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Abstract 

 

Preventing Row-hammering and 

Improving Main Memory 

Performance by Exploiting Time 

Window Counters 
 

Eojin Lee 

Intelligence Systems 

Department of Transdisciplinary Studies 

The Graduate School 

Seoul National University 

 

Computer systems using DRAM are exposed to row-hammer (RH) 

attacks, which can flip data in a DRAM row without directly accessing 

a row but by frequently activating its adjacent ones. There have been 

a number of proposals to prevent RH, including both probabilistic and 

deterministic solutions. However, the probabilistic solutions provide 

protection with no capability to detect attacks and have a non-zero 

probability for missing protection. Otherwise, counter-based 

deterministic solutions either incur large area overhead or suffer 

from noticeable performance drop on adversarial memory access 

patterns. 
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To overcome these challenges, we propose a new counter-based 

RH prevention solution named Time Window Counter (TWiCe) based 

row refresh, which accurately detects potential RH attacks only using 

a small number of counters with a minimal performance impact. We 

first make a key observation that the number of rows that can cause 

RH is limited by the maximum values of row activation frequency and 

DRAM cell retention time. We calculate the maximum number of 

required counter entries per DRAM bank, with which TWiCe prevents 

RH with a strong deterministic guarantee. TWiCe incurs no 

performance overhead on normal DRAM operations and less than 0.7% 

area and energy overheads over contemporary DRAM devices. Our 

evaluation shows that TWiCe makes no more than 0.006% of 

additional DRAM row activations for adversarial memory access 

patterns, including RH attack scenarios. 

To reduce the area and energy overhead further, we propose the 

threshold adjusted rank-level TWiCe. We first introduce pseudo-

associative TWiCe (pa-TWiCe) that can search for hundreds of 

TWiCe table entries energy-efficiently. In addition, by exploiting 

pa-TWiCe structure, we propose rank-level TWiCe that reduces the 

number of required entries further by managing the table entries at a 

rank-level. We also adjust the thresholds of TWiCe to reduce the 

number of entries without the increase of false-positive detection on 

general workloads. 

Finally, we propose extend TWiCe as a hot-page detector to 

improve main-memory performance. TWiCe table contains the row 
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addresses that have been frequently activated recently, and they are 

likely to be activated again due to temporal locality in memory 

accesses. We show how the hot-page detection in TWiCe can be 

combined with a DRAM page swap methodology to reduce the DRAM 

latency for the hot pages. Also, our evaluation shows that low-

latency DRAM using TWiCe achieves up to 12.2% IPC improvement 

over a baseline DDR4 device for a multi-threaded workload. 

 

Keywords : DRAM, Row-hammering, Deterministic protection, 

Reliability, Hot-page detection, Low-latency DRAM 

Student Number : 2014-24902 
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Chapter 1 
 

 

Introduction  
 

DRAM, which is used as main memory in computer systems for 

decades, stores data by controlling the amount of charge per cell 

capacitor. Because a cell leaks charge over time, it should be 

refreshed periodically (once every refresh window (tREFW)) to 

retain data [3]. However, as process technology advances, individual 

DRAM cells become more susceptible to process variation, 

manufacturing imperfection, and influence from adjacent cells due to 

capacitive coupling. These reliability issues have been recognized as 

critical challenges to contemporary DRAM devices, and solutions 

such as sparing (groups of) DRAM cells and providing ECC capability 

within DRAM chips have been proposed and deployed [4]. In 

particular, row-hammering, a phenomenon that can flip data in 
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adjacent (victim) rows and cause silent data corruption by repeatedly 

activating a specific (aggressor) DRAM row prior to its refresh 

window, has drawn public attention since 2014 [5]. 

Meanwhile, the capacity of a DRAM device has increased through 

process scaling and its bandwidth has improved by making its internal 

data-path wider and increasing the operating frequency of its inter-

device I/O part [6]. Because the conventional focus of main-memory 

DRAM devices has been on higher storage density over cost, its 

access latency remains mostly unchanged and has improved 

(decreased) at a snail’s pace. Also, existing commercial DRAM 

devices have symmetric access latency regardless of the topological 

location of DRAM cells [7].  

In this dissertation, we propose a new counter-based row-

hammering prevention solution named Time-Window Counters 

(TWiCe), and extend TWiCe as a hot DRAM row (page) detector to 

improve main-memory performance. TWiCe shows that strong, 

deterministic row-hammering protection and hot-page detection can 

be achieved by maintaining precise per-row ACT counts but only 

using a small number of counters. 

 

1.1 Time Window Counter Based Row Refresh to 

Prevent Row-hammering 
 

In order to mitigate or prevent the RH attacks, recent studies have 

proposed multiple protection techniques that refresh potentially 
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vulnerable rows earlier than its retention time [5, 8, 9, 10, 11]. PARA 

[5] provides probabilistic protection which can significantly reduce 

the probability of RH induced errors by also activating adjacent rows 

with a small probability for each DRAM row activation (ACTs). The 

probabilistic scheme is stateless and can be implemented with low 

complexity. Counter-based protection schemes, which 

deterministically refresh the adjacent rows when a row is activated 

more than a certain threshold, has also been proposed recently as an 

alternative protection approach. The counter-based schemes ensure 

that potential victim rows are always refreshed before the RH 

threshold is reached. The counter-based schemes also allow explicit 

detection of potential attacks, and enable a system to take action, 

such as removing/terminating or developing countermeasures for 

malware and penalizing malicious users responsible for the attack. 

The previous studies on counter-based protection schemes [9, 10, 

12] pointed out that the performance overhead (the number of added 

ACTs) of the probabilistic schemes increases when stronger 

protection (lower error probability) is needed or the RH threshold 

decreases, whereas the counter-based schemes only issue 

additional ACTs when an attack is detected. Probabilistic and 

counter-based schemes provide different trade-offs between 

complexity and protection capabilities. 

The main challenge in the counter-based protection schemes 

lies in reducing the cost of counters that track the number of ACTs. 
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Because maintaining a counter per row leads to prohibitive costs if 

they are kept in memory controllers (MCs), Counter-based Row 

Activation (CRA [8]) proposed to cache recently-used counters 

within MCs and store the remaining ones in main memory. The 

Counter-Based Tree (CBT [9, 10]) scheme proposes to track ACTs 

to a group of rows and dynamically adjust the ranges of rows each 

counter covers based on row activation frequency. Unfortunately, 

both CRA and CBT suffer from noticeable performance degradation 

on adversarial memory access patterns due to frequent counter cache 

misses and a flurry of refreshes on rows covered by a single counter, 

respectively. 

To address this challenge, we propose a new counter-based RH 

prevention solution, named Time Window Counter (TWiCe) based 

row refresh. TWiCe guarantees to refresh victim rows before a RH 

threshold is reached only using a limited number of counters, which 

is orders of magnitude smaller than the total number of DRAM rows 

populated in the system. TWiCe is based on the key insight that the 

maximum number of DRAM ACTs over tREFW is bounded. This 

insight enables TWiCe to limit the total number of counters needed 

to monitor rows whose ACT counts may go over the protection 

threshold. TWiCe allocates a counter entry to a DRAM row only if 

the row is actually activated, and periodically invalidates (prunes) 

the entries if the corresponding rows are not frequently activated. 

Because tREFW is finite and row activation frequency in a DRAM 
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bank is limited by tRC (row cycle time), there is an upper bound on 

the number of ACT counter entries at any given time, leading to a 

low area overhead. We analytically derive the number of counters 

that are sufficient to monitor all potential aggressor rows. As TWiCe 

monitors each row individually, it guarantees a refresh before the 

number of ACTs exceeds a RH threshold. 

We also explore the design space of where to place TWiCe, and 

carefully distribute the functionality of TWiCe across MCs, RCDs, and 

DRAM devices to minimize cost (e.g., area) and performance impact. 

We place the TWiCe counter entries (called TWiCe table) in RCDs 

because it is more cost-effective than placing them in MCs or DRAM 

devices. Placing the TWiCe table in a MC requires that the TWiCe 

table is large enough to accommodate the maximum number of DRAM 

banks that can be supported by the MC even when a system only 

contains much fewer DRAM banks, leading to a waste of resource in 

these typical cases. Placing a TWiCe table in each DRAM device is 

also wasteful because (around a dozen) devices in a DRAM rank 

operate in tandem and hence the TWiCe tables in all these DRAM 

devices would perform duplicated functionality. 

Previously, both probabilistic and counter-based RH protection 

schemes are proposed to be implemented within MCs. However, this 

approach is difficult to realize in practice because modern DRAMs 

internally remap DRAM rows. The approach assumes that a MC 

knows which DRAM rows are physically adjacent, but it would be too 
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costly for a MC to store row remapping (replacing a row including 

faulty DRAM cells with a spare row) information of all DRAM devices 

it controls. To address this problem, we propose a new DRAM 

command, named ARR (Adjacent Row Refresh), to refresh the 

adjacent rows of an aggressor row because neither MC nor RCD 

(register clock driver) knows how DRAM rows are remapped. To 

avoid conflict between ARR and normal DRAM operations from MCs, 

we propose to provide a feedback path from RCD to MC, through 

which the RCD can send a negative acknowledgment signal when an 

ARR operation is underway in a DRAM bank. 

Our analysis shows that there is no performance overhead on 

TWiCe table updates as it can be done concurrently with normal 

DRAM operations. The required TWiCe table size is just 3.11 KB per 

1 GB bank, and energy overhead of table updates is less than 0.7% 

of DRAM activation/precharge energy. Also, our evaluation shows 

that TWiCe incurs no additional ACTs due to false positive detection 

on the evaluated multi-programmed and multi-threaded workloads 

and adds only up to 0.006% more ACTs on adversarial memory 

access patterns including RH attack scenarios; thus, the frequency of 

false positive detection is orders of magnitude lower than the 

previous schemes. These results show that precise counter-based 

RH protection is viable with low overhead. 

 

1.2 Optimizing Time Window Counter 
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TWiCe requires a table with hundreds of entries per bank. Because 

the target row address of ACT can be stored in any entry of the table, 

it is straightforward to implement the table as a fully associative 

design, such as content-addressable memory (CAM). It is feasible 

because the minimal interval between two consecutive ACTs to a 

specific bank is dozens of nanoseconds, and the update is not in the 

critical path of DRAM access. However, it is energy-inefficient to 

searching CAM with hundreds of entries on every ACT. 

To improve energy efficiency, we propose pseudo-associative 

TWiCe (pa-TWiCe) by leveraging a pseudo-associative cache 

design [13]. In pa-TWiCe, each DRAM row mapped to a preferred 

set, and the preferred set is first checked on ACT command. It is 

allowed only to use the entry of a non-preferred set when there is 

no available entry in the preferred set. Therefore, pa-TWiCe 

reduces energy consumption by reducing the number of table entries 

to be searched on ACT command without the eviction of entry due to 

thrashing. 

Also, we optimize TWiCe by composing TWiCe as a rank level to 

reduce the area cost. The original TWiCe is designed based on the 

fact that the number of ACTs to a bank for a given time is limited by 

tRC, the ACT-to-ACT interval in a bank. For a device (rank), which 

is composed of multiple banks, TWiCe has to provide the table entries 

proportional to the number of banks. However, the number of ACTs 

to a rank is further limited by tRRD (Row to Row Delay) and tFAW 
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(Four Activated Window). Focusing on this property, we propose 

rank-level TWiCe and introduce the implementation of rank-level 

TWiCe by exploiting the structure of pa-TWiCe. 

We further reduce the number of table entries by adjusting 

thresholds of TWiCe. We can adjust the thresholds of TWiCe within 

the extent that RH prevention is guaranteed. Especially, adjusting the 

threshold that determines the entries to be pruned can reduce the 

number of required entries. However, the thresholds should be 

carefully adjusted considering the increase of false-positive 

detections because the thresholds also affect the determination of the 

aggressor row. Therefore, we conduct experiments on how many 

rows are detected as aggressor rows on various workloads and 

reduce the number of TWiCe table entries by adjusting the thresholds 

as far as it does not increase the number of false-positive detection 

on general workloads. 

 

1.3 Using Time Window Counters to Improve Main 

Memory Performance 
 

The row-activation counts can also be used to identify frequently-

accessed DRAM pages and to improve performance by allocating 

these pages to a low-latency region in asymmetric-latency DRAM 

designs. For example, CHARM [7] and TLDRAM [14] reduce access 

latency to a portion of a DRAM device by decreasing the number of 

DRAM cells that share sense amplifiers and hence accelerating data 
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acquisition speed. The system performance can be improved by 

allocating hot pages to this low-latency region of DRAM. Hot pages 

may be identified through offline profiling. However, this static 

approach is not effective for applications where hot pages change 

over time or can be affected by other applications on a system. We 

extend TWiCe to maximize performance improvement of low-

latency DRAM architecture by dynamically detecting hot pages and 

migrating them to a fast region of DRAM at runtime. 

For the runtime migration approach to be effective, we need a 

low-overhead method to swap data between DRAM rows and to 

translate DRAM addresses. Because a DRAM row (typically 8KB) 

consists of dozens of cache lines (around 64B), relying on a CPU to 

move data in DRAM can take more than a microsecond, negating the 

performance benefit of the lower DRAM access time. We leverage 

previous proposals for high-throughput data transfers within a 

DRAM device such as RowClone [15], LISA [16], and DAS-DRAM 

[17] for fast page swapping, and introduce an address translation 

table. Through a detailed timing analysis, we show that the proposed 

swap methodology and the address translation table management 

method are feasible without much overhead. 

Our performance evaluation shows that low-latency DRAM using 

TWiCe with a hot-page detection threshold value of 16 improves IPC 

by 5.6% and 12.2% for multi-programmed workloads using SPEC 

CPU2006 benchmarks and RADIX multi-threaded workload, 
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respectively. Overall, the results show that TWiCe can be used to 

intelligently manage data placement in the asymmetric DRAM 

architecture to improve performance. 

