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ABSTRACT

Genetic and Functional Analysis on the Variants of

Undiagnosed Pediatric Neurodevelopmental Disorders

Youngha Lee
Biomedical Sciences Major
Department of Biomedical Sciences

Seoul National University

Recent advances in next-generation sequencing (NGS) technology led to many advances
in understanding the pathogenicity of rare diseases. Whole exome sequencing (WES),
based on NGS, has now become an indispensable tool in clinical diagnosis of mendelian
disorders. The purpose of this thesis is to analyze 553 undiagnosed pediatric
neurodevelopmental disorder patients, to identify disease-causing variants and apply
them to clinical treatment.

A large portion of rare Mendelian disorder patients suffers from genetic variants that
are inherited in a recessive manner. This study focuses on a detailed understanding of
these recessive variants. Although there have been many studies on de novo variants that
cause rare diseases, a systematic understanding of the contribution of recessive variants
to Mendelian diseases is still lacking. Therefore, genetic diagnosis and variant discovery
of 553 undiagnosed Korean patients with complex neurodevelopmental problems
(Korean NeuroDevelopmental cohort; KND) were performed using WES of patients and
their families. The diagnostic yield of our WES analysis, including previously known

pathogenic genes and CNVs, was 47.4 %. In addition, the newly discovered causative



genes in this study were closely associated to the known genes in the brain developmental
process. Among the patients with the previously reported pathogenic variants, 35.1%
inherited these variants in a recessive manner. Genes that cause recessive disease in KND
cohort tend to be less constrained by loss-of-function variants and were enriched in lipid
metabolism and mitochondrial components. These observations and some assumptions
were applied to an estimation that approximately 1 in 17 healthy Korean carry at least
one of these pathogenic variants that develop neurodevelopmental troubles in a recessive
manner. Furthermore, the feasibility of these genes for carrier screening was evaluated.
Our results will be the basis for recessive variant screening for appropriate diagnosis and
treatment of rare Mendelian disorder patients.

In this thesis, genetic and functional studies have enabled us to explain the genetic
causes of rare neurodevelopmental disorders, additionally, the results of this study

underline the utility of WES-based clinical diagnostics for improving patient care.

* This thesis is based on published article; Lee et al., Sci Rep. 10(1):1413 (2020).

Keywords: Whole exome sequencing, Developmental disorders, Pediatric disease,

Neurology, Recessive variants, Variant discovery

Student Number: 2013-31180



TABLE OF CONTENTS

ABSTRACT ...ooiiiiiii i
TABLE OF CONTENTS ......coiiiiiiiitit ool ii
LIST OF FIGURES AND TABLES .......ouuumiiiiiiee, iv
INTRODUCTION .......ooiiiiiiiiiiiii i, 1
MATERIALS AND METHODS .......iiiieeeeeeee oo, 6
RESULT ..ot 13
DISCUSSION ..o, 48
REFERENCES ......ccoiiiiiiiii et 55
LIST OF ABBREVIATIONS ......cooiiiiiiiieee e, 65
A R 66
A O] B 69



LIST OF FIGURES AND TABLES

FIGURES
Figure 1. Whole exome sequencing (WES) pipeline ................coooiiiiiiiiiniiin, 5
Figure 2. Categorization of patient’s clinical diagnosis (n = 553 patients) ................ 8

Figure 3. The age distribution of patients when their symptom began and the time
differences between age of onset and WES analysis (n =553 patients) ................... 14
Figure 4. Location of Seoul National University Children’s Hospital (SNUCH) ....... 15

Figure 5. Classification of the KND cohort by inheritance patterns and major symptoms

Figure 6. Diagnostic yield of 553 patients with undiagnosed symptoms using WES ... 18
Figure 7. Identification of an inherited deletion at 2p22.3 in the family with hereditary
spastic paraplegia (HSP) ..o 21

Figure 8. Verification of the deleted regions in HSP family through qPCR and Sanger

IeTe |53 16) 111 PPN 22
Figure 9. Pathogenic variants divided by inheritance patterns ..................c..coouen. 25
Figure 10. Pathogenic variants categorized by their function (n =298 variants) ........ 26
Figure 11. Disease and GO enrichment analysis of 164 known genes .................... 27
Figure 12. Disease and GO enrichment analysis between male and female .............. 28

Figure 13. Verification of the association of new genes to known gene's network in
various brain developmental Stage ..........c.oouiiiiiiiiiii e 30

Figure 14. Burden of recessive variants in KND patients (Pt) and their parents as controls



Figure 15. Comparison in the number of recessive variants for neurodevelopment related
gene sets between patients and CONtrols ...........ooiviiiiiiiiiiii e 33
Figure 16. Venn diagrams displaying high correlations of recessive or dominant
inheritance patterns with their known inheritance patterns ..................c.oocviien... 36
Figure 17. ACMG code distribution of variants that are in recessive or dominant
INMEIItANCE PAttCIT ... ettt e e e 37
Figure 18. Comparison of genetic properties in recessive and dominant variants ........ 38

Figure 19. LoF tolerance of genes from KND cohort against all or haploinsufficiency

Figure 21. Functional differences between recessive and dominant genes from GO
ALY SIS Lottt e 41
Figure 22. Estimation of the proportion of Korean rare neurodevelopmental disorder
o240 4 P 44
Figure 23. Comparison of various parameters between pathogenic recessive variants
from KND patients and gnomAD variants from the same genes that were found in KND
018 (301 45

Figure 24. Summary of the frequency and type of recessive variants in the KND cohort.

