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ABSTRACT 

Deep learning based survival analysis model for 

cardiovascular risk assessment improves with a 

hybrid approach in combination with Cox 

regression: integrated data on 

healthcare and environmental exposure  

Kyuwoong Kim

                                Department of Biomedical Sciences

    The Graduate School

Seoul National University

Background and aims: The contribution of different cardiovascular disease 

(CVD) risk factors for the risk evaluation and predictive modeling for incident 

CVD is often debated. Also, to what extent data on CVD risk factors from multiple 

data categories should be collected for comprehensive risk assessment and 

predictive modeling for CVD risk using survival analysis is uncertain despite the 

increasing availability of the relevant data sources. This study aimed to evaluate the 

contribution of different data categories derived from integrated data on healthcare 

and environmental exposure to the risk evaluation and prediction models for CVD

risk using deep learning based survival analysis in combination with Cox 

proportional hazards regression and Cox proportional hazards regression. 

Methods: Information on the comprehensive list of CVD risk factors were 

collected from systematic reviews of variables included in the conventional CVD 

risk assessment tools and observational studies from medical literature database 
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(PubMed and Embase). Each risk factor was screened for availability in the 

National Health Insurance Service-National Sample Cohort (NHIS-NSC) linked to 

environmental exposure data on cumulative particulate matter and urban green 

space using residential area code. Individual records of 137,249 patients more than 

40 years of age who underwent the biennial national health screening between 

2009 and 2010 without previous history of CVD were followed up for incident 

CVD event from January 1, 2011 to December 31, 2013 in the NHIS-NSC with 

data linkage to environmental exposure. Statistics-based variable selection methods 

were implemented as follows: statistical significance, subset with the minimum 

(best) Akaike Information Criteria (AIC), variables selected from the regularized 

Cox proportional hazards regression with elastic net penalty, and finally a variable 

set that commonly meets all the criteria from the abovementioned statistical 

methods. Prediction models using Cox proportional hazards deep neural network

(DeepSurv) and Cox proportional hazards regression were constructed in the 

training set (80% of the total sample) using input feature sets selected from the 

abovementioned strategies and progressively adding input features by data 

categories to examine the relative contribution of each data type to the predictive 

performance for CVD risk. Performance evaluations of the DeepSurv and Cox 

proportional hazards regression models for CVD risk were conducted in the test set 

(20% of the total sample) with Uno’s concordance statistics (C-index), which is the 

most up-to-date evaluation metrics for the survival models with right censored data. 

Results: After the comprehensive review, data synthesis, and availability check, a 

total of 31 risk factors in the categories of sociodemographic, clinical laboratory 

test and measurement, lifestyle behavior, family history, underlying medical 

conditions, dental health, medication, and environmental exposure were identified 
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in the NHIS-NSC linked to environmental exposure data. Among the models 

constructed with different variable selection methods, using statistically significant 

variables for DeepSurv (Uno’s C-index: 0.7069) and all of the variables for Cox 

proportional hazards regression (Uno’s C-index: 0.7052) showed improved 

predictive performance for CVD risk, which was a statistically significant increase

(p-value for difference in Uno’s C-index: <0.0001 for both comparisons) compared 

to the models with basic clinical factors (age, sex, and body mass index), 

respectively. When all and statistically significant variables in each data category

from sociodemographic to environmental exposure were progressively added as 

input features into DeepSurv and Cox proportional hazards regression for 

predictive modeling for CVD risk, the DeepSurv model with statistically 

significant variables pertaining to the sociodemographic factors, clinical laboratory 

test and measurement, and lifestyle behavior data showed the notable performance 

that outperformed Cox proportional hazards regression model with statistically 

significant variables added up to the medication category. Extensive data linkage to 

environmental exposure on cumulative particulate matter and urban green space

offered only marginal improvement for the predictive performance of DeepSurv 

and Cox proportional hazards regression models for CVD risk.

Conclusion: To obtain the best predictive performance of DeepSurv model for 

CVD risk with minimum number of input features, information on 

sociodemographic, clinical laboratory test and measurement, and lifestyle behavior

should be primarily collected and used as input features in the NHIS-NSC. Also, 

the overall performance of DeepSurv for CVD risk assessment was improved with 

a hybrid approach using statistically significant variables from Cox proportional 

hazards regression as input features. When all the data categories in the NHIS-NSC 
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linked to environmental exposure data are available, progressively adding variables

in each data category could incrementally increase the predictive performance of 

DeepSurv model for CVD risk with the hybrid approach. Data linkage to the 

environmental exposure with residential area code in the NHIS-NSC offered 

marginally improved performance for CVD risk in both DeepSurv model with the 

hybrid approach and Cox proportional hazards regression model. 

----------------------------------------------------------------------------------------------------

Keywords: cardiovascular disease; healthcare data; environmental exposure;
deep learning based survival analysis; Cox proportional hazards regression

Student number: 2016-21973
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I. INTRODUCTION

1. Background

Cardiovascular disease (CVD) is a class of serious medical conditions occurring in 

the blood vessels and heart (e.g. myocardial infarction [MI], stroke, heart failure, 

and other conditions of the circulatory system) that is one of the leading causes of 

morbidity and death in the world1,2. According to the World Health Organization

report, CVD was responsible for an estimated 17.9 million deaths in 2016, which

accounted for 31% of all deaths worldwide3. Despite the efforts to prevent CVD

through interventions and providing information on well-established risk factors in

the high-risk regions of CVD, countries in the high-risk regions still account for

approximately 75% of CVD mortality in the world3. Also, patients diagnosed with 

CVD often face substantial disease burden due to high healthcare cost and 

possibility of post-event disability4-6. The global burden of CVD continues to rise

every year7 regardless of the widely available CVD risk assessment tools and

preventive strategies.

In the past decades, most of the conventional CVD risk assessment tools 

were developed in the U.S and Europe to estimate future CVD risk based on the 

easily accessible patient-level data8,9. These conventional risk assessment tools are 

widely used to assess CVD risk in the epidemiologic studies despite the variations 

in study populations. Also, there are multiple categories of traditional and non-

traditional risk factors that are reported to be associated with CVD risk based on 

the evidence from previous studies such as health behavior (e.g. cigarette smoking 

and lack of physical activity), dietary factors (e.g. red and processed meat 

consumption), non-traditional biomarkers (e.g. C-reactive protein), oral 
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hygiene/dental health (e.g. chronic periodontitis), and environmental factors (e.g. 

exposure to ambient air pollution10-12) (Figure 1). 

Figure 1. Risk factors for cardiovascular disease (CVD) at-a-glance

However, information on most of the non-traditional risk factors are 

usually difficult to collect or simply unavailable due to technical challenges on data 

integration. Whether CVD risk assessment could be improved with additional use 

of non-traditional risk factors from multiple categories remains uncertain. A recent 

study reported that the use of information on certain biomarkers added to basic 

clinical risk factors could contribute to improving the predictive performance of the 

machine learning (ML) models for identifying atrial fibrillation13. Rather than 

using only conventional risk factors for CVD risk assessment in the dataset for 

research in health science, developing CVD risk prediction models from multiple 

categories of data on the risk factors is of importance in preventive cardiology if 

the use of these additional information could provide a more comprehensive and 

improved evaluation of future CVD risk. 
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Figure 2. Trends in methodologies used for studies in predicting clinical 
outcomes in the past decades

Abbreviations: SR, systematic review; ML, machine learning; LR, logistic regression;

Cox PHM, Cox proportional hazards model

In addition to the conventional CVD risk assessment tools, clinical event 

prediction using ML algorithms has been established as an important aspect in 

data-driven cardiovascular research, especially in the recent years with increasing 

availability of the data sources and advanced techniques14. This recent advance in 

cardiovascular epidemiology contributed to numerous studies that used ML 

techniques for predicting CVD outcome using a wide range of variables15,16. Most 

of the representative studies showed that applying ML techniques outperformed the 

conventional CVD risk assessment tools in predicting the CVD outcome17,18. 

However, a recent meta-analysis published in 2019 by Christodoulou et al., found 

that ML showed no superior performance to logistic regression in clinical 

prediction models based on the 71 studies with 282 comparisons from the Medline 

literature search from January, 2016 to August, 2017. Furthermore, these studies 
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have focused on binary classification of the future CVD event without 

incorporating survival analysis with learning-based prediction algorithms. Taking 

the time element into account in the prediction model can provide more useful 

assessment in the population-level risk for future CVD risk compared to the models 

that simply identify the binary outcome.

