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ABSTRACT 

 

Development of oxadiazole-based 

ODZ10117 as a small molecule inhibitor of 

STAT3 for targeted cancer therapy 

 

Haeri Lee 

The Department of Biomedical Sciences 

The Graduate School 

Seoul National University 

 

STAT3 is a transcription regulator involved in many 

intracellular functions, including cell proliferation, differentiation, 

survival, angiogenesis, and immune response. Persistently 

activated STAT3 is a promising target for a new class of 

anticancer drug development and cancer therapy, as it is 

associated with tumor initiation, progression, malignancy, drug 

resistance, cancer stem cell properties, and recurrence. 

Here, I discovered 3-(2,4-dichloro-phenoxymethyl)-5-

trichloromethyl-[1,2,4]oxadiazole (ODZ10117) as a small 

molecule inhibitor of STAT3 and suggested that it may have an 

effective therapeutic utility for the STAT3-targeted cancer 

therapy. ODZ10117 targeted the SH2 domain of STAT3 

regardless of other STAT family proteins and upstream 

regulators of STAT3, leading to inhibition of the tyrosine 
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phosphorylation and transcriptional activity of STAT3. The 

inhibitory effect of ODZ10117 on STAT3 was stronger than the 

known STAT3 inhibitors such as S3I-201, STA-21, and 

nifuroxazide. Furthermore, I demonstrated the therapeutic 

efficacy of ODZ10117 by targeting STAT3. ODZ10117 

suppressed the cancer cell migration and invasion, induced 

apoptotic cell death, and reduced tumor growth in both in vitro 

and in vivo models of breast cancer and glioblastoma. In addition, 

ODZ10117 suppressed stem cell properties in glioma stem cells 

(GSCs).  

To confirm these results, I demonstrated two different types 

of xenograft model. First, I have shown that extended the 

survival rate and reduced lung metastasis in models of breast 

cancer. Next, the administration of ODZ10117 showed significant 

therapeutic efficacy in mouse xenograft models of GSCs. In 

conclusion, I believe this study provides insight in to a promising 

therapeutic candidate for cancers by targeting STAT3. 

 

------------------------------------- 

Keywords: ODZ10117, STAT3, targeted therapy, invasion, 

migration, apoptosis 

 

Student number: 2012-23672 
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INTRODUCTION 
 

Signal transducer and activator of transcription 3 (STAT3) 

is a member of the STAT family consisting of seven proteins in 

mammals: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, 

and STAT6 [1, 2]. It was first discovered independently as an 

acute-phase response factor that selectively binds to DNA in 

response to interleukin-6 (IL-6) and epidermal growth factor 

(EGF)[3-5]. STAT3 is a transcription factor that remains in the 

cytoplasm as an inactivated form and is expressed at a basal level 

under normal conditions. It can be activated by the 

phosphorylation of tyrosine 705 residue in response to cytokines, 

chemokines, and growth factors through receptor- and non-

receptor-associated tyrosine kinases [5].  

STAT3 signaling cascade is triggered by upstream kinase 

signals, and undergo phosphorylation, homo-dimerization, 

translocate in to nuclear, and bind to DNA, leading to target gene 

expression involved in cell proliferation, survival, angiogenesis, 

invasion, metastasis, and immunoediting [6-9]. 

Aberrant activation of STAT3 has been involved in 

oncogenesis and malignant phenotypes in human cancers [10, 

11]. Hyperactivation of STAT3 has been reported in several 

types of tumors, including head-and neck, brain, breast, liver, 

lung, kidney, pancreas, prostate, ovary cancer, and multiple 

myeloma, as well as acute myeloid leukemia (AML) [12-17]. 

Expression levels of activated STAT3 are positively correlated 

with poor prognosis in these cancers. 
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Activated STAT3 can be translocated to the nucleus and 

regulates the transcription of a variety of genes involved in 

important biological functions, including cell proliferation, 

survival, differentiation, angiogenesis, tissue development, and 

immune responses. However, persistently activated STAT3 

signaling is closely associated with oncogenic signaling and is 

frequently observed in numerous types of cancer cells and tumor 

tissues of cancer patients [1, 18]. In fact, this signaling is 

positively correlated with cancer aggressiveness, malignancy, 

recurrence, drug resistance, and a poor prognosis via promoting 

the survival, proliferation, invasion, and metastasis of cancer 

cells and maintaining cancer stem cell (CSC) properties [19-21].  

The tumor microenvironment is composed of tumor cells and 

their surrounding circumstance, including hypoxic condition, 

blood vessels and extracellular matrix (ECM), as well as stromal 

cells, immune cells, and inflammatory cells [22, 23]. STAT3 is a 

key mediator modulating tumor milieu to promote tumor 

progression, and is a promising target for antitumor immune 

response [24, 25]. 

It is well known that tumor cells modify and adapt to their 

surrounding milieu. Constitutive activation of STAT3 promotes 

tumor growth through oncogenic signaling pathway, and interacts 

with tumor cells and their surrounding factors. Constitutive 

activation of STAT3 promotes tumor growth through oncogenic 

signaling pathway, and interacts with tumor cells and their 

surrounding factors. Aberrant activation of STAT3 recruits 

immune cells and compromises their functions to benefit tumor 

cells [26]. 
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In the core of tumor tissue, hypoxic stress is generated and 

therefore induces hypoxia-inducible factors. It is known that 

STAT3 regulates stability and activity of HIF-1α, inducing 

expression of cytokines, chemokine, and growth factors to 

improve cancer development [27, 28]. Also, in response to 

surrounding tumor cells, stromal cells upregulate their C-X-C 

motif chemokine ligand 12 (CXCL12) receptors, resulting in 

enhancing metastatic potential in tumor cells [29]. Additionally, 

activation of STAT3 promotes polarization of tumor-associated 

microphages as M2 phenotype and programmed death-ligand 1 

(PD-L1) expression as well, which increase tumor progression. 

Inhibition of STAT3 activation shows anti-tumor activity by 

suppressing polarization of macrophages [30]. In addition, 

activation of STAT3 in endothelial cells increases cell adhesion 

molecule expression and it is important for the tumor metastasis 

[9, 31]. 

Tumor cells can evade immune response by regulating their 

immunological circumstance. Activation of STAT3 is crucial for 

immune escape of tumor cells, by promoting transforming growth 

factor-β (TGF-β), vascular endothelial growth factor (VEGF), 

myeloid-derived suppressor cell (MDSC) expansion and 

suppressing NK cell function [32]. Using STAT3 inhibitors has 

shown reduction of immunosuppressive response, therefore 

upregulating antitumor activity of immune cells 

Therefore, targeting persistently activated STAT3 signaling 

is considered one of the important therapeutic options for cancer 

treatment.  
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STAT3 inhibitors or agents can have two major strategies, 

in which STAT3 activation is inhibited, directly or indirectly. 

Direct inhibitors block the SH2 domain, DNA-binding domain, 

and N-terminal domain, which regulate STAT3 activation by 

blocking phosphorylation, dimerization, nuclear translocation, 

and DNA binding [33, 34].  

The SH2 domain of STAT3 has a binding pocket to 

phosphorylated tyrosine (pTyr) residue, and formation of 

STAT3 dimerization involves pTyr interacting with the SH2 

domain. Therefore, inhibiting SH2 domain of STAT3 suppresses 

activation of STAT3 protein. Numerous kinds of small molecule 

peptides have been developed as STAT3 inhibitors that directly 

target the SH2 domain of STAT3 by using high-throughput 

screening and structure-based virtual screening system [9]. 

Indirect inhibitors target upstream regulators of STAT3 

pathway, such as receptor-ligand binding and kinases. However, 

additional tyrosine kinase mutations or switching to alternative 

tyrosine kinases can restore STAT3 activation in tumor cells in 

patients, resulting in acquired resistance to tyrosine kinase 

inhibitors [9].  

Additionally, STAT3 is phosphorylated by various protein 

kinases in the cytoplasmic region. It is well known that JAK and 

Src kinases are common STAT3 upstream regulators. JAK and 

Src kinases inhibitors have various anti-cancer effects such as 

inducing cancer cell apoptosis and reducing metastasis through 

decrease in the level of STAT3 phosphorylation [35-39]. Some 

of these small molecule inhibitors have recently been in clinical 

trials for chemotherapy for various cancer treatment, and 
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inflammatory syndromes including rheumatoid arthritis, psoriasis, 

and inflammatory bowel disease (IBD) [40-43]. 

Therefore, inhibiting STAT3 activity by targeting STAT3 

directly could be a highly beneficial strategy for the successful 

treatment of cancer.  

To date, a number of compounds that inhibit STAT3 

phosphorylation and activity have been developed and pre-

clinically tested. For example, few non-peptide STAT3 SH2 

inhibitors were recently developed to inhibit STAT3 dimerization, 

including Stattic [44], STA-21 [45], and S3I-201[46]. Several 

new inhibitors of JAK2, the upstream kinase of STAT3, such as 

AG490 [47], WP1066 [48] have also been reported. 

Breast cancer is the most commonly diagnosed cancer and 

the second leading cause of cancer mortality in women worldwide. 

The incidence of breast cancer increases with age and the 

survival rate of patients generally decreases in case of invasive 

malignant characteristics [49]. Based on the receptor patterns of 

genomic expression profiling, breast cancer is classified into four 

major classes: luminal A, luminal B, human epidermal growth 

factor receptor-2 (HER2)-positive, and triple-negative breast 

cancer (TNBC) [50, 51].  

