

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사 학위논문

Preventing Row-hammering and

Improving Main Memory

Performance by Exploiting Time

Window Counters

타임 윈도우 카운터를 활용한 로우 해머링 방지

및 주기억장치 성능 향상

2020 년 8 월

서울대학교 융합과학기술대학원

융합과학부 지능형융합시스템전공

이 어 진

Preventing Row-hammering and

Improving Main Memory

Performance by Exploiting Time

Window Counters

타임 윈도우 카운터를 활용한 로우 해머링 방지

및 주기억장치 성능 향상

지도 교수 안 정 호

이 논문을 공학박사 학위논문으로 제출함

2020 년 7 월

서울대학교 융합과학기술대학원

융합과학부 지능형융합시스템전공

이 어 진

이어진의 공학박사 학위논문을 인준함

2020 년 7 월

위 원 장 이 재 욱 (인)

부위원장 안 정 호 (인)

위 원 김 장 우 (인)

위 원 김 동 준 (인)

위 원 박 영 준 (인)

i

Abstract

Preventing Row-hammering and

Improving Main Memory

Performance by Exploiting Time

Window Counters

Eojin Lee

Intelligence Systems

Department of Transdisciplinary Studies

The Graduate School

Seoul National University

Computer systems using DRAM are exposed to row-hammer (RH)

attacks, which can flip data in a DRAM row without directly accessing

a row but by frequently activating its adjacent ones. There have been

a number of proposals to prevent RH, including both probabilistic and

deterministic solutions. However, the probabilistic solutions provide

protection with no capability to detect attacks and have a non-zero

probability for missing protection. Otherwise, counter-based

deterministic solutions either incur large area overhead or suffer

from noticeable performance drop on adversarial memory access

patterns.

ii

To overcome these challenges, we propose a new counter-based

RH prevention solution named Time Window Counter (TWiCe) based

row refresh, which accurately detects potential RH attacks only using

a small number of counters with a minimal performance impact. We

first make a key observation that the number of rows that can cause

RH is limited by the maximum values of row activation frequency and

DRAM cell retention time. We calculate the maximum number of

required counter entries per DRAM bank, with which TWiCe prevents

RH with a strong deterministic guarantee. TWiCe incurs no

performance overhead on normal DRAM operations and less than 0.7%

area and energy overheads over contemporary DRAM devices. Our

evaluation shows that TWiCe makes no more than 0.006% of

additional DRAM row activations for adversarial memory access

patterns, including RH attack scenarios.

To reduce the area and energy overhead further, we propose the

threshold adjusted rank-level TWiCe. We first introduce pseudo-

associative TWiCe (pa-TWiCe) that can search for hundreds of

TWiCe table entries energy-efficiently. In addition, by exploiting

pa-TWiCe structure, we propose rank-level TWiCe that reduces the

number of required entries further by managing the table entries at a

rank-level. We also adjust the thresholds of TWiCe to reduce the

number of entries without the increase of false-positive detection on

general workloads.

Finally, we propose extend TWiCe as a hot-page detector to

improve main-memory performance. TWiCe table contains the row

iii

addresses that have been frequently activated recently, and they are

likely to be activated again due to temporal locality in memory

accesses. We show how the hot-page detection in TWiCe can be

combined with a DRAM page swap methodology to reduce the DRAM

latency for the hot pages. Also, our evaluation shows that low-

latency DRAM using TWiCe achieves up to 12.2% IPC improvement

over a baseline DDR4 device for a multi-threaded workload.

Keywords : DRAM, Row-hammering, Deterministic protection,

Reliability, Hot-page detection, Low-latency DRAM

Student Number : 2014-24902

iv

Contents

Abstract ... i

Contents ... iv

List of Figures ... vii

List of Tables ... ix

Introduction ... 1

1.1 Time Window Counter Based Row Refresh to Prevent

Row-hammering .. 2

1.2 Optimizing Time Window Counter .. 6

1.3 Using Time Window Counters to Improve Main Memory

Performance ... 8

1.4 Outline .. 10

Background of DRAM and Row-hammering 11

2.1 DRAM Device Organization ... 12

2.2 Sparing DRAM Rows to Combat Reliability Challenges 13

2.3 Main Memory Subsystem Organization and Operation 14

2.4 Row-hammering (RH) .. 18

2.5 Previous RH Prevention Solutions 20

v

2.6 Limitations of the Previous RH Solutions 21

TWiCe: Time Window Counter based RH Prevention 26

3.1 TWiCe: Time Window Counter ... 26

3.2 Proof of RH Prevention ... 30

3.3 Counter Table Size .. 33

3.4 Architecting TWiCe ... 35

3.4.1 Location of TWiCe Table .. 35

3.4.2 Augmenting DRAM Interface with a New Adjacent

Row Refresh (ARR) Command .. 37

3.5 Analysis ... 40

3.6 Evaluation .. 42

Optimizing TWiCe to Reduce Implementation Cost 47

4.1 Pseudo-associative TWiCe .. 47

4.2 Rank-level TWiCe .. 50

4.3 Adjusting Threshold to Reduce Table Size 55

4.4 Analysis ... 57

4.5 Evaluation .. 59

Augmenting TWiCe for Hot-page Detection 62

5.1 Necessity of Counters for Detecting Hot Pages 62

5.2 Previous Studies on Migration for Asymmetric Low-

latency DRAM .. 64

5.3 Extending TWiCe for Dynamic Hot-page Detection 67

5.4 Additional Components and Methodology 70

5.5 Analysis and Evaluation .. 73

5.5.1 Overhead Analysis .. 73

vi

5.5.2 Evaluation .. 75

Conclusion ... 82

6.1 Future work ... 84

Bibliography .. 85

국문초록 ... 94

vii

List of Figures

Figure 2.1: The organization of a modern DRAM device.............12

Figure 2.2: The organization of a conventional main memory

system..15

Figure 3.1: The organization of TWiCe...29

Figure 3.2: TWiCe operation example...31

Figure 3.3: The microarchitecture of TWiCe................................36

Figure 3.4: The relative number of additional ACTs of PARA-

0.001, PARA-0.002, CBT-256, and TWiCe compared

to the number of normal ACTs on multi-programmed,

multi-threaded, and synthetic workloads..................45

Figure 4.1: Exemplar pseudo-associative TWiCe operations.....49

Figure 4.2: The table size comparison between bank- and rank-

level TWiCe...51

Figure 4.3: The organization of rank-level TWiCe table and

viii

exemplar operations..53

Figure 4.4: The ratio of access to non-preferred set and other

bank tables on multi-programmed and multi-threaded

workloads..60

Figure 5.1: Low latency DRAM microarchitecture based on

dynamic asymmetric subarray DRAM (DAS-

DRAM)..66

Figure 5.2: Extended TWiCe microarchitecture...........................68

Figure 5.3: The relative IPC of no-MIG (asymmetric memory

without swap), DAS (row-swap scheme in DAS-

DRAM), Static (statically assigning hot pages to the

fast region), TWiCe and Oracle (all rows in the fast

region) compared to the baseline DDR4-2400 on

single-threaded, multi-programmed and multi-

threaded workloads..77

Figure 5.4: The relative performance (IPC) compared to the

baseline DDR4-2400 device, the access ratio to the

fast region and the average number of DRAM row

swaps per pruning interval in a bank across a varying

number of hot-page detection threshold...................79

ix

List of Tables

Table 2.1: Comparing TWiCe with previous row-hammer

prevention/mitigation solutions..................................24

Table 3.1: Definition and typical values of TWiCe......................28

Table 3.2: Timing and energy in operating TWiCe and DRAM

devices...41

Table 3.3: Default parameters of the simulated system.............43

Table 4.1: The required number of TWiCe table entries on

various threshold values...56

Table 4.2: Timing and energy in operating original and rank-level

TWiCe, and DRAM devices...58

Table 5.1: Default parameters of the simulated system.............76

1

Chapter 1

Introduction

DRAM, which is used as main memory in computer systems for

decades, stores data by controlling the amount of charge per cell

capacitor. Because a cell leaks charge over time, it should be

refreshed periodically (once every refresh window (tREFW)) to

retain data [3]. However, as process technology advances, individual

DRAM cells become more susceptible to process variation,

manufacturing imperfection, and influence from adjacent cells due to

capacitive coupling. These reliability issues have been recognized as

critical challenges to contemporary DRAM devices, and solutions

such as sparing (groups of) DRAM cells and providing ECC capability

within DRAM chips have been proposed and deployed [4]. In

particular, row-hammering, a phenomenon that can flip data in

This Section is based on [1, 2]. - © 2019 ACM, and IEEE 2018.

Reprinted, with permissions from ISCA ‘19, and CAL ‘18.

2

adjacent (victim) rows and cause silent data corruption by repeatedly

activating a specific (aggressor) DRAM row prior to its refresh

window, has drawn public attention since 2014 [5].

Meanwhile, the capacity of a DRAM device has increased through

process scaling and its bandwidth has improved by making its internal

data-path wider and increasing the operating frequency of its inter-

device I/O part [6]. Because the conventional focus of main-memory

DRAM devices has been on higher storage density over cost, its

access latency remains mostly unchanged and has improved

(decreased) at a snail’s pace. Also, existing commercial DRAM

devices have symmetric access latency regardless of the topological

location of DRAM cells [7].

In this dissertation, we propose a new counter-based row-

hammering prevention solution named Time-Window Counters

(TWiCe), and extend TWiCe as a hot DRAM row (page) detector to

improve main-memory performance. TWiCe shows that strong,

deterministic row-hammering protection and hot-page detection can

be achieved by maintaining precise per-row ACT counts but only

using a small number of counters.

1.1 Time Window Counter Based Row Refresh to

Prevent Row-hammering

In order to mitigate or prevent the RH attacks, recent studies have

proposed multiple protection techniques that refresh potentially

3

vulnerable rows earlier than its retention time [5, 8, 9, 10, 11]. PARA

[5] provides probabilistic protection which can significantly reduce

the probability of RH induced errors by also activating adjacent rows

with a small probability for each DRAM row activation (ACTs). The

probabilistic scheme is stateless and can be implemented with low

complexity. Counter-based protection schemes, which

deterministically refresh the adjacent rows when a row is activated

more than a certain threshold, has also been proposed recently as an

alternative protection approach. The counter-based schemes ensure

that potential victim rows are always refreshed before the RH

threshold is reached. The counter-based schemes also allow explicit

detection of potential attacks, and enable a system to take action,

such as removing/terminating or developing countermeasures for

malware and penalizing malicious users responsible for the attack.

The previous studies on counter-based protection schemes [9, 10,

12] pointed out that the performance overhead (the number of added

ACTs) of the probabilistic schemes increases when stronger

protection (lower error probability) is needed or the RH threshold

decreases, whereas the counter-based schemes only issue

additional ACTs when an attack is detected. Probabilistic and

counter-based schemes provide different trade-offs between

complexity and protection capabilities.

The main challenge in the counter-based protection schemes

lies in reducing the cost of counters that track the number of ACTs.

4

Because maintaining a counter per row leads to prohibitive costs if

they are kept in memory controllers (MCs), Counter-based Row

Activation (CRA [8]) proposed to cache recently-used counters

within MCs and store the remaining ones in main memory. The

Counter-Based Tree (CBT [9, 10]) scheme proposes to track ACTs

to a group of rows and dynamically adjust the ranges of rows each

counter covers based on row activation frequency. Unfortunately,

both CRA and CBT suffer from noticeable performance degradation

on adversarial memory access patterns due to frequent counter cache

misses and a flurry of refreshes on rows covered by a single counter,

respectively.

To address this challenge, we propose a new counter-based RH

prevention solution, named Time Window Counter (TWiCe) based

row refresh. TWiCe guarantees to refresh victim rows before a RH

threshold is reached only using a limited number of counters, which

is orders of magnitude smaller than the total number of DRAM rows

populated in the system. TWiCe is based on the key insight that the

maximum number of DRAM ACTs over tREFW is bounded. This

insight enables TWiCe to limit the total number of counters needed

to monitor rows whose ACT counts may go over the protection

threshold. TWiCe allocates a counter entry to a DRAM row only if

the row is actually activated, and periodically invalidates (prunes)

the entries if the corresponding rows are not frequently activated.

Because tREFW is finite and row activation frequency in a DRAM

5

bank is limited by tRC (row cycle time), there is an upper bound on

the number of ACT counter entries at any given time, leading to a

low area overhead. We analytically derive the number of counters

that are sufficient to monitor all potential aggressor rows. As TWiCe

monitors each row individually, it guarantees a refresh before the

number of ACTs exceeds a RH threshold.

We also explore the design space of where to place TWiCe, and

carefully distribute the functionality of TWiCe across MCs, RCDs, and

DRAM devices to minimize cost (e.g., area) and performance impact.

We place the TWiCe counter entries (called TWiCe table) in RCDs

because it is more cost-effective than placing them in MCs or DRAM

devices. Placing the TWiCe table in a MC requires that the TWiCe

table is large enough to accommodate the maximum number of DRAM

banks that can be supported by the MC even when a system only

contains much fewer DRAM banks, leading to a waste of resource in

these typical cases. Placing a TWiCe table in each DRAM device is

also wasteful because (around a dozen) devices in a DRAM rank

operate in tandem and hence the TWiCe tables in all these DRAM

devices would perform duplicated functionality.

Previously, both probabilistic and counter-based RH protection

schemes are proposed to be implemented within MCs. However, this

approach is difficult to realize in practice because modern DRAMs

internally remap DRAM rows. The approach assumes that a MC

knows which DRAM rows are physically adjacent, but it would be too

6

costly for a MC to store row remapping (replacing a row including

faulty DRAM cells with a spare row) information of all DRAM devices

it controls. To address this problem, we propose a new DRAM

command, named ARR (Adjacent Row Refresh), to refresh the

adjacent rows of an aggressor row because neither MC nor RCD

(register clock driver) knows how DRAM rows are remapped. To

avoid conflict between ARR and normal DRAM operations from MCs,

we propose to provide a feedback path from RCD to MC, through

which the RCD can send a negative acknowledgment signal when an

ARR operation is underway in a DRAM bank.

Our analysis shows that there is no performance overhead on

TWiCe table updates as it can be done concurrently with normal

DRAM operations. The required TWiCe table size is just 3.11 KB per

1 GB bank, and energy overhead of table updates is less than 0.7%

of DRAM activation/precharge energy. Also, our evaluation shows

that TWiCe incurs no additional ACTs due to false positive detection

on the evaluated multi-programmed and multi-threaded workloads

and adds only up to 0.006% more ACTs on adversarial memory

access patterns including RH attack scenarios; thus, the frequency of

false positive detection is orders of magnitude lower than the

previous schemes. These results show that precise counter-based

RH protection is viable with low overhead.

1.2 Optimizing Time Window Counter

7

TWiCe requires a table with hundreds of entries per bank. Because

the target row address of ACT can be stored in any entry of the table,

it is straightforward to implement the table as a fully associative

design, such as content-addressable memory (CAM). It is feasible

because the minimal interval between two consecutive ACTs to a

specific bank is dozens of nanoseconds, and the update is not in the

critical path of DRAM access. However, it is energy-inefficient to

searching CAM with hundreds of entries on every ACT.

To improve energy efficiency, we propose pseudo-associative

TWiCe (pa-TWiCe) by leveraging a pseudo-associative cache

design [13]. In pa-TWiCe, each DRAM row mapped to a preferred

set, and the preferred set is first checked on ACT command. It is

allowed only to use the entry of a non-preferred set when there is

no available entry in the preferred set. Therefore, pa-TWiCe

reduces energy consumption by reducing the number of table entries

to be searched on ACT command without the eviction of entry due to

thrashing.

Also, we optimize TWiCe by composing TWiCe as a rank level to

reduce the area cost. The original TWiCe is designed based on the

fact that the number of ACTs to a bank for a given time is limited by

tRC, the ACT-to-ACT interval in a bank. For a device (rank), which

is composed of multiple banks, TWiCe has to provide the table entries

proportional to the number of banks. However, the number of ACTs

to a rank is further limited by tRRD (Row to Row Delay) and tFAW

8

(Four Activated Window). Focusing on this property, we propose

rank-level TWiCe and introduce the implementation of rank-level

TWiCe by exploiting the structure of pa-TWiCe.

We further reduce the number of table entries by adjusting

thresholds of TWiCe. We can adjust the thresholds of TWiCe within

the extent that RH prevention is guaranteed. Especially, adjusting the

threshold that determines the entries to be pruned can reduce the

number of required entries. However, the thresholds should be

carefully adjusted considering the increase of false-positive

detections because the thresholds also affect the determination of the

aggressor row. Therefore, we conduct experiments on how many

rows are detected as aggressor rows on various workloads and

reduce the number of TWiCe table entries by adjusting the thresholds

as far as it does not increase the number of false-positive detection

on general workloads.

1.3 Using Time Window Counters to Improve Main

Memory Performance

The row-activation counts can also be used to identify frequently-

accessed DRAM pages and to improve performance by allocating

these pages to a low-latency region in asymmetric-latency DRAM

designs. For example, CHARM [7] and TLDRAM [14] reduce access

latency to a portion of a DRAM device by decreasing the number of

DRAM cells that share sense amplifiers and hence accelerating data

9

acquisition speed. The system performance can be improved by

allocating hot pages to this low-latency region of DRAM. Hot pages

may be identified through offline profiling. However, this static

approach is not effective for applications where hot pages change

over time or can be affected by other applications on a system. We

extend TWiCe to maximize performance improvement of low-

latency DRAM architecture by dynamically detecting hot pages and

migrating them to a fast region of DRAM at runtime.

For the runtime migration approach to be effective, we need a

low-overhead method to swap data between DRAM rows and to

translate DRAM addresses. Because a DRAM row (typically 8KB)

consists of dozens of cache lines (around 64B), relying on a CPU to

move data in DRAM can take more than a microsecond, negating the

performance benefit of the lower DRAM access time. We leverage

previous proposals for high-throughput data transfers within a

DRAM device such as RowClone [15], LISA [16], and DAS-DRAM

[17] for fast page swapping, and introduce an address translation

table. Through a detailed timing analysis, we show that the proposed

swap methodology and the address translation table management

method are feasible without much overhead.

Our performance evaluation shows that low-latency DRAM using

TWiCe with a hot-page detection threshold value of 16 improves IPC

by 5.6% and 12.2% for multi-programmed workloads using SPEC

CPU2006 benchmarks and RADIX multi-threaded workload,

10

respectively. Overall, the results show that TWiCe can be used to

intelligently manage data placement in the asymmetric DRAM

architecture to improve performance.