Due to the recent development of Cox proportional hazards deep neural 

network, also known as DeepSurv, it is possible to apply survival analysis using

multilayer neural networks19. In the past two decades, survival analysis using 

neural network has not been widely developed or applied after the Faraggi-Simon20

model developed in 1995 did not show improved performance compared to the 

Cox proportional hazards regression21,22 (Figure 2). The lack of adaptation of the 

Faraggi-Simon model was possibly attributable to the lack of computational power 

or publicly available packages (i.e. compare to the modern day R and Python 

packages) for implementing the neural network model for survival analysis. 

Overall, comparing the predictive performance of the DeepSurv and traditional 

Cox proportional hazards regression with variables derived from vast amount of 

available healthcare data linked to other sources for CVD risk assessment is of

interest for data-driven cardiovascular health research. 

2. Research problem

Despite the growing availability of the healthcare data23,24 that can be used 

for comprehensively assessing the risk of CVD, majority of the studies have only 

evaluated risk factors for CVD without fully considering CVD risk factors from 

other data categories. In these studies, the extent to which the unexamined risk 

factors associated with CVD could have modified or produced potentially biased 
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risk estimation is unclear. Also, evidence regarding to what extend the data on 

CVD risk factors should be collected for the optimal CVD risk assessment is 

somewhat inconclusive as non-traditional, yet important risk factors for CVD such

as ankle-brachial index (ABI), high-sensitivity C-reactive protein (hsCRP) level, 

coronary artery calcium (CAC) score, and dental health are often not considered in 

the conventional CVD risk assessment tools. 

Table 1. Previous research trend, problem, and unmet need for cardiovascular risk 
assessment using learning-based algorithms.

Category Predictive 
modeling

Feature selection 
method

Model 
performance

Claim DB linked to 
environmental DB

Previous 
research 
trend 

Most studies 
comparing 
performance of 
deep learning 
models with 
logistic regression 
for CVD as a 
binary outcome  

Automated 
feature selection 
(e.g. RF and 
LASSO) for 
predictive 
modeling for 
CVD as a binary 
outcome

Performance 
benefit with more 
data categories 
were observed in 
studies with 
clinical events as 
binary outcomes

Mostly focused on 
associations between 
environmental 
exposure and CVD 
outcome (rather than 
using environmental 
DB for predictive 
modeling)   

Research 
problem 

Time element 
(time-to-event) is 
not considered in 
the deep-learning 
models for CVD 
as a binary 
outcome, which is 
theoretically not 
comparable to 
Cox PHM

Automated 
feature selection 
methods for 
binary outcome
cannot be directly 
applied for deep-
learning based 
survival analysis 
models due to the 
theoretical 
difference in the 
outcome (binary 
vs. time to event)  

No well-
established 
methodology for 
optimizing model 
performance  in 
deep learning-
based survival 
analysis 

Performance benefit 
of linking healthcare 
data to environmental 
data has not been 
extensively studied, 
especially in deep 
learning-based 
survival analysis 

Unmet 
need 

Predictive 
modeling with 
survival analysis 

Feature selection 
method for 
performance 
improvement in 
deep learning-
based survival 
analysis

A hybrid approach 
in combination 
with Cox PHM
while expanding 
data categories for 
modeling building

Evaluation of 
performance benefit 
for data linkage to 
environmental data 
with a hybrid 
approach 

Abbreviations: CVD, cardiovascular disease; DB, database; Cox PHM, Cox proportional hazards 
model; RF, random forest; LASSO, least absolute shrinkage and selection operator

Whether the information on these non-traditional and other emerging risk 

factors such as data on dental health and environmental exposure contribute to the 

predictive performance using survival analysis, especially in the predictive 
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modeling based on DeepSurv and Cox proportional hazards models is largely 

unknown. 

3. Main hypothesis and objective

3.1. Hypothesis 

       This study aimed to test the main hypotheses that (1) the predictive 

performance of DeepSurv and Cox proportional hazards models for incident CVD 

event using input features with statistics-based variable selection methods from 

multiple data categories is superior to the model with basic clinical factors and (2) 

the overall performance for both models would steadily increase as more input 

features are added from multiple data categories derived from the NHIS database 

linked to environmental exposure data. 

3.2. Objective

The main objectives of this study are as follows: 

(A). Comprehensively review CVD risk factors from conventional CVD risk 

assessment tools and evidence from observations studies and screen for data 

availability in the National Health Insurance Service (NHIS) database linked to 

environmental exposure data.

(B). Use operational definition and statistics-based variable selection methods to 

collect information on comprehensive list of CVD risk factors available in the 

NHIS database linked to environmental exposure data. Also, conduct a population-

based cohort study to check the strength of association between the selected sets of 

variables and incident CVD event. 
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(C). Evaluate and compare the predictive performance of DeepSurv and Cox 

proportional hazards regression for predictive modeling of incident CVD using 

multiple input features from (1) statistics-based variable selection methods (in 

comparison to the models with basic clinical factors and factors included in a 

conventional CVD risk assessment tool) and (2) progressively adding variables in

data categories by level of feasibility and accessibility based on the NHIS data (in 

comparison to the previous model in each step). 
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II. MATERIALS AND METHODS 

Figure 2. Overview of research methods for integrated data on healthcare and 
environmental exposure for CVD risk assessment using deep learning based 

survival analysis and Cox proportional hazards regression

Abbreviations: CVD, cardiovascular disease; SR, systematic review; NHIS-NSC, National Health 
Insurance Service-National Sample Cohort; MOLIT, Ministry of Land, Infrastructure, and Transport

Cox PHM, Cox proportional hazards model

1. Comprehensive review and identification of cardiovascular
disease (CVD) risk factors

1.1. Systematic review on variables included in conventional CVD risk
assessment tools

To systematically review, identify the risk assessment models for CVD, and 

abstract data on the included variables in each model, I followed the items listed in 

the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of 

Prediction Modelling Studies (CHARMS), which is the guideline proposed by the 

Cochrane Prognosis Methods group25. Literature search was conducted in PubMed 

and Embase to identify the published articles from 1 January 1970 to 22 January 
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2020. After identifying the articles, I manually retrieved articles that had the most 

up-to-date information on CVD risk assessment tools (e.g. Qrisk3 instead of Qrisk1 

and Qrisk2)26 and reviewed the estimated outcomes, study population, risk 

factors/predictors (variables) that are included in each model. I excluded the 

articles that reported the results on external validation or comparing the prognostic 

value of different models. Prior to qualitative synthesis of the articles that provide 

information on the CVD risk assessment models, an additional reviewer was 

recruited in the review process in case of doubt. 

1.2. Systematic review on traditional and emerging CVD risk factors from 
observational studies 

I conducted a literature search on PubMed and Embase using a broad 

search queries adopted from the previous meta-analyses and systematic reviews in 

the relevant topics (details of the search terms are provided in Table 1). Because the 

purpose of this study was not focused on quantitative analysis of the selected 

articles, I did not consider the Meta-Analysis of Observational Studies in 

Epidemiology (MOOSE) guideline when checking the items reported in each study. 

Table 2. Search queries for a comprehensive review of cardiovascular disease
(CVD) risk factors

Research database for healthcare
and medicine

Search terms

PubMed
(https://www.ncbi.nlm.nih.gov/pubmed)
2020.01.22

((“association” [tiab] OR “risk” 
[tiab] OR “predictor” [tiab] OR 
“relationship” [tiab]) AND 
(“myocardial infarction” [tiab] OR 
“myocardial infarct” [tiab] OR 
“cardiac infarct” [tiab] OR “heart 
attack” [tiab] OR “myocardium 
infarct” [tiab] OR “subendocardial 
infarct” [tiab] OR “transmural 
infarct” [tiab] OR “ventricle infarct” 
[tiab] OR “ventricular infarct” [tiab]
OR “stroke”[tiab]) “ischemic 
stroke”[tiab] OR “hemorrhagic 
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stroke”[tiab] OR “cerebrovascular 
disease"[tiab] OR “cerebrovascular 
attack"[tiab] OR “cerebral 
infarct"[tiab] OR “intracranial 
hemorrhage"[tiab]))

EMBASE
(https://www.embase.com)
2020.01.22

((‘association’:ab,ti OR ‘risk’:ab,ti 
OR ‘predictor’: ab,ti OR 
‘relationship’:ab,ti AND 
(‘heart’:ab,ti OR ‘myocard’:ab,ti 
OR ‘subendocardial’:ab,ti OR 
‘transmural’:ab, ti OR 
‘coronary’:ab, ti OR ‘occlusion’: ab, 
ti OR ‘infarct’: ab,ti OR ‘attack’: 
ab,ti’ OR 
‘stroke’:ab,ti ‘Ischemic stroke’:ab,ti 
OR ‘hemorrhagic stroke’:ab,ti OR 
‘cerebrovascular disease’:ab,ti OR 
‘cerebrovascular attack’:ab,ti OR 
‘cerebral infarct’:ab,ti OR 
‘intracranial hemorrhage’:ab,ti)

The studies included in this review were limited to observational cohort 

studies with accurate assessment of cardiovascular risk factors and cardiovascular

outcomes. The following criteria were considered in the full-text review of the 

articles identified in the process of screening and considering eligibility for 

inclusion: (1) cohort design (2) reliable source of data from well-established 

studies (e.g. the Nurses’ Health Study in the United States) or medical research 

database (e.g. QResearch database in the United Kingdom) (3) Outcome of the 

study was clearly defined and was identified from a reliable source of data (4) 

reporting CVD outcome as hazard ratios or relative risk with 95% confidence 

intervals from validated statistical models. 

