacent peaks frequently encountered in natural product structure analysis. 
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Figure 3.4 Comparison of iCov spectra of rotenone 

(A) NUS-mHMBC and (B) US-mHMBC. 

 

 

Figure 3.5 Application of iCov spectrum for the structural assignment 

(A) Enlarged regions of NUS-mHMBC-iCov spectrum showing cross-peaks of C-10 and C-12b of 
rotenone. (B) The position of each carbon on rotenone correlated with C-10 and C-12b identified in 
(A). 
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Figure 3.6 An 1, n-ADEQUATE spectrum of rotenone 

(2 mg in 600 uL of CDCl3) 
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3.7 Mixture analysis with iCov-NUS-mHMBC spectrum 

3.7.1 Limitations of iCov for the spectral deconvolution 

Then, the obtained high-quality 13C-13C correlation spectrum was applied to other 

issue in NMR studies, which is mixture analysis. A model mixture of 1:1 ratio of 

rotenone and brucine75 totaling 46 carbons (including 17 quaternary carbons) was 

prepared. First of all, to verify whether the constructed 13C-13C spectrum can provide 

all of the peaks of the actual 1D carbon spectrum of mixture, from the covariance 

spectrum its one-dimensional projection spectrum was obtained. Regretfully, the 

projection spectrum did not provide all of the peak of the actual 1D carbon spectrum 

of mixture. This means that the NUS-mHMBC-iCov approach, although useful in 

construction of reliable 13C-13C correlation map of single compound, is yet not ade-

quate enough to give the complete molecule-wide connectivity information. Moreo-

ver, spurious intermolecular connectivity between rotenone and brucine also was ex-

ist. (Figure 2.7). Thereby, in following descriptions, consideration for the spectral 

deconvolution using iCov-NUS-mHMBC spectrum in aspect of NMR data acquisi-

tion and processing methods will be discussed. 
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Figure 3.7 iCov-NUS-mHMBC spectrum of mixture 

(A) 13C spectrum of mixture of rotenone and brucine (Black, upper) and the trace of the iCov spec-
trum (Blue, lower). (B) Expansion of the 56 ppm region of (A). The missing signals are indicated by 
dashed lines. (C) False positive intermolecular correlations on the iCov spectrum (arrows). 

 

 

3.7.2 The heterogeneity of HMBC correlation information. 

With neglecting the relaxation term and 𝐽𝐽  -coupling interaction between proton 

spins, the 13C decoupled-HMBC signal is expressed as 
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𝑀𝑀+(𝑡𝑡1, 𝑡𝑡2) ∝ Tr�𝐼𝐼+𝜌𝜌(̂𝑡𝑡2)� 

∝ 𝑖𝑖 � � 𝐴𝐴𝑘𝑘𝑘𝑘 cos�Ω𝑘𝑘,𝑠𝑠𝑡𝑡1� 𝐵𝐵𝑙𝑙 exp(𝑖𝑖Ω𝑙𝑙𝑡𝑡2)
𝑁𝑁2

𝑙𝑙=1

𝑁𝑁1

𝑘𝑘=1
 

where 𝐴𝐴𝑘𝑘𝑘𝑘 is the polarization transfer efficiency between proton spin 𝐼𝐼𝑙𝑙 and carbon 

spin 𝑆𝑆𝑘𝑘 and 𝐵𝐵𝑙𝑙 is amplitude of spin 𝐼𝐼𝑙𝑙. 

Thus, the resulted signal matrix 𝐒𝐒 is given by 

𝑆𝑆𝑘𝑘𝑘𝑘 ∝ A𝑘𝑘𝑘𝑘𝐷𝐷𝑙𝑙𝑙𝑙 

Hence, the off-diagonal signal (cross peak) in the indirect covariance 𝐶𝐶𝑚𝑚,𝑛𝑛 (𝑚𝑚 ≠ 𝑛𝑛) 

can be expressed in 

𝐶𝐶𝑚𝑚,𝑛𝑛 ∝ � 𝑆𝑆𝑚𝑚𝑚𝑚

𝑁𝑁2

𝑙𝑙=1
𝑆𝑆𝑛𝑛𝑛𝑛  

∝ � 𝐴𝐴𝑚𝑚𝑚𝑚𝐷𝐷𝑙𝑙𝑙𝑙𝐴𝐴𝑛𝑛𝑛𝑛𝐷𝐷𝑙𝑙𝑙𝑙

𝑁𝑁2

𝑙𝑙=1
= � 𝐴𝐴𝑚𝑚𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛𝐷𝐷𝑙𝑙𝑙𝑙

2
𝑁𝑁2

𝑙𝑙=1
  

where 𝑚𝑚 ≠ 𝑛𝑛 and D is a 𝑙𝑙 × 𝑙𝑙 diagonal matrix. 

Therefore, to get an off-diagonal signal in the indirect covariance spectrum it 

requires at least two non-zero 𝐽𝐽𝑛𝑛
CH correlation signals in the HMBC spectrum. As 

isolated protons (such as methoxy group) correlate with very few carbons on HMBC, 

often with just one, the peaks for these 1H-13C pair are likely to be very weak, if ever 

present, one the resulting NUS-mHMBC-iCov spectrum. In other words, the polari-

zation transfer efficiency in an important factor in mHMBC-iCov spectrum. In the 

mHMBC pulse sequence efficient coefficient 𝐴𝐴𝑘𝑘𝑘𝑘 is given by 

𝐴𝐴𝑘𝑘𝑘𝑘 = sin(𝜋𝜋𝐽𝐽𝑙𝑙𝑙𝑙𝜏𝜏)2 

where 𝐽𝐽𝑙𝑙𝑙𝑙 is 𝐽𝐽 -couling constant between proton spin (𝐼𝐼𝑙𝑙) and carbon spin (𝑆𝑆𝑙𝑙) and 

𝜏𝜏 is the delay in INEPT76 and reverse INEPT sequence. 
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If the 1H-13C correlation pair shows 𝐽𝐽𝑙𝑙𝑙𝑙 value close to the integer multiple of the 

1/𝜏𝜏, (0, 1, 2 … ; which is also frequently appeared in one-bond 13C-1H correlation 

pair) then the transfer efficiency 𝐴𝐴𝑘𝑘𝑘𝑘 falls into null making the peak invisible. 

3.7.3 Signal overlap on the F2 projection domain 

Any partial signal overlaps between different protons, not the identical one, give rise 

to spurious intra/intermolecular correlations on the indirect covariance spectrum, re-

sulting an entanglement of spectrum of individual chemical species. 

Suppose that 𝐒𝐒𝒌𝒌 which is the HMBC correlation group originated from 1H spin 

on the certain single carbon nucleus. Then HMBC spectrum can be expressed as sum 

of the HMBC correlation group 𝐒𝐒𝚺𝚺.  

𝐒𝐒𝚺𝚺 = � 𝐒𝐒𝒌𝒌
𝑁𝑁

𝑘𝑘=1
 

Since the covariance of two NMR signal array 𝑆𝑆𝑚𝑚𝑚𝑚 and 𝑆𝑆𝑛𝑛𝑛𝑛 is defined as 

𝐶𝐶𝑚𝑚,𝑛𝑛 ∝ � 𝑆𝑆𝑚𝑚𝑚𝑚

𝑁𝑁2

𝑙𝑙=1
𝑆𝑆𝑛𝑛𝑛𝑛 

Considering the sum of two different HMBC correlation group  

𝐶𝐶S1+S2
𝑚𝑚,𝑛𝑛 ∝ ��𝑆𝑆𝑚𝑚𝑚𝑚

1 𝑆𝑆𝑛𝑛𝑛𝑛
1 + 𝑆𝑆𝑚𝑚𝑚𝑚

2 𝑆𝑆𝑛𝑛𝑛𝑛
2 + �𝑆𝑆𝑚𝑚𝑚𝑚

1 𝑆𝑆𝑛𝑛𝑛𝑛
2 + 𝑆𝑆𝑚𝑚𝑚𝑚

2 𝑆𝑆𝑛𝑛𝑛𝑛
1 ��

𝑁𝑁2

𝑙𝑙=1
 

If 𝑆𝑆𝑚𝑚𝑚𝑚
1 𝑆𝑆𝑛𝑛𝑛𝑛

2 ⋅ 𝑆𝑆𝑚𝑚𝑚𝑚
2 𝑆𝑆𝑛𝑛𝑛𝑛

1 ≠ 0, the false covariance correlation due to the partial proton sig-

nal overlap is generated as 

� 𝐴𝐴𝑚𝑚𝑚𝑚
1 𝐴𝐴𝑛𝑛𝑛𝑛

2 𝐷𝐷𝑙𝑙𝑙𝑙
1 𝐷𝐷𝑙𝑙𝑙𝑙

2 + 𝐴𝐴𝑚𝑚𝑚𝑚
2 𝐴𝐴𝑛𝑛𝑛𝑛

1 𝐷𝐷𝑙𝑙𝑙𝑙
1 𝐷𝐷𝑙𝑙𝑙𝑙

2
𝑁𝑁2

𝑙𝑙=1
 

General form of the covariance signal is given by 
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𝐶𝐶Σ
𝑚𝑚,𝑛𝑛 ∝ � � � 𝑆𝑆𝑚𝑚𝑚𝑚

𝑖𝑖 𝑆𝑆𝑛𝑛𝑛𝑛
𝑗𝑗

𝑁𝑁2

𝑙𝑙=1

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1
  

∝ � � � 𝐴𝐴𝑚𝑚𝑚𝑚
𝑖𝑖 𝐴𝐴𝑛𝑛𝑛𝑛

𝑗𝑗 𝐷𝐷𝑚𝑚𝑚𝑚
𝑖𝑖 𝐷𝐷𝑛𝑛𝑛𝑛

𝑗𝑗
𝑁𝑁2

𝑙𝑙=1

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1
 

where �
𝑖𝑖 = 𝑗𝑗 True correlation
𝑖𝑖 ≠ 𝑗𝑗 False correlation

 

3.7.4 Disproportion of the signal intensity 

In the theory of covariance NMR (2.2.2), it is assume that in case such as 𝑆𝑆(𝑘𝑘1, 𝜔𝜔2(𝑙𝑙)) 

is zero/near zero or 𝜔𝜔2(𝑙𝑙) is far from the on-resonance frequency (rapidly oscillating 

function), ⟨𝑆𝑆(𝑘𝑘1, 𝜔𝜔2(𝑙𝑙))⟩ ≅ 0. The indirect covariance operation, however, dealt with 

indirect domain signal whose mean value ⟨𝑆𝑆(𝑡𝑡1, 𝑘𝑘2)⟩ is not generally zero. This is 

because of relatively small sampling points and sometimes its small off-resonance 

frequency77. Thus, the normalization of signal can pose a different non-zero mean 

value, 𝜇𝜇, to every indirect domain signal, 𝑆𝑆(𝑡𝑡1, 𝑘𝑘2). 

The covariance between two variables 𝑋𝑋 and 𝑌𝑌  is defined as 

Cov(𝑋𝑋, 𝑌𝑌 ) = 1
𝑀𝑀 ��𝑋𝑋𝑖𝑖 − 𝑎𝑎�̅ ⋅ �𝑌𝑌𝑖𝑖 − 𝑏𝑏̅�

𝑀𝑀

𝑖𝑖=1
 

= 1
𝑀𝑀 �(𝑋𝑋𝑖𝑖𝑌𝑌𝑖𝑖 − 𝑏𝑏̅𝑋𝑋𝑖𝑖 − 𝑎𝑎𝑌̅𝑌𝑖𝑖 + 𝑎𝑎𝑎𝑎

𝑀𝑀

𝑖𝑖=1
) 

= 1
𝑀𝑀 �� 𝑋𝑋𝑖𝑖𝑌𝑌𝑖𝑖

𝑀𝑀

𝑖𝑖=1
− 𝑏𝑏̅

� 𝑋𝑋𝑖𝑖

𝑀𝑀

𝑖𝑖=1
− 𝑎𝑎̅� 𝑌𝑌𝑖𝑖

𝑀𝑀

𝑖𝑖=1
+ � 𝑎𝑎𝑎𝑎

𝑀𝑀

𝑖𝑖=1 �
 

= 1
𝑀𝑀 � 𝑋𝑋𝑖𝑖𝑌𝑌𝑖𝑖

M

𝑖𝑖=1
− 𝑎𝑎𝑎𝑎 

where, 𝑎𝑎 ̅ and  𝑏𝑏 ̅ are the mean value of 𝑋𝑋 and 𝑌𝑌  respectively. 
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Thus, for the signals with non-zero mean value, their covariance has an addi-

tional value, 𝜇𝜇𝑎𝑎 ⋅ 𝜇𝜇𝑏𝑏 , than the covariance between signals with zero mean value 

which is computation form assumed in the general Covariance NMR spectroscopy. 

Moreover, the linear combination of covariance follows 

𝑎𝑎𝑎𝑎 ⋅ Cov(𝑋𝑋, 𝑌𝑌 ) = Cov(𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏 ) 

and 

Cov(𝑉𝑉 + 𝑊𝑊 , 𝑋𝑋 + 𝑌𝑌 ) = Cov(𝑉𝑉 , 𝑋𝑋) + Cov(𝑉𝑉 , 𝑌𝑌 ) + Cov(𝑊𝑊 , 𝑋𝑋) + Cov(𝑊𝑊 , 𝑌𝑌 ) 

Note that the most of covariance from the HMBC signal show the positive co-

variance correlation which means an additive covariance and the intensity of HMBC 

signal is proportional to the transfer efficiency 𝐴𝐴𝑚𝑚𝑚𝑚 which is depends on the molec-

ular environment. Since the value of covariance 𝐶𝐶𝑚𝑚𝑚𝑚  between two array 

𝑆𝑆𝑚𝑚𝑚𝑚 and 𝑆𝑆𝑛𝑛𝑛𝑛 is proportional to ∑ 𝐴𝐴𝑚𝑚𝑚𝑚𝐴𝐴𝑛𝑛𝑛𝑛𝐷𝐷𝑙𝑙𝑙𝑙
2

𝑙𝑙 , thereby each transfer efficiency, initial 

intensity of proton spin and the number of non-zero element of 𝐷𝐷𝑙𝑙𝑙𝑙 (which account 

for the number of cross correlation signals between two carbons) are contribute to 

the intensity of covariance signal together. Thus, among the carbon spins in mixture 

sample, the carbon spins correlated with many proton / high intensity proton (∑ 𝐷𝐷𝑙𝑙𝑙𝑙
2

𝑙𝑙 ) 

or has high transfer efficiency (𝐴𝐴𝑘𝑘𝑘𝑘) will have disproportionately large signals on the 

covariance spectrum, dwarfing other signals in the indirect covariance spectrum. 

3.7.5 Undesirable covariance signal line shape 

Though the increase of 𝑡𝑡1,𝑚𝑚𝑚𝑚𝑚𝑚 such as NUS acquisition in the indirect domain can 

reduce FID truncation artefacts and also alleviate the line-broadening accompanied 

apodization processing78, in the peak shape of strong signal shows cross-shaped 

ridges that can overlap with the projections of other peaks. In terms of computing of 

PCA this kind of spatial signal overlap between peak ridges and true signal/ridges 
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will be regarded also as correlation of certain carbons and this will lead to the spuri-

ous intra/intermolecular peaks. 
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3.8 Signal processing tailored to iCov-eigendecomposition 

The processing procedure termed DECODE (DEconvolution of mixed spectrum 

from carbon carbon COrrelation spectrum using enhanced DEmix), which tailored 

to the indirect covariance-eigendecomposition, was devised. Since the NUS-

mHMBC-iCov approach did not provide satisfactory results for mixture deconvolu-

tion, a stepwise operation has been devised to make it better suited for providing 

molecule-wide spin network information.  

3.8.1 Spectral merging 

The first consideration was that a single HMBC focusing on typical 𝐽𝐽2−3
CH of 8 Hz 

may not give all the carbon correlation information on the HMBC-iCov spectra, be-

cause some carbon-proton pairs have lower coupling constants. Therefore, two 

HMBC spectra with delays optimized for 8 and 4 Hz were obtained separately and 

merged in the frequency domain. On top of this, an HSQC spectrum was also merged 

so that much-isolated carbons, i.e. methoxy carbons, can also appear on HMBC-iCov 

spectrum at its own chemical shift position. In the merging process, the maximum 

intensities were taken as the final values to avoid repetitive addition of the same peak 

on different spectra.  

The spectral merging step constructs 𝑛𝑛 × 𝑛𝑛 matrix 𝐇𝐇, which takes the maxi-

mum magnitude from the individual spectrum, 

𝐻𝐻𝑖𝑖𝑖𝑖 = max�𝑆𝑆𝑖𝑖𝑖𝑖
1 , 𝑆𝑆𝑖𝑖𝑖𝑖

2 , … , 𝑆𝑆𝑖𝑖𝑖𝑖
𝑘𝑘 � 

where, 𝐒𝐒k is an 𝑛𝑛 × 𝑛𝑛  matrix which represent the individual spectrum and 

max(𝑥𝑥, 𝑦𝑦, … , 𝑧𝑧) returns a maximum magnitude value among variables.  
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3.8.2 Calculation of the first moment for the spectral moment filtering 

Second, as stated above the partial proton overlap on the 𝐹𝐹2 projections of HMBC 

peaks may generate false positive intermolecular correlation on the iCov spectrum, 

they were addressed by the spectral moment filter79 (here, the first moment filter) 

before the iCov operation. The principle of the first moment filter was demonstrated 

before and conceptually similar to peak centroiding in mass spectrometry. Every sig-

nal on the spectrum were associated with the mean position value of the correspond-

ing peak. When performing the iCov operation, the mean position values of each 

element of the two vectors were considered. If they differ by a certain margin, i.e. 

elements from different peaks, the products of the two elements were multiplied by 

0 (filtered). Therefore, this filter prevents the false positive correlation due to proton 

projection overlaps on the HMBC spectrum.  