...................................................................................................... 46
Figure 25. Validation of case that WES-based analysis altered clinical courses ......... 52
TABLES
Table 1. Clinical information of 553 KND patients ............c.ccovvvieiiiiiieieeeeninnnns. 7
Table 2. List of copy number variations discovered in this study .......................... 19

¥ } ]



Table 3. List of known neurologic disorder associated genes .................ccevvnennnn. 23

Table 4. Notable case where WES-based analysis provided correct diagnoses or changed

medical treatment StrateZIeS .. ....vvuttiiet ittt 53

Vi

M E ) 8k o
I . I "



INTRODUCTION

Recent advances in next-generation sequencing (NGS) technology have revolutionized
genetic research. NGS technology has enabled researchers to study the entire human
genome more effectively. Therefore, various high-throughput sequencing techniques
have been applied to clinical study as well as basic research. Whole exome sequencing
(WES), one of various NGS techniques, has been widely used in clinical fields since its
introduction in 2009. While whole genome sequencing (WGS) technique sequencing the
entire genome, WES only covers the coding region of the genome, so it is relatively
inexpensive and requires less effort to analyze (Fig. 1) (/). WES is now an indispensable
tool in clinical diagnosis.

Clinical WES is a method of linking and analyzing the clinical information and
sequencing data of patients and parents for diseases that are difficult to diagnose with
conventional biochemical and radiological tests. Genotype-phenotyping analysis of
disease using WES provides an accurate diagnosis and treatment strategy for the patient.
The trio-based whole exome sequencing analysis provides higher diagnostic accuracy
than patient-only analysis and enables the discovery of novel genetic variants that were
difficult to find with conventional targeted gene sequencing panel method.

Rare disease is defined as a disease that affects less than 200,000 people in the United
States, depending on its prevalence. Although numerous patients suffer from rare diseases
worldwide, a large number of rare diseases have yet to be elucidated due to their genetic
complexity and rarity. To date, more than 4,200 disease-causing genes have been

registered in the Online Mendelian Inheritance in Man (OMIM), but the genetic cause of



many rare Mendelian disorders is still unknown. Although WES has recently been applied
to various common complex diseases, WES is still more effective in studying rare
diseases. Thanks to its low cost and easy of analysis, WES has been a useful tool for
research on rare Mendelian disorders.

Undiagnosed rare diseases are an important challenge to overcome because they cause
not only loss of happiness of patients and their families, but also constant social burden.
To overcome these undiagnosed rare disorders, there have been large-scale national
projects and international cooperation based on comprehensive genetic analysis, such as
Undiagnosed Diseases Program (UDP) in United States, Deciphering Developmental
Disorders (DDD) in UK, Finding of Rare Disease Genes (FORGE) in Canada. Through
these large-scale projects, many rare Mendelian disease patients were diagnosed and new
causative genes were discovered. In Korea, the need for large-scale study on rare
Mendelian diseases has emerged and related projects are underway. As part of these
projects, we conducted a genetic analysis of patients with pediatric rare neuro-
developmental disease using WES.

A large fraction of rare Mendelian disorders follow a recessive inheritance pattern (2,
3). The Online Mendelian Inheritance in Men (OMIM) lists 5,317 disorders and 3,077 of
these are categorized as recessive (as of April 2019). However, the contribution of
recessive variants to the pathogenesis of common complex disease is lower than expected
(4-7). For rare diseases, the contribution of recessive variants in inbred populations has
been well studied (§—10). However, the precise contribution of recessive variants to rare
Mendelian disorders in an outbred population is still not well understood.

Due to the complexity of brain developmental processes, there are many patients with

diverse neurological problems that are difficult to diagnose by conventional criteria.



Diagnosis of neurological diseases affecting children is frequently hampered by
overlapping clinical features, making it difficult for clinicians to easily recognize the
nature of disease and find appropriate treatment. This makes pediatric neurologic patients
a target for genome-wide genetic studies (//—13). To facilitate diagnosis and discovery of
novel disease pathology, systematic efforts on a regional and national scale have been
carried out (/4—17). Since many rare pediatric neurological disorders follow Mendelian
inheritance, variant discovery by trio-based whole-exome sequencing (WES) has proved
to be the most effective method, yielding diagnosis rates of 25-41% (11-13, 15, 17).

Notably, the medical system in Korea provides a unique opportunity to conduct a
systematic analysis of rare disease and study the contribution of recessive variants on a
large-scale. Since the nation-wide referral system focuses on a few major tertiary clinical
institutions, Seoul National University Children’s Hospital (SNUCH) covers a large
portion of the 51-million Korean population, enabling consistent evaluation and treatment
of the patient cohort. For example, we recently reported on genetic analyses of large
cohorts of Duchenne muscular dystrophy (n = 507) and Rett-like syndrome without
MECP2 mutations (n = 34) (I8, 19). Genetically, Koreans are a good example of an
outbred population where marriages between relatives and even between individuals with
the same surnames has been banned since the 17th century (20). Our study represents the
largest of what was conducted in a single clinic, and highlights the careful integration of
clinical and genetic analysis.

