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ABSTRACT 

 

Effects of low-dose bisphenol A on 
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cancer cell lines, tumor immunity, and 

cancer progression 
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The Graduate School 

  Seoul National University 

 

 

Introduction: Bisphenol A (BPA) used in the manufacture of polycarbonate 

plastics and epoxy resin has structurally estrogen-like activity and recent 

studies have indicated that exposure to BPA in environment and daily life may 

account for the increased incidence of breast cancer in the industrialized world. 

Multiple in vivo and in vitro studies have reported that BPA exposure at low 

doses can result in breast neoplastic lesions. However, the correlation among 

BPA exposure, transcriptional alterations in breast cancer cells and breast 

cancer progression is not fully elucidated. In this study, we investigated whether 

chronic exposure to low-dose BPA affects transcriptome expression 

alterations and malignancy in different subtypes of breast cancer cells and 

mouse xenograft models. 
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Methods: This study consists of two independent experiments. 

1. ER-positive MCF-7, HER2-enriched SK-BR3, triple-negative MDA-MB-

231 cells were used as breast cancer cell lines according to hormone receptor 

status. We analyzed the RNA-sequencing data from breast cancer cells treated 

with BPA at a low dose (10−8 M) for 30 days. Sequencing libraries were 

constructed using a QuantSeq 3’mRNA-Seq Library Prep Kits. Differentially 

expressed genes (DEGs) were determined using BEDtools following mapping 

libraries using Bowtie2 software. Functional analysis was conducted by online 

public database DAVID, KEGG and PANTHER etc. Moreover, a functionally 

organized network of DEGs belonging to among MCF-7/BPA, SK-BR3/BPA and 

MDA-MB-231/BPA cells was created using the Cytoscape software platform. 

Afterward, we analyzed the correlation between BPA-exposed DEGs and 

survival rate of patients with various subtypes of breast cancer using public 

database BreastMark.  

2. We investigated the effects of BPA (10−8 M) on the regulation of 

MCF10DCIS.com cells, ductal carcinoma in situ (DCIS), considered early-stage 

breast cancer and of RAW264.7, macrophages, the most abundant population in 

tumor immune microenvironment to determine the DCIS progression to invasive 

metastasis. The effects of BPA exposure on MCF10DCIS.com cell proliferation 

and migration abilities were evaluated by MTT and Trans-well migration 

assays with 0.8 µm pore size. In addition, intracellular signaling pathways 

related to these abilities were analyzed by Western blotting. Immune function 

analysis of BPA-exposed macrophages was performed using real-time RT-

PCR and western blot. Moreover, we evaluated interactions between breast 
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cancer cells and macrophages through co-culture method with conditioned 

medium for 72 h or with trans-well chambers with 0.4 µm pore size. Tumor 

xenograft models for early-stage breast cancer were established by injection 

with DCIS.com/Luc-GFP cells into the second fat pad of mice after exposure to 

BPA (10−8 M) for 30 days via drinking water of immune deficient mice (BALB/c 

nude mice) at 3 weeks of age. We monitored tumor progression and metastasis 

with bioluminescence imaging. Afterward, we evaluated metastasis and immune 

function of tumor-associated macrophages by immunohistochemistry with 

macrophage marker F4/80, inflammatory M1 marker NOS2, protumorigenic M2 

marker CD206 in lymph node tissues surrounding tumors as well as primary 

tumors, and CK5 for identifying metastatic breast cancer cells in lymph node 

tissues surrounding tumors. 

Result: 1. We confirmed common changes in immune functions such as NKT, 

NK and T cell activation and dendritic cell migration by transcriptome 

expression analysis across MCF-7, SK-BR3, MDA-MB-231 cells affected by 

chronic exposure to low-dose BPA. The high expression of immune-related 

genes (IL19, CA9, and SPARC) under BPA exposure was associated with 

decreased overall survival in patients with breast cancer.  

2. In the same manner, results of the transcriptional analysis of 

MCF10DCIS.com cells exposed to BPA showed immune-related alterations. 

BPA exposure promoted proliferative and migratory abilities of 

MCF10DCIS.com cells and induced polarization of RAW264.7 cells toward the 

M1/M2 phenotypes with high expression of NOS2, arginase-1, and CD206. 
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Chronic low-dose BPA exposure group showed induction of M2 phenotype 

tumor-associated macrophages surrounding primary tumor, and were promoted 

tumor growth and lymph node metastasis in mouse model for breast cancer, as 

well. 

Conclusions: 1. These findings indicate chronic low-dose BPA exposure has 

dissimilar impacts on the regulation of gene expression and diverse biological 

functions, including immune modulation, in different subtypes of breast cancer 

cell.  

2. These results demonstrate that BPA acts as an accelerator to promote DCIS 

progression to invasive breast cancer by affecting DCIS cell proliferation and 

migration as well as macrophage polarization toward a protumorigenic 

phenotype. 

----------------------------------------------

Key words: Bisphenol A, Breast cancer, Macrophage polarization, Transcriptional 

analysis, Tumor progression 
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Chapter 1 

 

 Comparison of transcriptome expression alterations by 

chronic exposure to low-dose bisphenol A in different 

subtypes of breast cancer cells  
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INTRODUCTION 

Endocrine‒disrupting chemicals (EDCs) can interfere with endocrine systems [1]. 

Bisphenol A (BPA) is a known estrogen-mimicking EDC to which most people in 

the industrialized world are exposed [2]. There is evidence for the possible 

involvement of BPA in genetic and epigenetic endocrine and immune disruption 

through diverse cellular and molecular mechanisms, eventually leading to the 

alteration of gene profiles and the induction of chronic disease in humans [3,4]. 

Due to these potential harmful effects caused by BPA, recent studies have raised 

serious concerns about the deleterious impacts of BPA on the induction or 

promotion of human diseases, including cancer [5]. Chronic exposure to BPA at a 

low dose has been suggested to be a potential risk factor for inducing breast cancer 

and accelerating the progression of aggressive breast cancers [6-10]. The effects 

of BPA vary with the dose and time of exposure in a nonmonotonic dose‒response 

manner characterized by stimulation at low doses and inhibition at high doses 

[11,12]. The low concentrations of BPA to which adults are exposed are no > 0.4‒

1.5 μg of BPA/kg/day, and 95% of BPA exposures are unlikely to exceed 1.5‒4.2 

μg of BPA/kg/day [13]. A low dose of BPA (10−8 M in vitro and 2.5 μg/L in vivo) 

is within a safe reference dose for humans according to the guidelines of the U.S. 

Environmental Protection Agency (EPA) and the Food and Drug Administration 

(FDA) [12,14]. We previously reported that chronic exposure to BPA at an 

environmentally human‒relevant low dose acts as an accelerator to increase the 

aggressiveness of ductal carcinoma in situ breast cells through immune modulation 
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[15]. Given this background, the multiple effects of BPA, including those on immune 

function in different subtypes of breast cancer cells (BCCs), have attracted much 

attention, with particular interest in chronic exposure to low doses of BPA. 

Breast cancer, which is a heterogeneous complex of diseases, is divided into 

four major molecular subtypes‒hormone receptor‒positive luminal A and B, human 

epidermal growth factor receptor 2 (HER2)-enriched and triple‒negative (TN) ‒

that are based on the gene expression profile and the classical 

immunohistochemical markers, hormone receptors, the estrogen receptor (ER) 

and/or progesterone receptor (PR), and HER2 [16]. An epidemiological study 

suggested a link between BPA exposure and the progression of aggressive breast 

cancer subtypes [17]. BCCs with distinct molecular subtypes differentially respond 

to drugs or chemicals. There is evidence of heterogeneous immunogenicity in 

specific subtypes of breast cancer, such as HER2‒enriched and TN breast cancers 

[18,19]. Due to differences in the features and biological behaviors of BCCs, 

comparing the deleterious impact of BPA between the subtypes of BCCs is 

essential for the development of new strategies to treat breast cancer patients 

environmentally or occupationally exposed to BPA. 

Transcriptome profiling performed by RNA sequencing (RNA‒seq) has been 

used to uncover multiple molecular mechanisms and explore diagnostic and 

predictive biomarkers [20]. To the best of our knowledge, the global gene 

expression and the pathway networks altered by chronic exposure to BPA at low 
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doses have not been investigated in the different subtypes of BCCs. In this study, 

the transcriptome expression profiles, Gene Ontology (GO) term and pathway 

enrichment, and immune network in BPA‒exposed BCC lines classified as the 

luminal A, HER2‒enriched and TN subtypes were analyzed, and the BCC subtype‒

specific and detrimental gene signatures were explored to predict the prognostic 

significance linked to BPA exposure. 
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MATERIALS AND METHODS 

Human BCC lines and BPA exposure  

The human BCC lines MCF-7 (ER+/PR+/HER2 ), SK-BR3 (ER /PR /HER2+), 

and MDA-MB-231 (ER /PR /HER2 ) were purchased from the Korean Cell 

Line Bank (Seoul, Korea). MCF-7 and SK-BR3 cells were grown in Dulbecco's 

modified Eagle's medium (DMEM) (WelGENE, Daegu, Korea) containing 10% fetal 

bovine serum (FBS) and supplemented with 1% penicillin and streptomycin (Gibco, 

Langley, OK, USA). MDA-MB-231 cells were cultured in Roswell Park Memorial 

Institute (RPMI) 1640 medium (WelGENE) containing 10% FBS and supplemented 

with a 1% antibiotic solution containing penicillin and streptomycin (Gibco). All cell 

lines were cultured in a humidified atmosphere with 5% CO2 at 37℃.  

BPA (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 0.1% dimethyl 

sulfoxide (DMSO, Sigma-Aldrich). The BPA-exposed cell groups were acquired 

by incubating BCCs in the presence of BPA. The effect of BPA was compared to 

that of 0.1% DMSO (control).  

Proliferation assay  

Cells (5 × 103) were seeded in a 96-well plate and incubated in culture medium 

for 24 h. BPA (10−10‒10−4 M) was administered to cells for 24‒72 h. Briefly, 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent 
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(250 μg/mL) was added to each well and incubated for 1 h at 37℃. Formazan 

crystals were solubilized by the addition of 150 μl of DMSO to each well. The 

optical density at 540 nm was measured by using a microplate reader (Bio-Rad 

Laboratories, Inc., Hercules, CA, USA), and the cell proliferation rate was 

determined. 

RNA isolation and RNA-seq  

Total RNA was extracted from BCCs using TRIzol reagent (Invitrogen, Carlsbad, 

CA, USA) according to the manufacturer's instructions. The RNA concentration 

was measured using a NanoDrop 2000 spectrophotometer (Thermo Fisher 

Scientific, Inc., Waltham, MA, USA). The RNA integrity number (RIN) was 

determined utilizing an Agilent RNA 6000 Nano kit following the manufacturer's 

protocol on an Agilent 2100 bioanalyzer (Agilent, Santa Clara, CA, USA).  

Sequencing libraries were constructed using a QuantSeq 3 ’  mRNASeq 

Library Prep Kit (Lexogen, South Morang Victoria, Australia) according to the 

manufacturer's instructions. High-throughput RNA-seq was performed by single-

end 75-bp sequencing using a NextSeq 500 system (Illumina, San Diego, CA, 

USA). The differentially expressed genes (DEGs) between BPA-exposed BCCs 

and control cells were determined based on counts from unique and multiple 

alignments using coverage in BEDtools (Quinlan and Hall, 2010). The read count 

(RC) data were processed based on the quantile normalization method via the 

EdgeR package within R using Bioconductor [21]. To select DEGs, we ranked 
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genes with a p-value of < 0.05 by the log10 p-value and plotted them against the 

log2-fold change (FC) in a volcano plot. Upregulated and downregulated genes 

with a p-value of < 0.05 and a log2FC ratio of > 0.59 were identified. 

GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway enrichment and immune network analyses  

To gain insight into the underlying biology of DEGs modulated by chronic exposure 

to 10−8 M BPA, biological functional categories enriched in the DEGs were 

identified using the functional annotation and clustering tool of the Database for 

Annotation, Visualization, and Integrated Discovery v6.7 (DAVID, 

https://david.ncifcrf.gov/). The significant GO terms were identified after 

adjustment for multiple testing with the Benjamini Hochberg method; a Benjamini 

adjusted p-value of < 0.05 was considered to indicate a statistically significant 

difference. Functional categories were considered enriched when the log scale 

geometric mean had a p-value of < 0.05 (enrichment score ≥ 1.3). GO term lists 

[biological process (BP); cellular compartment (CC); molecular function (MF)] 

were matched with each other. Additionally, GO terms were searched using the 

web-based tool QuickGO (https://www.ebi.ac.uk/QuickGO/). To further 

understand the biological functions of the DEGs, KEGG pathway enrichment 

analysis was performed using the DAVID online tool. Additionally, PANTHER and 

Reactome pathways were analyzed by using the PANTHER database 

(http://www.PANTHERdb.org/). For identifying significant enrichment of pathways, 
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a Fisher's exact test with significance level set to 0.05 was used. The functionally 

organized immune network was created using Cytoscape software (version 3.7.1) 

(http://www.cytoscape.org/) with the CluePedia plugin.  

Quantitative real-time RT-PCR  

Several genes involved in immune and inflammatory responses were selected for 

quantitative real-time RT-PCR (qRT-PCR) validation. RNA was reverse 

transcribed using random hexamers and Superscript III reverse transcriptase. 

cDNA was synthesized using M-MLV reverse transcriptase (Invitrogen, USA) and 

random primers. Real-time PCRs were run on an ABI 7500 system utilizing SYBR 

Green PCR master mix (Applied Biosystems, Waltham, MA, USA) and the specific 

primers for IL12A, IL15, IL19, CXCL5, SERPINF2, CRIP1 and HIST1H2BE. The 

information for the specific primers is provided in Table 1-1. The results were 

analyzed by the 2−ΔΔCT method [22], which reflects the threshold difference 

between the expression levels of a target gene and β-actin in each sample, and 

the relative gene expression level was set to 1 for control cells cultured in the 

absence of BPA. 

Enzyme-Linked Immune Sorbent Assay (ELISA)  

After exposing breast cancer cells to 10−8 M BPA for a month, Cytokine profiles 

(IL19, IL15, CXCL5 and IL12A) of cell lysates of BPA-exposed breast cancer 

cells were evaluated by ELISA with commercially available kit (RayBiotech, 
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Peachtree Corners, GA, USA) according to the manufacturer's instructions. 

Analysis of the BreastMark dataset  

In order to examine the prognostic value of the DEGs identified in MCF-7/BPA, 

SK-BR3/BPA, and MDA-MB-231/BPA cells, Kaplan-Meier overall survival (OS) 

analyses in breast cancer were conducted using BreastMark 

(http://glados.ucd.ie/BreastMark/), an integrated approach to mining publicly 

available transcriptomic datasets relating to breast cancer outcome [23]. Briefly, 

Cut-off option to determine the gene expression was median; high group to the 

top 25% expression level and low group to the bottom 25% expression level based 

on the interquartile range we used to classify the breast cancer samples (SSP2006 

and PAM50) into their molecular subtypes, Luminal A, Luminal B, HER2-enriched 

and TN. The log-rank p-value is shown for difference in survival. Cox regression 

analysis is used to calculate hazard ratios (HR). A HR of greater than one indicates 

that the marker was associated with poor prognosis, while a ratio of less than one 

means that it was associated with good prognosis.  

Statistical analysis  

Data were obtained from at least three independent experiments and are expressed 

as the means ± standard deviations for each group. Statistical analyses, including 

Student's t-test and Analysis of Variance (ANOVA), were conducted using 

GraphPad Prism 5.0 software (GraphPad, Inc., La Jolla, CA, USA). p < .05 was 
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considered to indicate a statistically significant difference. Only those genes with 

log2FC values > 0.59 and p-values < .05 were considered for bioinformatics 

analysis.   
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RESULTS 

Transcriptome profiles of BPA-exposed MCF-7, SK-BR3, and 

MDA-MB-231 cells  

To evaluate the time- or dose-dependent cytotoxic effect of BPA, MCF-7, SK-

BR3, and MDA-MB-231 cells were treated with concentrations of BPA ranging 

from 10−10 to 10−4 M for 24 h, 48 h and 72 h, and an MTT assay was conducted. 

At 10−4 M, BPA reduced the viability of MCF-7, SK-BR3 and MDA-MB-231 cells 

in a time-dependent manner, whereas cell viability significantly increased after 

exposure of 10−10 to 10−6 M BPA (Figs. 1-1; A-C). To study the long-term 

exposure to BPA, 10−8 M BPA to maximize cancer cell growth without toxicity was 

chosen. 