Among the studies screened for each risk factor in the systematic review, 

the representative study was primarily chosen based on the study sample size and 

publication year after checking for the relevant meta-analysis. Secondary criteria 

for determining the final study was based on the Scientific Journal Ranking in the 
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relevant field or notable medical journals (e.g. BMJ, JAMA, Lancet, etc). 

1.3. Integration of the comprehensive list of CVD risk factors

In the final process of full-text review for variables included in the 

conventional CVD risk assessment tools and observational studies, the 

comprehensive list of CVD risk factors were synthesized after removing duplicate 

variables. Each variable was assigned to a relevant categories ranging from 

sociodemographic factors to environmental exposure. 

1.4. Screening for data availability

Based on the posteriori knowledge, comprehensive list of CVD risk 

factors derived from the conventional CVD risk assessment tools and observational 

studies was screened for availability in the National Health Insurance Service-

National Sample Cohort (NHIS-NSC). 

2. Cohort analysis for measuring strength of association 
between risk factors and incident cardiovascular disease

2.1. Study population and linkage to environmental exposure data 
  

The database used in this study is derived from the administrative 

database derived from the National Health Insurance Service (NHIS) in the 

Republic of Korea. The National Health Insurance Act was established in 1989 by 

the Ministry of Health and Welfare in the Republic of Korea, and as the NHIS 

subsequently began to serve as a quasi-government entity that provides health 

insurance to the enrollees, which was approximately 97% of the population in the 

country. Since the NHIS was established as a single-insurer by the government 

policy, information on the enrollees’ demographics, national health screening 

(health questionnaire and clinical laboratory results), medical/dental claims, 

medication prescription, and other relevant information had been collected and 
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managed by the NHIS. As a part of the implementation of the Government 3.0 

initiative in the Republic of Korea, which promotes opening and sharing of the 

database in the public sector, some of the accumulated data in the NHIS had been 

released for research purpose. 

The integrated data on healthcare and environmental exposure used in this 

study was derived from the NHIS-NSC, which is a nationally representative cohort 

constructed from approximately 2 % of the target population of the NHIS enrollees 

(~46,605,433) in 2002 using proportional allocation and random sampling methods. 

The raw data of NHIS-NSC includes approximately 1 million enrollees, of which 

their records on insurance eligibility, national health screening, and medical/dental 

claims could be used for epidemiologic research. Based on the data on their 

residential area code (administrative district codes in the Republic of Korea), 

environmental exposure data on cumulative particulate matter (PM 10 derived from 

AirKorea) and urban green space (provided by the Ministry of Land, Infrastructure 

and Transport, MOLIT), which excludes the natural green space, and only limited 

to city parks and artificial green space. The enrollees were limited to those residing 

in the seven major cities in the Republic of Korea (Seoul, Busan, Incheon, Daegu, 

Daejeon, Gwangju, and Ulsan) to minimize the confounding effect of natural green 

space. This integrated database was used to evaluate the predictive performance of 

deep learning based survival analysis and traditional survival analysis for 

assessment of future cardiovascular risk using multiple risk factors from claims 

data to the environmental exposure. 
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Figure 4. Longitudinal cohort study design with the National Health Insurance 
Service-National Sample Cohort (NHIS-NSC) linked to environmental exposure 
data

The study population was limited to the enrollees aged more than 40 

years of age who underwent the national health screening between 2009 and 2010 

without previous history of CVD and were followed up until 2013. Information on

annually reviewed sociodemographic factors for insurance eligibility, 

medical/dental claims, medication prescription, and environmental exposure were 

inter-linked with unique keys (Figure 4). Accordingly, 169,942 enrollees in the 

NHIS-NSC who were older than 40 years of age and underwent the national health 

screening between 2009 and 2010 residing in the seven major cities (Seoul) with 

environmental exposure (cumulative exposure to PM 10 and urban green space) 

were identified. After excluding 32,693 enrollees who were previously diagnosed 

with CVD (n=31,381), died prior to follow-up (n=1,076), or missing information 

on health screening data (n=236), a total of 137,249 participants were included in 

the final analytic cohort based on the NHIS-NSC database linked to the 

environmental exposure data (Figure 5). Details of the cohort profile and validity 

of the NHIS-NSC and data linkage to environmental exposure from particulate 

matter and urban green space have been previously described. 
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Figure 5. Flow diagram of the study population selection process from the 
enrollees of the NHIS-NSC linked to environmental exposure data

Abbreviations: NHIS-NSC, National Health Insurance Service-National Sample Cohort; 
PM, particulate matter; MOLIT, Ministry of Land, Infrastructure, and Transport

Institutional Review Board (IRB) at the Seoul National University 

Hospital (IRB No.: E-1802-008-918) approved this study, which adheres to the 

research ethics of the patient-level data and complies to the Declaration of Helsinki.

The Review Board at the Big Data Steering Department in the NHIS approved this 

study for Kyuwoong Kim’s Ph.D. dissertation. (Assigned No.: NHIS-2018-2-174).

There is no additional data available other than the results reported in this study. To 

preserve the confidentiality of this population-based data, access to the NHIS-NSC

database was only granted to Kyuwoong Kim for the research purpose for this 

dissertation. Unauthorized use of the NHIS in any form in this study is prohibited 

by the Private Information Protection Act in the Republic of Korea.

2.2. Variable selection and data processing

Among the final variables included in the comprehensive list of CVD risk 
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factors from the conventional CVD risk assessment tools and observational studies 

after systematic review, data synthesis, and availability screening, operational 

definition based on the previous study with NHIS database for each variable was 

determined. Prior to applying statistics-based variation selection methods, multiple 

collinearity test based on variance inflation factor (VIF) was conducted with a cut-

off value for multiple collinearity set to VIF>5. Since age could be highly 

correlated with the underlying conditions identified as CVD risk factors, multiple 

collinearity for age and underlying conditions was additionally checked. 

After checking multiple collinearity, three statistics-based variation 

selection methods were implemented. First, Cox proportional hazards model was 

fitted adjusting for all of the available risk factors, and only those that were 

statistically significant (cut-off point set to p<0.05) were selected. Second approach 

was obtaining the best subset based on the minimum (best) Akaike Information 

Criteria (AIC) in a full stepwise fashion using significance level for entry 

(SLENTRY) and significance level for stay (SLSTAY) value close to 1 

(SLENTRY=0.99 in and SLSSTAY=0.995). In this process, subset of the 

explanatory variables (risk factors) with the minimum (best) AIC was chosen. 

Third, fitting the Cox proportional hazards model regularized by penalty terms with 

elastic net (combination of L1 and L2 penalties from the Ridge method and Least 

Absolute Shrinkage and Selection Operator, LASSO) was used. With the elastic net 

regularization, penalized regression coefficients in the Cox proportional hazards 

model shrinked to zero and only the variables with non-zero coefficients were 

retrieved and selected27. Also, the variables meeting all of the three criteria (models 

with the variables selected from statistical significance, subset with minimum AIC, 

and elastic net regularization) were additionally considered as a variable selection 



１６

method, which was similar to the variable selection approach used by the Diabetes 

Control and Complications Trial/Epidemiology of Diabetes Interventions and 

Complications (DCCT/EDIC) Research Group for determining risk factors for 

CVD among patients with type 1 diabetes28. 