Patients with luminal subtypes of breast cancer are typically 

treated with hormonal and/or HER2-targeted therapy, and the 

prognosis is generally excellent with a 10-year survival rate of 

over 95%. In contrast, HER2-positive and TNBC subtypes are 

invasive breast cancers that are commonly associated with a 

poorer prognosis, a higher rate of distant recurrence, and the 

shortest overall survival rate of all breast cancers. These 
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subtypes of cancer are highly aggressive and have low 

sensitivity to typical endocrine therapies and the limited number 

of therapeutic options than other subtypes [52-54]. 

Glioblastoma is the most frequent and most aggressive 

occurring type of primary brain tumor in adults. It is positively 

correlated with a deadly disease with extremely poor prognosis, 

early clinical deterioration, and high mortality rate. Patients with 

glioblastoma show a median overall survival of less than 15 

months and a 5-year survival rate of less than 5% despite 

surgical intervention with radiotherapy and chemotherapy [55, 

56]. Although extensive studies and advances in modern 

medicine during past decades have occurred, glioblastoma 

remains difficult to treat with a very dismal prognosis in patients, 

because few mechanisms underlying its tumor malignancy have 

been identified.   

Therefore, it is necessary to develop novel therapeutic 

strategies to improve the survival rate and prognosis of 

glioblastoma. Recently, the degree of STAT3 activity has 

emerged as an important biomarker in targeted therapy of cancer 

patients.  

STAT3 is persistently activated in more than 40% of breast 

cancer patients. Particularly, high level of activated STAT3 is 

observed in TNBC subtype [52-54] and glioblastoma patients 

[57, 58], suggesting that STAT3 inhibitors may be an essential 

strategy for cancer treatment. In this study, I identified 3-(2,4-

dichloro-phenoxymethyl)-5-trichloromethyl-(1,2,4) 

oxadiazole (ODZ10117) as a new STAT3 inhibitor and examined 
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the anticancer activity of ODZ10117 in both in vitro and in vivo 

models of breast cancer and glioblastoma cancer cells. 
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MATERIALS AND METHODS 

 

1. Structure-based computational database screening 

To discover small molecules that target the SH2 domain of 

STAT3, we prepared a 3D-structure of the SH2 domain by 

extracting the corresponding region from the X-ray structure of 

mouse STAT3 (mSTAT3), which was available from the protein 

data bank (PDB), entry 1BG1 [59]. Multiple sequence alignment 

between mouse STAT3 (mSTAT3) and human STAT3 

(hSTAT3) using the Clustal Omega server 

(https://www.ebi.ac.uk/Tools/msa/clustalo/, Windows 1.2.2) 

showed that the template and target sequence share 99.83% 

sequence identity and the remaining variability occurs in the N-

terminal region. Amino acid sequences for mSTAT3 and 

hSTAT3 were downloaded from the UniProtKB database using 

the accession numbers P42227 and P40763, respectively. We 

used the mSTAT3 3D-structure for docking and the structure 

was prepared at default level using the Protein Preparation 

Wizard [60] in the Maestro utility of the Schrödinger 2017-4 

Suites package.  

The chemical databases were obtained from our in-house 

library with a molecular weight of less than 300 g/mol and each 

compound was sketched using the ChemDraw Professional 16 

software (16.0.1.4) and imported to the Maestro LigPrep module 

[61]. The default settings of the LigPrep module were used to 

prepare the ligands. The peptide Pro-pTyr-Leu was obtained 

from the 1BG1 protein and assigned a grid that covered 5Å 
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surrounding Pro-pTyr-Leu. The Glide module [62] with the 

standard precision (SP) docking algorithm was used to further 

study docking and obtain docking solutions. Fifty docking poses 

were generated for each ligand and ranked according to Glide 

docking score. Tighter binding is reflected by a greater negative 

docking score and vice versa.  

We repeated the same procedures to dock the known STAT3 

inhibitors, S3I-201 [46] and STA-21 [45] against the SH2 

domain of STAT3 for comparison. Figures were generated using 

the Discovery Studio Client 2018, and Pymol 2.1.0. 

 

2. Cell-based high-throughput screening 

To perform cell-based high-throughput screening, we 

generated MDA-MB-231/STAT3-Luc cells stably expressing 

both the p21×STAT3-firefly luciferase [63] and pRL-TK 

Renilla luciferase reporter constructs. Cells were incubated for 

24 h in the presence of each compound and the reporter activity 

was quantified by measuring the relative luciferase units.  

The luciferase activity was calculated using the ratio of the 

activity of firefly luciferase to that of Renilla luciferase. We also 

generated S2-NP/STAT92E-Luc cells stably expressing both 

the p10×STAT92E-firefly luciferase and RNA polymerase III 

Renilla luciferase reporter constructs, and a cell-based 

luciferase assay was performed as previously described [64]. 

 

3. Reagents and antibodies 

The known STAT3 inhibitors S3I-201 (SML0330) [46], 

STA-21 (SML2161) [45], and nifuroxazide (481984) [65], and 
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the pan-JAK inhibitor AG-490 (T3434) [47] were purchased 

from Sigma-Aldrich (St. Louis, MO, USA). An inhibitor of 

STAT3 and cancer stemness, napabucasin (HY-13919) [66] 

and recombinant human interleukin 6 (IL-6, 200-06) were 

obtained from MedChem Express (Monmouth Junction, NJ, USA) 

and PeproTech, respectively. All of the other chemicals used 

were analytical grade and purchased from Sigma-Aldrich unless 

otherwise noted. 

Antibodies specific for phospho-JAK1 (Tyr1022/1023), 

JAK1, phospho-JAK2 (Tyr1007/1008), JAK2, phospho-JAK3 

(Tyr980/981), phospho-TYK2 (Tyr1054/1055), TYK2, 

phospho-STAT1 (Tyr701), STAT1, phospho-STAT3 

(Tyr705), phospho-STAT5 (Tyr694), phospho-STAT6 

(Tyr641), STAT6, phospho-Akt (Ser473), Akt, phospho-Lyn 

(Tyr507), Lyn, phospho-Src (Tyr416), Src, phospho-ERK1/2 

(Thr202/Tyr204), ERK1/2, NESTIN (4760), SOX2 (3579), 

NANOG (4903), OCT4 (2840), PARP (9542), caspase-3 

(9662), and active caspase 3 (9661) were obtained from Cell 

Signaling Technology (Danvers, MA, USA). Antibodies against 

fibronectin (ab2413), and integrin αV (ab179475) were obtained 

from Abcam (Cambridge, MA, USA). Antibodies specific for 

STAT5 (sc-74442), and GAPDH (AbC-2003) were obtained 

from Santa Cruz Biotechnology (Santa Cruz, CA, USA), R&D 

systems (Minneapolis, MN, USA), Novus Biologicals (Centennial, 

CO, USA), and Abclone (Seoul, Korea), respectively. 

 

4. Cell lines and preparation of primary cell lines 

MDA-MB-231, MDA-MB-468 and 4T1 were obtained 
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from the American Type Culture Collection (Manassas, VA, USA) 

and maintained in DMEM, EMEM, or Leibovitz’s L-15 medium 

supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin (DMEM complete medium; all from GE 

Healthcare Life Sciences). MDA-MB-231/STAT3-Luc cells 

were maintained in Leibovitz’s L-15 medium supplemented with 

10% FBS, 1% penicillin/streptomycin, and 500 μg/mL geneticin. 

HDLM-2 and L540 cells were obtained from the German 

Collection of Microorganisms and Cell Cultures and maintained in 

RPMI supplemented with 20% FBS and 1% 

penicillin/streptomycin. 

Human glioblastoma cell lines A172 (CRL-1620) and U87 

were obtained from ATCC and cells were maintained in DMEM 

complete medium. GSC lines 19, 84, and 528 were obtained from 

Dr. Ichiro Nakano (The Ohio State University, Columbus, OH, 

USA) and maintained in DMEM/F12 (SH30023.01, HyClone) 

supplemented with 0.04% modified B27 (17504044, Invitrogen, 

Carlsbad, CA, USA), 1% L-glutamine (25030081, Invitrogen), 

20 ng/mL basic fibroblast growth factor (100-18B, PeproTech, 

Rocky Hill, NJ, USA) and 20 ng/mL epidermal growth factor 

(GMP100-15, PeproTech).  

Human glioblastoma tissue samples were obtained from the 

patients with glioblastoma who visited the Department of 

Neurosurgery, Seoul National University College of Medicine. All 

the patients participating in this study provided informed consent 

before the surgical procedure at the Seoul National University 

Hospital. The study was approved by the Institutional Review 

Board protocols from Seoul National University College of 
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Medicine (H-0507-509-153) in accordance with the 

Declaration of Helsinki.  

The primary glioblastoma cell lines were prepared from the 

tumor tissue samples of glioblastoma patients code-named with 

GBM12 and 14, and maintained in DMEM (SH30243.01, HyClone, 

Carlsbad, CA, USA) supplemented with 10% FBS (16000044, 

Gibco, Carlsbad, CA, USA) and 1% penicillin/streptomycin 

(15070063, Gibco). All the cells were maintained at 37 °C in a 

5% CO2 humidified incubator. 