 

1.4 Outline 
 

The organization of this dissertation is as follows.  

In Chapter 2, we describe the organization and operation of 

DRAM device and main memory subsystem. Also, we introduce row-

hammering (RH) phenomenon and the previous RH prevention 

solutions. 

Chapter 3 describes the proposed RH prevention solution, which 

uses Time Window Counters (TWiCe), and Chapter 4 shows the 

optimization techniques of TWiCe to reduce implementation cost. In 

Chapter 5, we introduce augmenting TWiCe for hot-page detection. 

Finally, we present conclusions and future works in Chapter 6. 
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Chapter 2 
 

 

Background of DRAM and Row-

hammering① 
 

A modern server typically manages trillions of DRAM bits for 

main memory owing to technology scaling [18, 19, 20]. This enables 

unprecedented benefits to applications with diverse performance and 

capacity requirements. At the same time, however, the finer 

fabrication technology entails a number of challenges on organizing 

and operating a main memory system because the massive number 

of DRAM cells should be hierarchically structured for high area 

efficiency (to lower cost) and more cells become faulty (either 

permanently or intermittently) due to process variation and 

manufacturing imperfection [4, 21, 22]. This chapter reviews the 

details of the main memory organization and operations, which must 

 

This Section is based on [1, 2]. - © 2019 ACM, and IEEE 2018. 
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be considered when designing a solution for row-hammering (RH). 

 

2.1 DRAM Device Organization 
 

A server includes dozens to hundreds of DRAM devices. A DRAM 

device consists of billions of cells, each comprised of an access 

transistor and a capacitor [6, 23]; the amount of charge in the 

capacitor represents data: either zero or one (see Figure 2.1). Cells 

in a DRAM device are grouped into multiple (typically around 16 

these days) banks. A bank is further divided into thousands of mats 

structured in two dimensions. A group of mats that share global 

wordlines (WLs) and hence operate together is called a subarray. 

Within a mat, cells are again organized in two dimensions; cells that 

are aligned in a row share a local WL and the ones aligned in a column 

share a bitline (BL) to increase area efficiency. 

A DRAM device periodically refreshes each cell within retention 
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Figure 2.1. The organization of a modern DRAM device. 
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time called tREFW (refresh window). Because a cell discharges 

(leaks) slowly but steadily, data is lost unless DRAM periodically 

performs a refresh operation to restore the charge to a cell capacitor. 

As the number of rows per bank increases continuously to provide 

higher DRAM capacity, a modern DRAM bank refreshes not a single 

row but a set of rows per auto-refresh operation. The number of 

rows refreshed per auto-refresh increases over time; so does its 

duration called tRFC (refresh command time) performing an auto-

refresh operation. The interval between two auto-refresh operations, 

called tREFI (refresh interval), is 
𝑡𝑅𝐸𝐹𝑊

# 𝑜𝑓 𝑟𝑜𝑤 𝑠𝑒𝑡𝑠
.  

 

2.2 Sparing DRAM Rows to Combat Reliability 

Challenges 
 

Wire pitch gets finer, and storage cells become smaller as fabrication 

technology advances. It exacerbates the impact of process variation 

and manufacturing imperfection, increasing the probability of 

functional and timing failures of storage devices including DRAM 

devices [4]. 

Therefore, faulty DRAM cells are corrected using various 

techniques. Replacing a row or a column of a DRAM bank with faulty 

cells with another fault-free row or column (row/column sparing) is 

a conventional method, which has been employed in commodity 

DRAM devices [21]. Another method which is gaining momentum in 

fixing faulty DRAM cells is in-DRAM ECC [4], which corrects up to 
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a few errors in a block of bits (called codeword) through error 

correcting codes using parity bits in addition to data bits. In this paper, 

we focus on more traditional row sparing method, which also 

influences main memory DRAM organization and operations. 

Each DRAM bank is equipped with spare rows and columns that 

can replace faulty rows, columns, and cells. These spare 

rows/columns are set up as follows. During the test phase of DRAM 

device fabrication, test equipment identifies the locations of faulty 

cells. A repair algorithm calculates and assigns target spare rows and 

columns for the faulty cells, columns, and rows to efficiently leverage 

these spares. The information pairing the addresses of a faulty 

row/column and the corresponding target one (called remapping 

hereafter) is stored in a one-time programmable memory, such as 

electrical fuses within a DRAM device [21]. 

The locations of malfunctioning DRAM cells are different for 

individual DRAM devices; hence it is reasonable to place the cell 

repair functionality within DRAM devices. An important implication of 

this row sparing is that due to this remapping, the rows whose index 

numbers differ by one in a DRAM bank is not necessarily physically 

adjacent within a DRAM device. 

 

2.3 Main Memory Subsystem Organization and 

Operation 
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As depicted in Figure 2.2, a conventional main memory system 

consists of a group of memory controllers (MCs). One MC handles 

one or a few memory channels. A channel is connected to a small 

number (typically fewer than four) of dual-inline memory modules 

(DIMMs). Each module consists of a few ranks, each having several 

DRAM devices. All DRAM devices within a rank operate in tandem. 

Modern servers have dozens of cores per CPU socket and 

multiple MCs to provide enough main memory bandwidth to the cores 

[18, 19]. Also, the emergence of virtual machines and containers 

demands large main memory capacity per CPU; and hence typically 
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Figure 2.2. The organization of a conventional main memory system. 

Each memory controller (MC) can populate multiple DIMMs, and each 

DIMM consists of one or a few ranks. Each rank has several DRAM 

devices which operate in tandem. 
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multiple DIMMs are connected to a memory channel. Therefore, the 

command and address (CA) signals from a MC through one of its 

memory channels have to be broadcasted to dozens of DRAM devices, 

imposing a huge channel load in driving these signals. 

To mitigate this signal integrity problem, the CA signals and 

optionally data signals from a MC are buffered within a modern DIMM 

but outside of DRAM devices of the module. The separate buffer 

device is called a register clock driver (RCD [24]). A registered 

DIMM (RDIMM [25]) only repeats CA signals, reducing the load from 

a MC, with additional latency tPDM (propagation delay). A load-

reduced DIMM (LRDIMM [26]) repeats both CA and data signals; the 

data signals can be repeated in the same RCD chip (DDR3) or in the 

separate devices (called data buffers in DDR4) 

A MC receives an access (read or write) request with an 

accompanying address, translates the address into a tuple of 

(memory channel, rank, bank, row, column), and generates one or 

more DRAM commands to serve the request. The number of DRAM 

commands per request and the timing of each command depend on 

the internal states of a MC (including other requests stored in the 

request queue) and various timing constraints. Because conventional 

memory interfaces, such as DDR [27], GDDR [28], and LPDDR [29], 

adopt a primary-secondary (master-slave) communication model, 

only a MC generates commands within a memory channel and it 

knows when the DRAM devices it controls reply data, owing to the 
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synchronous nature of the interface. 

If the target bank of a request does not have an active row (BLs 

being precharged to 
𝑉𝐷𝐷

2
), an activate command (ACT) is issued and 

a high voltage level is applied to the global WL (whose target row is 

specified by the physical address of the request), enabling BL sense 

amplifiers (BLSAs) to detect and latch the data stored in the target 

row within tRCD (row access to column access delay). The data of 

the target column latched in the BLSAs are transferred to the I/O 

pads of the corresponding DRAM device through the global dataline, 

which takes tCL after a read command (RD) is issued (the data 

transfer direction is flipped for a write command (WR)). In the course 

of an activation process, the voltage level of the selected cells is first 

changed close to 
𝑉𝐷𝐷

2
 as they share charges with BLs whose 

capacitance is much larger than that of a DRAM cell, but is then 

restored to either VDD or ground after tRAS because BLSAs amplify 

the voltage level. 

If the target bank has an active row which is the same as the 

target row, ACT is omitted, and hence the data can be accessed faster. 

If the currently active row of the target bank is different from the 

target row, the row must be deactivated first; the voltage level of BLs 

must be set to 
𝑉𝐷𝐷

2
 by sending a precharge command (PRE), which 

takes tRP (row precharge time) after which the (next) target row is 

ready to be activated. 

Each DRAM bank processes these command sequences 
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independently. However, the frequency of issuing ACTs to a DRAM 

device is limited by tRRD (minimum time between any two ACTs) 

and tFAW (minimum interval between a group of four ACTs). Within 

a DRAM bank, tRC (minimal time between two ACTs to the same 

bank) limits the frequency of row activation. 

The row address (index) from a MC may target one with faulty 

DRAM cells. A comparator within a DRAM device identifies this 

address and replaces it with a spare row before the row decoder 

decodes the incoming row address. This remapping breaks the tie 

between logical (index being offset by one) and physical adjacency 

(and hence interfering with each other due to capacitive coupling) of 

DRAM rows. 

 

2.4 Row-hammering (RH) 
 

Row-hammering (RH) is a DRAM reliability challenge, which has 

gained significant public attention due to its security implications. RH 

is an attack that exploits the phenomenon that repeated activations 

to a specific (aggressor) DRAM row cause bit flips in its adjacent 

(victim) rows before the victim rows reach their retention time limits 

(tREFW), which is publicly reported by Kim et al. in 2014 [5]. RH 

effectively reduces DRAM cell retention time depending on access 

patterns, making data preservation difficult. Park et al. [30] explained 

the root cause of this RH. They found out that during a row activation 

and precharge operation, a portion of electrons in the chosen WL 
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flows into the cells of the adjacent rows with a low probability. 

Repeated activation and precharge operations make the number of 

electrons passed surpass a certain threshold, causing the data to be 

flipped. 

Then, studies have shown that RH can be exploited to 

compromise real-world systems without software vulnerability [31, 

32, 33]. Flip Feng Shui [32] accesses a co-hosted virtual machine 

in an unauthorized way through a combined use of memory 

deduplication (identifying an RSA public key) and RH (flipping the 

key). Drammer [33] takes control of a mobile device running Android 

by performing RH attacks on specific parts of the device’s memory. 

These attacks highlight the importance of providing adequate 

solutions to RH. 

In order to avoid errors from row-hammering, a DRAM row 

needs to be refreshed before adjacent rows are activated too many 

times. Similar to the DRAM refresh window, we expect a DRAM 

vendor to provide a new parameter, named a row-hammer (RH) 

threshold, which specifies the maximum number of ACTs on the 

adjacent rows within an interval of tREFW before a row needs to be 

refreshed. The DRAM vendor ensures that a row will not have an 

error before its RH threshold is reached similar to ensuring that the 

DRAM retention time is longer than the refresh window. While 

exceeding the RH threshold does not mean there will be an RH error, 

there is no guarantee on reliability once the threshold is exceeded. 
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Therefore, the job of a system designer is to ensure that each row is 

refreshed before it exceeds the RH threshold, which is expected to 

decrease going forward with further technology scaling [34]. 

 

2.5 Previous RH Prevention Solutions 
 

Previous architectural solutions against the RH attack can be 

categorized into two groups: counter-based and probabilistic RH 

protection schemes. As the likelihood of RH increases after a large 

number of ACTs are sent to a DRAM row, a naive counter-based 

solution would record the number of ACTs for each row and refresh 

a victim row once the ACT count exceeds the RH threshold. However, 

this scheme requires a counter per DRAM row, leading to prohibitive 

costs especially if the counters are kept in MCs because a MC covers 

more than millions of DRAM rows. Counter-based Row Activation 

(CRA [8]) counts ACTs for all DRAM rows but stores only the ACT 

counts for frequently activated rows in caches located at MCs and all 

remaining counters in DRAM. 

CBT [9, 10] reduces the number of counters by having each 

counter track ACTs to a group of rows. The group size is determined 

dynamically based on the ACT frequency to the group; a counter 

covers a small number of hot (frequently activated) rows or a large 

number of cold rows. The counters in CBT are organized as a non-

uniform binary tree, where each counter at the same tree level 

(distance from the root) covers the same number of DRAM rows. 
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Initially, CBT uses only one counter to track the number of ACTs for 

all DRAM rows together. Once the count exceeds a threshold, two 

child counters at the next tree level are used, each counting the ACTs 

to the half of the DRAM rows covered by the parent. The children 

are initialized to the value of the parent. CBT repeats this process 

until all counters are used up and resets the tree every tREFW. 

To reduce counter overhead, another counter-based approach 

that uses system performance counters [35, 36] has been proposed. 

It monitors the last level cache (LLC) misses and regards unusually 

frequent LLC misses as a row-hammer attack. However, it requires 

an action for preventing row-hammering whenever there are 

frequent LLC misses, resulting in substantial performance overhead. 

In addition to the counter-based protection schemes, previous 

studies also proposed probabilistic protection schemes. For example, 

PARA [5] activates adjacent DRAM rows with a low probability 

whenever a row is precharged. By adjusting the probability, PARA 

can choose a trade-off point between the level of protection against 

RH attacks and performance and energy overhead. PRoHIT [11] 

extends PARA with a history table to activate the adjacent rows of 

more frequently activated rows with a higher probability. 

 

2.6 Limitations of the Previous RH Solutions 
 

Even if the previous proposals advanced the state-of-the-art 

against the RH attacks compared to the naive counter-based scheme, 
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they suffer from the following shortcomings. Counter-based 

approaches can provide strong protection with no false negative by 

identifying all rows whose ACT counts exceed a threshold value, but 

they can suffer from system performance degradation due to 

superfluous DRAM operations on adversarial memory access 

patterns. 

In the case of CRA, counter-cache misses amplify main memory 

accesses. Similar to other caches, the counter cache within a MC is 

not effective if memory access patterns do not exhibit enough locality 

(being adversarial to the cache). Especially in random access 

workloads, the number of ACTs is nearly doubled, which can 

seriously degrade the system performance. 