3.3. Population-based cohort analysis

Based on the previously published literature using the NHIS database, the 

incident CVD event that occurred during the follow-up period (January 1, 2011 to 

December 31, 2013) in this study were defined using the International 

Classification of Diseases, Tenth Revision (ICD-10) for coronary heart disease

(ICD-10: I20-I25) and total stroke (ICD-10: I60-I69) with at least 2 days (48 hours) 

of hospitalization29-31. This operational definition for incident CVD event in the 

NHIS database using the medical claim records have been reported. To statistically 

test the proportionality assumption of the Cox regression model, partial residual of 

each explanatory variable from the model and follow-up time for the individuals 

with incident CVD event were computed and checked for the correlation 

independent of change in time (Schoenfeld residual). Additional assessment for the 

proportionality assumption was graphically tested with log-log plot for age to 

check if the survival estimates largely differ by age. To examine the strength of 

association between the risk factors selection from the statistics-based variable 

selection methods, hazard ratio (HR) and 95% confidence intervals (95% CI) were 

computed using Cox proportional hazards regression for each variable adjusting for 

all the other variables in the selected set. Data collection and statistical analyses for 

statistics-based variable selection and population-based cohort analyses were 

conducted with 9.4 (SAS Institute, Cary, NC, USA) and R software, version 3.6.3 

(R foundation). Statistical test was two-sided and statistical significance was 
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defined as p values <0.05 for all analyses.

3. Predictive modeling using survival analysis: DeepSurv and 
Cox proportional hazards regression

3.1. Model development 

Predictive modeling with survival analysis for incident CVD in the NHIS-

NSC linked to environmental exposure data was conducted with Cox proportional

hazards deep neural network (DeepSurv)19 and Cox proportional hazards 

regression32. DeepSurv is a feed-forward neural network, of which the output is the 

predicted log-hazard function from the input features that are parametrized by the 

weights of the network through fully connected and dropout layers (Figure 6). For 

the model development process with DeepSurv, early stopping (which stops 

training when the validation loss stops improving) was conducted to avoid 

overfitting in the training set. DeepSurv was implemented with Pycox package in 

Python 3.7.4. Random hyper-parameter optimization search was adopted for 

DeepSurv33. Cox proportional hazards model is a semiparametric (estimates log-

risk function using a linear function without estimating the baseline hazard 

function) survival model that consists of baseline hazard function and log-risk 

function.
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Figure 6. Structure of Cox proportional hazards deep neural network (DeepSurv)

DeepSurv is a feed-forward neural network consists of fully connected and dropout layers where the 
output of the network is the predicted log-hazard function, which is a part of Cox proportional 
hazards model, with given input features. 

To develop predictive models based on survival analysis using DeepSurv 

and Cox proportional hazards regression, two approaches were selected for input 

features. First, the following variable sets were used as input feature sets for 

DeepSurv and Cox proportional hazards regression: (1) basic clinical factors that 

can be simply collected from demographics and anthropometric measurement (age, 

sex, and body mass index) based on a previous study; (2) European Society of 

Cardiology Systematic Coronary Risk Evaluation (ESC SCORE) factors (age, sex, 

total cholesterol, systolic blood pressure, and cigarette smoking), which requires 

minimal information on demographics, lipid profile, blood pressure measurement, 

and health questionnaire survey on cigarette smoking; (3) Model 1 (all variables), 

Model 2 (statistically significant variables from Cox proportional hazards model), 

Model 3 (subset of best AIC), Model 4 (variables selected from regularized Cox 

proportional hazards regression with elastic net penalty), and Model 5 (variables 

meeting criteria in Model 2-4). For DeepSurv models, Model 2-5 are considered 
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hybrid approach since the selected variables used as input features was adopted 

from the Cox proportional hazards model (i.e. unlike automated variable selection 

using variable importance in Random Forest or LASSO for machine learning 

models for binary classification). For sensitivity analysis, number of underlying 

conditions was replaced for all of the associated health conditions and used as input 

a feature for predictive modeling. Second, progressively adding 11variables 

included in each data category ranging from sociodemographic factors to 

environmental exposure was implemented for predictive modeling with DeepSurv 

and Cox proportional hazards regression. For variables pertaining to each data 

category, all variables and statistically significant variables were progressively 

added as input features.

Figure 7. Framework for the model development and performance evaluation with 
survival analysis using DeepSurv and Cox proportional hazards regression for 
CVD risk using NHIS-NSC linked to environmental exposure data

Abbreviations: CVD, cardiovascular disease; NHIS-NSC, National Health Insurance Service-National 
Sample Cohort; AIC, Akaike Information Criteria; Cox PHM, Cox proportional hazards model 
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3.2. Evaluation of the predictive performance of the models

For the evaluation of the predictive performance of each model derived 

from the Cox proportional hazards regression and DeepSurv, the Uno’s method 

(2011) was chosen because it takes the censoring distribution into account for 

weighing the uncensored observations in the estimation34. Unlike the Harrell’s 

method35,36 that simply discards the pairs that could not be compared due to the 

event of censoring, Uno’s method is censoring-independent, and thus considered 

the most up-to-date method for evaluating the area under the curve (AUC) for the 

survival analysis models with right-censored data. The AUC value presented as 

Uno’s concordance statistics (C-index) can be interpreted as the probability of an 

individual with the incident CVD event has a higher risk score than an individual 

without the event1. In addition, p-value for difference in Uno’s C-index was 

computed to compare the predictive performance of the DeepSurv and Cox

proportional hazards regression models with different input features. The p-value 

for difference in Uno’s C-index was computed for the models with ESC SCORE 

factors and models with multivariable factors (Model 1-5) in reference to the model 

with basic clinical factors. For the models with variables progressively added from 

sociodemographic factors to environmental exposure, p-value for difference in 

Uno’s C-index was compared in reference to the model in the previous step.
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III. RESULTS

1. Identification and categorization of cardiovascular disease 
risk factors

Overall, the total number of CVD risk models was 13 and they were developed 

based on population-based cohort data from North America (n=5), Europe (n=5), 

and Asia (n=3) (Table 2). There were no models developed using data from South 

America and Africa. Most of the models used cohort data collected from a single 

country whereas European Society of Cardiology Systematic Coronary Risk 

Evaluation (ESC SCORE), Asia Pacific Asia Cohort Studies, and Keys used cohort 

data from multiple countries. Among the models that used cohort data from a single 

country, all of them included different ethnic groups in their data except for Chien 

(Taiwan) and Korean Risk Prediction Model (Republic of Korea). There was a 

large variation in the estimated CVD outcomes. 

Although most of the models provided risk estimate for incident and fatal 

CVD events (including heart disease and stroke), some models (PROCAM, Chien, 

Chambless, Keys, and the Heart Score) were developed for only assessing adverse 

coronary events such as myocardial infarction. While other models did not 

particularly provide the information on time frame for the estimated CVD risk, the 

Framingham Risk Score and the Atherosclerotic Cardiovascular Disease (ASCVD) 

risk estimator are specified as 10-year risk of fatal CVD and 10-year risk of 

ischemic heart disease and stroke, respectively. Also, the CVD risk model 

developed from the Asia Pacific Cohort studies stated that the model provides risk 

estimation for 8-year risk of CVD. In addition, variables that were used to develop 

the CVD risk estimation largely differed by the models. While the ESC SCORE 



２２

contained the smallest number of variables (n=5), Q-risk3 had the largest number 

(n=21) of variables that were used to develop the model.
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Table 3. List of conventional CVD risk assessment tools developed in North America, Europe, and Asia.