The first moment matrix 𝛍𝛍 is calculated as follows. Here, the power spectrum 

𝐏𝐏  instead of the original spectral matrix 𝐇𝐇  to construct the first moment matrix 

(𝑃𝑃𝑖𝑖𝑖𝑖 = 𝐻𝐻𝑖𝑖𝑖𝑖
2 ) 

𝜇𝜇𝑖𝑖𝑖𝑖 = � (𝑗𝑗 + 𝑘𝑘)𝑃𝑃𝑖𝑖,𝑗𝑗+𝑘𝑘

𝑀𝑀

𝑘𝑘=−𝑀𝑀
� 𝑃𝑃𝑖𝑖,𝑗𝑗+𝑘𝑘

𝑀𝑀

𝑘𝑘=−𝑀𝑀
�    

where 𝑀𝑀 = 7 (15 points; 2𝑀𝑀 + 1) in 4096 points correspond to ca. 37 Hz for 12 

ppm spectral width at 850 MHz. This first moment was used during the covariance 

calculation as an argument for the filter function. 

3.8.3 iCov calculation with the spectral moment filtering function 

Then, the indirect covariance matrix 𝐂𝐂 was obtained as below 

𝑊𝑊𝑖𝑖𝑖𝑖 = � abs(𝐻𝐻𝑖𝑖𝑖𝑖) ⋅ abs�𝐻𝐻𝑗𝑗𝑗𝑗� ⋅ 𝑓𝑓 (𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑗𝑗𝑗𝑗) 
𝑛𝑛

𝑘𝑘=1
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𝐂𝐂 = 𝐖𝐖1/2 

where H is the merged spectral matrix, 𝛍𝛍  is the first spectral moment obtained 

above, and n is the number of columns in H. abs(H) returns the absolute values of 

the matrix H and the filter function 𝑓𝑓  is defined as 

𝑓𝑓(𝑥𝑥) = 1
1 + exp{−10(1.4 − 𝑥𝑥)}

 

3.8.4 Dataset normalization 

The third consideration is about the disproportionately large signals dwarfing others 

in the iCov spectrum. As stated in 2.7.4, it is not proper that the applying of the usual 

normalization for the iCov of two-dimensional NMR spectrum. Since the dynamic 

range of iCov signal can be affected by several factors (A relative weight ratio of 

mixture molecules and intensities of individual HMBC correlation signal etc.) this 

intensity disproportion was addressed by the intensity normalization using a sigmoid 

function.  

The elements of the covariance matrix were normalized with a sigmoid function 

as below 

𝐿𝐿𝑖𝑖𝑖𝑖 = 1
1 + exp�−30�log 𝐶𝐶𝑖𝑖𝑖𝑖 / log 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚� + 𝛿𝛿�

 

where 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  and 𝛿𝛿  were the maximum value of the matrix C and the inflection 

point of the sigmoid function (customizable), respectively. For the logarithm calcu-

lation, if 𝐶𝐶𝑖𝑖𝑖𝑖 < 1 then, 𝐶𝐶𝑖𝑖𝑖𝑖 = 1 Note that a value of the inflection-point in the sig-

moid function is user-customizable. 
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3.8.5 Peak-digitization 

The fourth consideration is about the overlaps between peak projections in the car-

bon dimension on the iCov spectrum due to cross-shaped ridges. This issue was ad-

dressed by peak digitization based on the peak position information from the one-

dimensional (1D) carbon spectrum of the mixture. Usually, one can simply use the 

diagonal slice of the NUS-mHMBC-iCov which is essentially the 13C spectrum of 

the mixture with reasonable resolution. For compounds with high carbon overlaps, 

as in the rotenone and brucine mixture, one can obtain the actual 13C spectrum of the 

mixture with higher resolution. Even for this case, the diagonal slice of the NUS-

mHMBC-iCov gave well-separated individual spectra except for a total of 4 unre-

solved peaks (data not shown) which could be resolved by the use of the actual 1D 

spectrum of the mixture. It should be noted that the spectra of the individual com-

pounds are never needed. From the 1D spectrum, one can tabulate every peak posi-

tion by peak-picking and use them to represent all the iCov spectral peaks with three 

adjacent points centered on the peak position. The spectrum will have positive values 

at the picked position and the positions offset by one point from the peak-picked 

position, and all other regions will have zero values. This takes advantage of the 

ridge-free sharp lines of 13C spectra, and effectively removes spectral ridges on the 

resulting 2D spectrum. This digitized spectrum is then used as the input for the eigen-

decomposition for spectral deconvolution at the final step of the DECODE procedure. 

Step 1. 

Define an array P with positional indices of valid peaks* over a user defined thresh-

old in 13C spectrum 

Next, define a binary array B and its diagonal matrix D (=diag(B)) such that 

for all x, the positional indices of the 13C spectrum 
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𝐵𝐵[𝑥𝑥] = �
1, if  𝑥𝑥 ∨ 𝑥𝑥 ± 1 ∈ array 𝐏𝐏
0, otherwise

 

𝐃𝐃 = diag(𝐁𝐁) 

Step 2. 

for all k, the indices of non-zero elements of B 

Define an array M with the positional indices of valid peaks*  

over 0.01 threshold in 𝐿𝐿𝑘𝑘 (𝐿𝐿𝑘𝑘 is the kth1D slice (row/column) of the ma-

trix L 

 for all i, index of 1D spectrum array of 𝐿𝐿𝑘𝑘 

𝐿𝐿𝑘𝑘[𝑖𝑖] = �
𝐿𝐿𝑘𝑘[𝑖𝑖], if  𝑖𝑖 ∈ array M

0, otherwise
 

Step 3.  

Constructing the ridge-free matrix F by following matrix operation 

𝐅𝐅 = 𝐃𝐃𝐃𝐃𝐃𝐃 

* Throughout the pick-digitization process a function ‘scipy.signal.find_peak’ from 

the SciPy library from python was used for the peak-detection. 

3.8.6 Extracting eigenmodes; individual 1D spectra 

An eigendecomposition of the matrix F (𝐅𝐅 = 𝐕𝐕𝐕𝐕𝐕𝐕−1) yields eigenmodes. Here, each 

eigenmode is 𝑉𝑉𝑘𝑘 where 𝑉𝑉𝑘𝑘 is the column vector (the eigenvector of the matrix F) 

of V. The number of the desired eigenvectors (1D spectra) can be specified. The 

eigenvectors are calculated in descending order of the associated eigenvalues. 



DECODE procedure for spectral deconvolution 

 58  

3.8.7 An optional J-modulation-based overlap filter 

Except for singlet type protons, every cross peaks generated in mHMBC spectrum 

used here, if did not undergo magnitude calculation along the 𝐹𝐹2 domain, have its 

own proton multiplet structures on account of the 𝐽𝐽HH-modulation generated during 

the pulse sequence. Thus, one can further exploit this feature to avoid generating 

false covariance peaks. For example, an inner product between a pair of array con-

sisting of non-negative signals (the magnitude processing signals) always results 

positive values even with their partial overlaps. This depicts the generation of false 

covariance correlation encountered in HMBC or HSQC spectra in magnitude mode. 

On the other hands, the phase-sensitive multiplet structure of mHMBC along the 𝐹𝐹2 

domain can be expressed by  

𝑆𝑆(𝑡𝑡2, Δ) = exp(−𝑅𝑅2,𝑎𝑎𝑡𝑡2) ⋅ �{cos(𝜋𝜋𝐽𝐽𝑎𝑎𝑎𝑎2Δ) cos(𝜋𝜋𝐽𝐽𝑎𝑎𝑎𝑎𝑡𝑡2) + sin(𝜋𝜋𝐽𝐽𝑎𝑎𝑎𝑎2Δ) sin(𝜋𝜋𝐽𝐽𝑎𝑎𝑎𝑎𝑡𝑡2)}
𝑁𝑁

𝑘𝑘=1
 

where 𝐽𝐽𝑎𝑎𝑎𝑎 is the 𝐽𝐽 -coupling constant between proton spin 𝐼𝐼𝑎𝑎 and 𝐼𝐼𝑘𝑘 

𝐻𝐻�0 = 2𝜋𝜋𝐽𝐽𝑎𝑎𝑎𝑎 � 𝐼𝐼𝑧̂𝑧,𝑎𝑎𝐼𝐼𝑧̂𝑧,𝑘𝑘

𝑁𝑁

𝑘𝑘=1
 and 

𝑑𝑑�𝐼𝐼−̂�
𝑑𝑑𝑑𝑑

= −𝑖𝑖�𝐼𝐼−̂, 𝐻𝐻�0� 

Then, the real part of the Fourier transformation of 𝑆𝑆(𝑡𝑡2, Δ) is given by 

𝑆𝑆Real(𝜔𝜔, Δ) = 𝑆𝑆Real
1 ∗ 𝑆𝑆Real

2 ∗ ⋯ ∗ 𝑆𝑆Real
𝑁𝑁  

where 𝑆𝑆1 ∗ 𝑆𝑆2 is the convolution of 𝑆𝑆1and 𝑆𝑆2 

and 

𝑆𝑆Real
𝑘𝑘 (𝜔𝜔, Δ) =

cos(𝜋𝜋𝐽𝐽𝑎𝑎𝑎𝑎2Δ) ⋅ 𝑅𝑅2(2,𝑎𝑎)
2

(𝜋𝜋𝐽𝐽𝑎𝑎𝑎𝑎 ∓ 𝜔𝜔)2 + 𝑅𝑅2,𝑎𝑎
2

���������������������
Absorptive in−phase 

−
sin(𝜋𝜋𝐽𝐽𝑎𝑎𝑎𝑎2Δ) ⋅ (𝜋𝜋𝐽𝐽𝑎𝑎𝑎𝑎 ∓ 𝜔𝜔)

(𝜋𝜋𝐽𝐽𝑎𝑎𝑎𝑎 ∓ 𝜔𝜔)2 + 𝑅𝑅2,𝑎𝑎
2

���������������������������
Dispersive anti−phase
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Since 𝐽𝐽CH-modulation had been removed in the mHMBC spectrum, the equa-

tion shows that each the multiplet structure on 𝐹𝐹2 domain of mHMBC spectrum is 

the product of sequence which is combination of absorptive in-phase and dispersive 

anti-phase only according to 𝐽𝐽HH constant and their ratio is roughly depends on the 

total length of HMBC pulse sequence. Even though the chemical shift of two proton 

signals of different molecules, therefore, are completely overlapped, each 𝐽𝐽 -cou-

pling components may differ depends on chemical environment in molecules. In 

summary, the phase-sensitive processing on mHMBC conserved the mixed-phase 

multiple signals in the 𝐹𝐹2 domain arising from the 𝐽𝐽HH that is active throughout of 

the pulse sequence. Thus, an inner product between signal arrays whose multiplet 

structures are identical will give always positive values, whereas signal arrays have 

different multiplet structure will lead to near-zero values depending on relative pat-

terns thereof. For singlet protons which do not interact with other protons and shows 

only absorptive in-phase signal, the spectral derivative80 or the phase correction of 

𝐹𝐹2 domain out-of-90° also yield similar phase factors. The partial derivative (spec-

tral derivative) of absorptive in-phase signals is similar to the form of dispersive anti-

phase signals shown as below 

𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝑅𝑅2,𝑎𝑎

𝜔𝜔2 + 𝑅𝑅2,𝑎𝑎
2 �

= −
2 ⋅ 𝑅𝑅2,𝑎𝑎

2 ⋅ 𝜔𝜔

�𝜔𝜔2 + 𝑅𝑅2,𝑎𝑎
2 �

2 
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Figure 3.8 Comparison of 1D NMR signal and its spectral derivative 

(A) Absorptive Lorentzian line shape. (B) Solid line: the spectral derivative of (A), Dashed line: dis-
persive Lorentzian line shape. Solid line: -90°-phase shift of (A). 

 

Moreover, any partial derivative in the direction 𝜔𝜔, does not affect homogene-

ity of multiplet structures within the same group and preserves their relative first 

spectral moments. Thus, a group of HMBC cross peaks correlated with a particular 

proton will inherit the same multiplet structure of proton signal. This can essentially 

suppress spurious correlation peaks between exactly overlapping protons with dif-

ferent mixed-phase multiplets. Note that the important constraint of this approach is 

the total length of each pulse sequence Δ should be identical each other. In case of 

the 𝐽𝐽 -modulation based overlap filter, the spectral derivative of 𝐇𝐇, instead of the 

absolute value matrix in 2.8.2, should be used as below 

𝑊𝑊𝑖𝑖𝑖𝑖 = � 𝐷𝐷𝑖𝑖𝑖𝑖 ⋅ 𝐷𝐷𝑗𝑗𝑗𝑗 ⋅ 𝑓𝑓 (𝜇𝜇𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑗𝑗𝑗𝑗)
𝑛𝑛

𝑘𝑘=1
 

where 𝐃𝐃 is the spectral derivative of 𝐇𝐇 along the 𝐹𝐹2 domain. 
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Figure 3.9 Pulse sequence for mHMBC with J-modulation filter 

Pulse sequences for mHMBC for multiple bond correlation which has the same JHH modulation as mHMBC. For sucrose/quinic acid mixture 
for J-modulation filter. The delay ∆’’ was set to 3.45 ms for HSQC-type one-bond correlation. The semi-ellipsoid boxes represent 180° 
shaped pulses for inversion or refocusing of 13C magnetization. Narrow and wide bars represent 90° and 180° hard pulses, respectively. For 
the phase-sensitive acquisition in the indirect domain, an echo-antiecho detection mode was employed. Phases of Ф1 and Фrec were shifted by 
180° at every even-numbered increment. Blank semi-ellipse boxes in the gradient channel represent gradient pulses for odd-numbered incre-
ments and gray semi-ellipse boxes for even-numbered increments. All pulses are of phase, x unless otherwise indicated. The phase cycling is 
as follows. Ф1 = x, -x; Ф2 = -x, -x, x, x; Фrec = -x, x, x, -x. Gradient ratios: G1 : G2 = 5 : -3 (odd-numbered) and -3 : 5 (even-numbered). 
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3.9 Experimental section 

3.9.1 NMR measurements 

For NUS, the actual time-domain points were 2048×72 (𝑡𝑡2×𝑡𝑡1) complex points with 

the final 4096×8192 (𝑡𝑡2×𝑡𝑡1) complex points after NUS reconstruction and zero-filling 

processing. The spectral width was 10204×49174 Hz (𝐹𝐹2×𝐹𝐹1) and frequency offsets 

were 4251 Hz and 23516 Hz for 1H and 13C nuclei, respectively. For the mHMBC 

(delay Δ: 62.5 ms) of the mixture of brucine and rotenone, the number of scans was 

4 and the total experiment time was about 13 min. For the long-range mHMBC 

( 𝐽𝐽𝑛𝑛
CH= 4 Hz; delay Δ: 125 ms), the number of scans was 8 and the total experiment 

time was 29 min. For the HSQC experiment, all the parameters, except for the pulse 

sequence specific parameters and the number of scans (2 scans), were matched with 

those for the HMBC experiment and the total experiment time was 9 min. For the 

mHMBC (delay Δ: 62.5 ms) of the mixture of sucrose and quinic acid, the number 

of scans was 32 and the total experiment time was about 1 hr 46 min. For the one-

bond correlation spectrum, equivalent to HSQC, the pulse sequence in Figure-S1B 

was used to get the same 𝐽𝐽HH modulation as in mHMBC. There, the delay Δ′′ was 

set to 3.45 ms, identical to the evolution delay of HSQC experiment. The number of 

scans and the total experiment time was the same as above. 

3.9.2 DECODE processing 

For the DECODE processing, a home-built processing script base on python 3.6 was 

developed. A module for python nmrglue81 was used for input and output of nmrpipe 

format data. 



DECODE procedure for spectral deconvolution 

 63  

3.10 Results and discussion 

The first step is the combining of two-type of mHMBC and HSQC spectra to com-

pensate inhomogeneity of polarization transfer efficiency attributed to fixed INEPT 

delay of in a single pulse sequence. INEPT delays Δ were chosen to 62.5, 125 and 

3.45 ms which were optimized for 8, 4 and 145 Hz of 𝐽𝐽𝑛𝑛
𝐶𝐶𝐶𝐶  coupling constant value 

respectively. As shown in Figure 2.10A and B, this spectral merging gives rise to 

more expected correlation signals on the indirect covariance spectrum, especially 

those for the isolated spin groups such as methoxy carbon signals. Figure 2.10C and 

D shows the effect of the spectral moment filtering to avoid a generation of spurious 

intra/intermolecular peak from covariance operation between false overlapped signal 

arrays. The spurious intermolecular correlation peaks between rotenone and brucine 

were suppressed (Figure 2.10D; around 45 ppm) after employing first-moment filter. 