 

5. Western Blot analysis 

Whole-cell lysates were prepared using a lysis buffer 

containing 50 mM Tris-HCl (pH 7.4), 350 mM NaCl, 1% Triton 

X-100, 0.5% Nonidet P-40, 10% glycerol, 0.1% SDS, 1 mM 

EDTA, 1 mM EGTA, 1 mM Na3VO4, 1 mM 

phenylmethylsulphonyl fluoride, and protease and phosphatase 

inhibitor cocktails (78440, Thermo Scientific, Rockford, IL, 

USA). Protein samples were separated by SDS-PAGE, 

transferred to nitrocellulose membrane (Pall Corporation, Port 

Washington, NY, USA), and performed Western blotting with 

appropriate antibodies.  

 

6. RNA extraction, cDNA preparation, and quantitative real-time 

PCR 

Total RNA was extracted using TRIzol reagent and cDNA 

was synthesized using a ReverTra Ace® qPCR RT Kit. 

Quantitative real-time PCR (qPCR) was performed using a 

QuantiFast SYBR Green PCR master mix with an Applied 
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Biosystems 7300 thermocycler.  

The primers used in this experiment were BCL-2 

(QT00025011), BCL-XL (QT00236712), MCL-1 

(QT00094122), SURVIVIN (QT01679664), MMP-2 

(QT00088396), MMP-9 (QT00040040), TWIST 

(QT00011956), NESTIN (QT01015301), SOX2 (QT00237601), 

NANOG (QT01844808), OCT4 (QT00210840), and GAPDH 

(QT0007924) were obtained from Qiagen.  

Data were analyzed using comparative Ct quantification and 

each sample was processed in parallel with assays for the 

housekeeping gene GAPDH expression.  

 

7. Cell viability assay 

Cells were seeded at 10,000 cells per well in 96-well plates 

and incubated in culture medium until 70–80% confluence. The 

cells were further incubated with either vehicle alone or various 

concentrations of ODZ10117 for 24 h. Cell viability was 

measured at 450 nm using microplate reader (Molecular Devices, 

Sunnyvale, USA) after being further incubated for 2–4 h at 37 °C 

following the addition with EZ-CyTox Enhanced Cell Viability 

Assay Reagent (Daeil Lab Service, Seoul, Korea). 

 

8. Flow Cytometry  

To analyze cell cycle and apoptotic cell population, cells were 

fixed with 70% ice-cold ethanol, washed with PBS, incubated 

with RNase (50 μg, 10109134001, Sigma Aldrich) at 37 °C for 1 

h, and stained with propidium iodide (PI, 20 μg, 556463, BD 

Biosciences, San Jose, CA, USA) at 4 °C in the dark. For Annexin 
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V staining, Annexin V binding buffer (422201, BioLegend, San 

Diego, CA, USA) containing fluorescein isothiocyanate (FITC) 

conjugated with anti-Annexin V antibody (640906, 1:50 dilution, 

BioLegend) was used as manufacturer’s protocol. Stained cells 

were counted with flow cytometry using the BD LSRFortessaTM 

cell analyzer (BD Biosciences). 

 

9. Immunohistochemistry 

Tissue samples were fixed with 4% paraformaldehyde in 0.5 

M phosphate buffer and embedded in paraffin. The paraffin 

blocks were cut in 4-μm-thick sections, mounted on glass slides, 

dewaxed, rehydrated with grade ethanol, and stained with 

hematoxylin and eosin (H&E, HT100132, Sigma Aldrich and 

S3309, Dako, Carpinteria, CA, USA).  

To perform immunohistochemical analysis, rehydrated slide 

sections were unmasked with 10 mM sodium citrate buffer, 

quenched endogenous peroxidase for 20 min in 3% hydrogen 

peroxide, blocked for 30 min in PBS containing 10% goat serum, 

and incubated at 4 °C for overnight with appropriate primary 

antibodies with 1:100 dilution. The sections were incubated with 

biotinylated secondary antibody (anti-rabbit for BA-1000, 

anti-mouse for BA-9200 and anti-goat for BA-5000, Vector 

Labs, Burlingame, CA, USA) compatible with the primary 

antibody for 30 min, subsequently incubated with streptavidin-

HRP (550946, BD Pharmingen, San Jose, CA, USA) for 40 min, 

and stained with 3,3-diaminobenzidine (D22187, Invitrogen). 

Digital images were obtained using the LAS Microscope Software 

(Leica Microsystems, Wetzlar, Germany). 
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10. Immunofluorescence Staining 

Cells grown in lysine-coated 24-well plates were fixed for 

45 min at room temperature in 3% paraformaldehyde in PBS and 

permeabilized for 10 min with 0.1% Triton X-100 in PBS. The 

plates were blocked for 20 min with 3% BSA in PBS and 

incubated with tyrosine phosphorylated STAT3 (pY705-STAT3) 

antibody at 4 °C overnight. After washing with PBS, the dishes 

were incubated with fluorescein isothiocyanate (FITC)-

conjugated secondary antibody at room temperature for 2 h. 

Nuclei were counterstained with 4′,6-diamidino-2-

phenylindole (DAPI, D8417, Sigma-Aldrich) and images were 

captured using a Zeiss Axiovert 200 inverted fluorescence 

microscope (Oberkochen, Germany) with an LSM 510 META 

system (ZEN 2011). pY705-STAT3 antibody was used at 1:200 

dilution. 

 

11. Wound healing and invasion assays 

To conduct wound healing assay, cells were seeded into 12-

well plates and then incubated over 90% confluence. The plate 

was scratched with pipette tips and washed with PBS. Cells were 

incubated for 24 h with fresh DMEM complete medium containing 

either vehicle alone or ODZ10117 for 24 h. Digital images were 

obtained using the Leica Application Suite (LAS) Microscope 

Software (Leica Microsystems). 

Invasion assay was conducted using a Boyden chamber 

system (Neuro Probe, Gaithersburg, MD, USA). Growth factor 

reduced Matrigel (354230, BD Matrigel™, BD Biosciences) was 

diluted with serum free media with ratio of 1:3. Diluted Matrigel 
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was transferred into 24-transwell (BD 24-well insert, 8 μm 

pore transparent PET filter) and incubated at least for 4 to 5 h 

for gelling at 37 °C. Cells in 100 μL DMEM containing 1% FBS 

were seeded in the upper chamber and incubated for 24 h in the 

presence of either vehicle alone or ODZ10117. The lower 

chamber was filled with 500 μL of 10% DMEM containing 

fibronectin (5 μg/mL, ECM001, Sigma-Aldrich). Matrigel 

containing upper chamber was rinsed with PBS, fixed, stained 

with Diff-Quik solution (Sysmex Corporation, Kobe, Japan), and 

subsequently rinsed with distilled water.  

The migrated cells were captured using the LAS Microscope 

Software (Leica Microsystems). 

 

12. Limiting dilution and sphere-forming assays 

Sequentially decreasing numbers of GSCs were seeded into 

96-well plates and incubated for 2 weeks. Colonies were 

counted and photographed with microscope (Olympus, Tokyo, 

Japan). Stem cell frequency was calculated using the extreme 

limiting dilution analysis (ELDA) software [67].  

To determine sphere-forming capacity, dissociated single 

cells were seeded at 10,000 cells per well into 24-well plates 

and incubated for 5 days in the presence of vehicle alone, 

ODZ10117, or each of the known STAT3 inhibitors. Sphere 

formation was captured using a microscope (Olympus). 

 

13. In vivo xenograft models 

An orthotopic xenograft model was generated by the 

introduction of MDA-MB-231 cells (1 × 106 cells in 50 μL HBSS 



 １７  

 

containing growth factor reduced 25% Matrigel) into the right 

fourth mammary fat pad of 6-week-old female BALB/c nude 

mice under anesthesia using a 30-gauge insulin needle (n = 6). 

Intraperitoneal treatment with vehicle control (5% EtOH, 40% 

PEG400, 55% DW) or ODZ10117 (1 mg/kg or 10 mg/kg) was 

initiated at 17 days post-tumor cell inoculation, followed by 

injecting 5 times per week for 23 days. 

To generate syngeneic xenograft model, 4T1-Luc cells (5 × 

105 cells in 50 μL HBSS containing growth factor reduced 25% 

Matrigel) were injected into the right fourth mammary fat pad of 

6-week-old female BALB/c mice using a 30-gauge insulin 

needle under anesthesia. After 11 days, mice were randomly 

divided into three groups (n = 10) and vehicle (DMSO and corn 

oil = 1:9) alone, ODZ10117 (1 or 10 mg/kg), or napabucasin (10 

mg/kg) was intraperitoneally administered 5 times per week for 

3 weeks. At the end of the experiment, the lungs were resected 

and fixed in Bouin’s solution and the visible metastatic nodules 

in the lungs were quantified. 

To generate an orthotopic xenograft model, GSC528 cells (5 

× 104 cells in 3 µL of PBS) were stereotactically injected into the 

right striatum of 6-week-old BALB/c nu/nu nude mice 

(coordinates relative to the bregma: medial-lateral +2 mm, and 

dorsal-ventral −3 mm). After 14 days, mice were randomly 

divided into three groups (n = 7) receiving an intraperitoneally 

injection of ODZ10117 (0.1 mg/kg or 1 mg/kg) in solvent 

(DMSO:corn oil, 1:9) or equal volume of solvent only (control). 

Mice were injected six times per week and body weight was 

measured every day. Animals were monitored daily after 
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treatment for the manifestation of any pathological signs. To 

compare the tumor histology, all mice were sacrificed at the same 

time when one mouse initially exhibited neurological symptoms. 

All experiments in the present studies involving animals 

were approved by the IACUC at the Korea University and Seoul 

National University College of Medicine, and were performed in 

accordance with government and institutional guidelines and 

regulations. 