Model/
Developer 

Country/
Region

Reference
Article 

Estimated 
Outcomes 

Study population Risk factors/predictors (variables)

Framingham 
Risk Score

USA D’Agostino
et al., (2008)2

10-year risk of fatal 
CVD

Framingham
Heart Study

Age, sex, 
TC, HDL-C, 
systolic BP
smoking, diabetes

ASCVD Risk
Estimator 
(ACC/AHA 
pooled cohort 
equation)

USA Goff et al.,
(2013)3

10-year risk of IHD
and stroke

ARIC Study, Cardiovascular 
Health Study, CARDIA study, 
Framingham Heart Study and 
Framingham Offspring study

Age, sex, race, systolic and diastolic 
BP, TC, HDL-C, LDL-C diabetes, 
smoking, hypertension treatment, 
medication use
(statin, aspirin)

ESC SCORE Europe Conroy et al., 
(2003)4

Fatal CVD events Pooled dataset from 12 
European countriesa

Age, sex, smoking, TC, systolic BP  

Q-risk3 UK
(England 
and Wales)

Hippisley-
Cox et al.,
(2017)5

Incident CVD 
events 

QResearch Database (version 
41)

Age, sex, ethnicity, systolic BP, BMI, 
family history of CHD, TC/HDL 
ratio, Townsend deprivation score, 
treated hypertension, rheumatoid 
arthritis, atrial fibrillation, type 2 
diabetes, chronic renal disease 
(including nephrotic syndrome, 
chronic glomerulonephritis, chronic 
pyelonephritis, renal dialysis, and 
renal transplant),  chronic kidney 
disease (stage 3,4, and 5), systolic BP 
variability, diagnosis of migraine, 
corticosteroid use, systemic lupus 
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erythematosus, antipsychotic use 
(including amisulpride, aripiprazole, 
clozapine, lurasidone, olanzapine, 
paliperidone, quetiapine, risperidone, 
sertindole, or zotepine), severe 
mental illness (including psychosis, 
schizophrenia, or bipolar affective 
disease), Diagnosis of HIV or AIDS, 
Diagnosis of erectile dysfunction or 
treatment for erectile dysfunction 
(BNF chapter 7.4.5 including 
alprostadil, phosphodiesterase type 5 
inhibitors, papaverine, or 
phentolamine) 

PROCAM Germany Assmann., 
(2002)6

Acute coronary 
events 

PROCAM Study Age, history of diabetes, smoking, 
family history of MI, LDL-C, HDL-
C cholesterol, TG, SBP 

Chien Taiwan Chien et al.,
(2012)7

Coronary artery 
disease 

Chin-San Community 
Cardiovascular Cohort Study 

Age, sex, BMI, Systolic BP, TC, 
HDL, LDL-C 

Friedland USA Friedland et 
al., (2009)8

Incident CVD 
events

Patient records from the 
Medical College of 
Wisconsin and Froedtert 
Hospital

Age, smoking, hyperlipidemia, 
diabetes, hypertension, and 
audiometric patterns (strial, mid-
sloping, low-sloping, high-sloping)

ASSIGN 
Score 

UK
(Scotland) 

Woodward et 
al., (2007)9

Incident CVD 
events 

Scottish Heart Health 
Extended Cohort Study

Age, TC, HDL-C, systolic BP, 
diabetes, smoking
social deprivation (SIMDSC10), 
family history of heart disease or 
stroke 
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Asia Pacific 
Cohort Studies 
Collaboration 

Asia Barzi et al.,
(2007)10

8-year risk of CVD Asia Pacific Cohort Studies, 
Chinese cohorts, and 
Framingham Study

Age, sex, TC, systolic BP, smoking 

Chambless USA Chambless et 
al., (2003)11

Incident CHD
events

ARIC
Study

Age, sex, race, TC, HDL-C, systolic 
BP, antihypertensive medication, 
smoking, diabetes, IMT, PAD 

Keys US and 
Europe 

Keys et al.,
(1972)12

Incident CHD
Events 

International Cooperative 
Study on the Epidemiology of 
Cardiovascular Disease 
(Middle-aged men)

Age, systolic BP, TC, smoking, and 
BMI

The HEART
Score

The 
Netherlands

Brady et al.,
(2018)13

Adverse outcomes 
from
acute coronary 
syndrome such as 
myocardial 
infarction

Community hospital in the 
Netherlands

Age, ECG, initial troponin, history, 
risk factors (currently treated 
diabetes mellitus, current or recent 
(<one month) smoker, diagnosed 
hypertension, diagnosed 
hypercholesterolaemia, family 
history of coronary artery disease and 
obesity)

Korean Risk 
Prediction 
Model

Republic of 
Korea

Jung et al., 
(2015)14

ASCVD events The Korean Heart Study Age, sex, HDL-C, treated systolic 
BP, untreated systolic BP, smoking, 
diabetes

aFinland, Russia, Norway, UK, Denmark, Sweden, Belgium, Germany, Italy, France, Spain,  
Abbreviations: CVD, cardiovascular disease; ASCVD, atherosclerotic cardiovascular disease; ACC/AHA, American College of Cardiology; ESC SCORE, European Society of 
Cardiology Systematic Coronary Risk Evaluation; PROCAM, Prospective Cardiovascular Münster; CVD, cardiovascular disease; IHD, ischemic heart disease; CHD, coronary 
heart disease; MI, myocardial infarction; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; BP, 
blood pressure; BMI, body mass index; ECG, electrocardiogram; ARIC Atherosclerosis Risk in Communities; CARDIA, coronary artery risk development in young adults; 
ASSIGN, assessing cardiovascular risk using SIGN guidelines to assign potential patients to preventive treatment); SIGN, Scottish Intercollegiate Guidelines Network; 
SIMDSC10, Scottish Index of Multiple Deprivation score divided by 10; IMT, intima-media thickness; PAD, peripheral artery disease   
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After abstracting information on the variables included in the

conventional CVD risk assessment tools, the comprehensive list of the variables

was summarized by the following data categories: sociodemographic factors, 

clinical laboratory test and measurement, lifestyle behavior, family history, 

underlying medical conditions, and medication. Subsequently, each variable was

assessed for availability in the NHIS-NSC linked to the environmental exposure 

data (Table 3). Since the NHIS-NSC is based on healthcare claims database and

were not linked to electronic health records, patient-level data on 

electrocardiogram, intima-media thickness, and audiometric patterns were not

available. Also, none of the conventional CVD risk assessment tools used 

environmental exposure data or applied neural network for survival analysis. In 

addition, the NHIS-NSC is limited to a single ethnic group (South Koreans) and

thus data on diverse ethnicity was inherently absent. Due to the changes in the

reporting standards of the clinical laboratory tests along with the national health

screening questionnaires, information on lipid profiles (HDL-cholesterol, LDL-

cholesterol, and triglyceride) are available from 2009 in the NHIS-NSC.  

Table 4. List of variables and assessment of their availability in the National 
Health Insurance Service-National Sample Cohort (NHIS-NSC) abstracted from 
the 13 conventional CVD risk assessment tools identified from the literature search

Variables used in the conventional 
CVD risk assessment toolsa

(n=13)

Availability in the 
NHIS-NSC

Sociodemographic factors

Age O

Sex O

Social deprivation X

Ethnicity (race) X

Clinical laboratory test and measurement

Systolic 
blood pressure 

O

Diastolic O
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blood pressure 

Total cholesterol O

HDL-cholesterol △
LDL-cholesterol △
Triglyceride △
Body mass index O

Hypertension O

Type 2 diabetes O

Hyperlipidemia O

Electrocardiogram X

Intima-media thickness X

Audiometric patterns X

Lifestyle behavior

Cigarette smoking O

Family history 

Family history of CVD O

Underlying medical conditions

Atrial fibrillation O

Peripheral 
artery disease 

O

Chronic 
kidney disease 

O

Diagnosis of migraine O

Systemic 
lupus erythematosus

O

Severe mental illness O

Rheumatoid arthritis

Diagnosis of HIV or AIDS X

Erectile dysfunction X

Medication 

Aspirin O

Statin  O

Antihypertensive medication O

Antipsychotic use O

Corticosteroid use O

NOTE: O: Available, △, partially available (health screening data from 2009), X: Not available
aConventional CVD risk assessment tools are as follows: Framingham risk score, ASCVD risk , ESC 
SCORE, Q-risk3, PROCAM, Chien, Friedland, ASSIGN Score, Asia Pacific Cohort Studies 
Collaboration, Chambless, Keys, The Heart Score, and the Korean Risk Prediction Model

Abbreviations: CVD, cardiovascular disease; HDL-cholesterol, high-density lipoprotein cholesterol ; 
LDL-cholesterol, low-density lipoprotein cholesterol; HIV, human immunodeficiency virus; 

AIDS, acquired immune deficiency syndrome 
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After screening for previous meta-analyses on the relevant topics and

screening published literature using search terms for identifying comprehensive 

CVD risk factors in accordance with the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA)37, initial search on medical literature 

database (PubMed and Embase) resulted in a total of 95,875 records (PubMed 

31,493 and Embase 64,382) along with 5 records from other sources were included. 