After third and fourth processing steps, the dataset normalization and peak digitiza-

tion, undesirable peak ridge around the strong peaks was removed and the dispro-

portionality of covariance signal intensity was also improved (Figure 2.11A-C). Fig-

ure 2.12 shows complete spectral deconvolution and extraction of pure 13C spectra 

from mixture of rotenone and brucine. All the 23 carbon signals were identified in 

each extracted 13C spectrum without any entanglement from the other compound. 

whereas the previous PCA-based Demix4 approach failed to extract genuine 13C 

spectrum of each. Of note, DECODE processing also enabled a separation of carbon 

signals spaced at just 0.06 ppm interval. (Figure 2.13) It is because of the sufficient 

signal resolution of template NUS-iCov spectrum and the peak digitization pro-

cessing with the mixture 13C spectrum as a reference spectrum. Note that the spectral 

resolution (SW/TD) of the iCov spectrum should be adjusted according to minimum 

frequency difference carbon signals. Fortunately, one can easily estimate it prior to 

DECODE processing by analyzing the 13C spectrum of mixture sample. In addition, 
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the effect of 𝐽𝐽  -modulation filter was demonstrated on a mixture of sucrose and 

quinic acid (Figure 2.14 and 15), with the former having notoriously congested 

proton signals in the 4.2 to 3.2 ppm region. In addition, its two signals at δH 3.95 and 

3.45 completely overlapped with the proton signals of quinic acid (Figure 2.14A). 

Without the 𝐽𝐽  -modulation filter, the carbon peaks from sucrose spilled into the 

quinic acid spectrum upon the DECODE procedure (Figure 2.15A), which was 

effectively suppressed by the use of 𝐽𝐽 -modulation (Figure 2.15B). Therefore, this 

optional J-modulation-based filter can be used where proton overlap is severe. In 

terms of the result validation, in the most of case in analysis in NPs, the number of 

chemical species in mixture and each of total number of carbon nuclei can be iden-

tified using the other analytical technique such as high-resolution LC-MS in advance 

of DECODE analysis. Since the inflection point value of sigmoid function is crucial 

factor of DECODE result, one can verify and improve the result, adjusting the in-

flection point, by comparing with the true number of carbon nuclei information. 
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Figure 3.10 The effects of spectral merging and spectral moment filter 

The effects of the spectral merging and the first spectral moment filter on the iCov spectrum of the 
mixture of rotenone and brucine. (A and B) iCov spectra without (A) and with (B) the spectrum 
merge. (C and D) iCov spectra without (C) and with (D) the spectral-moment filter (the first moment). 
The vertical trace is the 13C spectrum of rotenone and the horizontal trace is the 13C spectrum of bruc-
ine. The dashed box indicates false-positive intermolecular peaks between rotenone and brucine. 
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Figure 3.11 The effects of signal normalization and peak digitization 

The effects of signal normalization and peak digitization on the iCov spectrum of the mixture of rote-
none and brucine. (A and B) iCov spectra without (E) and with (F) signal normalization and peak dig-
itization. The dashed double arrow indicates peaks in each spectrum at 149.18 ppm. (C) The traces at 
149.18 ppm of (A) (Top) and (B) (Bottom). 
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Figure 3.12 Results of DEOCDE 

Extraction of the individual spectra of rotenone and brucine from the mixture by DECODE. The top 
spectrum is the 13C spectrum of the mixture. Below the 13C spectrum, from top to bottom: the 13C 
spectrum of the single compound, the eigenmode from the DECODE and the eigenmode of the direct 
PCA without DECODE, respectively. The direct PCA results are eigenvectors of the single NUS-
mHMBC-iCov spectrum without DECODE. During the DECODE, the inflection point of the sigmoid 
function, δ, was set to 1.58 and the threshold value of the 13C spectrum to 107. 
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Figure 3.13 Expansions of DECODE results 

Resolution of very close peaks by DECODE. Superimposed 13C spectra of brucine and rotenone (Top) 
and superimposed eigenmode spectra from the DECODE (Bottom). 
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Figure 3.14 NMR spectra of mixture of sucrose and quinic acid 

(A) 1H Spectra of sucrose, (Bottom), quinic acid (Middle) and their mixture (Top). (B) 13C spectra of 
sucrose (Bottom), quinic acid (Middle) and their mixture (Top).  
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Figure 3.15 Comparison of DECODE with/without J-modulation filter 

Comparison of the DECODE result with and without the J-modulation filter. From top to bottom, the 
13C spectrum of the single compound, the eigenmode from the DECODE with and without the J-mod-
ulation, respectively. (A) is for quinic acid and (B) is for sucrose. For this, merging of one mHMBC 
(nJCH = 8 Hz) and another one bond correlation spectrum (Figure 2.9) with the same total pulse dura-
tion were enough (total of 2 experiments rather than 3). During the DECODE, the inflection point of 
the sigmoid function, δ, was set to 1.37 and the threshold value of 13C spectrum to 2×106. 
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Figure 3.16 DECODE results for three amino acids mixture 

(Left) 13C NMR spectrum of mixture and individual 13C NMR spectra. (Right) 13C NMR spectrum of 
mixture and eigenmodes from DECODE; Lower insets are structures of L-glutamic acid, L-glutamine 
and L-leucine. 
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3.11 Conclusion 

Herein, we showed that a high-resolution 13C-13C correlation spectrum of a com-

pound with many quaternary carbons can be obtained with proton sensitivity using 

NUS-mHMBC-iCov. With the thus-obtained complete molecule-wide spin network, 

an optimized signal-processing procedure (DECODE) was developed for the extrac-

tion of individual carbon spectra from mixture data. We tested the performance of 

the deconvolution with the 1:1 mixture intentionally, as it should be the most chal-

lenging case. A mixture with a large concentration difference, for example a 1:20 

mixture, should be easier to deconvolute because the signal intensity differences are 

correlated with-in a single compound and a clear distinction between signal groups 

that may be apparent to even to eye examination. Still, the lower-fraction component 

may suffer low signal to noise ratio due to the limited receiver dynamic range. For 

this, we incorporated the normalization step in the DECODE procedure, and it 

should help the analysis of the low-signal-to noise component to some extent. Es-

sentially, our approaches can provide usable 1D carbon spectrum(a) for a single com-

pound or individual species in a mixture from 2D 1H-13C correlation spectroscopy.  

Our approach should be straightforwardly used with more common 500 or 600 

MHz spectrometers, as long as proton overlaps are not significantly higher in those 

fields. As we obtained the spectrum of rotenone with a 2 mg sample for 2 hours at 

800 MHz, theoretically, the same signal to noise ratio can be obtained with four times 

of the acquisition time (8 hours) which is a very practical time frame. Currently, there 

is a limitation for our approach in dealing a complex mixture with a large number of 

components, and at this point, it is not intended for or have not been tested with a 

crude extract. The benefit will be the largest at the final purification step with two or 

three hard-to-separate components, which actually is not very uncommon. Overall, 
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the described approaches should prove useful in various fields of chemistry and may 

be adapted to computer-assisted structure elucidation (CASE)82. 
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Chapter 3 

 

 

 

 

 

 

4 13C-13C distortion-free J-scaled HSQC 
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4.1 Introduction 

Recent advances in high-resolution NMR spectrometers have enabled the measure-

ment of high-resolution NMR signals in both direct and indirect domains in many 

nD NMR experiments. Nevertheless, for nuclei with a wider range of chemical shift 

than 1H, such as 13C, it is still difficult to obtain signals of resolution levels of several 

Hz in the indirect domain. Meanwhile, regarding the reduction of experiment time 

in nD NMR experiments, the non-uniform sampling (NUS) technique has proven its 

effectiveness thereby, is widely used within the NMR community53,56. However, due 

to a special signal reconstruction procedure different from the conventional Fourier 

transform method73,83,84,85,86,87, general NUS techniques are not proper to quantitative 

analysis88, and these constraints limit the use of NUS techniques in the study of met-

abolic flux analysis. On the other hands, for the cellular metabolic analysis based on 

NMR spectroscopy 13C stable-isotope labeled compounds were widely employed to 

address low sensitivity problems on account of the low natural abundance and low 

gyromagnetic ratio of 13C nucleus89. Together with the obtained high-sensitivity 13C 

NMR signal, a specific 𝐽𝐽CC-coupling pattern due to 13C-13C coupling interaction has 

been also exploited as an metabolic tracer in NMR metabolomics7,8,9. In general, the 

HSQC spectrum of samples treated with 13C isotope shows a sparse NMR signal 

distribution due to selective sensitivity enhancement associated with a particular 

metabolic pathway even at ordinary indirect domain sampling points. But, for the 

𝐽𝐽 -coupling analysis in HSQC, it is hard to extract coupling information such as split-

ting pattern or exact 𝐽𝐽CC coupling constant on account of the poor resolution and 

the signal distortion.  

Thus, the analysis of 𝐽𝐽CC coupling was done mainly through the 1D 13C acqui-

sition with a poor sensitivity than HSQC or the 1H-1H TOCSY indicating a complex 

signal distribution. Therefore, 𝐽𝐽 -scaling techniques,12,13,14 which only amplify the 
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effects of 13C-13C interactions while maintaining the total number of sample points 

of the indirect domain, will be highly applicable to these NMR-based metabolic anal-

ysis studies. Meanwhile, the effects of signal distortion by 13C-13C interaction on 

two-dimensional NMR measurements of 13C isotope has been discussed in several 

studies. Thereby, the elimination of signal distortion of HSQC signals by 13C isotope 

labeled compounds and the selective amplification of 13C-13C interaction effects 

through the application of 𝐽𝐽 -scaling technique were considered in this study. To this 

end, an analytical expression of HSQC signal distortion was derived for the conven-

tional HSQC sequence using 13C isotope compounds and, to address this, a novel 

pure-in-phase HSQC sequence for the 13C isotope labeled compound was proposed.  
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4.2 Origin of the HSQC signal distortion by JCC-coupling 

It has been generally known that the undesirable signal distortion along the indirect 

domain of nD NMR spectrum for the 13C-isotope labeled compound10,11. The origins 

of this signal distortion can be regarded as on account of a polarization transfer of 
13C-13C 𝐽𝐽 -coupling modulated signal S(𝑡𝑡1) during the 𝑡𝑡1-evolution period. 𝐽𝐽 -mod-

ulated signal has both cosine and sine modulated coupling terms and according to 

the combination of these two trigonometric function terms, the signal distortion will 

be generated along the indirect domain. In a more explicit expression, a constant 

delay, not the 𝑡𝑡1-variable incremental delay, during the 𝑡𝑡1-evolution period will gen-

erate sine modulated 𝐽𝐽 -coupling term(an origin of the dispersive anti-phase signal) 

which can be further transferred to observable signal. For the non-13C-isotope labeled 

compound, as the natural abundance of 13C nucleus is very low, their 13C-13C inter-

action is can be neglected, as for whereas the uniformly 13C-labeled compounds, 

which are frequently employed in cellular metabolomics study then the effect from 
13C-13C interaction will be arisen. 

4.2.1 Evolution of J-couplings during finite length of delays 

As describe above, the dispersive anti-phase signal term along the indirect domain 

is originated from an additional JCC evolution during the finite length of adiabatic 

pulses, gradient pulses and couple of delays.  

Assuming two weakly coupled carbon spin 𝑆𝑆1 and 𝑆𝑆2, at the end of 𝑡𝑡1-evolu-

tion period, the product operator has following forms, 

−2𝑆𝑆1̂𝑦𝑦𝐼𝐼𝑧̂𝑧
Ω1�𝑆𝑆1̂𝑧𝑧+𝑆𝑆2̂𝑧𝑧�𝑡𝑡1+2𝜋𝜋𝐽𝐽12𝑆𝑆1̂𝑧𝑧𝑆𝑆2̂𝑧𝑧𝑡𝑡1
������������������������������������→

−2𝐼𝐼𝑧̂𝑧{𝑆𝑆1̂𝑦𝑦 cos(𝛺𝛺1𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) − 2𝑆𝑆1̂𝑥𝑥𝑆𝑆2̂𝑧𝑧 cos(Ω1𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1)
−𝑆𝑆1̂𝑥𝑥 sin(Ω1𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) − 2𝑆𝑆1̂𝑦𝑦𝑆𝑆2̂𝑧𝑧 sin(Ω1𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1)}
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After applying a π/2-rotation pulse, 𝐹𝐹𝛾𝛾   (= ∑ 𝑆𝑆𝑘𝑘𝑘𝑘𝑘𝑘 ) , any two spin anti-phase 

product operator of two 𝐽𝐽  -coupled carbon spins 2𝑆𝑆1̂𝛾𝛾𝑆𝑆2̂𝑧𝑧 (𝛾𝛾 = 𝑥𝑥 or 𝑦𝑦)  are con-

verted to multiple-quantum (MQ) state product operators (2𝑆𝑆1̂𝑥𝑥𝑆𝑆2̂𝑦𝑦 or 2𝑆𝑆1̂𝑦𝑦𝑆𝑆2̂𝑥𝑥) and 

this MQ state of carbon spins cannot be contributed to observable state during the 

rest of the pulse sequence. Thus, only observable operator forms are cosine modu-

lated coupling terms. 

−2𝐼𝐼𝑧̂𝑧𝑆𝑆1̂𝑦𝑦 cos(Ω1𝑡𝑡1) cos(π𝐽𝐽12𝑡𝑡1) + 2𝐼𝐼𝑧̂𝑧𝑆𝑆1̂𝑥𝑥 sin(Ω1𝑡𝑡1) cos(π𝐽𝐽12𝑡𝑡1) 

: Observable terms 

+4𝐼𝐼𝑧̂𝑧𝑆𝑆1̂𝑥𝑥𝑆𝑆2̂𝑧𝑧 cos(Ω1𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) + 4𝐼𝐼𝑧̂𝑧𝑆𝑆1̂𝑦𝑦𝑆𝑆2̂𝑧𝑧 sin(Ω1𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) 

: Unobservable terms 

However, an any additional evolution of JCC coupling can convert the sine modu-

lated anti-phase operator to an in-phase operator for the S spin. 

2𝑆𝑆1̂𝑥𝑥𝑆𝑆2̂𝑧𝑧 sin(𝜋𝜋𝐽𝐽12𝑡𝑡1)
2𝜋𝜋𝐽𝐽12𝑆𝑆1̂𝑧𝑧𝑆𝑆2̂𝑧𝑧Δ
���������������→ 2𝑆𝑆1̂𝑥𝑥𝑆𝑆2̂𝑧𝑧 sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ)

+ 𝑆𝑆1̂𝑦𝑦 sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ) 

2𝑆𝑆1̂𝑦𝑦𝑆𝑆2̂𝑧𝑧 sin(𝜋𝜋𝐽𝐽12𝑡𝑡1)
2𝜋𝜋𝐽𝐽12𝑆𝑆1̂𝑧𝑧𝑆𝑆2̂𝑧𝑧Δ
���������������→ 2𝑆𝑆1̂𝑦𝑦𝑆𝑆2̂𝑧𝑧 sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ)

− 𝑆𝑆1̂𝑥𝑥 sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ) 

Then, the second term of the right equation is further converted to observable 

signals. In summary, any additional 𝐽𝐽CC evolution could retain sine modulated JCC 

coupling terms in the 𝐹𝐹1 domain. 

4.2.2 Analysis of NMR signal: AX spin system 

In order to evaluate the quantitative effect of the constant delay for the generation of 

sine modulated JCC-coupling term during the 𝑡𝑡1-evolution period, a density operator 
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analysis based on product operator formalism90 for conventional HSQC pulse se-

quence has been performed.  

Firstly, let us consider a natural abundance 13C compound. Before the 𝑡𝑡2-acqui-

sition, observable proton spin (𝑰𝑰) product operators encoded with 𝑡𝑡1-variable from 

the conventional preservation of equivalent pathway (PEP)91-HSQC experiment are 

as below, (For brevity, relaxation terms are neglected) 

+𝐼𝐼𝑦̂𝑦 cos(Ω𝑡𝑡1) + 𝐼𝐼𝑥̂𝑥 sin(Ω𝑡𝑡1) : Even-numbered TD 

−𝐼𝐼𝑦̂𝑦 cos(Ω𝑡𝑡1) + 𝐼𝐼𝑥̂𝑥 sin(Ω𝑡𝑡1) : Odd-numbered TD 

As shown in 3.2.1, on the other hands, for the 13C-isotope labeled compound, 

the sine modulated 𝐽𝐽CC-coupling terms which is encoded with variable 𝑡𝑡1 will be 

retained as an observable operator form. Since the frequency discrimination method 

by echo-antiecho acquisition68,69 acquires two parallel indirect domain signals which 

has different coherence order as below 

Even-numbered TD (P-type spectrum): 

−𝐼𝐼𝑦̂𝑦 cos(Ω𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡)

+ 𝐼𝐼𝑥̂𝑥 sin(Ω𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) cos(𝜋𝜋𝐽𝐽12Δ2)

+ 𝐼𝐼𝑦̂𝑦 cos(Ω𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡)

− 𝐼𝐼𝑥̂𝑥 sin(Ω𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) cos(𝜋𝜋𝐽𝐽12Δ2) 

Odd-numbered TD (N-type spectrum): 

+𝐼𝐼𝑦̂𝑦 cos(Ω𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡)

+ 𝐼𝐼𝑥̂𝑥 sin(Ω𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) cos(𝜋𝜋𝐽𝐽12Δ2)

− 𝐼𝐼𝑦̂𝑦 cos(Ω𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡)

− 𝐼𝐼𝑥̂𝑥 sin(Ω𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) cos(𝜋𝜋𝐽𝐽12Δ2) 
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Then, acquired two P-type (Anti-echo) and N-type (Echo) signals followed by 

“Rance-Kay”91,92 processing or sum of P-type and complex conjugate of N-type68,69 

result in signal 𝑆𝑆(𝑡𝑡1, Ω2) consist of two types of signals, absorptive in-phase signal, 

𝑆𝑆AIP, and dispersive anti-phase signal, 𝑆𝑆DAP. 