1.4 Outline

The organization of this dissertation is as follows.

In Chapter 2, we describe the organization and operation of

DRAM device and main memory subsystem. Also, we introduce row-

hammering (RH) phenomenon and the previous RH prevention

solutions.

Chapter 3 describes the proposed RH prevention solution, which

uses Time Window Counters (TWiCe), and Chapter 4 shows the

optimization techniques of TWiCe to reduce implementation cost. In

Chapter 5, we introduce augmenting TWiCe for hot-page detection.

Finally, we present conclusions and future works in Chapter 6.

11

Chapter 2

Background of DRAM and Row-

hammering①

A modern server typically manages trillions of DRAM bits for

main memory owing to technology scaling [18, 19, 20]. This enables

unprecedented benefits to applications with diverse performance and

capacity requirements. At the same time, however, the finer

fabrication technology entails a number of challenges on organizing

and operating a main memory system because the massive number

of DRAM cells should be hierarchically structured for high area

efficiency (to lower cost) and more cells become faulty (either

permanently or intermittently) due to process variation and

manufacturing imperfection [4, 21, 22]. This chapter reviews the

details of the main memory organization and operations, which must

This Section is based on [1, 2]. - © 2019 ACM, and IEEE 2018.

Reprinted, with permissions from ISCA ‘19, and CAL ‘18.

12

be considered when designing a solution for row-hammering (RH).

2.1 DRAM Device Organization

A server includes dozens to hundreds of DRAM devices. A DRAM

device consists of billions of cells, each comprised of an access

transistor and a capacitor [6, 23]; the amount of charge in the

capacitor represents data: either zero or one (see Figure 2.1). Cells

in a DRAM device are grouped into multiple (typically around 16

these days) banks. A bank is further divided into thousands of mats

structured in two dimensions. A group of mats that share global

wordlines (WLs) and hence operate together is called a subarray.

Within a mat, cells are again organized in two dimensions; cells that

are aligned in a row share a local WL and the ones aligned in a column

share a bitline (BL) to increase area efficiency.

A DRAM device periodically refreshes each cell within retention

Bitline Sense Amp

…

CCELL

CBL

Bitline

Wordline

S
u

b
-W

o
rd

li
n

e
D

ri
v

e
r

Mat

Bank
A

Bank
B

Bank
C

Bank
D

Bank
E

Bank
F

Bank
G

Bank
H

Mat
Row Decoder

Dataline Sense Amp
Column Decoder

Figure 2.1. The organization of a modern DRAM device.

13

time called tREFW (refresh window). Because a cell discharges

(leaks) slowly but steadily, data is lost unless DRAM periodically

performs a refresh operation to restore the charge to a cell capacitor.

As the number of rows per bank increases continuously to provide

higher DRAM capacity, a modern DRAM bank refreshes not a single

row but a set of rows per auto-refresh operation. The number of

rows refreshed per auto-refresh increases over time; so does its

duration called tRFC (refresh command time) performing an auto-

refresh operation. The interval between two auto-refresh operations,

called tREFI (refresh interval), is
𝑡𝑅𝐸𝐹𝑊

𝑜𝑓 𝑟𝑜𝑤 𝑠𝑒𝑡𝑠
.

2.2 Sparing DRAM Rows to Combat Reliability

Challenges

Wire pitch gets finer, and storage cells become smaller as fabrication

technology advances. It exacerbates the impact of process variation

and manufacturing imperfection, increasing the probability of

functional and timing failures of storage devices including DRAM

devices [4].

Therefore, faulty DRAM cells are corrected using various

techniques. Replacing a row or a column of a DRAM bank with faulty

cells with another fault-free row or column (row/column sparing) is

a conventional method, which has been employed in commodity

DRAM devices [21]. Another method which is gaining momentum in

fixing faulty DRAM cells is in-DRAM ECC [4], which corrects up to

14

a few errors in a block of bits (called codeword) through error

correcting codes using parity bits in addition to data bits. In this paper,

we focus on more traditional row sparing method, which also

influences main memory DRAM organization and operations.

Each DRAM bank is equipped with spare rows and columns that

can replace faulty rows, columns, and cells. These spare

rows/columns are set up as follows. During the test phase of DRAM

device fabrication, test equipment identifies the locations of faulty

cells. A repair algorithm calculates and assigns target spare rows and

columns for the faulty cells, columns, and rows to efficiently leverage

these spares. The information pairing the addresses of a faulty

row/column and the corresponding target one (called remapping

hereafter) is stored in a one-time programmable memory, such as

electrical fuses within a DRAM device [21].

The locations of malfunctioning DRAM cells are different for

individual DRAM devices; hence it is reasonable to place the cell

repair functionality within DRAM devices. An important implication of

this row sparing is that due to this remapping, the rows whose index

numbers differ by one in a DRAM bank is not necessarily physically

adjacent within a DRAM device.

2.3 Main Memory Subsystem Organization and

Operation

15

As depicted in Figure 2.2, a conventional main memory system

consists of a group of memory controllers (MCs). One MC handles

one or a few memory channels. A channel is connected to a small

number (typically fewer than four) of dual-inline memory modules

(DIMMs). Each module consists of a few ranks, each having several

DRAM devices. All DRAM devices within a rank operate in tandem.

Modern servers have dozens of cores per CPU socket and

multiple MCs to provide enough main memory bandwidth to the cores

[18, 19]. Also, the emergence of virtual machines and containers

demands large main memory capacity per CPU; and hence typically

DRAM

Device

MC

DIMM DIMM

DIMM DIMM

MC

DIMM DIMM

DIMM DIMM

…

DQ Command, address,

CLK

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device
DRAM

Device

Multiple

Channels

8 8 8 8 8 8 8 8

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

DRAM

Device

Multiple

Ranks

8

DRAM

Device

RCD

Figure 2.2. The organization of a conventional main memory system.

Each memory controller (MC) can populate multiple DIMMs, and each

DIMM consists of one or a few ranks. Each rank has several DRAM

devices which operate in tandem.

16

multiple DIMMs are connected to a memory channel. Therefore, the

command and address (CA) signals from a MC through one of its

memory channels have to be broadcasted to dozens of DRAM devices,

imposing a huge channel load in driving these signals.

To mitigate this signal integrity problem, the CA signals and

optionally data signals from a MC are buffered within a modern DIMM

but outside of DRAM devices of the module. The separate buffer

device is called a register clock driver (RCD [24]). A registered

DIMM (RDIMM [25]) only repeats CA signals, reducing the load from

a MC, with additional latency tPDM (propagation delay). A load-

reduced DIMM (LRDIMM [26]) repeats both CA and data signals; the

data signals can be repeated in the same RCD chip (DDR3) or in the

separate devices (called data buffers in DDR4)

A MC receives an access (read or write) request with an

accompanying address, translates the address into a tuple of

(memory channel, rank, bank, row, column), and generates one or

more DRAM commands to serve the request. The number of DRAM

commands per request and the timing of each command depend on

the internal states of a MC (including other requests stored in the

request queue) and various timing constraints. Because conventional

memory interfaces, such as DDR [27], GDDR [28], and LPDDR [29],

adopt a primary-secondary (master-slave) communication model,

only a MC generates commands within a memory channel and it

knows when the DRAM devices it controls reply data, owing to the

17

synchronous nature of the interface.

If the target bank of a request does not have an active row (BLs

being precharged to
𝑉𝐷𝐷

2
), an activate command (ACT) is issued and

a high voltage level is applied to the global WL (whose target row is

specified by the physical address of the request), enabling BL sense

amplifiers (BLSAs) to detect and latch the data stored in the target

row within tRCD (row access to column access delay). The data of

the target column latched in the BLSAs are transferred to the I/O

pads of the corresponding DRAM device through the global dataline,

which takes tCL after a read command (RD) is issued (the data

transfer direction is flipped for a write command (WR)). In the course

of an activation process, the voltage level of the selected cells is first

changed close to
𝑉𝐷𝐷

2
 as they share charges with BLs whose

capacitance is much larger than that of a DRAM cell, but is then

restored to either VDD or ground after tRAS because BLSAs amplify

the voltage level.

If the target bank has an active row which is the same as the

target row, ACT is omitted, and hence the data can be accessed faster.

If the currently active row of the target bank is different from the

target row, the row must be deactivated first; the voltage level of BLs

must be set to
𝑉𝐷𝐷

2
 by sending a precharge command (PRE), which

takes tRP (row precharge time) after which the (next) target row is

ready to be activated.

Each DRAM bank processes these command sequences

18

independently. However, the frequency of issuing ACTs to a DRAM

device is limited by tRRD (minimum time between any two ACTs)

and tFAW (minimum interval between a group of four ACTs). Within

a DRAM bank, tRC (minimal time between two ACTs to the same

bank) limits the frequency of row activation.

The row address (index) from a MC may target one with faulty

DRAM cells. A comparator within a DRAM device identifies this

address and replaces it with a spare row before the row decoder

decodes the incoming row address. This remapping breaks the tie

between logical (index being offset by one) and physical adjacency

(and hence interfering with each other due to capacitive coupling) of

DRAM rows.

2.4 Row-hammering (RH)

Row-hammering (RH) is a DRAM reliability challenge, which has

gained significant public attention due to its security implications. RH

is an attack that exploits the phenomenon that repeated activations

to a specific (aggressor) DRAM row cause bit flips in its adjacent

(victim) rows before the victim rows reach their retention time limits

(tREFW), which is publicly reported by Kim et al. in 2014 [5]. RH

effectively reduces DRAM cell retention time depending on access

patterns, making data preservation difficult. Park et al. [30] explained

the root cause of this RH. They found out that during a row activation

and precharge operation, a portion of electrons in the chosen WL

19

flows into the cells of the adjacent rows with a low probability.

Repeated activation and precharge operations make the number of

electrons passed surpass a certain threshold, causing the data to be

flipped.

Then, studies have shown that RH can be exploited to

compromise real-world systems without software vulnerability [31,

32, 33]. Flip Feng Shui [32] accesses a co-hosted virtual machine

in an unauthorized way through a combined use of memory

deduplication (identifying an RSA public key) and RH (flipping the

key). Drammer [33] takes control of a mobile device running Android

by performing RH attacks on specific parts of the device’s memory.

These attacks highlight the importance of providing adequate

solutions to RH.

In order to avoid errors from row-hammering, a DRAM row

needs to be refreshed before adjacent rows are activated too many

times. Similar to the DRAM refresh window, we expect a DRAM

vendor to provide a new parameter, named a row-hammer (RH)

threshold, which specifies the maximum number of ACTs on the

adjacent rows within an interval of tREFW before a row needs to be

refreshed. The DRAM vendor ensures that a row will not have an

error before its RH threshold is reached similar to ensuring that the

DRAM retention time is longer than the refresh window. While

exceeding the RH threshold does not mean there will be an RH error,

there is no guarantee on reliability once the threshold is exceeded.

20

Therefore, the job of a system designer is to ensure that each row is

refreshed before it exceeds the RH threshold, which is expected to

decrease going forward with further technology scaling [34].

2.5 Previous RH Prevention Solutions

Previous architectural solutions against the RH attack can be

categorized into two groups: counter-based and probabilistic RH

protection schemes. As the likelihood of RH increases after a large

number of ACTs are sent to a DRAM row, a naive counter-based

solution would record the number of ACTs for each row and refresh

a victim row once the ACT count exceeds the RH threshold. However,

this scheme requires a counter per DRAM row, leading to prohibitive

costs especially if the counters are kept in MCs because a MC covers

more than millions of DRAM rows. Counter-based Row Activation

(CRA [8]) counts ACTs for all DRAM rows but stores only the ACT

counts for frequently activated rows in caches located at MCs and all

remaining counters in DRAM.

CBT [9, 10] reduces the number of counters by having each

counter track ACTs to a group of rows. The group size is determined

dynamically based on the ACT frequency to the group; a counter

covers a small number of hot (frequently activated) rows or a large

number of cold rows. The counters in CBT are organized as a non-

uniform binary tree, where each counter at the same tree level

(distance from the root) covers the same number of DRAM rows.

21

Initially, CBT uses only one counter to track the number of ACTs for

all DRAM rows together. Once the count exceeds a threshold, two

child counters at the next tree level are used, each counting the ACTs

to the half of the DRAM rows covered by the parent. The children

are initialized to the value of the parent. CBT repeats this process

until all counters are used up and resets the tree every tREFW.

To reduce counter overhead, another counter-based approach

that uses system performance counters [35, 36] has been proposed.

It monitors the last level cache (LLC) misses and regards unusually

frequent LLC misses as a row-hammer attack. However, it requires

an action for preventing row-hammering whenever there are

frequent LLC misses, resulting in substantial performance overhead.

In addition to the counter-based protection schemes, previous

studies also proposed probabilistic protection schemes. For example,

PARA [5] activates adjacent DRAM rows with a low probability

whenever a row is precharged. By adjusting the probability, PARA

can choose a trade-off point between the level of protection against

RH attacks and performance and energy overhead. PRoHIT [11]

extends PARA with a history table to activate the adjacent rows of

more frequently activated rows with a higher probability.

2.6 Limitations of the Previous RH Solutions

Even if the previous proposals advanced the state-of-the-art

against the RH attacks compared to the naive counter-based scheme,

22

they suffer from the following shortcomings. Counter-based

approaches can provide strong protection with no false negative by

identifying all rows whose ACT counts exceed a threshold value, but

they can suffer from system performance degradation due to

superfluous DRAM operations on adversarial memory access

patterns.

In the case of CRA, counter-cache misses amplify main memory

accesses. Similar to other caches, the counter cache within a MC is

not effective if memory access patterns do not exhibit enough locality

(being adversarial to the cache). Especially in random access

workloads, the number of ACTs is nearly doubled, which can

seriously degrade the system performance.

CBT may generate bursts of DRAM refreshes due to false

positives depending on memory access patterns. Because one

counter often covers multiple DRAM rows, all rows within a group,

including ones that are not heavily activated, need to be refreshed

together when the total number of ACTs for the group (as many as

half the number of rows in a bank) exceeds the threshold. This flurry

of refreshes incurs a spike in memory access latency, which hurts

latency-critical workloads [37, 38], degrading their overall system

performance. Moreover, when a parent counter is split into children,

ACTs are counted twice because the two child counters are initialized

with the value of one parent counter.

PARA and PRoHIT can significantly reduce the probability of an

23

RH-induced error with low performance and energy overhead. Yet,

the protection is probabilistic in nature; while the probability is quite

small, there is a non-zero probability that a victim row is not

refreshed after reaching its RH threshold. The previous studies on

counter-based protection schemes [9, 12] point out that the

performance overhead (# of added ACTs) of the probabilistic

schemes increases when stronger protection (a lower error

probability) is needed or if the RH threshold decreases. The

counter-based scheme can be a more cost-effective solution if a

system designer wants to ensure that the RH threshold is never

exceeded similar to the way that today’s refresh mechanisms

deterministically refresh a row within the refresh window. PARA and

PRoHIT are also oblivious to the RH attack; while they reduce the

probability of RH errors, they cannot pinpoint when and where an

attack attempt is made. By contrast, the counter-based schemes

explicitly detect an RH attack and enables a system to take action

such as removing/terminating or developing countermeasures for

malware, and penalizing malicious users responsible for the attack.

For probabilistic schemes, attackers can easily avoid refreshes for a

victim row if they can predict the output of a random number

generator. In that sense, it is important to ensure that the random

numbers are unpredictable, possibly using true random number

generators (RNGs) rather than pseudo RNGs.

All previous techniques are proposed to be implemented within

24

MCs, but this is not necessarily ideal for combatting the RH attack

due to the following reasons. They assume that MCs know physical

adjacency among rows, possibly by obtaining the mapping

information between logical and physical rows from DRAM devices.

However, due to inevitable remapping of DRAM rows as described in

Section 2.2, it is costly to know the remapping information. For

example, the single-cell failure rate (SCF) of a DRAM device is

projected to be around or surpass 10−5 in sub-20nm DRAM process

technologies [4]. In this case, if one MC populates DRAM capacity of

64 GB, it should retain more than 5 million remapping information to

know the physical adjacency of the entire rows it controls. It is

impractical or highly costly to have all of this information in each MC.

 CRA

[8]

CBT

[9, 10]

PARA

[5]

TWiCe

Primary location MC MC MC RCD

Performance drop on typical

memory access patterns
Small Smaller Small No

Performance drop on

adversarial memory access

patterns

High High Small Smaller

Possibility of RH attack

detection
Yes Yes No Yes

Table 2.1. Comparing TWiCe with previous row-hammer

prevention/mitigation solutions.

25

Moreover, because MCs control a varying number of DRAM

devices and there is a huge variation in the DRAM capacity, previous

proposals that are implemented within MCs must support the worst

case (e.g., the maximum number of DRAM rows that one MC may

control). For the counter-based approaches, this means that the

counters must be provisioned assuming the maximum possible

number of rows. Because the actual main memory capacity can be

much lower than the maximum depending on workloads, this often

leads to a waste of resources. Table 2.1 summarizes the properties

and limitations of the existing solutions and proposed solution, TWiCe,

which is described from the next chapter.

26

Chapter 3

TWiCe: Time Window Counter based

RH Prevention

In order to prevent RH precisely with low cost, we propose a new

counter-based RH mitigation solution named TWiCe (Time Window

Counters). Based on the insight that the number of DRAM ACTs over

tREFW is bounded, TWiCe prevents RH with a small number of

counters.

3.1 TWiCe: Time Window Counter

Naively dedicating a counter per DRAM row would be

prohibitively expensive because the number of necessary counter

entries is proportional to ever-growing memory capacity. For

example, if the main memory capacity of a system is 1 TB and a

This Section is based on [1, 2]. - © 2019 ACM, and IEEE 2018.

Reprinted, with permissions from ISCA ‘19, and CAL ‘18.

27

DRAM page size is 8 KB, more than 100M counters are needed. The

number of counter entries can be reduced in theory as not all DRAM

rows can be simultaneously susceptible to the RH attack. A row is

refreshed every tREFW. This resets the number of electrons that

could be piled up due to the RH attack. Therefore, if the RH attack on

a row is spread over a duration spanning multiple tREFW, only the

number of ACTs a row experiences within tREFW from its physically

adjacent rows matters. If this number surpasses the RH threshold

(𝑁𝑡ℎ), data in the corresponding row may be flipped.