In this study, WES was used to analyze a cohort of 553 patients (KND cohort) with
diverse neurodevelopmental disorders. We characterized the genotype-phenotype
relationships of patients with identified molecular defects, and explored the potential

association of genes not previously associated with disorder. We demonstrate that a high



proportion of recessively inherited variants are associated with patients with rare
neurodevelopmental disorders. Variants that were inherited in a recessive manner were
analyzed and their genetic properties were evaluated, aiming to understand their
distribution in healthy populations for appropriate diagnosis and treatment of patients
with rare Mendelian disorder. Together, this thesis describes the establishment of a system
that efficiently integrates genetic techniques with clinical diagnosis to maximize benefits

for pediatric rare disease patients and their families.
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MATERIALS AND METHODS

Subjects

Blood samples were obtained from patients and their parents, who provided informed
consent. WES was performed on 553 patients who visited the SNUCH pediatric
neurology clinic from July 2014 to January 2019 and displayed various
neurodevelopmental problems, such as Rett syndrome-like encephalopathy,
mitochondrial encephalopathy, epileptic encephalopathy, neuromuscular disorder,
leukodystrophy, hereditary spastic paraplegia (Table 1). The patients can be categorized
into two groups: (i) clinically diagnosable but with genetic heterogeneity (270/553, 48.8%)
or (ii) heterogeneous and nonspecific clinical features without definite diagnosis (283/553,
51.2%; Fig. 2). Prior to WES analysis, thorough clinical and laboratory evaluation of
patients was performed to identify possible genetic causes. These included genetic tests
with candidate gene sequencing, targeted gene panels, trinucleotide repeat analysis,
metabolic testing, brain MRI, or muscle biopsy. All patients were evaluated by three

pediatric neurologists, two pediatric neuroradiologists, and a pathologist.



Table 1. Clinical information of 553 KND patients.

Sex (n (%))
Male
Female
Age at symptom onset (years)
Age at first access to a tertiary hospital (years)
Interval between symptom onset and first medical access (months)
Number of visited tertiary hospitals for diagnosis (n (%))
1
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Age at WES (years)

Interval between the first access and WES (months)
Patients aged 0-10 years
Patients aged >10 years

Primary clinical diagnosis (7 (%))

265 (47.9)
288 (52.1)
1.4 (0-21)
1.8 (0-22)
3.9 (0-238)

62 (11.2)
277 (50.1)
178 (32.2)

32(5.8)
4(0.7)
7.4 (0-37)

34.0 (0-100)
114.5 (7-434)

Rett syndrome-like encephalopathy 72 (13.0)
Mitochondrial encephalopathy 49 (8.9)
Epileptic encephalopathy 51(9.2)
Neuromuscular disorder 37 (6.7)
Leukodystrophy 27 (4.9)
Hereditary spastic paraplegia 34 (6.1)
Others 283 (51.2)
Number of involved specialists for diagnosis (1 (%))
1-2 378 (68.4)
3-5 152 (27.5)
>5 23 (4.2)
Straight-line distance from home to the clinic, km (7 (%))
<20 186 (33.6)
20-100 180 (32.5)
> 100 187 (33.8)
2] &1
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Figure 2. Categorization of patient’s clinical diagnosis (n = 553 patients). RS, Rett
syndrome-like encephalopathy; ME, Mitochondrial encephalopathy; EE, Epileptic
encephalopathy; NM, Neuromuscular disorder; LD, Leukodystrophy; HSP, Hereditary

spastic paraplegia
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Whole Exome Sequencing

WES was performed at Theragen Etex Bio Institute (Suwon, Korea) following the
standard protocol and the sequencing data were analyzed as described previously (/9).
Depending on the genetic analysis result, each patient was categorized as one of the
following: category 1: known disease-causing genes were found; category 2: causative
gene for other diseases were found; category 3: potentially pathogenic gene, but without
prior disease association, was found; category 4: no disease-causing candidates were
found; and category 5: known pathogenic copy number variation (CNV) was found.

Our variant assessment procedures were as follows: firstly, patient-specific
CNVs were checked and samples with CNVs were classified as category 5. CNV was
called by comparing the normalized coverage depth between the patient and their parents
at each capture interval. Then, patient-specific variants such as de novo, compound
heterozygous (CH; autosomal), and rare homozygous (RHo; autosomal) and hemizygous
(RHe; X-linked) variants were selected from patients by comparing against their parents
and prioritized based on the inheritance pattern (Fig. 5). Variants with low in-house
quality score (< 60) or low coverage depths (< 10) were excluded. Variants in intron
regions and pseudogene were also filtered out.

In associating the patient's clinical features with discovered variants, if patients
carried a known pathogenic variant in OMIM or ClinVar, they were categorized as
category 1 or 2, depending on similarity with reported clinical characteristic. For variants
not previously reported, if they were not seen in normal population (Genome Aggregation
Database (gnomAD) (21), Korean Variant Archive (KOVA) (22) and in-house database)

and were evolutionarily well-conserved, they were classified as potentially pathogenic



variants. ACMG evidence codes for the variants were annotated using a script provided

by InterVar (23).

