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Abstract 

 
 

Feasibility study of MRI-based  

synthetic CT generation  

for PET/MRI and MR-IGRT 
 

Hyun Joon An 

Major in Biomedical Sciences  

Department of Biomedical Sciences  

Seoul National University Graduate School 

 

Over the past decade, the application of magnetic resonance imaging (MRI) in 

the field of diagnosis and treatment has increased. MRI provides higher soft-tissue 

contrast, especially in the brain, abdominal organ, and bone marrow without the 

expose of ionizing radiation. Hence, simultaneous positron emission 

tomography/MR (PET/MR) system and MR-image guided radiation therapy (MR-

IGRT) system has recently been emerged and currently available for clinical study. 

One major issue in PET/MR system is attenuation correction from MRI scans 

for PET quantification and a similar need for the assignment of electron densities to 

MRI scans for dose calculation can be found in MR-IGRT system. Because the MR 

signals are related to the proton density and relaxation properties of tissue, not to 

electron density. To overcome this problem, the method called synthetic CT (sCT), 

a pseudo CT derived from MR images, has been proposed. In this thesis, studies on 

generating synthetic CT and investigating the feasibility of using a MR-based 



 

 ii 

synthetic CT for diagnostic and radiotherapy application were presented.  

Firstly, MR image-based attenuation correction (MR-AC) method using level-

set segmentation for brain PET/MRI was developed. To resolve conventional 

inaccuracy MR-AC problem, we proposed an improved ultrashort echo time MR-

AC method that was based on a multiphase level-set algorithm with main magnetic 

field inhomogeneity correction. We also assessed the feasibility of level-set based 

MR-AC method, compared with CT-AC and MR-AC provided by the manufacturer 

of the PET/MRI scanner. 

Secondly, we proposed sCT generation from the low field MR images using 2D   

convolution neural network model for MR-IGRT system. This sCT images were 

compared to the deformed CT generated using the deformable registration being 

used in the current system. We assessed the feasibility of using sCT for radiation 

treatment planning from each of the patients with pelvic, thoraic and abdominal 

region through geometric and dosimetric evaluation. 
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Chapter 1. Introduction 

1.1. Background  

1.1.1. The Integration of MRI into Other Medical Devices 

Magnetic resonance imaging (MRI) is one of the most prominently used 

medical imaging equipment for diagnostic purpose. MRI system use strong magnetic 

fields and radiofrequency pulse to make an image of the internal structures of the 

body. The signal comes primarily from the protons in fat and water molecules in the 

body. 

The advantages of MRI over other imaging modalities include superior soft 

tissue contrast especially in the brain, abdominal organ, and bone marrow without 

the expose of ionizing radiation. MRI can also provide functional and molecular 

information, such as diffusion imaging, perfusion imaging, and functional MRI (1). 

To take advantage of these MRI characteristics, the application of MRI into 

other medical equipment in the diagnostic and therapeutic field has increased rapidly 

in the past decade. As a result, positron emission tomography/MRI (PET/MRI) 

system and MR-image guided radiation therapy (MR-IGRT) system has recently 

been emerged and currently available for clinical study.  

 

1.1.1.1 PET/MRI 

For diagnostic purpose, PET is a molecular imaging modality that provides 

quantitative physiological information. Although PET is the most sensitive medical 

imaging device providing functional and biochemical information, it has limited 

spatial resolution, signal to noise ratio, and anatomical information. On the other 

hand, MRI offers detail anatomical information with excellent soft tissue contrast, 
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such as brain, head and neck, liver and pelvis. Accordingly, the combination of PET 

and MRI shows various possibilities as new methodology.  

In addition, fully integrated PET/MRI scanners based on semi-conductor 

photosensors, such as avalanche photodiode and silicon photomultiplier allows the 

simultaneous acquisition of both image data sets, which possess several distinct 

advantages over the sequential scan in conventional PET/CT examination (1-5). 

Simultaneous PET and MRI data acquisition has several advantages including 

temporal and spatial correlation of PET and MRI data. Motion correction and partial 

volume effect correction of the PET data can be implemented using the MRI 

information. Additionally, more accurate arterial input function for dynamic PET can 

be obtained using image-based approaches (6).  

 

1.1.1.2 MR-IGRT 

The goal of radiation therapy is to deliver radiation to the planned target 

volumes as precisely and accurately as possible while minimizing dose to critical 

normal tissues. IGRT is a method of radiation therapy that incorporates imaging 

techniques to ensure a precise dose delivery (7, 8).   

IGRT is particularly applicable to highly conformal radiotherapy such as 3D 

conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy 

(IMRT) (9). In the treatment of high-dose, low-fractionaion therapy such as 

stereotactic body radiation therapy (SBRT) or stereotactic ablative radiotherapy 

(SABR) , IGRT is considered an essential component of the of the entire procedure 

(10). 

Currently, imaging techniques such as mega-voltage planar imaging, kilo-

voltage planar imaging, and cone-beam CT are commonly used to optimize 



 

 ３

treatment positioning. However, all of these still have the problem of poor soft tissue 

contrast, and as a result, it still remains challenging to distinguish tumor from normal 

tissues (11, 12). 

To solve this problem, MR-IGRT system has been developed and currently 

available (13-15). The integration of MRI into radiation treatment system provides 

a high tumor visibility and surrounding tissue anatomy. It also provides real-time 

imaging to characterize and track anatomical movements using fast sequence 

imaging. Respiratory gating by MRI is particularly advantageous in several aspects 

for high dose SBRT (16, 17). It enables motion mitigation and a reduction of 

planning target volume (PTV) margins and allows for an accurate dose delivery to 

the PTV by reducing dose exposure of organs at risk (OARs).  

 

 

 

 

 
Figure 1-1.  MR-integrated medical system. (A) PET/MRI : Siemens Biograph mMR 
(B) MR-IGRT : ViewRay MRIdian tri 60Co radiotherapy system 
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1.1.2. Chanllenges in the MRI Integrated System 

1.1.2.1 Attenuation Correction for PET/MRI 

Despite the advantage of simultaneous PET/MR imaging, one of the most 

challenging issues in PET/MR system is attenuation correction (AC) which is an 

essential procedure for quantitative PET imaging. In PET/CT, the attenuation map 

(μ-map) can be derived from CT transmission data and converting the Hounsfield 

units to μ values for 511 keV using bilinear transform (18, 19). In PET/MR, there is 

no mechanism to directly measure the attenuation coefficient of the tissue due to 

space constraint and magnetic induced artifact. The MR signals are related to the 

proton density and relaxation properties of tissue, not to electron density. It is 

therefore necessary to derive μ-map from the PET or MRI data. 

 

1.1.2.2 Electron Density for Dose Calculation of MR-IGRT 

The electron density is an essential factor for accurate dose calculation. During 

treatment planning, the treatment planning systems (TPS) use a conversion of the 

Hounsfield numbers to relative electron density to calculate dose (20, 21). This can 

be done through use of generic formulas or tissue look up table. A look up table can 

help account for the effects of variations in atomic number Z between different 

tissues. 

However, in MR-IGRT system, the MRI lack any intrinsic relationship to the 

electron density. As a result, additional CT simulation (CT-SIM) imaging is required 

to know the radiation dose distribution. In the standard MR-IGRT workflow, the CT 

simulation is used for dose calculation and treatment planning with daily MR images 

co-registered to the CT-SIM images by applying rigid or deformable registration and 
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assigning an electron density map obtained from the registered CT. 

 

1.1.3. Synthetic CT Generation  

In recent years, interests in deriving CT data from MRI data have grown rapidly. 

Several methods have been proposed for using MR images to generate a synthetic 

CT (sCT) image. These methods can broadly be classified into 3 groups : template(or 

atlas)-based, segmentation-based, and learning-based (22-24).  

In template-based method, the sCT is derived by spatial transformation from a 

template data. The template image can be generated based on an average image from 

a number of CT image. The spatial transformation information is acquired from co-

registered MR images (25-29). However, the use of template-based method has some 

limitations because the template image cannot fully accommodate the wide inter-

individual anatomical variability of patient image. 

In segmentation-based method, derivation of sCT is performed by MR image 

segmentation and assigning the attenuation coefficients to each segmented tissue 

voxel. For PET/MRI system, one of current clinically available segmentation based 

method is derived from a two-point Dixon sequence to classify soft tissue, fat tissue, 

lungs and background (23). But, there is no contrast difference between air and bone 

due to short relaxation time property of the tissues. Consequently, the bone signal is 

define as soft tissue in attenuation map. Substitution of bone by soft tissue in 

attenuation map cause the underestimation of uptake adjacent to bone regions in not 

only brain but also whole-body imaging. From these problems, ultra-short or zero 

echo time (UTE/ZTE) sequences were proposed to segment the bone tissue (30, 31). 