𝑆𝑆AIP(𝑡𝑡1, Ω2) = +𝐴𝐴2{exp(𝑖𝑖Ω𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡)

+ exp(𝑖𝑖Ω𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) cos(𝜋𝜋𝐽𝐽12Δ2)}/2

= +A2[exp(𝑖𝑖Ω𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) {1 + cos(𝜋𝜋𝐽𝐽12Δ2)}]/2 

= +A2 exp(𝑖𝑖Ω𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) cos2(𝜋𝜋𝐽𝐽12/2Δ2)

= +A2 exp{𝑖𝑖(Ω ± 𝜋𝜋𝐽𝐽12)𝑡𝑡1} cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) cos2(𝜋𝜋𝐽𝐽12/2 Δ2)/2 

𝑆𝑆DAP(𝑡𝑡1, Ω2) = −𝐴𝐴2{exp(𝑖𝑖Ω𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡)

+ exp(𝑖𝑖Ω𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) cos(𝜋𝜋𝐽𝐽12Δ2)}/2

= −A2[exp(𝑖𝑖Ω𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) {1 + cos(𝜋𝜋𝐽𝐽12Δ2)}]/2 

= −A2 exp(𝑖𝑖Ω𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) cos2(𝜋𝜋𝐽𝐽12/2Δ2)

= ±𝑖𝑖A2 exp{𝑖𝑖(Ω ± 𝜋𝜋𝐽𝐽12)𝑡𝑡1} sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) cos2(𝜋𝜋𝐽𝐽12/2 Δ2)/2 

where 𝐴𝐴2 is the absorptive real part signal of the 1H spin. 

Figure 4.1 Origin of the signal distortion 

Schematic description of signal distortion due to combination of absorptive In-phase and dispersive 
anti-phase signal. 
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Figure 4.2 Pulse sequence of ge-ps-PEP-HSQC 

Schematic diagram of gradient enhanced phase-sensitive PEP adiabatic inversion HSQC (ge-ps-PEP-HSQC) pulse sequence (from bruker 
pulse sequence library ‘hsqcetgpsisp2.2’); Δ𝑡𝑡: evolution delay sum of composite adiabatic pulse and gradient pulses and its delay during the 
𝑡𝑡1-evolution period; Δ2: the first reverse INEPT delay which is equivalent to the additional evolution delay during PEP pathway; Ω: the 
chemical shift of carbon spin and 𝐽𝐽12 is the 13C-13C homonuclear scalar coupling constant of AX spins and assumed that all delays (Δ1, Δ2 
and Δ3) in INEPT and reverse INEPTs are identical to 1/2𝐽𝐽CH which means sin(𝜋𝜋𝐽𝐽CHΔ𝑛𝑛) = 1; where 𝑛𝑛 = 1, 2 and 3).
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4.2.3 Analysis of NMR signal: A general case 

The general form of HSQC signal with n-spin system is given by 

𝑆𝑆(𝑡𝑡1, 𝜔𝜔2) = 1
2𝑛𝑛−1 𝐴𝐴2 exp(𝑖𝑖Ω𝑡𝑡1) ⋅ ��{1 + cos(𝜋𝜋𝐽𝐽1𝑘𝑘Δ2)} ⋅ {cos(𝜋𝜋𝐽𝐽1𝑘𝑘𝑡𝑡1) cos(𝜋𝜋𝐽𝐽1𝑘𝑘Δ𝑡𝑡)

𝑛𝑛

𝑘𝑘=2

− sin(𝜋𝜋𝐽𝐽1𝑘𝑘𝑡𝑡1) sin(𝜋𝜋𝐽𝐽1𝑘𝑘Δ𝑡𝑡)}� 

Or expressed as a linear combination of AIP signal and DAP signal like as below. 

𝐽𝐽1𝑘𝑘����⃗ = �
AIP1𝑘𝑘
DAP1𝑘𝑘� = �

cos(𝜋𝜋𝐽𝐽1𝑘𝑘𝑡𝑡1) cos(𝜋𝜋𝐽𝐽1𝑘𝑘𝛥𝛥𝑡𝑡)
− sin(𝜋𝜋𝐽𝐽1𝑘𝑘𝑡𝑡1) sin(𝜋𝜋𝐽𝐽1𝑘𝑘𝛥𝛥𝑡𝑡)  �

 

For example, assuming three 13C-13C scalar coupling interactions (𝐽𝐽12, 𝐽𝐽13 and 𝐽𝐽14), 

a general form of 13C-13C scalar coupling modulation in a signal is a kronecker prod-

uct of individual signal vectors, 𝑆𝑆1𝑘𝑘. 

 𝐽𝐽 = 1
23 ⋅ 𝐽𝐽12����⃗ ⊗ 𝐽𝐽13����⃗ ⊗ 𝐽𝐽14����⃗ ⋅ � {1 + cos(𝜋𝜋𝐽𝐽1𝑘𝑘𝛥𝛥2)}

4

𝑘𝑘 = 2
 

Thus, the two-dimensional HSQC signal with 4-spin system is given by, 

𝑆𝑆(𝑡𝑡1, 𝜔𝜔2) = 1
23 𝐴𝐴2 exp(𝑖𝑖Ω𝑡𝑡1) ⋅ �{1 + cos(𝜋𝜋𝐽𝐽1𝑘𝑘𝛥𝛥2) }⋅

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ AIP12 ⋅ AIP13 ⋅ AIP14

AIP12 ⋅ DAP13 ⋅ AIP14
AIP12 ⋅ DAP13 ⋅ DAP14
AIP12 ⋅ AIP13 ⋅ DAP14
DAP12 ⋅ AIP13 ⋅ AIP14
DAP12 ⋅ DAP13 ⋅ AIP14
DAP12 ⋅ DAP13 ⋅ DAP14
DAP12 ⋅ AIP13 ⋅ DAP14 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

General form of the signal vector including the relaxation term as follows, 

𝑆𝑆(𝑡𝑡1, 𝜔𝜔2) = 1
2𝑛𝑛−1 𝐴𝐴2 exp(𝑖𝑖Ω𝑡𝑡1) ⋅ 𝐽𝐽 ⋅ exp(−𝑅𝑅2𝑡𝑡1) 

The analytical solution of HSQC signal shows two important conclusions for the 

signal distortion in HSQC.  
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1. Each signal intensity of AIP and DAP is proportional to 

cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) and sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡) respectively.  

2. The delay Δ2 which is the first reverse INEPT delay in the PEP 

module can affect to the total intensity of the HSQC signal as a form of 

‘ 1
2𝑛𝑛−1 Π2

𝑛𝑛{1 + cos(𝜋𝜋𝐽𝐽1𝑘𝑘Δ2)}’. 

 

Therefore, to acquire 13C-13C distortion-free 𝐹𝐹1 -pure in-phase HSQC signal, 

the constant delay, Δ𝑡𝑡, should be removed from 𝑡𝑡1-evolution period. Meanwhile, the 

PEP module has been employed for sensitivity enhancement by factor of √2 in the 

conventional HSQC acquisition scheme91. As for the 13C-isotope labeled compound, 

however, the total signal intensity is affected by the coefficient ‘ 1
2𝑛𝑛−1 Π2

𝑛𝑛{1 +

cos(𝜋𝜋𝐽𝐽1𝑘𝑘Δ2)} ’. Since the INEPT delay is usually adjusted for the optimal 𝐽𝐽CH
1  

transfer efficiency which is generally set to 3.5 ms, a typical 𝐽𝐽CC
1  coupling con-

stant value (35-55 Hz) gives rise to decrease of the total signal intensity. Suppose 

that, for example, AMX spin system in which each of 𝐽𝐽 -coupling constant 𝐽𝐽CC is 

55 Hz then the coefficient is 

[{1 + cos (𝜋𝜋 ⋅ 55 ⋅ 0.0035)}/2]2 ≈ 0.8 

Fortunately, these figures still maintain the sensitivity increase by PEP module. 

Even in extreme cases, such as for four spin AMPX system with a 55 Hz of 𝐽𝐽CC, the 

signal increase effect by PEP is only offset. 
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4.3 Experimental section 

4.3.1 NMR measurements 

All NMR spectra were measured at 298 K with 850 or 800 MHz Bruker Avance III 

HD spectrometers equipped with 5 mm CPTCI CryoProbes (Bruker BioSpin, 

Germany). For the U-13C acetate and U-13C lactate sample, each 1 mM of sample 

(Sigma-Aldrich, MO, USA) was dissolved in 600 μL of deuterium oxide respectively. 

For convenional HSQC NMR experiments, the pulse sequence in Figure 3.1 was 

used. For apodization, cosine-squared function (𝐹𝐹1) and cosine function (𝐹𝐹2) were 

employed and zero-filling was applied to both dimensions. All spectra were 

processed in phased mode along the both 𝐹𝐹1  and 𝐹𝐹2  domain. The actual time-

domain points of pulse sequence were 2048×300 (t2×t1) complex points with the final 

4096×4096 (t2×t1) complex points after zero-filling. The spectral width was 

12821×8049 Hz (F2×F1) and the frequency offsets were 3761 Hz and 5433 Hz for 

1H and 13C nuclei respectively. For HSQC ( 𝐽𝐽CH
1 = 145 Hz; delay Δ: 3.45 ms), the 

number of scans was 2 and the total experiment time was about 12 min. For the NUS 

acquisition, the NUS time-domain points were 2048×3000 complex points with 10% 

NUS sampling density corresponding to 2048×300 (t2×t1) of actual time-domain 

points complex points and it gives final 4096×4096 (t2×t1) complex points after NUS 

reconstruction and zero-filling. 

4.3.2 Simulation of the HSQC signal 

Simulated HSQC signal was plotted by home-built python 3.6 script. For the simu-

lation, the equation derived from 3.2.3 was used. In simulated spectrum, 13C-13C 

coupling constants were set to 57 Hz and 36.5 Hz respectively. Delays Δ𝑡𝑡 and Δ2 

were set to 4.4 ms and 4.8 ms respectively. For the Fourier transformation, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 was 
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set to 120 Hz and time-domain points were 1024 complex points and 𝑅𝑅2 relaxation 

constant was set to 9.0. 
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4.4 Results 

4.4.1 Simulation and verification of product operator analysis 

It was simulated for verification of signal form derived from density operator analy-

sis and compared by measurement of HSQC signal of actual 13C isotope labeled 

compound. To this end, a signal was acquired using HSQC pulse sequence shown in 

Figure 3.2 using 1 mM of U-13C-lactate compared to the simulated signal. The anal-

ysis shows that the simulated signal is almost identical to the actual HSQC signals 

of U-13C lactate.   

 

 

Figure 4.3 Comparison of actual HSQC and its simulated signal 

(A) Overlay of 1D projection of actual HSQC signal (solid line) and simulated signal (dotted line). 
(B) Simulated signal. 
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4.5 Considerations for 13C-13C distortion-free HSQC signal 

Therefore, the following sections will discuss considerations in terms of pulse se-

quence for obtaining HSQC signals without signal distortion due to 13C-13C interac-

tion.  

4.5.1 Coherence selection by PFG to reduce t1-noise artefacts 

An echo anti-echo frequency discrimination method which introduce a pulse field 

gradient for coherence selection has been widely used to many of two-dimensional 

NMR spectroscopic experiments. However, as stated above, any additional delays 

during the 𝑡𝑡1-evolution period can induce the generation of DAPs. Most of gradient 

pulse and accompanied delay for avoiding eddy currents93 require hundreds or thou-

sands of microseconds of length. Thereby, with 13C-isotope labeled samples, the fre-

quency discrimination by PFG in HSQC spectrum is no longer valid. STATES16, 

TPPI17 or STATE-TPPI94 acquisition methods are alternative methods can be used 

for the frequency discrimination without additional constant delays in many two-

dimensional NMR experiments. But, contrary to PFG method, those methods give 

rise to 𝑡𝑡1-noise which arisen from some instrumental imperfections regarding radio-

frequency (RF) pulse95,96. This 𝑡𝑡1-noise, especially from strong signals, usually ham-

pers analysis of weak signals in in vivo or cellular extract samples, generally exhibit 

low signal-to-noise ratio (SNR). While the coherence-transfer pathway (CTP) selec-

tion by phase cycling18,97 also can be introduced to remove undesired coherences 

contributing a generation of 𝑡𝑡1-noise, it requires several repetition of experiment to 

acquire desired coherence, not applicable for many in vivo or metabolic samples. To 

address this problem one can introduce PFG element instead of phase cycling by 

placing the PFG module before or after the 𝑡𝑡1-evolution period. 
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Figure 4.4 Comparison of HSQC spectra with/without coherence selection by PFG. 

(A) HSQC spectrum with STATE-TPPI frequency discrimination. (B) HSQC spectrum with PFG fre-
quency discrimination.; In here, same NMR acquisition parameters were used except for frequency 
discrimination method. 

 

 

Figure 4.5 Proposed pulse sequence for HSQC using gradient pulses with coherence selection 
step outside of the t1-evolution period. 

For the frequency discrimination, STATES, TPPI or STATE-TPPI can be used. G1 ∶ G3 = 4 ∶

1 and Δ1 = 1
2

𝐽𝐽CH
1  Narrow bar indicates an excitation pulse and wide bar indicates an inversion 

pulse. The semi-ellipsoid shape indicates a gradient pulse. 
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Assume that, at an equilibrium state, the density operator has a form of 𝐼𝐼𝑧̂𝑧 

Here, 𝑰𝑰-spin denotes 1H spin and 𝑺𝑺-spin denotes 13C spin. 

Then, at a point ‘a’ the product operator became 

−2𝑆𝑆𝑦̂𝑦𝐼𝐼𝑧̂𝑧  

After applying the pulsed field gradient 𝐺𝐺1 with a duration 𝜏𝜏 along the 𝑧𝑧-axis, the 

operator is converted to 

�𝑆𝑆𝑦̂𝑦 cos{−𝛾𝛾𝐺𝐺1(𝑧𝑧)𝜏𝜏} − 𝑆𝑆𝑥̂𝑥 sin{−𝛾𝛾𝐺𝐺1(𝑧𝑧)𝜏𝜏}�2𝐼𝐼𝑧̂𝑧 

The 𝐺𝐺2 is a homo-spoil gradient pulse, thus, at a point ‘c’ the remained product 

operator is 

2𝐼𝐼𝑧̂𝑧𝑆𝑆𝑦̂𝑦 cos{−𝛾𝛾𝐺𝐺1(𝑧𝑧)𝜏𝜏} 

After 𝑡𝑡1-evolution period, at a point ‘d’, the operator has a form of 

2𝐼𝐼𝑧̂𝑧𝑆𝑆𝑦̂𝑦 cos{−𝛾𝛾𝐺𝐺1(𝑧𝑧)𝜏𝜏} cos(Ω𝑡𝑡1) 

Since the ratio of 𝐺𝐺1 : 𝐺𝐺3  = 4 : 1 and the observable form of operator is 𝐼𝐼−̂, the 

+1 coherence order of 𝑆𝑆-spin can survive only and it is given by 

1
2𝑖𝑖

𝐼𝐼𝑧̂𝑧𝑆𝑆+̂ exp(−𝑖𝑖Ω𝑡𝑡1) 

Before the acquisition, at a point ‘e’, final observable operator has a form of 

1
4𝑖𝑖

𝐼𝐼−̂ exp(−𝑖𝑖Ω𝑡𝑡1) 

Thereby, one can acquire the N-type spectrum without any constant delays during 

the 𝑡𝑡1-evolution delay 
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4.5.2 Fast broadband adiabatic inversion pulse 

Previous density operator analysis give a conclusion as follows; any constant, not a 

variable 𝑡𝑡1, delays during the 𝑡𝑡1-evolution period gives rise to generate dispersive 

anti-phase component signals (DAPs) in the 𝐹𝐹1  domain on the two-dimensional 

HSQC spectrum with 13C labeled samples. In general, the conventional composite 

adiabatic refocusing pulse employed in the analyzed sequence has a long duration (2 

ms; a four-fold of adiabatic inversion pulse) than the adiabatic inversion pulse, thus 

it is enough to induce significant DAPs in the resulted spectrum. Moreover, even a 

pair of adiabatic inversion pulse requires a thousand microseconds. It is still enough 

to generate undesired DAPs in resulted HSQC spectrum with 13C-isotope labeled 

sample. Since the simple rectangular inversion or composite inversion pulses only 

require few microseconds duration, for the JCC coupling interaction which just have 

tens of hertz values, the generation of DAPs could be neglected. But, their short 

inversion coverage, even using the well-designed composite inversion pulse, led an 

introducing a fast broadband adiabatic inversion pulse for obtaining a pure phase 

HSQC signals with 13C-isotope labeled samples. T-L. Hwang et al.98 reported several 

fast adiabatic pulses including a tangential frequency sweeps which can accomplish 

a broadband inversion amount to tens of kilohertz bandwidth using a practical 𝐵𝐵1 

strength. In order to evaluate inversion efficiency of each adiabatic inversion pulses 

with limited pulse duration and its 𝐵𝐵1 strength, simulated inversion profile was cal-

culated. A simulation was carried out using a shapetoolTM in TopSpin 3.6.1 software. 