Human Brain Transcriptome Data

The BrainSpan transcriptome database (http://www.brainspan.org) was used to build
networks of developing human brain (24). Data from 8 post-conceptual weeks (PCWs)
to 40 years of age were analyzed. A total of 385 samples were used for the network
analysis after combining the multiple values by taking average. Probes with TPM
(transcripts per million) > 5 in at least one sample were used, yielding 23,943 probes as

"brain-expressed transcripts".

Brain Transcriptome Network Analysis

Using the above brain-expressed transcripts, we created 8 known gene co-expression
networks by selecting genes that are highly associated to our set of genes (n = 164;
Pearson's correlation r > (0.7) that have already been reported to have disease relevance at
each brain developmental period (Fig. 13). Then, we asked whether our novel genes can
be successfully integrated into the known gene co-expression network. We randomly
selected 53 genes (equal to the number of our novel genes) from brain-expressed
transcripts and counted how many edges they formed with the known genes at each period.
The 10° random gene selections were performed and the edge distribution was
constructed using the number of edges with known genes. The number of edges from
observed novel genes was evaluated against this distribution. P-values were calculated

using Z-score, assuming normal distribution.

3
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Recessive variant analysis

Among the variants capable of altering the protein sequence, those with the gnomAD
allele frequency less than 0.001 were selected. Then CH variants were called on a trio-
based setting. If a gene contains more than one filtered variant and each variant was
inherited from mother and father separately (for proband), or at least one but not all of
the filtered variants of a gene were found in the offspring (for parent), the variants were
called as CH. RHo variants were called if filtered variants are inherited in a homozygous
manner in autosomes and never seen in gnomAD as homozygous. RHe variants were
called if filtered variants are in the X chromosome and never seen in gnomAD as
hemizygous or homozygous. Various functionality scores were extracted from dbNSFP

database (295).

Statistical evaluation

Statistical analysis of this study was conducted using the R package (version 3.6.0). When
comparing difference of two groups, normality of the distribution was first evaluated by
Shapiro-Wilks test and then either Student’s t-test or a non-parametric Mann-Whitney U
test was performed. P-value < 0.05 was considered as statistically significant, and
adjusted FDR P-values were used when correcting for multiple tests. Correlation between

variables was determined by using the Pearson's correlation coefficient test.

Ethical approval and informed consent

This study was approved by the Seoul National University Hospital Institutional Review
Board (No. 1406-081-588), and was performed in accordance with the relevant guidelines

and regulations. Written informed consent was obtained from all enrolled patients or their

3
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legal representatives.



RESULT

Clinical features of KND cohort
The symptoms of KND patients were mostly of pediatric onset (mean 1.4 years of age).
The patients had neurodevelopmental problems and were soon referred to tertiary
hospitals (mean 1.8 years of age). The majority of the patients visited multiple tertiary
hospitals for diagnosis (88.8% visited more than one hospital, mean of 2.3 hospitals).
Patients required an average of 2.3 specialists (31.6% required more than two) and it took
an average of 5.6 years for WES analysis after visiting SNUCH (Fig. 3, Table 1). The
distribution of straight distances from home to the hospital strongly correlates with the
population distribution of Korea, suggesting that our cohort covers the entire Korean
population (Fig. 4, Table 1).

KND Patients were classified into three groups by disease inheritance pattern;
Class 1: autosomal dominant families; Class 2: families with affected siblings; Class 3:
affected individuals without family history. The majority of the patients is sporadic origin
(504/553 = 91.1%; Fig. 5a), making them suitable for trio-based WES analysis. Some
patients showed various neuromuscular problems or multiple anomaly, but major clinical
symptom of the KND cohort was neurodevelopmental disorder such as Rett syndrome-
like encephalopathy, mitochondrial encephalopathy, epileptic encephalopathy,

leukodystrophy, hereditary spastic paraplegia, Leigh Syndrome (84.1%; Fig. 2, Fig. 5b).
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Figure 3. The age distribution of patients when their symptom began and the time
differences between age of onset and WES analysis (n = 553 patients). (a) The age of
onset of all patients (year). (b) The age of onset of patients whose symptoms began before
24 months. (¢) The Age distribution of patients when the WES analysis was performed.
(d) Distribution of time differences between patient’s age of onset and the time of WES

analysis.
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O 20 km from SNUCH

100 km from SNUCH

Figure 4. Location of Seoul National University Children’s Hospital (SNUCH). The
straight distances from SNUCH were displayed. The 20 km radius circle includes most
of Seoul, where about a quarter of entire population resides. The 100 km radius circle
encompasses most of the Gyeonggi province, where another quarter of entire population

resides.
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Figure 5. Classification of the KND cohort by inheritance patterns and major
symptoms. (a) Subjects were categorized into 3 groups according to disease inheritance
patterns. Class 1: autosomal dominant families; Class 2: families with affected siblings;
Class 3: affected individuals with no family history. (b) Major clinical features of the

KND cohort (n = 553).
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Diagnostic success rate of WES analyses