After removing duplicates, 45,782 articles were remaining and the titles and 

abstracts of these articles were screened for relevance. After this screening process, 

45,396 articles were excluded and 386 articles were determined to be eligible for 

full-text review. Finally, 339 articles were removed after full-text review and 47 

articles were selected for review of comprehensive CVD risk factors (Figure 8).
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Figure 8. Flow diagram for a comprehensive review on CVD risk factors identified from conventional CVD risk assessment tools and 
observational studies in PubMed and Embase database



３０

Comprehensive list of CVD risk factors from the literature search were 

limited to the factors that were not included in the conventional CVD risk 

assessment models. Risk factors identified from the literature search were derived 

from 47 observational studies and they were summarized by factors, representative 

meta-analysis, reference article, data source, sample size, and outcome used in the 

study and were further reviewed for relevant data categories and availability in the 

NHIS-NSC (Table 4). Due to the limited sources of data (administrative, national 

health screening, medical/dental claims) collected for constructing the NHIS-NSC, 

most of the patient-level data on circulatory system, physical fitness, biomarkers, 

and dietary factors were not available. Environmental exposure data on particulate 

matter and urban green space could be merged using the residential area code of 

the NHIS enrollees as the common key for according to the previous studies with 

the NHIS-NSC. Other environmental factors such as arsenic exposure and 

household fuel use could not be obtained and linked to the NHIS-NSC.  However, 

data on medical conditions, dental disease, and medication use that were identified 

as CVD risk factors could be collected from the claims and prescription records in 

the NHIS-NSC.
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Table 5. Comprehensive list of CVD risk factors identified from the observational studies in the systematic review

Factors 
associated 
with CVD

No. of 
studies 
screened

Representative 
meta-analysis

Representative 
study

Data Source of the 
Representative study

Sample
size of the 
representati
ve study

Outcome Availabili
ty in the 
NHIS-
NSCa

ABI 42 Ankle Brachial 
Index 

Collaboration
(2008)16

Alzamora et al.,
(2013)38

Primary Health Centers 
in Barcelona, Spain

3,786 Cerebrovas
cular events

X

hsCRP 62 Emerging Risk 
Factors 

Collaboration 
(2010)39

Blaha et al.,
(2011)40

MESA
JUPITER

950 CVD X

CAC 27 Pletcher et al.,
(2004)41

Blaha et al.,
(2011)40

MESA
JUPITER

950 CVD X

Apo B 39 Sniderman et 
al., (2011)42

Hwang et al.,
(2017)43

TNT and IDEAL 10,001 
(TNT)

8,888 (IDEL)

MCVE X

GGT 28 Du et al.,
(2013)44

Yang et al., 
(2018)45

NHIS-NSC 456,100 Stroke O

Physical 
inactivity 
(MVPA)

79 Wahid et al.,
(2016)46

Kim et al., (2019)47 NHIS (nationwide 
cohort for elderly)

1,119,925 CVD △

Short sleep
duration 

34 Cappuccio et al.,
(2011)48

Chandola et al., 
(2010)49

The Whitehall II cohort 10,308 CHD X

Shift-work 51 Vyas et al.,
(2012)50

Hublin et al., 
(2010)51

The Finnish twin cohort 20,142 CVD 
deaths and 

X



３２

disability 
due to 
CVD

Cardiorespirat
ory fitness 
(peak exercise 
oxygen 
consumption)

62 Kodama
et al.,

(2009)52

Laukkanen et al., 
(2004)53

KIHD
(Finland)

2,361 CVD death X

Handgrip 
strength 

23 Chainnani., 
(2016)54

Celis-Morales et 
al., (2018)55

UK Biobank 502,293 CVD 
mortality 

X

Push-up 
exercise 
capacity 

1 N/A Yang et al., 
(2019)56

Male firefighter cohort 
in the USA

1,104 CVD X

Retinal vein 
occlusion

24 Khan et al.,
(2013)57

Rim et al., (2015)58 NHIS-NSC 5,074 Stroke and 
AMI 

O

Retinal 
artery 
occlusion 

12 Zhou et al.,
(2016)59

Rim et al.,
(2016)60

NHIS-NSC 2,403 Stroke O

Chronic 
kidney disease

35 Palmer et al.,
(2011)61

Angelantonio
et al., (2010)62

The Reykjavik study 
(Iceland)

16,958 MACE O

NAFLD 56 Targher et al.,
(2016)63

Zeb et al., (2016)64 MESA 6,814 Incident 
cardiac 
events

O
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Anemia 29 N/A Zakai et al.,
(2005)65

CHS 1,205 CVD 
mortality

O

Parkinson’s 
disease

98 Alves et al., 
(2020)66

Huang et al.,
(2013)67

NHI claims database
(Taiwan)

2,204 Ischemic 
stroke 

O

Chronic 
periodontitis 

12 Lafon et al., 
(2014)68

Hansen et al.,
(2016)69

The Danish Nationwide 
Cohort Study

17,691 CVD 
mortality

O

Dental caries 17 N/A Park et al., (2019)70 NHIS-HEALS 247,696 CVD O
Red meat 69 Kim et al.,

(2017)71
Larsson et al.,

(2011)72
COSM 40,291 Stroke X

Processed 
meat

72 Kim et al.,
(2017)71

Bernstein et al.,
(2012)73

HPFS 84,010 Stroke X

White meat 53 Kim et al.,
(2017)71

Haring et al.,
(2015)74

ARIC 11,601 Stroke X

Fishb 49 Larsson et al.,
(2011)75

Mozaffarian et al.,
(2005)76

CHS 4,775 Stroke X

Fried food 36 Gadiraju et al.,
(2015)77

Guallar-Castillón
et al., (2012)78

Spanish 
EPIC

40,757 CHD X

Fruit and 
vegetablec

56 Wang et al.,
(2014)79

Larsson et al.,
(2013)80

SMC and COSM 74,961 Stroke X

Sugar and 
artificially 
sweetened 
beverages  

78 Narain et al., 
(2016)81

Pase et al., (2017)82 FHS 2,888 Stroke X

Coffee 37 Sofi et al.,
(2007)83

Kleemola et al.,
(2000)84

Cohort of eastern Finish 
men and women

20,179 CHD X

Milk 48 Guo et al., Bergholdt et al., Copenhagen General 33,625 IHD X
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(2017)85 (2015) Population Study
Egg 31 Geiker et al., 

(2018)86
Qin et al.,
(2018)87

CKB 461,213 CVD, IHD, 
and MCE

X

Green and 
roasted teas

52 Bohn et al.,
(2012)88

Tanabe et al.,
(2008)89

Tokamachi–Nakasato 
cohort
in Japan

6,358 Stroke, 
cerebral 
infarction 
and 
cerebral 
hemorrhage

X

Nuts  23 Mayhew et al.,
(2016)90

Bao et al., (2013)91 NHS and HPFS 76,464 Heart 
disease and 
stroke 
mortality

X

Alcohol 
(light-to-
moderate)

84 Ronksley et al.,
(2011)92

Smyth et al.,
(2015)93

PURE 155,875 MI, Stroke △

Dietary fiber 62 Threpleton et 
al.,(2013)94

Kokubo et al., 
(2011)95

The Japan Public Health 
Center-based 
prospective study

86,387 CVD X

Folic acid, 
vitamin B6, 
and vitamin 
B12 

27 Zhou
et al., (2011)96

Albert et al.,
(2008)97

WAFACS 5,442 CVD X

Vitamin C
supplement 

53 Chen et al., 
(2013)98

Osganian et al.,
(2003)99

NHS 85,118 CHD X

Dietary and 
supplemental 

93 Bolland et al.,
(2014)100

Messenger et al.,
(2012)101

MrOS 3,904 CVD X
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Vitamin D
Dietary 
sodium 