In their method, the sCT is derived from the difference between two short echo time 

MR images with air mask generated by region growing method. Although the results 
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showed that UTE sequences is feasible to generate attenuation maps, some 

segmentation errors occurred at the borders of the skull and complex small bone and 

air cavities structures. 

In learning-based method, the sCT is generated by automatically machine 

learning the image feature relationship based on different dataset. This method, 

represented as the deep learning, has recently been widely used with high accuracy 

in brain and pelvis regions (32-36). These methods required a large number of 

registered CT and MRI images for training network which means feature 

relationships. While traning is computationally intensitve and time-consuming 

process, but once the initial training is completed, the prediction of sCT can be 

predicted in a short time. Not only is the HU value of sCT image appear very similar 

to the CT, but we can also train by adding a dataset for more acuurate results (37).  

 

1.2. Purpose of Research 

The aim of this thesis is to develop synthetic CT from MRI in diagnostic and 

therapeutic application.  

In chapter 2, we proposed a MR-based attenuation correction (MR-AC) method 

that is based on multi-phase level set algorithm for the brain region. The algorithm 

automatically distinguishes three tissue components, which are air cavities, soft 

tissue and bone region. The accuracy of the proposed MR-AC approach was 

evaluated in clinical studies using simultaneously acquired brain PET/CT and 

PET/MR images.  

In chapter 3, we proposed 2D U-net convolution neural network (CNN) to 

generate sCT from low magnetic field MR images for MR-IGRT. The algorithm was 
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applied to each of the three regions of the pelvis, thorax, and abdomen, and compared 

to sCT and conventional deformed CT (dCT). The feasibility of clinical use of sCT 

was evaluated through quantitative analysis through geometrical and dosemetrical 

evaluation. 
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Chapter 2. MRI-based Attenuation Correction for 

PET/MRI  

2.1. Background 

As discussed in Chapter 1, the accuracy of attenuation correction of brain PET 

in PET/MRI studies is still questionable. Therefore, commercial simultaneous 

PET/MR scanners use several attenuation correction techniques rather than one 

solution method. 

The first simultaneous PET/MR scanner, Biograph mMR (Siemens Healthcare, 

Erlangen, Germany), offers different MRI-based attenuation correction (MR-AC)  

techniques depending on the imaging site.  

For whole-body scans, 2-point Dixon MR sequence was proposed to classify 

soft tissue, fat tissue, lungs and background (38). In their method, threshold and basic 

image processing were determined to identify and separate the voxel corresponding 

to the each tissue. Although the results showed that there is a similar behavior to CT 

based attenuation correction, it is generally difficult to obtain an optimal threshold 

value due to non-uniform changes and noise. This sequence is also not recommended 

for brain applications, due to an underestimation of PET uptake results (39).  

For brain scan, MR-AC using ultrashort echo time (UTE) MRI sequence 

derives the bone segment based on the difference between two MR images obtained 

at different echo times (ultrashort and typical times) (40, 41). However, the initial 

versions of the UTE sequence (i.e., mMR software version VB18P) yielded frequent 

segmentation errors at the boundary between soft tissue, bone and air, as well as 

misclassification of the ventricle as air (39, 42, 43). Although a recent upgrade of the 

software from VB18P to VB20P offers more reliable attenuation maps than before, 
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significant segmentation errors in the regions around the inferior part of the brain 

(i.e., sinus and lower skull structures) still exist. The images are compared in Figure 

2-2. Moreover, considerable quantification errors because of the inaccurate UTE 

MR-AC have been reported in several articles (39, 42, 43). 

In this study, we propose an advanced UTE MR-AC method that is based on a 

multiphase level-set algorithm (44-46) to provide more accurate attenuation maps 

than those currently used in brain PET/MRI studies. The quantitative accuracy of 

this new method, providing a three–segment (air, bone, and soft tissue) attenuation 

map, was compared with CT-based and mMR-providing attenuation corrections.  

 

 

 

 
Figure 2-1. Comparision of UTE sequence images between (A) VB18P and (B) VB20P 
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2.2. Materials and Methods 

2.2.1. Brain PET Dataset  

2.2.1.1 Patient Population 

We evaluated our new MR-AC method using two different brain PET data sets. 

One of them was the [18F]fluorinated-N-3-fluoropropyl-2-β-carboxymethoxy-3-β-

(4-iodophenyl)nortropane ([18F]FP-CIT) PET/CT and PET/MRI data acquired for 

evaluating the accuracy of existing MR-AC methods in patients with Parkinson’s 

disease. Total of 20 patients (11 men, 9 women, mean age: 59.6 ± 9.1 y, age range: 

54–71 y) were enrolled in this study. The other was [18F]fluorodeoxyglucose 

([18F]FDG) PET/CT and PET/MRI data of 10 prospectively enrolled healthy normal 

volunteers (6 men, 4 women, mean age: 57.7 ± 5.4 y, age range: 51–67 y) without 

any medical diseases or abnormalities uncovered in neuropsychological screening 

tests.  

2.2.1.2 PET/CT and PET/MRI Acquisition 

PET/CT data were acquired using a Siemens Biograph TruePoint40 scanner 

(Siemens Healthcare, Knoxville, TN) in [18F]FP-CIT studies and a Siemens 

Biograph mCT40 scanner in [18F]FDG studies. A Siemens Biograph mMR system 

was used for PET/MRI data acquisition in both studies. While the mMR software 

version of VB18P was used in the [18F]FP-CIT studies, the software was upgraded 

to VB20P for the [18F]FDG studies. The VB20P is the latest version, and provides 

improved UTE image quality by incorporating gradient delay correction, streak 

artifact suppression and a more advanced MR-AC method. In this new version skull 

segment is generated using template based approach and combined with the soft 

tissue map obtained by applying MRI segmentation. 
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In the [18F]FP-CIT studies, a PET/MRI scan was performed 110 min after the 

injection of a tracer (192 MBq on average) and followed by a PET/CT scan. In the 

[18F]FDG studies, the sequence of PET/MRI and PET/CT were randomly determined, 

and the first scan was performed 40 min after the injection of the tracer (259 MBq 

on average). PET scan duration for [18F]FP-CIT and [18F]FDG was 10 min. 

 

2.2.1.3 PET/CT Data 

PET/CT imaging was performed in a single PET bed position and the 

participants’ heads were positioned in a head holder attached to the patient bed. The 

PET/CT scan followed the routine clinical protocol for brain studies including a 

topogram scan, an attenuation CT scan and a 10 min PET emission scan. For PET 

attenuation correction, the CT images were reconstructed in a 512 × 512 × 112 matrix 

with voxel sizes of 0.59 × 0.59 × 3 mm. The emission PET data were acquired in 

sinogram format. 

 

2.2.1.4 PET/MR Data 

In PET/MRI, the participants’ heads were positioned in the mMR head coil. MR 

images were acquired simultaneously with PET using a dual-echo UTE sequence 

(TE = 0.07 and 2.46 ms, TR = 11.9 ms, flip angle = 10°). The UTE images were 

reconstructed into a 192 × 192 × 192 matrix with an isotropic voxel size of 1.33 mm. 

A T1-weighted 3D ultrafast gradient echo sequence was also acquired in a 208 × 256 

× 256 matrix with voxel sizes of 1.0 × 0.98 × 0.98 mm 
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2.2.2. MR-Based Attenuation Map using Level-Set Algorithm  

2.2.2.1. Level-set Segmentation Algorithm 

In the past few decades, deformable active contour models have been widely 

used in image processing, especially for medical image segmentation. It is the curve 

deformed and moved under the influence of external and internal forces.  

The level-set method, also known as the geometric deformable model, 

implicitly represents the contour by the zero level of a high-dimensional function 

called the level-set function ( , , )x y t . If this contour moves in the normal direction 

with a speed F, then the level set function satisfies the below level set equation, 

 

0F
t

 
  


 (2.1) 

 

where the function F is called the speed or energy functional that controls the 

motion of the contour. This approach has advantages over traditional segmentation 

methods such as thresholding and region growing, as it has the ability to represent 

contours with complex topology and to change their topology in a natural way.  