Integrative evaluation of genetic variants and patient symptoms allowed us to diagnose
40.3% (223/553) of the KND cohort with high confidence (Fig. 6). This patient group
included CNV carriers (23/553 = 4.2%; 16 heterozygous deletions and 7 duplications;
Fig. 6, Table 2), 20 of which were de novo (3.6% of the entire cohort), which was slightly
lower but similar to a previous study (26—29). Three inherited pathogenic CNVs were
identified: 7.2 Mb and 203.2 kb hemizygous duplications on the X chromosome that were
transmitted from healthy moms to their affected sons (Table 2) and a 165.5 kb deletion in
a large family containing multiple affected individuals showing hereditary spastic
paraplegia (HSP) symptom (Fig. 7a-7b). Actually, the 165.5 kb deletion consisted of three
small deletions which were associated with Alu elements (Fig. 7c¢). Quantitative PCR
(qPCR) of patient’s genomic DNA showed decreased copy number in deleted regions,
and breakpoint of deletions were also confirmed by Sanger sequencing (Fig. 8).

In addition to the high confidence group, 7.1% of the cohort (39 patients)
harbored variants in genes previously reported to cause disease but showed distinct
phenotypes, potentially expanding the phenotypic spectrum associated with these genes.
For example, two patients that carried a pathogenic heterozygous missense or nonsense
variant in COLIAI, known to cause osteogenesis imperfecta (30), were initially
diagnosed with muscle hypotonia. These two patients did not show skeletal problems, but
displayed blue sclera (37). Adding this group to the high confidence group yielded a
diagnostic rate of 47.4% (“known genes”; Table 3). Finally, an additional 10.1% of the
cohort (56 patients, 53 genes) harbored variants that are highly likely to be pathogenic

but their disease associations are elusive (‘“novel genes”; Fig. 6).
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Figure 7. Identification of an inherited deletion at 2p22.3 in the family with
hereditary spastic paraplegia (HSP). (a) Pedigree of an HSP family with 8§ affected
individuals across four generations. (b) Log2-based copy-number values of subject HSP-
9 compared with an unrelated normal subject show the presence of heterozygous
microdeletion on chromosome 2. Captured intervals of copy-number loss are indicated
by red dots. (¢) Enlarged view of deleted regions at 2p22.3 including SPAST gene. Blue
solid bars represent the deleted intervals. A/u repeat elements at the deletion breakpoints
are indicated by red solid bars and aligned with the RepeatMasker of the UCSC Genome

Browser, represented by dotted lines.
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Figure 8. Verification of the deleted regions in HSP family through qPCR and Sanger
sequencing. (a) DNA sequence analysis of the deleted regions. The DNA fragments
containing the deletion was amplified by the deletion-specific primer pairs. The deletion-
specific PCR products of 3.8 kb (Del 1 & 2) and 4.0 kb (Del 3) are observed in each
affected individual. Reference sequences surrounding the breaking points are indicated in
blue and red color. (b) Validation of the deleted regions by quantitative PCR of genomic
DNA. The red bars represent an average copy-number of five patients and the gray bars
represent an average copy-number of five normal individuals in the family. Error bars

represent standard error. CN: copy-neutral region.
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Characteristics of genes and variants found in the KND cohort

Among the patients with definite diagnosis, as expected, approximately 60% of variants
were dominant including de novo CNV and 35.1% of variants showed recessive
inheritance pattern (compound heterozygous, homozygous and hemizygous) (Fig. 9). In
terms of variant function, a considerable number of pathogenic variants were missense,
29.9% harbored loss-of-function (LoF) variants (frameshift, nonsense and splicing
variants). And in very few patients, we also found the damaging in-frame (Fig. 10). As
expected, the known genes showed strong enrichment in disease categories such as and
intellectual disability, global developmental delay. As a result of gene ontology (GO)
analysis, these known genes also exhibited strong enrichment in brain development or
function such as CNS development and synaptic signaling (Fig. 11). There were no

distinct differences between male and female in both disease and GO analysis (Fig. 12).
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Figure 9. Pathogenic variants divided by inheritance patterns. Miscellaneous

variants contain shared dominant variants and mosaic variants.
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Figure 10. Pathogenic variants categorized by their function (n = 298 variants).
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Figure 11. Disease and GO enrichment analysis of 164 known genes. Similar

categories were excluded and both disease and GO categories were sorted by adjusted P

value.
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Figure 12. Disease and GO enrichment analysis between male and female. Similar

categories were excluded and both disease and GO categories were sorted by adjusted P

value.
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Novel genes display potential enrichment in developing human brain