CBT may generate bursts of DRAM refreshes due to false 

positives depending on memory access patterns. Because one 

counter often covers multiple DRAM rows, all rows within a group, 

including ones that are not heavily activated, need to be refreshed 

together when the total number of ACTs for the group (as many as 

half the number of rows in a bank) exceeds the threshold. This flurry 

of refreshes incurs a spike in memory access latency, which hurts 

latency-critical workloads [37, 38], degrading their overall system 

performance. Moreover, when a parent counter is split into children, 

ACTs are counted twice because the two child counters are initialized 

with the value of one parent counter. 

PARA and PRoHIT can significantly reduce the probability of an 
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RH-induced error with low performance and energy overhead. Yet, 

the protection is probabilistic in nature; while the probability is quite 

small, there is a non-zero probability that a victim row is not 

refreshed after reaching its RH threshold. The previous studies on 

counter-based protection schemes [9, 12] point out that the 

performance overhead (# of added ACTs) of the probabilistic 

schemes increases when stronger protection (a lower error 

probability) is needed or if the RH threshold decreases. The 

counter-based scheme can be a more cost-effective solution if a 

system designer wants to ensure that the RH threshold is never 

exceeded similar to the way that today’s refresh mechanisms 

deterministically refresh a row within the refresh window. PARA and 

PRoHIT are also oblivious to the RH attack; while they reduce the 

probability of RH errors, they cannot pinpoint when and where an 

attack attempt is made. By contrast, the counter-based schemes 

explicitly detect an RH attack and enables a system to take action 

such as removing/terminating or developing countermeasures for 

malware, and penalizing malicious users responsible for the attack. 

For probabilistic schemes, attackers can easily avoid refreshes for a 

victim row if they can predict the output of a random number 

generator. In that sense, it is important to ensure that the random 

numbers are unpredictable, possibly using true random number 

generators (RNGs) rather than pseudo RNGs. 

All previous techniques are proposed to be implemented within 
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MCs, but this is not necessarily ideal for combatting the RH attack 

due to the following reasons. They assume that MCs know physical 

adjacency among rows, possibly by obtaining the mapping 

information between logical and physical rows from DRAM devices. 

However, due to inevitable remapping of DRAM rows as described in 

Section 2.2, it is costly to know the remapping information. For 

example, the single-cell failure rate (SCF) of a DRAM device is 

projected to be around or surpass 10−5 in sub-20nm DRAM process 

technologies [4]. In this case, if one MC populates DRAM capacity of 

64 GB, it should retain more than 5 million remapping information to 

know the physical adjacency of the entire rows it controls. It is 

impractical or highly costly to have all of this information in each MC. 

 CRA 

[8] 

CBT 

[9, 10] 

PARA 

[5] 

TWiCe 

Primary location MC MC MC RCD 

Performance drop on typical 

memory access patterns 
Small Smaller Small No 

Performance drop on 

adversarial memory access 

patterns 

High High Small Smaller 

Possibility of RH attack 

detection 
Yes Yes No Yes 

Table 2.1. Comparing TWiCe with previous row-hammer 

prevention/mitigation solutions. 
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Moreover, because MCs control a varying number of DRAM 

devices and there is a huge variation in the DRAM capacity, previous 

proposals that are implemented within MCs must support the worst 

case (e.g., the maximum number of DRAM rows that one MC may 

control). For the counter-based approaches, this means that the 

counters must be provisioned assuming the maximum possible 

number of rows. Because the actual main memory capacity can be 

much lower than the maximum depending on workloads, this often 

leads to a waste of resources. Table 2.1 summarizes the properties 

and limitations of the existing solutions and proposed solution, TWiCe, 

which is described from the next chapter. 

 

  



26 

 

 

 

 

 

 

Chapter 3 
 

 

TWiCe: Time Window Counter based 

RH Prevention  
 

In order to prevent RH precisely with low cost, we propose a new 

counter-based RH mitigation solution named TWiCe (Time Window 

Counters). Based on the insight that the number of DRAM ACTs over 

tREFW is bounded, TWiCe prevents RH with a small number of 

counters. 

 

3.1 TWiCe: Time Window Counter 
 

Naively dedicating a counter per DRAM row would be 

prohibitively expensive because the number of necessary counter 

entries is proportional to ever-growing memory capacity. For 

example, if the main memory capacity of a system is 1 TB and a 

 

This Section is based on [1, 2]. - © 2019 ACM, and IEEE 2018. 

Reprinted, with permissions from ISCA ‘19, and CAL ‘18. 
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DRAM page size is 8 KB, more than 100M counters are needed. The 

number of counter entries can be reduced in theory as not all DRAM 

rows can be simultaneously susceptible to the RH attack. A row is 

refreshed every tREFW. This resets the number of electrons that 

could be piled up due to the RH attack. Therefore, if the RH attack on 

a row is spread over a duration spanning multiple tREFW, only the 

number of ACTs a row experiences within tREFW from its physically 

adjacent rows matters. If this number surpasses the RH threshold 

(𝑁𝑡ℎ), data in the corresponding row may be flipped. 

The maximum frequency of row ACTs is limited. On a DRAM 

bank, the minimum interval between any two ACTs is tRC (bank cycle 

time), limiting the maximum number of ACTs within the retention 

time (tREFW) of a row to 
𝑡𝑅𝐸𝐹𝑊

𝑡𝑅𝐶
. Assuming that a row activation 

affects two adjacent (victim) rows, at most 2 ×
𝑡𝑅𝐸𝐹𝑊

𝑡𝑅𝐶×𝑁𝑡ℎ
 rows 

experience the RH attack within tREFW. Applying typical values on 

modern DRAM chips (tRC = 45.32 ns, tREFW = 64 ms) and 𝑁𝑡ℎ 

value reported in [26] (𝑁𝑡ℎ = 139K), only up to 20 rows can be 

exposed to the RH attack from a bank in the duration of tREFW. 

Therefore, we can decrease the number of counter entries by 

detecting the rows that have the potential to be RH aggressors and 

only counting the ACTs to those rows, which is a key idea of TWiCe. 

TWiCe guarantees protection against the RH attack by precisely 

counting ACTs for individual DRAM rows but has low overhead 

because the counts are kept only for frequently activated DRAM rows. 
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The number of necessary counters can be bounded because the 

DRAM interface limits the maximum frequency of row ACTs, and the 

ACT count only needs to be tracked within a refresh window 

(tREFW). We further reduce the number of counters in TWiCe by 

periodically removing (pruning) the counts for the rows that are 

activated infrequently. We refer to this time window period as a 

pruning interval (PI). We can mathematically show that the ACT 

counts for such infrequently activated rows are unnecessary for an 

RH protection guarantee and that TWiCe guarantees to prevent RH 

attacks. The parameters and example values for TWiCe are 

summarized in Table 3.1; we illustrate TWiCe with DRAM whose 

tREFW, tREFI, and tRC are 64 ms, 7.8125 μs, and 45.32 ns, 

respectively. 

Term Definition Typical value 

tREFW refresh window 64 ms 

tREFI refresh interval 7.8125 μs 

tRFC refresh command time 350 ns 

tRC ACT to ACT interval 45.32 ns 

𝑡ℎ𝑅𝐻 RH detection threshold 32,768 

𝑡ℎ𝑃𝐼 pruning interval threshold 4 

𝑚𝑎𝑥𝑎𝑐𝑡 max # of ACTs during PI 164 

𝑚𝑎𝑥𝑙𝑖𝑓𝑒 max 𝑙𝑖𝑓𝑒 of a row in PI 8,192 

Table 3.1. Definition and typical values of TWiCe. 
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TWiCe consists of a counter table and counter logic (Figure 3.1). 

Each counter table entry contains 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟, 𝑎𝑐𝑡_𝑐𝑛𝑡, 𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡, and 

𝑙𝑖𝑓𝑒. 𝑎𝑐𝑡_𝑐𝑛𝑡 records the number of ACTs to the target 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟. 

𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡  indicates whether the entry is valid. 𝑙𝑖𝑓𝑒  indicates the 

number of consecutive pruning intervals (PIs), for which the entry 

stays valid in the table. 

We define two threshold values, one to identify RH (𝑡ℎ𝑅𝐻) and 

the other to detect aggressor candidates (𝑡ℎ𝑃𝐼 ). Similar to other 

counter-based approaches, TWiCe refreshes adjacent rows if 

𝑎𝑐𝑡_𝑐𝑛𝑡 exceeds 𝑡ℎ𝑅𝐻. 𝑡ℎ𝑃𝐼 determines whether an entry should be 

kept as an aggressor candidate after each PI. We set the PI to match 

the auto-refresh interval (tREFI) to hide the latency of checking the 

Logic (adder, shifter, comparator)

valid

0

1

row_addr

0x5a…

...
act_cnt

23

life

6

TWiCe

1 0x23… 2 1

1 0x93… 32,765 200

Table

…

Figure 3.1. The organization of TWiCe. Each table entry holds 

𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡, 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟, 𝑎𝑐𝑡_𝑐𝑛𝑡, and 𝑙𝑖𝑓𝑒. An entry is inserted when a 

new row is activated and invalidated when pruned or refreshed after 

𝑎𝑐𝑡_𝑐𝑛𝑡 reaches 𝑡ℎ𝑅𝐻. 
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table entries by performing the operation in parallel with an auto-

refresh. As each row is refreshed once every refresh window 

(tREFW), the number of ACTs to a row must exceed 𝑡ℎ𝑅𝐻 within 

tREFW for a successful RH attack. Thus, the average number of 

ACTs to an aggressor row over a refresh interval (tREFI) must 

exceed 
𝑡ℎ𝑅𝐻

𝑡𝑅𝐸𝐹𝑊/𝑡𝑅𝐸𝐹𝐼
. We set 𝑡ℎ𝑃𝐼  to be this value. For the DRAM 

parameters that we use, tREFW = 64 ms and tREFI = 7.8125 μs, 

𝑡ℎ𝑃𝐼 is 4 and the maximum number of pruning intervals over a refresh 

window (𝑚𝑎𝑥𝑙𝑖𝑓𝑒) is 8,192. 

TWiCe operates as follows (see Figure 3.2). 1) TWiCe receives 

a DRAM command and address pair. 2) For each DRAM ACT, TWiCe 

allocates an entry in the counter table if the entry for the row does 

not already exist, and increments the counter (𝑎𝑐𝑡_𝑐𝑛𝑡) by one. 3) If 

𝑎𝑐𝑡_𝑐𝑛𝑡  reaches 𝑡ℎ𝑅𝐻 , TWiCe refreshes the adjacent rows of the 

entry and deallocates the entry. 4) After each pruning interval (PI 

=tREFI), each entry in the TWiCe table is checked and removed if 

(𝑎𝑐𝑡_𝑐𝑛𝑡 < 𝑡ℎ𝑃𝐼 × 𝑙𝑖𝑓𝑒). In other words, a row is considered to be an 

aggressor candidate only if the average number of ACTs over tREFI 

is equal to or greater than 𝑡ℎ𝑃𝐼. This step enables the counter table 

size to be bounded. For the remaining entries, 𝑙𝑖𝑓𝑒 is incremented by 

one. 

 

3.2 Proof of RH Prevention 
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Here, we show that the number of ACTs to each row over a 

refresh window cannot exceed the RH threshold without being 

detected by TWiCe. Let us first consider the maximum number of 

ACTs to a row over tREFW when the row is not tracked by the 

TWiCe table (𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑). Because TWiCe keeps a row in its 

counter table if 𝑎𝑐𝑡_𝑐𝑛𝑡 ≥ 𝑡ℎ𝑃𝐼 × 𝑙𝑖𝑓𝑒 , 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑  must be less 

than 𝑡ℎ𝑃𝐼 × 𝑙𝑖𝑓𝑒. Given the maximum value of life over the refresh 

window is 𝑡𝑅𝐸𝐹𝑊/𝑡𝑅𝐸𝐹𝐼 and 𝑡ℎ𝑃𝐼 is 
𝑡ℎ𝑅𝐻

𝑡𝑅𝐸𝐹𝑊/𝑡𝑅𝐸𝐹𝐼
, 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑 can 

be expressed as: 

 

𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑 < 𝑡ℎ𝑃𝐼 ×
𝑡𝑅𝐸𝐹𝑊

𝑡𝑅𝐸𝐹𝐼
= 𝑡ℎ𝑅𝐻 

 

In other words, if a row is activated 𝑡ℎ𝑅𝐻 times or more within a 

refresh window, it will be in the counter table. 

If a row is in the counter table, its ACT count while being 

considered as an aggressor candidate (𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑎𝑐𝑘𝑒𝑑) is less than 𝑡ℎ𝑅𝐻 

if no RH attack is detected. The activations to this row, while it was 

not considered as an aggressor candidate, may not be included in the 

counter table, yet this value is bounded by 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑, which is 

less than 𝑡ℎ𝑅𝐻 . As explained above, both counttracked and the 

invalidated counts 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑  should be less than 𝑡ℎ𝑅𝐻 . 

Therefore, the maximum number of ACTs to a row over tREFW 

without being detected as an aggressor (𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) is 
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𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑 + 𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑎𝑐𝑘𝑒𝑑 < 2 × 𝑡ℎ𝑅𝐻 

 

According to a previous study [5], a row needs to experience 

139K or more ACTs on its neighbor rows within tREFW to have a bit 

flip (𝑁𝑡ℎ). Considering that a row has two adjacent rows in general 

(double-side RH), the actual threshold to detect an aggressor is its 

half, 69K. In order to ensure that 𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 does not exceed this 

threshold, 69K, 𝑡ℎ𝑅𝐻 should be less than half of 69K (or one-fourth 

of 𝑁𝑡ℎ. In this study, we set 𝑡ℎ𝑅𝐻 to be 32,768. 