 

14. Bioluminescence imaging 

Mice were intraperitoneally administered firefly D-Luciferin 

potassium salt at a dose of 150 mg/kg body weight in Dulbecco’s 

PBS. Bioluminescence images were obtained with the IVIS 

Lumina system under anesthesia with 2% isoflurane. Analysis 

was performed using Living Image® Software (Windows 4.7.3) 

by measuring the photon flux (photons/s/cm2/sr) for 

approximately 1 h using a region of interest manually drawn over 

the body of the mouse. 

 

15. Statistics 

Each experiment was performed independently at least twice, 

and the results are represented as the mean ± standard error of 

mean (SEM), unless otherwise indicated. Statistical analyses 

were performed with GraphPad Prism 5.0 (GraphPad Software, 

San Diego, CA, USA).  

The significance was determined using the two-tailed 

Student’s t-test. Survival analysis was conducted by the 

Kaplan-Meier method with the log-rank test. A p-value of less 
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than 0.05 was considered statistically significant for all analyses. 
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RESULTS 

 

Identification of ODZ17690 as a hit compound by targeting the 

SH2 domain of STAT3 

To identify small-molecule inhibitors that target STAT3, I 

performed combined screening assays in combination with 

structure-based computational database screening and cell-

based high-throughput screening using our in-house compound 

library with molecular weight less than 300 g/mol (Figure 1).  

For virtual screening, I used the 3D structure of the SH2 

domain of STAT3 (PDB ID: 1BG1) and selected the coordinate 

from the complex structure of STAT3-DNA (PDB: 1BG1) [59]. 

The docking was performed using the Glide module [62] with the 

SP docking algorithm. I also performed cell-based high-

throughput screening using the luciferase reporter constructed 

MDA-MB-231/STAT3-Luc cells. 

Therefore, I identified 5-tert-butyl-3-(3-nitro-

phenoxymethyl)-(1,2,4)oxadiazole (ODZ17690) as a hit 

compound, which showed the lowest Glide docking score at −3.37 

kcal/mol (Figure 2A). The nitro group of ODZ17690 docked in 

the polar environment of the SH2 domain and interacted with 

Lys591 and Arg609 via a salt bridge and attractive charge 

interaction. Hydrogen bond interactions were shown by the nitro 

group and oxadiazole with the Ser611 and Glu638 residues, 

respectively. Pro639 was involved in a pi-alkyl interaction with 

the phenyl group of ODZ17690. Glu612, Ser613, Thr620, 

Trp623, Lys626, and Gln635 were involved in van der Waals 
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interactions with ODZ17690 (Figure 2B). ODZ17690 inhibited 

the transcriptional activity of STAT3 in MDA-MB-

231/STAT3-Luc cells without affecting their viability (Figure 

2C).  

 

Discovery of ODZ10117 as a STAT3 Inhibitor 

To optimize pharmacological activity, we synthesized 144 

compounds that were modified based on the core structure of 

ODZ17690 and identified 3-(2,4-dichloro-phenoxymethyl)-

5-trichloromethyl-[1,2,4]oxadiazole (ODZ10117). I finally 

selected ODZ10117 from the results of combined screening 

assays and immunoblot analyses (Figure 3A and B).  

The molecular docking results showed that ODZ10117 

snugly fits into the phospho-tyrosine binding pocket on the SH2 

domain of STAT3 with a docking score of −6.17 kcal/mol and 

participated in many interactions with surrounding residues of 

the SH2 domain. ODZ10117 mainly showed hydrogen bond 

interactions with Lys591, Arg609, and Ser611. It also displayed 

an amide-pi interaction with Val637. Chlorine from the tri-

chloromethyl group showed a halogen bond interaction with 

Glu612. Other interactions were mainly of the van der Waals type. 

The meta Cl position in the dichloro-benzene moiety of 

ODZ10117 was located at the position corresponding to the 

phosphate-moiety of phospho-tyrosine, clarifying the role of 

the atom (Figure 4A-C and E). 

To perform a comparative analysis of ODZ10117 with 

tripeptide Pro-pTyr-Leu as a substrate and reference 

compounds S3I-201 and STA-21 as a STAT3 inhibitor by 
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binding to the site of SH2 dimerization [45, 46], I created 

superimposed orientations of the selected ligand postures 

(Figure 4D).  

First of all, I docked a tripeptide in the SH2 domain and 

analyzed the docking orientations of the tripeptide. The results 

suggest that the best docking orientation of the tripeptide had a 

1. 97Å root-mean-square deviation (RMSD) with the native 

tripeptide and docking score of −6.43 kcal/mol. The tripeptide 

participated in several interactions with the surrounding SH2 

domain residues. The phospho-tyrosine of the tripeptide showed 

pi-cation and salt bridge interactions with the crucial Lys591. 

Pro639 showed a pi-alkyl interaction with the pTyr. The 

phosphate group showed several hydrogen bond interactions 

with the Lys591, Arg609, Ser611, the main chain of Glu612 and 

Ser613. Also, Arg609 showed an attractive charge type 

interaction with the phosphate O. Leu706 of the tripeptide 

showed hydrogen bond interactions with the Ser636 and Glu638, 

and an alkyl-alkyl interaction with the side chain of Lys626. The 

strong network of interaction patterns led to the higher docking 

score of the tripeptide inside the SH2 domain of STAT3 (Figure 

4F). 

The S3I-201 was docked inside the SH2 domain with a Glide 

docking score of −5.87 kcal/mol. The carboxylic acid group of 

S3I-201 was bound to Arg609, Ser611, Glu612, and Ser613 via 

hydrogen bond interactions. The hydroxyl group on the phenyl 

ring also hydrogen bonded with Arg609. Another hydrogen bond 

was observed between the Glu638 and sulphonyl O of S3I-201. 

Lys626 showed an alkyl interaction with the 4-methylphenyl, 
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and Pro639 displayed a pi-alkyl interaction with the 4-

carboxyphenyl moiety. Thr620, Trp623, Gln635, Ser636, and 

Val637 interacted through van der Waals interactions with S3I-

201 (Figure 4G).  

The STA-21 bound with a Glide docking score of −3.58 

kcal/mol, and showed two hydrogen bond interactions with the 

crucial Lys591. Amide-pi and alkyl interactions were observed 

between STA-21 and Val637 and Pro639. Pi-donor hydrogen 

bond interactions were observed between the pi-cloud of the 

fused ring system of STA-21 and main chain NH of Ser636. This 

smaller ligand size led to a minimal interaction network with the 

surrounding SH2 domain of STAT3 (Figure 4H).  

These results indicate that ODZ10117 is more effective than 

ODZ17690, and the binding of ODZ10117 to the SH domain of 

STAT3 was comparable to that of the tripeptide and lower than 

those for S3I-201 and STA-21, indicating higher affinity.  

I further observed that ODZ10117 effectively inhibited the 

level of tyrosine phosphorylated STAT3 in various cancer cell 

lines such as Hodgkin’s lymphoma cancer cells (L-540 and 

HDLM-2), leukemia cell line (K562, KCL22), breast cancer cell 

line (ZR-75-1, 4T1, MDA-MB-231, MDA-MB-468), ovarian 

cancer cell line (SKOV3), pancreatic cancer cell line (PANC-1), 

human alveolar basal epithelial cells(A549), lung cancer cell line 

(NCI-460),  colon cancer cell line (HCT116, SW620), gastric 

cancer cell line (MKN-45), squamous carcinoma cell lines 

(A431), human melanoma cell line (A375, SK-MEL-146), 

hepatocellular carcinoma (HepG2, Huh7), glioblastoma cell line 

(A172, U87MG, U373MG) and neuroblastoma cell line (SH-
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SY5Y) which are persistently express a high level of activated 

STAT3 (Figure 5A). 

In addition, I observed that the compound suppress STAT3 

activation in cell lines with low STAT3 expressions such as 

myeloma (RPMI8226, U266), lymphoma (U937), human 

leukemia cell line(HL-60), cervical cancer cell line (HeLa), 

breast cancer cell line (MCF-7) and glioblastoma (U251MG) 

activated by IL-6-stimulation (Figure 5B). 

 

STAT3 Hyperactivation Increases Tumor Malignancy and 

Decreases Survival in Glioblastoma Patients  

Glioblastoma represents various features of tumor 

malignancy and high resistance to current therapeutic 

approaches such as surgery combined with radiochemotherapy 

[55, 56, 58]. To investigate the negative roles of STAT3 in brain 

tumors, we analyzed the database of The Cancer Genomic Atlas 

(TCGA) Research Network. The mRNA level of STAT3 was 

positively correlated with the grade of brain tumor (Figure 6A). 

In addition, the survival rate was shorter with the higher mRNA 

level of STAT3 in patients with glioblastoma (Figure 6B).  

I further analyzed the level of active STAT3 (phosphorylated 

at tyrosine 705 residue) in glioblastoma and primary 

glioblastoma cell lines. In particular, the level of active STAT3 

was relatively higher in five patients, and these patients had a 

shorter survival rate than the remaining patient code-named 

with GBM12 (Figure 6C). The overall mean survival rates were 

433 ± 276 days in the six patients, 340 ± 173 days in patients 

with higher levels of active STAT3, and 899 days in patients 
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called GBM12, with lower levels of active STAT3. These results 

indicate that STAT3 is closely correlated with tumor malignancy 

and decreases survival in glioblastoma patients.  