60 Mozafaarian et 
al., (2014)102

Cook et al.,
(2007)103

TOPH I and TOPH II 744 MI, Stroke, 
Coronary 
revasculari
zation, 
CVD death

X

Dietary and 
supplemental 
Calcium 

97 Chung et al.,
(2016)104

Hemerijck et al.,
(2013)105

NHANES III linked to 
the NDI

20,024 CVD death X

Dietary 
potassium

82 D’Elia
et al.,

(2011)106

Umesawa et al.,
(2008)107

JACC Study for 
Evaluation of Cancer 
Risks

58,730 CVD death X

Omega-3 
fatty acids

49 Zhang et al., 
(2016)108

Amiano et al.,
(2014)109

Spanish EPIC 41,091 Coronary 
events

X

Cadmium 
exposure 

32 Larsson et al., 
(2016)110

Tellez-Plaza et al.,
(2013)111

Cohort of American 
Indians in the Strong 
Heart Study

3,348 CVD 
incidence 
and 
mortality  

X

Lead 
exposure

57 Navas-Acien et 
al., (2007)112

Lanphear et al.,
(2018)113

NHANES III linked to 
the NDI

14,289 CVD 
mortality

X

Arsenic 
exposure

61 Moon et al.,
(2017)114

Chen et al.,
(2011)115

HEALS 11,746 CVD 
mortality

X

Household fuel 
use 

15 N/A Mitter et al.,
(2016)116

Golestan Cohort Study 50,045 CVD 
mortality

X

Urban 27 N/A Seo et al., NHIS-NSC 351,409 CVD O
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NOTE: O :Available; △: partially available from 2009 or not well defined prior to 2009 survey; X: Not available;
aIncluding the data source that can be merged into the NHIS-NSC
bThis study found that broiled or baked fish consumption was associated with higher risk of stroke whereas fried fish or fish sandwich consumption was associated with lower 
risk of stroke. 
cIn particular, apples, pears, and green leafy vegetables 
dCannot be linked due to the limited information on the administrative/location code in the NHIS-NSC
Abbreviations: CVD, cardiovascular disease; MI, myocardial infarction; AMI, acute myocardial infarction; CHD, coronary heart disease; MCE, major coronary event; IHD, 
ischemic heart disease; MACE, major adverse cardiovascular events; MCVE, major cardiovascular event; ABI, ankle-brachial index; hsCRP, high-sensitivity C-reactive protein; 
CAC, coronary artery calcium; GGT, Gamma-glutamyl transferase; Apo B; Apolipoprotein B; NHI, the National Health Insurance (Taiwan); HEALS, Health Effects of Arsenic 
Longitudinal Study; JACC, the Japan Collaborative Cohort; MESA, the Multi-Ethnic Study of Atherosclerosis; JUPITER: Justification for the Use of Statins in Primary 
Prevention: An Intervention Trial Evaluating Rosuvastatin trial; TNT, Treating to New Targets trial; IDEAL, Incremental Decrease in End points through Aggressive Lipid 
lowering trial; KIHD, Kuopio Ischaemic Heart Disease Risk Factor Study; CKB, the Chinese Kadoorie Biobank study; SMC, the Swedish Mammography Cohort; COSM, the 
Cohort of Swedish men; FHS, the Framingham Heart Study; HPFS, the Health Professionals Follow-Up Study; NHS, the Nurses’ Health Study; PURE, the Prospective Urban 
Rural Epidemiological study; MrOS, the Osteoporotic Fractures in Men study; TOPH, trials of hypertension prevention; NHANES, National Health and Nutrition Examination 

green space (2019)117

PM 2.5 36 Fu et al., 
(2015)118

Crouse et al., 
(2012)119

Canadian cohort of 
nonimmigrants

2,145,400 Nonacciden
tal and 
CVD 
mortality

△
(only 3 
cities 
from 
2009)

PM 10 45 Fu et al., 
(2015)118

Arthur-Hvidtfeldt 
et al., (2019)120

The Danish, Diet, 
Cancer and Health 
cohort 

49,564 CVD 
mortality 

O

Black carbon 12 N/A Arthur-Hvidtfeldt 
et al., (2019)120

The Danish, Diet, 
Cancer and Health 
cohort 

49,564 CVD 
mortality

X

Nitrogen 
dioxide 

47 Mustafic et al.,
(2012)121

Arthur-Hvidtfeldt 
et al., (2019)120

The Danish, Diet, 
Cancer and Health 
cohort 

49,564 CVD 
mortality

X
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Survey ; NDI, the National Death Index; ARIC, the Atherosclerosis Risk in Communities Study; CHS, the Cardiovascular Health Study; EPIC, the European Prospective 
Investigation into Cancer and Nutrition; NHIS-NSC, the National Health Insurance Service-National Sample Cohort; WAFACS, the Women's Antioxidant and Folic Acid 
Cardiovascular Study; PM, particulate matter 
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Risk factors for CVD identified from the conventional CVD risk 

assessment tools and literature search of observational studies were synthesized 

and categorized into the following data categories: sociodemographic factors, 

lifestyle behavior, measureable health status and anthropometric measurement, 

environmental factors, underlying medical conditions, dental/oral health conditions, 

physical fitness, medication, dietary factors, and biomarkers (Figure 9). After 

screening for availability in the NHIS-NSC linked to the environmental exposure 

data, the following categories (variables) were selected for the comprehensive list 

of CVD risk factors: sociodemographic factors (age, sex, income status [adopted 

instead of social deprivation]), clinical laboratory test and measurement

(hypertension, type 2 diabetes, hyperlipidemia, gamma-glutamyl transferase, 

[GGT], body mass index [BMI]), lifestyle behavior (cigarette smoking, alcohol 

consumption, physically inactive), family history (family history of CVD), 

underlying medical conditions (atrial fibrillation, peripheral artery disease, retinal 

vein/artery occlusion, anemia, non-alcoholic fatty liver disease [NAFLD], chronic 

kidney disease [CKD], migraine, Parkinson’s disease, severe mental illness, 

systemic lupus erythematosus, rheumatic arthritis, dental health (chronic 

periodontitis, dental caries), medication (aspirin, corticosteroid, antipsychotics), 

and environmental exposure (high cumulative exposure to PM 10, low urban green 

space coverage). 
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Figure 9. Risk factors for CVD by different data categories identified and 
synthesized from the comprehensive review on conventional CVD risk assessment 
tools and observational studies

Abbreviations: CVD, cardiovascular disease; DB, database; FFQ, food frequency questionnaire

Based on the established evidence from previous studies, the following operational 

definitions were used to identify and abstract information on the relevant variables 

in the NHIS-NSC linked to the environmental exposure data (Table 5).
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Table 6. Operational definitions for CVD risk factors available in the NHS-NSC linked to environmental exposure data listed by categories and
reference articles

Variables in the NHIS-NSC linked to 
environmental exposure

Operational definition Reference

Sociodemographic factors

Age <65 (middle-aged), ≥65 (elderly) -

Sex Male, Female -

Low income Lowest quartiles in the insurance premium -

Clinical laboratory test and measurement

Hypertension Systolic blood pressure≥140 mmHg or diastolic blood 

pressure ≥90 mmHg or with antihypertensive 
prescription (more than 30 days) 

Korea Hypertension
Fact Sheet

(2018)

Type 2 diabetes Fasting serum glucose≥126 mg/dL or with antidiabetic 
drug prescription (more than 30 days) 

Korea Diabetes Fact Sheet 
(2015)

Hyperlipidemia Total cholesterol≥240 mg/dL or with statin prescription 
(more than 30 days)

Jeong et al., (2018)122

GGT Treated as a continuous variable in log scale Yang et al., (2018)45

Body mass index Treated as a continuous variable Choi et al., (2018)123

Lifestyle behavior

Cigarette smoking Answered “smoker” to the current status of cigarette 
smoking in the self-reported questionnaire in the self-

reported questionnaire (national health screening)

Kim et al., (2018)30

Alcohol consumption Defined as at least light-to-moderate drinker in the self-
reported questionnaire (national health screening)

Choi et al., (2019)124

Physically inactive Answered “none or not all per week” to walking, 
moderate, and vigorous physical activity in the self-

Kim et al., (2019)29
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reported questionnaire (national health screening)

Family history

Family history of CVD Answered “yes” to the family history of heart disease or 
stroke in the self-reported questionnaire (national health 

screening)

-

Underlying medical conditions

Atrial fibrillation ICD-10: I48.0-I48.4, I48.9 with at least 2 outpatient visits 
or hospitalization

Choi et al., (2020)125

Peripheral artery disease ICD-10: I70, I70.0, I70.2, I70.8, I70.9, I79.2
at least 1 inpatient/outpatient care

Oh et al., (2017)126

Retinal vein occlusion ICD-10: H34.8 with inpatient/outpatient care Rim et al., (2015)58

Retinal artery occlusion ICD-10: H34.1/H34.2 with inpatient/outpatient care Rim et al., (2016)60

Anemia Hemoglobin <13.0 and <12.0 g/dL in men and women Lee et al., (2018)127

NAFLD ICD-10: K76 with at least 2 inpatient/outpatient care Lee et al., (2017)128

CKD ICD-10: N18.3, N18.4, N18.5 with at least 1 day of 
hospitalization or 3 days of outpatient visits

Kim et al., (2017)129

Migraine ICD-10: G43 with inpatient/outpatient care Min et al., (2019)130

Parkinson’s disease ICD-10: G20 with at least 2 outpatient visits or 
hospitalization

Choi et al. (2019)131

Severe mental illness ICD-10: F31, F32/F33, F20 with hospital admission or 
outpatient visit

Ko et al., (2019)132

Systemic lupus erythematosus ICD-10: M32.9
with hospital admission ,drug prescription, and lab testa