In a variation of the level-set formulation, Chan et al. (44) proposed an active 

contour model using level-set formulation by incorporating region-based 

information. Assuming I is a two-dimensional (2D) image defined on domain Ω, the 

energy functional that we will minimize is defined as, 
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where H is the Heaviside function and c1, c2 are the average image intensities 

in the contour, depending on I and 𝜙. Image segmentation is achieved by solving to 

minimize the energy functional FCV.  

For the segmentation of more than two regions, Vese et al. (45) proposed a 

multiphase level-set approach. Theoretically, N level sets are used to segment up to 

2N regions. In particular, here we used a two-phase level-set method with the 

functions denoted as 𝜙1, 𝜙2 and the energy functional as the following,  
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where C=(c11,c10,c01,c00) is constant vector, and Φ=(𝜙1, 𝜙2) is level set function 

vector. However, the Chan-Vese model is based on the assumption of intensity 

homogeneity. Therefore, local magnetic inhomogeneities and susceptibility effects 

can cause segmentation errors in MR images.  

To address the issue of intensity inhomogeneity in MR image segmentation, Li 

et al. (46) proposed an improved level-set model with a local clustering criterion 

function. This method describes an image with intensity inhomogeneity, defined as 

follows:  

 

,I bJ n   (2.4) 

 

where I is the observed image, J is the true image, b is the bias field, and n is 

additive noise. The method is applied in a circular area with a radius ρ centered at 

each point y in the image domain Ω, defined by Oy≜(x:|x-y|≤ρ) Then, each small 

region is given by: 

 

( ) ( ) ( )     for    ,i y ib J b c x O  x x y   (2.5) 

 

where the constant b(y)ci can be considered to be the approximation of the 

cluster center within the neighborhood Oy. To estimate b(y)ci, the intensities I(x) in 

the neighborhood Oy are classified into N classes. A local intensity criterion function 

using the K-means clustering method is defined as follows: 
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where b(y)ci are the cluster centers to be optimized, K(y-x) is a nonnegative 

weighting function, and a is normalization constant such that ( ) 1K u   . The 

intensity criterion function is integrated over the entire domain Ω and incorporated 

into a multi-phase level-set formulation given by:  
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where M1(𝜙(x))=H(𝜙(x)) and M2(𝜙(x))=1−H(𝜙(x)) in the two-phase case. 

Rp(𝜙) is distance regularization term to make level set function smoothly. By 

minimizing this energy, we obtained the image segmentation result given by the 

level-set function and the estimation of the bias field b. In this work, we employed 

this energy model to segment images using the same parameters as in reference (46), 

μ=0.1, ν=0.001, and 𝜎=4 .  
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2.2.2.2. Characteristic of UTE Images 

The T2 relaxation time of protons in bone tissue is much faster than in other 

tissues. Thus, bone tissues with short T2 can be distinguished from soft tissue by 

taking the subtraction or division between the first ultrashort TE image (UTE1) and 

the second longer TE image (UTE2). However, these images, especially UTE2, are 

sensitive to off-resonance effects because of B0 inhomogeneity and susceptibility, 

causing inhomogeneity artifacts that make accurate image segmentation difficult. 

Thus, we generated UTE MR-based attenuation map based on a level-set algorithm 

in which the intensity inhomogeneity correction was incorporated. These procedures 

were performed using in-house-developed code written in Matlab (R2014a; 

MathWorks, Natick, MA). 

 

2.2.2.3. UTE Image Segmentation using Level-Set Algorithm 

Two-phase level-set segmentation based on the multiphase model was applied 

to both the UTE1 and UTE2, in which two level-set functions were evolved 

simultaneously. Local intensity clustering properties as well as region-based 

information were taken into account to unify the segmentation and inhomogeneity 

correction within a single evolving framework. Figure 2-2 shows the results of the 

level-set segmentation. The final evolved contours (red: level-set function 1 = 0, blue: 

level-set function 2 = 0) are overlaid on the MR images. The regions delimitated by 

the contours were represented in the binary images by assigning one to the inside of 

the contour and zero to the outside (UxLy is the binary image from the yth level-set 

function of the xth UTE in Figure 2-2. The symbol ‘C’ labeled behind y indicates that 

the binary image is generated with inhomogeneity correction). 
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2.2.2.4. Generation of Attenuation Map      

The soft tissue map was obtained by applying a hole-filling operation to the 

U1L1 that encloses almost all of the structures in the head. Air has a negligibly low 

signal in both UTE images. Thus, we obtained an air map by multiplying ~U1L1 and 

~U2L1 in Figure 2-2. To generate the bone map, we started from the initial bone map 

generated by applying a threshold to the difference image (dUTE) between UTE1 

and UTE2 represented in Figure 2-3. The threshold was empirically determined and 

50% of the mean intensity of dUTE pixels >10. This initial bone map was then 

 
Figure 2-2. Generation of soft tissue and air maps and an additional mask using two-phase 
level segmentation and morphological and binary operations. The final evolved contours 
(red: level-set function 1 = 0, blue: level-set function 2 = 0) are overlaid on the MR 
images. UxLy is the binary image from the xth level-set function of the yth UTE. The soft 
tissue and air maps were generated by filling the holes in U1L1 and multiplying two binary 
images (~U1L1 and ~U2L1). Additionally, a mask for trimming the bone map was generated 
from the binary images of the level-set functions obtained using the level-set segmentation 
with inhomogeneity correction (U2L1C ∩ ~U2L2C). 
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masked by the morphologically eroded soft tissue map to correct for the 

misclassified voxels around the outer boundary of the skull with air. To further trim 

out the remaining misclassified soft tissue as bone in the dUTE image, we applied 

an additional mask generated by multiplying U2L1C and ~U2L2C (Figure 2-2 and 2-

3). Finally, we added the bone segment to the initial attenuation map, and assigned 

the attenuation coefficients for soft tissue and bone (0.1 cm−1 and 0.151 cm−1).  

 

 

2.2.3. Image Processing and Reconstruction 

Reconstructed PET images were generated from emission data in the PET/CT 

studies using three different attenuation maps. The first one was the MR-based 

attenuation map that is offered by the Biograph mMR software (MR-ACmMR map). 

The second one was the MR-based attenuation map generated using the proposed 

multiphase level-set method (MR-AClevel map). The last one was the CT-based 

 
Figure 2-3. Generation of bone map and final level-set-based attenuation map (MR-
AClevel). Initial bone map generated by applying a threshold to the difference image 
between UTE1 and UTE2 was further trimmed to yield the final bone map by masking it 
with soft tissue map and an additional mask. The MR-AClevel map was then generated by 
assigning the attenuation coefficients to the soft tissue, bone, and air maps and combining 
them. 
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attenuation map conventionally used in PET/CT studies, which was converted from 

the CT images to 511 keV attenuation coefficients using a bilinear transformation 

(CT-AC map). 

 

 

For each participant, two MR-based attenuation maps were coregistered and 

resliced to the CT-AC map using the Statistical Parametric Mapping (SPM8; 

University of College London, UK) software through the co-registration of T1 3D 

MRI to CT. The PET/CT head holder was visible in the CT-AC map, whereas the 

UTE images were without the head holder. Therefore, the head holder shown in CT 

image was extracted using a region growing segmentation algorithm and added to 

the MR-based attenuation maps to allow a fair comparison. All PET images were 

reconstructed using OP-OSEM (subset = 14, iteration = 3) algorithm through e7tool 

 
Figure 2-4. The overall procedure of image processing and PET reconstruction 
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from Siemens Healthcare. Following reconstruction, all PET data were spatially 

normalized to the SPM standard MRI T1 template to eliminate intersubject anatomic 

variability. The overall image processing steps are summarized in Figure 2-4. 

 

2.3. Results 

The results of CT-AC, MR-ACmMR and MR-AClevel applied to the same emission 

data acquired using PET/CT machines are compared in Figure 2-5 for [18F]FP-CIT 

PET with VB18P mMR software and Figure 2-6 for [18F]FDG PET and VB20P. The 

MR-ACmMR map gave larger air cavities than CT regardless of the version of mMR 

software. The bone tissue in the MR-ACmMR map was underestimated in VB18P 

(Figure 2-5B) and overestimated in VB20P (Figure 2-6B). On the contrary, MR-

AClevel maps (Figures 2-5C and 2-6C) showed more similar properties with CT 

(Figures 2-5A and 2-6A) in the size and shape of the air cavities and bones. While 

the striatal and cerebellar activity in [18F]FP-CIT PET and frontal activity in 

[18F]FDG PET were remarkably underestimated in MR-ACmMR relative to CT-AC 

(Figures 2-5B and 2-6B), MR-AClevel did not show this discrepancy from CT-AC 

(Figures 2-5C and 2-6C). 