 

ODZ10117 inhibits STAT3 signaling in vitro  

According to the STAT3 signaling cascades, tyrosine 

phosphorylated STAT3 sequentially results in the 

homodimerization, nuclear translocation, and transcriptional 

activation of STAT3, inducing the expression of numerous target 

genes by binding to specific DNA sequences [68]. 

The binding of ODZ10117 to the SH2 domain of STAT3 is 

thought to result in the breakdown of these sequential cascades. 

ODZ10117 decreased the nuclear translocation of STAT3 

(Figure 7A), and inhibited the transcriptional activity of STAT3 

in a concentration-dependent manner with an IC50 value of 7.5 

μM (Figure 7B). These results clearly indicate that ODZ10117 is 

an effective STAT3 inhibitor 

 

ODZ10117 has a greater inhibition on STAT3 activation than the 

known inhibitors 

I further verified whether ODZ10117 can inhibit tyrosine 

phosphorylation of STAT3 in breast cancer and glioblastoma 

cells. The concentration- and time- dependent results showed 

that ODZ10117 effectively decreased the level of tyrosine-

phosphorylated STAT3 following incubation for 4 h over 20 μM 

(Figure 8A) or over 2 h at 40 μM (Figure 8B).  

In addition, I determined the inhibitory activity of ODZ10117 

on tyrosine-phosphorylated STAT3 in comparison with the 
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known STAT3 inhibitors S3I-201 [46], STA-21 [45], and 

nifuroxazide [65], and pan-JAK inhibitor AG-490 [47]. The 

inhibitory effect of ODZ10117 on tyrosine-phosphorylated 

STAT3 was greater than the known inhibitors in breast cancer 

and glioblastoma cells that are persistently activated STAT3 

activation (Figure 9).  

The above-mentioned results indicate that ODZ10117 is an 

effective STAT3 inhibitor that directly targets the SH2 domain 

of STAT3, and has a greater inhibitory efficacy than other known 

inhibitors such as S3I-201, STA-21, nifuroxazide, and AG-490. 

 

ODZ10117 does not affect other STAT family proteins and 

upstream regulators of STAT3 

The mammalian STAT family shares structural similarities 

and the family proteins can be activated by several upstream 

regulators including mainly receptor and non-receptor tyrosine 

kinases [69]. To determine the specificity of ODZ10117 for 

STAT3, I verified whether ODZ10117 affects other STAT family 

proteins and upstream regulators of STAT3.  

Although ODZ10117 inhibited the tyrosine phosphorylation 

of STAT3, it did not affect other STAT family proteins, including 

STAT1 and STAT5 in breast cancer or glioblastoma cells. Next, 

I evaluated the JAK family of tyrosine kinases, which are direct 

upstream regulators of STAT family proteins. ODZ10117 did not 

significantly inhibit the JAK family of tyrosine kinases, including 

JAK1, JAK2, JAK3 and TYK in breast cancer and glioblastoma 

cells. ODZ10117 also did not significantly affect other upstream 

regulators of STAT3, including serine/threonine protein kinase 
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Akt, the Src family tyrosine kinases Src and Lyn, and MAP 

kinases ERK1/2. The pan-JAK inhibitor AG-490 (30) 

effectively inhibited the activation of various JAK, STAT, and 

Src family proteins (Figure 10 and Figure 11).  

Frankly, I did not observe inhibition of STAT5 in both breast 

cancer and glioblastoma cells. Therefore, I determined to use 

Hodgkin lymphoma-derived cell lines which are reported to 

express high levels of constitutively activated STAT1, STAT3, 

STAT5, and STAT6. As expected, ODZ10117 did not affect 

STAT1, STAT5, and STAT6 as well as other upstream 

regulators of STAT3 signaling pathway (Figure 12).  

Interestingly, although the effect was cell line-dependent, 

other STAT3 inhibitors, including S3I-201, STA-21, 

nifuroxazide, and napabucasin inhibited the tyrosine 

phosphorylation of various STAT and JAK family proteins, 

indicating that these compounds are not STAT3-specific 

inhibitors. Collectively, these results indicate that ODZ10117 is 

a novel STAT3-specific inhibitor. 

 

ODZ10117 decreases cell viability by inducing apoptosis 

Persistently activated STAT3 is associated with excessive 

cell proliferation and survival in cancer cells [19, 21], indicating 

that targeting STAT3 can decrease these properties of cancer 

cells. ODZ10117 treatment decreased the viability of breast 

cancer and glioblastoma cells in a concentration-dependent 

manner (Figure 13A and B).  

To determine whether the decreased viability of breast 

cancer and glioblastoma cells by ODZ10117 resulted from 
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apoptotic cell death, we performed FACS analyses, followed by 

staining with propidium iodide (PI) and annexin V in each cell line. 

The population of early apoptotic cell death was increased more 

than two or fourfold by ODZ10117 compared to that in the 

vehicle-treated control group (Figure 14A and B). 

In addition, ODZ10117 treatment increased the 

fragmentation of both PARP and caspase-3 (Figure 15A and B) 

and downregulated the mRNA and protein levels of anti-

apoptotic genes such BCL-2, BCL-xL, MCL-1, and 

BIRC5(SURVIVIN) (Figure 15C and D), which are regulated by 

STAT3. These results indicate that ODZ10117 decreased the 

survival of breast cancer cells by inducing apoptotic cell death 

via activation of apoptotic proteins and inhibition of anti-

apoptotic gene expression. 

 

ODZ10117 reduces the migration and invasion 

The migration and invasion of cancer cells into the 

bloodstream and surrounding tissues are critical steps in cancer 

metastasis, and the transcription of many target genes associated 

with these processes is regulated by STAT3 [70]. Therefore, I 

performed in vitro wound healing and Matrigel invasion assays to 

determine whether ODZ10117 affects the migration and invasion 

of breast cancer and glioblastoma cells. The results of wound 

healing assay revealed that the migration of breast cancer and 

glioblastoma cells was regulated by STAT3, which was 

decreased in the presence of ODZ10117 compared to the 

vehicle-treated control group (Figure 16A and B). 

Next, I conducted in vitro Matrigel invasion assay to 
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determine the effect of ODZ10117 in the invasiveness of breast 

cancer and glioblastoma cells. The lower chamber was filled with 

culture medium containing 5 ng/mL fibronectin, and primary 

glioblastoma cells were maintained in the upper chamber for 24 

h. The inhibition of STAT3 activity by ODZ10117 decreased the 

invasiveness of cancer cells compared to the vehicle-treated 

control group (Figure 16C and D). 

In addition, the mRNA levels of MMP-2 MMP-9, FN, ITGAV, 

VIMENTIN, and TWIST were effectively suppressed by 

ODZ10117 treatment compared to those in the vehicle-treated 

control group (Figure 17A and B). These results suggest that 

ODZ10117 may suppress cancer metastasis by inhibiting the 

expression of target genes associated with STAT3-dependent 

migration and invasion in breast cancer and glioblastoma cells. 

 

ODZ10117 suppresses tumor growth in breast cancer xenografts 

Targeting STAT3 is a promising therapeutic strategy in 

many types of cancer patients. Therefore, I further investigated 

whether ODZ10117 suppresses tumor growth and metastasis in 

in vivo breast cancer xenograft models. To evaluate the in vivo 

pharmacological activity of ODZ10117, I generated an orthotopic 

breast cancer xenograft model by injecting MDA-MB-231 cells 

into the right fourth mammary fat pad of BALB/c mice. At 17 

days after inoculation, the tumor bearing mice were 

intraperitoneally injected with vehicle alone or ODZ10117 (1 

mg/kg or 10 mg/kg) 5 times a week for 23 days. The 

administration of ODZ10117 suppressed the tumor growth 

compared with the vehicle-treated group (Figure 18A–D), 
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without affecting the body weight. 

 

ODZ10117 suppresses tumor growth and lung metastasis in 

breast cancer xenograft 

To demonstrate tumor metastasis model, I generated 

syngeneic xenograft model of spontaneous breast cancer 

metastasis by injecting 4T1 cells carrying the luciferase gene 

into the right fourth mammary fat pad of BALB/c mice. At 11 

days after inoculation, the tumor-bearing mice were 

intraperitoneally injected with vehicle alone, ODZ10117 (1 

mg/kg or 10 mg/kg), or napabucasin (10 mg/kg) 5 times a week 

for 3 weeks. The administration of ODZ10117 significantly 

reduced the progression of primary tumor growth compared with 

the vehicle-treated group (Figure 19A–C), and showed an 

excellent extension of median survival rates, which increased 

from 12 days to 20 days and 21 days, respectively (Figure 19D), 

without affecting the body weight. Additionally, ODZ10117 

treatment reduced lung metastasis of tumor cells with tumor 

nodules in the lungs (Figure 20 A and B). However, napaubcasin 

did not demonstrate significant suppression of tumor growth and 

metastasis, and the median survival rate was 16 days. 

Collectively, the results of in vivo xenografts models indicate 

that ODZ10117 exerted effective anticancer activity that 

suppressed tumor growth and metastasis, leading to the 

increased survival rate of the mice. 

 

ODZ10117 decreases stem cell properties by inhibiting STAT3 in 

glioblastoma stem cells 
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Cancer stem cell (CSC) properties and metastatic 

capabilities are implicated with tumor malignancy, recurrence 

and drug resistance in various types of cancer, which are closely 

associated with STAT3 signaling in the inflammatory tumor 

microenvironment [71]. To investigate the roles of STAT3 on 

CSC properties and metastatic capabilities in glioblastoma 

patients, we analyzed the database of TCGA Research Network. 