The maximum frequency of row ACTs is limited. On a DRAM

bank, the minimum interval between any two ACTs is tRC (bank cycle

time), limiting the maximum number of ACTs within the retention

time (tREFW) of a row to
𝑡𝑅𝐸𝐹𝑊

𝑡𝑅𝐶
. Assuming that a row activation

affects two adjacent (victim) rows, at most 2 ×
𝑡𝑅𝐸𝐹𝑊

𝑡𝑅𝐶×𝑁𝑡ℎ
 rows

experience the RH attack within tREFW. Applying typical values on

modern DRAM chips (tRC = 45.32 ns, tREFW = 64 ms) and 𝑁𝑡ℎ

value reported in [26] (𝑁𝑡ℎ = 139K), only up to 20 rows can be

exposed to the RH attack from a bank in the duration of tREFW.

Therefore, we can decrease the number of counter entries by

detecting the rows that have the potential to be RH aggressors and

only counting the ACTs to those rows, which is a key idea of TWiCe.

TWiCe guarantees protection against the RH attack by precisely

counting ACTs for individual DRAM rows but has low overhead

because the counts are kept only for frequently activated DRAM rows.

28

The number of necessary counters can be bounded because the

DRAM interface limits the maximum frequency of row ACTs, and the

ACT count only needs to be tracked within a refresh window

(tREFW). We further reduce the number of counters in TWiCe by

periodically removing (pruning) the counts for the rows that are

activated infrequently. We refer to this time window period as a

pruning interval (PI). We can mathematically show that the ACT

counts for such infrequently activated rows are unnecessary for an

RH protection guarantee and that TWiCe guarantees to prevent RH

attacks. The parameters and example values for TWiCe are

summarized in Table 3.1; we illustrate TWiCe with DRAM whose

tREFW, tREFI, and tRC are 64 ms, 7.8125 μs, and 45.32 ns,

respectively.

Term Definition Typical value

tREFW refresh window 64 ms

tREFI refresh interval 7.8125 μs

tRFC refresh command time 350 ns

tRC ACT to ACT interval 45.32 ns

𝑡ℎ𝑅𝐻 RH detection threshold 32,768

𝑡ℎ𝑃𝐼 pruning interval threshold 4

𝑚𝑎𝑥𝑎𝑐𝑡 max # of ACTs during PI 164

𝑚𝑎𝑥𝑙𝑖𝑓𝑒 max 𝑙𝑖𝑓𝑒 of a row in PI 8,192

Table 3.1. Definition and typical values of TWiCe.

29

TWiCe consists of a counter table and counter logic (Figure 3.1).

Each counter table entry contains 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟, 𝑎𝑐𝑡_𝑐𝑛𝑡, 𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡, and

𝑙𝑖𝑓𝑒. 𝑎𝑐𝑡_𝑐𝑛𝑡 records the number of ACTs to the target 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟.

𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡 indicates whether the entry is valid. 𝑙𝑖𝑓𝑒 indicates the

number of consecutive pruning intervals (PIs), for which the entry

stays valid in the table.

We define two threshold values, one to identify RH (𝑡ℎ𝑅𝐻) and

the other to detect aggressor candidates (𝑡ℎ𝑃𝐼). Similar to other

counter-based approaches, TWiCe refreshes adjacent rows if

𝑎𝑐𝑡_𝑐𝑛𝑡 exceeds 𝑡ℎ𝑅𝐻. 𝑡ℎ𝑃𝐼 determines whether an entry should be

kept as an aggressor candidate after each PI. We set the PI to match

the auto-refresh interval (tREFI) to hide the latency of checking the

Logic (adder, shifter, comparator)

valid

0

1

row_addr

0x5a…

...
act_cnt

23

life

6

TWiCe

1 0x23… 2 1

1 0x93… 32,765 200

Table

…

Figure 3.1. The organization of TWiCe. Each table entry holds

𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡, 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟, 𝑎𝑐𝑡_𝑐𝑛𝑡, and 𝑙𝑖𝑓𝑒. An entry is inserted when a

new row is activated and invalidated when pruned or refreshed after

𝑎𝑐𝑡_𝑐𝑛𝑡 reaches 𝑡ℎ𝑅𝐻.

30

table entries by performing the operation in parallel with an auto-

refresh. As each row is refreshed once every refresh window

(tREFW), the number of ACTs to a row must exceed 𝑡ℎ𝑅𝐻 within

tREFW for a successful RH attack. Thus, the average number of

ACTs to an aggressor row over a refresh interval (tREFI) must

exceed
𝑡ℎ𝑅𝐻

𝑡𝑅𝐸𝐹𝑊/𝑡𝑅𝐸𝐹𝐼
. We set 𝑡ℎ𝑃𝐼 to be this value. For the DRAM

parameters that we use, tREFW = 64 ms and tREFI = 7.8125 μs,

𝑡ℎ𝑃𝐼 is 4 and the maximum number of pruning intervals over a refresh

window (𝑚𝑎𝑥𝑙𝑖𝑓𝑒) is 8,192.

TWiCe operates as follows (see Figure 3.2). 1) TWiCe receives

a DRAM command and address pair. 2) For each DRAM ACT, TWiCe

allocates an entry in the counter table if the entry for the row does

not already exist, and increments the counter (𝑎𝑐𝑡_𝑐𝑛𝑡) by one. 3) If

𝑎𝑐𝑡_𝑐𝑛𝑡 reaches 𝑡ℎ𝑅𝐻 , TWiCe refreshes the adjacent rows of the

entry and deallocates the entry. 4) After each pruning interval (PI

=tREFI), each entry in the TWiCe table is checked and removed if

(𝑎𝑐𝑡_𝑐𝑛𝑡 < 𝑡ℎ𝑃𝐼 × 𝑙𝑖𝑓𝑒). In other words, a row is considered to be an

aggressor candidate only if the average number of ACTs over tREFI

is equal to or greater than 𝑡ℎ𝑃𝐼. This step enables the counter table

size to be bounded. For the remaining entries, 𝑙𝑖𝑓𝑒 is incremented by

one.

3.2 Proof of RH Prevention

31

v
a
li

d
ro

w
_
a
d

d
r

a
c
t_

c
n

t
li
fe

1
0
x
5
0

3
2
,7

6
7

2
0
8

1
0
x
C

0
7

2

0
0
x
A

0
2

1

0

…

v
a
li

d
ro

w
_
a
d

d
r

a
c
t_

c
n

t
li
fe

1
0
x
5
0

3
2
,7

6
7

2
0
8

1
0
x
C

0
2

1
0
x
F

0
1

1

0

…

8

v
a
li

d
ro

w
_
a
d

d
r

a
c
t_

c
n

t
li
fe

0
0

x
5

0
3
2
,7

6
8

2
0
8

1
0
x
C

0
8

2

1
0
x
F

0
1

1

0

…

v
a
li

d
ro

w
_
a
d

d
r

a
c
t_

c
n

t
li
fe

0
0
x
5
0

3
2
,7

6
8

2
0
8

1
0
x
C

0
8

3

0
0
x
F

0
1

1

0

…

C
M

D
/A

D
D

R
A

C
T

/0
x
F

0
A

C
T

/0
x
C

0
A

C
T

/0
x
5
0

A
R

D
e
te

c
t

v
a
li

d
ro

w
_
a
d

d
r

a
c
t_

c
n

t
li
fe

1
0
x
5
0

3
2
,7

6
7

2
0

8

1
0
x
C

0
7

2

1
0
x
F

0
1

1

0

…

T
im

e

①
A

d
d

re
s
s
 n

o
t

fo
u

n
d

.

N
e
w

 e
n

tr
y
 i

n
s
e
rt

e
d

.

②
A

d
d

re
s
s
 f

o
u

n
d

.

a
c
t_

c
n

t
in

c
re

m
e
n

te
d

.

③
th

R
H

re
a
c
h

e
d

.

V
ic

ti
m

 r
o

w
s
 r

e
fr

e
s
h

e
d

.

④
T
a
b

le
 u

p
d

a
te

d

d
u

ri
n

g
 a

u
to

-r
e
fr

e
s
h

.

F
ig

u
re

 3
.2

.
T

W
iC

e
 o

p
e
ra

ti
o
n
 e

x
a
m

p
le

.
T

h
e
 D

R
A

M
 c

o
m

m
a
n
d
/a

d
d
re

s
s
 a

n
d
 c

h
a
n
g
e
s
 i
n
 T

W
iC

e
 a

re
 c

o
lo

re
d
 b

lu
e
 a

n
d

re
d
,

re
s
p
e
c
ti
v
e
ly

.
①

 W
h
e
n
 t

h
e
 t

a
rg

e
t

a
d
d
re

s
s
 o

f
A

C
T

 i
s
 n

o
t

fo
u
n
d
,

a
 n

e
w

 e
n
tr

y
 i

s
 i

n
s
e
rt

e
d
.
②

 W
h
e
n
 f

o
u
n
d
,

𝑎
𝑐𝑡

_𝑐
𝑛

𝑡
is

 i
n
c
re

m
e
n
te

d
 b

y
 1

.
③

 I
f

𝑎
𝑐𝑡

_𝑐
𝑛

𝑡
re

a
c
h
e
s
 𝑡

ℎ
𝑅

𝐻
,
th

e
 v

ic
ti
m

 r
o
w

s
 a

re
 r

e
fr

e
s
h
e
d
 a

n
d
 t
h
e
 e

n
tr

y
 i
s
 i
n
v
a
li
d
a
te

d
.

④
 D

u
ri

n
g
 a

n
 a

u
to

-
re

fr
e
s
h
,

th
e
 t

a
b
le

 i
s
 u

p
d
a
te

d
;

th
e
 a

g
g
re

s
s
o
r

c
a
n
d
id

a
te

s
’

𝑙𝑖
𝑓

𝑒

is

 i
n
c
re

a
s
e
d
 b

y
 1

,
w

h
il
e
 o

th
e
rs

a
re

 p
ru

n
e
d
.

32

Here, we show that the number of ACTs to each row over a

refresh window cannot exceed the RH threshold without being

detected by TWiCe. Let us first consider the maximum number of

ACTs to a row over tREFW when the row is not tracked by the

TWiCe table (𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑). Because TWiCe keeps a row in its

counter table if 𝑎𝑐𝑡_𝑐𝑛𝑡 ≥ 𝑡ℎ𝑃𝐼 × 𝑙𝑖𝑓𝑒 , 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑 must be less

than 𝑡ℎ𝑃𝐼 × 𝑙𝑖𝑓𝑒. Given the maximum value of life over the refresh

window is 𝑡𝑅𝐸𝐹𝑊/𝑡𝑅𝐸𝐹𝐼 and 𝑡ℎ𝑃𝐼 is
𝑡ℎ𝑅𝐻

𝑡𝑅𝐸𝐹𝑊/𝑡𝑅𝐸𝐹𝐼
, 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑 can

be expressed as:

𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑 < 𝑡ℎ𝑃𝐼 ×
𝑡𝑅𝐸𝐹𝑊

𝑡𝑅𝐸𝐹𝐼
= 𝑡ℎ𝑅𝐻

In other words, if a row is activated 𝑡ℎ𝑅𝐻 times or more within a

refresh window, it will be in the counter table.

If a row is in the counter table, its ACT count while being

considered as an aggressor candidate (𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑎𝑐𝑘𝑒𝑑) is less than 𝑡ℎ𝑅𝐻

if no RH attack is detected. The activations to this row, while it was

not considered as an aggressor candidate, may not be included in the

counter table, yet this value is bounded by 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑, which is

less than 𝑡ℎ𝑅𝐻 . As explained above, both counttracked and the

invalidated counts 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑 should be less than 𝑡ℎ𝑅𝐻 .

Therefore, the maximum number of ACTs to a row over tREFW

without being detected as an aggressor (𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) is

33

𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑 + 𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑎𝑐𝑘𝑒𝑑 < 2 × 𝑡ℎ𝑅𝐻

According to a previous study [5], a row needs to experience

139K or more ACTs on its neighbor rows within tREFW to have a bit

flip (𝑁𝑡ℎ). Considering that a row has two adjacent rows in general

(double-side RH), the actual threshold to detect an aggressor is its

half, 69K. In order to ensure that 𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 does not exceed this

threshold, 69K, 𝑡ℎ𝑅𝐻 should be less than half of 69K (or one-fourth

of 𝑁𝑡ℎ. In this study, we set 𝑡ℎ𝑅𝐻 to be 32,768.

3.3 Counter Table Size

In TWiCe, we assume that there is a counter table per DRAM

bank. To calculate the required table size (the number of counter

entries), we define a new term 𝑚𝑎𝑥𝑎𝑐𝑡 , the maximum number of

ACTs in a DRAM bank during tREFI. Because the ACT-to-ACT

interval in a bank is tRC and rows cannot be activated during tRFC,

𝑚𝑎𝑥𝑎𝑐𝑡 is (𝑡𝑅𝐸𝐹𝐼 − 𝑡𝑅𝐹𝐶)/𝑡𝑅𝐶. With tREFI of 7.8125 μs and tRC of

45.32 ns, 𝑚𝑎𝑥𝑎𝑐𝑡 is 164. DRAM devices with fewer rows per bank

lead to smaller tRFC and higher 𝑚𝑎𝑥𝑎𝑐𝑡. Yet, because tREFI ≫ tRFC,

𝑚𝑎𝑥𝑎𝑐𝑡 only changes slightly.

The table size should be set based on the worst case when the

table has the largest number of valid entries (aggressor candidates).

If there are not enough TWiCe table entries to handle all the

aggressor candidates, overflows cause entry evictions. In this case,

34

information lost by eviction makes it hard to prevent row-hammering

through TWiCe. Although refreshing adjacent rows of evicted row

entry can solve this problem, it will enable the system performance

degradation attack that uses adversarial memory access patterns,

which evicts TWiCe table entries frequently.

The valid entries fall into two categories: (1) entries newly

inserted in the current PI, and (2) entries identified as aggressor

candidates in the previous PIs. The number of new entries is bounded

by 𝑚𝑎𝑥𝑎𝑐𝑡. The number of surviving entries is maximized when the

counter entries with the smallest 𝑙𝑖𝑓𝑒 survive the most. For example,

consider the entries whose 𝑙𝑖𝑓𝑒 is 2. Because 𝑙𝑖𝑓𝑒 of these entries

in the previous PI is 1, the maximum number of entries with 𝑙𝑖𝑓𝑒 =

2 is
𝑚𝑎𝑥𝑎𝑐𝑡

1×𝑡ℎ𝑃𝐼
. This happens when the maximum number of ACTs (𝑚𝑎𝑥𝑎𝑐𝑡)

are equally distributed across
𝑚𝑎𝑥𝑎𝑐𝑡

1×𝑡ℎ𝑃𝐼
 distinct rows in the previous PI.

New entries with fewer than 𝑡ℎ𝑃𝐼 ACTs are invalidated at the end of

the PI. Similarly, the maximum number of entries whose 𝑙𝑖𝑓𝑒 is 𝑛

can be calculated as
𝑚𝑎𝑥𝑎𝑐𝑡

(𝑛−1)×𝑡ℎ𝑃𝐼
. Thus, the total number of counter

entries can be bounded by 𝑚𝑎𝑥𝑎𝑐𝑡 × (1 + ∑
1

𝑛×𝑡ℎ𝑃𝐼
)

𝑚𝑎𝑥𝑙𝑖𝑓𝑒

𝑛=1 . Moreover, the

number of entries must be an integer, so {𝑚𝑎𝑥𝑎𝑐𝑡%((𝑛 − 1) × 𝑡ℎ𝑃𝐼)} of

ACTs, which are left after filling ((𝑛 − 1) × 𝑡ℎ𝑃𝐼) counters at 𝑙𝑖𝑓𝑒 of

𝑛, can be used for entries with 𝑙𝑖𝑓𝑒 of 𝑛 + 1. For example, with 𝑡ℎ𝑃𝐼

of 4 and 𝑚𝑎𝑥𝑎𝑐𝑡 of 164 in Table 3.1, the maximum number of entries

whose life is 3 and 4 is 20 and 13, respectively, according to the

formula above. Also, four (=164-20×8) and eight (=164-13×12)

35

ACTs remain in the corresponding PIs, respectively. In this case,

these 12 remain ACTs can be used for saving one more valid entry

whose life is 4.

The maximum number of entries per TWiCe table is 553 by the

formula shown above, while the total number of rows per bank is

131,072 for the parameters in Table 3.1. Therefore, the required

table size is reduced by more than two orders of magnitude compared

to the number of DRAM rows in a bank, which is comparable to other

counter-based approaches.

3.4 Architecting TWiCe

TWiCe can be implemented in multiple ways by placing its counter

table and RH detection logic in a MC, a DRAM device, or an RCD. In

this section, we discuss this design space and describe how we

modify MC, RCD, and DRAM devices to support TWiCe in main

memory systems. This section also introduces a new Adjacent Row

Refresh (ARR) command that is necessary to deal with row

remapping within DRAM devices.

3.4.1 Location of TWiCe Table

TWiCe needs one table per DRAM bank. A certain class of systems,

such as mobile devices, has a fixed number of DRAM banks whereas

another class of systems, such as servers, could have a varying

36

number of banks in their life time. As a result, if we locate a TWiCe

table in a MC, the number of TWiCe tables must be large enough to

accommodate the largest number of DRAM banks the MC might

support, not the actual number of DRAM banks in a system. For

example, a MC, which could populate a maximum of four 2-rank

DIMMs with 16 banks per rank, must be designed with TWiCe tables

that support up to 128 banks. If this MC controls only one 1-rank

DIMM with 16 banks, TWiCe tables for the 112 banks are unused and

hence wasted.

Implementing the TWiCe table within each DRAM device is also

wasteful when a DRAM rank consists of multiple DRAM devices. All

DRAM devices within a memory rank operate in tandem, hence

Memory

Controller

(MC)

DRAM

TWiCe

Register Clock Driver

(RCD)

DQ/DQS (Data / Data Strobe I/O) bus

Control

Logic
Buffer

TWiCe

Table CA bus CA bus

NackNack

ARR

Figure 3.3. The microarchitecture of TWiCe. TWiCe table is

implemented in a register clock driver (RCD). A path from an RCD to

its master memory controller (MC) is modified to send negative

acknowledgment (nack) signals. A new command called adjacent row

refresh (ARR) is sent to DRAM devices from RCD through the

repeated command and address (CA) bus when the row address

specified in ACT is identified as an RH aggressor.