 

3.3 Counter Table Size 
 

In TWiCe, we assume that there is a counter table per DRAM 

bank. To calculate the required table size (the number of counter 

entries), we define a new term 𝑚𝑎𝑥𝑎𝑐𝑡 , the maximum number of 

ACTs in a DRAM bank during tREFI. Because the ACT-to-ACT 

interval in a bank is tRC and rows cannot be activated during tRFC, 

𝑚𝑎𝑥𝑎𝑐𝑡 is (𝑡𝑅𝐸𝐹𝐼 − 𝑡𝑅𝐹𝐶)/𝑡𝑅𝐶. With tREFI of 7.8125 μs and tRC of 

45.32 ns, 𝑚𝑎𝑥𝑎𝑐𝑡 is 164. DRAM devices with fewer rows per bank 

lead to smaller tRFC and higher 𝑚𝑎𝑥𝑎𝑐𝑡. Yet, because tREFI ≫ tRFC, 

𝑚𝑎𝑥𝑎𝑐𝑡 only changes slightly. 

The table size should be set based on the worst case when the 

table has the largest number of valid entries (aggressor candidates). 

If there are not enough TWiCe table entries to handle all the 

aggressor candidates, overflows cause entry evictions. In this case, 
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information lost by eviction makes it hard to prevent row-hammering 

through TWiCe. Although refreshing adjacent rows of evicted row 

entry can solve this problem, it will enable the system performance 

degradation attack that uses adversarial memory access patterns, 

which evicts TWiCe table entries frequently.  

The valid entries fall into two categories: (1) entries newly 

inserted in the current PI, and (2) entries identified as aggressor 

candidates in the previous PIs. The number of new entries is bounded 

by 𝑚𝑎𝑥𝑎𝑐𝑡. The number of surviving entries is maximized when the 

counter entries with the smallest 𝑙𝑖𝑓𝑒 survive the most. For example, 

consider the entries whose 𝑙𝑖𝑓𝑒 is 2. Because 𝑙𝑖𝑓𝑒 of these entries 

in the previous PI is 1, the maximum number of entries with 𝑙𝑖𝑓𝑒 = 

2 is 
𝑚𝑎𝑥𝑎𝑐𝑡

1×𝑡ℎ𝑃𝐼
. This happens when the maximum number of ACTs (𝑚𝑎𝑥𝑎𝑐𝑡) 

are equally distributed across 
𝑚𝑎𝑥𝑎𝑐𝑡

1×𝑡ℎ𝑃𝐼
 distinct rows in the previous PI. 

New entries with fewer than 𝑡ℎ𝑃𝐼 ACTs are invalidated at the end of 

the PI. Similarly, the maximum number of entries whose 𝑙𝑖𝑓𝑒 is 𝑛 

can be calculated as 
𝑚𝑎𝑥𝑎𝑐𝑡

(𝑛−1)×𝑡ℎ𝑃𝐼
. Thus, the total number of counter 

entries can be bounded by 𝑚𝑎𝑥𝑎𝑐𝑡 × (1 + ∑
1

𝑛×𝑡ℎ𝑃𝐼
)

𝑚𝑎𝑥𝑙𝑖𝑓𝑒

𝑛=1 . Moreover, the 

number of entries must be an integer, so {𝑚𝑎𝑥𝑎𝑐𝑡%((𝑛 − 1) × 𝑡ℎ𝑃𝐼)} of 

ACTs, which are left after filling ((𝑛 − 1) × 𝑡ℎ𝑃𝐼) counters at 𝑙𝑖𝑓𝑒 of 

𝑛, can be used for entries with 𝑙𝑖𝑓𝑒 of 𝑛 + 1. For example, with 𝑡ℎ𝑃𝐼 

of 4 and 𝑚𝑎𝑥𝑎𝑐𝑡 of 164 in Table 3.1, the maximum number of entries 

whose life is 3 and 4 is 20 and 13, respectively, according to the 

formula above. Also, four (=164-20×8) and eight (=164-13×12) 
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ACTs remain in the corresponding PIs, respectively. In this case, 

these 12 remain ACTs can be used for saving one more valid entry 

whose life is 4.  

The maximum number of entries per TWiCe table is 553 by the 

formula shown above, while the total number of rows per bank is 

131,072 for the parameters in Table 3.1. Therefore, the required 

table size is reduced by more than two orders of magnitude compared 

to the number of DRAM rows in a bank, which is comparable to other 

counter-based approaches. 

 

3.4 Architecting TWiCe 
 

TWiCe can be implemented in multiple ways by placing its counter 

table and RH detection logic in a MC, a DRAM device, or an RCD. In 

this section, we discuss this design space and describe how we 

modify MC, RCD, and DRAM devices to support TWiCe in main 

memory systems. This section also introduces a new Adjacent Row 

Refresh (ARR) command that is necessary to deal with row 

remapping within DRAM devices. 

 

3.4.1 Location of TWiCe Table 
 

TWiCe needs one table per DRAM bank. A certain class of systems, 

such as mobile devices, has a fixed number of DRAM banks whereas 

another class of systems, such as servers, could have a varying 
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number of banks in their life time. As a result, if we locate a TWiCe 

table in a MC, the number of TWiCe tables must be large enough to 

accommodate the largest number of DRAM banks the MC might 

support, not the actual number of DRAM banks in a system. For 

example, a MC, which could populate a maximum of four 2-rank 

DIMMs with 16 banks per rank, must be designed with TWiCe tables 

that support up to 128 banks. If this MC controls only one 1-rank 

DIMM with 16 banks, TWiCe tables for the 112 banks are unused and 

hence wasted. 

Implementing the TWiCe table within each DRAM device is also 

wasteful when a DRAM rank consists of multiple DRAM devices. All 

DRAM devices within a memory rank operate in tandem, hence 

Memory 

Controller

(MC)

DRAM

TWiCe

Register Clock Driver

(RCD)

DQ/DQS (Data / Data Strobe I/O) bus

Control 

Logic
Buffer

TWiCe 

Table CA bus CA bus

NackNack

ARR

Figure 3.3. The microarchitecture of TWiCe. TWiCe table is 

implemented in a register clock driver (RCD). A path from an RCD to 

its master memory controller (MC) is modified to send negative 

acknowledgment (nack) signals. A new command called adjacent row 

refresh (ARR) is sent to DRAM devices from RCD through the 

repeated command and address (CA) bus when the row address 

specified in ACT is identified as an RH aggressor. 
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making each DRAM device count the number of ACTs from the MC 

would be a duplication of effort. Placing the TWiCe counters in an 

RCD would provide a per-DIMM protection, avoiding table size 

over-provisioning, and count the number of ACTs at a per-bank 

level, eliminating redundant information. Therefore, in this paper, we 

investigate placing the TWiCe table in an RCD (see Figure 3.3). 

 

 

3.4.2 Augmenting DRAM Interface with a New Adjacent Row 

Refresh (ARR) Command 
 

As we explained in Section 2.2, row remapping occurs within DRAM 

devices, but neither MC nor RCD knows this DRAM row remapping 

information or can efficiently hold all the information internally. 

Therefore, an RCD should not compute adjacent rows and send the 

computed addresses explicitly to DRAM devices. 

Instead, the RCD should just send a command to DRAM devices 

notifying that the row of a bank which was just activated are 

recognized as an RH aggressor row. Hence, we add a new DRAM 

command ARR (Adjacent Row Refresh) which asks the DRAM 

devices to refresh the physically adjacent rows of the row just being 

activated (through up to two pairs of ACTs and PREs within the 

devices). When TWiCe detects an RH aggressor row and the RCD 

equipped with TWiCe receives a precharge command (PRE) to the 

aggressor row, the RCD sends ARR to the DRAM devices instead of 

PRE and waits for 2 × 𝑡𝑅𝐶 + 𝑡𝑅𝑃 to allow the DRAM to refresh the 
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(up to two) physically adjacent rows and return the bank to a 

precharged state. DRAM devices receiving an ARR command 

calculate the physical addresses of the adjacent rows (considering 

the row remapping) during the precharge operation of the aggressor 

row and then refresh them.① 

We also propose to provide a feedback path from an RCD to a MC 

for sending negative acknowledgment information (see Figure 3.3). 

Updating a TWiCe table is asynchronous to normal DRAM operations 

because the update happens when the corresponding bank performs 

an auto-refresh operation, not accepting any normal DRAM command, 

such as RD, WR, ACT, and PRE. Therefore, MCs do not need to know 

about a TWiCe table update as long as the update can be performed 

within tRFC (which is analyzed in Section 3.5). 

By contrast, because an RCD with TWiCe sends ARR right after 

a row being recognized as an RH aggressor is precharged, one of 

normal DRAM operations from a MC to the RCD might head to the 

DRAM bank that is still performing ARR, leading to a conflict. 

Conventional DRAM interfaces assume that a MC is a master, a sole 

device which generates commands and expects the other devices 

(here DRAM devices) to process the commands without any internal 

delay mechanism. Fortunately, ARR commands are issued very 

rarely, at most one in 32,768 ACTs as analyzed in Section 3.2. Hence, 

 
① The newly proposed ARR command can also be directly used by MC to 

avoid the need to know the row remapping information within the DRAM 

devices. 
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we propose to have an RCD return a negative acknowledgment (nack) 

signal to the master MC when a conflict occurs. We can leverage 

already existing feedback path indicating that a command from a MC 

might fail (e.g., alert_n in DDR4 [24]). The RCD can return this signal 

back to the MC until it finishes the ARR if it receives normal 

commands to the bank performing ARR. The RCD also sends the nack 

signal back to the MC while performing an ARR command if there is 

an ACT command to the rank which includes the bank performing 

ARR. Because of the additional ACTs performed from ARR, the 

number of ACTs recognized by the MC and the actual number of 

ACTs performed in a DRAM rank may differ, which can lead to a 

violation of the tFAW timing constraint of the DRAM if not careful. 

Blocking every ACT to the rank during ARR addresses this problem. 

While the approach is conservative, it has a minimal impact on system 

performance because the ARR commands are only issued 

infrequently, at most once when the number of ACTs reaches the RH 

threshold. The evaluation results in Section 3.6 show that this 

blocking has no performance overhead except for actual RH attacks 

because general workloads invoke no ARR. Similar to the case of 

handling an address signal parity bit error in DDR4, a MC can resend 

the command that was just blocked. 

RH prevention through TWiCe within RCD and ARR interface 

eliminates the side-channel attacks that use the ACT count 

information or aggressor and victim row information in TWiCe table. 
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The processor components, including a MC, cannot access the TWiCe 

table in an RCD. Also, when there is ARR operation caused by row-

hammering, the MC cannot know the aggressor and victim row 

information because TWiCe sends simply ARR command instead of 

precharge command, and DRAM calculates the adjacent row 

addresses. 

 

3.5 Analysis 
 

We analyzed the area, energy, and performance overhead of our 

proposals using SPICE simulations based on 45 nm FreePDK library 

[39]. We designed TWiCe as four banks of content addressable 

memory (CAM) and SRAM. We set tREFW, tREFI, tRC, and 𝑡ℎ𝑅𝐻 as 

64 ms, 7.8125 μs, 45.32 ns, and 32,768, respectively. We set 𝑡ℎ𝑃𝐼 

and 𝑚𝑎𝑥_𝑎𝑐𝑡 to 4 and 164. Also, we set the number of rows per bank 

to 131,072. 

Area overhead: TWiCe incurs negligible area overhead. Each 

entry in a TWiCe table needs 46 bits, including (1, 17, 15, 13) bits 

for (𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡 , 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟 , 𝑎𝑐𝑡_𝑐𝑛𝑡 , 𝑙𝑖𝑓𝑒). We designed 𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡 and 

𝑟𝑜𝑤_𝑎𝑑𝑑𝑟 as CAM for concurrent searching, and 𝑎𝑐𝑡_𝑐𝑛𝑡 and 𝑙𝑖𝑓𝑒 as 

SRAM to save area and energy. According to Section 3.3, 553 entries 

are needed per table, which translates to 3.11 KB per 1 GB DRAM 

bank.  
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  Timing (ns) Energy (nJ) 

TWiCe 
ACT count 3 0.082 

Table update 140 0.663 

DRAM 

ACT+PRE (tRC) 45.32 11.49 

Refresh/bank (tRFC) 350 132.24 

Table 3.2. Timing and energy in operating TWiCe and DRAM devices. 

Performance overhead: TWiCe incurs no performance overhead 

while performing TWiCe table updates. TWiCe operations are 

performed in parallel with normal DRAM activation and auto-refresh 

operations. Our simulation results show that the count time of TWiCe 

is 3 ns, which is much less than tRC (Table 3.2). We structured 

TWiCe entries into four banks to reduce the time for table updates. 

The table update of TWiCe with concurrent access to all banks takes 

140 ns and can be performed during an auto-refresh, which takes 

350 ns (tRFC). For DRAM devices with smaller tRFC, we can speed 

up the table update of TWiCe by populating more banks. In theory, 

TWiCe may have false positives and issue more ACTs than 

necessary because 𝑡ℎ𝑅𝐻 is set conservatively. However, the impact 

of the false positives is negligible in practice because every false 

positive requires 𝑡ℎ𝑅𝐻 ACTs but incurs mere two additional ACTs as 

shown in Section 3.6. 

Energy overhead: TWiCe requires minimal additional energy as 

quantified in Table 3.2. As an ACT count operation accompanies 
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DRAM activation and precharge operations, its overhead of TWiCe is 

only 0.7% on modern DDR4 [40]. Compared to per-bank auto-

refresh energy during tRFC, table update overhead is 0.5%. Our 

analysis is based on 45 nm process; if designed with the latest 

processes, the energy overhead would be even smaller. 

 

3.6 Evaluation 
 

We evaluated how many additional refreshes TWiCe generates to 

prevent RH through simulation. We modeled a chip-multiprocessor 

system by modifying McSimA+ [41] with default parameters 

summarized in Table 3.3. The system consists of 16 out-of-order 

cores with a 3.6 GHz operating frequency and 2 memory channels. 