We evaluated whether the 53 novel genes newly discovered in KND cohort possess a
neurodevelopmental disease-causing function. The novel genes were simulated using the
BrainSpan data (Materials and Methods) to assess whether the expression of these novel
genes was strongly correlated with known disease-associated genes during brain
development. After 10° permutations, we found that the observed involvement of the
novel genes was significantly stronger than the randomly selected gene sets across eight
brain developmental windows (Pagj < 0.05 from Z-score for all periods; Fig. 13a-13b).
Furthermore, this test was expanded to the four anatomical regions of the brain in each
period (Fig. 13c¢), creating a total of 32 spatiotemporal windows. It is notable that the
most highly enriched windows are concentrated in the frontal cortex area (R1 x P1-4; Fig.
13b). These results suggest that expression of the novel genes is closely related to that of
known disease-causing genes in developing brains and this phenomenon is most

pronounced in the frontal cortex region.
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Figure 13. Verification of the association of new genes to known gene's network in
various brain developmental stage. (a) Eight brain developmental periods used in the
network analysis (from 8 PCWs to 40 years). (b) Strength of the co-expression network
composed of our known/novel genes compared to random networks as measured by 10°
permutations. The number of samples from BrainSpan RNA-seq data which were used in
analysis is displayed in each window. Developmental period and brain region of each
window were shown in (a) and (c), respectively. (¢) Anatomical components of four brain

regions.
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Comparison of recessive variants burden between patients and normal
controls

Using the set of defined pathogenic variants, we explored the genetic properties of the
variants that caused disease in a recessive manner. Both dominant and recessive variants
displayed similar proportions by functionality (Fig. 10) and carriers of dominant or
recessive variants experienced similar ages of onset (data not shown). Next, to test if
recessive variants (i.e., compound heterozygous (CH), rare homozygous (RHo) and rare
hemizygous (RHe) variants) are more frequently found in patients as compared to healthy
individuals, we counted the number of recessive variants in our cohort and compared
these values between patients and their healthy parents as controls. Counting all recessive
variants from patients and controls, we observed that there is no substantial difference in
the number of recessive variants (Fig. 14). LoF variants, variants in OMIM-listed genes
or variants in neurodevelopment-related genes also did not show any difference in burden
(Fig. 14, Fig. 15), implying the presence of overwhelming non-pathogenic recessive

variants in the patients.
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Figure 14. Burden of recessive variants in KND patients (Pt) and their parents as
controls (Ct). Recessive variants are divided into three groups, compound heterozygous
(CH), rare homozygous (RHo) and rare hemizygous (RHe). Numbers of all variants from
all genes (“All””), LoF variants from all genes (“LoF”’) and all variants from OMIM-listed
genes (“OMIM?”) are plotted. Numbers of samples used for each category are as following:
patients for CH = 145; controls for CH = 290; patients for RHo = 247; controls for RHo

= 341; patients for RHe = 134; controls for RHe = 168. Data are mean * standard

deviation.
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Figure 15. Comparison in the number of recessive variants for neurodevelopment-

related gene sets between patients and controls. Numbers of all variants from Disease

associated and neurodevelopment-related genes are plotted. DD, Developmental delay;

EP, Epilepsy; ID, Intellectual disability; BP, GO biological process; CNS, central nervous

system development. Disease gene sets were obtained from DisGeNET database.
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Genetic properties of pathogenic recessive variants against dominant variants
in KND cohort.
The majority of genes with definite diagnosis had already been previously documented
in OMIM, and had a good concordance with previously known recessive or dominant
inheritance patterns (Fig. 16). There was one exceptional case in which the gene is listed
as recessive in OMIM but was dominantly inherited in our cohort. Until recently, only
the recessive ACOX1 phenotype was identified (56), but recently we reported a case
describing this dominant ACOX1 variant (59). Most of the variants in the two groups
were classified as likely pathogenic or pathogenic according to the American College of
Medical Genetics and Genomics (ACMG) guideline (98.4% for recessive and 96.7% for
dominant variant group), but the dominant variants tended to be more pathogenic (Fig.
17; Fisher’s exact test P= 3.7 x 10-?). There was no significant difference in basic clinical
parameters (Table 1) between the recessive and dominant patient groups (data not shown).
Next, to test the difference of genetic properties between recessive variants and
dominant variants, several parameters were compared. Dominant variants (mean allele
frequency = 6.2 x 10”7) were found less frequently than recessive variants in gnomAD
(mean allele frequency = 1.6 x 10-; Mann-Whitney U test P = 1.7 x 10°'?), because most
of the dominant variants originated de novo whereas recessive variants were inherited
from healthy parents (Fig. 18a). Compared to dominant variants, recessive variants were
slightly less evolutionarily conserved, based on PhyloP score or amino acid conservation
in vertebrates (Mann-Whitney U test P = 0.034 and 0.048, respectively; Fig. 18b). Other
prediction scores did not show significant difference between the two groups (CADD P
=0.50, GERP P=0.15 and SIFT P = 0.17, Mann-Whitney U tests).

Through comparison of observed/expected ratio (o/e) and pLI (probability of
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being loss-of-function intolerant) score in gnomAD, it was found that genes containing
recessive variants exhibited more lenient constraints compared to the dominant genes or
known haploinsufficiency genes (27). However, the recessive genes still displayed a
similar or slightly more constrained pattern compared to the genes in OMIM (Fig. 19).
The relative position of LoF variants in recessive tended to slightly more enriched in the
C-terminal region similar to all gnomAD genes, compared to the dominant genes (Fig.
20). This tendency is because the recessive variants are inherited from normal parents.
Recessive genes from KND cohort were enriched in lipid metabolism and mitochondrial
components, in addition to the expected enrichment in CNS development related

processes or neuronal components (Fig. 21).
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Figure 16. Venn diagrams displaying high correlations of recessive or dominant