37

making each DRAM device count the number of ACTs from the MC

would be a duplication of effort. Placing the TWiCe counters in an

RCD would provide a per-DIMM protection, avoiding table size

over-provisioning, and count the number of ACTs at a per-bank

level, eliminating redundant information. Therefore, in this paper, we

investigate placing the TWiCe table in an RCD (see Figure 3.3).

3.4.2 Augmenting DRAM Interface with a New Adjacent Row

Refresh (ARR) Command

As we explained in Section 2.2, row remapping occurs within DRAM

devices, but neither MC nor RCD knows this DRAM row remapping

information or can efficiently hold all the information internally.

Therefore, an RCD should not compute adjacent rows and send the

computed addresses explicitly to DRAM devices.

Instead, the RCD should just send a command to DRAM devices

notifying that the row of a bank which was just activated are

recognized as an RH aggressor row. Hence, we add a new DRAM

command ARR (Adjacent Row Refresh) which asks the DRAM

devices to refresh the physically adjacent rows of the row just being

activated (through up to two pairs of ACTs and PREs within the

devices). When TWiCe detects an RH aggressor row and the RCD

equipped with TWiCe receives a precharge command (PRE) to the

aggressor row, the RCD sends ARR to the DRAM devices instead of

PRE and waits for 2 × 𝑡𝑅𝐶 + 𝑡𝑅𝑃 to allow the DRAM to refresh the

38

(up to two) physically adjacent rows and return the bank to a

precharged state. DRAM devices receiving an ARR command

calculate the physical addresses of the adjacent rows (considering

the row remapping) during the precharge operation of the aggressor

row and then refresh them.①

We also propose to provide a feedback path from an RCD to a MC

for sending negative acknowledgment information (see Figure 3.3).

Updating a TWiCe table is asynchronous to normal DRAM operations

because the update happens when the corresponding bank performs

an auto-refresh operation, not accepting any normal DRAM command,

such as RD, WR, ACT, and PRE. Therefore, MCs do not need to know

about a TWiCe table update as long as the update can be performed

within tRFC (which is analyzed in Section 3.5).

By contrast, because an RCD with TWiCe sends ARR right after

a row being recognized as an RH aggressor is precharged, one of

normal DRAM operations from a MC to the RCD might head to the

DRAM bank that is still performing ARR, leading to a conflict.

Conventional DRAM interfaces assume that a MC is a master, a sole

device which generates commands and expects the other devices

(here DRAM devices) to process the commands without any internal

delay mechanism. Fortunately, ARR commands are issued very

rarely, at most one in 32,768 ACTs as analyzed in Section 3.2. Hence,

① The newly proposed ARR command can also be directly used by MC to

avoid the need to know the row remapping information within the DRAM

devices.

39

we propose to have an RCD return a negative acknowledgment (nack)

signal to the master MC when a conflict occurs. We can leverage

already existing feedback path indicating that a command from a MC

might fail (e.g., alert_n in DDR4 [24]). The RCD can return this signal

back to the MC until it finishes the ARR if it receives normal

commands to the bank performing ARR. The RCD also sends the nack

signal back to the MC while performing an ARR command if there is

an ACT command to the rank which includes the bank performing

ARR. Because of the additional ACTs performed from ARR, the

number of ACTs recognized by the MC and the actual number of

ACTs performed in a DRAM rank may differ, which can lead to a

violation of the tFAW timing constraint of the DRAM if not careful.

Blocking every ACT to the rank during ARR addresses this problem.

While the approach is conservative, it has a minimal impact on system

performance because the ARR commands are only issued

infrequently, at most once when the number of ACTs reaches the RH

threshold. The evaluation results in Section 3.6 show that this

blocking has no performance overhead except for actual RH attacks

because general workloads invoke no ARR. Similar to the case of

handling an address signal parity bit error in DDR4, a MC can resend

the command that was just blocked.

RH prevention through TWiCe within RCD and ARR interface

eliminates the side-channel attacks that use the ACT count

information or aggressor and victim row information in TWiCe table.

40

The processor components, including a MC, cannot access the TWiCe

table in an RCD. Also, when there is ARR operation caused by row-

hammering, the MC cannot know the aggressor and victim row

information because TWiCe sends simply ARR command instead of

precharge command, and DRAM calculates the adjacent row

addresses.

3.5 Analysis

We analyzed the area, energy, and performance overhead of our

proposals using SPICE simulations based on 45 nm FreePDK library

[39]. We designed TWiCe as four banks of content addressable

memory (CAM) and SRAM. We set tREFW, tREFI, tRC, and 𝑡ℎ𝑅𝐻 as

64 ms, 7.8125 μs, 45.32 ns, and 32,768, respectively. We set 𝑡ℎ𝑃𝐼

and 𝑚𝑎𝑥_𝑎𝑐𝑡 to 4 and 164. Also, we set the number of rows per bank

to 131,072.

Area overhead: TWiCe incurs negligible area overhead. Each

entry in a TWiCe table needs 46 bits, including (1, 17, 15, 13) bits

for (𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡 , 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟 , 𝑎𝑐𝑡_𝑐𝑛𝑡 , 𝑙𝑖𝑓𝑒). We designed 𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡 and

𝑟𝑜𝑤_𝑎𝑑𝑑𝑟 as CAM for concurrent searching, and 𝑎𝑐𝑡_𝑐𝑛𝑡 and 𝑙𝑖𝑓𝑒 as

SRAM to save area and energy. According to Section 3.3, 553 entries

are needed per table, which translates to 3.11 KB per 1 GB DRAM

bank.

41

 Timing (ns) Energy (nJ)

TWiCe
ACT count 3 0.082

Table update 140 0.663

DRAM

ACT+PRE (tRC) 45.32 11.49

Refresh/bank (tRFC) 350 132.24

Table 3.2. Timing and energy in operating TWiCe and DRAM devices.

Performance overhead: TWiCe incurs no performance overhead

while performing TWiCe table updates. TWiCe operations are

performed in parallel with normal DRAM activation and auto-refresh

operations. Our simulation results show that the count time of TWiCe

is 3 ns, which is much less than tRC (Table 3.2). We structured

TWiCe entries into four banks to reduce the time for table updates.

The table update of TWiCe with concurrent access to all banks takes

140 ns and can be performed during an auto-refresh, which takes

350 ns (tRFC). For DRAM devices with smaller tRFC, we can speed

up the table update of TWiCe by populating more banks. In theory,

TWiCe may have false positives and issue more ACTs than

necessary because 𝑡ℎ𝑅𝐻 is set conservatively. However, the impact

of the false positives is negligible in practice because every false

positive requires 𝑡ℎ𝑅𝐻 ACTs but incurs mere two additional ACTs as

shown in Section 3.6.

Energy overhead: TWiCe requires minimal additional energy as

quantified in Table 3.2. As an ACT count operation accompanies

42

DRAM activation and precharge operations, its overhead of TWiCe is

only 0.7% on modern DDR4 [40]. Compared to per-bank auto-

refresh energy during tRFC, table update overhead is 0.5%. Our

analysis is based on 45 nm process; if designed with the latest

processes, the energy overhead would be even smaller.

3.6 Evaluation

We evaluated how many additional refreshes TWiCe generates to

prevent RH through simulation. We modeled a chip-multiprocessor

system by modifying McSimA+ [41] with default parameters

summarized in Table 3.3. The system consists of 16 out-of-order

cores with a 3.6 GHz operating frequency and 2 memory channels.

Each MC is connected to 2 ranks of DDR4-2400 modules and has 64

request queue entries. Each rank has 16 banks. We used DRAM

timing parameters and TWiCe thresholds in Table 3.1. We used

minimalist-open DRAM page policy [42].

Simulations were run using multi-programmed and multi-

threaded workloads. We used the SPEC CPU2006 benchmark suite

[43] for multi-programmed workloads. Using Simpoint [44], we

extracted and used the most representative 100M instructions per

application. We used 29 of SPECrate and 2 of mixed multi-

programmed workloads. Each SPECrate workload consists of 16

copies of one application. In order to make the mixed workloads, we

measured the memory access per kilo-instructions (MAPKI) of each

43

application and classified nine most memory intensive applications as

spec-high (mcf, milc, leslie3d, soplex, GemsFDTD, libquantum, lbm,

sphinx3, and omnetpp). We then made a mix-high multi-

programmed workload consisting of the spec-high applications and a

mix-blend workload which consists of 16 random SPEC CPU2006

applications regardless of MAPKI. MICA [45] (multi-threaded key-

value store), PageRank from GAP benchmark suite [46], and RADIX

and FFT from SPLASH-2X [47] were used for multi-threaded

workloads.

Resource Value

Number of cores, MCs 16, 2

Per core Freq, issue/commit width 3.6 GHz, 4/4 slots

Issue policy Out-of-Order

L1 I/D $, L2 $ 16 KB, 128 KB private

L1, L2 $ line size 64 B

Hardware (linear) prefetch On

L3 $ / line size 16 MB shared / 64 B

Per MC # of channels, Req Q 2 Ch, 64 entries

Baseline module type DDR4-2400

Capacity/rank, bandwidth 16 GB, 19.2 GB/s

Scheduling policy PAR-BS [48]

DRAM page policy Minimalist-open [42]

Table 3.3. Default parameters of the simulated system.

We also used synthetic workloads (S1, S2, and S3) to produce

more controlled situations. S1 injects random access sequences

44

constantly. S2 represents an adversarial memory access pattern for

CBT, which keeps accessing a half of entire DRAM rows of a bank

until all CBT counters split and then repeatedly accesses the other

half after all counters are allocated (described in Section 2.6). S3 is

a typical RH attack, which repeatedly accesses only one DRAM row.

Figure 3.4 shows the relative number of additional ACTs (caused

by ARRs in the case of TWiCe) compared to the number of normal

ACTs. We compared TWiCe with previous solutions. PARA-0.001

and PARA-0.002 are PARA refreshing adjacent rows with a

probability of 0.001 and 0.002, respectively. CBT-256 is CBT with

256 counters per bank. We used a threshold of 32K and 11 sub-

thresholds for CBT-256, the values that were used in evaluating

CBT [9].

All solutions generate less than 0.3% of additional ACTs to

prevent RH on the evaluated multi-programmed and multi-threaded

workloads. Because the memory access patterns of these workloads

do not actually cause an RH attack, the additional ACTs on these

workloads are due to false positives. TWiCe generated no additional

ACTs on all multi-programmed and multi-threaded workloads.

PARA-0.001, PARA-0.002, and CBT-256 produced additional

ACTs of 0.1%, 0.2%, and 0.05% on average, respectively.

TWiCe also rarely generates additional ACTs on the synthetic

workloads. It only generates additional ACTs of 0.006% on S3, and

45

0%
1%
2%
3%
4%
5%

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

SPECrate
(Avg)

mix-high mix-blend FFT MICA PageRank RADIX AverageR
e
la

ti
v
e

#
 o

f
a
d

d
it
io

n
a
l
A

C
T

s

0%
1%
2%
3%
4%
5%

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

P
A

R
A

-0
.0

0
1

P
A

R
A

-0
.0

0
2

C
B

T
-2

5
6

T
W

iC
e

S1 S2 S3R
e
la

ti
v
e

#
 o

f
a
d

d
it
io

n
a
l
A

C
T

s
(a) Multi-programmed and multi-threaded workloads

(b) Synthetic workloads

Figure 3.4. The relative number of additional ACTs of PARA-0.001,

PARA-0.002, CBT-256, and TWiCe compared to the number of

normal ACTs on multi-programmed and multi-threaded workloads

(multi-programmed SPEC CPU2006, multi-threaded SPLASH-2X,

GAP-BS, and MICA applications) and synthetic workloads (S1, S2,

and S3). TWiCe does not incur additional ACTs on the multi-

programmed, multi-threaded, S1 and S2 workloads and incurs only

0.006% additional ACTs on S3 (RH attack scenario) workload.

PARA-0.001 and PARA-0.002 produce additional ACTs of 0.1% and

0.2% on average, respectively. CBT-256 generates up to 4.82%

additional ACTs on S2 workload.

46

still does not make additional ACTs on S1 and S2. PARA-0.001 and

PARA-0.002 shows 0.1% and 0.2% additional ACTs on S1, S2 and

S3, respectively. By contrast, CBT-256 generates additional ACTs

much more frequently on these synthetic workloads. Especially on

S2 whose access pattern is adversarial to CBT in particular, it

requires additional ACTs of 4.82%. For S3, which represents an RH

attack pattern, CBT-256 requires 0.39% of additional ACTs.

Because the number of rows that the last level (level 11) counter in

CBT-256 should track is 131,072/211−1 = 217/210 = 128 , it has to

refresh 128 rows for every 32K ACTs. Therefore, the frequency of

false positive detection by TWiCe is orders of magnitude lower than

that by the previous RH prevention schemes on adversarial memory

access patterns.

47

Chapter 4①

Optimizing TWiCe to Reduce

Implementation Cost

Original TWiCe, which proposed in Chapter 3, requires 553 table

entries per bank at 128k of 𝑁𝑡ℎ. Considering that the overall main-

memory system is composed of multiple banks, the required number

of table entries is proportion to the number of DRAM banks,

increasing the implementation cost of TWiCe accordingly. In this

chapter, we propose and evaluate various methods to reduce the

implementation cost of TWiCe.

4.1 Pseudo-associative TWiCe

A straightforward implementation of proposed TWiCe would be

making the table fully associative (fa-TWiCe) using content-

This Section is based on [1, 2]. - © 2019 ACM, and IEEE 2018.

Reprinted, with permissions from ISCA ‘19, and CAL ‘18.

48

addressable memory (CAM). The fully-associative implementation

is feasible as the minimal interval between counter updates is dozens

of nanoseconds, and the update is not in the critical path of DRAM

accesses. Still, in the case of TWiCe against RH, a more energy-

efficient implementation is desired compared to fa-TWiCe with 553

ways. A set-associative design looks appealing at first glance, but it

suffers from performance degradation for access patterns that thrash

sets because a row that is being evicted from the table needs to

trigger refreshes for security.

We address this problem by leveraging a pseudo-associative

cache design [13] and call it pseudo-associative TWiCe (pa-

TWiCe). Each DRAM row is mapped to a preferred set of pa-TWiCe

(see Figure 4.1). A set has set-borrowing (SB) indicators, each

counting entries used by another set. For a table with N sets, each

set has N−1 SB indicators. pa-TWiCe records a row ACT as follows:

1) it probes the target address in the preferred set. 2) If 1) fails, it

checks the non-preferred sets with their SB indicators for the

preferred set being non-zero. 3) If the target row is found, the

𝑎𝑐𝑡_𝑐𝑛𝑡 of that entry is increased by one. 4) If 2) fails, an entry is

inserted into a set (preferably to the preferred set) and the

corresponding SB indicator is increased by one if needed. When an

entry is invalidated, the SB indicator value is decreased by one. pa-

TWiCe is inferior to fa-TWiCe in the worst-case for latency and

energy efficiency when all the sets must be checked. However,

49

v
a
li

d
ro

w
_
a
d

d
r

a
c
t_

c
n

t
li

fe

1
0
x
0
0

5
2

1
0
x
1
0

1
0

2

1
0
x
2
0

7
2

1
0
x
3
0

2
1

v
a
li

d
ro

w
_
a
d

d
r

a
c
t_

c
n

t
li

fe

1
3

1

1
0
x
1
1

4
1

1
0
x
6
0

8
2

1
0
x
4
0

4
1

2
1

0
0

0
0

v
a
li

d
ro

w
_
a
d

d
r

a
c
t_

c
n

t
li

fe

1
0
x
0
1

2
1

1
0
x
1
2

1
1

0

0
0

0

v
a
li

d
ro

w
_
a
d

d
r

a
c
t_

c
n

t
li

fe

1
0
x
0
3

1
1

2

0 0

0
0

0

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

s
e
t

S
B

 i
n

d
ic

a
to

r

T
a

rg
e

t
A

d
d

re
s

s
:

0
x

5
0

s
e
t

0
s

e
t

1
s

e
t

2
s

e
t

3

①
S

e
a
rc

h
 f

o
r

th
e
 t

a
rg

e
t

ro
w

in
 t

h
e
 p

re
fe

rr
e
d

s
e
t.

②
If

 ①
fa

il
s

,
s

e
a

rc
h

 f
o

r
th

e
 t

a
rg

e
t

ro
w

 i
n

th
e
 n

e
x
t

s
e
t

w
it

h
 n

o
n

-z
e
ro

 S
B

 i
n

d
ic

a
to

r.

②
C

o
n

ti
n

u
e

 u
n

ti
l
th

e

ta
rg

e
t

ro
w

 i
s
 f

o
u

n
d

.
③

If
 t

h
e

 r
o

w
 i
s

 f
o

u
n

d
,

a
c
t_

c
n

t
is

 i
n

c
re

a
s
e
d

.

0
x
0
2

④
If

 t
h

e
 r

o
w

 i
s

 n
o

t
fo

u
n

d
,
a

 n
e

w

e
n

tr
y
 i

s
 i
n

s
e
rt

e
d

 t
o

 a
n

 a
v
a
il

a
b

le
 s

e
t.

0
1

0
x
5
0

1
 →

2
1

F
ig

u
re

 4
.1

.
E

x
e
m

p
la

r
p
s
e
u
d
o
-

a
s
s
o
c
ia

ti
v
e
 T

W
iC

e
 (

p
a
-

T
W

iC
e
)

o
p
e
ra

ti
o
n
s
 w

it
h
 a

 t
a
rg

e
t

ro
w

 a
d
d
re

s
s
 o

f
‘0

x
5
0
’

w
h
o
s
e
 p

re
fe

rr
e
d
 s

e
t

is
 0

.
E

a
c
h
 s

e
t

h
a
s
 s

e
t-

b
o
rr

o
w

in
g
 (

S
B

)
in

d
ic

a
to

rs
 w

h
ic

h
 c

o
u
n
t
th

e
 n

u
m

b
e
r

o
f
e
n
tr

ie
s
 u

s
e
d

b
y
 o

th
e
r

s
e
ts

.

50

because both preferred and non-preferred sets can be checked

within tRC, there is no performance overhead. Also, pa-TWiCe can

greatly save energy in common cases when checking the preferred

set is enough. We show that almost table accesses of the pa-TWiCe

target to the preferred set on general workloads in Section 4.5.