Each MC is connected to 2 ranks of DDR4-2400 modules and has 64 

request queue entries. Each rank has 16 banks. We used DRAM 

timing parameters and TWiCe thresholds in Table 3.1. We used 

minimalist-open DRAM page policy [42]. 

Simulations were run using multi-programmed and multi-

threaded workloads. We used the SPEC CPU2006 benchmark suite 

[43] for multi-programmed workloads. Using Simpoint [44], we 

extracted and used the most representative 100M instructions per 

application. We used 29 of SPECrate and 2 of mixed multi-

programmed workloads. Each SPECrate workload consists of 16 

copies of one application. In order to make the mixed workloads, we 

measured the memory access per kilo-instructions (MAPKI) of each 
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application and classified nine most memory intensive applications as 

spec-high (mcf, milc, leslie3d, soplex, GemsFDTD, libquantum, lbm, 

sphinx3, and omnetpp). We then made a mix-high multi-

programmed workload consisting of the spec-high applications and a 

mix-blend workload which consists of 16 random SPEC CPU2006 

applications regardless of MAPKI. MICA [45] (multi-threaded key-

value store), PageRank from GAP benchmark suite [46], and RADIX 

and FFT from SPLASH-2X [47] were used for multi-threaded 

workloads. 

Resource Value 

Number of cores, MCs 16, 2 

Per core Freq, issue/commit width 3.6 GHz, 4/4 slots 

Issue policy Out-of-Order 

L1 I/D $, L2 $ 16 KB, 128 KB private 

L1, L2 $ line size 64 B 

Hardware (linear) prefetch On 

L3 $ / line size 16 MB shared / 64 B 

Per MC # of channels, Req Q 2 Ch, 64 entries 

Baseline module type DDR4-2400 

Capacity/rank, bandwidth 16 GB, 19.2 GB/s 

Scheduling policy PAR-BS [48] 

DRAM page policy Minimalist-open [42] 

Table 3.3. Default parameters of the simulated system. 

We also used synthetic workloads (S1, S2, and S3) to produce 

more controlled situations. S1 injects random access sequences 
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constantly. S2 represents an adversarial memory access pattern for 

CBT, which keeps accessing a half of entire DRAM rows of a bank 

until all CBT counters split and then repeatedly accesses the other 

half after all counters are allocated (described in Section 2.6). S3 is 

a typical RH attack, which repeatedly accesses only one DRAM row. 

Figure 3.4 shows the relative number of additional ACTs (caused 

by ARRs in the case of TWiCe) compared to the number of normal 

ACTs. We compared TWiCe with previous solutions. PARA-0.001 

and PARA-0.002 are PARA refreshing adjacent rows with a 

probability of 0.001 and 0.002, respectively. CBT-256 is CBT with 

256 counters per bank. We used a threshold of 32K and 11 sub-

thresholds for CBT-256, the values that were used in evaluating 

CBT [9]. 

All solutions generate less than 0.3% of additional ACTs to 

prevent RH on the evaluated multi-programmed and multi-threaded 

workloads. Because the memory access patterns of these workloads 

do not actually cause an RH attack, the additional ACTs on these 

workloads are due to false positives. TWiCe generated no additional 

ACTs on all multi-programmed and multi-threaded workloads. 

PARA-0.001, PARA-0.002, and CBT-256 produced additional 

ACTs of 0.1%, 0.2%, and 0.05% on average, respectively. 

TWiCe also rarely generates additional ACTs on the synthetic 

workloads. It only generates additional ACTs of 0.006% on S3, and 
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(a) Multi-programmed and multi-threaded workloads

(b) Synthetic workloads

Figure 3.4. The relative number of additional ACTs of PARA-0.001, 

PARA-0.002, CBT-256, and TWiCe compared to the number of 

normal ACTs on multi-programmed and multi-threaded workloads 

(multi-programmed SPEC CPU2006, multi-threaded SPLASH-2X, 

GAP-BS, and MICA applications) and synthetic workloads (S1, S2, 

and S3). TWiCe does not incur additional ACTs on the multi-

programmed, multi-threaded, S1 and S2 workloads and incurs only 

0.006% additional ACTs on S3 (RH attack scenario) workload. 

PARA-0.001 and PARA-0.002 produce additional ACTs of 0.1% and 

0.2% on average, respectively. CBT-256 generates up to 4.82% 

additional ACTs on S2 workload. 
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still does not make additional ACTs on S1 and S2. PARA-0.001 and 

PARA-0.002 shows 0.1% and 0.2% additional ACTs on S1, S2 and 

S3, respectively. By contrast, CBT-256 generates additional ACTs 

much more frequently on these synthetic workloads. Especially on 

S2 whose access pattern is adversarial to CBT in particular, it 

requires additional ACTs of 4.82%. For S3, which represents an RH 

attack pattern, CBT-256 requires 0.39% of additional ACTs. 

Because the number of rows that the last level (level 11) counter in 

CBT-256 should track is 131,072/211−1 = 217/210 = 128 , it has to 

refresh 128 rows for every 32K ACTs. Therefore, the frequency of 

false positive detection by TWiCe is orders of magnitude lower than 

that by the previous RH prevention schemes on adversarial memory 

access patterns. 
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Chapter 4① 
 

 

Optimizing TWiCe to Reduce 

Implementation Cost 
 

Original TWiCe, which proposed in Chapter 3, requires 553 table 

entries per bank at 128k of 𝑁𝑡ℎ. Considering that the overall main-

memory system is composed of multiple banks, the required number 

of table entries is proportion to the number of DRAM banks, 

increasing the implementation cost of TWiCe accordingly. In this 

chapter, we propose and evaluate various methods to reduce the 

implementation cost of TWiCe. 

 

4.1 Pseudo-associative TWiCe 
 

A straightforward implementation of proposed TWiCe would be 

making the table fully associative (fa-TWiCe) using content-

 

This Section is based on [1, 2]. - © 2019 ACM, and IEEE 2018. 

Reprinted, with permissions from ISCA ‘19, and CAL ‘18. 
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addressable memory (CAM). The fully-associative implementation 

is feasible as the minimal interval between counter updates is dozens 

of nanoseconds, and the update is not in the critical path of DRAM 

accesses. Still, in the case of TWiCe against RH, a more energy-

efficient implementation is desired compared to fa-TWiCe with 553 

ways. A set-associative design looks appealing at first glance, but it 

suffers from performance degradation for access patterns that thrash 

sets because a row that is being evicted from the table needs to 

trigger refreshes for security. 

We address this problem by leveraging a pseudo-associative 

cache design [13] and call it pseudo-associative TWiCe (pa-

TWiCe). Each DRAM row is mapped to a preferred set of pa-TWiCe 

(see Figure 4.1). A set has set-borrowing (SB) indicators, each 

counting entries used by another set. For a table with N sets, each 

set has N−1 SB indicators. pa-TWiCe records a row ACT as follows: 

1) it probes the target address in the preferred set. 2) If 1) fails, it 

checks the non-preferred sets with their SB indicators for the 

preferred set being non-zero. 3) If the target row is found, the 

𝑎𝑐𝑡_𝑐𝑛𝑡 of that entry is increased by one. 4) If 2) fails, an entry is 

inserted into a set (preferably to the preferred set) and the 

corresponding SB indicator is increased by one if needed. When an 

entry is invalidated, the SB indicator value is decreased by one. pa-

TWiCe is inferior to fa-TWiCe in the worst-case for latency and 

energy efficiency when all the sets must be checked. However, 
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because both preferred and non-preferred sets can be checked 

within tRC, there is no performance overhead. Also, pa-TWiCe can 

greatly save energy in common cases when checking the preferred 

set is enough. We show that almost table accesses of the pa-TWiCe 

target to the preferred set on general workloads in Section 4.5. 

 

4.2 Rank-level TWiCe 
 

The key property of the DRAM interface composing TWiCe is that 

the number of ACTs to a bank for a specific time (e.g., tREFW or 

tREFI) is limited by tRC. From this property, we can calculate the 

required number of TWiCe table entries, which is 553 per bank under 

the DRAM timing parameters of Table 3.1. In this case, a typical 

memory system with multiple DRAM banks requires total (553 × the 

number of banks) table entries. 

Managing TWiCe table at a DRAM rank level reduces the number 

of table entries required. Each bank within a rank can operate 

independently, but there are tRRD (Row to Row Delay) and tFAW 

(Four Activate Window) timing parameters that limit ACT frequency 

in rank because ACT operation consumes large currents and over-

stress the power delivery network of the device. tRRD limits the 

minimum timing of two consecutive ACTs within DRAM devices, and 

tFAW means a time window where four ACTs can be issued. In other 

words, more than four ACTs within tFAW cannot be issued, and it is 

generally more than 4 × tRRD. Therefore, the maximum number of 
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ACTs within a rank during tREFI (𝑚𝑎𝑥𝑎𝑐𝑡−𝑟𝑎𝑛𝑘) is 
𝑡𝑅𝐸𝐹𝐼−𝑡𝑅𝐹𝐶

𝑡𝐹𝐴𝑊/4
, which is 

less than ( 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑛𝑘𝑠 𝑝𝑒𝑟 𝑟𝑎𝑛𝑘 × 𝑚𝑎𝑥𝑎𝑐𝑡 ); 𝑚𝑎𝑥𝑎𝑐𝑡  is the 

number of ACTs within a bank during tREFI calculated with tRC. For 

example, with the typical DDR4 timing parameter described in Table 

4.1, 𝑚𝑎𝑥𝑎𝑐𝑡−𝑟𝑎𝑛𝑘 is 1,356, while 𝑚𝑎𝑥𝑎𝑐𝑡 is 164. Because the number 

of banks per rank (device) of DDR4 is 16, 𝑚𝑎𝑥𝑎𝑐𝑡−𝑟𝑎𝑛𝑘 is almost half 

of 16 × 𝑚𝑎𝑥𝑎𝑐𝑡 (= 2,624). 

 

Based on this insight, we propose a rank-level TWiCe, which 

manages tables in rank-level rather than bank-level. Rank-level 
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Figure 4.2. The table size comparison between bank- and rank-level 

TWiCe. The number of entries and the size of table per bank of rank-

level TWiCe is 55% and 59% of those of bank-level TWiCe, 

respectively. 
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TWiCe can reduce the total number of required table entries. Figure 

4.2 compares the average number of entries per bank and the actual 

table size between bank- and rank-level TWiCe. We calculated the 

number of required entries based on Section 3.3, and for the rank-

level TWiCe, we divided the number of entries of rank with the 

number of banks per rank. While bank-level TWiCe requires 553 

entries per bank, rank-level TWiCe needs 302 entries per bank, 

which is 55% of bank-level TWiCe. Also, the size of TWiCe table is 

3.11 KB and 1.84 KB for bank- and rank-level TWiCe, respectively. 

The difference of table size between bank- and rank-level TWiCe 

is a little smaller than that of the number of entries because 4 bits for 

bank address should be added to 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟 of each entry in rank-

level TWiCe. 

Rank-level TWiCe reduces the number of required table entries 

per bank, but the total size of the table to be explored is larger than 

bank-level TWiCe because it is difficult to assign 302 entries to each 

bank independently. If there are excessive ACTs to a specific bank, 

it requires still 553 entries for that bank, so all entries in a rank must 

be managed in an integrated manner. Searching for all of the table 

entries in a rank increases energy overhead and latency for searching 

the target row. To reduce these overheads, we implement rank-level 

TWiCe by exploiting the structure of pa-TWiCe proposed in Section 

4.1. 
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The structure of rank-level TWiCe is almost identical to bank-

level TWiCe. It has an independent table for each bank and a 

preferred set for a particular target row address. It also has SB 

indicators, each counting entries used by another set in the bank table.  

However, if all the table entries for a particular bank are in use, rank-

level TWiCe allows borrowing another bank table within the rank. For 

this, a bank table has table-borrowing (TB) indicators, each counting 

entries used by another bank table. Rank-level TWiCe counts a row 

ACT as follows (see Figure 4.3): 1) it probes the target address in 

the preferred set. 2) If 1) fails, it checks the non-preferred sets with 

their SB indicators for the preferred set being non-zero. 3) If 2) fails, 

it checks the non-preferred tables with their TB indicators for the 

preferred bank being non-zero. 4) If the target row is found, the 

𝑎𝑐𝑡_𝑐𝑛𝑡 of that entry is increased by one. 5) If 3) fails, an entry is 

inserted into a set (preferably to the preferred table and the 

preferred set), and the corresponding TB and SB indicators are 

increased by one if needed. When an entry is invalidated, the TB and 

SB indicator values are decreased by one. 

In a rank-level TWiCe, we need to consider more carefully the 

worst-case latency where all the bank tables must be checked. 

Unlike bank-level TWiCe that needs to complete ACT count 

operation in tRC, rank-level TWiCe have to complete ACT count 

operation in a quarter of tFAW; ACT-to-ACT interval to a particular 

bank is still tRC. To satisfy timing constraints, in 2) and 3), it 
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searches the sets and tables in parallel. In this case, if the target row 

is stored in a non-preferred set or another bank table, table search 

consumes more considerable energy than that of bank-level TWiCe. 

However, there is no significant impact on the actual system because 

almost all target rows are found in or inserted into preferred sets on 

general workloads according to our evaluation in Section 4.5. 

 

4.3 Adjusting Threshold to Reduce Table Size 
 

We can reduce the TWiCe table size further by adjusting the 

threshold of TWiCe. As described in Section 3.2, RH prevention of 

TWiCe is demonstrated by the following inequality. 