The Dice similarity coefficients between MR-AC maps and CT-AC map were 

summarized in Table 2-1. The mean Dice coefficients for bone in MR-AClevel were 

0.60 and 0.79 (VB18P and VB20P) for whole head and 0.71 and 0.83 for cranial 

region only, and all of them were higher than those in MR-ACmMR. There was same 

trend for air regions.  
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Figure 2-5. Attenuation maps and [18F]FP-CIT PET images corrected using them. (A) CT, 
(B) MR-ACmMR: MR-based attenuation map generated using mMR software version 
VB18P, (C) MR-level: MR-based attenuation map generated using level-set method. 

 
Figure 2-6. . Attenuation maps and [18F]FDG PET images corrected using them. (A) CT, 
(B) MR-ACmMR using mMR software version VB20P, (C) MR-AClevel. 
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Table 2-1. Dice similarity coefficients for whole head and cranial bone (mean ± standard 
deviation) 

 Whole head Cranial region 

 Dbone Dair Dbone Dair 

[18F] FP-CIT study (n=20)  

MR-ACmMR (VP18P) 0.28 (±0.09) 0.45 (±0.10) 0.31 (±0.11) 0.42 (±0.10) 

MR-AClevel 0.60 (±0.06) 0.54 (±0.09) 0.71 (±0.06) 0.59 (±0.08) 

[18F] FDG study (n=10)  

MR-ACmMR (VP20P) 0.72 (±0.04) 0.60 (±0.06) 0.74 (±0.04) 0.59 (±0.09) 

MR-AClevel 0.79 (±0.02) 0.61 (±0.07) 0.83 (±0.02) 0.62 (±0.10) 

 

The superiority of MR-AClevel to MR-ACmMR was confirmed in the ROI- and 

voxel-based quantitative comparisons. In [18F]FP-CIT studies with MR-ACmMR, the 

percent difference of SUV from CT-AC was greater than –20% in most ROIs (Figure 

2-7A). The percent difference was most remarkable in cerebellum, leading to the 

overestimation of SUVr which was highest in putamen (Figure 2-7A). Conversely, 

the percent difference of [18F]FP-CIT PET with MR-AClevel from CT-AC was 

smaller than 10% in both SUV and SUVr. The binding ratio (BR) values offered by 

the MR-AC methods were linearly correlated with those by CT-AC; nevertheless, 

the MR-AClevel (putamen: y = 1.04x ± 0.016, caudate: y = 1.04x ± 0.021) yielded a 

smaller bias than MR-ACmMR (putamen: y = 1.11x ± 0.038, caudate: y = 1.14x ± 

0.073) (Figures 2-8, 2-9 and 2-10).  
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Figure 2-7. Percent difference of SUV (A) and SUVr (B) from CT-AC in [18F]FP-CIT 
PET. 
 
 

 
Figure 2-8. Correlation of SUV between CT-AC and (A) MR-AClevel, (B) MR-ACmMR in 
[18F]FP-CIT study 
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Figure 2-10. Correlation of binding ratio (BR) and Bland-Altman analysis in caudate 
nucleus between CT-AC and (A) MR-AClevel, (B) MR-ACmMR in [18F]FP-CIT study 

 
Figure 2-9. Correlation of binding ratio (BR) and Bland-Altman analysis in putamen 
between CT-AC and (A) MR-AClevel, (B) MR-ACmMR in [18F]FP-CIT study 
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The [18F]FDG PET tests showed a similar trend to the [18F]FP-CIT PET tests, 

while the percent differences in SUV and SUVr between MR-AC and CT-AC were 

roughly half of those in [18F]FP-CIT PET (Figure 2-11, 2-12, and 2-13).  

Figure 2-14 and 2-15 show that there was a remarkable difference in almost 

every brain regions voxel-wise comparison between MR-ACmMR and CT-AC. On the 

contrary the difference between MR-AClevel and CT-AC was limited to the brain 

cortex. In both methods, outer boundary of brain cortex which is vulnerable to the 

brain size mismatch between CT and MRI and errors in skull segmentation showed 

largest differences. 

 

 

 

 

 

 

 

 
Figure 2-11. Percent difference of SUV (A) and SUVr (B) from CT-AC in [18F]FDG PET. 
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Figure 2-12. Correlation of binding ratio (BR) and Bland-Altman analysis in putamen 
between CT-AC and (A) MR-AClevel, (B) MR-ACmMR in [18F]FP-CIT study 
 
 

 
Figure 2-13. Correlation of binding ratio (BR) and Bland-Altman analysis in putamen 
between CT-AC and (A) MR-AClevel, (B) MR-ACmMR in [18F]FP-CIT study 
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Figure 2-15. Paired t-test results of SUV in [18F]FDG PET over whole brain data 
(A) CT-AC > MR-AClevel (B) CT-AC > MR-ACmMR (P<0.05 (FWE), cluster size > 100 
voxels). 

 
Figure 2-14. Paired t-test results of SUV in [18F]FDG PET (A) CT-AC > MR-AClevel  
(B) CT-AC > MR-ACmMR (P<0.05 (FWE), cluster size > 100 voxels). 
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2.4. Discussion 

In this study, we developed a new UTE MR-AC map based on a unified 

multiphase level-set segmentation and inhomogeneity correction method, and 

demonstrated the superior performance of this method over the currently used MR-

AC map in a mMR PET/MRI scanner. The remarkable improvements in the 

segmentation of air cavities and bone and the quantitative accuracy of PET 

measurement using the level-set method were shown in both the [18F]FP-CIT PET 

data using VB18P mMR software and [18F]FDG PET data using VB20P.  

The major upgrade of mMR software from VB18P to VB20P seems to be 

effective in the elimination of misclassification of cerebrospinal fluid in ventricles 

as air and the correction of bone underestimation shown in previous reports. The 

percent error of MR-ACmMR in SUV and SUVr quantification relative to CT-AC was 

reduced approximately by half, although we could not confirm this error reduction 

using the exact same dataset. However, the current VB20P version still yields air 

cavity and bone segmentation errors as shown in Figure 2-6B. However, the MR-

AClevel offered improved segmentation results, leading to the reduction of PET 

quantification error by a factor of approximately three as shown in Figure 2-7.(SUV 

error < 10% in MR-AClevel and < 30% in MR-ACmMR with VB18P, and < 5% in MR-

AClevel and < 15% in MR-ACmMR with VB20P). The evaluation of attenuation maps 

using Dice coefficient confirmed the improvements in the MR-AC maps achieved 

by the level-set method in Table 2-1. For VB20P UTE data sets, MR-AClevel yielded 

the Dice coefficient for bone of 0.83 in cranial region while MR-ACmMR offered 0.74 

in this study and 0.65 in other previous study.  

The results suggest that UTE MR-AClevel provides more accurate PET 
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quantification than Dixon-based AC methods that yielded around 10-20% errors in  

and 5%-15% in depending on brain regions (larger error in cortical regions). Recent 

advanced template-based approach and new approaches with R2* to HU conversion 

and zero-echo-time show similar results to our approach and/or great potential for 

further improvement of MR-AC. The combination of our approach with those 

methods would be the interesting next step that we can take to improve the MR-AC 

in brain and potentially in whole-body PET/MRI studies.  

The advanced results using the level-set method can be attributed to the 

combined effects of various factors in this study. These factors include the 

inhomogeneity correction of UTE images incorporated into the level-set 

segmentation, which led to the more reliable segmentation results. The assorted 

boundary information provided by the multiphase level-set segmentations applied to 

both the UTE images were useful for determining the complex boundaries among 

different segments and trimming the segmentation results through morphological 

operations on the binary images.  