4.5.3 A phase shift problem of the adiabatic inversion 

For spins with a wide spectral range, in particular with the high-field NMR spec-

trometer, an effective bandwidth acquired from the simple rectangular hard pulse is 

sometimes inadequate. Thus, adiabatic pulses have been employed in many modern 
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NMR pulse sequence for the inversion/refocusing of spins have wide chemical shift 

range such as 13C. However, as stated above, the adiabatic full/half pas-

sage(AFP/AHP) gives undesired phase shift in case of the inversion of transverse 

magnetizations26,27. During the adiabatic passage, a magnitude of the effective mag-

netic field 𝐁𝐁e(𝑡𝑡) in the frequency frame is25 

Be(𝑡𝑡) = |𝐁𝐁e(𝑡𝑡)| = �𝐵𝐵1
2(𝑡𝑡) + (Δ𝜔𝜔(𝑡𝑡)/𝛾𝛾)2 

One can decompose the magnetization into two parts, which are collinear with 

or perpendicular to 𝐁𝐁e(𝑡𝑡) at the onset of the adiabatic pulse. Employing a second 

rotating frame which change its orientation with 𝐁𝐁e(𝑡𝑡)  at the angular velocity of 

𝑑𝑑𝑑𝑑(𝑡𝑡)/𝑑𝑑𝑑𝑑, relative to the frequency frame. α(𝑡𝑡) is defined as 

𝛼𝛼(𝑡𝑡) = arctan �
Δ𝜔𝜔(𝑡𝑡)
𝛾𝛾𝐵𝐵1(𝑡𝑡)�

  

In the second rotating frame, the magnitude of the effective magnetic field Be
′(𝑡𝑡) is 

Be
′(𝑡𝑡) = |𝐁𝐁e

′(𝑡𝑡)| = �Be
2(𝑡𝑡) + {(𝑑𝑑𝑑𝑑(𝑡𝑡)/𝑑𝑑𝑑𝑑)/𝛾𝛾}2 

The adiabatic condition is satisfied when 𝐁𝐁e
′(𝑡𝑡) ≈ 𝐁𝐁e(𝑡𝑡) , which means |𝐁𝐁e(𝑡𝑡)| ≫

|(𝑑𝑑𝑑𝑑(𝑡𝑡)/𝑑𝑑𝑑𝑑)/𝛾𝛾|. 

A magnetization which is collinear with 𝐁𝐁e(𝑡𝑡) at 𝑡𝑡 = 0 will follow 𝐁𝐁e(𝑡𝑡) during the 

adiabatic passage. On contrary a magnetization which is perpendicular to 𝐁𝐁e(𝑡𝑡) 

at 𝑡𝑡 = 0 will rotate in the second rotating frame, through an angle 𝛽𝛽(𝑡𝑡) as follows 

𝛽𝛽(𝑡𝑡) = 𝛾𝛾 � 𝐁𝐁e(𝑡𝑡′)𝑑𝑑𝑡𝑡′
𝑡𝑡

0
 

= 𝛾𝛾 � ��𝐵𝐵1
2(𝑡𝑡′) + Δ𝜔𝜔(𝑡𝑡′)/𝛾𝛾�

2𝑑𝑑𝑡𝑡′
𝑡𝑡

0
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Therefore, adiabatic full/half passage (AFP/AHP) cannot be used for refocusing 

transvers magnetization. The transverse magnetization 𝑀𝑀𝑥𝑥𝑥𝑥 will be rotate by 𝐁𝐁e(𝑡𝑡). 

 

Figure 4.6 The relation between magnetic field vectors in rotating frames used to describe adia-
batic pulses 

The first rotating frame of reference, 𝑥𝑥𝑥𝑥𝑥𝑥, precesses at same frequency of the radio frequency pulse 
which make the 𝐵𝐵1 orientation, arbitrarily chosen along 𝑥𝑥, static. The second rotating frame 𝑥𝑥′𝑦𝑦′𝑧𝑧′ 
rotates about 𝑦𝑦′ with angular velocity (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) of the 𝐵𝐵𝑒𝑒 rotation in the first rotating frame. In the 
second rotating frame, the 𝐵𝐵𝑒𝑒 orientation is static, leading to an additional vector (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)/𝛾𝛾 along 
𝑦𝑦′ as 𝐵𝐵𝑒𝑒 is rotating. (Adapted from DeGraaf et al.25 ) 

 

4.5.4 Acquiring a pure phase refocusing 

Consequently, by an adiabatic inversion pulse, the uniform refocusing of transverse 

magnetizations cannot be accomplished. There are several solutions to address this 

type of problems, such as adiabatic composite refocusing pulse26 and placing a sec-

ond identical inversion pulse which compensate the phase shift during the first adi-

abatic passage27. Since the adiabatic composite refocusing pulse has a four-fold 
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longer duration than the single adiabatic inversion pulse, it requires two-fold of du-

ration than a pair of adiabatic inversion pulses. As stated, in addition, a scaling the 

𝐽𝐽CC-coupling interaction during the 𝑡𝑡1-evolution period requires at least two 13C re-

focusing pulses. Thus, choosing a pair of adiabatic inversion pulse can greatly reduce 

total pulse duration (8-fold) than employing the adiabatic composite pulses. Any 

constant delays in the 𝑡𝑡1-evolution period give rise to DAPs according to their dura-

tions. Therefore, a pair of adiabatic inversion pulse was considered in order to scaling 

of 𝐽𝐽CC-interaction in the 𝐹𝐹1 domain of HSQC spectrum. There are some useful ex-

planations99,100 for a pure-phase refocusing using the inversion pulse pair. But, most 

general explanation about the pure phase arbitrary rotation including an adiabatic 

rotation can be induced from a seminal paper written by T.-L. Hwang et al.101. 

Following description is a proof of the pure phase refocusing using an adiabatic 

inversion pulse pair. Assuming an unitary transformation 𝑆𝑆̂ which has an arbitrary 

phase, frequency or amplitude modulation. Since, 𝑆𝑆̂ can be expressed with three 

consecutive rotation operators as a form of angular momentum operators  

𝑆𝑆̂ = exp�−𝑖𝑖𝑖𝑖𝐼𝐼𝑧̂𝑧� exp�−𝑖𝑖𝑖𝑖𝐼𝐼𝑦̂𝑦� exp�−𝑖𝑖𝑖𝑖𝐼𝐼𝑥̂𝑥� exp�𝑖𝑖𝑖𝑖𝐼𝐼𝑦̂𝑦� exp�𝑖𝑖𝑖𝑖𝐼𝐼𝑧̂𝑧� 

 

Then a density operator form of 𝜌𝜌′̂ after transformation of 𝜌𝜌 ̂ caused by 𝑆𝑆 is  

𝜌𝜌′̂ = 𝑆𝑆̂𝜌𝜌𝑆̂𝑆̂∗ 

Consider, 𝐦𝐦 is a magnetization from 𝜌𝜌 ̂ and 𝐌𝐌 is a magnetization from 𝜌𝜌′̂ 

If  𝐌𝐌 = 𝐓𝐓𝐓𝐓, then a 3 × 3 transform matrix T is 

𝐓𝐓 =  
⎣
⎢
⎢
⎡cos2 𝜃𝜃 sin2(𝛼𝛼/2) cos 2𝛽𝛽 cos2 𝜃𝜃 sin2(𝛼𝛼/2) sin 2𝛽𝛽 0

cos2 𝜃𝜃 sin2(𝛼𝛼/2) sin 2𝛽𝛽 −cos2 𝜃𝜃 sin2(𝛼𝛼/2) cos 2𝛽𝛽 0
0 0 cos 𝛼𝛼 cos2 𝜃𝜃 + sin2 𝜃𝜃⎦

⎥
⎥
⎤
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Let us define P, the probability of spin inversion by S 

𝑃𝑃 = 1
2 �1 −

𝑀𝑀𝑧𝑧
𝑚𝑚𝑧𝑧 � 

= 1
2

(1 − cos 𝛼𝛼 cos2 𝜃𝜃 − sin2 𝜃𝜃) 

= cos2 𝜃𝜃 sin2(𝛼𝛼/2)  

Then, the transform matrix T is  

𝐓𝐓 =  
⎣
⎢
⎢
⎡𝑃𝑃 cos 2𝛽𝛽 𝑃𝑃 sin 2𝛽𝛽 0

𝑃𝑃 sin 2𝛽𝛽 −𝑃𝑃 cos 2𝛽𝛽 0
0 0 1 − 2𝑃𝑃 ⎦

⎥
⎥
⎤
 

After applying the transformation T, longitudinal magnetization and transverse 

magnetization are not mixed each other. Each transverse magnetization 𝑀𝑀𝑥𝑥  and 

𝑀𝑀𝑦𝑦, however, get mixed to 𝑃𝑃 �𝑚𝑚𝑥𝑥 cos 2𝛽𝛽 + 𝑚𝑚𝑦𝑦 sin 2𝛽𝛽� and  𝑃𝑃 �𝑚𝑚𝑥𝑥 sin 2𝛽𝛽 − 𝑚𝑚𝑦𝑦 cos 2𝛽𝛽� 

respectively. Because, the angle 𝛽𝛽 is an inclination of 𝐵𝐵eff  due to resonance off-

set, Δ𝜔𝜔/𝛾𝛾, one can explain a phase shift effect of transverse magnetizations resulted 

from an adiabatic inversion pulse using this transform matrix expression. 

If one applies the transform T to the M again, 𝐓𝐓𝟐𝟐 has a form of 

 𝐓𝐓𝟐𝟐 =  
⎣
⎢
⎢
⎡𝑃𝑃 2 0 0

0 𝑃𝑃 2 0
0 0 (1 − 2𝑃𝑃 )2⎦

⎥
⎥
⎤
 

Resulted transform matrix 𝐓𝐓𝟐𝟐 shows that after applying the second identical 

transformation, each of transverse magnetization returns to their original states; a 

pure phase inversion/refocusing. The coefficient 𝑃𝑃 2 means the intensity of magnet-

ization is attenuated according to the inversion efficiency. Consequently, by placing 

a pair of adiabatic inversion pulse, a spin-echo pulse sequence without any phase 

shift can be accomplished. 
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4.5.5 Evaluation of refocusing efficiency 

In order to evaluate a pure phase refocusing of the transverse magnetization by the 

adiabatic inversion pulse pair, 13C spectra by even-numbered pulse (zero-and double-

adiabatic pulse) and odd-numbered pulse (single adiabatic pulse) were compared re-

spectively. As shown in Figure 3.6, in the even-numbered adiabatic pulse spectra, 

there is no chemical shift dependent phase error due to phase shift during adiabatic 

passage. On the contrary, in case of the single adiabatic inversion pulse, it exhibits 

the chemical shift dependent phase error on account of undesired phase evolution 

during adiabatic passage. 

 

Figure 4.7 Comparison of 13C spectra according to the number of adiabatic inversion pulses 

(A) Single-adiabatic inversion pulse (B) Double-adiabatic inversion pulses. (C) Without adiabatic in-
version pulses.; To acquire 13C spectra 10% ethylbenzene in chloroform-d was used. Pulse shape: 
Tanh/Tan. Pulse duration: 192 microseconds. 
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Figure 4.8 Pulse sequences for comparison of phase shift effects 

Pulse sequences for comparison of phase shift effects between zero-, single- and double- adiabatic in-
version pulses on transverse magnetization. (Upper) Without adiabatic inversion pulse (Middle) Sin-
gle-adiabatic inversion pulse (Lower) Double-adiabatic inversion pulse. 
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4.6 Implementation of the J-scaling pulse sequence 

As stated, the coupling constant and the multiplet structure by 𝐽𝐽 -coupling interac-

tion can give structural information such as the number of nearby spins can interact 

or relative conformation between spins. However, for the indirect domain the obser-

vation of their fine structure and exact coupling constant values have been limited 

due to poor spectral resolution thereof. On the other hands, unlike direct acquisition 

period in 𝑡𝑡2 where the time domain data is actually collected, the indirect detection 

scheme during the 𝑡𝑡1-evolution period do not requires actual detection of signals by 

receiver of the spectrometer13. Thus, one can manipulate acquisition of the indirect 

detection scheme without the constraints of data acquisition scheme. Thereby, sev-

eral manipulation methods, including 𝐽𝐽 -scaling12,13,14 in the indirect domain of two-

dimensional NMR have been developed. In the following, first of all, detailed prin-

ciples based on product operator formalism for 𝐽𝐽  -scaling techniques will be ad-

dressed and then the implementation of 𝐽𝐽 -scaling sequence into actual HSQC pulse 

sequence will be described. 

4.6.1 Product operator analysis of the J-scaling sequence 

Let us consider a pulse sequence consist of two inversion pulse 𝜋𝜋(𝐼𝐼𝑥̂𝑥 + 𝑆𝑆𝑥̂𝑥) and 𝜋𝜋Ŝx 

In this case, consider a weakly coupled two spin system with a Hamiltonian in the 

rotating frame of reference 

𝐻𝐻�0 = 𝐻𝐻�1 + 𝐻𝐻�2; 𝐻𝐻�1 = 𝛺𝛺1𝐼𝐼𝑧̂𝑧 + 𝛺𝛺𝑠𝑠𝑆𝑆𝑧̂𝑧 and 𝐻𝐻�2 = 2𝜋𝜋𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑧̂𝑧𝑆𝑆𝑧̂𝑧 

Assuming a density operator, 𝐼𝐼𝑥̂𝑥 , at t = 0, the evolution of density operator 

through the pulse sequence above is described by 

𝐼𝐼𝑥̂𝑥 cos(Ω𝐼𝐼𝜏𝜏) cos(𝜋𝜋N𝐽𝐽𝐼𝐼𝐼𝐼𝜏𝜏) + 𝐼𝐼𝑦̂𝑦 sin(Ω𝐼𝐼𝜏𝜏) cos(𝜋𝜋N𝐽𝐽𝐼𝐼𝐼𝐼𝜏𝜏) 

−2𝐼𝐼𝑦̂𝑦𝑆𝑆𝑧̂𝑧 cos(Ω𝐼𝐼𝜏𝜏) sin(𝜋𝜋N𝐽𝐽𝐼𝐼𝐼𝐼𝜏𝜏) + 2𝐼𝐼𝑥̂𝑥𝑆𝑆𝑧̂𝑧 sin(Ω𝐼𝐼𝜏𝜏) sin(𝜋𝜋N𝐽𝐽𝐼𝐼𝐼𝐼𝜏𝜏) 
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Therefore, one can obtain an N-fold scaled 𝐽𝐽  -coupling evolution while the 

scaling of chemical shift evolution being unchanged. If the delay 𝜏𝜏 being changed 

to a variable delay 𝑡𝑡1, 

𝐼𝐼𝑥̂𝑥 cos(Ω𝐼𝐼𝑡𝑡1) cos(𝜋𝜋N𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡1) + 𝐼𝐼𝑦̂𝑦 sin(Ω𝐼𝐼𝑡𝑡1) cos(𝜋𝜋N𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡1) 

−2𝐼𝐼𝑦̂𝑦𝑆𝑆𝑧̂𝑧 cos(Ω𝐼𝐼𝑡𝑡1) sin(𝜋𝜋N𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡1) + 2𝐼𝐼𝑥̂𝑥𝑆𝑆𝑧̂𝑧 sin(Ω𝐼𝐼𝑡𝑡1) sin(𝜋𝜋N𝐽𝐽𝐼𝐼𝐼𝐼𝑡𝑡1) 

 

 

Figure 4.9 Schematic sequence of the J-scaling module 

Schematic sequence of the 𝐽𝐽 -scaling module for two spin I and S. Black-bar indicates the inversion 
pulse 𝜋𝜋𝐼𝐼𝑥̂𝑥 and 𝜋𝜋𝑆𝑆𝑥̂𝑥. 