Changes in the transcriptome profiles of MCF-7, SK-BR3, and MDA-MB-

231 cells treated with BPA at a low dose (10−8 M) for 30 days relative to those of 

0.1% DMSO-treated (vehicle control) cells were identified by a QuantSeq 3’ 

mRNA-Seq kit. The numbers of significantly (1.5-fold) up- or downregulated 

DEGs in MCF-7/BPA, SK-BR3/BPA, and MDA-MB-231/BPA cells relative to 

control cells are summarized in Figs. 1-2; A-C (p < .05). In MCF-7/BPA cells, a 

total of 172 DEGs (1.5-fold change, p < .05) were identified, among which 93 were 

upregulated and 79 were downregulated. In SK-BR3/BPA cells, a total of 137 

DEGs (1.5-fold change, p < .05) were identified, among which 81 were upregulated 

and 56 were downregulated. In MDA-MB-231/BPA cells, a total of 139 DEGs 
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(1.5-fold change, p < .05) were identified, among which 56 were upregulated and 

83 were downregulated. In addition, the global expression profiles of the 

significantly and differentially expressed genes identified in MCF-7/BPA, SK-

BR3/BPA, and MDA-MB-231/BPA cells are represented in a heat map (Figs. 1-

2; D-F). The top 10 up- or downregulated genes ordered by p-value and fold 

change in MCF-7/BPA, SK-BR3/BPA, and MDA-MB-231/BPA cells relative to 

control cells are shown in Tables 1-2, 1-3, and 1-4, respectively. Among the 

significantly (1.5-fold) up- or downregulated DEGs identified from MCF-7/BPA, 

SK-BR3/BPA, and MDA-MB-231/BPA cells relative to control cells, overlapping 

DEGs between MCF-7/BPA and SK-BR3/BPA cells (FAM209B), between MCF-

7/BPA and MDA-MB-231/BPA cells (DY19L2P4, SERPINF2, CYP2S1 and 

PAPOLB), between SK-BR3/BPA and MDA-MB-231/BPA cells (LHX4-AS1, 

CRLF2, and IL12A) were identified (Fig. 1-2; G). 

GO and pathway enrichment analyses of the DEGs identified from 

BPA-exposed MCF-7, SK-BR3, and MDA-MB-231 cells  

The GO annotations for the sets of DEGs with significant cluster profiles were 

analyzed using the DAVID database to determine the potential functions of the 

DEGs. Significantly enriched GO categories with p < .05 were selected for analysis.  

A total of six BP terms, one CC term and one MF term were significantly 

enriched in up- or downregulated DEGs in MCF-7/BPA cells. In upregulated DEGs 

of MCF-7/BPA cells, four BP terms [cellular response to gonadotropin-releasing 
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hormone (GO:0097211), regulation of transcription, DNA-templated 

(GO:0006355), intraciliary retrograde transport (GO:0035721), and chemical 

synaptic transmission (GO:0007268)], and one CC term [intraciliary transport 

particle A (GO:0030991)] were enriched (Fig. 1-3; A). In downregulated DEGs 

of MCF-7/BPA cells, two BP terms [brain development (GO:0007420) and 

negative regulation of fibrinolysis (GO:0051918)] and one MF term [lipid 

transporter activity (GO:0005319)] were enriched (Fig. 1-3; B). 

Six BP, two CC and three MF terms in SK-BR3/BPA cells were significantly 

enriched in up- or downregulated DEGs. In upregulated DEGs of SK-BR3/BPA 

cells, two BP terms [bicarbonate transport (GO:0015701) and definitive 

hemopoiesis (GO:0060216)] and one CC term [extracellular region (GO:0005576)] 

were enriched (Fig. 1-3; C). In downregulated DEGs of SK-BR3/BPA cells, four 

BP terms [positive regulation of inflammatory response (GO:0050729), calcium 

ion transmembrane transport (GO:0070588), superoxide anion generation 

(GO:0042554), and signal transduction (GO:0007165)], one CC term [integral 

component of plasma membrane (GO:0005887)], and three MF terms [calcium 

channel activity (GO:0005262), superoxide-generating NADPH oxidase activity 

(GO:0016175), and protein homodimerization activity (GO:0042803)] were 

enriched (Fig. 1-3; D). 

In MDA-MB-231/BPA cells, two BP terms, one CC term and one MF term 

were significantly enriched in only upregulated DEGs. The BP terms [negative 
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regulation of keratinocyte proliferation (GO:0010839) and magnesium ion 

transmembrane transport (GO:1903830)], CC term [platelet alpha granule 

(GO:0031091)], and MF term [magnesium ion transmembrane transporter activity 

(GO:0015095)] were enriched (Fig. 1-3; E). The detailed information on these 

genes belonging to the significantly enriched GO terms in MCF-7/BPA, SK-

BR3/BPA, and MDA-MB-231/BPA cells is shown in Table 1-5.  

In order to determine the potential pathways of the DEGs with an absolute fold 

change of ≥1.5 and a p-value of < 0.05, we used the major curated signaling 

pathway databases: KEGG, PANTHER and Reactome. Significantly enriched KEGG, 

PANTHER and Reactome pathways with p < .05 were selected. In MCF-7/BPA 

cells, a total of 4 KEGG pathways, 6 PANTHER pathways and 61 Reactome 

pathways were significantly enriched (Table 1-6): Choline metabolism and 

glutamate signaling pathways, which contributes to the aggressive behaviors of 

cancer cells, were significantly enriched in upregulated DEGs. Coagulation pathway 

frequently occurs in diverse cancer were significantly enriched in downregulated 

DEGs. In SK-BR3/BPA cells, there was no significantly enriched KEGG and 

PANTHER pathways, but a total of 70 Reactome pathways were identified (Table 

1-7): VEGF/VEGFR signaling pathways were identified in upregulated DEGs. In 

MDA-MB-231/BPA cells, a total of 41 pathways from 1 KEGG and 40 Reactome 

were significantly enriched (Table 1-8): hypoxia-inducible factor (HIF) signaling 

pathways, which play a co-operative role in mediating the cellular response to low 

oxygen tension were identified in upregulated DEGs. In pathway enrichment 
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analyses obtained from one sample of BT-474/BPA cells compared to BT-474/Ctl 

(luminal B, ER+/PR+/HER2+) cells, notably, HER2 signaling pathways were 

identified in KEGG and Reactome pathways (data not shown).  

Selection of genes and networks associated with the immune 

network among the DEGs of BPA-exposed MCF-7, SK-BR3, and 

MDA-MB-231 cells  

There is substantial evidence indicating that BPA contributes to the risk of cancer 

by disrupting or altering the immune and inflammatory responses [2-5]. A 

functionally organized network of DEGs belonging to immunity and inflammation 

terms among MCF-7/BPA, SK-BR3/BPA and MDA-MB-231/BPA cells was 

created using the Cytoscape software platform. The list of significantly enriched 

immune-related GO terms in MCF-7/BPA, SK-BR3/BPA and MDA-MB-

231/BPA cells is shown in Table 1-9. 

The grouped annotation networks of immune-related GO terms among MCF-

7/BPA, SK-BR3/BPA and MDA-MB-231/BPA cells are as follows: natural killer 

T (NKT) cell activation, CD4-positive alpha-beta cytokine production, dendritic 

cell migration, and regulation of natural killer cell activation (Fig. 1-4; A). Among 

the genes associated with the immune response, we selected HIST1H2BE, IL19, 

SERPINF2, IL15, CXCL5, IL12A, and CRIP1 for validation using qRT-PCR. 

Consistent with the RNA-seq results, the qRT-PCR results confirmed significant 

upregulation of IL19 (2.42-fold, p = .039) mRNA in MCF-7/BPA cells and CXCL5 
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(2.38-fold, p = .004) and IL12A (2.30-fold, p < .001) mRNA in SK-BR3/BPA 

cells and significant downregulation of IL15 (0.71-fold, p < .001) mRNA in SK-

BR3/BPA cells and IL12A (0.68-fold, p = .003) and CRIP1 (0.62-fold, p = .003) 

expression in MDA-MB-231/BPA cells relative to the corresponding control cells 

(Figs. 1-4; B-D). Results of ELISA analysis indicated the similar tendency as 

shown in the results of RNA-seq and qRT-PCR. IL19 protein level was higher in 

MCF-7/BPA (1859.36 ± 207.60 pg/ml) than MCF-7 (1163.90 ± 124.0 pg/ml) 

(p = .028, Fig. 1-4; E). A significantly decreased IL15 protein level was observed 

in SK-BR3/BPA (6.21 ± 0.21 pg/ml) relative to SK-BR3 (19.21 ± 4.68 pg/ml) 

(p = .040). CXCL5 (18.22 ± 1.97 pg/ml) and IL12A (0.51 ± 0.07 pg/ml) in SK-

BR3/BPA were significantly increased as compared with those of SK-BR3 (10.55 

± 0.63 pg/ml, and 0.18 ± 0.07 pg/ml) (p = .010 and p = .015, Fig. 1-4; F). IL12A 

protein was considerably lower in MDA-MB-231/BPA (0.66 ± 0.10 pg/ml) than 

MDA-MB-231 (1.86 ± 0.50 pg/ml) (p = .031, Fig. 1-4; G). 

IL19, CA9 and SPARC upregulated by BPA are associated with 

poor OS in luminal a, HER-2 enriched and TN patients, 

respectively 

We next asked whether DEGs expression identified in the different subtypes of 

BPA-exposed BCCs could predict the clinical outcome in breast cancer patients. 

The BreastMark website was used to explore the association between the 

expression levels of BPA-regulated DEGs and the patients'OS in luminal A, HER2-
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enriched and TN subgroup. The prognostic value of top 10 up- or downregulated 

genes, significantly enriched GO and KEGG pathway-associated genes identified 

in MCF-7/BPA, SK-BR3/BPA and MDA-MB-231/BPA cells was verified by 

breast cancer database derived from BreastMark platform. High level of IL19 

verified in MCF-7/BPA cells was associated with poor OS in luminal A subgroup 

(Fig. 1-5; A, n = 1163, p = .002, HR = 1.58). High level of CA9 observed in SK-

BR3/BPA cells was associated with predicted poor OS in HER2-enriched subgroup 

(Fig. 1-5; B, n = 258, p = .013, HR = 1.646). High level of SPARC identified in 

MDA-MB-231/BPA cells was associated with predicted poor OS in TN subgroup 

(Fig. 1-5; C, n = 323, p = .006, HR = 1.714) 
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DISCUSSION  

BPA triggers several action mechanisms, including interference with the activity of 

nuclear receptors such as ER as well as noncanonical steroid hormone receptors 

and orphan receptors [24]. The endocrine-disrupting potential of low doses of 

BPA, which exhibits nonmonotonic dose responses, is currently unclear. The 

present study is the first, to the best of our knowledge, to use transcriptome 

analysis approaches to demonstrate the detrimental gene signatures and biological 

functions regulated by chronic BPA exposure at a low dose (10−8 M), which was 

not cytotoxic, in the different subtypes of BCCs. The impacts of chronic low-dose 

BPA exposure on the regulation of gene expression and biological functions were 

dissimilar across the subtypes of BCCs. 

To explore the diverse biological response of different subtypes of BCCs to 

BPA at concentrations relevant for human exposure, we performed RNA-seq for 

global gene expression profiling in MCF-7, SK-BR3 and MDA-MB-231 cells 

treated with 10−8 M BPA for 30 days. BPA can effectively substitute for estradiol 

in promoting growth through activation of ER-mediated signaling pathway in ER-

positive breast cancer [20,25]. We here did not identify the DEGs associated with 

estrogenic effect in MCF-7/BPA cells. In our study, the non-estrogenic effects 

from BPA at low levels of exposure may be due to its relatively low affinity. 

It has been reported that BPA stimulates the GPER/EGFR/ERK pathway in 

HER2+ cancer cells, SK-BR3 and ER-/PR-/HER2- breast cancer cells, MDA-
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MB-231, mediating cancer progression [26-29]. Upregulated DEGs identified 

from SK-BR3/BPA cells indicated highly enriched signaling related with Rho 

GTPase, which is involved in EGFR pathway [30,31]. Consistent with another study 

[32], we observed that BPA upregulated the DEGs involved in HIF signaling 

pathway through GPER in MDA-MB- 231 cells. 

In MCF-7/BPA cells, the top-ranked GO terms in the BP category were 

cellular response to gonadotropin-releasing hormone for upregulated DEGs 

(GPR173, MGARP) and negative regulation of fibrinolysis for downregulated DEGs 

(THBD, SERPINF2). Both gonadotropin-releasing hormone and its receptor are 

expressed by a number of malignant tumors, including those of the breast [33,34]. 

Gonadotropin-releasing hormone agonists, in particular goserelin, have been 

shown to be as therapeutically effective as surgical ovarian ablation in pre- and 

perimenopausal women with ER+ breast cancer [35]. The signals from 

gonadotropin-releasing hormone and its receptor influence the first steps of breast 

cancer metastasis, including proliferation, epithelial to mesenchymal transition 

(EMT), migration, and invasion [33]. The fibrinolytic system includes a broad 

spectrum of proteolytic enzymes acting in physiological and pathophysiological 

processes, such as hemostatic balance, tissue remodeling, tumor invasion, 

angiogenesis and reproduction [36]. The fibrinolysis inhibitor SERPINF2 was 

found at low levels in the serum of advanced breast cancer patients [37] and to 

restrict lymphatic remodeling and metastasis in a mouse model of cancer [38]. The 

expression levels of THBD (thrombomodulin) are inversely correlated with the 
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malignancy of BCCs [39]. This finding suggests that upregulated GPR173 and 

MGARP and downregulated THBD and SERPINF2 may be the detrimental gene 

signature pattern for developing the malignant tumors in the context of 

gonadotropin-releasing hormone and fibrinolysis regulation linked to BPA 

exposure in MCF-7 cells. Given those reports, the role of genes (GPR173, MGARP, 

THBD and SERPINF2) identified in MCF-7/BPA cells remains to be examined in 

luminal A subtype exposed to low doses of BPA.  

In SK-BR3/BPA cells, the top-ranked GO terms in the BP category were 

cellular response to bicarbonate transport for upregulated DEGs (CA9, SLC4A8, 

CYB5RL) and positive regulation of inflammatory response for downregulated 

DEGs (PDE2A, NLRP12, IL15). There is a report that bicarbonate transporters 

such as the electroneutral Na+/HCO3– cotransporter (SLC4A8, NBCn1), are 

upregulated and play central roles in pH regulation in models of HER2+ breast 

cancer [40]. Based on previously published studies, chronic exposure to BPA may 

induce HCO3– transporter dysregulation by upregulating CA9, SLC4A8 and 

CYB5RL in SK-BR3 cells. The relationship between inflammation, innate immunity 

and cancer is accepted and suggests that inflammation is a critical component of 

tumor progression [41]. PDE2A is a potent antiinflammatory molecule that 

hydrolyses both cAMP and cGMP [42,43]. IL15 enhances innate and specific 

immunity, leading to tumor suppression [44,45]. Considering the fact that SK-

BR3/BPA cells exhibit high expression of CA9, SLC4A8, and CYB5RL and low 

expression of PDE2A and IL15, the expression pattern of these genes may be a 
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detrimental signature associated with the dysregulation of pH, inflammation and 

immunity linked to BPA exposure in SK-BR3 cells. Future studies should focus on 

revealing the regulatory mechanisms of CA9, SLC4A8, CYB5RL, PDE2A, and IL15 

expression and activity and the possible functional relevance of the changes 

observed in HER2-enriched subtype exposed to BPA. 

In MDA-MB-231/BPA cells, the significantly enriched GO terms in the BP 

category were negative regulation of keratinocyte proliferation (KDF1 and EPPK1) 

and magnesium ion transmembrane transport (SLC41A2 and NIPAL2) for 

upregulated DEGs. KDF1 plays a role in the proliferation and differentiation of 

epidermal progenitor cells [46]. EPPK1 belongs to the plakin family of genes, which 

are known to function in interconnecting cytoskeletal filaments, and EPPK1 is 

expressed in the early stage but not in the late stages of pancreatic cancer [47]. 