4.2 Rank-level TWiCe

The key property of the DRAM interface composing TWiCe is that

the number of ACTs to a bank for a specific time (e.g., tREFW or

tREFI) is limited by tRC. From this property, we can calculate the

required number of TWiCe table entries, which is 553 per bank under

the DRAM timing parameters of Table 3.1. In this case, a typical

memory system with multiple DRAM banks requires total (553 × the

number of banks) table entries.

Managing TWiCe table at a DRAM rank level reduces the number

of table entries required. Each bank within a rank can operate

independently, but there are tRRD (Row to Row Delay) and tFAW

(Four Activate Window) timing parameters that limit ACT frequency

in rank because ACT operation consumes large currents and over-

stress the power delivery network of the device. tRRD limits the

minimum timing of two consecutive ACTs within DRAM devices, and

tFAW means a time window where four ACTs can be issued. In other

words, more than four ACTs within tFAW cannot be issued, and it is

generally more than 4 × tRRD. Therefore, the maximum number of

51

ACTs within a rank during tREFI (𝑚𝑎𝑥𝑎𝑐𝑡−𝑟𝑎𝑛𝑘) is
𝑡𝑅𝐸𝐹𝐼−𝑡𝑅𝐹𝐶

𝑡𝐹𝐴𝑊/4
, which is

less than (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑛𝑘𝑠 𝑝𝑒𝑟 𝑟𝑎𝑛𝑘 × 𝑚𝑎𝑥𝑎𝑐𝑡); 𝑚𝑎𝑥𝑎𝑐𝑡 is the

number of ACTs within a bank during tREFI calculated with tRC. For

example, with the typical DDR4 timing parameter described in Table

4.1, 𝑚𝑎𝑥𝑎𝑐𝑡−𝑟𝑎𝑛𝑘 is 1,356, while 𝑚𝑎𝑥𝑎𝑐𝑡 is 164. Because the number

of banks per rank (device) of DDR4 is 16, 𝑚𝑎𝑥𝑎𝑐𝑡−𝑟𝑎𝑛𝑘 is almost half

of 16 × 𝑚𝑎𝑥𝑎𝑐𝑡 (= 2,624).

Based on this insight, we propose a rank-level TWiCe, which

manages tables in rank-level rather than bank-level. Rank-level

0

1

2

3

4

5

0

200

400

600

800

1000

b
a

n
k
-l
e

v
e

l

ra
n
k
-l
e
v
e
l

T
h
e
 s

iz
e
 o

f
ta

b
le

(p
e
r

b
a
n
k
,
K

B
)

T
h
e
 n

u
m

b
e
r

o
f
e
n
tr

ie
s

(p
e
r

b
a
n
k
)

entries per bank

Table size per bank

Figure 4.2. The table size comparison between bank- and rank-level

TWiCe. The number of entries and the size of table per bank of rank-

level TWiCe is 55% and 59% of those of bank-level TWiCe,

respectively.

52

TWiCe can reduce the total number of required table entries. Figure

4.2 compares the average number of entries per bank and the actual

table size between bank- and rank-level TWiCe. We calculated the

number of required entries based on Section 3.3, and for the rank-

level TWiCe, we divided the number of entries of rank with the

number of banks per rank. While bank-level TWiCe requires 553

entries per bank, rank-level TWiCe needs 302 entries per bank,

which is 55% of bank-level TWiCe. Also, the size of TWiCe table is

3.11 KB and 1.84 KB for bank- and rank-level TWiCe, respectively.

The difference of table size between bank- and rank-level TWiCe

is a little smaller than that of the number of entries because 4 bits for

bank address should be added to 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟 of each entry in rank-

level TWiCe.

Rank-level TWiCe reduces the number of required table entries

per bank, but the total size of the table to be explored is larger than

bank-level TWiCe because it is difficult to assign 302 entries to each

bank independently. If there are excessive ACTs to a specific bank,

it requires still 553 entries for that bank, so all entries in a rank must

be managed in an integrated manner. Searching for all of the table

entries in a rank increases energy overhead and latency for searching

the target row. To reduce these overheads, we implement rank-level

TWiCe by exploiting the structure of pa-TWiCe proposed in Section

4.1.

53

B
a

n
k

 1
5

…
0

0
0

T
B

 i
n

d
ic

a
to

r

…
0

0
0

T
B

 i
n

d
ic

a
to

r

…
0

1
2

1
5

b
a
n

k

B
a

n
k

 2

B
a

n
k

 1
…

0
0

0
T

B
 i

n
d

ic
a
to

r

v
a

li
d

ro
w

_
a
d

d
r

a
c

t_
c

n
t

li
fe

1
0
x
0
0

5
2

1
0
x
1
0

1
0

2

1
0
x
2
0

7
2

1
0
x
3
0

2
1

v
a

li
d

ro
w

_
a
d

d
r

a
c
t_

c
n

t
li

fe

1
3

1

1
0
x
1
1

4
1

1
0
x
6
0

8
2

1
0
x
4
0

4
1

2
1

0
0

0
0

v
a

li
d

ro
w

_
a
d

d
r

a
c
t_

c
n

t
li

fe

1
0
x
0
1

2
1

1
0
x
1
2

1
1

1
0
x
3
2

1
1

0
0

v
a

li
d

ro
w

_
a
d

d
r

a
c
t_

c
n

t
li

fe

1
0

x
0

3
1
1

2

0
0
x
1
3

3
1

0
0

x
3

3
1

1

0
0

0

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

s
e
t

S
B

 i
n

d
ic

a
to

r

T
a
rg

e
t

A
d

d
re

s
s

:
0
x

5
0

s
e
t

0
s

e
t

1
s

e
t

2
s

e
t

3

①
S

e
a
rc

h
 f

o
r

th
e
 t

a
rg

e
t

ro
w

in
 t

h
e
 p

re
fe

rr
e

d

s
e
t.

②
If

 ①
fa

il
s

,
s

e
a

rc
h

 f
o

r
th

e
 t

a
rg

e
t

ro
w

 i
n

 a
ll

s
e
ts

 i
n

 t
h

e
b

a
n

k
w

it
h

n
o

n
-z

e
ro

 S
B

 i
n

d
ic

a
to

r.

0
x
0
2

0
0

x
2

3
2

1
1

0
x
2
2

……

2
1

B
a
n

k
 0

③
If

 ②
fa

il
s

,
s

e
a

rc
h

 f
o

r

th
e
 t

a
rg

e
t

ro
w

 i
n

 a
ll

s
e
ts

in
 a

ll
 b

a
n

k
ta

b
le

 w
it

h

n
o

n
-z

e
ro

 T
B

 i
n

d
ic

a
to

r.
1

0
1

2
1
5 0

b
a
n

k

T
B

 i
n

d
ic

a
to

r
1

④
If

 t
h

e
 r

o
w

 i
s

 f
o

u
n

d
,
a

c
t_

c
n

t
is

 i
n

c
re

a
s

e
d

.

⑤
If

 t
h

e
 r

o
w

 i
s

 n
o

t
fo

u
n

d
,
a

 n
e
w

e
n

tr
y
 i

s
 i
n

s
e

rt
e

d
 t

o
 a

n
 a

v
a

il
a

b
le

 s
e
t.

0

F
ig

u
re

 4
.3

.
T

h
e
 o

rg
a
n
iz

a
ti
o
n
 o

f
ra

n
k
-

le
v
e
l
T

W
iC

e
 t

a
b
le

 a
n
d
 e

x
e
m

p
la

r
o
p
e
ra

ti
o
n
s
 w

it
h
 a

 t
a
rg

e
t

ro
w

 a
d
d
re

s
s
 o

f

‘0
x
5
0
’

w
h
o
s
e
 t

a
rg

e
t

b
a
n
k
 n

u
m

b
e
r

is
 0

 a
n
d
 t

h
e
 p

re
fe

rr
e
d
 s

e
t

is
 0

.
E

a
c
h
 s

e
t

h
a
s
 s

e
t-

b
o
rr

o
w

in
g
 (

S
B

)
 i
n
d
ic

a
to

rs

th
a
t

c
o
u
n
t

th
e
 n

u
m

b
e
r

o
f

e
n
tr

ie
s
 u

s
e
d
 b

y
 o

th
e
r

s
e
ts

,
a
n
d
 e

a
c
h
 b

a
n
k
 h

a
s
 t

a
b
le

-
b
o
rr

o
w

in
g
 (

T
B

)
in

d
ic

a
to

rs
 t

h
a
t

c
o
u
n
t

th
e
 n

u
m

b
e
r

o
f

e
n
tr

ie
s
 u

s
e
d
 b

y
 o

th
e
r

b
a
n
k
 t

a
b
le

s
.

54

The structure of rank-level TWiCe is almost identical to bank-

level TWiCe. It has an independent table for each bank and a

preferred set for a particular target row address. It also has SB

indicators, each counting entries used by another set in the bank table.

However, if all the table entries for a particular bank are in use, rank-

level TWiCe allows borrowing another bank table within the rank. For

this, a bank table has table-borrowing (TB) indicators, each counting

entries used by another bank table. Rank-level TWiCe counts a row

ACT as follows (see Figure 4.3): 1) it probes the target address in

the preferred set. 2) If 1) fails, it checks the non-preferred sets with

their SB indicators for the preferred set being non-zero. 3) If 2) fails,

it checks the non-preferred tables with their TB indicators for the

preferred bank being non-zero. 4) If the target row is found, the

𝑎𝑐𝑡_𝑐𝑛𝑡 of that entry is increased by one. 5) If 3) fails, an entry is

inserted into a set (preferably to the preferred table and the

preferred set), and the corresponding TB and SB indicators are

increased by one if needed. When an entry is invalidated, the TB and

SB indicator values are decreased by one.

In a rank-level TWiCe, we need to consider more carefully the

worst-case latency where all the bank tables must be checked.

Unlike bank-level TWiCe that needs to complete ACT count

operation in tRC, rank-level TWiCe have to complete ACT count

operation in a quarter of tFAW; ACT-to-ACT interval to a particular

bank is still tRC. To satisfy timing constraints, in 2) and 3), it

55

searches the sets and tables in parallel. In this case, if the target row

is stored in a non-preferred set or another bank table, table search

consumes more considerable energy than that of bank-level TWiCe.

However, there is no significant impact on the actual system because

almost all target rows are found in or inserted into preferred sets on

general workloads according to our evaluation in Section 4.5.

4.3 Adjusting Threshold to Reduce Table Size

We can reduce the TWiCe table size further by adjusting the

threshold of TWiCe. As described in Section 3.2, RH prevention of

TWiCe is demonstrated by the following inequality.

𝑐𝑜𝑢𝑛𝑡𝑛𝑜𝑡−𝑡𝑟𝑎𝑐𝑘𝑒𝑑 < 𝑡ℎ𝑃𝐼 ×
𝑡𝑅𝐸𝐹𝑊

𝑡𝑅𝐸𝐹𝐼
 (1)

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑎𝑐𝑘𝑒𝑑 < 𝑡ℎ𝑅𝐻 (2)

𝑐𝑜𝑢𝑛𝑡𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 < 𝑡ℎ𝑃𝐼 ×
𝑡𝑅𝐸𝐹𝑊

𝑡𝑅𝐸𝐹𝐼
+ 𝑡ℎ𝑅𝐻 <

Nth

2
 (3)

The original TWiCe sets 𝑡ℎ𝑃𝐼 to
𝑡ℎ𝑅𝐻

𝑡𝑅𝐸𝐹𝑊/𝑡𝑅𝐸𝐹𝐼
 and makes the right side

of the inequality (1) as 𝑡ℎ𝑅𝐻. Thus, it guarantees RH prevention if

𝑡ℎ𝑅𝐻 is smaller than
Nth

4
. However, the relationship that 𝑡ℎ𝑃𝐼 is

𝑡ℎ𝑅𝐻

𝑡𝑅𝐸𝐹𝑊/𝑡𝑅𝐸𝐹𝐼
 is not essential. Therefore, we can adjust 𝑡ℎ𝑃𝐼 and 𝑡ℎ𝑅𝐻

under conditions that satisfy the inequality (3). In this case, if 𝑡ℎ𝑃𝐼

increase, 𝑡ℎ𝑅𝐻 has to decrease, while 𝑡ℎ𝑅𝐻 can increase when 𝑡ℎ𝑃𝐼

56

decreases.

𝑡ℎ𝑃𝐼 𝑡ℎ𝑅𝐻
Required # of entries (per bank)

Bank-level TWiCe Rank-level TWiCe

1 57,344 1,732 940

2 49,152 946 514

3 40,960 683 373

4 (default) 32,768 553 302

5 24,576 457 250

6 16,384 392 215

7 8,192 339 186

Table 4.1. The required number of TWiCe table entries according to

𝑡ℎ𝑃𝐼 and 𝑡ℎ𝑅𝐻. We assume 𝑁𝑡ℎ as 128k. While the original bank-level

TWiCe whose 𝑡ℎ𝑃𝐼 is 4 requires 553 entries per bank, rank-level

TWiCe with 𝑡ℎ𝑃𝐼 of 7 requires 186 entries.

The threshold adjustment changes the number of required table

entries. Increasing 𝑡ℎ𝑃𝐼 makes pruning more strictly; each entry

must have a higher 𝑎𝑐𝑡_𝑐𝑛𝑡 value to survive than before. On the other

hand, decreasing 𝑡ℎ𝑃𝐼 means the entry can survive with a lower

𝑎𝑐𝑡_𝑐𝑛𝑡 value than before. Table 4.1 shows the number of required

table entries under various 𝑡ℎ𝑃𝐼 value according to the calculation of

Section 3.3. Increasing 𝑡ℎ𝑃𝐼 to 7 can reduce the number of required

entries of rank-level TWiCe to 186 per bank. This is almost 1/3 of

the number of required entries of bank-level TWiCe with 𝑡ℎ𝑃𝐼 of 4

what we first proposed. However, increasing 𝑡ℎ𝑃𝐼 induce more

false-positive detections due to smaller 𝑡ℎ𝑅𝐻. Therefore, in Section

57

4.5, we experiment with the increase of false-positive detection due

to threshold adjustment, and our analysis shows that it is insignificant

in general workloads.

4.4 Analysis

We analyzed the area, energy, and timing overhead of threshold

adjusted rank-level TWiCe using SPICE simulations based on 45 nm

FreePDK library [39]. We designed our proposal as 64-way SRAM.

We set tREFW, tREFI, and tFAW to 64 ms, 7.8125 us, and 21 ns,

respectively. Also, we set 𝑡ℎ𝑅𝐻, 𝑡ℎ𝑃𝐼, and the number of rows per

bank to 8,192, 7, and 131,072, respectively.

Threshold adjusted rank-level TWiCe incurs less area overhead

than the original TWiCe. Each entry needs 46 bits, including (1, 21,

13, 11) bits for (𝑣𝑎𝑙𝑖𝑑_𝑏𝑖𝑡, 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟, 𝑎𝑐𝑡_𝑐𝑛𝑡, 𝑙𝑖𝑓𝑒). When compared

to original TWiCe, 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟 increases 4 bits due to bank address,

𝑎𝑐𝑡_𝑐𝑛𝑡 decreases 2 bits due to the reduction of 𝑡ℎ𝑅𝐻. Also, 𝑙𝑖𝑓𝑒 is 11

bits, which is 2 bits smaller than that of original TWiCe, because the

maximum 𝑙𝑖𝑓𝑒 of the entry with 𝑎𝑐𝑡_𝑐𝑛𝑡 of 8,191 is
8,191

7
= 1,170 .

According to Table 4.1, rank-level TWiCe, whose 𝑡ℎ𝑃𝐼 is 7, requires

186 entries per bank, so each bank table is comprised of three sets

of 64-way SRAM, which translates to 1.08 KB per 1 GB DRAM bank.

Rank-level TWiCe incurs no performance overhead while

performing table updates. Our simulation results show that Rank-

58

level TWiCe requires 3 ns for accessing a single counter set and 5

ns for all bank tables, which is shorter than
𝑡𝐹𝐴𝑊

4
. Also, it requires

130 ns for updating the table, while the auto-refresh operation of

DRAM takes 350 ns. In addition, rank-level TWiCe achieves lower

energy overhead than the original TWiCe because it reduces the

required number of entries and consists of SRAM instead of CAM.

Although the energy required to search all bank tables is 0.861 nJ,

which is more significant than that of the ACT count of original

TWiCe, we found that the counters for all rows remained in their

preferred sets through the multi-programmed and multi-threaded

workload simulations specified in Section 4.5.

Timing

(ns)

Energy

(nJ)

Original

TWiCe

ACT count 3 0.082

Table update (per bank) 140 0.663

Rank-level

TWiCe

ACT count

(preferred set)
3 0.018

ACT count

(preferred bank table)
4 0.054

ACT count

(all bank tables)
5 0.861

Table update (per bank) 130 0.153

DRAM
ACT to ACT (tFAW/4) 5.5 11.49

Refresh/bank (tRFC) 350 132.24

Table 4.2. Timing and energy in operating original and rank-level

TWiCe, and DRAM devices.

59

4.5 Evaluation

We first evaluated how many target row addresses of ACT are stored

in a non-preferred set or another bank table instead of the preferred

set. We modeled a chip-multiprocessor system by modifying

McSimA+ [41] with the same parameters as Section 3.6. We used

DRAM timing parameters in Table 4.1. We used 𝑡ℎ𝑃𝐼 and 𝑡ℎ𝑅𝐻 of 7

and 8,192, respectively.

We run simulations using multi-programmed and multi-threaded

workloads. The workloads used for the simulation is the same as in

Section 3.6. We used mix-high, mix-blend, and 29 of SPECrate

multi-programmed workloads. Also, we used MICA [45], PageRank

from GAP benchmark suite [46], and RADIX and FFT from SPLASH-

2X [47] for multi-threaded workloads.

Figure 4.4 shows how many target row addresses of ACT are

stored in a non-preferred set or another bank table instead of the

preferred set. We compared the results of the various number of

ways in rank-level TWiCe. The table accesses in the graph includes

both access for searching and access for inserting a new entry.