 

 

Figure 4.10 Exemplified J-scaling module for two-dimensional HSQC 

Narrow bar indicates  𝜋𝜋/2𝐼𝐼𝑥̂𝑥 excitation pulse and wide bar indicates 𝜋𝜋𝐼𝐼𝑥̂𝑥/𝜋𝜋𝑆𝑆𝑥̂𝑥 inversion pulse. 
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With the stated result, a similar procedure can be applied to HSQC pulse se-

quence. Suppose that a weakly coupled two spin system with a Hamiltonian in the 

rotating frame of reference 

𝐻𝐻�0 = 𝐻𝐻�1 + 𝐻𝐻�2; 𝐻𝐻�1 = 𝛺𝛺1𝐼𝐼𝑧̂𝑧 + 𝛺𝛺1,𝑠𝑠𝑆𝑆1̂,𝑧𝑧 + 𝛺𝛺2,𝑠𝑠𝑆𝑆2̂,𝑧𝑧 and 𝐻𝐻�2 = 2𝜋𝜋𝐽𝐽12𝑆𝑆1,𝑧𝑧𝑆𝑆2̂,𝑧𝑧 

where the 𝐼𝐼-spin is designated for the 1H spin and the 𝑆𝑆-pin is designated for the 
13C spin 

Assume that at a point ‘a’, the density operator has a form of 

2𝑆𝑆1̂,𝑦𝑦𝐼𝐼𝑧̂𝑧 

After a free precession with an inversion pulse the density operator, at a point ‘b’ 

−2𝑆𝑆1̂,𝑦𝑦𝐼𝐼𝑧̂𝑧 cos{(N − 1)𝜋𝜋𝐽𝐽12} − 𝑆𝑆1̂,𝑥𝑥 sin{(N − 1)𝜋𝜋𝐽𝐽12𝑡𝑡1} 

A following pulse sequence gives 

cos{(N − 1)𝜋𝜋𝐽𝐽12𝑡𝑡1} cos(Ω1𝑡𝑡1) �2𝑆𝑆1̂,𝑦𝑦𝐼𝐼𝑧̂𝑧 cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) − 𝑆𝑆1̂,𝑥𝑥 sin(𝜋𝜋𝐽𝐽12𝑡𝑡1)� 

− cos{(N − 1)𝜋𝜋𝐽𝐽12𝑡𝑡1} sin(Ω1𝑡𝑡1) �2𝑆𝑆1̂,𝑥𝑥𝐼𝐼𝑧̂𝑧 cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) + 𝑆𝑆1̂,𝑦𝑦 sin(𝜋𝜋𝐽𝐽12𝑡𝑡1)� 

− sin{(N − 1)𝜋𝜋𝐽𝐽12𝑡𝑡1} cos(Ω1𝑡𝑡1) �𝑆𝑆1̂,𝑥𝑥 cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) + 2𝑆𝑆1̂,𝑦𝑦𝐼𝐼𝑧̂𝑧 sin(𝜋𝜋𝐽𝐽12𝑡𝑡1)� 

− sin{(N − 1)𝜋𝜋𝐽𝐽12𝑡𝑡1} sin(Ω1𝑡𝑡1) �𝑆𝑆1̂,𝑦𝑦 cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) − 2𝑆𝑆1̂,𝑥𝑥𝐼𝐼𝑧̂𝑧 sin(𝜋𝜋𝐽𝐽12𝑡𝑡1)� 

Using the trigonometric identity, it is simplified to 

2𝑆𝑆𝑦̂𝑦𝐼𝐼𝑧̂𝑧 cos(Ω1𝑡𝑡1) cos(N𝜋𝜋𝐽𝐽12𝑡𝑡1) − 𝑆𝑆𝑥̂𝑥 cos(Ω1𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) − 2𝑆𝑆𝑥̂𝑥𝐼𝐼𝑧̂𝑧 cos(Ω1𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1)

− 𝑆𝑆𝑦̂𝑦 cos(Ω1𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) 

After an applying instantaneous 𝜋𝜋/2(𝐼𝐼𝑥̂𝑥 + 𝑆𝑆𝑥̂𝑥) pulse at a point ‘c’, 

−2𝑆𝑆1̂,𝑧𝑧𝐼𝐼𝑦̂𝑦 cos(Ω1𝑡𝑡1) cos(𝜋𝜋N𝐽𝐽12𝑡𝑡1)���������������������������������������
Single quantum anti−phase

  𝑦𝑦−magnetization on 𝐼𝐼−spin

−𝑆𝑆1̂,𝑥𝑥 cos(Ω1𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1)�������������������������������
Single quantum in−phase

  𝑥𝑥−magnetization on 𝑆𝑆−spin

 

+2𝑆𝑆1̂,𝑥𝑥𝐼𝐼𝑦̂𝑦 cos(Ω1𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12𝑡𝑡1)�������������������������������������
Multiple Quantum coherence

−𝑆𝑆1̂,𝑧𝑧 cos(Ω1𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12𝑡𝑡1)�������������������������������
𝑧𝑧−magnetization on 𝑆𝑆−spin
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Assuming the only retained operator is the single quantum 𝐼𝐼-spin (1H) operator, 

one can get the N-fold scaled 13C-13C scalar coupling interaction along the variable 

𝑡𝑡1 while its (𝑆𝑆-spin; 13C) chemical shift evolution is retained. 

4.6.2 Effect of the inversion efficiency for the J-scaling 

As aforementioned earlier, the adiabatic inversion pulse pair can refocusing the 

transverse magnetization without any undesirable phase shift. Note that the inversion 

efficiency affects the intensity of the transverse magnetization. Moreover, in the case 

of active spin, if the bandwidth of adiabatic inversion pulse is insufficient and these 

pulse pair conditions are not achieved, it is accompanied by a change in phase of 

magnetization, along with a reduction in transverse magnetization. Fortunately, most 

of carbon spins which are detectable in HSQC has rather narrow chemical shift range 

so that it shows nearly full-inversion efficiency even with the fast adiabatic inversion 

pulse. Meanwhile, in the case of quaternary carbon with fairly large chemical shift 

values, only a part of it can be inverted by fast adiabatic inversion pulses with narrow 

bandwidth, leading to a refocusing of 13C-13C interactions that can cancel the effect 

of the 𝐽𝐽 -scaling module.  

 

Assuming an adiabatic pulse with an inversion efficiency, 𝑓𝑓𝑘𝑘, at a specific off-

set frequency Ω𝑘𝑘, the generated 𝐽𝐽 -scaled HSQC signal for AMX spin system can 

be expressed as follows 
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𝑆𝑆(𝑡𝑡1, 𝜔𝜔2) = 𝑓𝑓2 ⋅ 𝑓𝑓3 ⋅ ��{cos(𝜋𝜋N𝐽𝐽1𝑘𝑘𝑡𝑡1) cos(𝜋𝜋𝐽𝐽1𝑘𝑘Δ𝑡𝑡) − sin(𝜋𝜋N𝐽𝐽1𝑘𝑘𝑡𝑡1) sin(𝜋𝜋𝐽𝐽1𝑘𝑘Δ𝑡𝑡)}�
3

𝑘𝑘=2

+ (1 − 𝑓𝑓2)𝑓𝑓3 ⋅ {cos(𝜋𝜋𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡)

− sin(𝜋𝜋𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡)} ⋅ {cos(𝜋𝜋N𝐽𝐽13𝑡𝑡1) cos(𝜋𝜋𝐽𝐽13Δ𝑡𝑡)

− sin(𝜋𝜋N𝐽𝐽13𝑡𝑡1) sin(𝜋𝜋𝐽𝐽13Δ𝑡𝑡)}

+ 𝑓𝑓2(1 − 𝑓𝑓3) ⋅ {cos(𝜋𝜋N𝐽𝐽12𝑡𝑡1) cos(𝜋𝜋𝐽𝐽12Δ𝑡𝑡)

− sin(𝜋𝜋N𝐽𝐽12𝑡𝑡1) sin(𝜋𝜋𝐽𝐽12Δ𝑡𝑡)} ⋅ {cos(𝜋𝜋𝐽𝐽13𝑡𝑡1) cos(𝜋𝜋𝐽𝐽13Δ𝑡𝑡)

− sin(𝜋𝜋𝐽𝐽13𝑡𝑡1) sin(𝜋𝜋𝐽𝐽13Δ𝑡𝑡)}

+ (1 − 𝑓𝑓2)(1 − 𝑓𝑓3) ⋅ ��{cos(𝜋𝜋𝐽𝐽1𝑘𝑘𝑡𝑡1) cos(𝜋𝜋𝐽𝐽1𝑘𝑘Δ𝑡𝑡)
3

𝑘𝑘=2

− sin(𝜋𝜋𝐽𝐽1𝑘𝑘𝑡𝑡1) sin(𝜋𝜋𝐽𝐽1𝑘𝑘Δ𝑡𝑡)}� 

Note that the effect on the 𝐽𝐽 -scaling due to the inversion efficiency of second adia-

batic inversion pulse was neglected. 

Therefore, the final form of the 𝐽𝐽 -scaled HSQC signal consists of N-fold (gray-

box) and unscaled 𝐽𝐽CC-coupling terms depending on the inversion efficiency by the 

adiabatic pulse of each of passive spins. 
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4.7 Experimental section 

4.7.1 NMR measurements 

All NMR spectra were measured at 298 K with 850 or 800 MHz Bruker Avance III 

HD spectrometers equipped with 5 mm CPTCI CryoProbes (Bruker BioSpin, 

Germany). For the U-13C acetate and U-13C lactate sample, each 1 mM of sample 

(Sigma-Aldrich, MO, USA) was dissolved in 600 μL of deuterium oxide respectively. 

For 𝐽𝐽 -scaled HSQC NMR experiments, the pulse sequence in Figure 3.12 was used. 

For apodization, cosine-squared function ( 𝐹𝐹1 ) and cosine function ( 𝐹𝐹2 ) were 

employed and zero-filling was applied to both dimensions. All spectra were 

processed in phased mode along the both 𝐹𝐹1  and 𝐹𝐹2  domain. The actual time-

domain points of pulse sequence were 2048×300 (t2×t1) complex points with the final 

4096×4096 (t2×t1) complex points after zero-filling. The spectral width was 

12821×8049 Hz (F2×F1) and the frequency offsets were 3761 Hz and 5433 Hz for 

1H and 13C nuclei respectively. For HSQC ( 𝐽𝐽CH
1 = 145 Hz; delay Δ: 3.45 ms), the 

number of scans was 2 and the total experiment time was about 12 min. For the NUS 

acquisition, the NUS time-domain points were 2048×3000 complex points with 10% 

NUS sampling density corresponding to 2048×300 (t2×t1) of actual time-domain 

points complex points and it gives final 4096×4096 (t2×t1) complex points after NUS 

reconstruction and zero-filling 
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4.7.2 Adiabatic pulses 

Pulse Duration 
(𝛍𝛍𝛍𝛍) 𝜸𝜸𝑩𝑩𝟏𝟏,𝒎𝒎𝒎𝒎𝒎𝒎 (Hz) Sweep width 

(kHz) 
Tanh/Tan, R = 153 192 13778 800 
Tanh/Tan, R = 390 300 14051 1300 
aCrp80comp.4 2000 11283 80 
bCrp80,0.5,20.1 500 11283 80 

a,b From Topspin 3.6 preset adiabatic pulses 

 

4.7.3 Simulation of the HSQC signal 

Simulated 𝐽𝐽 -HSQC signal was plotted by home-built python 3.6 script. For simula-

tion the equation derived from 3.6.2 was used. In simulated spectrum, 13C-13C cou-

pling constants were set to 57 Hz and 36.5 Hz respectively. Delay Δ𝑡𝑡 was set to 1.6 

ms and 𝑅𝑅2 relaxation constant was set to 0.3. For the Fourier transformation, 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 

was set to 4000 Hz and time-domain points were 150 complex points with the final 

4096 complex points after zero-filling. For the apodization cosine-squared function 

was employed. The inversion efficiency of assumed as 0.94. 
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4.8 Results and discussion 

4.8.1 Validation of the J-scaling sequence 

The advantage of 𝐽𝐽 -scaling is that the degree of the scaling can be adjusted simply 

by adjusting the scaling factor, N, without increasing the additional measurement 

time. For its validation, the actual splitting pattern changes according to the scaling 

factor adjustment using U-13C acetate samples was monitored. As shown in Figure 

3.10, the coupling constant by 13C-13C coupling interaction between carbonyl carbon 

and alpha carbon of U-13C acetate is increased in proportion to the size of the scaling 

factor N. 

4.8.2 Comparison of signal distortion effects by adiabatic pulses 

Since the finite delay time within the 𝑡𝑡1-evolution period causes the signal distortion 

of the HSQC signal of the 13C-isotope labeled compound. To address this, the coher-

ence selection module was moved outside the 𝑡𝑡1-evolution period and a short adia-

batic inversion pulse pair was introduced. On the other hand, in the case of fast adi-

abatic inversion pulse, due to restrictions such as peak power conversion, proper 

compromise between pulse length and bandwidth is needed. For this purpose, the 

degree of HSQC signal distortion by their pulse duration was compared using several 

adiabatic pulses with similar peak power conversion. As shown in Figure 3.12, the 

intensity of the signal distortion changed with the change in adiabatic pulse length. 

In the case of composite adiabatic pulse with a pulse length of 2 ms (Figure 3.12A), 

the magnitude of the signal indicating the signal distortion in the gray box, along 

with the broadening of the individual signal, was very large, while this signal distor-

tion tended to decrease as the length of the adiabatic pulse became shorter. Mean-

while, the change in the effective bandwidth of each inversion pulse according to the 

pulse length due to the restriction conditions such as peak power was also evaluated. 
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As mentioned in 3.6.2, the selective refocusing of 13C-13C coupling with a large offset 

value due to restrictions on the coverage of adiabatic inversion was shown together 

with the splitting pattern, which does not show the effect of 𝐽𝐽 -scaling.  

 

Figure 4.11 Comparison of HSQC signals according to J-scaling factor 

Comparison of scale-up of the 𝐽𝐽 -coupling constant with difference scaling factor ‘N’. (A-E) The 
doublet signals of U-13C acetate HSQC spectrum produced according to each scaling factor ‘N’. The 

bottom 1D signals are 𝐹𝐹1 projection spectrum. (F) Structure of acetate and its 𝐽𝐽CC
1  coupling con-

stants. 
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Figure 4.12 Comparison of HSQC signals according to pulse type and its duration 

Comparison of HSQC signal alpha carbon of U-13C lactate with different adiabatic pulses, duration; 
The scaling factor ‘N’ was set to 6. (A) Composite chirped adiabatic refocusing pulse; Crp80comp.4, 
2000 μs (B) Chirped adiabatic inversion pulse; Crp80,0.5,20.1, 500 μs (C) Tangent hyperbolic tan-
gent (Tanh/Tan) adiabatic inversion pulse, 300 μs (D) Tanh/Tan adiabatic inversion pulse, 192 us.; 
Gray-boxes indicate signal distortion due to the generation of dispersive anti-phase term according to 
the duration of adiabatic pulses. Double-headed arrows indicate unscaled 13C-13C coupling due to in-
sufficient inversion efficiency of adiabatic pulses. 
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Figure 4.13 Pulse sequence of 13C-13C distortion-free F1-pure in-phase J-scaled HSQC 

Proposed pulse sequence of 13C-13C distortion-free 𝐹𝐹1-pure in-phase J-scaled HSQC. Phase of Ф1 and was shifted by 90° at every increment. 
The phase cycling is as follows. Ф1 = x, -x; Ф2 = -y, -y, y, y; Ф3 = -x, -x, x, x Фrec = x, -x, -x, x. Gradient ratios: G1 : G2 = 4 : 1 and G3, G4 and 
G5 are homospoil gradient pulses. 
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4.8.3 Acquiring of the 13C-13C distortion-free HSQC signal 

Finally, the HSQC signals acquired from the proposed pulse sequence (Figure 3.12) 

were compared with those produced by the conventional HSQC pulse sequence. To 

this end, using the U-13C-lactate, conventional HSQC signals with the same 𝑡𝑡1-time-

domain point (TD: 300) and 3000 𝑡𝑡1-time-domain points were obtained and com-

pared with the proposed 𝐽𝐽 -scaled HSQC signals (scaling factor = 6). In the case of 

conventional HSQC, the intact doublet of doublet signal at alpha carbon of U-13C 

lactate did not appear due to poor resolution of the indirect domain (Figure 3.13A) 

and signal distortion (Figures 3.13A and B). On the other hand, in the case of 𝐽𝐽 -

scaled HSQC signal (Figure 3.13C), despite the same sampling point value (TD: 300) 

as in Figure 3.13A, the correct doublet of doublet signal could be confirmed due to 

the six-fold increased 13C-13C interaction effect, and signal distortion caused by anti-

phase also rarely appeared. Of note, the simulated 𝐽𝐽 -scaled HSQC signal according 

to the results derived from 3.6.2 also showed almost the same form as the actual 

signal (Figure 3.13D and E). 
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Figure 4.14 Comparison of HSQC signals using HSQC, NUS-HSQC and J-scaled HSQC 

Comparison of HSQC signal of alpha carbon of U-13C lactate. (A) Conventional HSQC signal 
(TD:300; uniform sampling). (B) Conventional HSQC signal (TD:3000; NUS 10% sampling density 
was used). (C) 𝐽𝐽 -scaled HSQC signal (TD: 300, scaling factor: 6) (D) Enlarged of (C) (E) Simulated 

signal (solid line); Dotted line indicates signal of (D). (F) Structure of U-13C lactate and its 𝐽𝐽CC
1 -

coupling constants. 
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4.9 Conclusions 

In this study, a novel HSQC measurement sequence to effectively analyze the intact 

peak splitting pattern and to facilitate extract the exact coupling constant by 13C-13C 

interaction of the 1H-13C correlation spectrum (HSQC) signal of a 13C isotope labeled 

compound devised. Through this, the peak splitting pattern due to the 13C-13C inter-

action was confirmed without an increase in the additional sampling point (increas-

ing of experiment time).  