The data revealed that the mRNA level of STAT3 was positively 

correlated with stem cell-related genes such as CD133, NESTIN, 

and SOX2 and mesenchymal (MES)-associated genes such as 

FN and ITGAV (Figure 21A). Glioblastoma is classified into four 

subtypes according to the gene expression pattern: proneural 

(PN), neural (N), classical (CL), and MES [72]. Analyses of the 

TCGA datasets revealed that the mRNA levels of stem cell-

related and MES-associated genes were significantly elevated 

in all subtypes of glioblastoma patients compared to normal brain 

tissue (Figure 21B). 

Based on the recent studies, the levels of active STAT3 and 

stem cell markers were positively correlated with the survival 

rate. To verify this, we determined the tumorsphere-forming 

capacity of primary glioblastoma cell lines from GBM12 and 

GBM14. The increase in the size of tumorsphere was of greater 

magnitude in GBM14 cells than GBM12 cells (Figure 22A), and 

in GBM14 cells was decreased by the silencing of STAT3 

(Figure 22B).  

Patient-derived glioma stem cell (GSC) lines have been 

established from patients with high-grade glioma [73]. The 

levels of active STAT3 and total STAT3 were highly upregulated 
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in GSCs, particularly in GSC84 and GSC528 cells, compared to 

GSC19 cells (Figure 23A). ODZ10117 decreased the level of 

active STAT3 in the cell lines in a concentration-dependent 

manner (Figure 23B), with comparable or greater efficacy than 

S3I-201, STA-21, nifuroxazide, napabucasin, and AG-490 in 

GSC528 cells (Figure 23C).  

The capability of self-renewal is a critical property of CSCs, 

and the properties of CSCs are mainly determined by their ability 

to form tumorspheres and by their expression of stem cell 

markers. According to the tumorsphere forming ability in vitro, 

ODZ10117 reduced the ability of GSC528 cells with comparable 

to vehicle (Figure 24A). ODZ10117 decreased the mRNA and 

protein levels of CSC markers such as NESTIN, SOX2, NANOG, 

OCT4, and CD133 in GSC528 cells (Figure 24B). In addition, 

ODZ10117 decreased the viability of both GSCs in a 

concentration-dependent manner (Figure 24C). These results 

indicate that the STAT3 activity and stem cell properties of GSCs 

are closely correlated, and ODZ10117 is a potent inhibitor of 

STAT3 and stemness in glioblastoma and GSCs. 

 

ODZ10117 reduces tumor growth and increases survival in 

glioblastoma xenograft models  

This study suggests that STAT3 targeting may be a 

promising therapeutic strategy in patients with glioblastoma. 

Therefore, I investigated whether ODZ10117 could suppress 

tumor growth in in vivo glioblastoma xenograft models. To 

determine the in vivo pharmacological activity, we generated an 

orthotopic glioblastoma xenograft model by intracranial injection 
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of GSC528 cells into nude mice. We treated the tumor-bearing 

mice with vehicle (DMSO:corn oil, 1:9) alone or ODZ10117 (0.1 

or 1 mg/kg, daily, intraperitoneal injection) 2 weeks later. 

ODZ10117 reduces tumor growth without significantly affecting 

the body weight compared to the vehicle-treated control group 

(Figure 25A and B).  

In addition, ODZ10117 administration increased the median 

survival rate from 64.5 to 107.0 and 114.0 days, respectively 

(Figure 26A). When the vehicle-treated control mice exhibited 

neurological symptoms, the vehicle- and ODZ10117-treated 

mice were simultaneously euthanized and their tumor tissues 

were compared. The administration of ODZ10117 dramatically 

decreased the tumor population and the levels of active STAT3, 

CSC markers such as NESTIN and SOX2, and mesenchymal-

associated genes FN and ITGAV. (Figure 26B). 

These results indicate that ODZ10117 suppressed tumor 

growth and GSC maintenance in glioblastoma xenograft models, 

which increased the survival rate of the mice, suggesting 

ODZ10117 to be a promising therapeutic candidate for 

glioblastoma. In conclusion, the present study has shown that 

ODZ10117 may be a useful candidate for the STAT3-targeted 

cancer therapy in glioblastoma. ODZ10117 effectively inhibited 

tyrosine phosphorylation and nuclear translocation of STAT3, 

resulting in effective anti-tumor activity in both in vitro and in 

vivo xenograft models of GSCs. 
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Figure 1. A scheme for identification and optimization of STAT3 

inhibitors.  

ODZ10117 was identified as a lead compound of STAT3 inhibitor 

from the 144 derivatives of ODZ17690. ODZ17690 was identified 

as a hit molecule from the in-house library with a molecular weight 

of less than 300 g/mol (1,280 compounds) using the structure-

based virtual screening (SBVS), cell-based high-throughput 

screening (HTS), and Western blotting (WB). 
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Figure 2. Identification of ODZ17690 as a hit compound by 

targeting the SH2 domain of STAT3.  

(A) Docked model of ODZ17690 is shown in stick and the 

surrounding residues of the SH2 domain of STAT3 are shown by 

a line model. Hydrogen bonds are shown for Ser611 and Glu638. 

A salt bridge and attractive charge type interactions are 

observed between the Lys591 and Arg609 and nitro group O of 

ODZ17690. (B) 2D-interaction image is shown and various 

interaction types are color coded. (C) MDA-MB-231/STAT3-

Luc cells were incubated for 24 h with vehicle (0.1% DMSO) 

alone, ODZ17690 (150 μM), or AG-490 (150 μM), and STAT3-

reporter activity and cell viability were determined [5].
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Figure 3. Identification of ODZ10117 as a STAT3 inhibitor from 

the optimization of ODZ17690. 

(A) MDA-MB-231/STAT3-Luc cells were incubated for 24 h 

with vehicle (0.1% DMSO) alone or each ODZ17690 derivative 

(40 M), and STAT3-reporter activity was determined. Results 

are represented as mean    SEM of three independent 

experiments (n = 3). Chemical structure of ODZ10117 is 

represented. (D) MDA-MB-231 cells were incubated for 24 h 

with either vehicle (0.1% DMSO) or each compound (40 M) and 

immunoblot analysis was performed. Results shown represent 

only 13 compounds of the 144 derivatives of ODZ17690. AG-

490 was used as a positive control [5]. 
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Figure 4. Molecular docking of ODZ10117 against the SH2 domain 

of STAT3.  

(A) Docked model of ODZ10117 is shown in stick and the 

surrounding residues of the SH2 domain of STAT3 are shown by 

a line model. Hydrogen bonds are shown for Lys591, Arg609, 

and Ser611. Halogen bond between Cl and Glu612 is shown by a 

cyan dash. (B) Transparent hydrogen bond acceptor/donor 

surface is shown for surrounding residues. (C) 2D-interaction 

plot is shown and color-coded by various interaction types. (D) 

Superimposed docked models of ODZ10117 (yellow), Pro-

pTyr-Leu (cyan), S3I-201 (green), and STA-21 (magenta) 

over STAT3. (E-H) Docked models of ODZ10117 (E), Pro-

pTyr-Leu (F), S3I-201 (G), and STA-21 (H) surrounding 4Å  

residues of STAT3. Color codes for the different types of 

interactions are shown at the bottom of D [5]. 
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Figure 5. ODZ10117 inhibits tyrosine phosphorylation of STAT3 

in various human cancer cell lines.  

(A, B) Various types of human cancer cell lines with STAT3 

constitutively activated (A) or activated by IL-6-stimulation 

(20 ng/mL) for 10 min (B) were incubated for 24 h with either 

vehicle (0.1% DMSO) alone or ODZ10117 (40 μM) and 

immunoblotting was performed [5]. 
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Figure 6. STAT3 hyperactivation is associated with tumor 

malignancy and survival in glioblastoma patients.  

(A) The mRNA level of STAT3 in patients with gliomas of 

various grades. Results were analyzed from TCGA database. * p 

< 0.05 and ** p < 0.005. (B) Kaplan-Meier survival curves for 

patients with glioblastomas. Data from the TCGA database. (C) 

Western blot results of glioblastoma and primary glioblastoma 

cell lines established from the patients [74].
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Figure 7. ODZ10117 inhibits STAT3 signaling in vitro.  

(A) Immunofluorescence (IF) staining was performed using an 

anti-pY705-STAT3 antibody (green) in U87MG cells incubated 

for 24 hours with vehicle (0.1% DMSO) alone or ODZ10117 (40 

M). Nuclei were stained with DAPI (blue). Arrowheads indicate 

nuclear phosphotyrosine STAT3. (B) STAT3 reporter assay of 

U87MG cells treated for 24 hours with ODZ10117. Cells were 

transfected with the p21STAT3-firefly luciferase reporter 

gene and the pRL-TK Renilla luciferase reporter gene. Data are 

represented as mean  SEM of three independent experiments.  

* p < 0.05 and ** p < 0.005 compared to the vehicle-treated 

group [5].
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Figure 8. ODZ10117 inhibits STAT3 activation in a 

concentration-and time-dependent manner.  

(A) Cells were treated for 9 h in a concentration-dependent 

manner. (B) Cells were treated with ODZ10117 (40 μM) in a 

time-dependent manner [5, 74].  
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Figure 9. ODZ10117 has a greater inhibition on STAT3 activation 

than the known inhibitors. 