When using SRAM with 32 or more ways, the rank-level TWiCe

always finds the target address in the preferred set on the evaluated

multi-programmed and multi-threaded workloads. With 16-way

SRAM, three SPECrate workloads make target row address

searching (or inserting) in the non-preferred set, but it was smaller

60

0
.0

0
0
%

0
.0

1
0
%

0
.0

2
0
%

0
.0

3
0
%

0
.0

4
0
%

8-way

16-way

32-way

64-way

8-way

16-way

32-way

64-way

8-way

16-way

32-way

64-way

8-way

16-way

32-way

64-way

8-way
16-way
32-way
64-way
8-way

16-way
32-way
64-way

8-way

16-way

32-way

64-way

8-way

16-way

32-way

64-way

S
P

E
C

ra
te

(A
v
g

)
m

ix
-h

ig
h

m
ix

-b
le

n
d

F
F

T
M

IC
A

P
a
g

e
R

a
n

k
R

A
D

IX
A

v
e
ra

g
e

Ratio of access to the table set
N

o
n
-p

re
fe

rr
e

d
 s

e
t

O
th

e
r

b
a
n

k
 t
a

b
le

s

F
ig

u
re

 4
.4

.
T

h
e
 r

a
ti
o
 o

f
a
c
c
e
s
s
 t

o
 n

o
n
-

p
re

fe
rr

e
d
 s

e
t

a
n
d
 o

th
e
r

b
a
n
k
 t

a
b
le

s
 o

n
 m

u
lt
i-

p
ro

g
ra

m
m

e
d
 a

n
d
 m

u
lt
i-

th
re

a
d
e
d

w

o
rk

lo
a
d
s

(m

u
lt
i-

p
ro

g
ra

m
m

e
d

S
P
E

C

C

P
U

2
0
0
6
,

m
u
lt
i-

th
re

a
d
e
d

S
P
L
A

S
H

-
2
X

,
G

A
P
-

B
S
,

a
n
d

M

IC
A

a
p
p
li
c
a
ti

o
n
s
).

 W
h
e
n
 u

s
in

g
 3

2
 o

r
m

o
re

 w
a
y
s
,
e
v
e
ry

 T
W

iC
e
 t

a
b
le

 a
c
c
e
s
s
 o

n
ly

 h
e
a
d
s
 t

o
 t

h
e
 p

re
fe

rr
e
d
 s

e
t.

61

than 0.001% of the total number of ACTs. When using 8-way SRAM,

0.03% of the total table accesses head to non-preferred sets.

However, even in this case, there is no other bank table access.

We also evaluated how many additional refreshes (ACTs) rank-

level TWiCe generates to prevent RH through simulation. In addition

to the workloads used above, we used three synthetic workloads (S1,

S2, and S3) that are the same as Section 3.6. Rank-level TWiCe

generates no additional ACTs on the evaluated workloads except for

S3 synthetic workloads. Even on S3 workloads, it only generates

additional ACTs of 0.024%, which is four times of that of original

TWiCe. It is still much smaller than 0.1% of PARA-0.001.

62

Chapter 5

Augmenting TWiCe for Hot-page

Detection

TWiCe, which is proposed to prevent RH, contains information

about the frequently activated rows. In this section, we augment

TWiCe for hot-page detection in the memory system consisting of

asymmetric latency DRAM.

5.1 Necessity of Counters for Detecting Hot Pages

In a conventional DRAM device, each timing parameter is set to

the worst-case latency, such as the latency to access the farthest

cell in topological distance from the I/O pins. By partitioning a device

into multiple regions, there is a room to reduce access latency on a

subset of these regions. Numerous studies [7], [14], [17], [49],

[50], [51], [52] have proposed main-memory DRAM

microarchitectures that support asymmetric access latency. In

63

particular, a few of them [7], [14], [17] have focused on the fact that

key memory access latency values, such as tRCD and tRP, can be

reduced if the length of the DRAM BLs is shortened. These studies

divide DRAM internal structure into a fast access region with shorter

BLs and a slow access region with longer BLs.

Tiered-Latency DRAM (TLDRAM [14]) divides each BL within

subarrays into two short BLs through an isolation (ISO) transistor.

TLDRAM has two types of rows: one is near row which is always

connected to the corresponding BLSA, and the other is far row which

is located farther from BLSA than the near rows and is connected

through an ISO transistor. When a near row is accessed, latency can

be shortened by disconnecting the ISO transistor, which reduces the

BL capacitance. The average access latency can be reduced by

allocating frequently accessed data in the near rows.

Center high aspect ratio mat (CHARM [7]) architecture places

high-aspect-ratio (HAR) mats that have shorter timing parameters

in the center (closer to I/O pads) area, and normal mats that have

default timing parameters in the remaining area. As the BL

capacitance of a HAR mat is smaller than that of a normal mat, the

latency and power consumption on an access to the HAR mat is

reduced. Also, column access latency (tCL) of the center area is

further reduced by shifting the per-bank column decoder in the

center area closer to the I/O pads.

Main-memory accesses in many workloads are concentrated to

64

a small portion (hot pages) of their entire memory footprints.

Therefore, exploiting asymmetric low-latency main memory and

allocating frequently accessed hot pages to the fast region would help

improving system performance. However, it is difficult to identify hot

pages because hot pages can change dynamically at runtime.

Misidentifying hot pages may even harm performance. In finding hot

pages, static allocation is suboptimal because it requires off-line

profiling to extract memory access patterns, which can vary

significantly depending on the input values and the execution phases

of running applications as well as interaction with other processes in

a system. Dynamic allocation can solve these problems but it requires

real-time hot-page detection mechanism with high accuracy and a

low-latency page swap mechanism. Although the operating system

(OS) can track page access distribution, this information is not

appropriate to use for asymmetric latency DRAM because it does not

consider the cache hierarchy. The hot page determined by OS

requires little DRAM accesses because the accesses to this page

mostly hit in the cache. Therefore, there have been several studies

on how to identify hot pages [7], [17], [53], [54].

5.2 Previous Studies on Migration for Asymmetric

Low-latency DRAM

There have been multiple DRAM microarchitecture proposals

targeting high-throughput internal DRAM data transfer, which can be

65

used to relocate frequently accessed data to the fast region of

asymmetric DRAM [15], [16], [17]. Chang et al. [16] proposed

inter-linked subarrays (LISA) which enable fast data movement

between subarrays. LISA inserts ISO transistors to connect BLs and

a row-buffer that are adjacent but not connected. By turning the ISO

transistors on, data can be copied between subarrays. DAS-DRAM

[17] also enables rapid data movement between subarrays. To

reduce the overhead of row migration, DAS-DRAM adds a 2T2C

migration cell to each BL and use the migration cells as temporal

buffers needed for the swap. DAS-DRAM achieves 3×tRC latency

for swapping two rows (tSWP) that are located in adjacent subarray

by concurrently utilizing the migration cells in the both subarrays. We

leverage DAS-DRAM microarchitecture for DRAM page swap as it

does not require a spare row for swapping. Compared to DAS-DRAM

which swaps a DRAM page after a few accesses, we utilize the

counters in TWiCe to choose page-swap targets.

Figure 5.1 shows our asymmetric DRAM architecture adopting

the migration cells in DAS-DRAM. We pair a low-latency (fast)

subarray with short BLs, each connecting 1/3 of DRAM cells

compared to a BL in a normal (slow) subarray. One row in the fast

region and three rows in the slow region form a row group; a hot page

in the slow region can be swapped with the page in the fast region,

which was possibly hot in the past. We summarized the timing

parameters of this architecture in Table 5.1. The fast region has

66

reduced values for tRCD and tRP, but its tRC stays unchanged as it

influences the number of counters TWiCe needs for row-hammering

protection. Note that system performance is more sensitive to tRCD

and tRP than tRAS in modern servers with hundreds of DRAM banks

because a bank typically stays deactivated (because they employ an

adaptive-open page management policy [55]) or services a

sequence of column accesses to an activated row (for access

patterns with spatial locality) and suffers less frequently from row-

buffer conflicts.

Figure 5.1. Low latency DRAM microarchitecture based on dynamic

asymmetric subarray DRAM (DAS-DRAM [17]). A row in a slow

subarray can be swapped with a row in a fast subarray through

migration cells.

CCELL CBL_SLOW

…

Fast Mat

Slow Mat

CBL_FAST

Bitline

Wordline

Fast subarray Migration cell

Normal cell

Slow subarray

Global Sense Amp

Bank

Row group

Swap

Row index

0

1

2

3

Fast

Slow

Row

group

CCELL

Column Decoder

S
u

b
-W

o
rd

li
n

e
D

ri
v
e
r

R
o

w
 D

e
c
o

d
e
r

…

Bitline Sense Amp

Bitline Sense Amp

S
W

D

67

5.3 Extending TWiCe for Dynamic Hot-page

Detection

Because TWiCe tracks rows that are activated recently or

frequently, we leverage this information to detect hot pages to be

placed in the fast DRAM region. We argue that hot-page detection

with ACT counts is reasonable based on the following rationale: (1)

Recently accessed rows are more likely to be accessed again because

of temporal locality in memory accesses [17], [49]. (2) In a system

running many applications concurrently, a large portion of main-

memory accesses accompany ACT due to inter-core interference in

shared memory [56] or adaptive-open page management policy,

which diligently deactivates rows that are idle for more than a certain

(short) period [42], [55]. (3) The low-latency DRAM

microarchitectures, such as DAS-DRAM [17], focused on reducing

tRCD and tRP, which affects the latency of PRE/ACT. Compared to

access-based hot-page detection, ACT-based hot-page detection

filters out accesses with frequent row-buffer hits, which have the

same latency in both fast and slow regions, reducing ineffective page

swaps which gain little with the shortened timing parameters of the

fast region. Therefore, hot-page detection through TWiCe ensures

that hot pages are migrated to the fast region of DRAM with high

accuracy and fewer row swaps, as quantitatively evaluated in Section

5.5.2.

68

We augment TWiCe to detect hot pages (see Figure 5.2). Our

asymmetric DRAM architecture has two DRAM addressing types as

a DRAM row could be swapped within a row group. One is physical

row address specified by a request from the MC, and the other is

device row address indicating the location within a DRAM device. To

track row swap record, TWiCe has an address translation table,

which is used to translate a physical address to a device address.

Figure 5.2. Extended TWiCe microarchitecture with additional

ℎ𝑜𝑡_𝑐𝑛𝑡, 𝑠𝑤𝑝_𝑏𝑖𝑡, swap queue, and address translation table.

The count information (𝑎𝑐𝑡_𝑐𝑛𝑡) of swapped rows does not

represent hot-page information because of the mismatch between

physical and device row address. TWiCe manages the entries based

on the device row address, indicating the actual location on a device

to prevent row-hammering. Therefore, after rows are swapped,

𝑎𝑐𝑡_𝑐𝑛𝑡 of each entry of the swapped rows cannot represent whether

the physical row mapped to that entry is hot. To solve this problem,

we add a new saturating counter called ℎ𝑜𝑡_𝑐𝑛𝑡 to each entry of

TWiCe

Register Clock Driver

Control

Logic

Address Translation Table

Buffer

TWiCe

Table

Name Width

valid 1

row_addr 17

act_cnt 15

life 13

hot_cnt 4

swp_bit 1
SWAP Queue

69

TWiCe. Also, we define a new hot-page detection threshold (𝑡ℎ𝐻𝑃).

ℎ𝑜𝑡_𝑐𝑛𝑡 counts the ACTs to the device row address of each entry,

and the row becomes a swap candidate if ℎ𝑜𝑡_𝑐𝑛𝑡 reaches 𝑡ℎ𝐻𝑃. As

opposed to 𝑎𝑐𝑡_𝑐𝑛𝑡, ℎ𝑜𝑡_𝑐𝑛𝑡 resets to zero when the row is swapped

so that the ACT count for the swapped physical row address is

reinitialized. When a row is swapped, ℎ𝑜𝑡_𝑐𝑛𝑡 of all rows in the row

group to which the swapped row belongs is set to zero to prevent

excessive swaps due to competition between the multiple hot rows

within a row group.

We also add 𝑠𝑤𝑝_𝑏𝑖𝑡 to each TWiCe entry to prevent consecutive

swaps to a row group. It indicates that the row has been swapped in

the preceding pruning interval (PI). 𝑠𝑤𝑝_𝑏𝑖𝑡 holds one for a PI after

a row swap, and if 𝑠𝑤𝑝_𝑏𝑖𝑡 of the target row is one, the row is not

swapped even if it is detected as a hot page. This ensures that the

row in the fast region can stay for a certain amount of time (2×tREFI

here), preventing excessive swapping. Finally, in order to manage

the row swap candidates, we add a swap queue which contains the

source and target device row pairs to swap.

The process of detecting hot pages and placing them to the fast

region of asymmetric DRAM with TWiCe is as follows: 1) When ACT

is sent to the target physical row, its address is translated to the

corresponding device row, and ℎ𝑜𝑡_𝑐𝑛𝑡 is incremented by one like

𝑎𝑐𝑡_𝑐𝑛𝑡. 2) If ℎ𝑜𝑡_𝑐𝑛𝑡 of the entry reaches 𝑡ℎ𝐻𝑃 and is in the slow

region, TWiCe searches the fast region row of the row group (target

70

row) in TWiCe table. If the 𝑠𝑤𝑝_𝑏𝑖𝑡 of the target row entry is zero or

the target row entry does not exist, source and target row address

is inserted into a swap queue entry unless the target row is already

in the swap queue. 3) If ℎ𝑜𝑡_𝑐𝑛𝑡 of the entry reaches 𝑡ℎ𝐻𝑃 and is in

the fast region, its 𝑠𝑤𝑝_𝑏𝑖𝑡 is set to one, preventing this hot page

from being swapped in the current PI. Also, if this row is the target

row of a swap queue entry, that swap queue entry is removed as we

cannot decide which rows are hotter. 4) When the TWiCe table is

updated during auto-refresh, TWiCe reads the swap queue and finds

the rows in TWiCe table which belongs to the same row group, and

sets their ℎ𝑜𝑡_𝑐𝑛𝑡 to zero. Also, 𝑎𝑐𝑡_𝑐𝑛𝑡 of the source and target

entry is increased by one because row swap incurs additional

activations to both. If the target row entry does not exist in TWiCe

table, it is newly inserted. Also, 𝑠𝑤𝑝_𝑏𝑖𝑡 of the target entry is set to

one to disable swap in the next PI. 𝑠𝑤𝑝_𝑏𝑖𝑡 of all entries that did not

migrate in the current PI is set to zero, enabling swap in the next PI.

5) After the auto-refresh, the source and target row address pairs

in the swap queue are swapped in turn, and the finished entries are

erased from swap queue.

5.4 Additional Components and Methodology

Address translation is essential in asymmetric memory systems

supporting hardware managed migration; however, as opposed to

previous proposals which place a (cache of) translation table within

71

a MC [17], [57], [58], our address translation table is located at RCD.

In order to reduce the size of the address translation table, we design

it with Lehmer code encoding [59] and store the permutation of the

rows in a row group instead of one-to-one mapping of device row

address over each physical row address. In our design, as a row

group consists of four rows, the number of possible permutation is 4!

= 24. Therefore, each row group stores 5-bit encoded data that can

represent 24 permutations, resulting in 1.25 bit per row. A DDR4 16

GB DIMM populated with two ranks, which is used for our evaluation

(Section 5.5.2), needs 307 KB for an address translation table. The

encoding/decoding overhead of address translation is described in

Section 5.5.1.

As described in Section 5.3, row swap is performed right after

auto-refresh. During auto-refresh, TWiCe in RCD sends source-

target row address pairs in the swap queue to the corresponding

banks in the DRAM devices (each bank holds the swap row address

info; 17 bits for source 𝑟𝑜𝑤_𝑎𝑑𝑑𝑟 and 2 bits for target row in a row

group = 19 bits per swap). After auto-refresh, a row swap is

executed at a fixed time, tSWP (3×tRC as mentioned in Section 5.2).

To handle swap timing, TWiCe can send two additional

information to MC through an alert signal path. First, when row swap

is in progress and the RCD receives a new ACT from the MC, TWiCe

sends a signal indicating that row swap is not yet finished. If the MC

receives this signal, it reschedules to send the next command after

72

tSWP. If there are several entries in swap queue, the time is

increased by tSWP per entry. Second, TWiCe sends another signal

to adjust timing parameter (tRCD and tRP) if the currently accessed

row is in the fast region. MC normally accepts the timing as the slow

region of DRAM, but when MC receives this signal, MC reduces tRCD

or tRP counter, respectively, as much as the timing difference

between the slow and the fast region. We analyze the latency of

adjusting the timing parameters in Section 5.5.1.

We also add a parameter, 𝑚𝑎𝑥𝑠𝑤𝑝 , which limits the maximum

number of swaps possible per refresh command (which is equal to PI)

to mitigate excessively long swap latency. Because swap latency is

extended by tSWP per swap on a bank, system performance can be

degraded due to delayed memory accesses if there are a lot of swaps

to be processed, which effectively increases tRFC from the access

scheduler’s perspective within a MC. To alleviate this problem, we

implement 𝑚𝑎𝑥𝑠𝑤𝑝 by adjusting the size of the swap queue. When the

swap queue is full, no more swap is enqueued. A small 𝑚𝑎𝑥𝑠𝑤𝑝 size

can reduce performance degradation due to swap latency, but if it is

too small, TWiCe cannot follow a rapid change in hot pages as the

number of hot pages that can be moved to the fast region is limited

per PI. To analyze this trade-off, we conducted a simulation to

observe the sensitivity of 𝑚𝑎𝑥𝑠𝑤𝑝 on performance using the

experimental setup in Section 5.5.2. We saw performance

improvement becomes much less sensitive when 𝑚𝑎𝑥𝑠𝑤𝑝 was four or

73

more. Therefore, we fixed 𝑚𝑎𝑥𝑠𝑤𝑝 as four in our evaluation.

5.5 Analysis and Evaluation

5.5.1 Overhead Analysis

Our asymmetric DRAM architecture incurs area overhead due to

high aspect ratio subarray which has short bitlines and migration cells.

As described in Section 5.2, a quarter of the total DRAM capacity is

composed of 3× high aspect ratio subarrays and 2 migration cells are

needed for each bitline, resulting in about total 7% DRAM area

overhead [17], [60].

For hot-page detection, 4-bit ℎ𝑜𝑡_𝑐𝑛𝑡 and 1-bit 𝑠𝑤𝑝_𝑏𝑖𝑡 are

added to each entry of TWiCe, leading to 0.28 KB increase in the

table size. TWiCe requires an address translation table and control

logic to support swapping, for which an SRAM with 384 KB [61] can

be implemented within 2 mm2 and consumes 180 pJ per access.