At this point, an unscaled 13C-13C coupling signal was observed due to incom-

plete coverage of the adiabatic inversion pulse used. These problems will then be 

addressed by the introduction of other types of the broadband inversion pulse 

(BIP)102,103,104, which provides wider bandwidth under constraints such as limited 

𝐵𝐵1,𝑚𝑚𝑚𝑚𝑚𝑚 values and pulse duration. In addition, the present 𝐽𝐽 -scaled HSQC sequence 

omitted the introduction of the PEP module due to problems in the decrease of HSQC 

signal intensity and limited inversion coverage of adiabatic pulse. However, this 

problem can also be solved by the introduction of an infusion pulse with wider cov-

erage and shorter duration. 

In conclusion, the 𝐽𝐽 -scaled HSQC may be widely applied in metabolite analy-

sis studies in which the concentration of a sample is low or a 13C isotope-labeled 

compound is frequently used for analysis of a specific metabolic pathway. In addi-

tion, since NMR experiment proposed here does not require additional measurement 

time, it can be expected to be used for real-time metabolite analysis based on NMR 

spectroscopy. 

 

 



111 

Chapter 5 

5 Conclusion
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As discussed throughout this thesis, 13C-13C correlation gives valuable structural in-

formation especially organic molecules consisting of carbon nuclei. In this context, 

developments of two novel NMR methods were discussed as follows  

1. Spectral deconvolution methods for NMR based mixture analysis.  

2. Novel 13C-13C distortion-free 𝐽𝐽 -scaled HSQC 

In chapter 3, novel NMR acquisition and processing method providing a high-

resolution 13C-13C correlation spectrum of a compound with many quaternary car-

bons was presented. It was shown that modified HMBC pulse sequence tailored to 

the indirect covariance operation in concert with NUS acquisition scheme can give 

rise to high-quality 13C-13C correlation spectrum. Then, a fidelity of resulted 13C-13C 

correlation network was evaluated with rotenone, a natural compound consisting of 

total 23 carbon nuclei and resulted spectrum shows very reliable correlation 13C-13C 

correlation information. Since, in principle, every 13C nuclei information in most of 

single small organic molecule consisting carbon skeleton could be assembled by 

long-range 1H-13C correlation NMR spectroscopy such as HMBC, it was demon-

strated that from proton sensitivity 1H-13C correlation spectrum of certain small or-

ganic compounds, one can acquire reliable 13C-13C correlation network information. 

Additionally, based on the above conclusion, an optimized signal-processing 

procedure (DECODE) for the extraction of individual carbon NMR spectra from 

mixture NMR data was developed. For this, several considerations which are tailored 

to eigendecomposition process including NMR acquisition and indirect covariance 

operation were discussed and the performance of DECODE then evaluated by 1:1 

mixture sample and DECODE provided complete individual 13C NMR spectra. Since 

DECODE based on 13C NMR which has sparse signal distribution comparing to 1H 

NMR, two 13C signals separated by tens of Hz intervals was distinguished. 
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In chapter 4, novel HSQC pulse sequence for the analysis of 13C-isotope labeled 

compounds which were frequently employed in NMR based cellular metabolic 

analysis was presented. Firstly, an analytical solution of HSQC signal responsible 

for a phase-distortion in the indirect domain was deduced using the product operator 

analysis. It turns out that any constant delays in 𝑡𝑡1-evolution period can generate 

dispersive anti-phase signals according to the duration of the constant delay. Thus, 

in order to evaluate the analytical solution, the simulated signal was compared with 

real HSQC signal. Based on the analytical solution, then, a modified HSQC pulse 

sequence which can proved distortion-free HSQC signal was presented. In addition, 

to facilitate 𝐽𝐽  -coupling splitting analysis within a limited experimental time, 

consideration for incorporating of 𝐽𝐽  -scaling pulse sequence into HSQC pulse 

sequecne also discussed. Since the incorporation of 𝐽𝐽  -scaling module does not 

affect total experiment time, it effectively and selectively increased the splitting 

signals due to 13C-13C interactions. Overall, suggested novel HSQC pulse sequence 

successfully provided distortion-free signal containing a fine structure of 𝐽𝐽CC -

multiplet within ten-minute. 

Since the NMR methods suggested in this thesis do not require any special 

instruments or computational techniques, it can be easily adopted to previous NMR 

based analysis and the described approaches should prove useful in various fields of 

chemistry and cellular metabololmics. 
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Appendix A 

A Pulse sequence codes 

A.1 NMR pulse sequence codes for Bruker Topspin 3.6

;mHMBC sequence for DECODE 

;J. W. Cha 

 

;$CLASS=HighRes  

;$DIM=2D  

;$TYPE=  

;$SUBTYPE=  

;$COMMENT=  

 

#include <Avance.incl>  

#include <Grad.incl>  

#include <Delay.incl>  

 

 

"p2=p1*2"  

"p4=p3*2"  

"d11=30m"  

"d12=20u"  

"d13=4u"  

 

"in0=inf1/2"  

 

"FACTOR1=( (1s/(cnst14*2)) - 
(1s/(cnst15*2)) ) * 10000000 / 
td1"  

"in6=FACTOR1/10000000"  

 

"in30=in6"  

 

"d0=3u"  

"d6=1s/(cnst14*2)"  

"d30=d6" 

 

"DELTA1=1s/(2 * (cnst6 + 0.146 * 
(cnst7-cnst6)) ) -p16-d16"  

"DELTA2=1s/(2 * (cnst7 - 0.146 * 
(cnst7-cnst6)) ) -p16-d16"  

"DELTA3=p16+d16"  

"DELTA4=p16*4+d16*4+d13*2+p4"  

"DELTA5=DELTA1+DELTA2+p16*2+d16*
2+p3*2-d12" 

"DELTA6=d30-d12"  

"DELTA7=p2+6u" 

"DELTA8=p3*2/3.1416" 

"DELTA9=(DELTA7-DELTA8)/2" 

"DELTA10=(6u+p2)/2" 

 

"cnst30=(1-
sfo2/sfo1)/(1+sfo2/sfo1)" 

 

define list<gradient> EA1 = 
{ 1.000 -cnst30} 

define list<gradient> EA2 = { -
cnst30 1.000} 

 

1 ze  
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2 d11 do:f2  

3 50u UNBLKGRAD  

p16:gp4  

d16  

p1 ph1  

p16:gp4  

d16 pl2:f2 

d1   

p1 ph1  

d6 

(p3 ph3):f2 ; for producing MQ 
state  

DELTA3 pl0:f2 

DELTA10 

(p24:sp7 ph6):f2 

DELTA3 pl2:f2 

DELTA10 

DELTA8 

d0  

p2 ph2  

d0  

p16:gp1*EA1   

d16 pl0:f2 

DELTA8 

(p24:sp7 ph6):f2 

p16:gp2*EA2  

d16 pl2:f2 

DELTA10*2 

(p3 ph5):f2 

DELTA6 

d12 pl12:f2 BLKGRAD  

go=2 ph31 cpd2:f2  

d11 do:f2 mc #0 to 2  

 F1EA(calgrad(EA1) & cal-
grad(EA2), caldel(d0, +in0) & 
caldel(d6, -in6) & caldel(d30, -
in30) & calph(ph3, +180) & 
calph(ph31, +180))  

exit  

 

 

ph1= 0  

ph2= 0  

ph3= 0 2  

ph5= 2 2 0 0  

ph6= 0 

ph31= 2 0 0 2    

 

 

;pl1 : f1 channel - power level 
for pulse (default)  

;pl2 : f2 channel - power level 
for pulse (default)  

;pl12: f2 channel - power level 
for CPD/BB decoupling  

;p1 : f1 channel - 90 degree 
high power pulse  

;p2 : f1 channel - 180 degree 
high power pulse  

;p3 : f2 channel - 90 degree 
high power pulse  

;p4 : f2 channel - 180 degree 
high power pulse  

;p16: homospoil/gradient pulse  

;d0 : incremented delay (2D) [3 
usec]  

;d1 : relaxation delay; 1-5 * T1  

;d6 : delay for evolution of 
long range couplings (d6max, 
1/2Jlr)  
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;d11: delay for disk I/O [30 
msec]  

;d12: delay for power switching 
[20 usec]  

;d13: short delay [4 usec] 

;d16: delay for homospoil/gradi-
ent recovery  

;d30: decremented delay = d6 

;cnst14: = J(XH) long range 
(min)  

;cnst15: = J(XH) long range 
(max)  

;inf1: 1/SW(X) = 2 * DW(X)  

;in0: 1/(2 * SW(X)) = DW(X) 

;nd0: 2  

;in6: (d6max - d6min)/td1 
[200msec-20msec]  

;in30: = in6  

;ns: 2 * n  

;ds: 16  

;td1: number of experiments 

;FnMODE: EA  

;cpd2: decoupling according to 
sequence defined by cpdprg2  

;pcpd2: f2 channel - 90 degree 
pulse for decoupling sequence  

;for z-only gradients: 

;gpz1:80% 

;gpz3:20% 

;gpz4:60% 

;use gradient files: 

;gpnam1: SMSQ10.100 

;gpnam2: SMSQ10.100 

;gpnam3: SMSQ10.100 

;gpnam4: SMSQ10.100 

;gpnam5: SMSQ10.100 

;gpnam6: SMSQ10.100 

;gpnam7: SMSQ10.100 

;gpnam8: SMSQ10.100 

;13C-13C distortion-free pure in-
phase J-scaled HSQC 

;J.W. Cha 

;$CLASS=HighRes 

;$DIM=2D 

;$TYPE= 

;$SUBTYPE= 

;$COMMENT= 

#include <Avance.incl> 

#include <Grad.incl> 

#include <Delay.incl> 

"p2=p1*2" 

"p4=p3*2" 

"d4=1s/(cnst2*4)" 

"d11=30m" 

"d0=3u" 
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"in0=inf1/2" 

 

 

"DELTA=d0*2+p2" 

"DELTA1=p16+d16+4u" 

"DELTA2=d4-p16-d16-de+p1*2/PI-
8u" 

"DELTA5=p3*2/PI" 

"DELTA6=d0*2+p2-p3*2/PI" 

"DELTA7=d4-larger(p2,p14)/2-4u" 

"DELTA8=d4-larger(p2,p14)/2" 

"DELTA9=d4-larger(p2,p14)/2-p16-
d16-de+p1*2/PI-8u" 

 

"acqt0=0" 

baseopt_echo 

 

 

1  ze  

   d11 pl12:f2 

2  d1 do:f2 

3  (p1 ph1) 

   DELTA7 pl0:f2 

   (center (p2 ph1) (p14:sp3 
ph6):f2 ) 

   DELTA7 pl2:f2 

   (p1 ph3) 

   4u UNBLKGRAD 

   p16:gp4  

   d16 

   (p3 ph7):f2 

   DELTA1 pl0:f2  

   (p24:sp10 ph8):f2 

   4u  

   p16:gp1 

   d16 pl2:f2 

   (p3 ph9):f2 

   4u 

   p16:gp2 

   d16  

   (p3 ph10):f2 

   d0 pl0:f2 

   d0 

   d0 

   d0 

   d0 

   (p17:sp7 ph13):f2 

   d0 

   d0 

   d0 

   d0 

   d0 

   DELTA5 

   d0 

   (p2 ph4) 

   d0 

   (p17:sp7 ph13):f2 

   DELTA6 pl2:f2 

   (p3 ph11):f2 

   4u 

   p16:gp5 

   d16 

   (p1 ph3)  

   DELTA8 pl0:f2 
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   (center (p2 ph1) (p14:sp3 
ph1):f2 ) 

 4u 

 p16:gp3 

 d16 

 DELTA9 pl12:f2 

 4u BLKGRAD 

 go=2 ph31 cpd2:f2 

   d1 do:f2 mc #0 to 2 
F1PH(calph(ph10, +90), 
caldel(d0, +in0)) 

exit 

ph1=0 

ph2=0 

ph3=1 

ph4=0 

ph5=0 

ph6=0 

ph7=1 

ph8=0 

ph9=3 

ph10=0 2 

ph11=2 2 0 0 

ph12=0 

ph13=3 3 1 1 

ph31=0 2 2 0 

;pl1 : f1 channel - power level 
for pulse (default) 

;pl2 : f2 channel - power level 
for pulse (default) 

;pl12: f2 channel - power level 
for CPD/BB decoupling 

;p1 : f1 channel -  90 degree 
high power pulse 

;p2 : f1 channel - 180 degree 
high power pulse 

;p3 : f2 channel -  90 degree 
high power pulse 

;p4 : f2 channel - 180 degree 
high power pulse 

;p16: homospoil/gradient pulse 

;d0 : incremented delay (2D)  
[3 usec] 

;d1 : relaxation delay; 1-5 * T1 

;d4 : 1/(4J)XH 

;d11: delay for disk I/O  
[30 msec] 

;d16: delay for homospoil/gradi-
ent recovery 

;cnst2: = J(XH) 

;inf1: 1/SW(X) = 2 * DW(X) 

;in0: 1/(2 * SW(X)) = DW(X) 

;nd0: 2 

;ns: 1 * n 

;ds: 16 

;td1: number of experiments 

;FnMODE: States-TPPI, TPPI, 
States or QSEQ 

;cpd2: decoupling according to 
sequence defined by cpdprg2 

;pcpd2: f2 channel - 90 degree 
pulse for decoupling sequence 

;CNST60 : center frequency of 
carbon pulse 
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;use gradient ratio: gp 1 : gp 
2 : gp 3 

;   80 :  
30 : 20.1    for C-13 

;   80 :  
30 :  8.1    for N-15 

;for z-only gradients: 

;gpz1: 80% 

;gpz2: 30% 

;gpz3: 20.1% for C-13, 8.1% for 
N-15

;gpz4:-40%

;gpz5: 30%

;use gradient files:

;gpnam1: SMSQ10.100

;gpnam2: SMSQ10.100

;gpnam3: SMSQ10.100

;gpnam4: SMSQ10.100

;gpnam5: SMSQ10.100
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Appendix B 

B Python processing scripts 

B.1 Processing scripts for DECODE procedure

#Spectral merging 

import nmrglue as ng 

import numpy as np 

import json 

import sys 

import re 

file1 = sys.argv[1] 

file2 = sys.argv[2] 

file3 = sys.argv[3] 

file4 = sys.argv[4] 

dic1, data1 = 
ng.pipe.read(file1) 

dic2, data2 = 
ng.pipe.read(file2) 

dic3, data3 = 
ng.pipe.read(file3) 

data11= np.absolute(data1) 

data22 = np.absolute(data2) 

data3 = np.absolute(data3) 

for i in range(0, 
len(data1[:,1])): 

for j in range(0, 
len(data1[1,:])): 

if data11[i,j] >= 
data22[i,j]: 

data1[i,j] = data1[i,j] 

else: 

data1[i,j] = data2[i,j] 

for i in range(0, 
len(data1[:,1])): 

for j in range(0, 
len(data3[1,:])): 

if data11[i,j] >= 
data3[i,j]: 

data1[i,j] = data1[i,j] 

else: 

data1[i,j] = data3[i,j]

ng.pipe.write(file3, dic1, 
data1, overwrite=True) 

#Calculation of spectral deriva-
tives 

import nmrglue as ng 

import numpy as np 
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import json 

import sys 

import re 

import math 

file1 = sys.argv[1] 

file2 = sys.argv[2] 

dic, data = ng.pipe.read(file1) 

for i in range(0, 
len(data[:,1])): 

data[i,:] = np.gradi-
ent(data[i,:]) 

ng.pipe.write(file2, dic, data, 
overwrite=True) 

#Calculation of magnitude value 

import nmrglue as ng 

import numpy as np 

import json 

import sys 

import re 

import math 

file1 = sys.argv[1] 

file2 = sys.argv[2] 

dic, data = ng.pipe.read(file1) 

print(np.shape(data)) 

i = 0 

while i < len(data[:,1]): 

data[i,:] = np.abso-
lute(data[i,:]) 

i += 1 

ng.pipe.write(file2, dic, data, 
overwrite=True) 

#Calculation of the first spec-
tral moment 

import nmrglue as ng 

import numpy as np 

import json 

import sys 

import re 

import math 

file1 = sys.argv[1] 

file2 = sys.argv[2] 

#file3 = sys.argv[3] 

dic, data = ng.pipe.read(file1) 

data = np.power(data, 2) 

def mu(j, k): 

  s = 0 

  m = 0 

  for l in range(-k, k+1): 

  p = (l+j)*data[:, j+l] 

  q = data[:, j+l] 
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  s += p 

    m += q 

  r = s/m 

    return r 

def Range(n): 

  c = 0 

  while c < n: 

  yield c 

  c += 1 

avg = np.zeros_like(data) 

std = np.zeros_like(data) 

#for i in range(0, 
len(data[:,1])): 

for j in Range(len(data[1,:])): 

    if j-7 >= 0 and j+7 < 
len(data[1,:]): 

    avg[:,j] = mu(j, 7) 

  else: 

  pass 

ng.pipe.write(file2, dic, avg, 
overwrite=True) 