 

𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑 < 𝑡ℎ𝑃𝐼 ×
𝑡𝑅𝐸𝐹𝑊

𝑡𝑅𝐸𝐹𝐼
 (1) 

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑎𝑐𝑘𝑒𝑑 < 𝑡ℎ𝑅𝐻 (2) 

𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 < 𝑡ℎ𝑃𝐼 ×
𝑡𝑅𝐸𝐹𝑊

𝑡𝑅𝐸𝐹𝐼
+ 𝑡ℎ𝑅𝐻 <

Nth

2
 (3) 

 

The original TWiCe sets 𝑡ℎ𝑃𝐼 to 
𝑡ℎ𝑅𝐻

𝑡𝑅𝐸𝐹𝑊/𝑡𝑅𝐸𝐹𝐼
 and makes the right side 

of the inequality (1) as 𝑡ℎ𝑅𝐻. Thus, it guarantees RH prevention if 

𝑡ℎ𝑅𝐻  is smaller than 
Nth

4
. However, the relationship that 𝑡ℎ𝑃𝐼  is  

𝑡ℎ𝑅𝐻

𝑡𝑅𝐸𝐹𝑊/𝑡𝑅𝐸𝐹𝐼
 is not essential. Therefore, we can adjust 𝑡ℎ𝑃𝐼 and 𝑡ℎ𝑅𝐻 

under conditions that satisfy the inequality (3). In this case, if 𝑡ℎ𝑃𝐼 

increase, 𝑡ℎ𝑅𝐻 has to decrease, while 𝑡ℎ𝑅𝐻 can increase when 𝑡ℎ𝑃𝐼 
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decreases. 

𝑡ℎ𝑃𝐼 𝑡ℎ𝑅𝐻 
Required # of entries (per bank) 

Bank-level TWiCe Rank-level TWiCe 

1 57,344 1,732 940 

2 49,152 946 514 

3 40,960 683 373 

4 (default) 32,768 553 302 

5 24,576 457 250 

6 16,384 392 215 

7 8,192 339 186 

Table 4.1. The required number of TWiCe table entries according to 

𝑡ℎ𝑃𝐼 and 𝑡ℎ𝑅𝐻. We assume 𝑁𝑡ℎ as 128k. While the original bank-level 

TWiCe whose 𝑡ℎ𝑃𝐼 is 4 requires 553 entries per bank, rank-level 

TWiCe with 𝑡ℎ𝑃𝐼 of 7 requires 186 entries. 

The threshold adjustment changes the number of required table 

entries. Increasing 𝑡ℎ𝑃𝐼  makes pruning more strictly; each entry 

must have a higher 𝑎𝑐𝑡_𝑐𝑛𝑡 value to survive than before. On the other 

hand, decreasing 𝑡ℎ𝑃𝐼  means the entry can survive with a lower 

𝑎𝑐𝑡_𝑐𝑛𝑡 value than before. Table 4.1 shows the number of required 

table entries under various 𝑡ℎ𝑃𝐼 value according to the calculation of 

Section 3.3. Increasing 𝑡ℎ𝑃𝐼 to 7 can reduce the number of required 

entries of rank-level TWiCe to 186 per bank. This is almost 1/3 of 

the number of required entries of bank-level TWiCe with 𝑡ℎ𝑃𝐼 of 4 

what we first proposed. However, increasing 𝑡ℎ𝑃𝐼  induce more 

false-positive detections due to smaller 𝑡ℎ𝑅𝐻. Therefore, in Section 
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4.5, we experiment with the increase of false-positive detection due 

to threshold adjustment, and our analysis shows that it is insignificant 

in general workloads. 

 

4.4 Analysis 
 

We analyzed the area, energy, and timing overhead of threshold 

adjusted rank-level TWiCe using SPICE simulations based on 45 nm 

FreePDK library [39]. We designed our proposal as 64-way SRAM. 

We set tREFW, tREFI, and tFAW to 64 ms, 7.8125 us, and 21 ns, 

respectively. Also, we set 𝑡ℎ𝑅𝐻, 𝑡ℎ𝑃𝐼, and the number of rows per 

bank to 8,192, 7, and 131,072, respectively. 

Threshold adjusted rank-level TWiCe incurs less area overhead 

than the original TWiCe. Each entry needs 46 bits, including (1, 21, 

13, 11) bits for (𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡, 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟, 𝑎𝑐𝑡_𝑐𝑛𝑡, 𝑙𝑖𝑓𝑒). When compared 

to original TWiCe, 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟 increases 4 bits due to bank address, 

𝑎𝑐𝑡_𝑐𝑛𝑡 decreases 2 bits due to the reduction of 𝑡ℎ𝑅𝐻. Also, 𝑙𝑖𝑓𝑒 is 11 

bits, which is 2 bits smaller than that of original TWiCe, because the 

maximum 𝑙𝑖𝑓𝑒  of the entry with 𝑎𝑐𝑡_𝑐𝑛𝑡  of 8,191 is 
8,191

7
= 1,170 . 

According to Table 4.1, rank-level TWiCe, whose 𝑡ℎ𝑃𝐼 is 7, requires 

186 entries per bank, so each bank table is comprised of three sets 

of 64-way SRAM, which translates to 1.08 KB per 1 GB DRAM bank. 

Rank-level TWiCe incurs no performance overhead while 

performing table updates. Our simulation results show that Rank-
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level TWiCe requires 3 ns for accessing a single counter set and 5 

ns for all bank tables, which is shorter than 
𝑡𝐹𝐴𝑊

4
. Also, it requires 

130 ns for updating the table, while the auto-refresh operation of 

DRAM takes 350 ns. In addition, rank-level TWiCe achieves lower 

energy overhead than the original TWiCe because it reduces the 

required number of entries and consists of SRAM instead of CAM. 

Although the energy required to search all bank tables is 0.861 nJ, 

which is more significant than that of the ACT count of original 

TWiCe, we found that the counters for all rows remained in their 

preferred sets through the multi-programmed and multi-threaded 

workload simulations specified in Section 4.5. 

  
Timing 

(ns) 

Energy 

(nJ) 

Original 

TWiCe 

ACT count 3 0.082 

Table update (per bank) 140 0.663 

Rank-level 

TWiCe 

ACT count 

(preferred set) 
3 0.018 

ACT count 

(preferred bank table) 
4 0.054 

ACT count 

(all bank tables) 
5 0.861 

Table update (per bank) 130 0.153 

DRAM 
ACT to ACT (tFAW/4) 5.5 11.49 

Refresh/bank (tRFC) 350 132.24 

Table 4.2. Timing and energy in operating original and rank-level 

TWiCe, and DRAM devices. 
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4.5 Evaluation 
 

We first evaluated how many target row addresses of ACT are stored 

in a non-preferred set or another bank table instead of the preferred 

set. We modeled a chip-multiprocessor system by modifying 

McSimA+ [41] with the same parameters as Section 3.6. We used 

DRAM timing parameters in Table 4.1. We used 𝑡ℎ𝑃𝐼 and 𝑡ℎ𝑅𝐻 of 7 

and 8,192, respectively. 

We run simulations using multi-programmed and multi-threaded 

workloads. The workloads used for the simulation is the same as in 

Section 3.6. We used mix-high, mix-blend, and 29 of SPECrate 

multi-programmed workloads. Also, we used MICA [45], PageRank 

from GAP benchmark suite [46], and RADIX and FFT from SPLASH-

2X [47] for multi-threaded workloads. 

Figure 4.4 shows how many target row addresses of ACT are 

stored in a non-preferred set or another bank table instead of the 

preferred set. We compared the results of the various number of 

ways in rank-level TWiCe. The table accesses in the graph includes 

both access for searching and access for inserting a new entry. 

When using SRAM with 32 or more ways, the rank-level TWiCe 

always finds the target address in the preferred set on the evaluated 

multi-programmed and multi-threaded workloads. With 16-way 

SRAM, three SPECrate workloads make target row address 

searching (or inserting) in the non-preferred set, but it was smaller 
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than 0.001% of the total number of ACTs. When using 8-way SRAM, 

0.03% of the total table accesses head to non-preferred sets. 

However, even in this case, there is no other bank table access. 

We also evaluated how many additional refreshes (ACTs) rank-

level TWiCe generates to prevent RH through simulation. In addition 

to the workloads used above, we used three synthetic workloads (S1, 

S2, and S3) that are the same as Section 3.6. Rank-level TWiCe 

generates no additional ACTs on the evaluated workloads except for 

S3 synthetic workloads. Even on S3 workloads, it only generates 

additional ACTs of 0.024%, which is four times of that of original 

TWiCe. It is still much smaller than 0.1% of PARA-0.001. 
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Chapter 5 
 

 

Augmenting TWiCe for Hot-page 

Detection 
 

TWiCe, which is proposed to prevent RH, contains information 

about the frequently activated rows. In this section, we augment 

TWiCe for hot-page detection in the memory system consisting of 

asymmetric latency DRAM. 

 

5.1 Necessity of Counters for Detecting Hot Pages 
 

In a conventional DRAM device, each timing parameter is set to 

the worst-case latency, such as the latency to access the farthest 

cell in topological distance from the I/O pins. By partitioning a device 

into multiple regions, there is a room to reduce access latency on a 

subset of these regions. Numerous studies [7], [14], [17], [49], 

[50], [51], [52] have proposed main-memory DRAM 

microarchitectures that support asymmetric access latency. In 
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particular, a few of them [7], [14], [17] have focused on the fact that 

key memory access latency values, such as tRCD and tRP, can be 

reduced if the length of the DRAM BLs is shortened. These studies 

divide DRAM internal structure into a fast access region with shorter 

BLs and a slow access region with longer BLs. 

Tiered-Latency DRAM (TLDRAM [14]) divides each BL within 

subarrays into two short BLs through an isolation (ISO) transistor. 

TLDRAM has two types of rows: one is near row which is always 

connected to the corresponding BLSA, and the other is far row which 

is located farther from BLSA than the near rows and is connected 

through an ISO transistor. When a near row is accessed, latency can 

be shortened by disconnecting the ISO transistor, which reduces the 

BL capacitance. The average access latency can be reduced by 

allocating frequently accessed data in the near rows. 

Center high aspect ratio mat (CHARM [7]) architecture places 

high-aspect-ratio (HAR) mats that have shorter timing parameters 

in the center (closer to I/O pads) area, and normal mats that have 

default timing parameters in the remaining area. As the BL 

capacitance of a HAR mat is smaller than that of a normal mat, the 

latency and power consumption on an access to the HAR mat is 

reduced. Also, column access latency (tCL) of the center area is 

further reduced by shifting the per-bank column decoder in the 

center area closer to the I/O pads. 

Main-memory accesses in many workloads are concentrated to 
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a small portion (hot pages) of their entire memory footprints. 

Therefore, exploiting asymmetric low-latency main memory and 

allocating frequently accessed hot pages to the fast region would help 

improving system performance. However, it is difficult to identify hot 

pages because hot pages can change dynamically at runtime. 

Misidentifying hot pages may even harm performance. In finding hot 

pages, static allocation is suboptimal because it requires off-line 

profiling to extract memory access patterns, which can vary 

significantly depending on the input values and the execution phases 

of running applications as well as interaction with other processes in 

a system. Dynamic allocation can solve these problems but it requires 

real-time hot-page detection mechanism with high accuracy and a 

low-latency page swap mechanism. Although the operating system 

(OS) can track page access distribution, this information is not 

appropriate to use for asymmetric latency DRAM because it does not 

consider the cache hierarchy. The hot page determined by OS 

requires little DRAM accesses because the accesses to this page 

mostly hit in the cache. Therefore, there have been several studies 

on how to identify hot pages [7], [17], [53], [54]. 

 

5.2 Previous Studies on Migration for Asymmetric 

Low-latency DRAM 
 

There have been multiple DRAM microarchitecture proposals 

targeting high-throughput internal DRAM data transfer, which can be 
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used to relocate frequently accessed data to the fast region of 

asymmetric DRAM [15], [16], [17]. Chang et al. [16] proposed 

inter-linked subarrays (LISA) which enable fast data movement 

between subarrays. LISA inserts ISO transistors to connect BLs and 

a row-buffer that are adjacent but not connected. By turning the ISO 

transistors on, data can be copied between subarrays. DAS-DRAM 

[17] also enables rapid data movement between subarrays. To 

reduce the overhead of row migration, DAS-DRAM adds a 2T2C 

migration cell to each BL and use the migration cells as temporal 

buffers needed for the swap. DAS-DRAM achieves 3×tRC latency 

for swapping two rows (tSWP) that are located in adjacent subarray 

by concurrently utilizing the migration cells in the both subarrays. We 

leverage DAS-DRAM microarchitecture for DRAM page swap as it 

does not require a spare row for swapping. Compared to DAS-DRAM 

which swaps a DRAM page after a few accesses, we utilize the 

counters in TWiCe to choose page-swap targets. 

Figure 5.1 shows our asymmetric DRAM architecture adopting 

the migration cells in DAS-DRAM. We pair a low-latency (fast) 

subarray with short BLs, each connecting 1/3 of DRAM cells 

compared to a BL in a normal (slow) subarray. One row in the fast 

region and three rows in the slow region form a row group; a hot page 

in the slow region can be swapped with the page in the fast region, 

which was possibly hot in the past. We summarized the timing 

parameters of this architecture in Table 5.1. The fast region has 
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reduced values for tRCD and tRP, but its tRC stays unchanged as it 

influences the number of counters TWiCe needs for row-hammering 

protection. Note that system performance is more sensitive to tRCD 

and tRP than tRAS in modern servers with hundreds of DRAM banks 

because a bank typically stays deactivated (because they employ an 

adaptive-open page management policy [55]) or services a 

sequence of column accesses to an activated row (for access 

patterns with spatial locality) and suffers less frequently from row-

buffer conflicts. 