The magnesium transporter protein SLC41A2 has potential roles in the survival or 

proliferation of MCF-7 cells [48]. NIPAL2, which encodes a magnesium 

transporter, has been suggested to be a novel tumor-promoting factor in oral 

squamous cell carcinoma [49]. Although the functions of KDF1, EPPK1, SLC41A2 

and NIPAL2 are largely unknown in TN breast cancer, we speculate that the 

expression patterns of KDF1, EPPK1, SLC41A2 and NIPAL2 observed in MDA-

MB-231/BPA cells may be the detrimental signatures for the transformation of 

epithelial cells and the formation of malignant tumors. The detailed molecular 

mechanism of how BPA upregulates KDF1, EPPK1, SLC41A2 and NIPAL2 and 

alters their normal functions should be discovered in TN subtype. 
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Direct exposure of ER+ BCCs to BPA, which can mimic estrogen to interact 

with ERα and ERβ, has been shown to be involved in multiple oncogenic signaling 

pathways such as MAPK, PI3K/AKT and STAT2 pathways thereby, contributing 

cancer development [4]. On the contrary, BPA can act via ER-independent 

mechanisms, which are involved in direct impact on intracellular signal transduction 

pathways [11]. The ER-independent mechanisms by low doses of BPA is at 

present still unclear. In present study, we identified the most pathways with the 

significant level satisfied the condition of p < .05, which were set to calculate the 

decision coefficient cut-off based on formula. Notably, the significantly enriched 

KEGG and PANTHER pathways linked with choline metabolism and glutamatergic 

synapse in upregulated DEGs were identified in MCF-7/BPA cells. Due to the 

casual deregulation of choline metabolism in diverse cancers, including breast 

cancer, abnormal choline metabolism has been considered a metabolic hallmark 

associated with aggressive tumor progression [50]. BPA exposure cause the 

elevated choline metabolism, which is underlying mechanism of highly methylated 

environment through the upregulation of S-adenosylmethionine (SAMe), the 

principal biological methyl donor involved in the choline metabolism [51]. The 

glutamate signaling pathway is deregulated in many cancer. Increased glutamine 

consumption is a hallmark of many neoplasms and cancer cells, and BCCs secreting 

high levels of glutamate are likely to metastasize to bone [52,53]. Activation of 

coagulation pathway observed in early breast cancer has been suggested to be the 

risk factor in a cohort of early breast cancer patients [54]. Our findings are of 
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notable concerns that, even under exposure to environmentally relevant doses, 

chronic BPA exposure can dysregulate choline metabolism and glutamate signaling 

pathway to support high proliferation rates and survival of luminal A BCCs. 

The role of BPA in inflammatory breast cancer (IBC), which tends to be 

diagnosed at younger ages and is hormone receptor negative and very aggressive, 

has been indicated by several other studies. Recently, low dose of BPA (4 × 10−8 

M), appears to aid the survival of IBC cell lines SUM149 (EGFR activated, TN) and 

SUM190 (ER-/PR-/HER2+) via EGFR/ERK activations and increase in SOD1 and 

Bcl-2 expressions, and leads to resistant to EGFR-targeted, anti-cancer drugs 

[17]. In our results obtained from SK-BR3 and MDA-MB-231 cells by chronic 

BPA exposure at 10−8 M, VEGF/VEGFR-mediated pathways in relation to breast 

cancer risk [55,56] and HIF signaling pathways, affect most of the cancer 

“hallmarks” including tumor metastasis and poor OS [57,58], identified in 

upregulated DEGs of SK-BR3/BPA and MDA-MB-231/BPA cells. The different 

effect of BPA on DEGs expression and biological pathways between the results 

obtained from IBC cell line, SUM149 and SUM190 and our results from SK-BR3 

and MDA-MB-231 is probably due to the different cellular receptors as well as 

the dose and duration of BPA exposure. Thus, BPA may participate in a variety of 

different intracellular signaling pathways in a BCC subtype specific way. We 

suggest that the signaling pathways triggered by BPA in the BCCs of different 

origin should be further investigated. 
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The development, progression, and metastatic dissemination of cancer, as well 

as cancer treatment, are strongly influenced by immune and inflammatory 

responses [59]. BPA can use various mechanisms to modulate the immune system 

and affect diseases [60]. Recently, we report that chronic exposure to low-dose 

BPA modulates tumor inflammation mediated by macrophages, leading to the 

promotion of breast cancer growth and metastasis [15]. Interaction networks of 

NKT cell activation, T cell cytokine production, and dendritic cell migration across 

MCF-7/BPA, SK-BR3/BPA and MDA-MB-231/BPA cells were predicted. In this 

study, the significantly up- and downregulated DEGs, such as IL12A, IL15, IL19, 

CXCL5, and CRIP1, involved in the immune and inflammatory response in MCF-

7/BPA, SK-BR3/BPA and MDA-MB-231/BPA cells were verified by qRT-PCR. 

Notably, IL12A, which is involved in NKT cell activation and dendritic cell migration 

to exert antitumor activity and antiangiogenic activity [61-63], was an overlapping 

DEG between SK-BR3/BPA and MDA-MB-231/BPA cells. IL12A was 

downregulated in MDA-MB-231/BPA cells, whereas it was upregulated in SK-

BR3/BPA cells. CXCL5, which increases breast cancer progression [64], was 

upregulated in SK-BR3/BPA cells, while IL15, which has emerged as an 

immunomodulatory candidate for the treatment of cancer [44], was downregulated. 

IL19, which is associated with advanced tumor stage, high tumor metastasis, and 

worse survival in breast cancer [65], was upregulated in MCF-7/BPA cells. Low 

CRIP1 expression, which has been shown to be associated with an increase of BCC 

proliferation and invasion processes as well as a worse prognostic marker for 
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breast cancer patients [66], was found in MDA-MB-231/BPA cells. Taken 

together, these findings indicate that BPA may be a risk factor for the acceleration 

of breast cancer progression by regulating the expression levels of 

immunomodulatory genes such as IL19, CXCL5, IL12A and CRIP1 in a BCC 

subtype-specific manner. It is necessary to elucidate the mechanism underlying 

the immunomodulatory effects of BPA in breast cancer. The combination of 

immunotherapeutics with standard breast cancer therapies is emerging. HER2-

enriched and TN breast cancers have shown evidence of immunogenicity [18,19]; 

thus, clinical trials are ongoing to investigate immunotherapy in combination with 

standard treatments. The immunomodulatory mechanism used by BPA would be 

helpful information for the rational design of treatments combining immunotherapy 

with other standard breast cancer treatments for breast cancer patients exposed 

to BPA. 

In DEGs identified in MCF-7/BPA, SK-BR3/BPA and MDA-MB-231/BPA 

cells, we explored the DEGs detrimentally affected the OS of breast cancer patients 

classified by luminal A, HER2-enriched and TN subgroups. High expression of 

IL19, which plays multiple roles in immune regulation and provides a 

microenvironment that is conducive to tumor progression [65], detected in MCF-

7/BPA cell is associated with poor OS in luminal A subtypes. CA9 identified in SK-

BR3/BPA is one of the genes associated with diffusion limited hypoxia and is 

considered as a potential predictive marker for the both adjuvant chemotherapy- 

and endocrine therapy-resistant patients [67]. Our result revealed that the high 
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CA9 expression is detrimental gene signature to predict the poor OS in HER2-

enriched subtypes. SPARC upregulated in MDA-MB-231/BPA cells belonged to 

the significantly enriched GO terms in the CC category (platelet alpha granule). 

SPARC known as osteonectin and BM40 interacts with ECM proteins to promote 

adhesion of cells from the matrix [68]. Increased expression of SPARC is also a 

poor prognostic marker for breast cancer patients [69]. In our study, high levels 

of SPARC is significantly associated with the poor OS of the TN breast cancer 

patients. We suggest that high expression of IL19, CA9, or SPARC may be the 

clinically relevant genes associated with detrimental impact on the OS for the 

luminal A, HER2-enriched, or TN breast cancer patients linked to chronic low-

dose BPA exposure. 

In conclusion, our results suggest that chronic BPA exposure has dissimilar 

impacts on the regulation of gene expression and diverse biological functions, 

including immune modulation, in different subtypes of BCCs. The interaction of BPA 

with ER is more likely to have multiple effects on the detrimental molecular 

mechanisms in the ER+ luminal subtype than in other subtypes. More specific 

studies associated with immune modulation in the HER2-enriched and TN 

subtypes are needed. The complex impacts of BPA should be explored in further 

studies to demonstrate the consequences of chronic BPA exposure in susceptible 

breast cancer patients and determine the relevance of the BCC subtype in terms of 

human BCC risk assessment.  
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Chapter 2 

Bisphenol A Promotes the Invasive and Metastatic 

Potential of Ductal Carcinoma In Situ and Protumorigenic 

Polarization of Macrophages 
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INTRODUCTION 

Ductal carcinoma in situ (DCIS) in the breast has been considered a seed for breast 

cancer [70]. Although DCIS is not life-threatening, if left untreated, 20%–50% of 

patients with DCIS develop invasive breast cancer within 5–10 years after initial 

diagnosis [71]. Little is known about what influences DCIS progression to invasive 

cancerous disease. The macrophages in early stage lesions have been considered 

major culprits in promoting the progression of premalignant DCIS to invasive breast 

cancer [72,73]. Based on the comparison of the effect of environmental risk factors 

on DCIS and invasive breast cancer, the serum estrogen level associated with the 

hormonal environment may act in the transformation from DCIS to invasive ductal 

disease [74]. 

Bisphenol A (BPA), a monomer used in the manufacture of polycarbonate 

plastics and epoxy resins, is an endocrine-disrupting environmental hormone with 

estrogen-like activity. BPA is able to interact with human estrogen receptors [75-

77]. Although BPA has been suspected as a potential risk factor responsible for 

the increased incidence of breast cancer in women, most research has centered on 

early-life exposure to BPA in animals. These studies have linked BPA 

administered early and chronically at prenatal or prepubertal stages with 

morphological alterations in fetal mouse mammary glands [9,78-80]. There is a 

paucity of research on DCIS progression into invasive and metastatic breast cancer 

induced by BPA exposure [79,81]. The currently available data do not provide a 

clear role for BPA in DCIS progression into invasive breast cancer. 
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Many past studies have suggested that BPA has the potential to disrupt normal 

hormone signaling by mimicking estrogen and triggering various 

reproductive/endocrine and immune system disorders [82]. BPA exposure has 

been shown to be a dangerous risk factor for perturbation of the physiological 

balance of the immune system via inappropriate modulation of immune cells, leading 

to an increased disease risk [60,83-87]. Deleterious inflammation is observed as 

a primary feature of breast cancer and may initiate or enhance metastasis. 

Macrophages, the most abundant population in mammary tumors, are critical 

mediators of inflammation at each stage of breast cancer progression [88,89]. 

Macrophages are polarized to the classically activated M1 and the alternatively 

activated M2 phenotypes, which express specific M1 and M2 markers, such as 

nitric oxide synthase 2 (NOS2), arginase-1 (Arg-1), and CD206, and display 

pro- and anti-tumor immunity in breast cancer [90-92]. Very recently, a causal 

role for CD206+ M2 tumor-associated macrophages (TAMs) in tumor growth, as 

well as early dissemination and metastasis in breast cancer progression, was 

revealed [93,94]. BPA exposure impairs the phagocytic activity of peritoneal 

macrophages [95-97] and modulates TAM phenotypes [98]. 

The aforementioned studies provide new insight into the involvement of BPA-

exposed macrophages in DCIS progression into invasive breast cancer at an early 

stage. However, little attention has been given to the role of BPA as a 

protumorigenic factor that acts through effects on TAM phenotypic regulation 

associated with DCIS progression. Therefore, the present study was undertaken 
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to investigate the effect of BPA exposure on DCIS progression to invasive and 

metastatic breast cancer and on the modulation of TAM phenotypes in vitro and in 

vivo. 

 

 

  



 

31 

MATERIALS AND METHODS 

Cell lines and lentiviral transduction.  

MCF10DCIS.com (ER, PR, and HER2-negative DCIS cell line) cells were 

purchased from Asterand (Detroit, Michigan) and were maintained in DMEM/F-12 

(1:1) supplemented with 5% horse serum (HS) and 1% penicillin/streptomycin. 

RAW264.7 and J774A.1 cells (murine macrophages) were obtained from the 

Korean Cell Line Bank (Seoul, Korea) and were grown in RPMI 1640 medium 

(WelGENE, Daegu, Korea) containing 10% fetal bovine serum (FBS) and 

supplemented with a 1% antibiotic solution containing penicillin and streptomycin 

(ThermoFisher Scientific Inc, Waltham, Massachusetts).  

A lentiviral vector containing luciferase and green fluorescence protein (GFP) 

constructs kindly provided by Dr Kim DE (Dongguk University Ilsan Hospital, 

Goyang, Korea) was used to establish Luc/GFP-transduced DCIS.com cells 

(DCIS.com-Luc/GFP) for the animal study. Lentiviral production and cell 

transduction were conducted according to the manufacturer’s instructions. After 

lentiviral transduction, GFP-positive cells were sorted using a FACSCalibur flow 

cytometer (BD Biosciences, Franklin Lakes, New Jersey). 

For preparation of conditioned medium (CM), DCIS.com, RAW264.7 and 

J774A.1 cells were cultured in a humidified incubator (37℃/5% CO2) for 72 h, and 

the supernatant was collected, centrifuged at 300 × g for 5 min at 4℃, filtered 
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through 0.45-µm pore filters, and frozen at ‒80℃. 

RNA-sequencing and differential gene functional annotation 

For RNA preparation, DCIS.com cells were incubated with 10-8 M BPA or 0.1% 

DMSO for 30 days. Total RNA was isolated from collected cells using TRIzol 

reagent (Invitrogen, Carlsbad, California). RNA quality was assessed by Agilent 

2100 bioanalyzer using the RNA 6000 Nano Chip (Agilent Technologies, 

Amstelveen, Netherlands), and RNA quantification was performed using ND-2000 

Spectrophotometer (ThermoFisher Scientific Inc). Sequencing libraries were 

constructed using QuantSeq 3’ mRNA-Seq Library Prep Kit (Lexogen, South 

Morang Victoria, Austria) according to the manufacturer ’ s instructions. 

Highthroughput RNA-sequencing was performed as single-end 75 sequencing 

using NextSeq 500 system (Illumina, San Diego, California). Differentially 

expressed genes (DEGs) were determined based on counts from unique and 

multiple alignments using coverage in Bedtools [99]. The RT (Read Count) data 

were processed based on Quantile normalization method using EdgeR within R 

using Bioconductor [21]. To select DEGs, we ranked genes by the log10 p-value 

of genes with p-value < .05 and plotted them against the log2 fold change in a 

“volcano” plot. Genes upregulated and downregulated with p-value <. 05 and log 

ratio ≥ 1.5 were identified. To gain insight into the underlying biology of DEGs 

related to BPA effect, biological functional categories enriched in the DEGs were 

identified using the functional annotation and clustering tool of the Database for 
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Annotation, Visualization, and Integrated Discovery (DAVID) v6.7 

(https://david.ncifcrf.gov/) [100,101]. The significant Gene Ontology (GO) terms 

were identified after multiple testing adjustments with the Benjamini Hochberg 

method were reported; Benjamini < 0.05 was considered to indicate a statistically 

significant difference. GO term lists (biological process [BP]; cellular compartment 

[CC]; molecular function [MF]) were matched with each other [102]. 

Cell proliferation assay 

For cell proliferation assays in single culture conditions, all cells were seeded in 

96-well plates at 8 ×  103 cells per well and subjected to a 3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. In brief, 

RAW264.7, J774A.1, or DCIS.com cells were incubated with 10-10–10-4 M BPA 

(Sigma-Aldrich, St Louis, Missouri) for 24, 48, or 72 h. Medium was replaced with 

MTT-containing medium (0.25mg/ml), incubated with cells at 37℃ for 2 h, and 

then carefully removed. After the addition of dimethyl sulfoxide to each well, the 

plate was incubated at 37℃ in the dark for 5 min to solubilize formazan crystals. 

Absorbance was measured at 540 nm using a microplate reader (GE Healthcare, 

Piscataway, New Jersey). The cell viabilities are expressed as the ratio relative to 

untreated cells, which represent the control. 

For cell proliferation assays in coculture conditions, all cells were seeded in 

the lower chamber of 24-well plates with a 0.4-µm pore size (BD Biosciences) at 

2 ×  104 cells per well and subjected to a crystal violet assay. In brief, for 

proliferation assays of DCIS.com cells cocultured with BPA-exposed RAW264.7 

https://david.ncifcrf.gov/
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cells, 1 × 105 RAW264.7 cells were deposited in the upper chamber of a transwell 

plate, and 10-8 M BPA was added. For proliferation assays of RAW264.7 cells 

cocultured with BPA-exposed DCIS.com cells, 1 ×  105 DCIS.com cells were 

deposited in the upper chamber of the transwell plate, and 10-8 M BPA was added. 