inheritance patterns with their known inheritance patterns. The asterisks denote one

exceptional case, ACOX1 (see text).
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Figure 17. ACMG code distribution of variants that are in recessive or dominant

inheritance pattern. P values was calculated using Fisher’s exact test.
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Figure 18. Comparison of genetic properties in recessive and dominant variants. (a)
Allele frequency distribution of dominant and recessive variants. (b) PhyloP and amino
acid conservation differences between dominant and recessive missense variants. Amino
acid conservation is determined by the number of vertebrate species that contain an amino
acid that is different from its human orthologous residue. The solid lines denote medians

and the dotted lines denote means.
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Figure 19. LoF tolerance of genes from KND cohort against all or haploinsufficiency

genes. (a) Distributions of o/e LoF values for dominant and recessive genes found from

KND patients (left) and dominant and recessive genes from OMIM (right) plotted against

all genes and known haploinsufficiency genes (n = 291) (60). (b) Distributions of pLI

score. Legend of plots is the same as (a).
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Profile of pathogenic recessive variants carried in healthy individuals

Unlike de novo variants, which occur mostly at random, recessive variants can be pre-
screened and avoided if the variants can be identified in parents. Taking advantage of
comprehensive genetic analysis of KND cohort based on Korea's centralized medical
system, it is possible to estimate the possibility of a combination of recessive variants in
Koreans. Several assumptions are required for this estimation: (i) Approximately 400,000
babies are born every year in Korea as of 2016 (67). (ii) Approximately 1,000 patients
with neurodevelopmental disorders newly enroll in our clinic every year (Jong Hee Chae,
personal communication, May 28, 2019). (iii) These patients cover the majority of the
Korean population. This is sufficiently convincing given the geographical distribution of
the KND patients and the examples of our DMD and Rett Syndrome cohort (18, 19) (Fig.
4, Table 1). (iv) Our result from 553 KND patients displayed a recessive genetic origin in
approximately one-third of the patients (Fig. 9) and (v) Koreans generally marry an
individual with minimal genetic similarity. These observations indicate that the incidence
of patients with neurodevelopmental disorder in a recessive manner is about 1/1200,
suggesting that 1 in 17 healthy people can be a carrier of pathogenic variants (1/1,156;
Fig. 22). This is a conservative estimate, and the proportion of carriers may actually be
slightly higher, given some patients we do not cover.

Next, we tried to understand the genetic properties of pathogenic recessive
variants in KND by looking at all of the variants of 69 recessive genes in gnomAD. As
expected, KND recessive variants were found less frequently (P = 4.2 x 10"'°, Mann-
Whitney U test; Fig. 23a), showed stronger evolutionary conservation (P = 3.0 x 10~ for
PhyloP and P = 3.2 x 10”7 for amino acid conservation, Mann-Whitney U tests; Fig. 23b)

compared to all gnomAD variants on the same genes. As a result of comparing various
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damage prediction scores, KND recessive variants also displayed more deleterious effect
(CADD P=2.5x 107, GERP P=4.0 x 103 and SIFT P = 3.2 x 10°°, Mann-Whitney U
tests; Fig. 23c) compared to gnomAD variants.

To test the feasibility of accurate pre-screening in a healthy population, we
considered gnomAD-originated heterozygous LoF and ClinVar variants found in our
recessive genes as a first-tier culprit for pathogenic recessive variants among many
variants of obscure functional significances. And we observed that the portion attributed
to the LoF and ClinVar variants by healthy carriers was variable among the genes, and

this portion is correlated with the o/e LoF value (Pearson's correlation r = 0.33; Fig. 24).
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Figure 22. Estimation of the proportion of Korean rare neurodevelopmental
disorder carriers. A schematic diagram describing processes used to estimate
neurodevelopmental disorder carrier frequency in the Korean population. The dotted lines
in the map denote the Korea Train Express network, the high-speed railway system of
Korea. The healthy carriers are displayed in blue color. The expected carrier proportions

are shown below the figure.
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Figure 23. Comparison of various parameters between pathogenic recessive variants
from KND patients and gnomAD variants from the same genes that were found in
KND patients. (a) Allele frequency. The rare frequency portion of the left panel is
separately plotted in the right panel. (b) PhyloP score and amino acid conservation. The
solid lines mean medians and the dotted lines mean average values. (¢) The distribution

of CADD, GERP and SIFT scores. P values are calculated using Mann-Whitney U tests.
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Figure 24. Summary of the frequency and type of recessive variants in the KND
cohort. The number of KND patients with recessive variants in each gene and the types
of those recessive variants were displayed. The o/e LoF wvalues, and accumulated
frequencies of LoF and ClinVar variants from gnomAD East Asians (EAS) for genes that
harbor known pathogenic recessive variants in KND cohort were also displayed. Finally,
portion that were attributable to LoF or ClinVar variants for pre-screening parents for

each recessive gene are shown.
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DISCUSSION

This study demonstrates the clinical utility of applying WES to pediatric patients with
various neurodevelopmental disorders. we identified genetic causes in 47.4% of the
patients and evaluated the characteristics of the variants that caused the disorders in a
recessive manner.