Although MR-AClevel yielded almost equivalent SUV quantification results to 

CT-AC in most brain regions, the errors in cerebellum and occipital cortex were 

larger than in other regions (Figures. 2-7A and 2-11A). The errors in these most 

common reference regions in brain PET studies resulted in positive biases in BR and 

SUVr estimations (Figs. 2-7B and 2-11B, Figure 2-9 and 2-10). It is most likely that 

the errors in these posterior and inferior brain regions are related to the 

misclassification of fat tissues in the neck as bone. This misclassification, also 

observed in Figures 2-5C and 2-6C, is likely caused by the image intensity 

brightening at the periphery of UTE images mainly because of the inhomogeneous 

B1 field associated with multichannel phased array coils.  
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Chapter 3. MR-based synthetic CT generation  

for MR-IGRT 

3.1. Background 

The MRI is increasingly being used in radiotherapy because it provide superior 

soft tissue contrast to delineate tumors and soft tissues. It allows a more precise 

identification of target volume compare to CT and consequently reduce the margin 

expansion from clinical target volume to PTV during the treatment planning. This 

reduction of margin not only reduce the OAR dose, but also shows optimal dose 

coverage for the targe, which is particulary helpful for high dose an 

hypofractionation treastments such as SBRT and SABR (47). 

Despite of several advantages of MRI, one major issue in MR-IGRT is the 

assignment of electron densities to MRI scans for dose calculation. Because the MR 

signals are related to the proton density and relaxation properties of tissue, not to 

electron density. As a result, additional CT imaging is essential to know the radiation 

dose distribution. The common strategy consists in applying rigid or deformable 

registration between MRI and CT simulation images and assigning electron density 

map obtained from the dCT that is shown in Figure 3-1.  

However, there is risk of registration inaccuracy as a result the discrepancies in 

patient position, anatomical changes between scans. In order to overcome these 

difficulties, many attempts have been made to synthesize CT from MR images in 

various ways (24, 27-29, 48). Recently, deep learning-based model have been used 

to generate sCT after training of MR-dCT paired sets (32-36, 49, 50). However, these 

studies showed used dataset from diagnostic MR imaging rather than MR-IGRT 

system. 
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For this purpose, we aimed to develop a synthetic CT generation algorithm wih 

the deep learning method using MR-dCT paired set from MR-IGRT system. We 

investigated the accuracy of the proposed method and performed a dosimetric 

evaluation of sCT images compared to conventional dCT method.  

 

 

 

 

  

 
Figure 3-1. Schematic procedure of MR-IGRT treatment  
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3.2. Materials and Methods 

3.2.1. MR-dCT Paired DataSet 

3.2.1.1 Patient Selection 

Total 90 patients data who underwent MR-IGRT were retrospectively 

considered. The study was approved by the institutional review board. The patients 

data can be divided into three categories, 30 with abdomen, 30 with thorax, and 30 

with pelvis. In this study, a synthetic CT model was separately applied to datasets in 

each region. Table 3-1 summarizes patient characteristics.  

 
Table 3-1. Summary of patient characteristics of MR-dCT paired dataset   

Characteristics Parameter Value or Number of patient 

 
For Abdomianl region (n=30)  

Age Mean ± Std 66 ± 10 

Sex 
Male 19 

Female 11 

Diagnosis 

Pancreatic cancer 14 
Klatskin tumor 4 

Liver lymph node 
metastasis 

4 

Hepatocellular 
carcinoma 

3 

Gallbladder cancer 2 
Other 3 

Treatment 
Technique 

IMRT 17 
SBRT 13 

Prescription dose 

50 Gy / 5 fx 5 
45 Gy / 5 fx 5 
40 Gy / 5 fx 2 

37.5 Gy / 5 fx 1 
60 Gy / 30 fx 2 
56 Gy / 28 fx 4 
54 Gy / 27 fx 2 
50 Gy / 25 fx 5 
30 Gy / 5 fx 1 

27.5 Gy / 5 fx 1 
20 Gy / 5 fx 1 
40 Gy / 8 fx 1 

 



 

 ３３

For Thoracic region (n=30)  
Age Mean ± Std 59 ± 5 

Sex 
M 0 
F 30 

Diagnosis 
Right breast cancer 18 
Left breast cancer 12 

Treatment 
Technique 

APBI using IMRT 
30 

Prescription dose 38.5 Gy / 10 fx 30 
 
For Pelvic region (n=30)  

Age Mean ± Std 74 ± 6 

Sex 
M 30 
F 0 

Diagnosis Prostate cancer 30 

Treatment 
Technique 

IMRT 9 
IMRT with SIB 13 

SBRT 8 

Prescription dose 
70 Gy / 28 fx 20 

62.5 Gy / 25 fx 2 
36.25 Gy / 5 fx 8 

IMRT = Intensity Modulated Radiation Therapy, SBRT = Stereotactic Body Radiation 
Therapy, APBI = Accelerated partial breast irradiation, SIB = Simultaneous-integrated boost 
 

3.2.1.2 CT and MR Image Acquisition 

For the treatment planning, all patient MRI simulation scan was obtained 15 

min after CT simulation scan, consecutively. The CT images were acquire using a 

Brilliance Big Bore CT scanner (Philips, Cleveland, OH). The MRIdian system 

(ViewRay, Oakwood, OH) was used for 0.35T MRI data acquisition. The MR images 

were acquired using a true fast imaging with steady-state precession (TrueFISP; 

TRUFI) sequence. The MRI scans were obtained with the same patient setup and the 

same immobilization device as the CT simulation. CT images were aligned to the 

corresponding MR images through deformable registration provided ViewRay TPS. 

After registration process, these registered dCT images were resampled to the same 

size of MR images. The accuracy of image registration was visually compared by 

the radiation oncologist and it was excluded from the dataset when the mismatch 
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occurred in the outer and inner contour of patient body. 

 

3.2.1.3 Image Pre-processing 

The workflow of image pre-processing before network training summarized in 

Figure 3-2. First, the dCT images were processed to remove external part of the dCT 

images, such as body frame and coil based on the body region of the MR images. 

Second, blurred image slices at the edges along the axial dimension based on MR 

image were excluded from the dataset. This work was applied to both MR and dCT 

dataset. Third, the center point artifact, which is often caused by MR calibration 

problem, was removed. A series of image pre-processing procedures were performed 

using an in-house Matlab (R2018a; MathWorks, Natick, MA) program. In addition, 

the 0.35T TRUFI sequence MR image intensities may vary between scans and can 

 
Figure 3-2.The workflow of image pre-processing.  
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also be affected by B0 and B1 field nonuniformities. Therefore, N4 bias field 

correction (51), available at open source 3D Slicer 4.6.2, was applied on the MR 

images to remove inhomogeneity.  

The axial diemension of entire MR and dCT dataset was resampled to 320 x 

320 matrix to fit into a CNN architecture. For learning network input, the MR images 

were normalized using a 95% percentile value of each image intensity in each patient, 

and CT images using the maximum value in each patient, respectvely. 

Figure 3-3 shows a pair of MR and dCT images of pelvic, thoracic, abdominal 

region which all image processing has beem completed.  

 

  

 
Figure 3-3. All image processed MR and dCT paired dataset of (A) Pelvis, (B) Thorax, 
(c) Abdomen 



 

 ３６

3.2.2. Synthetic CT Generation using 2D CNN 

3.2.2.1 Network Architecture 

We utilized 2D CNN to generate a synthetic CT image from paired MR-dCT 

dataset. The 2D CNN network, called U-net by the shape of learning structure, is 

well known successful network for medical image segmentation (52). In the U-net 

architecture, it has a symmetric structure consisting of contracting path and 

expanding path to have the same size as original input image. In addition, there is 

skip connections between contracting and expanding path to provide local 

information to the global information.  

In this study, the 2D CNN U-net architecture introduced by Han (32) was 

adopted and modified. The leaky rectified linear unit (ReLU) was used as activation 

function instead of ReLU. A schematic overall architecture of 2D CNN U-net is 

depicted in Figure 3-4.  

 

 

 
Figure 3-4. Overall architecture of 2D CNN U-net for generating synthetic CT  
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3.2.2.2 Network Training and Implementation 

The network trained using 2D MR-dCT paired images along axial dimension. 

For each patient region, 24 MR-dCT paired dataset (80% of total paired dataset) were 

randomly selected as the training data and the other 6 paired dataset used as the 

validation data. Data augmentation was performed by flipping all images along the 

horizontal, vertical, and both direction to increas the number of training samples and 

improve generalization of the network. Therefore, we used 4 times the number of 

pre-processed dataset were used in training process. A total of 15246, 16860, and 

9516 image slices were used for pelvic, thoracic, and abdominal region, respectively.  