Comparison on the effects of ODZ10117 (40 μM) and the known 

STAT3 inhibitors S3I-201 (100 μM), STA-21 (100 μM), 

nifuroxazide (NIF, 100 μM), and AG-490 (150 μM) on tyrosine 

phosphorylation of STAT3. Cells were incubated for 12 h with 

each compound and then performed immunoblot analysis [5, 74]. 
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Figure 10. ODZ10117 does not affect STAT1 or upstream 

regulators of STAT3 in breast cancer cells.  

Cells were incubated for 16 h with vehicle (0.1% DMSO) alone, 

ODZ10117 (ODZ, 40 μM) or the known STAT3 inhibitors S3I-

201 (100 μM), STA-21 (100 μM), nifuroxazide (NIF, 100 μM), 

napabucasin (NAPA, 4 μM), or AG-490 (150 μM), and then 

performed immunoblot analysis [5]. 
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Figure 11. ODZ10117 does not affect STAT1 or upstream 

regulators of STAT3 in glioblastoma cells.  

Western blotting was performed from the cells incubated for 24 

hours with ODZ10117 (40 μM) or the known STAT3 inhibitor 

S3I-201 (100 μM), STA-21 (100 μM), nifuroxazide (100 μM), 

napabucasin (NAPA, 4 μM), or AG-490 (150 μM). 
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Figure 12. ODZ10117 does not affect other STAT family members 

or upstream regulators of STAT3 in Hodgkin’s lymphoma cells.  

(A, B) Western blotting was performed from HLDM-2 and L540 

cells incubated for 24 hours with ODZ10117 (40 μM) or the known 

STAT3 inhibitor S3I-201 (100 μM), STA-21 (100 μM), 

nifuroxazide (100 μM), napabucasin (4 μM), or AG-490 (150 μM) 

[5]. 
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Figure 13. ODZ10117 decreases cell viability.  

(A, B) Cells were incubated for 24 h with various concentrations 

of ODZ10117 and cell viability was determined [5, 74]. 
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Figure 14. ODZ10117 decreases the viability of breast cancer and 

glioblastoma cells by inducing apoptosis. 

(A, B) MDA-MB-231 cells or GBM14 cells were incubated for 24 

h with vehicle (0.1% DMSO) alone or ODZ10117 (40 μM) and 

then performed FACS analysis. 
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Figure 15. ODZ10117 induces apoptotic cell death in breast cancer 

and glioblastoma cells.  

(A-D) MDA-MB-231 cells, A172 or GBM14 cells were 

incubated for 24 h with vehicle (0.1% DMSO) alone or ODZ10117 

(40 μM) and and subjected to Western blot (A, B), and qPCR 

(C, D) analyses. GAPDH served as the loading control and data 

represent the mean ± SEM of three independent experiments. 

** p <0.005 [5, 74]. 
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Figure 16. ODZ10117 decreases the migration and invasion in 

breast cancer and glioblastoma cells.  

(A-D) Wound healing (A, B) and Matrigel invasion (C, D) assays 

of cells from MDA-MB231 or GBM14 incubated for 24 h with 

vehicle (0.1% DMSO) alone or ODZ10117 (40 μM). The images 

were visualized by phase-contrast microscopy (magnification = 

200×)[5, 74].
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Figure 17. ODZ10117 decreases the expression of STAT3 target 

genes associated with migration and invasion.  

(A, B) qPCR analyses were performed in breast cancer or 

glioblastoma cells incubated for 24 h with vehicle (0.1% DMSO) 

alone or ODZ10117 (40 μM). GAPDH served as the loading 

control and data represent the mean ± SEM of three independent 

experiments. * p < 0.05 and ** p < 0.005 [5, 74]. 
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Figure 18. ODZ10117 suppressed tumor growth in breast cancer 

xenograft models.  

(A–D) Orthotopic xenograft model was generated by injection of 

MDA-MB-231 cells into the right fourth mammary fat pad of 

female BALB/c mice. The tumor growth (A), tumor size (B), 

tumor growth curve (C), and tumor weight (D) were represented 

[5]. 
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Figure 19. ODZ10117 inhibits tumor growth and increases 

survival in metastatic breast cancer xenograft model.  

(A–D) Syngeneic breast metastasis xenograft model was 

generated by injection of 4T1-Luc cells into the right fourth 

mammary fat pad of female BALB/c mice. Primary tumor growth 

is shown (A, B). Representative bioluminescence images of 

whole body (C). Kaplan-Meier survival graph of tumor-bearing 

mice (D). * p < 0.05 and ** p < 0.005 compared to the vehicle-

treated group [5]. 
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Figure 20. ODZ10117 inhibits lung metastasis in breast cancer 

xenograft model.  

(A–B) Syngeneic breast metastasis xenograft model was 

generated by injection of 4T1-Luc cells into the right fourth 

mammary fat pad of female BALB/c mice. Lung metastatic tumor 

nodules were observed on the surface (upper) and 

bioluminescence images (bottom) of the lung (A) and lung 

nodules were counted (B). * p < 0.05 and ** p < 0.005 compared 

to the vehicle-treated group [5]. 
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Figure 21. Positive correlation between STAT3 and stem cell 

phenotypes and EMT markers in glioblastoma patients.  

(A) Positive correlations of the mRNA levels between STAT3 

and CD133, NESTIN, SOX2, FN, and ITGAV. (B) The mRNA 

levels of CD133, NESTIN, SOX2, FN, and ITGAV are elevated in 

different subtypes of glioblastoma patients. * p < 0.05 and ** p < 

0.005. Data from the TCGA database [74]. 
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Figure 22. STAT3 expression regulates tumorspere-forming 

capacity of glioblastoma cells.  

(A, B) Sphere-forming assay was performed in GBM12 and 

GBM14 cells following incubation for 2 or 8 days (A), or in 

GBM14 cells transfected with the control or STAT3 siRNA 

following incubation for 8 days (B) under stem cell culture 

conditions [74]. 
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Figure 23. ODZ10117 suppresses STAT3 activation and cancer 

stem cell markers in GSCs.  

(A) The levels of pY-STAT3 and STAT3 in GSCs were 

determined by Western blot analysis. (B, C) Western blot 

analysis was performed for STAT3 activation and/or stem cell 

markers in GSCs incubated for 24 h with ODZ10117 (C) and in 

GSC528 cells incubated for 24 h with ODZ10117 and the known 

STAT3 inhibitors (D). GAPDH served as the loading control. 

ODZ10117 (40 μM), S3I-201 (100 μM), STA-21 (100 μM), 

nifuroxazide (100 μM), napabucasin (4 μM), and AG-490 (150 

μM)[74].
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Figure 24. ODZ10117 suppresses stemness features in GSCs.  

(A) In vitro limiting dilution (n = 12) assays were performed in 

GSC528 cells incubated for 5 days with vehicle (0.1% DMSO) 

alone or ODZ10117. ODZ10117 (40 μM), S3I-201 (100 μM), 

STA-21 (100 μM), nifuroxazide (100 μM), napabucasin (4 μM), 

and AG-490 (150 μM). (B) The mRNA levels of the stem cell 

markers were determined by qPCR analyses in GSC528 cells 

incubated for 24 h with vehicle (0.1% DMSO) alone, ODZ10117 

and the known STAT3 inhibitors. ODZ10117 (ODZ, 40 μM), S3I-

201 (S3I, 100 μM), STA-21 (STA, 100 μM), nifuroxazide (NIF, 

100 μM), napabucasin (NAPA, 4 μM), and AG-490 (AG, 150 μM). 

(C) Viability was determined in GSC528 cells incubated for 24 h 

with various concentrations of ODZ10117. Data represent the 

mean ± SEM of three independent experiments. * p < 0.05 and ** 

p < 0.005 [74]. 
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Figure 25. ODZ10117 reduces tumor growth in a glioblastoma 

xenograft model.  

(A) glioblastoma orthotopic xenograft model was established by 

injecting GSC528 cells into the right striatum of 6-week-old 

BALB/c nu/nu nude mice (n = 6). H&E staining of mouse tumour 

tissues treated with vehicle alone or ODZ10117 (0.1 or 1 mg/kg). 

(B) Body weight of the tumour-bearing mice were determined 

[74].
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Figure 26. ODZ10117 reduces tumor growth in a glioblastoma 

xenograft model.  

(A, B) Kaplan-Meier survival curves of tumor-bearing mice 

treated with vehicle alone or ODZ10117 (0.1 or 1 mg/kg, n = 6) 

(A). H&E and IHC staining of mouse tumor tissues were 

performed on day 77 after transplantation (B). Scale bar: 200 μm 

(IHC) or 500 μm (H&E) [74]. 
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Figure 27. A schematic diagram illustrating the proposed action 

mechanism of ODZ10117.  

ODZ10117 specifically targets the activation of STAT3, nuclear 

translocation, thereby inducing apoptotic cell death and reducing 

migration, invasion, cancer stem cell properties, and tumor 

growth, ultimately inhibiting cancer cell malignancy. 
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DISCUSSION 

In the present study, I discovered ODZ10117 as a STAT3-

specific inhibitor for STAT3-targeted cancer therapy and 

demonstrated its anticancer activities included the suppression 

of migration, invasion, viability, stem cell properties, and tumor 

growth, induction of apoptotic cell death, and extension of 

survival rate by targeting STAT3 in cancer cells and cancer 

xenografts (Figure 27). 