Proliferating cells were fixed in 4% paraformaldehyde and stained with crystal 

violet. Crystal violet from the stained lower chamber was finally extracted with 1% 

sodium dodecyl sulfate. The optical density at 550 nm was measured using a 

microplate reader (GE Healthcare), and cell proliferation was determined. 

In vitro migration assays 

For cell migration assays, all cells were seeded in the upper chamber of 24-well 

plates with a 0.8-µm pore size (BD Biosciences) at 1 × 105 cells per well and 

subjected to the crystal violet assay. To assess DCIS.com cell migration, DCIS.com 

cells were suspended in medium with 2% HS and deposited into the upper chambers. 

The lower chambers were filled with medium supplemented with 2% HS in the 

presence or absence of 10-8 M BPA. DCIS.com cells were incubated for 72 h at 

37℃. In our coculture experiment, RAW264.7 cells were seeded into the lower 

chamber in the presence or absence of 10-8 M BPA before the migration test of 

DCIS.com cells. 

To assess RAW264.7 cell migration, 1 × 105 cells were suspended in medium 

with 5% FBS and deposited into the upper chambers. The lower chambers were 

filled with medium supplemented with 5% FBS in the presence or absence of 10-8 
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M BPA. RAW264.7 cells were incubated for 48 h at 37℃. In our coculture 

experiment, DCIS.com cells were seeded into the lower chamber in the presence 

or absence of 10-8 M BPA before the migration test of RAW264.7 cells. 

The migrated cells in the bottom chamber were stained with crystal violet 

solution (0.5% crystal violet in 20% methanol) for 5 min. Unbound crystal violet 

was removed by rinsing with distilled water, and crystal violet-stained cells were 

subsequently air-dried. Next, crystal violet was eluted from the cells with 1% 

sodium dodecyl sulfate solution. The absorbance of crystal violet was measured at 

550 nm using a spectrophotometer (GE Healthcare). The cell migration abilities 

are expressed as the ratio relative to untreated cells, which represent the control. 

Quantitative real-time RT-PCR 

After extraction of total RNA from cultured cells using TRIzol reagent (Invitrogen), 

RNA quantity and quality were determined using a NanoDrop spectrophotometer 

(ThermoFisher Scientific Inc). cDNA was produced using SuperScript II reverse 

transcriptase (Invitrogen). Real-time PCR reactions were run on an ABI 7500 

system utilizing a SYBR Green PCR master mix (Applied Biosystems, Foster City, 

California) and specific primer sets for NOS2, Arg-1, CD206, YM-1, and FIZZ1 

(Table 2-1). The results were analyzed using the ΔCt method, which reflects the 

threshold difference between a target gene and β-actin in each sample. 

Western blotting 

Cells were lysed in Radioimmunoprecipitation assay (RIPA) buffer containing a 
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protease inhibitor cocktail (Sigma-Aldrich), and the proteins were separated by 

SDS-PAGE and transferred to nitrocellulose membranes. The membranes were 

blocked with 5% skim milk in Tris-buffered saline and incubated with primary 

antibodies against phosphorylated-ERK1/2 (Cell Signaling Technology, Danvers, 

Massachusetts), phosphorylated-AKT (ser437) (Cell Signaling Technology), 

phosphorylated-FAK (Cell Signaling Technology), ERK (Cell Signaling 

Technology), AKT (Cell Signaling Technology), FAK (Cell Signaling Technology), 

NOS2 (Santa Cruz Biotechnology, Santa Cruz, California), Arg-1 (Santa Cruz 

Biotechnology), CD206 (Abcam, Cambridge, UK), and b-actin (Sigma-Aldrich) 

overnight at 4℃, followed by incubation with horseradish peroxidaseconjugated 

secondary antibody (Santa Cruz Biotechnology) at room temperature for an hour. 

The blots were developed using Enhanced Chemiluminescence Reagents 

(Amersham Biosciences, Piscataway, New Jersey). The relative intensity of the 

bands observed by Western blotting was analyzed using the ImageJ program. 

Xenograft tumor model and BPA exposure conditions 

Female BALB/c nude mice (3 weeks old; Orient Bio, Sungnam, Korea) were housed 

under a normal 12 h light/12 h dark cycle with food and water in the animal care 

facility of the Biomedical Research Institute of Seoul National University Hospital. 

Animal care and experimental procedures were performed in accordance with the 

Guidelines on the Ethical Use of Animals that were approved by the Institutional 

Animal Care and Use Committee of Seoul National University Hospital 

(authorization no. 16-0155-C1A0). A total of 21 female BALB/c nude mice were 
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used as DCIS xenograft models. For the orthotopic xenograft tumor model, 1 × 

106 DCIS.com/Luc-GFP cells were resuspended in 

Matrigel (BD Biosciences) and injected into the second fat pad of mice. Twenty-

one mice were randomly assigned to each of 3 experimental groups: a 0.05% 

EtOH-control group (n = 7), a 2.5 µg/l-exposed group (n = 7), and a 25 µg/l-

exposed group (n = 7). Xenograft tumor dimensions were measured using a digital 

caliper every 10 days, and volumes were calculated using a modified ellipsoid 

formula: volume = 1/2 [length × width2], where length was defined as the largest 

longitudinal dimension and width as the largest transverse dimension. 

According to the study reported by Jenkins et al.[12], 2.5 and 25 µg BPA 

(Sigma-Aldrich) was dissolved in autoclaved distilled water containing 0.05% 

ethanol and heated to 60℃. Mice at 3 weeks of age were exposed to 2.5 or 25 µg/l 

BPA via drinking water from 30 days before injection of tumor cells to post-

inoculation day 40. Water with and without BPA was replaced every 3 days. As a 

control, ethanol was added to autoclaved distilled water at the same level present 

in the BPA solutions. BPA-free water bottles (Innovive, San Diego, California) 

were used. 

Bioluminescence imaging 

To monitor primary tumor growth noninvasively, bioluminescence imaging (BLI) 

was conducted on an IVIS luminal II system (Caliper Life Sciences, Hopkinton, 

Massachusetts). Every 10 days, the firefly luciferase substrate Dluciferin 



 

38 

(Promega, San Luis Obispo, California) was injected intraperitoneally at a dose of 

150 mg/kg, and images of the tumor areas were acquired 15min later to evaluate 

peak intensities. The sum of all the detected photon counts within oval-shaped 

regions of interest was quantified in units of mean photons per second per square 

centimeter per steradian (p/s/cm2/sr) using Living Image software (Caliper Life 

Sciences). 

Histological analysis 

The excised primary tumors and axillary Lymphnodes (LNs) were fixed with 4% 

buffered formalin and embedded in paraffin blocks. Tissues were cut into 4-µm-

thick sections. Paraffin sections were deparaffinized in xylene and rehydrated in a 

series of graded ethanol and water solutions. For immunostaining, deparaffinized 

sections were immersed in 0.01 M sodium citrate buffer (pH 6.0) and blocked by 

incubation with 0.1 M NH4Cl/PBS solution and 10% HS (Gibco Laboratories, 

Carlsbad, California) for 30 min. After incubation with primary antibodies for 

cytokeratin 5 (CK5) (Abcam), F4/80 (Abcam), NOS2 (Santa Cruz Biotechnology), 

and CD206 (Abcam), sections were incubated with HRP-conjugated secondary 

antibodies (Invitrogen). A Dako Liquid DAB+ Substrate Chromogen System 

(Agilent Technologies) was used for visualization according to the manufacturer’

s protocol, and hematoxylin solution (Millipore, Darmstadt, Germany) was applied 

for counterstaining. Histological images of stained tissues were acquired using a 

microscope equipped with a CCD camera (Leica, Wetzlar, Germany). Five fields at 

× 40 magnification within each section were randomly selected, and 



 

39 

immunostained cells were quantified as the percentage of brown-stained area in 

each microphotograph using Leica QWin image analysis and image processing 

software (Leica Imaging Solutions, Cambridge, UK). 

Statistical analysis 

The results are expressed as the mean ± standard error. Differences between 

groups were statistically evaluated using two-tailed t tests and ANOVA. A p-

value < .05 was considered statistically significant. Statistical analyses were 

performed with GraphPad Prism 5.0 software (GraphPad Software, Inc, La Jolla, 

California). 
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RESULTS 

Differential Gene Expression Between BPA-exposed DCIS.com 

Cells and Controls 

The dose- or time-dependent effect of BPA on the viability and migratory ability 

of DCIS.com cells was determined by treatment with concentrations of BPA ranging 

from 10-10 to 10-4 M for 24–72 h. BPA administration resulted in a nonmonotonic 

response for the viability and migration of DCIS.com cells (data not shown). The 

viability of DCIS.com cells was significantly enhanced by BPA at a dose range of 

10-10–10-6 M but decreased at higher dose (10-5 and 10-4 M). Likewise, exposure 

to 10-8 M BPA caused a significant increase in the migration of DCIS.com cells. 

Therefore, we used 10-8 M BPA to prevent cytotoxicity. After RNA-Seq 

transcriptional profiling analysis of 10-8 M BPA-exposed DCIS.com or controls, 

25737 expressed genes were identified (DRYAD DOI: doi/10.5061/dryad.770nj18). 

Compared with the control, 291 DEGs were identified in BPA-exposed DCIS.com 

cells. Of the 291 genes, 200 genes were upregulated and 91 genes were 

downregulated (Figs. 2-1; A and B). In top 20 enriched GO terms of BP of up- or 

down-regulated genes of BPA-exposed DCIS.com cells relative to control, we 

found GO terms such as negative regulation of cell death, cell adhesion, and immune 

response, namely regulation of cell proliferation and migration and immune system 

process (Fig. 2-1; C). Therefore, we here focused the BPA effect on the 

proliferative and migratory capacities of DCIS.com cells and the polarization of 



 

41 

macrophages to DCIS tumors. 

BPA Promotes the Proliferation and Migration of DCIS.com Cells  

The proliferation of DCIS.com cells treated with 10-8 M BPA for 24 h (1.28 ± 

0.03 vs 1.00 ± 0.01, p < .0001), 48 h (1.74 ± 0.01 vs 1.66 ± 0.01, p = .0008), 

and 72 h (2.57 ± 0.04 vs 2.31 ± 0.03, p = .0003) increased in a time-dependent 

manner (Fig. 2-2; A). The migratory capacity of DCIS.com cells treated with 10-

8 M BPA for 72 h (1.32 ± 0.05 vs 1.00 ± 0.05, p = .011) also significantly 

increased (Figs. 2-2; B and C). Next, the activation of intracellular molecules 

involved in tumor cell proliferation and migration was evaluated in BPA-treated 

DCIS.com cells. After cell starvation for 6 h, treatment with 10-8 M BPA for 15min, 

30min, and 60min resulted in a significant increase in the phosphorylation levels of 

ERK (3.88 ± 0.57-fold, p = .0373; 1.74 ± 0.03-fold, p = .0015; 1.45 ± 0.15-

fold, p = .0897) and FAK (1.68 ± 0.09-fold, p = .0159; 2.27 ± 0.29-fold, p 

= .0469; 2.24 ± 0.70-fold, p = .2169) but not AKT compared with untreated 

control cells (Figs. 2-2; D and E). 

The low dose of BPA caused a significant increase in cell viability and migration 

in invasive breast cancer cell lines, ER-positive MCF-7 and ER-negative MDA-

MB-231 cells (data not shown). 

BPA Promotes the Migration Ability of RAW264.7 Cells and 

Upregulates the M1/M2 Phenotypic Markers NOS2, Arg-1, and 
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CD206 

In RAW264.7 cells treated with concentrations of BPA ranging from 10-10 to 10-4 

M for 24–48 h, the dose- or time-dependent effect of BPA on cell viability and 

migration was examined, resulting in nonmonotonic response (data not shown). 

Exposure to 10-10 to 10-6 M BPA did not cause significant cytotoxicity, but 10-5 

and 10-4 M BPA resulted in cytotoxicity. 10-8 M BPA exhibited a significant and 

time-dependent increase in migratory ability, but 10-5 M BPA did not influence 

cell migration in RAW264.7 cell. The proliferation activity of RAW264.7 cells was 

not altered by exposure to 10-8 M BPA for 24 and 48 h (Fig. 2-3; A). An 

approximately 1.76- fold increase in migration was observed in RAW264.7 cells 

treated with 10-8 M BPA for 48 h (1.76 ± 0.08 vs 1.00 ± 0.07, p = .0019) (Figs. 

2-3; B and C).  

To explore the impact of BPA on macrophage polarization toward the M1/M2 

phenotype, specific M1 (NOS2) and M2 (Arg-1, CD206, YM-1, FIZZ1) markers 

was examined. RAW264.7 treated with IFN-γ (20 ng/ml) plus TNF-α (20 ng/ml) 

for 24 h and IL-4 (50 ng/ml) plus IL-13 (20 ng/ml) for 72 h was used as M1 and 

M2 positive controls. A dose- and time-dependent increase in the mRNA 

expression of NOS2, Arg-1, and CD206 was observed in the RAW264.7 cells 

treated with 10-8 and 10-5 M BPA for 24 h and 4 days. Other M2 markers, YM-1 

and FIZZ1 were not detected in BPA-exposed RAW264.7 cells (data not shown). 

Exposure to 10-8 M BPA for 24 h resulted in a significant increase in the levels of 

NOS2 (1.43 ± 0.10-fold, p = .018), Arg-1 (4.15 ± 1.03-fold, p < .0001), and 
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CD206 (2.11 ± 0.07-fold, p = .0007) mRNA (Fig. 2-3; D) and NOS2 (4.12 ± 

1.12-fold, p = .0494), Arg-1 (4.14 ± 0.55-fold, p = .0047), and CD206 (8.10 ± 

1.99-fold, p = .0233) protein (Figs. 2-3; E and F).  

Additionally, BPA effect on viability, migration and M1 and M2 polarization in 

another macrophage cell, J774A.1 was evaluated. 10-8 M BPA caused a significant 

increase in migration as well as Arg-1 and CD206 expression in J774A.1 cells 

(data not shown). 

BPA Augment the Migratory Ability of Both Cell Lines and the 

Expression of the M1/M2 Phenotypic Markers NOS2, Arg-1, and 

CD206 in RAW264.7 Cells Under Coculture Condition  

We explored the effect of coculture with DCIS.com and RAW264.7 cells in the 

presence or absence of BPA on their proliferative and migratory abilities using a 

transwell system. The proliferation of both cells was not changed by 72 h of 

coculture even in the presence of 10-8 M BPA (Fig. 2-4; A). However, the 

migratory ability of DCIS.com cells was significantly increased by coculture with 

RAW264.7 cells (1.42 ± 0.03-fold, p< .0001) and further enhanced by coculture 

with BPA-exposed RAW264.7 cells (1.60 ± 0.06-fold, p< .0001), and the 

migratory ability of RAW264.7 cells was significantly increased by coculture with 

DCIS.com cells (1.41 ± 0.03-fold, p< .0001) and further enhanced by coculture 

with BPA-exposed DCIS.com cells (2.00 ± 0.12-fold, p< .0001) compared with 
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single cultures (Fig. 2-4; B). 

To investigate macrophage polarization induced by communication with 

DCIS.com cells, M1 (NOS2) and M2 (Arg-1, CD206, YM-1, and FIZZ1) markers 

were examined in RAW264.7 cells treated with the DCIS.com CM or BPA-exposed 

DCIS.com CM. Figure 2-4; C shows a representative Western blot analysis of 

NOS2, Arg-1, and CD206 expression. The expression level of NOS2 was not 

significantly increased by DCIS.com CM (1.20 ± 0.10 vs 1.00 ± 0.00, p = .0549) 

but was augmented by BPA-exposed DCIS.com CM (1.51 ± 0.11 vs 1.00 ± 0.00, 

p = .0014) (Fig. 2-4; D). The expression levels of Arg-1 (2.09 ± 0.32, p = .0058) 

and CD206 (1.64 ± 0.30, p = .008) were noticeably increased by treatment with 

DCIS.com CM and were further enhanced by DCIS.com BPA CM (Arg-1; 2.32 ± 

0.41, p = .0070 and CD206; 2.83 ± 0.30, p < .0001) (Fig. 2-4; D). However, YM-

1 and FIZZ1 expression was not observed in RAW264.7 cells treated with BPA-

exposed DCIS.com CM (data not shown). 