Maximum operating frequency is 1.2 GHz, which meets target

frequency specification in Section 5.5.2. We synthesized TWiCe

control, swap queue, Lehmer encoder and decoder for address

translation table logics with Synopsys Design Compiler [62] and IC

Compiler [63]. Total silicon size is estimated to be less than 0.05

mm2 at 1.2 GHz.

TWiCe needs a return path to a MC to send alert signals for row-

hammering, swapping, and tRCD timing adjustment. Therefore, we

74

need extra pins per MC to enable bidirectional communication

between TWiCe and MCs. We resolve this problem by leveraging a

currently existing pin in DDR4 called ALERT_n, which is for sending

ECC exception. Originally, this pad is designed as an open drain pad

for accepting ALERT_n signals from all DRAM chips. However, the

load of this signal is greatly decreased by RCD and it can operate at

high speeds comparable to the transfer rate of a DQ (data I/O) bus.

We modify ALERT_n as a single-ended unidirectional CMOS output

[64]. This signal encodes the original ECC error detection as well as

three (row-hammering, swapping, tRCD timing adjustment) TWiCe

functions.

Because the address translation table is placed at RCD, MC does

not know if the DRAM row to activate is currently located at the fast

region. Therefore, MC should first assume that all DRAM row

activation takes tRCD of the slow region and later update the tRCD

value once it receives the information through ALERT_n that the row

being activated belongs to the fast region. MC must receive this

information within the tRCD of the fast region to avoid any

performance penalty. We can break down the sequence of this

information delivery as follows: ① ACT is sent from MC to RCD. ②

The address translation table is accessed. ③ If the row address

corresponds to the fast region, the signal is encoded and leaves

ALERT_n. ④ The signal is delivered from RCD back to MC. ⑤ The

tRCD counter value in MC should be decreased accordingly. Here, ①

75

and ④ are determined by the channel propagation latency between

MC and RCD. The transfer latency of MC and DIMM is calculated to

be 1 ns per 6 inches, and the required length from MC to DIMM is

less than 2 inches [65], [66]; and hence the maximum latency for

both ① and ④ should be 0.34 ns. ② and ③ require 1 tCK (DRAM

cycle time, which is 0.83 ns for DDR4-2400) to access the address

translation table and 4 tCK for transmitting the encoded TWiCe signal.

⑤ needs 1 tCK latency. Because a total latency (<7 tCK) is smaller

than tRCD of fast region (9 tCK, see Table III), tRCD can be adjusted

successfully within MC.

5.5.2 Evaluation

We simulated a chip multi-processor to evaluate the effect of hot-

page detection using TWiCe in asymmetric DRAM microarchitecture.

We modified McSimA+ [41] with default parameters summarized in

Table 5.1. The system consists of 16 out-of-order cores with 3.6

GHz operating frequency and 4 memory channels. Each MC connects

to 2 ranks of DDR4-2400 modules and has 64 request queue entries.

Each rank has 16 banks and the capacity per rank is 16 GB. We used

(16, 16) and (9, 9) tCK as (tRCD, tRP) timing parameters for the

slow and fast regions of DRAM, respectively. The page swap latency

(tSWP) is 165 tCK which is 3 × tRC. We set default hot-page

detection threshold (𝑡ℎ𝐻𝑃) to 16 based on the result of sensitivity

study in the last of this section and the maximum number of swap per

76

auto-refresh (𝑚𝑎𝑥𝑠𝑤𝑝) to 4.

Resource Value

Number of cores, MCs 16, 4

Per core Freq, issue/commit width 3.6 GHz, 4/4 slots

Issue policy Out-of-Order

L1 I/D $, L2 $ 16 KB, 128 KB private

L1, L2 $ line size 64 B

Hardware (linear) prefetch On

L3 $ / line size 16 MB shared / 64 B

Per MC # of channels, Req Q 4 Ch, 64 entries

Baseline module type DDR4-2400

Capacity/rank, bandwidth 16 GB, 19.2 GB/s

Scheduling policy PAR-BS [48]

DRAM page policy Minimalist-open [42]

DRAM

Timing
tRCD, tRP

slow region (16, 16) tCK

fast region (9, 9) tCK

tSWP (swap latency) 165 tCK

𝑡ℎ𝐻𝑃, 𝑚𝑎𝑥𝑠𝑤𝑝 16, 4

Table 5.1. Default parameters of the simulated system.

Figure 5.3 shows the performance (IPC) improvement of

systems employing various hot-page detection schemes including

TWiCe on low-latency DRAM microarchitecture depicted in Figure

5.1. For single-threaded workloads, we use a single memory channel

to stress main-memory bandwidth. The baseline configuration uses

77

0
.9

5
1

.0
0

1
.0

5
1

.1
0

1
.1

5
1
.2

0

no-MIG
DAS

TWiCe
Static

Oracle

no-MIG
DAS

TWiCe
Static

Oracle

no-MIG
DAS

TWiCe
Static

Oracle

no-MIG
DAS

TWiCe
Static

Oracle

no-MIG
DAS

TWiCe
Static

Oracle

no-MIG
DAS

TWiCe
Static

Oracle

no-MIG
DAS

TWiCe
Static

Oracle

no-MIG
DAS

TWiCe
Static

Oracle

no-MIG
DAS

TWiCe
Static

Oracle

no-MIG
DAS

TWiCe
Static

Oracle

no-MIG
DAS

TWiCe
Static

Oracle

m
ilc

G
e
m

sF
D

T
D

lb
m

sp
e

c-
h
ig

h
m

ix
-h

ig
h

m
ix

-b
le

n
d

ca
n

n
e

a
l

F
F

T
P

a
g

e
R

a
n
k

R
A

D
IX

M
IC

A

S
in

g
le

-t
h
re

a
d

e
d

M
u

lti
-p

ro
g

ra
m

m
e

d
M

u
lti

-t
h

re
a

d
e
d

Relative IPC

F
ig

u
re

 5
.3

.
T

h
e
 r

e
la

ti
v
e
 I

P
C

 o
f

n
o
-

M
IG

 (
a
s
y
m

m
e
tr

ic
 m

e
m

o
ry

 w
it

h
o
u
t

s
w

a
p
)
,

D
A

S
 (

a
 r

o
w

-
s
w

a
p
 s

c
h
e
m

e
 i

n

D
y
n
a
m

ic
 A

s
y
m

m
e
tr

ic
 S

u
b
a
rr

a
y
 [

3
4
])

,
S
ta

ti
c
 (

s
ta

ti
c
a
ll
y
 a

s
s
ig

n
in

g
 h

o
t

p
a
g
e
s
 t

o
 t

h
e
 f

a
s
t

re
g
io

n
)
,

T
W

iC
e
,

a
n
d

O
ra

c
le

(a

ll

ro

w
s

in

th

e

fa

s
t

re
g
io

n
)

c
o
m

p
a
re

d

to

th

e

b
a
s
e
li
n
e

D

D
R

4
-

2
4
0
0

o
n

s
in

g
le

-
th

re
a
d
e
d

a
n
d

m

u
lt
i-

p
ro

g
ra

m
m

e
d
 S

P
E

C
 C

P
U

2
0
0
6
,
m

u
lt
i-

th
re

a
d
e
d
 P

A
R

S
E

C
,
S
P
L
A

S
H

-
2
X

,
G

A
P
-

B
S
,
a
n
d
 M

IC
A

 a
p
p
li
c
a
ti

o
n
s
.

78

DDR4-2400 DRAM devices without any fast region. In the no-MIG

configuration, DRAM is divided into fast and slow regions but no

migration is performed. In Static configuration, the upper 25% of

frequently accessed rows are allocated to the fast DRAM region

based on offline profiling, without dynamic swapping of DRAM rows.

DAS is an access-frequency-based DRAM row migration method

used in DAS-DRAM [17], which triggers row swapping if a row in

the slow DRAM region is accessed eight times. In the Oracle

configuration, DRAM is hypothetically assumed to have only fast

region.

TWiCe outperforms DAS and reaches or even surpasses the

performance of Static in most evaluated workloads. DAS selects hot

pages by counting the number of accesses to the row, but only the

accesses that accompany ACT/PRE operations take the benefit of

reduced tRCD and tRP. Therefore, as DAS often prematurely triggers

row swapping, its performance is inferior to TWiCe. Static does not

react to variations of hot pages in runtime; this explains why TWiCe

outperforms Static in several workloads. TWiCe selects hot pages

according to the number of ACT operations within recent pruning

intervals (PIs), so it can effectively migrate time-varying hot pages

to the fast region. As shown in Figure 5.4(b), TWiCe directs 89.7%

and 79.9% of total accesses to the fast region at 𝑡ℎ𝐻𝑃 of 16. However,

on a few workloads, such as GemsFDTD and FFT, TWiCe performs

worse than Static because the dynamic hot-page tracking mechanism

79

of TWiCe does not always work ideally; fewer than 50% of total

accesses head to the fast region.

Figure 5.4. (a) The relative performance (IPC) compared to the

baseline DDR4-2400 device, (b) the access ratio to the fast region,

and the average number of DRAM row swaps per PI (Pruning Interval)

in a bank across a varying number of hot-page detection threshold

(𝑡ℎ𝐻𝑃).

TWiCe performs on par with Oracle on several workloads even

if only 25% of the main-memory capacity TWiCe use belongs to the

fast region. TWiCe improves IPC by 5.2% and 5.6% for spec-high

0.7

0.8

0.9

1

1.1

1 2 4 8
1

6
3

2 1 2 4 8
1

6
3

2 1 2 4 8
1

6
3

2 1 2 4 8
1

6
3

2 1 2 4 8
1

6
3

2

GemsFDTD spec-high mix-high FFT Average

Single-threaded Multi-
programmed

Multi-threaded

R
e

la
ti
v
e

 I
P

C

0
1
2
3
4
5

0%
20%
40%
60%
80%

100%

1 2 4 8
1

6
3

2 1 2 4 8
1

6
3

2 1 2 4 8
1

6
3

2 1 2 4 8
1

6
3

2 1 2 4 8
1

6
3

2

GemsFDTD spec-high mix-high FFT Average

Single-threaded Multi-
programmed

Multi-threaded

#
 o

f
s
w

a
p

s
 /
 P

I

F
a

s
t
re

g
io

n
 a

c
c
e

s
s
 (

%
) Fast region access # of swaps / PI (per bank)

(a) The relative IPC

(b) The access ratio to the fast region and the average number of swaps

80

applications and mix-high workloads where the IPC improvements

of Oracle are 8.2% and 7.4%. Also, TWiCe achieves 7.4%, 3.0%, 4.8%,

12.2%, and 8.8% IPC improvements over the baseline for canneal,

FFT, PageRank, RADIX, and MICA, respectively.

We further conduct a sensitivity study on hot-page detection

threshold of TWiCe. Figure 5.4 shows the performance (IPC), the

access ratio to the fast region, and the average number of swaps per

PI in a bank as we sweep 𝑡ℎ𝐻𝑃 from 1 to 32. The baseline uses

DDR4-2400 devices without the fast region.

We made the following key observations. First, the access ratio

to the fast region is decreased by increasing 𝑡ℎ𝐻𝑃, but even when

𝑡ℎ𝐻𝑃 is increased to 32, the ratio is still higher than 50% in most

workloads. Figure 5.4(b) shows that on average the access ratio to

the fast region is 82% for spec-high, 93% for mix-high, and 80.6%

for multi-threaded workloads. The access ratio to the fast region

gradually decreases as 𝑡ℎ𝐻𝑃 increases. For 𝑡ℎ𝐻𝑃 of 32, the ratio is

59% for spec-high, 83.5% for mix-high, and 79.6% for multi-

threaded workloads. For GemsFDTD and FFT mentioned in the first

evaluation, performance improvement is relatively small as only half

of total accesses are sent to the fast region.

Second, the average number of swaps per PI is large at low 𝑡ℎ𝐻𝑃,

but sharply decreases as 𝑡ℎ𝐻𝑃 increases. As shown in Figure 5.4(b),

at 𝑡ℎ𝐻𝑃 of one, the average number of swaps per PI is 0.41, 0.83, and

1.24 for spec-high, mix-high, and multi-threaded workloads

81

average, respectively. As number of swaps increases, memory

accesses can be delayed due to longer swap latency after auto-

refreshes. Therefore, with low 𝑡ℎ𝐻𝑃 , the performance gain due to

high access ratio to the fast region is mostly lost as the swap

overhead increases steeply. Especially, in the case of FFT, the

average number of swaps per PI is almost 4 which results in about

25% performance degradation due to the swap latency as shown in

Figure 5.4(a).

As seen from the above observations, as 𝑡ℎ𝐻𝑃 increases, the

performance improvement decreases with decreased access ratio to

fast region but the swap overhead also decreases with swaps per PI

reduction. On multi-programmed and multithreaded workloads, the

access ratio loss and swaps per PI reduction are balanced at 𝑡ℎ𝐻𝑃 of

16, with fast region ratio higher than 80% and less than 0.1 swaps

per PI on average. Figure 5.4(a) shows that at 𝑡ℎ𝐻𝑃 of 16, TWiCe

improves IPC by 5.2%, 5.6%, and 7.2% over baseline for spec-high,

mix-high, and multi-threaded workloads, respectively.

82

Chapter 6

Conclusion

In this thesis, we have proposed TWiCe, a new counter-based

hardware solution to combat DRAM row-hammering (RH), and

augmented TWiCe for hot-page detection in the low-latency DRAM

architecture.

TWiCe precisely tracks the number of ACTs to each DRAM row

with a small number of counters and provides strong protection;

adjacent rows are guaranteed to be refreshed before the number of

ACTs exceeds a RH threshold. The precise protection is possible

with low overhead because tracking the number of ACTs only to a

small subset of frequently activated DRAM rows is sufficient. To

exceed the RH threshold within a refresh window, a row must be

frequently activated, but as the total number of DRAM row ACTs

This Section is based on [1, 2]. - © 2019 ACM, and IEEE 2018.

Reprinted, with permissions from ISCA ‘19, and CAL ‘18.

83

over a period is limited by the DRAM interface, the maximum number

of rows that can be activated frequently, and thereby row-hammered,

is bounded. We analytically derive the number of counters that can

guarantee precise protection from the RH attack. We distribute the

functionality of TWiCe among a MC, RCDs, and DRAM devices,

achieving an efficient implementation. Our analysis shows that TWiCe

incurs less than 0.7% area/energy overhead on modern DRAM

devices and it is free of false positive detection on all the evaluated

workloads except no more than 0.006% of additional ACTs on

adversarial memory access patterns including RH attack scenarios.

To reduce the area and energy overhead of TWiCe further, we

propose threshold adjusted rank-level TWiCe by leveraging a

pseudo-associative cache design. Rank-level TWiCe requires a

smaller number of table entries because the maximum ACT

frequency within a DRAM rank is more bounded than that within a

bank. Also, we reduce the number of entries by adjusting TWiCe

thresholds. To minimize the impact on performance, we find the

appropriate TWiCe thresholds that do not increase the number of

false-positive detections on general workloads by simulation.

Finally, we extend TWiCe to improve main-memory

performance. TWiCe can be used as a hot-page detector for

asymmetric low-latency DRAM microarchitecture, as recently

activated pages are likely to be activated again due to temporal

locality in memory accesses. We also propose a DRAM row swap

84

methodology and an address translation table management method

with a detailed timing analysis. Counter entries contain hot-page

information, and rows whose hot-page activation count exceeds the

hot-page detection threshold are swapped with a row in the fast

DRAM region. Our evaluation shows that low-latency DRAM using

TWiCe achieves up to 5.6% and 12.1% IPC improvement over a

baseline DDR4 device for multi-programmed and multithreaded

workloads.

6.1 Future work

As described in Chapter 2.4, the row-hammering threshold (𝑁𝑡ℎ) is

expected to decrease going forward with further technology scaling.

To prevent row-hammering with lower Nth, we need the lower

TWiCe thresholds (𝑡ℎ𝑅𝐻 and 𝑡ℎ𝑃𝐼), increasing the required number of

table entries. Even if we apply all optimization techniques in this

thesis to TWiCe, more than 1000 entries per bank are required with

𝑁𝑡ℎ below 10000. Also, according to [68], the activation of the non-

adjacent row can cause bit flips. Like double-side RH, TWiCe can

resolve this problem by decreasing 𝑡ℎ𝑅𝐻 and 𝑡ℎ𝑃𝐼, but the table size

has to be larger accordingly. Therefore, it would be essential to

reduce TWiCe table size further or propose a new low-cost solution.

85

Bibliography

[1] E. Lee, I. Kang, S. Lee, G. E. Suh, and J. Ahn, “TWiCe:

Preventing Row-hammering by Exploiting Time Window

Counters,” in Proceedings of 46th International Symposium

on Computer Architecture (ISCA), June 2019.

[2] E. Lee, S. Lee, G. E. Suh, and J. Ahn, “TWiCe: Time Window

Counter Based Row Refresh to Prevent Row-hammering,” in

IEEE Computer Architecture Letters (CAL), vol. 17, 2018.

[3] I. Bhati, M.-T. Chang, Z. Chishti, S.-L. Lu, and B. Jacob,

“DRAM Refresh Mechanisms, Penalties, and Trade-offs,”

IEEE Transactions on Computers (TC), vol. 65, 2016.

[4] S. Cha et al., “Defect Analysis and Cost-Effective Resilience

Architecture for Future DRAM Devices,” in Proceedings of

IEEE International Symposium on High Performance Computer

Architecture (HPCA), 2017.

[5] Y. Kim et al., “Flipping Bits in Memory Without Accessing

Them: An Experimental Study of DRAM Disturbance Errors,”

in Proceedings of 41st International Symposium on Computer

Architecture (ISCA), 2014.

[6] B. Jacob, S. Ng, and D. Wang, “Memory Systems: Cache,

86

DRAM, Disk,” Morgan Kaufmann Publishers Inc., 2007.

[7] Y. H. Son, S. O, Y. Ro, J.W. Lee, and J. Ahn, “Reducing

Memory Access Latency with Asymmetric DRAM Bank

Organizations,” in Proceedings of 40th International

Symposium on Computer Architecture (ISCA), 2013.

[8] D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural

Support for Mitigating Row Hammering in DRAM Memories,”

IEEE Computer Architecture Letters (CAL), vol. 14, 2015.