The learning network was implemented using Tensorflow framework 

(Tensorflow-gpu v1.14.0 and Python v3.6) on single NVIDIA Geforce GTX 1080Ti 

GPU card with 11 GB memory. The network trained 200 epochs with adaptive 

stochastic gradient descent optimizer with a learning rate of 0.0001. Weight and 

biases in the vonvolutional layers and decovolutional layer were trained by 

miniminzing a loss function. The loss function using as the mean absolute error 

(MAE) between the sCT and dCT is defined as,  

 

1
1L  loss function

1 N

i i
i

dsC TT
N

C


   (3.1) 

  

where i is a voxel within the body and N is the total number of voxels.  

The sCT generation was performed by applying MR images of validation 

dataset to the trained network model. The HU value of sCT was restored considering 

the normailized value applied to each patient. Finally, sCT images were converted 
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DICOM format allowing use in the ViewRay TPS.  

 

3.2.3. Data Analysis  

3.2.3.1 Geometric Analysis 

For each patient, the accuracy of the sCT was evaluated by calculating MAE, 

root mean square error (RMSE), and peak signal-to-noise ratio(PSNR) compared 

with dCT as follows: 
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where i is a voxel within the body, N is the total number of voxels, and MAX is 

the maximum pixel value of voxel.  

We also calculated the structural similarity (SSIM), which evaluates the visual 

impact of the three characteristics such as luminance, contrast and structure. The 

simplified equation of SSIM is defined as,   
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where μx, μx,𝜎x, 𝜎y and 𝜎xy are the local means, standard deviations, and cross-

covariance for images of sCT and dCT. 

 

3.2.3.2 Dosimetric Analysis 

For dosimetric evaluation, the ViewRay TPS for tri-60Co system was employed 

for treatment planning. With the sCT images, dose distribution calculated under the 

identical conditions as the dCT treatment plan. The dose distributions were 

calculated using the MonteCarlo algorithm with calculation grid size of 3mm and 

magnetic field correction included.  

The prescription dose to PTV was not the same for all patient. In order to 

evaluate the dose distribution under the same condition, the scaling process for dose 

was calculated as follows : Pelvis 70 Gy, Thorax 38.5 Gy, Abdomen 50 Gy.   

The comparison between sCT and dCT dose distribution was performed by 

calculating minimum (Dmin), maximum (Dmax) and mean (Dmean) absorbed doses for 

different critical organs and target volumes. In addition, The conformity index (CI) 

and the homogeneity index (HI) for each PTV were calculated as follows:  

 

  100%     
Conformity index CI

    

V of the target volume
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To examine the difference between sCT and dCT calculated doses, we 

performed gamma index evaluation (53). Gamma index is a metric used for 

comparing two plans of dose distribution. It allows to express the difference between 
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the plans in a given point in space with a number, which is very important for 

performing patient quality assurance. The gamma index γ is defiend as, 
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The pass-fail criteria :

) 1,  calculation passes,

) 1,  calculation fails.

(
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 (3.9) 

 

where rm, rc are the single measurement point and the spatical location of 

calculated distribution relative to the measurement point. The dose-difference 

criterion is Md , and the distance-to-agreement(DTA) criterion is MD . The 

DTA is the distance between a measured data point and the nearest point in the 

calculated dose distribution that exhibits the same dose.  

In this study, gamma criterion of 1 mm/1%, 2 mm/2% and 3 mm/ 3% were used 

and points with doses equal to or less than 10%, 50%, and 90% of the maximum 

dose in the dose distribution were not evaluated.  
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3.3. Results 

3.3.1 Image Comparison  

Pelvic region 

The results of axial, sagittal, and coronal views of input MRI, dCT, and output 

sCT for pelvic region are shown in Figures 3-5, 3-7 and 3-8. The Figure 3-6A shows 

the HU comparison between dCT and sCT. The dCT and sCT profile transecting 

femur bone and prosate are shown at Figure3-6B. The HU values of dCT and sCT 

are represented in the solid and dash lines, respectively.  

According to visual inspection, the sCT produced by 2D CNN matched closely 

to both soft tissue and bone structure compared to dCT. The absolute HU difference 

between CT and sCT is usually small, except for the discrepancy between the edge 

of the bone and the body surface. It can be seen that the air pocket and soft tissue 

close to the superior direction are generated from the structure of the MR image. 

Unlike the axial diemension, discontinuities in soft tisssue and bone were observed 

in coronal and sagittal dimension. 

 

Thoracic region 

The results of axial, sagittal, and coronal views of input MRI, dCT, and output 

sCT for thorax region are shown in Figures 3-9, 3-11 and 3-12. The Figure 3-10A 

shows the HU comparison between dCT and sCT. The dCT and sCT profile 

transecting both lungs, ribs, and mediastinum are shown at Figure 3-10B. The HU 

values of dCT and sCT are represented in the solid and dash lines, respectively.  

The 2D CNN model achieved adequate HU prediction of sCT for soft tissue 

and spine. However, there were difficulties in the generating ribs, which can be also 
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found in the profile in Figure 3-10B. There was a slight overestimation of the sCT 

HU values as can been seen in the overall blueness in the HU differnece map in 

Figure 3-6A. As shown in Figure 3-11, it can be found that the difference HU values 

with discontinuity in the sagittal dimension.  

 

Abdominal region 

The results of axial, sagittal, and coronal views of input MRI, dCT, and output 

sCT for abdomen region are shown in Figures 3-13, 3-15 and 3-16. The Figure 3-

14A shows the HU comparison between dCT and sCT. The dCT and sCT profile 

transecting liver, and stomach are shown at Figure 3-14B. The HU values of dCT 

and sCT are represented in the solid and dash lines, respectively.  

Compared with the results of the previous two regions, the sCT of soft tissue 

and bone structure generated more blurred. Also, the discontinuity is easily obseved 

due to the change in the HU values in coronal dimension as shown in Figure 3-16. 

As shown in Figure 3-14A and 3-14B, it was observed that the sCT HU value of the 

overall area was overestimated in the HU difference map.   
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Figure 3-5. The representative axial slice views of MRI, dCT and sCT for pelvis 

 
Figure 3-6. (A) The difference map between 2D CNN model sCT image and the dCT 

image for pelvis, (B) The voxel-based HU profile of sCT(dash line) and dCT (solid line) 
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Figure 3-7. The representative sagittal slice views of MRI, dCT and sCT for pelvis 

 
Figure 3-8. The representative coronal slice views of MRI, dCT and sCT for pelvis 
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Figure 3-9. The representative axial slice views of MRI, dCT and sCT for thorax 

 
Figure 3-10. (A)The difference map between 2D CNN model sCT image and the dCT 

image for thorax, (B) The voxel-based HU profile of sCT(dash line) and dCT (solid line) 
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Figure 3-11. The representative sagittal slice views of MRI, dCT and sCT for thorax 

 
Figure 3-12. The representative coronal slice views of MRI, dCT and sCT for thorax 
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Figure 3-13. The representative axial slice views of MRI, dCT and sCT for abdomen 

 
Figure 3-14. (A)The difference map between 2D CNN model sCT image and the dCT 
image for abdoemn, (B) The voxel-based HU profile of sCT(dash line) and dCT (solid 
line)  
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Figure 3-15. The representative sagittal slice views of MRI, dCT and sCT for abdomen 

 

 
Figure 3-16. The representative coronal slice views of MRI, dCT and sCT for abdomen 
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3.3.2 Geomtric Analysis   

For the 6 patients validation dataset in each region, MAE, RMSE, PSNR, and 

SSIM were computed using the equations from 3.2 to 3.5. The Table 3-2 summarized 

the results of geometric parameters. Comparing the average values of MAE, RMSE, 

and PSNR, the values in pelvic region show better acuuracy than the other two region. 

For instance considering the MAE values, the error gradually increases in the order 

of pelvis, thorax, abdomen with 44.02 ± 4.81, 66.36 ± 9.34, and 100.14 ± 36.80, 

respectively. On the other hand, SSIM showed contradictory results.  

 

Table 3-2. Geometric comparison between dCT and sCT with respect to abdomen, thorax, 
and pelvis  

Index Pelvis Thorax Abdomen 

MAE (HU) 44.02 ± 4.81 66.36 ± 9.34 100.14 ± 36.80 

RMSE (HU) 94.26 ± 6.03 108.67 ± 10.30 132.84 ± 32.40 

PSNR (dB) 28.73 ± 0.57 26.73 ± 0.70 25.11 ± 1.85 

SSIM 0.88 ± 0.04 0.87 ± 0.02 0.92 ± 0.01 

 

 

3.3.3 Dosimetric Analysis   

Dose volume histogram (DVH) curves for PTV and relevant OARs in the pelvis, 

thorax, and abdomen are shown in Figure 3-17 A, B, and C, respectively. Figure 3-

17 D, E, and F are enlarged views of each PTV curve. On the graph, the dotted line 

indicated the dCT and the solid line indicated the sCT. It showed that the dose 

distribution of sCT is nearly identical to that of dCT in most structures except the 

PTV in the abdominal region.  