We evaluated the ERα in macrophage after exposure to BPA. The ERα 

protein level was not increased in BPA-treated RAW264.7 cells compared with 

untreated RAW264.7 cells (data not shown). However, following treatment with 

DCIS.com CM or BPA-exposed DCIS.com CM, ERα expression was increased up 

to 40- to 60-fold in RAW264.7 cells treated with the DCIS.com CM (44.44 ± 

8.87, p = .0072) or BPA-exposed DCIS.com CM (57.18 ± 13.77, p = .0120) 

relative to control cells (Figs. 2-4; E and F).  
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Chronic Exposure to BPA Promotes Tumor Growth in DCIS 

Xenograft Mice 

To noninvasively monitor DCIS tumor growth, DCIS.com cells expressing both Luc 

and GFP were established. GFP fluorescence images and flow cytometry revealed 

stable GFP expression and a transduction efficiency exceeding 92% in 

DCIS.com/Luc-GFP cells (Figs. 2-5; A and B). Strong BLI signals (3.90 × 106 

± 0.59 p/s/cm2/sr and 6.10 × 106 ± 0.06 p/s/cm2/sr) were detected in 8 × 103 

and 1 × 104 of DCIS.com/Luc-GFP cells (Fig. 2-5; C). 

In Figure 2-5; D, a schematic describing the schedule for BPA exposure and 

BLI monitoring in DCIS xenograft mice is presented. DCIS tumor growth was 

monitored using in vivo BLI and a digital caliper every 10 days post-inoculation 

with DCIS.com cells. Low-dose BPA exposure (2.5 µg/l) promoted DCIS tumor 

growth and resulted in significantly high BLI signals from tumors (23.74 ± 3.97 

p/s/cm2/sr vs 9.93 ± 1.86 p/s/cm2/sr, p = .0083) at day 40 after inoculation with 

DCIS.com cells (Figs. 2-5; E and F). The tumor volumes (592.1 ± 87.02 mm3 vs 

361.5 ± 66.90 mm3, p = .0619) at 40 days were also bigger in BPA-exposed mice 

than in control mice (Fig. 2-5; G). However, the body weights of mice were not 

different between BPA-exposed mice and control mice (Fig. 2-5; H). In high dose 

(25 µg/l) BPA-exposed mice, a significant increase in BLI signals and tumor 

volumes and weights was not observed compared with unexposed control mice 

(data not shown). 
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NOS21 TAMs Were Reduced While CD2061 TAMs Were 

Increased in BPA-exposed Tumor Tissues 

The polarized phenotype of TAMs localized in the DCIS tumor microenvironment 

chronically exposed to BPA was examined in primary tumors and metastatic LNs. 

The gross examination and wet weight of DCIS tumors isolated from mice at post-

inoculation day 40 show larger tumors with high tumor weight in the BPA-exposed 

group than in the control group (Figs. 2-6; A and B). A large population of TAMs 

evaluated by Immunohistochemistry (IHC) for F4/80 was observed at the 

peritumoral area of both tumors (Fig. 2-6; C). The number of TAMs positive for 

the M1 marker NOS2 was reduced in BPA-exposed DCIS tumors compared with 

control tumors (0.21 ± 0.06 vs 0.61 ± 0.11, p = .0032), whereas TAMs positive 

for the M2 marker CD206 (1.72 ± 0.17 vs 0.23 ± 0.09, p < .0001) were 

significantly increased (Figs. 2-6; C and D). 

Chronic Exposure to BPA Accelerates Axillary LN Metastasis and 

Results in Increased CD206+ M2 TAMs 

To determine the DCIS progression to invasive metastasis, the dissemination of 

tumor cells into axillary LNs was examined by IHC for CK5. IHC images revealed 

that CK5-positive tumor cells were detected in the cortex regions of LNs (Fig. 2-

7; A). Quantitative analysis of IHC images revealed that the area of CK5-stained 

cells was significantly increased in LNs from the BPA-exposed group relative to 
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those from the control group (0.64 ± 0.17 vs 0.09 ± 0.05, p = .0043) (Fig. 2-7; 

B). BPA exposure resulted in a higher incidence of LN metastasis in mice with 

DCIS tumors: 10 metastatic LNs among 14 axillary LNs from the BPA-exposed 

group versus 3 metastatic LNs among 14 axillary LNs from the control group 

(Table 2-2). 

The presence of NOS2+ M1 or CD206+ M2 TAMs in LNs from mice with DCIS 

tumors was compared with the BPA-exposed group and control group (Fig. 2-7; 

C). The number of NOS2+ M1 TAMs (1.17 ± 0.06) in LNs from the control group 

were higher than that of CD206+ M2 TAMs (0.81 ± 0.11) (p = .0086) (Fig. 2-7; 

D). However, BPA exposure resulted in a shift in the composition of TAM 

populations, with a higher number of CD206+ M2 TAMs (2.73 ± 0.54) than 

NOS2+ M1 TAMs (1.59 ± 0.08) and a significant increase in CD206+ M2 TAMs 

and a concomitant significant decrease in the NOS2+ M1 TAM population compared 

populations in the control group (Fig. 2-7; D).  
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DISCUSSION 

There is still a great deal of uncertainty regarding the risk of DCIS becoming an 

invasive cancer in a specific patient. The carcinogenic activity of BPA is well known 

in estrogen-dependent breast cancer tissues and cell lines and in rodent models. 

However, it is not fully understood how this compound promotes invasive cancer 

progression from DCIS. Here, we first investigated the effects of BPA in vitro and 

in vivo on the regulation of DCIS cells and macrophages, which are associated with 

invasive breast cancer progression from DCIS. 

To date, assessment of the carcinogenic potential of BPA has relied on in vitro 

genotoxicity assays and evaluation of peripubertal mammary glands in rodents 

[103]. However, the findings to date are not sufficiently strong to confirm whether 

BPA is truly related to DCIS progression to invasive and metastatic breast cancer. 

We found that 291 DEGs in BPA-exposed DCIS.com cells were enriched in GO 

terms of biological processing associated with cell death, proliferation, and 

adhesion, as well as immune response. Further studies are required to understand 

the functional genes differentially expressed in BPA-exposed DCIS.com cells, 

which may provide better insights into mechanisms underlying the BPA-associated 

breast cancer risk in complex DCIS progression into invasive breast cancer. 

The low concentrations of BPA-exposed to adult is no more than 0.4–1.5 µg 

BPA/kg/day and 95% of BPA exposure does not likely exceed 1.5–4.2 µg 

BPA/kg/day [13]. The estimated daily intake levels of BPA in human are found in 

the range of 0.043–14.7 µg/kg/day and circulating levels of BPA measured from 
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human sera are 0.5–10 ng/ml [104]. In unintentional exposure, the circulating BPA 

levels in sera of elderly population and healthy nonpregnant women have been 

reported to be approximately 2.02–6.52 ng/ml and 1.30–8.17 ng/ml [105-107]. In 

the occupationally exposed population BPA levels measured from sera are 

approximately up to 101.94 ng/ml [108]. The dose of 20 µg/kg of BPA in female 

mice has been reported to be relevant to exposure in occupational workers [109]. 

In our study, the dose of 10-8 M BPA administrated in cultured cells corresponds 

to 2.28 ng/ml, and oral exposure of 2.5–25 µg/l BPA corresponds to 0.5–5 µg/kg/day. 

Based on published observations, the exposure levels of BPA chosen in this study 

are not much higher than that of occupationally exposed populations. Although we 

did not measure circulating BPA levels in sera of mice, 10-8 M BPA (in vitro) and 

2.5 µg/l BPA (in vivo) used in our study is within a safe reference dose for humans 

according to the guidelines of the EPA and the U.S. Food and Drug Administration 

[12,14]. Hence, the dose of BPA chosen in our study is thought to be 

environmentally relevant and applicable to human.  

BPA primarily acts by binding to classical nuclear ERs in ER-positive cancer 

cells. In triple negative breast cancer cells, BPA induces proliferation and migration 

processes via G-protein coupled estrogen receptor (GPER/GPR30) or G-protein-

coupled receptor and oestrogen-related receptor c (ERRc) involved in oncogenic 

signaling pathways, such as PI3K/AKT-, FAK-, Src-, and ERK-dependent signal 

transduction pathways [17,29,110,111]. The human basal-like DCIS cell line 

MCF10DCIS.com, which is triple negative has been used as a model of human high-
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grade comedo DCIS [112]. Based on our findings, ERK1/2- and FAK-mediated 

signaling pathways might be potential mechanisms for increased proliferation and 

migration of BPA-exposed MCF10DCIS.com cells. Nevertheless, more 

experimental studies are needed to further validate findings obtained from triple 

negative cells. 

Prenatal exposure (from E9 until postnatal day 1) to BPA (2.5–25 µg/kg/day) 

by 50 days of age causes the formation of hyperplastic lesions and DCIS without 

any additional exposure to carcinogens in adulthood of rats, but there is no evidence 

that DCIS ultimately progresses to invasive cancer in adult mice [79,81,113]. In 

MMTV-erbB2 tumor mice models, chronic oral exposure of BPA (25 µg/l), but not 

2500 µg BPA/L from 8 until 36 weeks of age accelerates mammary tumorigenesis 

and metastasis [12]. Our results show a new aspect of BPA, specifically, chronic 

oral exposure of DCIS xenograft mice to BPA for 70 days at an environmentally 

human-relevant low dose of 2.5 µg/l, but not 25 µg/l, can promote DCIS 

progression to metastatic breast cancer. Given that the already published data 

suggest an impact of BPA on the development or progression of breast cancer 

because of the timing and the dose, further studies focusing on the relevance of 

timing and dose of BPA exposure are warranted. 

TAMs in peritumoral stroma have shown to be associated with a suppressive 

immune microenvironment and are considered powerful drivers that trigger 

invasion processes for breast cancer early dissemination and metastasis 

[93,114,115]. Much attention in recent years has been focused on the impact of 
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BPA on both immune-activating and immune-inhibiting processes through 

modulation of immune cells, including macrophages [60,82,83,85-87]. The effect 

of BPA on M1 and M2 macrophage polarization appears to be different in cell-type 

an pathologic context; BPA promotes proinflammatory M1 phenotype in mouse 

peritoneal macrophages, human monocytes, and macrophages cell lines THP-1 and 

RAW264.7 cells [83,116,117]. In contrast, BPA reduced M1 phenotypes in 

peritoneal macrophage [96,118,119]. In our study, although expression levels of 

NOS2, Arg-1, and CD206 genes are very low in BPA-treated macrophages, 

RAW264.7 and J774A.1 cells relative to IFN-γ plus TNF-α- or IL-4 plus IL-

13-treated cells as M1 and M2 positive control, BPA elicited macrophage 

polarization toward a mixed M1/M2 phenotype, inducing both M1 marker (NOS2) 

and M2 markers (CD206, Arg-1). More importantly, BPA-exposed macrophages 

acquire a particular phenotype while in the tumor microenvironment, more similar 

to M2 phenotype than M1 phenotype. The role of ERα in the promotion of M2 

macrophage activation is well known [76,120], and BPA exposure leads to 

infiltration of ERα-positive TAMs into the tumor microenvironment [98]. In our 

study, coculture with BPA-exposed DCIS.com cells or their conditioned medium 

remarkably augmented the expression of the M2 phenotypic markers CD206 and 

Arg-1 as well as that of ERα in RAW264.7 cells, suggesting that TAMs recruited 

to the BPA-exposed DCIS tumor microenvironment are more likely to have an M2 

phenotype via ERα-mediated signaling and may exert immune-suppressive and 

protumorigenic activities. TAMs expressing the M2 marker CD206 are attracted 
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by early cancer cells from the stroma into DCIS lesions in mouse models, tend to 

be enriched in high-grade DCIS [121-123] and create favorable conditions for LN 

metastasis [94], indicating that CD206+ TAMs may function as gatekeepers to 

orchestrate breast cancer early dissemination and metastasis. Recently, in an ER-

negative breast cancer xenograft model, a single neonatal administration of BPA 

promotes the growth of 4T1 cell xenografts by modulating the tumor 

microenvironment in the adulthood, as evidenced by higher infiltration of 

macrophages and lower expression of proinflammatory cytokines in the tumor 

microenvironment [98], implying that the observed BPA effects on tumor 

progression in hormone receptor-negative cancer may be primarily due to 

protumorigenic and suppressive immune modulation. The evidence strongly 

supports our findings that BPA might be a critical player in inducing protumor 

immune responses of CD206+M2 TAMs rather than NOS2+M1 TAMs to enhance 

DCIS progression to invasive breast cancer. Among the stromal cells surrounding 

the tumor besides the immune cells, nonimmune cells such as fibroblasts have been 

implicated in promoting tumor progression. The role of BPA-exposed fibroblasts 

in stimulating cancer progression is highlighted by Pupo et al. [124]. Future studies 

on BPA-exposed fibroblast are necessary to understand their role in the breast 

cancer progression from DCIS models. BPA displays nonmonotonic dose response 

characterized by low dose stimulation and high dose inhibition in diverse cells 

including breast cancer cells and macrophages [17,20,24,83,111,125,126]. In our 

study, nonmonotonic dose response of BPA was observed in DCIS.com and 
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RAW264.7 cells. Further studies addressing the underlying cause of the 

nonmonotonic dose-responses of BPA in DCIS cells and macrophages are 

warranted to improve the risk assessment of potential impacts of BPA on breast 

cancer progression.  

Overall, considering the almost ubiquitous use of BPA-containing products in 

our daily lives, one of the most noteworthy findings of this study is that chronic 

BPA exposure at even an environmentally human-relevant low dose may lead to 

DCIS progression to invasive breast cancer through promotion of DCIS.com cell 

proliferation and migration and the protumorigenic polarization phenotype of TAMs. 

DCIS may develop faster and is more likely to progress to invasive and metastatic 

breast cancer among populations environmentally and occupationally exposed to 

BPA. We suggest that BPA concentrations and immune responses in the tissues 

and organs of patients diagnosed with DCIS and exposed to BPA need to be 

carefully analyzed. 
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TABLES 

Table 1-1. Specific primer sequences used for real-time RT-PCR (Ⅰ). 

  
Gene Sequence (5′−>3′) 

HIST1H2BE 
Forward  CCTGGCGCATTACAACAAGC 

Reverse  TACTAAGGCAGTTGCAGGGA 

IL19 
Forward  CTACGTGGACAGGGTGTTCAA 

Reverse  GATGACTCTGGTGGCATTGGT 

SERPINF2 
Forward  TTCTCCTCAACGCCATCCAC 

Reverse  AAGGGGAAATGAGCCACCTG 

IL15 
Forward  CATTTTGGGCTGTTTCAGTGC 

Reverse  TGGGGTGAACATCACTTTCCG 

CXCL5 
Forward  GTTGAGAGAGCTGCGTTGC 

Reverse  TTGGAGCACTGTGGGCCTAT 

IL12A 
Forward  TACCCTTGCACTTCTGAAGAGATT 

Reverse  GCCAGGCAACTCCCATTAGTT 

CRIP1 
Forward  GTGTCCCAAGTGCAACAAGG 

Reverse  GGTCAGCGTCTTCCCACATT 

β-actin 
Forward  TTCCTGGGCATGGAGTCCTGTGG 

Reverse  CGCCTAGAAGCATTTGCGGTGG 
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Table 1-2. Top 10 up- or downregulated genes ordered by p-value and fold change in MCF-7/BPA cells. 

 NCBI ID HUGO Gene Name P-value 
Fold 

change 

Upregulated 

genes 

9481 SLC25A27 solute carrier family 25 member 27 6.E-03 5.707 

6855 SYP synaptophysin 4.E-02 4.784 

101927217 LINC01473 long intergenic non-protein coding RNA 

1473 

1.E-02 4.551 

353500 BMP8A bone morphogenetic protein 8a 1.E-02 4.067 

199223 TTC21A tetratricopeptide repeat domain 21A 3.E-02 4.065 

100507257 MEG9 maternally expressed 9 (non-protein 

coding) 

3.E-02 3.875 

83888 FGFBP2 fibroblast growth factor binding protein 2 3.E-03 3.617 

6505 SLC1A1 solute carrier family 1 member 1 2.E-02 3.464 

684959 SNORA25 small nucleolar RNA, H/ACA box 25 3.E-02 3.323 

126969 SLC44A3 solute carrier family 44 member 3 2.E-02 3.313 

Downregulated 

genes 

101928272 LOC101928272 uncharacterized LOC101928272 4.E-02 0.174 

2348 FOLR1 folate receptor 1 (adult) 2.E-02 0.225 

400046 FLJ41278 uncharacterized LOC400046 5.E-03 0.253 

794 CALB2 calbindin 2 4.E-02 0.255 

403323 LOC403323 uncharacterized LOC403323 8.E-03 0.265 
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347 APOD apolipoprotein D 2.E-02 0.277 

115827 RAB3C RAB3C, member RAS oncogene family 3.E-02 0.284 

4675 NAP1L3 nucleosome assembly protein 1 like 3 1.E-03 0.301 

199221 DZIP1L DAZ interacting zinc finger protein 1 like 6.E-03 0.317 

2634 GBP2 guanylate binding protein 2 4.E-02 0.318 
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Table 1-3. Top 10 up- or downregulated genes ordered by p-value and fold change in SK-BR3/BPA cells. 