 

 

Figure 5.1. Low latency DRAM microarchitecture based on dynamic 

asymmetric subarray DRAM (DAS-DRAM [17]). A row in a slow 

subarray can be swapped with a row in a fast subarray through 

migration cells. 
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5.3 Extending TWiCe for Dynamic Hot-page 

Detection 
 

Because TWiCe tracks rows that are activated recently or 

frequently, we leverage this information to detect hot pages to be 

placed in the fast DRAM region. We argue that hot-page detection 

with ACT counts is reasonable based on the following rationale: (1) 

Recently accessed rows are more likely to be accessed again because 

of temporal locality in memory accesses [17], [49]. (2) In a system 

running many applications concurrently, a large portion of main-

memory accesses accompany ACT due to inter-core interference in 

shared memory [56] or adaptive-open page management policy, 

which diligently deactivates rows that are idle for more than a certain 

(short) period [42], [55]. (3) The low-latency DRAM 

microarchitectures, such as DAS-DRAM [17], focused on reducing 

tRCD and tRP, which affects the latency of PRE/ACT. Compared to 

access-based hot-page detection, ACT-based hot-page detection 

filters out accesses with frequent row-buffer hits, which have the 

same latency in both fast and slow regions, reducing ineffective page 

swaps which gain little with the shortened timing parameters of the 

fast region. Therefore, hot-page detection through TWiCe ensures 

that hot pages are migrated to the fast region of DRAM with high 

accuracy and fewer row swaps, as quantitatively evaluated in Section 

5.5.2. 
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We augment TWiCe to detect hot pages (see Figure 5.2). Our 

asymmetric DRAM architecture has two DRAM addressing types as 

a DRAM row could be swapped within a row group. One is physical 

row address specified by a request from the MC, and the other is 

device row address indicating the location within a DRAM device. To 

track row swap record, TWiCe has an address translation table, 

which is used to translate a physical address to a device address. 

 

 

Figure 5.2. Extended TWiCe microarchitecture with additional 

ℎ𝑜𝑡_𝑐𝑛𝑡, 𝑠𝑤𝑝_𝑏𝑖𝑡, swap queue, and address translation table. 

The count information ( 𝑎𝑐𝑡_𝑐𝑛𝑡 ) of swapped rows does not 

represent hot-page information because of the mismatch between 

physical and device row address. TWiCe manages the entries based 

on the device row address, indicating the actual location on a device 

to prevent row-hammering. Therefore, after rows are swapped, 

𝑎𝑐𝑡_𝑐𝑛𝑡 of each entry of the swapped rows cannot represent whether 

the physical row mapped to that entry is hot. To solve this problem, 

we add a new saturating counter called ℎ𝑜𝑡_𝑐𝑛𝑡  to each entry of 

TWiCe 

Register Clock Driver

Control 

Logic

Address Translation Table

Buffer

TWiCe 

Table

Name Width

valid 1

row_addr 17

act_cnt 15

life 13

hot_cnt 4

swp_bit 1
SWAP Queue
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TWiCe. Also, we define a new hot-page detection threshold (𝑡ℎ𝐻𝑃). 

ℎ𝑜𝑡_𝑐𝑛𝑡 counts the ACTs to the device row address of each entry, 

and the row becomes a swap candidate if ℎ𝑜𝑡_𝑐𝑛𝑡 reaches 𝑡ℎ𝐻𝑃. As 

opposed to 𝑎𝑐𝑡_𝑐𝑛𝑡, ℎ𝑜𝑡_𝑐𝑛𝑡 resets to zero when the row is swapped 

so that the ACT count for the swapped physical row address is 

reinitialized. When a row is swapped, ℎ𝑜𝑡_𝑐𝑛𝑡 of all rows in the row 

group to which the swapped row belongs is set to zero to prevent 

excessive swaps due to competition between the multiple hot rows 

within a row group. 

We also add 𝑠𝑤𝑝_𝑏𝑖𝑡 to each TWiCe entry to prevent consecutive 

swaps to a row group. It indicates that the row has been swapped in 

the preceding pruning interval (PI). 𝑠𝑤𝑝_𝑏𝑖𝑡 holds one for a PI after 

a row swap, and if 𝑠𝑤𝑝_𝑏𝑖𝑡 of the target row is one, the row is not 

swapped even if it is detected as a hot page. This ensures that the 

row in the fast region can stay for a certain amount of time (2×tREFI 

here), preventing excessive swapping. Finally, in order to manage 

the row swap candidates, we add a swap queue which contains the 

source and target device row pairs to swap. 

The process of detecting hot pages and placing them to the fast 

region of asymmetric DRAM with TWiCe is as follows: 1) When ACT 

is sent to the target physical row, its address is translated to the 

corresponding device row, and ℎ𝑜𝑡_𝑐𝑛𝑡 is incremented by one like 

𝑎𝑐𝑡_𝑐𝑛𝑡. 2) If ℎ𝑜𝑡_𝑐𝑛𝑡 of the entry reaches 𝑡ℎ𝐻𝑃 and is in the slow 

region, TWiCe searches the fast region row of the row group (target 
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row) in TWiCe table. If the 𝑠𝑤𝑝_𝑏𝑖𝑡 of the target row entry is zero or 

the target row entry does not exist, source and target row address 

is inserted into a swap queue entry unless the target row is already 

in the swap queue. 3) If ℎ𝑜𝑡_𝑐𝑛𝑡 of the entry reaches 𝑡ℎ𝐻𝑃 and is in 

the fast region, its 𝑠𝑤𝑝_𝑏𝑖𝑡 is set to one, preventing this hot page 

from being swapped in the current PI. Also, if this row is the target 

row of a swap queue entry, that swap queue entry is removed as we 

cannot decide which rows are hotter. 4) When the TWiCe table is 

updated during auto-refresh, TWiCe reads the swap queue and finds 

the rows in TWiCe table which belongs to the same row group, and 

sets their ℎ𝑜𝑡_𝑐𝑛𝑡  to zero. Also, 𝑎𝑐𝑡_𝑐𝑛𝑡  of the source and target 

entry is increased by one because row swap incurs additional 

activations to both. If the target row entry does not exist in TWiCe 

table, it is newly inserted. Also, 𝑠𝑤𝑝_𝑏𝑖𝑡 of the target entry is set to 

one to disable swap in the next PI. 𝑠𝑤𝑝_𝑏𝑖𝑡 of all entries that did not 

migrate in the current PI is set to zero, enabling swap in the next PI. 

5) After the auto-refresh, the source and target row address pairs 

in the swap queue are swapped in turn, and the finished entries are 

erased from swap queue. 

 

5.4 Additional Components and Methodology 
 

Address translation is essential in asymmetric memory systems 

supporting hardware managed migration; however, as opposed to 

previous proposals which place a (cache of) translation table within 
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a MC [17], [57], [58], our address translation table is located at RCD. 

In order to reduce the size of the address translation table, we design 

it with Lehmer code encoding [59] and store the permutation of the 

rows in a row group instead of one-to-one mapping of device row 

address over each physical row address. In our design, as a row 

group consists of four rows, the number of possible permutation is 4! 

= 24. Therefore, each row group stores 5-bit encoded data that can 

represent 24 permutations, resulting in 1.25 bit per row. A DDR4 16 

GB DIMM populated with two ranks, which is used for our evaluation 

(Section 5.5.2), needs 307 KB for an address translation table. The 

encoding/decoding overhead of address translation is described in 

Section 5.5.1. 

As described in Section 5.3, row swap is performed right after 

auto-refresh. During auto-refresh, TWiCe in RCD sends source-

target row address pairs in the swap queue to the corresponding 

banks in the DRAM devices (each bank holds the swap row address 

info; 17 bits for source 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟 and 2 bits for target row in a row 

group = 19 bits per swap). After auto-refresh, a row swap is 

executed at a fixed time, tSWP (3×tRC as mentioned in Section 5.2). 

To handle swap timing, TWiCe can send two additional 

information to MC through an alert signal path. First, when row swap 

is in progress and the RCD receives a new ACT from the MC, TWiCe 

sends a signal indicating that row swap is not yet finished. If the MC 

receives this signal, it reschedules to send the next command after 
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tSWP. If there are several entries in swap queue, the time is 

increased by tSWP per entry. Second, TWiCe sends another signal 

to adjust timing parameter (tRCD and tRP) if the currently accessed 

row is in the fast region. MC normally accepts the timing as the slow 

region of DRAM, but when MC receives this signal, MC reduces tRCD 

or tRP counter, respectively, as much as the timing difference 

between the slow and the fast region. We analyze the latency of 

adjusting the timing parameters in Section 5.5.1. 

We also add a parameter, 𝑚𝑎𝑥𝑠𝑤𝑝 , which limits the maximum 

number of swaps possible per refresh command (which is equal to PI) 

to mitigate excessively long swap latency. Because swap latency is 

extended by tSWP per swap on a bank, system performance can be 

degraded due to delayed memory accesses if there are a lot of swaps 

to be processed, which effectively increases tRFC from the access 

scheduler’s perspective within a MC. To alleviate this problem, we 

implement 𝑚𝑎𝑥𝑠𝑤𝑝 by adjusting the size of the swap queue. When the 

swap queue is full, no more swap is enqueued. A small 𝑚𝑎𝑥𝑠𝑤𝑝 size 

can reduce performance degradation due to swap latency, but if it is 

too small, TWiCe cannot follow a rapid change in hot pages as the 

number of hot pages that can be moved to the fast region is limited 

per PI. To analyze this trade-off, we conducted a simulation to 

observe the sensitivity of 𝑚𝑎𝑥𝑠𝑤𝑝  on performance using the 

experimental setup in Section 5.5.2. We saw performance 

improvement becomes much less sensitive when 𝑚𝑎𝑥𝑠𝑤𝑝 was four or 
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more. Therefore, we fixed 𝑚𝑎𝑥𝑠𝑤𝑝 as four in our evaluation. 

 

5.5 Analysis and Evaluation 
 

5.5.1 Overhead Analysis 
 

Our asymmetric DRAM architecture incurs area overhead due to 

high aspect ratio subarray which has short bitlines and migration cells. 

As described in Section 5.2, a quarter of the total DRAM capacity is 

composed of 3× high aspect ratio subarrays and 2 migration cells are 

needed for each bitline, resulting in about total 7% DRAM area 

overhead [17], [60]. 

For hot-page detection, 4-bit ℎ𝑜𝑡_𝑐𝑛𝑡  and 1-bit 𝑠𝑤𝑝_𝑏𝑖𝑡  are 

added to each entry of TWiCe, leading to 0.28 KB increase in the 

table size. TWiCe requires an address translation table and control 

logic to support swapping, for which an SRAM with 384 KB [61] can 

be implemented within 2 mm2  and consumes 180 pJ per access. 

Maximum operating frequency is 1.2 GHz, which meets target 

frequency specification in Section 5.5.2. We synthesized TWiCe 

control, swap queue, Lehmer encoder and decoder for address 

translation table logics with Synopsys Design Compiler [62] and IC 

Compiler [63]. Total silicon size is estimated to be less than 0.05 

mm2 at 1.2 GHz. 

TWiCe needs a return path to a MC to send alert signals for row-

hammering, swapping, and tRCD timing adjustment. Therefore, we 
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need extra pins per MC to enable bidirectional communication 

between TWiCe and MCs. We resolve this problem by leveraging a 

currently existing pin in DDR4 called ALERT_n, which is for sending 

ECC exception. Originally, this pad is designed as an open drain pad 

for accepting ALERT_n signals from all DRAM chips. However, the 

load of this signal is greatly decreased by RCD and it can operate at 

high speeds comparable to the transfer rate of a DQ (data I/O) bus. 

We modify ALERT_n as a single-ended unidirectional CMOS output 

[64]. This signal encodes the original ECC error detection as well as 

three (row-hammering, swapping, tRCD timing adjustment) TWiCe 

functions. 

Because the address translation table is placed at RCD, MC does 

not know if the DRAM row to activate is currently located at the fast 

region. Therefore, MC should first assume that all DRAM row 

activation takes tRCD of the slow region and later update the tRCD 

value once it receives the information through ALERT_n that the row 

being activated belongs to the fast region. MC must receive this 

information within the tRCD of the fast region to avoid any 

performance penalty. We can break down the sequence of this 

information delivery as follows: ① ACT is sent from MC to RCD. ② 

The address translation table is accessed. ③ If the row address 

corresponds to the fast region, the signal is encoded and leaves 

ALERT_n. ④ The signal is delivered from RCD back to MC. ⑤ The 

tRCD counter value in MC should be decreased accordingly. Here, ① 
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and ④ are determined by the channel propagation latency between 

MC and RCD. The transfer latency of MC and DIMM is calculated to 

be 1 ns per 6 inches, and the required length from MC to DIMM is 

less than 2 inches [65], [66]; and hence the maximum latency for 

both ① and ④ should be 0.34 ns. ② and ③ require 1 tCK (DRAM 

cycle time, which is 0.83 ns for DDR4-2400) to access the address 

translation table and 4 tCK for transmitting the encoded TWiCe signal.  

⑤ needs 1 tCK latency. Because a total latency (<7 tCK) is smaller 

than tRCD of fast region (9 tCK, see Table III), tRCD can be adjusted 

successfully within MC. 

 

5.5.2 Evaluation 
 

We simulated a chip multi-processor to evaluate the effect of hot-

page detection using TWiCe in asymmetric DRAM microarchitecture. 

We modified McSimA+ [41] with default parameters summarized in 

Table 5.1. The system consists of 16 out-of-order cores with 3.6 

GHz operating frequency and 4 memory channels. Each MC connects 

to 2 ranks of DDR4-2400 modules and has 64 request queue entries. 

Each rank has 16 banks and the capacity per rank is 16 GB. We used 

(16, 16) and (9, 9) tCK as (tRCD, tRP) timing parameters for the 

slow and fast regions of DRAM, respectively. The page swap latency 

(tSWP) is 165 tCK which is 3 × tRC. We set default hot-page 

detection threshold (𝑡ℎ𝐻𝑃) to 16 based on the result of sensitivity 

study in the last of this section and the maximum number of swap per 



76 

 

auto-refresh (𝑚𝑎𝑥𝑠𝑤𝑝) to 4. 