Disrupted signaling pathways are generally associated with 

the development of many types of cancers[75], indicating that 

these signaling pathways can be promising therapeutic targets 

for cancer therapy and drug development. Among such pathways, 

aberrantly activated STAT3 signaling is considered an attractive 

therapeutic target for the treatment of many types of human 

diseases, including cancer [76, 77]. In fact, elevated activation 

of STAT3 is observed in many types of solid and hematological 

cancers, and has recently been suggested as an important target 

molecule in the pre-therapeutic assessment of cancer patients 

[57]. In particular, breast cancer remains the second most 

common type of cancer, a primary cause of death in women, and 

one of the most expensive malignancies to treat [78]. 

The survival rate of breast cancer patients depends on the 

diagnostic timing and characteristics of cancer cells. Survival is 

lower when the cancer is diagnosed at a later stage and the 

cancer cells show higher metastatic potential and CSC traits. 

These cases of cancer are responsible for the difficulty in 

treating and important factors in determining the prognosis of 
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breast cancer patients [49]. Specifically, higher level of tyrosine 

phosphorylated STAT3 was observed in TNBC subtype of breast 

cancer cells than those of other subtypes [79-81].  

In addition, glioblastoma is a grade IV astrocytoma with very 

poor prognosis, according to the World Health Organization 

(WHO) [82]. It is the most aggressive and common primary adult 

brain tumor with a variety of characteristics featured by 

morphological and genetic heterogeneity [83]. Although there 

have been extensive advances in studies during the past decades, 

glioblastoma remains one of the most difficult types of cancers 

to treat because the exact causes are not clear and therapeutic 

strategies are limited. In addition, recurrence and resistance to 

conventional therapies occurs. Therefore, it is necessary to 

conduct extensive studies to identify the causes and develop 

novel therapeutic strategies for glioblastoma treatment.  

According to recent studies, aberrantly activated STAT3 

signaling is considered a paradigm for tumor initiation and 

malignancy, radio-chemoresistance, and recurrence due to 

observation in many types of cancers [58, 84, 85]. These 

correlations are mainly related to the functions of STAT3 in 

promoting the migration and invasion and maintaining stem cell 

properties of cancer cells, which indicates that STAT3 is an 

attractive molecular target for cancer therapy. 

In fact, many compounds have been developed to inhibit 

STAT3 activity directly or indirectly [42, 81, 86]. Because the 

STAT family proteins and their upstream regulators can 

crosstalk with other signaling pathways associated with normal 

physiological functions, non-selective STAT3 inhibitors can 
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influence normal physiological functions. For this reason, the 

development of selective STAT3 inhibitors has many 

impediments. To date, only a few STAT3-specific inhibitors 

have been developed [19, 42, 69], but the inhibitors have not yet 

been studied in clinical trials. Therefore, the discovery of small-

molecules specifically targeting STAT3 is an important issue for 

treating human diseases caused by STAT3 signaling.  

In the present study, I performed two-track screening 

assays in combination with structure-based computational 

database screening and cell-based high-throughput screening 

to identify small-molecule inhibitors for STAT3-targeted 

cancer therapy. Finally, I discovered ODZ10117 as a novel 

STAT3-specific inhibitor and determined its pharmacological 

activities of ODZ10117 in both in vitro and in vivo models of 

breast cancer and glioblastoma. ODZ0117 is a led compound of 

STAT3 inhibitor and it is substituted by tri-chloride. The 

strength of substitution of chloride is that it is highly reactive 

molecule, but toxicity is caused, therefore, a stability evaluation 

is required. To be developed as an anti-cancer drug, further 

pharmacokinetics and toxicokinetics are needed.  

Fortunately, ODZ10117 showed strong specificity for 

STAT3, regardless of other STAT family proteins and upstream 

regulators. Interestingly, I found that the known STAT3 

inhibitors affected other STAT family proteins and upstream 

regulators, although they showed cell-line dependent effects, 

indicating that they are not STAT3-specific inhibitors. The 

STAT3-specificity and the STAT3 inhibitory effect of 

ODZ10117 were much stronger than that of the known STAT3 
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inhibitors such as S3I-201, STA-201, nifuroxazide, and 

napabucasin. So far, my findings are noteworthy that it has better 

efficacy of other commercial STAT3 inhibitors.  

Although these results demonstrate the inhibitory effects of 

STAT3 in cancer cells, further detailed mechanism studies are 

needed for more clarification. Although ODZ10117 has been 

designed for SH2 domain of STAT3, it is necessary to confirm 

that ODZ10117 does not affect the SH2 domain of other kinase. 

In addition, it is needed to study whether the STAT3 dimmer is 

disturbing by the compounds. 

In the present study, I demonstrated ODZ10117 effectively 

suppressed the tyrosine phosphorylation, nuclear translocation, 

and transcriptional activity of STAT3, resulting in the effective 

inhibition of migration, invasion, stem cell properties in breast 

cancer and glioblastoma cells. In addition, ODZ10117 decreased 

cell viability and induced apoptotic cell death without affecting 

the proliferation of cancer cells. Finally, the administration of 

ODZ10117 markedly inhibited tumor growth established in in 

vivo mouse xenograft models of breast cancer and glioma stem 

cells. However, in vivo mouse xenograft models, it is necessary 

to consider whether the inhibitory effects of tumor growth or 

epithelial–mesenchymal transition (EMT) is the effect of STAT3 

inhibition or the other functions of the ODZ10117. To prove this 

problem, the mouse xenograft models can be used shSTAT3 

transfected cancer cell line.  

Although, some of the STAT3 inhibitors, such as Stattic [44] 

and WP1066 [87] showed more effective inhibition of STAT3 

activation than ODZ10117 in the in vitro results that were 
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analyzed from breast cancer cells, hepatocellular carcinoma cells, 

and glioma cells. Therefore, it is necessary to compare these 

molecules with ODZ10117. Based on these results, STAT3-

targeted therapy should be developed for clinical trials. 

In conclusion, this study has shown that ODZ10117 may be a 

useful candidate for the STAT3-targeted cancer therapy in 

breast and glioblastoma. ODZ10117 effectively inhibited tyrosine 

phosphorylation and nuclear translocation of STAT3, resulting in 

effective anti-tumor activity. These activities included the 

suppression of migration, invasion, stem cell properties, and 

tumor growth, induction of apoptotic cell death, and extension of 

survival rate by targeting STAT3 in both in vitro and in vivo 

xenograft models.  
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국문 초록 

 

신호변환 및 전사활성인자 3 (STA3)는 많은 종양에서 과발현

하고 있으며, 종양 미세 환경에서 STAT3 는 다양한 경로를 통해 

지속적으로 활성화되며, 일반적으로 지속적으로 활성화된 STAT3

는 종양의 형성, 진행, 악성도, 재발 및 약물 저항성, 암 줄기세포 

특성과 연관되어 있다. 따라서, STAT3 는 암 치료에서 성공 가능성

이 매우 높은 단백질로 새로운 종류의 항암제 개발과 암치료에 유

망한 표적이다.  

이 연구에서 STAT3 의 소분자 억제제로서 3-(2,4-디클로로

-페녹시메틸)-5-트리클로로메틸-[1,2,4]옥사디아졸 (ODZ10117)

을 발견하였고 이는 STAT3 표적 암치료에 효과적인 치료 효용이 

있을 수 있음을 시사하였다. 먼저, ODZ10117 은 다양한 종류의 암, 

특히 유방암과 신경교모세포종에서 STAT3 활성화를 효과적으로 

억제하는 것을 확인하였으며, 흥미롭게도 다른 STAT 계열 단백질 

및 STAT3 상위 신호전달계에 관계없이 STAT3 의 SH2 도메인을 

표적으로 하여 STAT3 의 타이로신 인산화, 핵 내로의 이동 및 전

사 활성을 억제하는 것을 확인하였다. 또한, STAT3 에 대한 

ODZ10117 의 억제 효과는 STAT3 억제제인, S3I-201, STA-21 

및 니프록사지드와 같은 잘 알려진 STAT3 억제제 보다 STAT3

의 활성화 저해 능력이 뛰어났다.  

ODZ10117 은 암세포의 이동과 침윤을 억제하고, 세포사멸을 

유도하였으며, 종양의 성장을 감소시켰다. 이러한 결과를 확인하기 

위해, 본 연구에서는 두가지 암 종류에 해당하는 이종 이식 모델을 

연구하였다. 첫번째로, 유방암 모델에서 ODZ10117 의 억제 효과는 

종양형성을 억제하였으며, 마우스의 생존율을 높이고 폐 전이를 감

소시키는 것을 확인하였다. 다음으로, ODZ10117 의 투여는 신경 교
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종 줄기세포의 마우스 이종 이식 모델에서도 종양형성을 저해하고 

생존율을 높이는 등 치료 효과를 보였다. 결론적으로, 새롭게 발굴

한 STAT3 의 소분자 억제 화합물인 ODZ10117 은 종양에서 

STAT3 의 활성화 억제를 통해 항암치료에 대한 새로운 치료 전략

이 될 수 있음을 시사한다. 나아가, 종양 미세 환경에서 STAT3 의 

역할과 종양 미세 환경에서의 ODZ10117 의 새로운 역할을 규명함

으로써, 암세포 뿐만 아니라, 종양 미세 환경에서도 STAT3 저해제

의 항암작용 역할을 기대할 수 있다.  

 

------------------------------------- 

주요어 : 3-(2,4-디클로로-페녹시메틸)-5-트리클로로메틸-[1,2,4]

옥사디아졸 (ODZ10117), 신호변환 및 전사활성인자 3 (STAT3), 

표적치료제, 침윤, 세포의 이동, 세포사멸 
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