 NCBI ID HUGO Gene Name P-value 
Fold 

change 

Upregulated 

genes 

100507582 BHLHE40-AS1 BHLHE40 antisense RNA 1 6.E-03 4.960 

112714 TUBA3E tubulin alpha 3e 5.E-02 4.388 

83592 AKR1E2 aldo-keto reductase family 1, member E2 2.E-03 4.296 

339942 H1FX-AS1 H1FX antisense RNA 1 4.E-03 4.264 

55466 DNAJA4 DnaJ heat shock protein family (Hsp40) 

member A4 

2.E-02 4.227 

101928402 LOC101928402 uncharacterized LOC101928402 2.E-03 3.836 

100750225 PCAT1 prostate cancer associated transcript 1 

(non-protein coding) 

6.E-04 3.800 

340267 COL28A1 collagen type XXVIII alpha 1 4.E-02 3.593 

728463 TGFB2-AS1 TGFB2 antisense RNA 1 (head to head) 3.E-02 3.566 

339983 NAT8L N-acetyltransferase 8 like 1.E-03 3.562 

Downregulated 

genes 

56936 CCDC177 coiled-coil domain containing 177 2.E-02 0.117 

66037 BOLL boule homolog, RNA binding protein 5.E-02 0.177 

11245 GPR176 G protein-coupled receptor 176 1.E-02 0.177 

114757 CYGB cytoglobin 3.E-02 0.212 

219736 STOX1 storkhead box 1 4.E-02 0.225 
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5138 PDE2A phosphodiesterase 2A 3.E-02 0.248 

26774 SNORD80 small nucleolar RNA, C/D box 80 3.E-02 0.265 

387849 REP15 RAB15 effector protein 2.E-02 0.266 

123041 SLC24A4 solute carrier family 24 member 4 9.E-03 0.275 

339488 TFAP2E transcription factor AP-2 epsilon 9.E-03 0.293 
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Table 1-4. Top 10 up- or downregulated genes ordered by p-value and fold change in MDA-MB-231/BPA cells. 

 NCBI ID HUGO Gene Name P-value 
Fold 

change 

Upregulated 

genes 

387700 SLC16A12 solute carrier family 16 member 12 4.E-02 4.679 

83481 EPPK1 epiplakin 1 2.E-03 4.342 

27443 CECR2 cat eye syndrome chromosome region, 

candidate 2 

2.E-02 3.906 

100130889 PSORS1C3 psoriasis susceptibility 1 candidate 3 (non-

protein coding) 

1.E-03 3.649 

54979 HRASLS2 HRAS like suppressor 2 8.E-03 3.373 

9023 CH25H cholesterol 25-hydroxylase 2.E-02 3.330 

100129583 FAM47E family with sequence similarity 47 

member E 

1.E-03 3.214 

56624 ASAH2 N-acylsphingosine amidohydrolase (non-

lysosomal ceramidase) 2 

3.E-02 3.109 

4166 CHST6 carbohydrate sulfotransferase 6 4.E-02 3.107 

126695 KDF1 keratinocyte differentiation factor 1 4.E-02 2.731 

Downregulated 

genes 

677819 SNORA37 small nucleolar RNA, H/ACA box 37 2.E-03 0.173 

27033 ZBTB32 zinc finger and BTB domain containing 32 4.E-02 0.270 

283692 CPEB1-AS1 CPEB1 antisense RNA 1 8.E-03 0.270 

283102 KRT8P41 keratin 8 pseudogene 41 3.E-02 0.276 
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91544 UBXN11 UBX domain protein 11 3.E-02 0.282 

81698 LINC00597 long intergenic non-protein coding RNA 

597 

1.E-02 0.289 

163589 TDRD5 tudor domain containing 5 4.E-02 0.298 

283392 TRHDE-AS1 TRHDE antisense RNA 1 1.E-02 0.300 

100133315 LOC100133315 transient receptor potential cation channel, 

subfamily C, member 2-like 

1.E-02 0.311 

26782 SNORA66 small nucleolar RNA, H/ACA box 66 2.E-02 0.317 
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Table 1-5. List of significantly enriched GO terms and genes in MCF-7/BPA, SK-BR3/BPA, and MDA-MB-231/BPA cells using the DAVID 

tool. 

Cell lines GO terms NCBI ID HUGO Gene Name P-value 
Fold 

change 

MCF-7 

/BPA 

[BP] cellular 

response to 

gonadotropin-

releasing 

hormone 

(GO:0097211) 

54328 GPR173 G protein-coupled receptor 173 2.E-02 2.248 

84709 MGARP mitochondria localized glutamic 

acid rich protein 

2.E-04 2.657 

[BP] regulation of 

transcription, 

DNA-templated  

(GO:0006355) 

10656 KHDRBS3 KH domain containing, RNA 

binding, signal transduction 

associated 3 

4.E-02 3.244 

9310 ZNF235 zinc finger protein 235 4.E-02 2.218 

126068 ZNF441 zinc finger protein 441 4.E-02 1.734 

7068 THRB thyroid hormone receptor beta 9.E-03 1.557 

100129842 ZNF737 zinc finger protein 737 2.E-03 1.508 

126069 ZNF491 zinc finger protein 491 5.E-02 2.557 

6473 SHOX short stature homeobox 5.E-02 2.479 

5079 PAX5 paired box 5 5.E-02 1.700 

4303 FOXO4 forkhead box O4 1.E-02 1.766 

10661 KLF1 Kruppel-like factor 1 (erythroid) 1.E-02 1.820 

[BP]intraciliary 

retrograde 

transport  

(GO:0035721) 

57728 WDR19 WD repeat domain 19 1.E-02 1.703 

199223 TTC21A tetratricopeptide repeat domain 21A 3.E-02 4.065 

[BP]chemical 

synaptic 

transmission  

(GO:0007268) 

2913 GRM3 glutamate metabotropic receptor 3 4.E-02 2.228 

2905 GRIN2C glutamate ionotropic receptor 

NMDA type subunit 2C 

9.E-03 1.698 

3352 HTR1D 5-hydroxytryptamine receptor 1D 4.E-02 1.603 
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6505 SLC1A1 solute carrier family 1 member 1 2.E-02 3.464 

[BP] brain 

development 

(GO:0007420) 

347 APOD apolipoprotein D 2.E-02 0.277 

6770 STAR steroidogenic acute regulatory 

protein 

2.E-02 0.474 

4435 CITED1 Cbp/p300 interacting transactivator 

with Glu/Asp rich carboxy-terminal 

domain 1 

4.E-02 0.347 

[BP] negative 

regulation of 

fibrinolysis 

(GO:0051918) 

7056 THBD thrombomodulin 2.E-02 0.645 

5345 SERPINF2 serpin family F member 2 3.E-02 0.368 

[CC] intraciliary 

transport particle 

A (GO:0030991) 

57728 WDR19 WD repeat domain 19 1.E-02 1.703 

199223 TTC21A tetratricopeptide repeat domain 21A 3.E-02 4.065 

[MF] lipid 

transporter 

activity 

(GO:0005319) 

10877 CFHR4 complement factor H related 4 1.E-02 0.483 

347 APOD apolipoprotein D 2.E-02 0.277 

SK-BR3 

/BPA 

[BP] bicarbonate 

transport 

(GO:0015701) 

768 CA9 carbonic anhydrase 9 4.E-02 3.430 

9498 SLC4A8 solute carrier family 4 member 8 4.E-02 2.469 

606495 CYB5RL cytochrome b5 reductase like 0.014 2.074 

[BP] definitive 

hemopoiesis 

(GO:0060216) 

3213 HOXB3 homeobox B3 1.E-03 2.141 

8076 MFAP5 microfibrillar associated protein 5 4.E-02 1.968 

[BP] positive 

regulation of 

inflammatory 

response 

(GO:0050729) 

5138 PDE2A phosphodiesterase 2A 3.E-02 0.248 

91662 NLRP12 NLR family, pyrin domain 

containing 12 

9.E-04 0.456 

3600 IL15 interleukin 15 4.E-03 0.404 

5138 PDE2A phosphodiesterase 2A 3.E-02 0.248 

123041 SLC24A4 solute carrier family 24 member 4 9.E-03 0.275 
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[BP]calcium ion 

transmembrane 

transport  

(GO:0070588) 

2903 GRIN2A glutamate ionotropic receptor 

NMDA type subunit 2A 

1.E-02 0.406 

[BP] superoxide 

anion generation 

(GO:0042554) 

79400 NOX5 NADPH oxidase, EF-hand calcium 

binding domain 5 

4.E-02 0.397 

4688 NCF2 neutrophil cytosolic factor 2 5.E-02 0.449 

[BP] signal 

transduction 

(GO:0007165) 

343578 ARHGAP40 Rho GTPase activating protein 40 4.E-02 0.550 

5138 PDE2A phosphodiesterase 2A 3.E-02 0.248 

2796 GNRH1 gonadotropin releasing hormone 1 3.E-02 0.324 

91662 NLRP12 NLR family, pyrin domain 

containing 12 

9.E-04 0.456 

1139 CHRNA7 cholinergic receptor nicotinic alpha 

7 subunit 

4.E-02 0.397 

3600 IL15 interleukin 15 4.E-03 0.404 

27329 ANGPTL3 angiopoietin like 3 3.E-03 0.395 

[CC] extracellular 

region 

(GO:0005576) 

7424 VEGFC vascular endothelial growth factor C 3.E-03 3.175 

6374 CXCL5 C-X-C motif chemokine ligand 5 4.E-03 2.843 

57758 SCUBE2 signal peptide, CUB domain and 

EGF like domain containing 2 

9.E-03 2.506 

64109 CRLF2 cytokine receptor-like factor 2 9.E-03 2.488 

3592 IL12A interleukin 12A 4.E-02 1.795 

340267 COL28A1 collagen type XXVIII alpha 1 4.E-02 3.593 

140881 DEFB129 defensin beta 129 4.E-02 3.263 

8076 MFAP5 microfibrillar associated protein 5 4.E-02 1.968 

8620 NPFF neuropeptide FF-amide peptide 

precursor 

5.E-03 3.180 

5552 SRGN serglycin 6.E-03 1.872 

[CC] integral 

component of 

11245 GPR176 G protein-coupled receptor 176 1.E-02 0.177 

123041 SLC24A4 solute carrier family 24 member 4 9.E-03 0.275 
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plasma membrane 

(GO:0005887) 

388630 TRABD2B TraB domain containing 2B 3.E-02 0.350 

2903 GRIN2A glutamate ionotropic receptor 

NMDA type subunit 2A 

1.E-02 0.406 

3600 IL15 interleukin 15 4.E-03 0.404 

8170 SLC14A2 solute carrier family 14 member 2 3.E-02 0.320 

[MF] calcium 

channel activity 

(GO:0005262) 

5138 PDE2A phosphodiesterase 2A 3.E-02 0.248 

123041 SLC24A4 solute carrier family 24 member 4 9.E-03 0.275 

2903 GRIN2A glutamate ionotropic receptor 

NMDA type subunit 2A 

1.E-02 0.406 

[MF] superoxide-

generating 

NADPH oxidase 

activity 

(GO:0016175) 

79400 NOX5 NADPH oxidase, EF-hand calcium 

binding domain 5 

4.E-02 0.397 

4688 NCF2 neutrophil cytosolic factor 2 5.E-02 0.449 

[MF] protein 

homodimerization 

activity 

(GO:0042803) 

5138 PDE2A phosphodiesterase 2A 3.E-02 0.248 

1139 CHRNA7 cholinergic receptor nicotinic alpha 

7 subunit 

4.E-02 0.397 

284359 IZUMO1 izumo sperm-egg fusion 1 3.E-02 0.377 

169026 SLC30A8 solute carrier family 30 member 8 7.E-03 0.416 

339488 TFAP2E transcription factor AP-2 epsilon 9.E-03 0.293 

MDA-MB-

231/BPA 

[BP] negative 

regulation of 

keratinocyte 

proliferation 

(GO:0010839) 

126695 KDF1 keratinocyte differentiation factor 1 4.E-02 2.731 

83481 EPPK1 epiplakin 1 2.E-03 4.342 

[BP] magnesium 

ion 

transmembrane 

transport 

(GO:1903830) 

84102 SLC41A2 solute carrier family 41 member 2 2.E-02 1.508 

79815 NIPAL2 NIPA like domain containing 2 3.E-02 1.611 
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[CC] platelet 

alpha granule 

(GO:0031091) 

6678 SPARC secreted protein acidic and cysteine 

rich 

2.E-02 2.320 

7058 THBS2 thrombospondin 2 1.E-02 2.665 

[MF] magnesium 

ion 

transmembrane 

transporter 

activity 

(GO:0015095) 

84102 SLC41A2 solute carrier family 41 member 2 2.E-02 1.508 

79815 NIPAL2 NIPA like domain containing 2 3.E-02 1.611 

BP: biological process, CC: cellular component, MF: molecular function 
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Table 1-6. The significantly enriched pathways of the DEGs in MCF-7/BPA cells. 

 Pathway 

database 
Term Pathway P-value 

Upregulated 

DEGs 

KEGG 

pathways 

hsa04724 Glutamatergic synapse 5.00E-03 

hsa05231 Choline metabolism in cancer 4.00E-02 

PANTHER 

pathways 

P02778 Sulfate assimilation 1.05E-02 

P02740 De novo pyrimidine ribonucleotides biosynthesis 4.81E-02 

P00037 Ionotropic glutamate receptor pathway 8.12E-04 

P00039 Metabotropic glutamate receptor group III pathway 2.52E-02 

Reactome 

pathways 

R-HSA-5619067 Defective SLC1A1 is implicated in schizophrenia 18 

(SCZD18) and dicarboxylic aminoaciduria (DCBXA) 

7.01E-03 

R-HSA-3560796 Defective PAPSS2 causes SEMD-PA 7.01E-03 

R-HSA-111995 phospho-PLA2 pathway 1.05E-02 

R-HSA-2408550 Metabolism of ingested H2SeO4 and H2SeO3 into H2Se 1.40E-02 

R-HSA-8849468 PTK6 Regulates Proteins Involved in RNA Processing 2.09E-02 

R-HSA-166187 Mitochondrial Uncoupling Proteins 2.09E-02 

R-HSA-167827 The proton buffering model 2.09E-02 

R-HSA-167826 The fatty acid cycling model 2.09E-02 

R-HSA-1482798 Acyl chain remodeling of CL 2.43E-02 

R-HSA-8939245 RUNX1 regulates transcription of genes involved in BCR 2.43E-02 
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signaling 

R-HSA-174362 Transport and synthesis of PAPS 2.43E-02 

R-HSA-196843 Vitamin B2 (riboflavin) metabolism 2.78E-02 

R-HSA-418886 Netrin mediated repulsion signals 3.12E-02 

R-HSA-3656244 Defective B4GALT1 causes B4GALT1-CDG (CDG-2d) 3.12E-02 

R-HSA-3656243 Defective ST3GAL3 causes MCT12 and EIEE15 3.12E-02 

R-HSA-3656225 Defective CHST6 causes MCDC1 3.12E-02 

R-HSA-190377 FGFR2b ligand binding and activation 3.46E-02 

R-HSA-427601 Multifunctional anion exchangers 3.46E-02 

R-HSA-159763 Transport of gamma-carboxylated protein precursors 

from the endoplasmic reticulum to the Golgi apparatus 

3.46E-02 

R-HSA-1483115 Hydrolysis of LPC 3.46E-02 

R-HSA-549127 Organic cation transport 3.80E-02 

R-HSA-159782 Removal of aminoterminal propeptides from gamma-

carboxylated proteins 

3.80E-02 

R-HSA-418889 via Dependence Receptors in the absence of ligand 3.80E-02 

R-HSA-159740 Gamma-carboxylation of protein precursors 3.80E-02 

R-HSA-376172 DSCAM interactions 4.14E-02 

R-HSA-159854 Gamma-carboxylation, transport, and amino-terminal 

cleavage of proteins 

4.14E-02 
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R-HSA-446107 Type I hemidesmosome assembly 4.14E-02 