#Calculation of the indirect co-
variance spectrum with the first 
spectral moment filter 

import nmrglue as ng 

import numpy as np 

import json 

import sys 

import re 

import math 

from numpy.linalg import 
multi_dot 

import timeit 

start = timeit.default_timer() 

file1 = sys.argv[1] 

file2 = sys.argv[2] 

file3 = sys.argv[3] 

dic, data = ng.pipe.read(file1) 

dic2, mean = ng.pipe.read(file2) 

data2 = np.copy(data) 

def Range(n): 

  c = 0 

  while c < n: 

  yield c 

    c += 1 

def Spec_M(a,b): 

  one = (np.ones_like(a)) 

  delta = 1.4 * one 

    c = np.absolute(np.sub-
tract(a,b)) 

    d = np.recipro-
cal(one+np.exp(-10*(-c+1.25))) 

  return d 

def Tri_cov(x,y,z): 

  multiply = np.multiply(x,y) 

  result = np.dot(multiply, z) 

  return result 

def Cov(i,j): 

  a1 = data[i,:] 

  a2 = data2[j,:] 
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  a = mean[i,:] 

  b = mean[j,:] 

  m = Spec_M(a,b) 

  d = Tri_cov(a1, a2, m) 

  return i, j, d 

import itertools 

import multiprocessing as mp 

if __name__=='__main__': 

    pool = mp.Pool(20) 

row_c = len(data[:, 1]) 

    cov = np.zeros((row_c, 
row_c)) 

  cov = cov.astype(np.float32) 

  print(np.shape(cov)) 

  #result = [] 

    print('start builing a 
list') 

    list = [(i,j) for i in 
Range(len(data[:,1])) 

    for j in 
Range(len(data[:,1]))] 

    print('finishing list 
build') 

    for i in pool.starmap(Cov, 
iterable=list): 

  result = i 

  #print(result) 

    a = result[0]; b = re-
sult[1]; c= result[2] 

    cov[a,b] = c 

  print(np.max(cov)) 

  print(np.shape(cov)) 

    U, s, VT = 
np.linalg.svd(cov, full_matri-
ces=True) 

  diag = np.diag(s) 

  #print(diag) 

  #print(np.shape(diag)) 

  sqrt_diag = np.sqrt(diag) 

    part_sqrt = np.dot(U, 
sqrt_diag) 

  sqrt_cov = np.dot(part_sqrt, 
VT) 

  sqrt_cov.astype(np.float32) 

  par = json.dumps(dic) 

  #print(np.shape(sqrt_cov)) 

  p = re.compile(r'FDF1\w+') 

  F1 = p.findall(par) 

  F1.sort() 

  p = re.compile(r'FDF2\w+') 

  F2 = p.findall(par) 

  F2.sort() 

  for i in range(0, len(F1)): 

  F1_key = F1[i] 

  F2_key = F2[i] 

  dic[F2_key] = dic[F1_key] 

    dic["FDSIZE"] = 
dic["FDF1FTSIZE"] 
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    dic["FDSPECNUM"] = 
len(cov[1,:]) 

  #print(np.max(cov)) 

    stop = timeit.de-
fault_timer() 

  print(stop - start) 

    ng.pipe.write(file3, dic, 
sqrt_cov, overwrite=True) 

#Signal normalization, peak dig-
itization procedure and eigen-
decomposition 

import re 

import sys 

import math 

import numpy as np  

from numpy import linalg as la  

from scipy import stats 

import scipy.signal as signal 

import random 

import matplotlib.pyplot as plt 

import nmrglue as ng 

import json 

file1 = sys.argv[1] 

file3 = sys.argv[3] 

dic, data = ng.pipe.read(file1) 

dic2, ref = ng.pipe.read(file3) 

data[data <= 1] = 1 

data = np.log10(data)  

data[data < 0] = 0 

row_n = len(data[:, 1]) 

row_r = len(data[1, :]) 

a = plt.plot(ref) 

plt.setp(a, color='r', linewidth 
= '0.5') 

plt.show() 

threshold = float(input("thresh-
old: ")) 

peaks= signal.find_peaks(ref, 
height= threshold) 

peaklist = list(peaks[0]) 

peaklist2=[] 

peaklist3=[] 

peaklist.sort() 

print(peaklist) 

for i in peaklist: 

if i-1 >= 0: 

peaklist2.ap-
pend(i-1) 

for i in peaklist: 

if i+1 <= row_n-1: 

peaklist3.ap-
pend(i+1) 

peaklist = peaklist + peaklist2 
+ peaklist3

peaklist.sort()
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max_val = float(np.amax(data)) 

one = np.ones_like(data) 

delta = input("insert delta = ") 

delta = float(delta) 

data = np.reciprocal(np.exp    
(-30*one* (2*data/max_val   -  
delta*one) )        + one) 

for i in peaklist: 

crp = data[i, :] 

cross_peaks= sig-
nal.find_peaks(crp, height= 
0.01)  

cross_list = 
list(cross_peaks[0]) 

for j in range(0, 
row_n): 

if j not in 
cross_list: 

data[i, 
j] = 0

data[j, 
i] = 0

P = [] 

for i in range(0, row_n): 

  if i in peaklist: 

P.append(int(1))

  else: 

P.append(int(0))

D = np.diag(P) 

part_D = np.dot(D, data) 

data = np.dot(part_D, D) 

data = data.astype(np.float32) 

w, v = la.eigh(data)   

data = np.flip(data, axis=1) 

n_eigenmode = sys.argv[2] 

template_1 = sys.argv[1] 

template_2 = 'test.ft1' 

dic_13C, data_ref = 
ng.pipe.read(template_1) 

dic_1D_1H, data_ref = 
ng.pipe.read(template_2) 

par = json.dumps(dic_13C) 

p = re.compile(r'FDF1\w+') 

F1 = p.findall(par) 

F1.remove('FDF1LABEL') 

par2 = json.dumps(dic_1D_1H) 

p = re.compile(r'FDF2\w+') 

F2 = p.findall(par2) 

F2.remove('FDF2LABEL') 

for i in range(0, len(F1)): 

F1_key = F1[i] 

F2_key = F2[i] 

dic_1D_1H[F2_key] = 
dic_13C[F1_key] 

dic_1D_1H["FDF2LABEL"] = "13C" 

dic_1D_1H["FDF2C1"] = 0.0 

dic_1D_1H["FDF2QUADFLAG"] = 1.0 
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dic_1D_1H["FDSIZE"] = 
dic_1D_1H["FDF2FTSIZE"] 

FDSIZE = float(row_n) 

dic_1D_1H["FDF2LABEL"] = "13C" 

dic_1D_1H["FDSIZE"] = FDSIZE 

dic_1D_1H["FDF2TDSIZE"] = FDSIZE 

dic_1D_1H["FDF2FTSIZE"] = FDSIZE 

dic_1D_1H["FDF2OBS"] = 
dic_13C["FDF1OBS"] 

dic_1D_1H["FDF2SW"] = 
dic_13C["FDF1SW"] 

dic_1D_1H["FDF2CAR"] = 
dic_13C["FDF1CAR"] 

dic_1D_1H["FDF2CENTER"] = 
dic_13C["FDF1CENTER"] 

dic_1D_1H["FDF2ORIG"] = 
dic_13C["FDF1ORIG"] 

data = np.flip(data, axis=1) 

i = 1 

k = int(n_eigenmode) 

while i <= k: 

ng.pipe.write(f'eigenmode_{i}_{t
hreshold}_{delta}', dic_1D_1H, 
v[:, row_n-i], overwrite=True) 

  i += 1 

ng.pipe.write('DECODE_result', 
dic, data, overwrite=True) 
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B.2 Signal simulation scripts for J-scaled HSQC

#Simulation for signal distor-
tion in conventional HSQC using 
13C-isotope labeled compound 

import numpy as np 

import matplotlib.pyplot as plt 

f_max = 120 

dt = 1/(2*f_max) 

TD = 1024 

de = 0.0044 

de2 = 0.0048 

t = np.arange(0, TD*dt, dt) 

relax = np.exp(-9.0*t) 

J1 = 36.5 

J2 = 57 

#print(t) 

# fid =
np.exp(1j*np.pi*3*t)*np.cos(np.p
i*35*t)*np.cos(np.pi*55*t)*relax 

fid =
np.cos(np.pi*J1*t)*np.cos(np.pi*
J1*de)*np.cos(np.pi*J2*t)*np.cos
(np.pi*J2*de)*relax 

fid2 = -
1*np.cos(np.pi*J1*t)*np.cos(np.p
i*J1*de)*np.sin(np.pi*J2*t)*np.s
in(np.pi*J2*de)*relax 

fid3 = -
1*np.sin(np.pi*J1*t)*np.sin(np.p
i*J1*de)*np.cos(np.pi*J2*t)*np.c
os(np.pi*J2*de)*relax 

fid4 =
np.sin(np.pi*J1*t)*np.sin(np.pi*
J1*de)*np.sin(np.pi*J2*t)*np.sin
(np.pi*J2*de)*relax 

freq = np.fft.fftfreq(TD)/dt 

fid = fid + fid2 + fid3 + fid4 

fid =
np.exp(2j*np.pi*0*t)*(1+np.cos(n
p.pi*J1*de2)*np.cos(np.pi*J2*de2
))*(fid)

sig = np.fft.fft(fid) 

sig_r = sig.real 

np.savetxt('general.csv', sig_r, 
delimiter=',') 

plt.plot(freq, sig.real) 

plt.show() 

import numpy as np 

import matplotlib.pyplot as plt 

f_max = 4000 

dt = 1/(2*f_max) 

TD = 150 

de = 0.0007+0.000036 

de2 = 0.0048 

J1=36.5 

J2=57 

t = np.arange(0, TD*dt, dt) 
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relax = np.exp(-0.3*t) 

sqcos = 
np.square(np.cos((2*np.pi)/(4*TD
*dt)*t))

fid = 
np.cos(6*np.pi*J1*t)*np.cos(np.p
i*J1*de)*np.cos(6*np.pi*J2*t)*np
.cos(np.pi*J2*de)*relax 

fid2 = -
1*np.cos(6*np.pi*J1*t)*np.cos(np
.pi*J1*de)*np.sin(6*np.pi*J2*t)*
np.sin(np.pi*J2*de)*relax 

fid3 = -
1*np.sin(6*np.pi*J1*t)*np.sin(np
.pi*J1*de)*np.cos(6*np.pi*J2*t)*
np.cos(np.pi*J2*de)*relax 

fid4 = 
np.sin(6*np.pi*J1*t)*np.sin(np.p
i*J1*de)*np.sin(6*np.pi*J2*t)*np
.sin(np.pi*J2*de)*relax 

fid5 = 
np.cos(6*np.pi*J1*t)*np.cos(np.p
i*J1*de)*np.cos(np.pi*J2*t)*np.c
os(np.pi*J2*de)*relax 

fid6 = -
1*np.cos(6*np.pi*J1*t)*np.cos(np
.pi*J1*de)*np.sin(np.pi*J2*t)*np
.sin(np.pi*J2*de)*relax 

fid7 = -
1*np.sin(6*np.pi*J1*t)*np.sin(np
.pi*J1*de)*np.cos(np.pi*J2*t)*np
.cos(np.pi*J2*de)*relax 

fid8 = 
np.sin(6*np.pi*J1*t)*np.sin(np.p
i*J1*de)*np.sin(np.pi*J2*t)*np.s
in(np.pi*J2*de)*relax 

fid9 = 
np.cos(np.pi*J1*t)*np.cos(np.pi*
J1*de)*np.cos(6*np.pi*J2*t)*np.c
os(np.pi*J2*de)*relax 

fid10 = -
1*np.cos(np.pi*J1*t)*np.cos(np.p

i*J1*de)*np.sin(6*np.pi*J2*t)*np
.sin(np.pi*J2*de)*relax 

fid11 = -
1*np.sin(np.pi*J1*t)*np.sin(np.p
i*J1*de)*np.cos(6*np.pi*J2*t)*np
.cos(np.pi*J2*de)*relax 

fid12 = 
np.sin(np.pi*J1*t)*np.sin(np.pi*
J1*de)*np.sin(6*np.pi*J2*t)*np.s
in(np.pi*J2*de)*relax 

fid13 = 
np.cos(np.pi*J1*t)*np.cos(np.pi*
J1*de)*np.cos(np.pi*J2*t)*np.cos
(np.pi*J2*de)*relax 

fid14 = -
1*np.cos(np.pi*J1*t)*np.cos(np.p
i*J1*de)*np.sin(np.pi*J2*t)*np.s
in(np.pi*J2*de)*relax 

fid15 = -
1*np.sin(np.pi*J1*t)*np.sin(np.p
i*J1*de)*np.cos(np.pi*J2*t)*np.c
os(np.pi*J2*de)*relax 

fid16 = 
np.sin(np.pi*J1*t)*np.sin(np.pi*
J1*de)*np.sin(np.pi*J2*t)*np.sin
(np.pi*J2*de)*relax 

fid = 0.94*0.94*(fid + fid2 + 
fid3 + fid4) + 0.94*0.06*(fid5 + 
fid6 + fid7 + fid8) + 
0.94*0.06*np.exp(1j*0.1*np.pi)*(
fid9 + fid10 + fid11 + fid12) + 
0.06*0.06*(fid13 + fid14 + fid15 
+ fid16)

fid = np.exp(2j*np.pi*0*t)*(fid)

#print(fid.size) 

fid = fid * sqcos 

zeros = np.zeros(4096) 
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for i in range(0, len(fid)-1): 

    zeros[i] = fid.real[i] + ze-
ros[i] 

fid = zeros 

sig = np.fft.fft(fid) 

sig_r = sig.real 

#np.savetxt('J_scale_7.csv', 
sig_r, delimiter=',') 

freq = 
np.fft.fftfreq(len(fid))/dt 

fig, ax = plt.subplots() 

ax.plot(freq, sig_r, '-') 

ax.set(xlabel='J (Hz)') 

fig.savefig('spectrum.eps', for-
mat='eps') 

plt.show() 
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국문초록 

고해상도 13C-13C NMR  

스펙트럼을 활용한 혼합물 분석 

차 진 욱 

천연물과학 전공 

약학과 

서울대학교 대학원 

 

13C-13C 상호작용에 의한 짝지음은 (𝐽𝐽CC coupling) 탄소골격으로 

이루어진 유기화합물의 NMR 기반 구조분석에 있어 매우 중요한 

정보이다. 그러나 13C 핵의 낮은 자연존재 비로 인해 이들의 직접적인 

NMR 상관관계 분석은 매우 제한된 영역에서 이루어졌다. 이 연구에서 

이러한 13C-13C 상호작용을 활용한 천연물/혼합물 및 대사체 분석에 

응용될 수 있는 신규 NMR 분석법을 개발하고 그 적용결과를 

제시하였다.  

첫째로 이차원 1H-13C HMBC 스펙트럼을 통한 고해상도 13C-13C 상관 

스펙트럼의 생성방법에 관한 연구를 수행하였고, 이를 실제 천연물 

(로테논, rotenone)에 적용하여 구조분석에 대한 활용가능성을 평가하였다. 
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또한, 이렇게 얻어진 13C-13C 상관 스펙트럼으로부터 복잡한 천연물의 

구조분석을 위한 신규 후처리 기법 (DECODE procedure)을 제안하였다. 

이후 이를 실제 천연물의 혼합물에 적용하여 혼합물의 NMR 

스펙트럼으로부터 개별 순수 화합물의 13C 스펙트럼을 추출할 수 있음을 

확인하였다. 많은 4 차탄소를 포함하는 로테논 및 브루신 (brucine)과 

같은 복잡한 구조를 지닌 천연물의 혼합물에 DECODE 분석법을 

적용하였을 때, 매우 인접한 개별 탄소신호들을 포함, 각 화합물의 개별 

13C 스펙트럼을 성공적으로 추출하였다. 이 방법은 복잡한 구조를 지닌 

유기 혼합물의 범용적인 1H-13C 이차원 상관 NMR 스펙트럼으로부터 

개별 분자의 13C-13C 상관정보 및 개별 탄소 정보를 제공하므로 천연물 

구조화학을 포함한 다양한 분야의 NMR 분석연구에 적용될 수 있을 

것이다. 

다음으로, 세포 추출물과 같은 대사체 화합물에서 흔히 활용되는 

13C 동위원소 표지 화합물의 HSQC 스펙트럼에서 13C-13C 상호작용에 

의한 신호 갈라짐을 효과적으로 분석할 수 있는 새로운 1H-13C 

상관 NMR 분석법 (HSQC)을 개발하였다. 13C-13C 상호작용에 의한 신호 

갈라짐은 특정 대사과정의 분석에 매우 효과적으로 활용될 수 있으므로 

그 정확한 형태 및 짝지음 상수 (𝐽𝐽CC  constant) 등의 분석은 매우 중요한 

대사과정 측면의 구조 정보를 제공할 수 있다. 이 연구에서는 이러한 

13C-13C 상호작용 정보를 효과적으로 분석할 수 있는 새로운 1H-13C HSQC 

측정 시퀀스를 제안하였고 이를 실제 13C 동위원소로 표지된 U-

13C 아세테이트 및 락테이트와 같은 대사체 화합물에 적용하여 기존 

HSQC 측정 결과와 비교, 새롭게 고안된 측정 시퀀스가 기존 방법 대비 

매우 개선된 13C-13C 상호작용 정보를 제공할 수 있음을 확인하였다. 
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새로 개발된 HSQC 측정 시퀀스는 상대적으로 짧은 측정시간에도 

고해상도의 13C-13C 상호작용에 의한 신호 갈라짐 정보를 제공할 수 

있으므로 실시간 NMR 대사체 분석과 같은 측정시간의 제약이 있는 

분석연구에도 효과적으로 적용될 수 있을 것이다.  

주요어: 탄소-탄소 상관, J-짝지음, 공분산, 스펙트럼 디컨볼루션, 

혼합물분석, 천연물 

학번: 2016-30517 
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