[9] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, "Mitigating

Wordline Crosstalk using Adaptive Trees of Counters," in

Proceedings of 45th International Symposium on Computer

Architecture (ISCA), June 2018.

[10] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-

Based Tree Structure for Row Hammering Mitigation in

DRAM,” in IEEE Computer Architecture Letters (CAL), vol.

16, 2017.

[11] M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM Stronger

Against Row Hammering,” in Proceedings of the 54th Annual

Design Automation Conference (DAC), 2017.

[12] G. Mohsen, L. Mikel, and G. Jim, "A Run-time Memory Hot-

row Detector," 2015. [Online]. Available:

http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/

.

[13] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas, “L1 Data

Cache Decomposition for Energy Efficiency,” in Proceedings

of the 2001 International Symposium on Low Power

Electronics and Design (ISLPED), 2001.

87

[14] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O.

Mutlu, “Tiered-Latency DRAM: A Low Latency and Low

Cost DRAM Architecture,” in Proceedings of IEEE

International Symposium on High Performance Computer

Architecture (HPCA), 2013.

[15] V. Seshadri et al., “RowClone: Fast and Energy-efficient In-

DRAM Bulk Data Copy and Initialization,” in Proceedings of

the 46th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2013.

[16] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O.

Mutlu, “Low-Cost Inter-Linked Subarrays (LISA): Enabling

Fast Inter-subarray Data Movement in DRAM,” in

Proceedings of IEEE International Symposium on High

Performance Computer Architecture (HPCA), 2016.

[17] S.-L. Lu, Y.-C. Lin, and C.-L. Yang, “Improving DRAM

Latency with Dynamic Asymmetric Subarray,” in

Proceedings of the 48th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2015.

[18] D. Jack et al., "Inside 6th-Generation Intel Core: New

Microarchitecture Code-Named Skylake," in IEEE Micro, vol.

37, 2017.

[19] S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke,

"IBM Power9 Processor Architecture," in IEEE Micro, vol. 37,

2017.

[20] T. Singh et al., "Zen: An Energy-Efficient High-Performance

× 86 Core," in IEEE Journal of Solid-State Circuits, vol. 53,

2018.

88

[21] M. Horiguchi and K. Itoh, "Nanoscale Memory Repair,"

Springer Publishing Company, Incorporated, 2013.

[22] Y. H. Son, S. Lee, S. O, S. Kwon, N. S. Kim, and J. Ahn, "CiDRA:

A Cache-inspired DRAM Resilience Architecture," in

Proceedings of IEEE International Symposium on High

Performance Computer Architecture (HPCA), 2015

[23] B. Keeth, R. J. Baker, B. Johnson, and F. Lin, "DRAM Circuit

Design: Fundamental and High-Speed Topics (2nd ed.),"

Wiley-IEEE Press, 2007.

[24] JEDEC, “DDR4 SDRAM Standard,” JESD79-4B, 2012.

[25] JEDEC, “288-Pin, 1.2 V (VDD), PC4-1600/PC4-

1866/PC4-2133/PC4-2400/PC4-2666/PC4-3200 DDR4

SDRAM Registered DIMM Design Specification,” JESD21-

C,MODULE4.20.28, 2015.

[26] JEDEC, “288-Pin, 1.2 V (VDD), PC4-1600/PC4-

1866/PC4-2133/PC4-2400/PC4-2666/PC4-3200 DDR4

SDRAM Load Reduced DIMM Design Specification,”

JESD21-C,MODULE4.20.27, 2015.

[27] JEDEC, “DDR4 SDRAM Standard,” JESD79-4B, 2012.

[28] JEDEC, "Graphic Double Data Rate 5 (GDDR5) Specification",

JESD212C, 2016.

[29] JEDEC, “Low Power Double Data Rate 4 (LPDDR4),”

JESD209-4B, 2014.

[30] K. Park, C. Lim, D. Yun, and S. Baeg, “Experiments and Root

Cause Analysis for Active-precharge Hammering Fault in

DDR3 SDRAM Under 3x nm Technology,” Microelectronics

89

Reliability, vol. 57, 2016.

[31] M. T. Aga, Z. B. Aweke, and T. Austin, “When Good

Protections Go Bad: Exploiting Anti-DoS Measures to

Accelerate Rowhammer Attacks,” in Proceedings of IEEE

International Symposium on Hardware Oriented Security and

Trust (HOST), 2017.

[32] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H.

Bos, “Flip Feng Shui: Hammering a Needle in the Software

Stack,” in USENIX Security Symposium, 2016.

[33] V. van der Veen et al, “Drammer: Deterministic Rowhammer

Attacks on Mobile Platforms,” in Proceedings of The ACM

Conference on Computer and Communications Security (CCS),

2016.

[34] T. Yang and X-W. Lin, "Trap-Assisted DRAM Row Hammer

Effect," in IEEE Electron Device Letters, vol. 40, 2019.

[35] N. Herath and A. Fogh, "These are Not Your Grand Daddys

CPU Performance Counters - CPU Hardware Performance

Counters for Security," in Black Hat Briefings, 2015.

[36] M. Seaborn and T. Dullien, "Exploiting the DRAM Rowhammer

Bug to Gain Kernel Privileges," in Black Hat 15, 2015.

[37] H. Kasture and D. Sanchez, "TailBench: A Benchmark Suite and

Evaluation Methodology for Latency-Critical Applications," in

Proceedings of IEEE International Symposium on Workload

Characterization (IISWC), 2016.

[38] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C.

Kozyrakis, "Heracles: Improving Resource Efficiency at

90

Scale," in Proceedings of 42nd International Symposium on

Computer Architecture (ISCA), 2015.

[39] NCSU, “FreePDK45,” 2011. [Online]. Available:

https://www.eda.ncsu.edu/wiki/FreePDK45:Contents.

[40] Micron, “DDR4 SDRAM System-Power Calculator,” 2016.

[41] J. Ahn, S. Li, S. O, and N. P. Jouppi, “McSimA+: A Manycore

Simulator with Application-level+ Simulation and Detailed

Microarchitecture Modeling,” in Proceedings of International

Symposium on Performance Analysis of Systems and Software

(ISPASS), 2013.

[42] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist Open-

page: A DRAM Page-mode Scheduling Policy for the Many-

core Era,” in Proceedings of the 44th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO),

2011.

[43] J. L. Henning, “SPEC CPU2006 Memory Footprint,” in

Computer Architecture News, Vol. 35, 2007.

[44] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,

“Automatically Characterizing Large Scale Program

Behavior,” in Proceedings of International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2002.

[45] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A

Holistic Approach to Fast In-Memory Key-Value Storage,”

in Proceedings of the 11st USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2014.

91

[46] S. Beamer, K. Asanovi´c, and D. Patterson, “The GAP

Benchmark Suite,” arXiv preprint, arXiv:1508.03619, 2015.

[47] PARSEC Group, “A Memo on Exploration of SPLASH-2

Input Sets,” Princeton University, 2011.

[48] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch

Scheduling: Enhancing both Performance and Fairness of

Shared DRAM Systems,” in Proceedings of 35th International

Symposium on Computer Architecture (ISCA), 2008.

[49] H. Hassan et al., “ChargeCache: Reducing DRAM Latency by

Exploiting Row Access Locality,” in Proceedings of IEEE

International Symposium on High Performance Computer

Architecture (HPCA), 2016.

[50] D. Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM

Timing for the Common-Case,” in Proceedings of IEEE

International Symposium on High Performance Computer

Architecture (HPCA), 2015.

[51] W. Shin, J. Yang, J. Choi, and L.-S. Kim, “NUAT: A Non-

Uniform Access Time Memory Controller,” in Proceedings of

IEEE International Symposium on High Performance Computer

Architecture (HPCA), 2014.

[52] X. Zhang, Y. Zhang, B. R. Childers, and J. Yang, “Restore

Truncation for Performance Improvement in Future DRAM

Systems,” in Proceedings of IEEE International Symposium

on High Performance Computer Architecture (HPCA), 2016.

[53] X. Jiang et al., “CHOP: Adaptive Filter-Based DRAM Caching

for CMP Server Platforms,” in Proceedings of IEEE

International Symposium on High Performance Computer

92

Architecture (HPCA), 2010.

[54] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M.

Ignatowski, and G. H. Loh, “Heterogeneous Memory

Architectures: A HW/SW Approach for Mixing Die-stacked

and Off-package Memories,” in Proceedings of IEEE

International Symposium on High Performance Computer

Architecture (HPCA), 2015.

[55] Intel, “Intel Xeon Processor 7500 Series Datasheet,” 2010.

[56] E. Lee, J. Chung, D. Jung, S. Lee, S. Li, and J. Ahn, “Work as

a Team or Individual: Characterizing the System-level Impacts

of Main Memory Partitioning,” in Proceedings of IEEE

International Symposium on Workload Characterization

(IISWC), 2017.

[57] C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A Two-

Level Memory Organization with Capacity of Main Memory and

Flexibility of Hardware-Managed Cache,” in Proceedings of

the 47th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), 2014.

[58] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim,

“Transparent Hardware Management of Stacked DRAM as

Part of Memory,” in Proceedings of the 47th Annual

IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2014.

[59] J. Ahn, J. Leverich, R. S. Schreiber, and N. P. Jouppi,

“Multicore DIMM: an Energy Efcient Memory Module with

Independently Controlled DRAMs,” in IEEE Computer

Architecture Letters (CAL), vol. 8, 2008.

93

[60] Y. Ro et al., “SOUP-N-SALAD: Allocation-oblivious Access

Latency Reduction with Asymmetric DRAM

Microarchitectures,” in Proceedings of IEEE International

Symposium on High Performance Computer Architecture

(HPCA), 2017.

[61] H. Pilo, V. Ramadurai, G. Braceras, J. Gabric, S. Lamphier, and

Y. Tan, “A 450ps Access-time SRAM Macro in 45nm SOI

Featuring a Twostage Sensing-scheme and Dynamic Power

Management,” in Proceedings of International Solid-State

Circuits Conference (ISSCC), 2008.

[62] Synopsys, “Design Compiler: RTL Synthesis,” 2018.

[63] Synopsys, “IC Compiler Place and Route System,” 2018.

[64] JEDEC, “POD12 - 1.2 V PSEUDO OPEN DRAIN

INTERFACE,”JESD8-24, 2011.

[65] M. Catrambone, “Routing DDR4 Interfaces Quickly and

Efficiently,” in PCB West, 2016.

[66] Micron, “TN-46-14: Hardware Tips for Point-to-Point

System Design,” Tech. Rep., 2008.

[67] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC

Benchmark Suite: Characterization and Architectural

Implications,” in Proceedings of the 17th International

Conference on Parallel Architectures and Compilation

Techniques (PACT), 2008.

[68] P. Frigo et al., “TRRespass: Exploiting the Many Sides of

Target Row Refresh.” In Proceedings of the 41st IEEE

Symposium on Security and Privacy (SP), 2020.

94

국문초록

DRAM을 주기억장치로 사용하는 컴퓨터 시스템은 로우 해머링

공격에 노출된다. 로우 해머링은 인접 DRAM 로우를 자주

activation함으로써 특정 DRAM 로우 데이터에 직접 접근하지 않고서도

데이터를 뒤집을 수 있는 현상을 말한다. 이러한 로우 해머링 현상을

방지하기 위해 여러가지 확률적인 방지 기법과 결정론적 방지 기법들이

연구되어 왔다. 그러나, 확률적인 방지 기법은 공격 자체를 탐지할 수

없고, 방지에 실패할 확률이 0이 아니라는 한계가 있다. 또한 기존의

카운터를 활용한 결정론적 방지 기법들은 큰 칩 면적 비용을

발생시키거나 특정 메모리 접근 패턴에서 현저한 성능 하락을

야기한다는 단점이 있다.

이러한 문제를 해결하기 위해, 우리는 TWiCe (Time Window

Counter based row refresh)라는 새로운 카운터 기반 결정론적 방지

기법을 제안한다. TWiCe는 적은 수의 카운터를 활용하여 로우 해머링

공격을 정확하게 탐지하면서도 성능에 악영향을 최소화하는 방법이다.

우리는 DRAM 타이밍 파라미터에 의해 로우 activation 빈도가

제한되고 DRAM 셀이 주기적으로 리프레시 되기 때문에 로우 해머링을

야기할 수 있는 DRAM 로우의 수가 한정된다는 사실에 주목하였다.

이로부터 우리는 TWiCe가 확실한 결정론적 방지를 보장할 경우 필요한

DRAM 뱅크 당 필요한 카운터 수의 최대값을 구하였다. TWiCe는

일반적인 DRAM 동작 과정에서는 성능에 아무런 영향을 미치지 않으며,

현대 DRAM 디바이스에서 0.7% 이하의 칩 면적 증가 및 에너지

증가만을 필요로 한다. 우리가 진행한 평가에서 TWiCe는 로우 해머링

95

공격 시나리오를 포함한 여러가지 메모리 접근 패턴에서 0.006%

이하의 추가적인 DRAM activation을 요구하였다.

또한 TWiCe의 칩 면적 및 에너지 비용을 더욱 줄이기 위하여,

우리는 threshold가 조정된 랭크 단위 TWiCe를 제안한다. 먼저,

수백개가 넘는 TWiCe 테이블 항목 검색을 에너지 효율적으로 수행할

수 있는 pa-TWiCe (pseudo-associatvie TWiCe)를 제안하였다.

그리고, 테이블 항목을 랭크 단위로 관리하여 필요한 테이블 항목의

수를 더욱 줄인 랭크 단위 TWiCe를 제안하였다. 또한, 우리는

TWiCe의 threshold 값을 조절함으로써 일반적인 워크로드 상에서 거짓

양성(false-positive) 탐지를 증가시키지 않는 선에서 TWiCe의 테이블

항목 수를 더욱 줄였다.

마지막으로, 우리는 컴퓨터 시스템의 주기억장치 성능 향상을 위해

TWiCe를 hot-page 감지기로 사용하는 것을 제안한다. 메모리 접근의

시간적 지역성에 의해 최근 자주 activation된 DRAM 로우들은 다시

activation될 확률이 높고, TWiCe는 최근 자주 activation된 DRAM

로우에 대한 정보를 가지고 있다. 이러한 사실에 기반하여, 우리는 hot-

page에 대한 DRAM 접근 지연시간을 줄이는 DRAM 페이지

스왑(swap) 기법들에 TWiCe를 적용하는 방법을 보인다. 우리가

수행한 평가에서 TWiCe를 사용한 저지연시간 DRAM은 멀티 쓰레딩

워크로드들에서 기존 DDR4 디바이스 대비 IPC를 최대 12.2%

증가시켰다.

주요어 : DRAM, 로우 해머링, 결정론적 방지, 신뢰성, 핫-페이지 감지,

저지연시간 DRAM

학 번 : 2014-24902

	Introduction
	1.1 Time Window Counter Based Row Refresh to Prevent Row-hammering
	1.2 Optimizing Time Window Counter
	1.3 Using Time Window Counters to Improve Main Memory Performance
	1.4 Outline

	Background of DRAM and Row-hammering
	2.1 DRAM Device Organization
	2.2 Sparing DRAM Rows to Combat Reliability Challenges
	2.3 Main Memory Subsystem Organization and Operation
	2.4 Row-hammering (RH)
	2.5 Previous RH Prevention Solutions
	2.6 Limitations of the Previous RH Solutions

	TWiCe: Time Window Counter based RH Prevention
	3.1 TWiCe: Time Window Counter
	3.2 Proof of RH Prevention
	3.3 Counter Table Size
	3.4 Architecting TWiCe
	3.4.1 Location of TWiCe Table
	3.4.2 Augmenting DRAM Interface with a New Adjacent Row Refresh (ARR) Command

	3.5 Analysis
	3.6 Evaluation

	Optimizing TWiCe to Reduce Implementation Cost
	4.1 Pseudo-associative TWiCe
	4.2 Rank-level TWiCe
	4.3 Adjusting Threshold to Reduce Table Size
	4.4 Analysis
	4.5 Evaluation

	Augmenting TWiCe for Hot-page Detection
	5.1 Necessity of Counters for Detecting Hot Pages
	5.2 Previous Studies on Migration for Asymmetric Low-latency DRAM
	5.3 Extending TWiCe for Dynamic Hot-page Detection
	5.4 Additional Components and Methodology
	5.5 Analysis and Evaluation
	5.5.1 Overhead Analysis
	5.5.2 Evaluation

	Conclusion
	6.1 Future work

	Bibliography
	국문초록

<startpage>15
Introduction 1
 1.1 Time Window Counter Based Row Refresh to Prevent Row-hammering 2
 1.2 Optimizing Time Window Counter 6
 1.3 Using Time Window Counters to Improve Main Memory Performance 8
 1.4 Outline 10
Background of DRAM and Row-hammering 11
 2.1 DRAM Device Organization 12
 2.2 Sparing DRAM Rows to Combat Reliability Challenges 13
 2.3 Main Memory Subsystem Organization and Operation 14
 2.4 Row-hammering (RH) 18
 2.5 Previous RH Prevention Solutions 20
 2.6 Limitations of the Previous RH Solutions 21
TWiCe: Time Window Counter based RH Prevention 26
 3.1 TWiCe: Time Window Counter 26
 3.2 Proof of RH Prevention 30
 3.3 Counter Table Size 33
 3.4 Architecting TWiCe 35
 3.4.1 Location of TWiCe Table 35
 3.4.2 Augmenting DRAM Interface with a New Adjacent Row Refresh (ARR) Command 37
 3.5 Analysis 40
 3.6 Evaluation 42
Optimizing TWiCe to Reduce Implementation Cost 47
 4.1 Pseudo-associative TWiCe 47
 4.2 Rank-level TWiCe 50
 4.3 Adjusting Threshold to Reduce Table Size 55
 4.4 Analysis 57
 4.5 Evaluation 59
Augmenting TWiCe for Hot-page Detection 62
 5.1 Necessity of Counters for Detecting Hot Pages 62
 5.2 Previous Studies on Migration for Asymmetric Low-latency DRAM 64
 5.3 Extending TWiCe for Dynamic Hot-page Detection 67
 5.4 Additional Components and Methodology 70
 5.5 Analysis and Evaluation 73
 5.5.1 Overhead Analysis 73
 5.5.2 Evaluation 75
Conclusion 82
 6.1 Future work 84
Bibliography 85
국문초록 94
</body>