R-HSA-390666 Serotonin receptors 4.47E-02 

R-HSA-2022857 Keratan sulfate degradation 4.81E-02 

R-HSA-3560782 Diseases associated with glycosaminoglycan metabolism 1.00E-02 

R-HSA-373752 Netrin-1 signaling 1.39E-02 

R-HSA-111885 Opioid Signalling 3.45E-02 

R-HSA-425366 Transport of bile salts and organic acids, metal ions and 

amine compounds 

3.84E-02 

R-HSA-425407 SLC-mediated transmembrane transport 1.12E-02 

R-HSA-5673001 RAF/MAP kinase cascade 4.88E-02 

R-HSA-418594 G alpha (i) signalling events 1.29E-02 

Downregulated 

DEGs 

KEGG 

pathways 

hsa04610 Complement and coagulation cascades 1.E-02 

hsa0532: Systemic lupus erythematosus 4.E-02 

PANTHER 

pathways 

P02751 Lysine biosynthesis 5.88E-03 

P00011 Blood coagulation 8.82E-03 

Reactome 

pathways 

R-HSA-8942233 Intestinal infectious diseases  8.81E-03 

R-HSA-211994 Sterols are 12-hydroxylated by CYP8B1  8.81E-03 

R-HSA-964827 Progressive trimming of alpha-1,2-linked mannose 

residues from Man9/8/7GlcNAc2 to produce 

Man5GlcNAc2 

1.17E-02 
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R-HSA-196836 Vitamin C (ascorbate) metabolism  3.78E-04 

R-HSA-964739 N-glycan trimming and elongation in the cis-Golgi  1.75E-02 

R-HSA-1566977 Fibronectin matrix formation  2.04E-02 

R-HSA-174577 Activation of C3 and C5  2.33E-02 

R-HSA-8941332 RUNX2 regulates genes involved in cell migration  2.33E-02 

R-HSA-804914 Transport of fatty acids  2.62E-02 

R-HSA-390247 Beta-oxidation of very long chain fatty acids  2.62E-02 

R-HSA-5362798 Release of Hh-Np from the secreting cell  2.62E-02 

R-HSA-211999 CYP2E1 reactions  3.48E-02 

R-HSA-8866907 Activation of the TFAP2 (AP-2) family of transcription 

factors  

3.76E-02 

R-HSA-196108 Pregnenolone biosynthesis  3.76E-02 

R-HSA-211979 Eicosanoids  3.76E-02 

R-HSA-211958 Miscellaneous substrates  3.76E-02 

R-HSA-75205 Dissolution of Fibrin Clot  4.05E-02 

R-HSA-5357786 TNFR1-induced proapoptotic signaling  4.05E-02 

R-HSA-3656253 Defective EXT1 causes exostoses 1, TRPS2 and CHDS  4.33E-02 

R-HSA-3656237 Defective EXT2 causes exostoses 2  4.33E-02 

R-HSA-193775 Synthesis of bile acids and bile salts via 24-

hydroxycholesterol  

4.33E-02 
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R-HSA-193807 Synthesis of bile acids and bile salts via 27-

hydroxycholesterol  

4.61E-02 

R-HSA-2162123 Synthesis of Prostaglandins (PG) and Thromboxanes 

(TX)  

4.61E-02 

R-HSA-5676594 TNF receptor superfamily (TNFSF) members mediating 

non-canonical NF-kB pathway  

4.89E-02 

R-HSA-211897 Cytochrome P450 - arranged by substrate type  1.67E-02 

R-HSA-8873719 RAB geranylgeranylation  1.67E-02 

R-HSA-196849 Metabolism of water-soluble vitamins and cofactors  5.72E-03 

R-HSA-196854 Metabolism of vitamins and cofactors  2.38E-03 

R-HSA-211945 Phase I - Functionalization of compounds  3.97E-02 

R-HSA-977606 Regulation of Complement cascade  4.31E-02 

R-HSA-8942233 Intestinal infectious diseases  8.81E-03 
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Table 1-7.  The significantly enriched pathways of the DEGs in SK-BR3/BPA cells. 

 Pathway 

database 
Term Pathway P-value 

Upregulated 

DEGs 

Reactome 

pathways 

R-HSA-194313 VEGF ligand-receptor interactions  3.78E-04 

R-HSA-194306 Neurophilin interactions with VEGF and VEGFR  1.46E-02 

R-HSA-195399 VEGF binds to VEGFR leading to receptor dimerization  3.78E-04 

R-HSA-5362798 Release of Hh-Np from the secreting cell  2.62E-02 

R-HSA-389397 Orexin and neuropeptides FF and QRFP bind to their 

respective receptors 

2.62E-02 

R-HSA-1296052 Ca2+ activated K+ channels  2.91E-02 

R-HSA-190840 Microtubule-dependent trafficking of connexons from 

Golgi to the plasma membrane  

1.73E-03 

R-HSA-425381 Bicarbonate transporters  3.19E-02 

R-HSA-190872 Transport of connexons to the plasma membrane  1.90E-03 

R-HSA-1234158 Regulation of gene expression by Hypoxia-inducible 

Factor  

3.48E-02 

R-HSA-389977 Post-chaperonin tubulin folding pathway  2.26E-03 

R-HSA-1480926 O2/CO2 exchange in erythrocytes  3.76E-02 

R-HSA-1475029 Reversible hydration of carbon dioxide  3.76E-02 

R-HSA-1237044 Erythrocytes take up carbon dioxide and release oxygen  3.76E-02 



 

72 

R-HSA-8984722 Interleukin-35 Signalling 3.76E-02 

R-HSA-389960 Formation of tubulin folding intermediates by CCT/TriC  2.86E-03 

R-HSA-5626467 RHO GTPases activate IQGAPs  4.25E-03 

R-HSA-389958 Cooperation of Prefoldin and TriC/CCT  in actin and 

tubulin folding  

4.50E-03 

R-HSA-190861 Gap junction assembly  5.89E-03 

R-HSA-3371497 HSP90 chaperone cycle for steroid hormone receptors 

(SHR)  

7.03E-04 

R-HSA-8955332 Carboxyterminal post-translational modifications of 

tubulin  

7.45E-03 

R-HSA-437239 Recycling pathway of L1  9.18E-03 

R-HSA-190828 Gap junction trafficking  9.54E-03 

R-HSA-157858 Gap junction trafficking and regulation  9.91E-03 

R-HSA-6811436 COPI-independent Golgi-to-ER retrograde traffic  1.11E-02 

R-HSA-983189 Kinesins  1.48E-02 

R-HSA-194138 Signaling by VEGF  3.88E-03 

R-HSA-1445148 Translocation of SLC2A4 (GLUT4) to the plasma 

membrane  

1.96E-02 

R-HSA-8852276 The role of GTSE1 in G2/M progression after G2 

checkpoint  

2.33E-02 

R-HSA-380320 Recruitment of NuMA to mitotic centrosomes  3.20E-02 



 

73 

R-HSA-390466 Chaperonin-mediated protein folding  3.26E-02 

R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic  3.64E-02 

R-HSA-391251 Protein folding  3.64E-02 

R-HSA-6807878 COPI-mediated anterograde transport  3.70E-02 

R-HSA-425393 Transport of inorganic cations/anions and amino 

acids/oligopeptides  

3.97E-02 

R-HSA-373760 L1CAM interactions  4.88E-02 

R-HSA-375276 Peptide ligand-binding receptors  1.83E-02 

R-HSA-195258 RHO GTPase Effectors  5.00E-02 

R-HSA-2262752 Cellular responses to stress  2.95E-02 

R-HSA-109582 Hemostasis  4.86E-02 

Downregulated 

DEGs 

Reactome 

pathways 

R-HSA-5619055 Defective SLC24A4 causes hypomineralized 

amelogenesis imperfecta (AI)  

4.56E-03 

R-HSA-8981607 Intracellular oxygen transport  9.09E-03 

R-HSA-1300652 Sperm:Oocyte Membrane Binding  1.36E-02 

R-HSA-435368 Zinc efflux and compartmentalization by the SLC30 

family  

1.81E-02 

R-HSA-1236973 Cross-presentation of particulate exogenous antigens 

(phagosomes)  

2.03E-02 

R-HSA-8866904 Negative regulation of activity of TFAP2 (AP-2) family 

transcription factors  

2.48E-02 
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R-HSA-629594 Highly calcium permeable postsynaptic nicotinic 

acetylcholine receptors  

2.70E-02 

R-HSA-203615 eNOS activation  2.70E-02 

R-HSA-425561 Sodium/Calcium exchangers  2.70E-02 

R-HSA-8866907 Activation of the TFAP2 (AP-2) family of transcription 

factors  

2.93E-02 

R-HSA-375281 Hormone ligand-binding receptors  3.15E-02 

R-HSA-5668599 RHO GTPases Activate NADPH Oxidases  3.15E-02 

R-HSA-8983432 Interleukin-15 signaling  3.37E-02 

R-HSA-622327 Postsynaptic nicotinic acetylcholine receptors  3.37E-02 

R-HSA-181431 Acetylcholine binding and downstream events  3.37E-02 

R-HSA-629602 Activation of Nicotinic Acetylcholine Receptors  3.37E-02 

R-HSA-202131 Metabolism of nitric oxide  3.59E-02 

R-HSA-203765 eNOS activation and regulation  3.59E-02 

R-HSA-442729 CREB phosphorylation through the activation of 

CaMKII  

3.59E-02 

R-HSA-442982 Ras activation upon Ca2+ influx through NMDA receptor  4.03E-02 

R-HSA-438066 Unblocking of NMDA receptor, glutamate binding and 

activation  

4.03E-02 

R-HSA-435354 Zinc transporters  4.03E-02 
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R-HSA-418457 cGMP effects  4.03E-02 

R-HSA-3299685 Detoxification of Reactive Oxygen Species  3.22E-03 

R-HSA-8963889 Assembly of active LPL and LIPC lipase complexes  4.25E-02 

R-HSA-8849932 Synaptic adhesion-like molecules  4.90E-02 

R-HSA-425366 Transport of bile salts and organic acids, metal ions and 

amine compounds  

1.72E-02 

R-HSA-112314 Neurotransmitter receptors and postsynaptic signal 

transmission  

4.60E-02 

R-HSA-425407 SLC-mediated transmembrane transport  1.85E-02 

R-HSA-382551 Transport of small molecules  2.37E-02 
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Table 1-8.  The significantly enriched pathways of the DEGs in MDA-MB-231/BPA cells. 

 Pathway 

database 
Term Pathway P-value 

Upregulated 

DEGs 

PANTHER 

pathways 

P00050 Plasminogen activating cascade  3.09E-02 

Reactome 

pathways 

R-HSA-1234162 Oxygen-dependent asparagine hydroxylation of 

Hypoxia-inducible Factor Alpha  

6.26E-03 

R-HSA-3000497 Scavenging by Class H Receptors  7.82E-03 

R-HSA-8849473 PTK6 Expression  9.38E-03 

R-HSA-3656225 Defective CHST6 causes MCDC1  1.40E-02 

R-HSA-5602498 MyD88 deficiency (TLR2/4)  1.71E-02 

R-HSA-1234158 Regulation of gene expression by Hypoxia-inducible 

Factor  

1.87E-02 

R-HSA-5603041 IRAK4 deficiency (TLR2/4)  1.87E-02 

R-HSA-75205 Dissolution of Fibrin Clot  2.18E-02 

R-HSA-5686938 Regulation of TLR by endogenous ligand  3.09E-02 

R-HSA-5260271 Diseases of Immune System  3.85E-02 

R-HSA-180024 DARPP-32 events 3.85E-02 

R-HSA-5602358 Diseases associated with the TLR signaling cascade  3.85E-02 

R-HSA-425410 Metal ion SLC transporters  4.15E-02 
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R-HSA-5223345 Miscellaneous transport and binding events  4.15E-02 

R-HSA-2022854 Keratan sulfate biosynthesis  4.46E-02 

R-HSA-1482839 Acyl chain remodelling of PE  4.61E-02 

R-HSA-2022928 HS-GAG biosynthesis  4.90E-02 

R-HSA-1630316 Glycosaminoglycan metabolism  1.64E-02 

R-HSA-114608 Platelet degranulation   1.74E-02 

R-HSA-76005 Response to elevated platelet cytosolic Ca2+  1.87E-02 

R-HSA-3781865 Diseases of glycosylation  2.11E-02 

Downregulated 

DEGs 

Reactome 

pathways 

R-HSA-5683177 Defective ABCC8 can cause hypoglycemias and 

hyperglycemias  

7.25E-03 

R-HSA-1296025 ATP sensitive Potassium channels  1.21E-02 

R-HSA-380095 Tachykinin receptors bind tachykinins  1.45E-02 

R-HSA-428543 Inactivation of CDC42 and RAC1  2.16E-02 

R-HSA-8851805 MET activates RAS signaling  2.40E-02 

R-HSA-203615 eNOS activation  2.87E-02 

R-HSA-211999 CYP2E1 reactions  2.87E-02 

R-HSA-264870 Caspase-mediated cleavage of cytoskeletal proteins  3.11E-02 

R-HSA-8984722 Interleukin-35 Signalling  3.11E-02 

R-HSA-211958 Miscellaneous substrates  3.11E-02 
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R-HSA-202131 Metabolism of nitric oxide  3.81E-02 

R-HSA-203765 eNOS activation and regulation  3.81E-02 

R-HSA-199220 Vitamin B5 (pantothenate) metabolism  4.27E-02 

R-HSA-1912420 Pre-NOTCH Processing in Golgi  4.51E-02 

R-HSA-5083636 Defective GALNT12 causes colorectal cancer 1 

(CRCS1)  

4.74E-02 

R-HSA-5083632 Defective C1GALT1C1 causes Tn polyagglutination 

syndrome (TNPS)  

4.74E-02 

R-HSA-5083625 Defective GALNT3 causes familial hyperphosphatemic 

tumoral calcinosis (HFTC)  

4.74E-02 

R-HSA-5423646 Aflatoxin activation and detoxification  4.97E-02 

R-HSA-2672351 Stimuli-sensing channels  2.83E-02 
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Table 1-9. List of significantly enriched GO terms associated with the immune network in MCF-7/BPA, SK-BR3/BPA, and MDA-231/BPA 

cells using the Cytoscape tool. 

Cell  Immune GO Term P-value 

MCF-7/BPA 

SK-BR3/BPA 

MDA-MB-231/BPA 

NKT cell activation 0.01 

Dendritic cell migration 0.04 

CD4-positive, alpha-beta T cell cytokine production 0.03 

Positive regulation of natural killer cell activation 0.02 

Regulation of natural killer cell activation 0.04 

SK-BR3/BPA 
T-helper 1 cell activation 0.04 

Toll-like receptor 1 signaling pathway 0.01 

MDA-MB-231/BPA 
Extrathymic T cell selection 0.01 

Extrathymic T cell differentiation 0.03 
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Table 2-1. Specific primer sequence for real-time RT-PCR (Ⅱ). 

 

 

 

  

Gene Sequence (5′−>3′) 

NOS2 
Forward  CAGAGGACCCAGAGACAAGC 

Reverse  TGCTGAAACATTTCCTGTGC 

Arginase-1 
Forward  GGAATCTGCATGGGCAACCTGTGT 

Reverse  AGGGTCTACGTCTCGCAAGCCA 

CD206 
Forward  TTCGGTGGACTGTGGACGAGCA 

Reverse  ATAAGCCACCTGCCACTCCGGT 

YM-1 
Forward  GGGCATACCTTTATCCTGAG 

Reverse  CCACTGAAGTCATCCATGTC 

FIZZ1 
Forward  TCCCAGTGAATACTGATGAGA 

Reverse  CCACTCTGGATCTCCCAAGA 

β-actin 
Forward  TTCCTGGGCATGGAGTCCTGTGG 

Reverse  CGCCTAGAAGCATTTGCGGTGG 
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Table 2-2. The numbers of axillary LN metastasis. 