For quantitave analysis, clinically relevant DVH metrics were compared. The 
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mimimum, maximum, and mean value of absolute dose, and percent difference 

values between dCT and sCT in PTV were summarized in Figure 3-18. Comparison 

of all of DVH metrics between dCT and sCT for pelvis, thorax, and abdomen were 

summarized in Table 3-3, 3-4, and 3-5, respectively. The absolute value of PTV does 

not differ significantly between dCT and sCT in all three regions. However, it 

shoewed that dose overestimation of the sCT in PTV about 2% due to the percentage 

difference in Figure 3-18B.    

Differences in OARs dose-volume metrics for each region are presented by box 

plots in Figures 3-19. Tables 3-6, 3-7, and 3-8 showed the average results of 

validation dataset DVH metrics corresponding to the different OARs. Since the p-

values for all metrics are greater than 0.05, there was no significant difference in the 

OARs comparison.  

The dCT-based and sCT-based dose ditribition were compared using gamma 

anaylsis. The Table 3-9 summarized gamma analysis of dose distributions with three 

different dose difference/distance-to agreement criteria : 1 mm/1%, 2 mm/2% and 3 

mm/3%. Considering the 2 mm/2% criterion with a 10% low dose threshold, it 

showed all regions pass rate were above 97 %. If the gamma criterion is changed to 

1 mm/1%, the overall gamma passing rate dcrease, especially in the abdolmen from 

97.12 ± 2.00 to 78.50 ± 7.23. These trend is well llustrated in Figure 3-2 by gamma 

passing rates under 1 mm/1% and 2 mm/2% criterion. 
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Figure 3-17. DVH curves for the PTV and OARs for (A) pelvis, (B) thorax, (C) abdomen, 
enlarged PTV graph in (D) to (F).  
*DVH : Dose-volume histogram, Dotted line : dCT, Solide line : sCT  

 
Figure 3-18. Box-plot of (A) absolute dose and (B) percent difference in PTV for each 
region. The maximum (top line), 75% (top of box), median (central point), 25% (bottom of 
box), and minimum (bottom line) are shown. Outliers are drawn as points.  
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Table 3-3. Dose-volume metrics of the PTV for pelvis 

DV metric  dCT sCT p-value 

PTV volume (cc) 81.09 ± 19.77 - 

Maximum dose (Gy) 78.70 ± 1.31 79.22 ± 1.29 0.229 

Mean dose (Gy) 73.94 ± 0.72 74.44 ± 0.62 0.042 

Minimum dose (Gy) 63.77 ± 2.13 64.42 ± 1.97 0.040 

D98% (Gy) 68.58 ± 1.04 68.89 ± 0.98 0.222 

D2% (Gy) 76.94 ± 1.11 77.34 ± 0.96 0.081 

V100% (cc) 77.54 ± 18.82 78.52 ± 19.04 0.035 

Homogeneity index 0.11 ± 0.02 0.11 ± 0.02 - 

Conformity index 0.96 ± 0.01 0.97 ± 0.01 - 

 

Table 3-4. Dose-volume metrics of the PTV for thorax 

DV metric dCT sCT p-value 

PTV volume (cc) 95.37 ± 29.80 - 

Maximum dose (Gy) 42.48± 1.36 42.61± 1.64 0.400 

Mean dose (Gy) 40.13 ± 0.64 40.14± 0.77 0.911 

Minimum dose (Gy) 35.28 ± 1.67 35.18 ± 1.65 0.645 

D98% (Gy) 37.67 ± 0.87 37.57± 0.72 0.208 

D2% (Gy) 41.85 ± 1.32 41.92± 1.44 0.517 

V100% (cc) 89.63 ± 27.79 88.11± 27.34 0.070 

Homogeneity index 0.10 ± 0.05 0.11 ± 0.05 - 

Conformity index 0.94 ± 0.01 0.92 ± 0.02 - 

 

 
Table 3-5. Dose-volume metrics of the PTV for abdomen 

DV metric dCT sCT p-value 

PTV volume (cc) 38.27 ± 13.64 - 

Maximum dose (Gy) 54.08 ± 1.20 53.25 ± 1.93 0.242 

Mean dose (Gy) 50.45 ± 2.07 49.63 ± 2.72 0.225 

Minimum dose (Gy) 45.22 ± 2.22 44.41 ± 2.79 0.239 

D98% (Gy) 49.29 ± 0.16 48.57 ± 1.41 0.276 

D2% (Gy) 53.49 ± 0.58 52.90 ± 1.75 0.448 

V100% (cc) 36.10 ± 14.19 34.09 ± 16.61 0.224 

Homogeneity index 0.08 ± 0.01 0.09 ± 0.01 - 

Conformity index 0.94 ± 0.01 0.73 ± 0.029 - 
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Figure 3-19. Box-plot of absolute dose difference between dCT and sCT in OARs for each 
region. The maximum (top line), 75% (top of box), median (central point), 25% (bottom of 
box), and minimum (bottom line) are shown. Outliers are drawn as points.  
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Table 3-6. Dose-volume metrics of the OARs for pelvis 

DV metric dCT sCT p-value 

Bladder 

Maximum dose (Gy) 75.77 ± 1.55 75.87 ± 1.37 0.551 

Mean dose (Gy) 47.30 ± 3.65 47.51 ± 3.60 0.136 

Minimum dose (Gy) 20.01 ± 10.49 20.13 ± 10.50 0.105 

Rectum 

Maximum dose (Gy) 76.07 ± 1.72 43.24 ± 6.12 0.645 

Mean dose (Gy) 43.22 ± 6.14 43.24 ± 6.12 0.600 

Minimum dose (Gy) 16.61 ± 8.01 16.53 ± 7.95 0.291 

Femur head 

Maximum dose (Gy) 78.70 ± 1.31 79.22 ± 1.29 0.904 

Mean dose (Gy) 73.94 ± 0.72 74.44 ± 0.62 0.068 

Minimum dose (Gy) 63.77 ± 2.13 64.42 ± 1.97 0.167 

 

 
Table 3-7. Dose-volume metrics of the OARs for thorax 

DV metric dCT sCT p-value 

Heart 

Maximum dose (Gy) 19.01± 10.87 19.77 ± 9.95 0.398 

Mean dose (Gy) 3.05 ± 0.73 2.92 ± 0.73 0.327 

Minimum dose (Gy) 0.28 ± 0.09 0.28 ± 0.09 0.856 

Left Lung 

Maximum dose (Gy) 9.05 ± 4.92 9.11 ± 4.84 0.798 

Mean dose (Gy) 1.57 ± 0.31 1.66 ± 0.32 0.472 

Minimum dose (Gy) 0.15 ± 0.03 0.16 ± 0.03 0.447 

Right Lung 

Maximum dose (Gy) 40.09 ± 1.05 39.39 ± 1.05 0.084 

Mean dose (Gy) 6.36 ± 1.36 6.64 ± 1.39 0.389 

Minimum dose (Gy) 0.23 ± 0.08 0.26 ± 0.08 0.289 
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Table 3-8. Dose-volume metrics of the OARs for abdomen 

DV metric dCT sCT p-value 

Duodenum 

Maximum dose (Gy) 26.14 ± 8.89 25.89 ± 9.11 0.462 

Mean dose (Gy) 26.14 ± 8.89 25.89 ± 9.11 0.495 

Minimum dose (Gy) 5.35 ± 5.12 5.41± 5.00 0.532 

Liver 

Maximum dose (Gy) 44.46 ± 8.85 43.94 ± 9.52 0.233 

Mean dose (Gy) 8.32 ± 5.26 8.27 ± 5.19 0.291 

Minimum dose (Gy) 0.73 ± 0.33 0.76 ± 0.39 0.170 

Stomach 

Maximum dose (Gy) 45.45 ± 5.19 44.67 ± 5.75 0.459 

Mean dose (Gy) 15.23 ± 5.09 15.09 ± 5.00 0.608 

Minimum dose (Gy) 2.10 ± 1.63 2.16 ± 1.71 0.485 

 

 