Resource Value 

Number of cores, MCs 16, 4 

Per core Freq, issue/commit width 3.6 GHz, 4/4 slots 

Issue policy Out-of-Order 

L1 I/D $, L2 $ 16 KB, 128 KB private 

L1, L2 $ line size 64 B 

Hardware (linear) prefetch On 

L3 $ / line size 16 MB shared / 64 B 

Per MC # of channels, Req Q 4 Ch, 64 entries 

Baseline module type DDR4-2400 

Capacity/rank, bandwidth 16 GB, 19.2 GB/s 

Scheduling policy PAR-BS [48] 

DRAM page policy Minimalist-open [42] 

DRAM 

Timing 
tRCD, tRP 

slow region (16, 16) tCK 

fast region (9, 9) tCK 

tSWP (swap latency) 165 tCK 

𝑡ℎ𝐻𝑃, 𝑚𝑎𝑥𝑠𝑤𝑝 16, 4 

Table 5.1. Default parameters of the simulated system. 

Figure 5.3 shows the performance (IPC) improvement of 

systems employing various hot-page detection schemes including 

TWiCe on low-latency DRAM microarchitecture depicted in Figure 

5.1. For single-threaded workloads, we use a single memory channel 

to stress main-memory bandwidth. The baseline configuration uses 
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DDR4-2400 DRAM devices without any fast region. In the no-MIG 

configuration, DRAM is divided into fast and slow regions but no 

migration is performed. In Static configuration, the upper 25% of 

frequently accessed rows are allocated to the fast DRAM region 

based on offline profiling, without dynamic swapping of DRAM rows. 

DAS is an access-frequency-based DRAM row migration method 

used in DAS-DRAM [17], which triggers row swapping if a row in 

the slow DRAM region is accessed eight times. In the Oracle 

configuration, DRAM is hypothetically assumed to have only fast 

region. 

TWiCe outperforms DAS and reaches or even surpasses the 

performance of Static in most evaluated workloads. DAS selects hot 

pages by counting the number of accesses to the row, but only the 

accesses that accompany ACT/PRE operations take the benefit of 

reduced tRCD and tRP. Therefore, as DAS often prematurely triggers 

row swapping, its performance is inferior to TWiCe. Static does not 

react to variations of hot pages in runtime; this explains why TWiCe 

outperforms Static in several workloads. TWiCe selects hot pages 

according to the number of ACT operations within recent pruning 

intervals (PIs), so it can effectively migrate time-varying hot pages 

to the fast region. As shown in Figure 5.4(b), TWiCe directs 89.7% 

and 79.9% of total accesses to the fast region at 𝑡ℎ𝐻𝑃 of 16. However, 

on a few workloads, such as GemsFDTD and FFT, TWiCe performs 

worse than Static because the dynamic hot-page tracking mechanism 
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of TWiCe does not always work ideally; fewer than 50% of total 

accesses head to the fast region. 

 

Figure 5.4. (a) The relative performance (IPC) compared to the 

baseline DDR4-2400 device, (b) the access ratio to the fast region, 

and the average number of DRAM row swaps per PI (Pruning Interval) 

in a bank across a varying number of hot-page detection threshold 

(𝑡ℎ𝐻𝑃). 

TWiCe performs on par with Oracle on several workloads even 

if only 25% of the main-memory capacity TWiCe use belongs to the 

fast region. TWiCe improves IPC by 5.2% and 5.6% for spec-high 
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applications and mix-high workloads where the IPC improvements 

of Oracle are 8.2% and 7.4%. Also, TWiCe achieves 7.4%, 3.0%, 4.8%, 

12.2%, and 8.8% IPC improvements over the baseline for canneal, 

FFT, PageRank, RADIX, and MICA, respectively. 

We further conduct a sensitivity study on hot-page detection 

threshold of TWiCe. Figure 5.4 shows the performance (IPC), the 

access ratio to the fast region, and the average number of swaps per 

PI in a bank as we sweep 𝑡ℎ𝐻𝑃  from 1 to 32. The baseline uses 

DDR4-2400 devices without the fast region. 

We made the following key observations. First, the access ratio 

to the fast region is decreased by increasing 𝑡ℎ𝐻𝑃, but even when 

𝑡ℎ𝐻𝑃 is increased to 32, the ratio is still higher than 50% in most 

workloads. Figure 5.4(b) shows that on average the access ratio to 

the fast region is 82% for spec-high, 93% for mix-high, and 80.6% 

for multi-threaded workloads. The access ratio to the fast region 

gradually decreases as 𝑡ℎ𝐻𝑃 increases. For 𝑡ℎ𝐻𝑃 of 32, the ratio is 

59% for spec-high, 83.5% for mix-high, and 79.6% for multi-

threaded workloads. For GemsFDTD and FFT mentioned in the first 

evaluation, performance improvement is relatively small as only half 

of total accesses are sent to the fast region. 

Second, the average number of swaps per PI is large at low 𝑡ℎ𝐻𝑃, 

but sharply decreases as 𝑡ℎ𝐻𝑃 increases. As shown in Figure 5.4(b), 

at 𝑡ℎ𝐻𝑃 of one, the average number of swaps per PI is 0.41, 0.83, and 

1.24 for spec-high, mix-high, and multi-threaded workloads 
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average, respectively. As number of swaps increases, memory 

accesses can be delayed due to longer swap latency after auto-

refreshes. Therefore, with low 𝑡ℎ𝐻𝑃 , the performance gain due to 

high access ratio to the fast region is mostly lost as the swap 

overhead increases steeply. Especially, in the case of FFT, the 

average number of swaps per PI is almost 4 which results in about 

25% performance degradation due to the swap latency as shown in 

Figure 5.4(a). 

As seen from the above observations, as 𝑡ℎ𝐻𝑃  increases, the 

performance improvement decreases with decreased access ratio to 

fast region but the swap overhead also decreases with swaps per PI 

reduction. On multi-programmed and multithreaded workloads, the 

access ratio loss and swaps per PI reduction are balanced at 𝑡ℎ𝐻𝑃 of 

16, with fast region ratio higher than 80% and less than 0.1 swaps 

per PI on average. Figure 5.4(a) shows that at 𝑡ℎ𝐻𝑃 of 16, TWiCe 

improves IPC by 5.2%, 5.6%, and 7.2% over baseline for spec-high, 

mix-high, and multi-threaded workloads, respectively. 

  



82 

 

 

 

 

 

 

Chapter 6 
 

 

Conclusion  
 

In this thesis, we have proposed TWiCe, a new counter-based 

hardware solution to combat DRAM row-hammering (RH), and 

augmented TWiCe for hot-page detection in the low-latency DRAM 

architecture. 

TWiCe precisely tracks the number of ACTs to each DRAM row 

with a small number of counters and provides strong protection; 

adjacent rows are guaranteed to be refreshed before the number of 

ACTs exceeds a RH threshold. The precise protection is possible 

with low overhead because tracking the number of ACTs only to a 

small subset of frequently activated DRAM rows is sufficient. To 

exceed the RH threshold within a refresh window, a row must be 

frequently activated, but as the total number of DRAM row ACTs 

 

This Section is based on [1, 2]. - © 2019 ACM, and IEEE 2018. 

Reprinted, with permissions from ISCA ‘19, and CAL ‘18. 
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over a period is limited by the DRAM interface, the maximum number 

of rows that can be activated frequently, and thereby row-hammered, 

is bounded. We analytically derive the number of counters that can 

guarantee precise protection from the RH attack. We distribute the 

functionality of TWiCe among a MC, RCDs, and DRAM devices, 

achieving an efficient implementation. Our analysis shows that TWiCe 

incurs less than 0.7% area/energy overhead on modern DRAM 

devices and it is free of false positive detection on all the evaluated 

workloads except no more than 0.006% of additional ACTs on 

adversarial memory access patterns including RH attack scenarios. 

To reduce the area and energy overhead of TWiCe further, we 

propose threshold adjusted rank-level TWiCe by leveraging a 

pseudo-associative cache design. Rank-level TWiCe requires a 

smaller number of table entries because the maximum ACT 

frequency within a DRAM rank is more bounded than that within a 

bank. Also, we reduce the number of entries by adjusting TWiCe 

thresholds. To minimize the impact on performance, we find the 

appropriate TWiCe thresholds that do not increase the number of 

false-positive detections on general workloads by simulation. 

Finally, we extend TWiCe to improve main-memory 

performance. TWiCe can be used as a hot-page detector for 

asymmetric low-latency DRAM microarchitecture, as recently 

activated pages are likely to be activated again due to temporal 

locality in memory accesses. We also propose a DRAM row swap 
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methodology and an address translation table management method 

with a detailed timing analysis. Counter entries contain hot-page 

information, and rows whose hot-page activation count exceeds the 

hot-page detection threshold are swapped with a row in the fast 

DRAM region. Our evaluation shows that low-latency DRAM using 

TWiCe achieves up to 5.6% and 12.1% IPC improvement over a 

baseline DDR4 device for multi-programmed and multithreaded 

workloads. 

 

6.1 Future work 
 

As described in Chapter 2.4, the row-hammering threshold (𝑁𝑡ℎ) is 

expected to decrease going forward with further technology scaling. 

To prevent row-hammering with lower Nth, we need the lower 

TWiCe thresholds (𝑡ℎ𝑅𝐻 and 𝑡ℎ𝑃𝐼), increasing the required number of 

table entries. Even if we apply all optimization techniques in this 

thesis to TWiCe, more than 1000 entries per bank are required with 

𝑁𝑡ℎ below 10000. Also, according to [68], the activation of the non-

adjacent row can cause bit flips. Like double-side RH, TWiCe can 

resolve this problem by decreasing 𝑡ℎ𝑅𝐻 and 𝑡ℎ𝑃𝐼, but the table size 

has to be larger accordingly. Therefore, it would be essential to 

reduce TWiCe table size further or propose a new low-cost solution. 
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국문초록 

 
DRAM을 주기억장치로 사용하는 컴퓨터 시스템은 로우 해머링 

공격에 노출된다. 로우 해머링은 인접 DRAM 로우를 자주 

activation함으로써 특정 DRAM 로우 데이터에 직접 접근하지 않고서도 

데이터를 뒤집을 수 있는 현상을 말한다. 이러한 로우 해머링 현상을 

방지하기 위해 여러가지 확률적인 방지 기법과 결정론적 방지 기법들이 

연구되어 왔다. 그러나, 확률적인 방지 기법은 공격 자체를 탐지할 수 

없고, 방지에 실패할 확률이 0이 아니라는 한계가 있다. 또한 기존의 

카운터를 활용한 결정론적 방지 기법들은 큰 칩 면적 비용을 

발생시키거나 특정 메모리 접근 패턴에서 현저한 성능 하락을 

야기한다는 단점이 있다. 

이러한 문제를 해결하기 위해, 우리는 TWiCe (Time Window 

Counter based row refresh)라는 새로운 카운터 기반 결정론적 방지 

기법을 제안한다. TWiCe는 적은 수의 카운터를 활용하여 로우 해머링 

공격을 정확하게 탐지하면서도 성능에 악영향을 최소화하는 방법이다.  

우리는 DRAM 타이밍 파라미터에 의해 로우 activation 빈도가 

제한되고 DRAM 셀이 주기적으로 리프레시 되기 때문에 로우 해머링을 

야기할 수 있는 DRAM 로우의 수가 한정된다는 사실에 주목하였다. 

이로부터 우리는 TWiCe가 확실한 결정론적 방지를 보장할 경우 필요한 

DRAM 뱅크 당 필요한 카운터 수의 최대값을 구하였다. TWiCe는 

일반적인 DRAM 동작 과정에서는 성능에 아무런 영향을 미치지 않으며, 

현대 DRAM 디바이스에서 0.7% 이하의 칩 면적 증가 및 에너지 

증가만을 필요로 한다. 우리가 진행한 평가에서 TWiCe는 로우 해머링 



95 

 

공격 시나리오를 포함한 여러가지 메모리 접근 패턴에서 0.006% 

이하의 추가적인 DRAM activation을 요구하였다. 

또한 TWiCe의 칩 면적 및 에너지 비용을 더욱 줄이기 위하여, 

우리는 threshold가 조정된 랭크 단위 TWiCe를 제안한다. 먼저, 

수백개가 넘는 TWiCe 테이블 항목 검색을 에너지 효율적으로 수행할 

수 있는 pa-TWiCe (pseudo-associatvie TWiCe)를 제안하였다. 

그리고, 테이블 항목을 랭크 단위로 관리하여 필요한 테이블 항목의 

수를 더욱 줄인 랭크 단위 TWiCe를 제안하였다. 또한, 우리는 

TWiCe의 threshold 값을 조절함으로써 일반적인 워크로드 상에서 거짓 

양성(false-positive) 탐지를 증가시키지 않는 선에서 TWiCe의 테이블 

항목 수를 더욱 줄였다. 

마지막으로, 우리는 컴퓨터 시스템의 주기억장치 성능 향상을 위해 

TWiCe를 hot-page 감지기로 사용하는 것을 제안한다. 메모리 접근의 

시간적 지역성에 의해 최근 자주 activation된 DRAM 로우들은 다시 

activation될 확률이 높고, TWiCe는 최근 자주 activation된 DRAM 

로우에 대한 정보를 가지고 있다. 이러한 사실에 기반하여, 우리는 hot-

page에 대한 DRAM 접근 지연시간을 줄이는 DRAM 페이지 

스왑(swap) 기법들에 TWiCe를 적용하는 방법을 보인다. 우리가 

수행한 평가에서 TWiCe를 사용한 저지연시간 DRAM은 멀티 쓰레딩 

워크로드들에서 기존 DDR4 디바이스 대비 IPC를 최대 12.2% 

증가시켰다. 

 

주요어 : DRAM, 로우 해머링, 결정론적 방지, 신뢰성, 핫-페이지 감지, 

저지연시간 DRAM 
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