 Control mice (n=7) BPA mice (n=7) P-value 

Metastatic LN/total LN 3/14 10/14 0.0043 
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FIGURES  

 

Figure 1-1. Cytotoxic effects of BPA at concentrations ranging from 10−10 to 

10−4 M in MCF-7, SK-BR3 and MDA-MB-231 (MDA-231) cells. A 

proliferation assay was performed in (A) MCF-7, (B) SK-BR3 and (C) MDA-

231 cells treated with different concentrations of BPA ranging from 10−10 to 

10−4 M for 24 ̶ 72 h using an MTT assay.   
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Figure 1-2. Transcriptome profiles of the differentially expressed genes (DEGs) 

in MCF-7/BPA, SK-BR3/BPA and MDA-MB-231 (MDA-231/BPA) cells 

relative to the corresponding control samples. (A-C) Volcano plot. The 

horizontal axis is the log2-fold change (log2FC). The negative log10 of the p-

value from the t-test is plotted on the vertical axis. Genes with an absolute fold 

change of ≥1.5 and a p-value of < 0.05 are indicated by red dots. (D-F) Heat 

map. The expression patterns of genes with a fold change of ≥1.5 and a p-

value of < 0.05 are shown in the heat map generated using TM4-MeV 4.9 

software. The heat map indicates upregulation (red) and downregulation (blue). 

The rows are labeled with individual gene symbols. (G) Venn diagram. The 

numbers in each circle indicate the number of genes with a fold change of ≥ 
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1.5 and a p-value of < 0.05 in each comparison group, and the number in the 

overlapping areas is the number of shared genes between two comparison 

groups. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)  
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Figure 1-3. Gene Ontology (GO) enrichment analysis. (A-E) The significant GO 

enrichment of the up- and downregulated genes with an absolute fold change 

of ≥ 1.5 and a p-value of < 0.05 in biological process (BP), cellular component 

(CC), and molecular function (MF) terms in MCF-7/BPA, SK-BR3/BPA, and 

MDA-MB-231 (MDA-231/BPA) cells relative to the corresponding control 

samples are shown.  



 

86 

 

Figure 1-4. Selection of genes annotated within the immune network. (A) A 

functionally organized Gene Ontology (GO) term network for DEGs belonging 

to immunityrelated terms across MCF-7/BPA, SK-BR3/BPA and MDA-MB-

231/BPA (MDA-231) cells was generated using the Cytoscape tool with the 

ClueGO plugin. (B-D) qRT-PCR validation of DEGs (HIST1H2BE, IL19, 

SERPINF2, IL15, CXCL5, IL12A, CRIP1) associated with immunity and 

inflammation in MCF-7/BPA, SK-BR3/BPA and MDA-231/BPA cells and the 

corresponding control samples. (E-G) ELISA validation of IL19, IL15, CXCL5, 

and IL12A protein levels in MCF-7/BPA, SK-BR3/BPA and MDA-231/BPA 

cells and the corresponding control samples. The data are presented as the 

means ± standard errors, and experiments were performed in triplicate. *p 

< .05, **p < .01, ***p < .001.   
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Figure 1-5. Kaplan-Meier plots of overall survival (OS) analysis for breast 

cancer patients in the BreastMark dataset. (A) The overall survival curve of 

IL19 in luminal A breast cancer patients. (B) The overall survival curve of CA9 

in HER2-enriched breast cancer patients. (C) The overall survival curve of 

SPARC in TN breast cancer patients. 
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Figure 2-1. Differentially expressed genes (DEGs) clusters and Gene ontology 
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(GO) categorization between bisphenol A (BPA)-exposed DCIS.com cells and 

control. (A) Volcano plot of DEGs. Dots on either end of the upper part of the 

plot indicate genes with statistically significant changes in gene expression. (B) 

Heatmap reflected expression profiles of DEGs. (C) Top 20 enriched GO terms 

in downregulated and upregulated genes in BPA-exposed DCIS.com cells. The 

expression profile of the entire list of the DEGs was used as input data in GO 

analysis using DAVID database.  
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Figure 2-2. Bisphenol A (BPA) promotes the proliferation and migration 

capacities of DCIS.com cells. (A) Proliferation assay of DCIS.com cells cultured 

in the presence or absence of 10-8 M BPA for 24, 48, and 72 h using 3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. (B) 

Migration assay of DCIS.com cells cultured in the presence or absence of 108 

M BPA for 72 h using transwell migration assay. Representative crystal violet 

staining of migrated DCIS.com cells. (C) Relative quantification of migrated 

DCIS.com cells using crystal violet assay. (D) Phosphorylation of FAK, AKT, 

and ERK1/2 in DCIS.com cells treated with 10-8 M BPA for 15, 30, and 60min. 

Representative Western blot phosphorylated or total FAK, AKT, and ERK1/2 of 

DCIS.com cells. E, Relative quantification of phosphorylated FAK, AKT, and 

ERK1/2 proteins. All experiments were performed in triplicate for each 

condition and repeated at least 3 times. Values are reported as the means 6 

standard error. *p < .05, **p < .01, ***p<.001  
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Figure 2-3. Bisphenol A (BPA) promotes the migration ability of RAW264.7 cells 

and upregulates NOS2, Arg-1, and CD206. (A) Proliferation assay of RAW264.7 

cells cultivated in the presence or absence of 10-8 M BPA for 24 and 48 h using 

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) 

assay. (B) Migration assay of RAW264.7 cells cultured in the presence or 

absence of 10-8 M BPA for 48 h using transwell migration assay. Representative 

crystal violet staining of migrated RAW264.7 cells. (C) Relative quantification 

of migrated RAW264.7 cells using crystal violet assay. (D) The evaluation of 

M1 and M2 polarization markers, NOS2, Arg-1, and CD206 in RAW264.7 cells 

treated with 10-8 M BPA for 24 h using Real-time RT-PCR. E, Representative 

Western blot for NOS2 and CD206 in RAW264.7 cells treated with 10-8 M BPA 

for 24 h. F, Relative quantification of NOS2, Arg-1, and CD206 proteins. 

RAW264.7 cells treated with IFN-γ (20 ng/ml) plus TNF-α (20 ng/ml) for 

24 h and IL-4 (50 ng/ml) plus IL-13(20 ng/ml) for 72 h was used as M1 and 

M2 positive controls. All experiments were performed in triplicate for each 

condition and repeated at least 3 times. Values are reported as the means 6 

standard error. *p < .05, **p < .01, ***p < .001.   
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Figure 2-4. Bisphenol A (BPA) augments cell migratory ability and NOS2, Arg-

1, and CD206 expression synergistically in coculture system. (A) Proliferation 

assay of DCIS.com and RAW264.7 cells cultivated in the presence or absence 

of 10-8 M BPA for 72 h in transwell coculture system. (B) Migration assay of 

DCIS.com and RAW264.7 cells cultivated in presence or absence of 10-8 M BPA 

for 72 h in transwell coculture system. (C) Representative Western blot for 

NOS2 and CD206 in RAW264.7 cells treated with DCIS.com CM or BPA-

exposed DCIS.com CM for 24 h. (D) Relative quantification of NOS2, Arg-1, 

and CD206 proteins. (E) Representative Western blot for ERα in RAW264.7 

cells treated with DCIS.com CM or BPA-exposed DCIS.com CM for 24 h. (F) 

Relative quantification of ERα proteins. All experiments were performed in 

triplicate for each condition and repeated at least 3 times. Values are reported 

as the means 6 standard error. *p < .05, **p < .01, ***p < .001. 
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Figure 2-5. Chronic exposure of bisphenol A (BPA) promotes the DCIS tumor 

growth. (A) Representative fluorescence images of green fluorescence protein 

(GFP) in DCIS.com/Luc-GFP cells. Scale bar; 50 µm. (B) Histogram analysis 

of GFP fluorescence in DCIS.com/Luc-GFP cells. (C) Representative in vitro 

bioluminescence imaging and quantification of bioluminescent signal emitted 

from 8 × 103 and 1 × 104 of DCIS.com/Luc-GFP cells. (D) Schematic of 

experimental design for treatments of BPA and assessment of tumor growth in 

the DCIS xenograft model. (E) Representative bioluminescence imaging of DCIS 

tumors in 2.5 µg/L BPA-exposed and unexposed control mice at post-

inoculation day 10, 20, 30 and 40 days. (F) Quantification of bioluminescent 

signal emitted from DCIS tumors of 2.5 µg/l BPA-exposed and unexposed 
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control mice at post-inoculation day 10, 20, 30, and 40 days. (G) Tumor 

volumes of 2.5 µg/l BPA-exposed and unexposed control mice at post-

inoculation day 10, 20, 30, and 40 days. (H) Body weights of experimental mice 

every week after exposure to 2.5 µg/l BPA. In vivo analysis was performed in 

7 mice of each group. Values are reported as the means 6 standard error. *p 

< .05, **p < .01, ***p < .001.  
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Figure 2-6. Chronic exposure of bisphenol A (BPA) increased CD206+M2 TAM 

polarization in DCIS tumor microenvironment. (A) Gross images of the tumors 

removed from mice in 2.5 µg/l BPA-exposed and unexposed control mice at 

postinoculation day 40. Bar = 1 cm. (B) Average wet weight of tumors removed 

from 2.5 µg/l BPA-exposed and unexposed control mice at postinoculation day 

40. (C) Representative IHC images for F4/80, NOS2, and CD206 on 

microsections of ductal carcinoma in situ (DCIS) tumors removed from 2.5 µg/l 

BPA-exposed and unexposed control mice. Scale bar: 50 mm. (D) 

Quantification of F4/80-, NOS2-, and CD206- immunostained cells as the 

percentage of brown-stained area in each microphotograph of tumor 

microsections of 2.5 µg/l BPA-exposed and unexposed control mice. Arrows: 

NOS2- and CD206-positive cells. All analysis was performed in 7 tumors of 

each group and the values are reported as the means 6 standard error. *p < .05, 

**p < .01, ***p < .001.  
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Figure 2-7. Exposure of bisphenol A (BPA) accelerates LN metastasis along 

with increased CD206+M2 TAM polarization in ductal carcinoma in situ (DCIS) 

models. (A) Representative IHC images for CK5 on microsections of axillary 

LN removed from 2.5 µg/l BPA-exposed and unexposed control mice. Scale bar: 

50 mm. (B) Quantification of CK5-immunostained cells as the percentage of 

brown-stained area in each microphotograph of tumor microsections. (C) 

Representative IHC images for NOS2 and CD206 on microsections of axillary 

LN removed from 2.5 µg/l BPA-exposed mice and unexposed control mice. 

Arrows: NOS2- and CD206-positive cells. Scale bar: 50 µm. (D) Quantification 

of NOS2- and CD206-immunostained cells as the percentage of brown-stained 

area in each microphotograph of tumor microsections. IHC analysis was 

performed in 14 axillary LNs of each group and the values are reported as the 

means 6 standard error. *p < .05, **p < .01, ***p < .001.  
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국문초록 

 

서론: 비스페놀A는 폴리카보네이트 플라스틱과 에폭시레진의 기본 원료로 사용되며 

일부 감열지 현상제, 플라스틱, 치아밀봉재 등에도 사용되는 유기화합물이다. 구조

적으로 여성호르몬인 에스트로겐과 유사하게 작용하여 유방암 발생률을 증가시키는 

요인으로 제기되어 왔으나 비스페놀A 노출의 유방암 세포내 전사체 발현에 미치는 

영향과 유방암 진행과의 상관관계에 대한 연구는 부족하다. 본 연구의 목적은 다양

한 유방암 세포주와 동물모델에서 저용량 비스페놀A의 장기간 노출이 유방암 전사

체 발현 변화와 유방암 악성도 촉발에 미치는 영향을 평가하는 것이다. 

실험방법:  본 연구는 2개의 독립적인 실험 내용으로 구성되어 있다. 

1. 유방암 세포주는 호르몬 수용체 유무에 따라 ER양성 유형인 MCF-7, HER2 과

발현 유형인 SK-BR3, 삼중음성 유형인 MDA-MB-231을 사용하였다. 저용량의 

장기간 비스페놀A 노출에 관한 전사체 분석은 30일간 10-8 M에 노출시킨 각 유방

암 세포주들의 RNA를 분리한 후 RNA 염기서열분석을 진행하였고, QuantSeq 3’ 

mRNA-Seq Library Prep Kit를 이용하여 염기서열 라이브러리를 만들었다. 이 라

이브러리에서 Bowtie2 소프트웨어를 이용하여 매핑한 후 Bedtool프로그램을 통해 

상이 발현 유전자들을 구분하였고 온라인 공개 데이터베이스인 DAVID와 KEGG, 

PANTHER 등을 통해 기능적 분석을 진행하였다. 또한 세포주들의 상이 발현 유전

자 세트간 상호작용에 대한 매핑은 Cytoscape software을 이용하여 분석하였고, 

공개 데이터베이스인 BreastMark를 통해 얻은 각 아형별 유방암 환자의 생존율 

정보를 활용하여 비스페놀A에 의한 상이 발현 유전자와의 상관관계를 분석하였다. 

2. 비스페놀A 노출이 유방암의 진행에 미치는 영향을 확인하기 위해 세포실험에서 

유방암 초기단계의 특성을 가지는 관상피내암세포인 MCF10DCIS.com과 종양면역
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환경에서 높은 분포도를 보이며 다양한 역할을 하는 대식세포인 RAW264.7을 사

용하였다. 이 단계에서 엠티티 분석과 0.8 µm 트랜스웰 이동 분석법으로 비스페놀

A 노출에 의한 암세포와 대식세포의 증식 및 이동 능력을 평가하였고, 이에 관여하

는 암세포 내 신호전달기전 분석은 웨스턴블럿을 수행하였다. 실시간 역전사중합효

소연쇄반응법과 웨스턴블럿을 수행하여 비스페놀A 노출에 의한 대식세포의 면역기

능을 분석하였다. 또한 암세포 및 대식세포를 72시간 배양한 조건부 배지 처리 혹

은 0.4 µm 트랜스웰 이용한 공동 배양을 통하여 암세포와 대식세포의 상호작용을 

분석하였다. 유방암 초기단계에 대한 종양이식모델은 3주령의 면역 결핍 마우스 

(BALB/c nude)를 한 달간 비스페놀A에 음수 노출시킨 후 마우스의 2번째 유선지

방조직에 루시퍼라제 발현 MCF10DCIS.com 세포를 이식하여 생체발광영상 기법

으로 종양의 성장과 전이를 추적하였다. 이후 조직면역 염색을 통해 일차 종양 조

직과 종양주변의 림프절 조직에서 대식세포마커인 F4/80과 염증성 M1 마커인 

NOS2, 종양친화성 M2 마커인 CD206, 그리고 림프절 내에 전이된 유방암세포를 

감지하는 CK5의 발현을 확인하여 종양관련 대식세포의 면역기능과 전이 여부를 분

석하였다. 

결과: 1. 장기간 저용량의 비스페놀A에 노출된 MCF-7, SK-BR3, MDA-MB-231 

세포들의 전사체 발현 변화를 분석한 결과, NKT, NK and T cell activation과 

dendritic cell migration 등의 면역기능 변화와 관련된 유전자가 공통적으로 확인됐

다. 이러한 결과를 바탕으로 유방암 아형별 환자의 생존율 데이터를 분석하여 비스

페놀A에 의한 면역관련 상이 발현 유전자의 발현 증가가 유방암 환자의 생존율 감

소와 상관관계를 검증하였다. 

2. 마찬가지로 저용량 비스페놀A에 노출된 MCF10DCIS.com 세포의 전사체 분석 

결과에서도 면역 관련 변화가 보여졌다. 저용량 비스페놀A 노출은 

MCF10DCIS.com 세포의 증식과 이동을 유도하였고, RAW264.7 세포의 이동과 
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NOS, CD206, arginase-1의 발현을 증가시켜 M1과 M2형의 분극화를 유도하였다. 

MCF10DCIS.com 세포를 이식한 유방암 마우스 모델에서 저용량의 비스페놀A에 

의해 일차암 주변의 종양 관련 대식세포들은 CD206을 발현하는 M2형의 분포도가 

유의하게 증가하였으며, 종양의 성장과 림프절 전이가 촉진되었다. 

결론: 1. 본 연구결과는 지속적인 저용량 비스페놀A 노출이 각 유방암 아형의 세포

주의 면역조절을 포함하여 다양한 생물학적 기능과 유전자 발현 조절에 다른 영향

을 미침을 시사한다. 

2. 본 연구결과는 비스페놀A 노출이 대식세포의 종양친화적(protumorigenic) 분극

뿐만 아니라 DCIS 세포의 증식 및 이동능력에 영향을 주어 침윤성 유방암으로의 

진행을 가속시키는 촉진제 역할을 함을 시사한다. 

---------------------------------------------- 

주요어: 비스페놀A, 유방암, 대식세포 분극화, 전사체 분석, 암 진행 
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