Table 3-9. Gamma analysis results comparing the dCT-based plan with sCT-based plan 

Gamma criterion Dose > 10% Dose > 50% Dose > 90% 

Pelvis 

1mm / 1% 87.63 ± 6.86 73.92 ± 17.75 63.25 ± 21.60 

2mm / 2% 98.45 ± 0.95 98.01 ± 2.50 93.26 ± 10.42 

3mm / 3% 99.32 ± 0.68 99.70 ± 0.48 98.96 ± 2.17 

Thorax 

1mm / 1% 91.14 ± 1.25 69.07 ± 3.33 64.28 ± 4.00 

2mm / 2% 99.74 ± 0.07 98.36 ± 0.51 96.06 ± 1.43 

3mm / 3% 99.99 ± 0.01 99.94 ± 0.07 99.85 ± 0.15 

Abdomen 

1mm / 1% 78.50 ± 7.23 28.83 ± 17.61 16.40 ± 17.56 

2mm / 2% 97.12 ± 2.00 81.15± 11.73 40.52 ± 30.93 

3mm / 3% 99.09 ± 0.83 93.57± 5.90 70.20 ± 24.13 
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 3.4. Discussion 

MR-IGRT with daily adaptive treatment enables to observe tumor reduction in 

real-time. This allows intensive treatment on the remaining tumors while minimizing 

exposure to the surrounding organs. If the tumor size dramatically changes during 

radiotherapy, adaptive MR-IGRT can be used to further reduce normal tissue dose, 

eventually reduce decrease adverse events. Several studies and clinical trials have 

reported promising results in terms of tumour control, toxicity occurrence and 

survival rates using MR-IGRT in breast and pancreatic caner (54-56). In this regard, 

MR-IGRT is the latest treatment technology capable of verification of volumetric 

dose distribution in real time. However, the deformation registration algorithm 

commonly used in MR-IGRT is limited in accuracy, which may lead to inaccurate 

calculation of dose distribution. Therefore, generating synthetic CT from MR images 

acquired in real time is the an alternative way to calculate more accurate dose 

distribution.   

In this study, we applied and assessed 2D CNN U-net model to generate sCT 

for MR-IGRT dose calculation. The 2D CNN U-net model was chosen as a deep 

 
Figure 3-20. Bargraph of Gamma passing rate for each region (A) 1 mm/1% (B) 2mm/2% 
criterion.  
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learning method due to much less time-consuming and high accuracy compared to 

the atlas or segmentation based synthetic CT generation method. The difference from 

previously reported studies is that the proposed 2D CNN U-net network is applied 

and compared to three different areas of the pelvis, thorax, and abdomen 

simutaneously.  

To quantiatatively evaluate the quality of the sCT, geometrical analysis and 

dosimetric end analysis were performed. The results demonstrated highly accurate 

and efficient performance in sCT generation. Most of p values in PTV and OARs 

were greater than 0.05, indicating no significant diffrence in dose metrics between 

the dCT and sCT. However, there was a difference in accuracy depending on the 

dataset region. The pelvis and thorax data showed that dCT and sCT were almost 

similar in all the indicators, but the abdomen showed an inferior accuracy compared 

to the two regions. This is due to the degree of mismatch in deformed registration 

bewteen MR and CT. The 2D CNN U-net model valid only when the MR and CT 

images are perfectly registred. It is not feasible given the mismatch between MR and 

CT images by organ motion or air poecket that easily observed in the abdominal 

region. Therefore, using the cycleGAN trained with unpaired samples would have a 

potential improvement on dosimetric accuracy (57-59). 

The dose accuracy of sCT could be predicted through geometric analysis values 

obtained from inter-voxel results of predicted HU values. MAE, RMSE, and PSNR 

all showed high accuracy in the order of pelvis, thorax, and abdomen, which showed 

the same trend in DV metric and gamma analysis. However, since SSIM considered 

all luminance, contrast, and structural characteristics between images, it was difficult 

to find a problem caused by a difference in HU values. Therefore, contrary to the 

previous results, it showed similarity in the order of the abdomen, thorax, and pelvis. 
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From the image comparison results, HU estimation of bony stsuctures were not 

sufficiently represented on the sCT. One possible reason could be the large 

interpatient variability of CT intensity distribution within bony structure (34). To 

solve this problem, adding additional anatomical information in the training data for 

the 2D CNN U-net could further improve the CT number estimation accuracy. In the 

process of radiotherpay, it was requried contouring of tumor and normal organs. 

Therefore, in preparing the data set, additional contouring of the air pocket and the 

bone can improve accuracy.  
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Chapter 4. Conclusions 

We have developed an UTE MR-AC method using level-set segmentation with 

inhomogeneity correction for brain PET/MRI studies, and demonstrated the 

feasibility of this method in brain PET/MRI studies with [18F]FP-CIT and [18F]FDG. 

The MR-based attenuation maps generated using level-set segmentation and PET 

images corrected for attenuation and scatter using it was superior to those offered by 

the manufacturer of the PET/MRI system in terms of the similarity to the CT-AC. 

This method will be useful for improving the quantitative accuracy of brain PET in 

PET/MRI studies. 

We have applied 2D CNN U-net network and evaluated the low field MR-based 

sCT compared to dCT. It can generate accurate sCT images from low field MR 

images fully automatic within seconds. Compared with dCT generated by deformed 

registration, the sCT provided low dose uncerttainties by DVH metric and gamma 

analysis. Therefore, the proposed method clinically acceptable for MR-IGRT 

planning. It suggests the possibility of MR-only radiation therapy framework. 
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Abstract in Korean (국문 초록) 
 

지난 10년간 진단 및 치료분야에서 자기공명영상(Magnetic resonance 

imaging; MRI) 의 적용이 증가하였다. MRI는 CT와 비교해 추가적인 

전리방사선의 피폭없이 뇌, 복부 기관 및 골수 등에서 더 높은 연조직 

대비를 제공한다. 따라서 MRI를 적용한  양전자방출단층촬영(Positron 

emission tomography; PET)/MR 시스템과 MR 영상 유도 방사선 치료 

시스템(MR-image guided radiation therapy; MR-IGRT)이 진단 및 치료 

방사선분야에 등장하여 임상에 사용되고 있다.  

PET/MR 시스템의 한 가지 주요 문제는 PET 정량화를 위한 MRI 

스캔으로부터의 감쇠 보정이며, MR-IGRT 시스템에서 선량 계산을 위해 

MR 영상에 전자 밀도를 할당하는 것과 비슷한 필요성을 찾을 수 있다. 

이는 MR 신호가 전자 밀도가 아닌 조직의 양성자 밀도 및 T1, T2 이완 

특성과 관련이 있기 때문이다. 이 문제를 극복하기 위해, MR 

이미지로부터 유래된 가상의 CT인 합성 CT라 불리는 방법이 

제안되었다. 본 학위논문에서는 합성 CT 생성 방법 및 진단 및 방사선 

치료에 적용을 위한 MR 영상 기반 합성 CT 사용의 임상적 타당성을 

조사하였다.  

첫째로, 뇌 PET/MR를 위한 레벨셋 분할을 이용한 MR 이미지 기반 

감쇠 보정 방법을 개발하였다. MR 이미지 기반 감쇠 보정의 부정확성은 

정량화 오류와 뇌 PET/MRI 연구에서 병변의 잘못된 판독으로 이어진다. 

이 문제를 해결하기 위해, 자기장 불균일 보정을 포함한 다상 레벨셋 
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알고리즘에 기초한 개선된 초단파 에코 시간 MR-AC 방법을 제안하였다. 

또한 CT-AC 및 PET/MRI 스캐너 제조업체가 제공한 MR-AC와 비교하여 

레벨셋 기반 MR-AC 방법의 임상적 사용가능성을 평가하였다. 

둘째로, MR-IGRT 시스템을 위한 심층 컨볼루션 신경망 모델을 

사용하여 저필드 MR 이미지에서 생성된 합성 CT 방법를 제안하였다. 

이 합성 CT 이미지를 변형 정합을 사용하여 생성된 변형 CT와 비교 

하였다. 또한 골반, 흉부 및 복부 환자에서의 기하학적, 선량적 분석을 

통해 방사선 치료계획에서의 합성 CT를 사용가능성을 평가하였다. 

 

주요어 : 합성 CT, 가상 CT, PET/MRI, MR-IGRT, 감쇠보정, 전자 밀도 

지도  

학번 : 2012-30578 
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