Consistent with previous studies, we were able to diagnose approximately half of the
KND patients with WES (Fig. 6) (/1-13, 15, 17). Our pathogenic genes and variants
showed good correlation with OMIM inheritance pattern and ACMG guideline (Fig. 16,
Fig. 17). The novel genes formed a strong co-expression networks with known pathogenic
genes during neurodevelopment processes, which was most prominent in frontal cortex
regions (Fig. 13). There was no significant difference in the number of recessive variants
between the patient and the healthy control group, as was the comparison of disease-
related genes (Fig. 14, Fig. 15). This result suggested that the patients carry more non-
pathogenic or non-functional recessive variants than we expected.

Next, the variants found in the KND cohort were divided by inheritance patterns, and
the genetic characteristics of the variants were compared and analyzed. The pathogenic
recessive variants displayed slightly increased allele frequency and decreased
evolutionary conservation compared to dominant variants, suggesting that the differences
between these two groups of variants were not dramatically different (Fig. 18). The
characteristics of variants divided by their inheritance patterns did not show significant
difference, but from the viewpoint of genes causing such diseases, some parameters

showed noticeable differences. First, the recessive genes showed an increased o/e LoF
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values compared to the dominant genes, implying relatively low genetic constraints (Fig.
19). These results can also be seen through the difference in the distribution of the relative
locations of LoF variants in genes (Fig. 20). Gene ontology (GO) analysis further supports
that — while both groups are predominantly composed of neurodevelopment-related genes
—recessive genes are enriched in lipid metabolism and mitochondrial componenets (Fig.
21). This is a reasonable result considering that these pathways are essential for normal
brain development (62, 63). In summary, these observations suggest that gene traits are a
stronger determinant than that of variant in determining whether a disease adopts a
recessive or dominant inheritance pattern.

It is important to predict the occurrence of recessive disorders. Carrier estimates have
been traditionally performed primarily for single-gene diseases such as P-thalassaemia,
Tay-Sachs disease and cystic fibrosis, and have effectively reduced the incidence of these
patients (64-66). However, even after aggressively introducing an analysis of genetic
disorder using whole exome or whole genome sequencing, the estimation of the
contribution of recessive inheritance to rare Mendelian diseases varies considerably
depending on the study subjects and diseases (3). For example, the result of the
Deciphering Developmental Disorders (DDD) study revealed a small contribution of
recessive inheritance (3.6%) in European patients, whereas studies in Pakistani patients
showed a relatively large contribution of recessive inheritance (30.9%) (5). Genetic
analysis of schizophrenia patients did not detect a substantial contribution of recessive
variants (6, 7). These observations differ from our results, where 35.1% of patients who
are clearly diagnosed follow recessive inheritance (Fig. 9), which show good agreement
with previous clinical WES studies (//, 67, 68). Notably, a recent study using a large

autism cohort revealed that a significant proportion of the patients were attributed to the
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recessive LoF variants (69).

Most of these pathogenic recessive variants were inherited from healthy parents, and
Koreans are composed of relatively isolated populations with a centralized medical
system, so one in 17 individuals can be estimated to be a healthy carrier of pathogenic
recessive variants against severe neurodevelopmental diseases (Fig. 22). The contribution
of known LoF and ClinVar variants varies by genes and is correlated with o/e LoF values
(Fig. 24), and pathogenic recessive variants exhibit a systematic difference distinguishing
them from gnomAD variants (Fig. 23). Thus, it would be feasible to predict potential rare
recessive variants from genomic data of healthy parents with the help of large genomic
data on patients and controls in the near future.

Our approach expanded the phenotypic spectrum of known genes (39 cases, 7.1%),
and suggested novel genes that could better understand the mechanisms of
neurodevelopmental disorder (56 patients, 10.1%). Nevertheless, even after our thorough
WES analysis, 42.5% of the cases (235/533) remained undiagnosed, suggesting
opportunities for further improvement (Fig. 6). In this regard, the efforts of systematic re-
analysis through additional bioinformatics pipelines increased the diagnostic rate by 4.2%
(70). In addition, although the improvement of the diagnostic rates through WGS was not
dramatic due to our limited understanding of the function of non-coding variants, it would
be beneficial to explore functional non-coding variants through WGS and to evaluate the
role of multi-variants in disease occurrence (77, 72). Although preparing the tissue of the
patient remains a practical challenge, the integration of genome and transcriptome data
to identify cryptic genetic variation can be an alternative approach (73, 74).

Our study addresses the clinical challenges of evolving phenotypes and how to

overcome them, facilitating the identification of treatable or actionable cases (Fig. 25,
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Table 4). Our study also included a successful drug repositioning case for a rare
neurological disorder (75) (Table 4). These cases are expected to increase as more
genotype-phenotype relationships are discovered and more drugs become available. This
study demonstrates that application of WES and subsequent analysis can provide clinical
benefits to patients and their families. Finally, we demonstrated the successful
establishment of this approach in Korea, and the need for this approach for patients with

various undiagnosed neurodevelopmental disorders.
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Next Generation Sequencing

Online Mendelian Inheritance in Man
phylogenetic P-values
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Rare homozygous

Sorting Intolerant From Tolerant
Whole exome sequencing

Whole genome sequencing
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