Bae et al., (2019)133

Rheumatic arthritis ICD-10: M05 with disease modifying anti-rheumatic 
drugs

Choi et al., (2019)134

Dental (oral) health

Chronic periodontitis ICD-10: K05.3 with relevant treatment recordsb Choi et al., (2019)131
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Dental caries incipient/moderate, advanced/severe with at least 2 
outpatient visitsc

Kim et al., (2019)135

Medication

Aspirin ≥30 days of prescription Hwang et al., (2018)136

Corticosteroid ≥30 days of prescription Rim et al., (2018)137

Antipsychotics ≥30 days of prescriptiond Leucht et al., (2009)138

Environmental exposuree

High cumulative exposure to PM 10 Highest quartile of cumulative PM 10 exposure Choi et al., (2020)139

Low urban green space coverage Lowest quartiles of urban green space Seo et al., (2019)117

ahydroxychloroquine, immunosuppressants, and steroids (drugs), anti-dsDNA antibody test and complement test (laboratory test) 
bSubgingival curettage, periodontal flap operation, gingivectomy, and odontectomy
cDental caries limited to enamel (ICD-10 code: K02.0), dental caries of dentin (ICD-10 code: K02.1), dental carries of cementum, arrested dental caries (ICD-10 code: K02.3), 
other dental caries (ICD-10 code: K02.8), and unspecified dental caries (ICD-10 code: K02.9) were classified as incipient/moderate dental caries, and those with irreversible 
pulpitis (ICD-10 code: K04.0), necrosis of pulp (ICD-10 code: K04.1), and periapical abscess with sinus (ICD-10 code: K04.6) were classified as advanced/severe stage dental 
caries
dIncludes the following 2nd generation antipsychotic drugs: clozapine, olanzapine, quetiapine, paliperidone, risperidone, ziprasidone, zotepine, aripiprazole
eCumulative exposure to particulate matter (PM 10) was computed by taking the annual average of PM 10. High cumulative exposure to PM 10 indicates highest quartile.  
Urban green space coverage was calculated by the area of parks and artificially designed green space divided by the area of residential districts. Low urban green space indicates 
lowest quartile. Environmental data were merged with residential area code in the NHIS-NSC with AirKorea database (PM 10) and Ministry of Land, Infrastructure and 
Transport database (urban green space)

Abbreviations: CVD, cardiovascular disease; NHIS-NSC, National Health Insurance Service-National Sample Cohort; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; NAFLD, non-alcoholic fatty liver disease; CKD, chronic kidney disease; Alcoholism guideline; ICD-10, International Classification of Disease, 10th revision; PM, 
particulate matter
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2. Magnitude of association between selected risk factors with 
incident cardiovascular disease

Prior to applying statistics-based variable selection methods, multiple 

collinearity was checked with VIF with a cut-off point set to VIF>5 (VIF greater 

than 5 indicating evidence of multiple collinearity). After computing VIF among 

the variables identified and synthesized from the comprehensive review on 

conventional CVD risk assessment tools and observational studies, no evidence of 

multiple collinearity was found (Table 6).

Table 7. Multicolinearity test for independent variables measured by the variance 
inflation factor for the variables included in the final analytic cohort derived from 
the NHIS-NSC linked to environmental exposure data

Variables in the final analytic cohort 
derived from NHIS-NSC

Variance Inflation Factor 

Sociodemographic factors

Age 1.10526

Sex 2.10542

Income status 1.02221

Clinical laboratory test and measurement

Hypertensiona 1.06755

Type 2 diabetesb 1.06702

Hyperlipidemiac 1.10732

GGT 1.14669

Body mass index 1.08698

Lifestyle behavior

Cigarette smoking 1.96722

Alcohol consumption 1.36205

Physically inactive 1.04013

Family history

Family history of CVD 1.00671

Underlying medical conditions

Atrial fibrillation 1.00525

Peripheral artery disease 1.04940

Retinal vein occlusion 1.01199

Retinal artery occlusion 1.00911

Anemia 1.06136

NAFLD 1.01395

CKD 1.00356
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Migraine 1.02595

Parkinson’s disease 1.00482

Severe mental illness 1.04745

Systemic lupus erythematosus 1.01253

Rheumatic arthritis 1.03950

Dental (oral) health

Chronic periodontitis 1.04449

Dental caries 1.03709

Medication

Aspirin 1.15719

Corticosteroid 1.03847

Antipsychotics 1.03689

Environmental exposured

High cumulative exposure to PM 10 1.00800

Low urban green space coverage 1.00728

aDefined as systolic blood pressure≥140 mmHg or diastolic blood pressure ≥90 mmHg or with 
antihypertensive prescription (more than 30 days) 
bDefined as fasting serum glucose≥126 mg/dL or with antidiabetic drug prescription (more than 30 
days) 
cDefined as total cholesterol≥240 mg/dL or with statin prescription (more than 30 days)
dCumulative exposure to particulate matter (PM 10) was computed by taking the annual average of 
PM 10. High cumulative exposure to PM 10 indicates highest quartile.  
Urban green space coverage was calculated by the area of parks and artificially designed green space 
divided by the area of residential districts. Low urban green space indicates lowest quartile.  

Abbreviations: NHIS-NSC; National Health Insurance Service-National Sample Cohort; GGT, 
gamma-glutamyl transpeptidase; CVD, cardiovascular disease; NAFLD, non-alcoholic fatty liver 
disease; CKD, chronic kidney disease 

The global goodness-of-fit test with Schoenfeld residual using all of the 

variables included as the comprehensive list of CVD risk factors used in the NHIS-

NSC linked to environmental exposure data resulted in p=0.316, which indicates 

that the proportionality assumption of the Cox proportional hazards regression was 

not violated. In addition, log-log plot for age group showed that the survival 

probability was relatively parallel across the analysis time (Figure 10).
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Figure 10. Log-log survival plot for age in the NHIS-NSC linked to environmental 
exposure data

Abbreviation: NHIS-NSC, National Health Insurance-National Sample Cohort 

The descriptive statistics of the final study population derived from the 

NHIS-NSC linked to environmental exposure data used for statistics-based variable 

selection is shown in Table 7.

Table 8. Descriptive statistics of the final study population derived from the NHIS-
NSC linked to the data on environmental exposure 

Category N (%) or mean (±SD)
Sociodemographic factors
Age
<65 years 118,768 (86.5)

≥65 years 18,481 (13.5)
Sex
Male 66,905 (51.2)
Female 70,344 (48.8)

Income status 
High income 49,995 (36.4)
Low income 87,254 (63.6)

Clinical laboratory test and measurement
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Hypertensiona 21,975 (16.0)
Type 2 diabetesb 9,620 (7.0)
Hyperlipidemiac 32,880 (23.9)
GGT, U/L, median (IQR) 23 (16-39)
Body mass index, kg/m2 23.8±3.00 

Lifestyle behavior
Cigarette smoking 51,668 (37.7)
Alcohol consumption 61,983 (45.2)
Physically inactive 92,672 (67.5)

Family history
Family history of CVD 14,219 (10.4)

Underlying medical conditions
Atrial fibrillation 15 (0.01)
Peripheral artery disease 3,056 (2.2)
Retinal vein occlusion 548 (0.4)
Retinal artery occlusion 55 (0.04)
Anemia 16,545 (12.1)
NAFLD 8,392 (6.1)
CKD 138 (0.1)
Migraine  13,508
Parkinson’s disease 131 (0.1)
Severe mental illness 4,717 (3.4)
Systemic lupus erythematosus 235 (0.2)
Rheumatic arthritis 612 (0.5)

Dental (oral) health
Chronic periodontitis 63,382 (46.2)
Dental caries 51,795 (37.7)

No. of comorbid conditionsd

0 37,161 (27.0)
1 51,628 (37.6)
2 36,182 (26.4)
≥3 12,278 (9.0)

Medication
Aspirin 13,984 (10.2)
Corticosteroid 3,451 (2.5)
Antipsychotics 293 (0.2)

Environmental exposuree

High cumulative exposure to PM 10 40,473 (29.5)
Low urban green space coverage 32,125 (23.4)

NOTE: Data above presented as n (%) or mean ±SD, unless otherwise specified

aDefined as systolic blood pressure≥140 mmHg or diastolic blood pressure ≥90 mmHg or with 
antihypertensive prescription (more than 30 days) 
bDefined as fasting serum glucose≥126 mg/dL or with antidiabetic drug prescription (more than 30 
days) 
cDefined as total cholesterol≥240 mg/dL or with statin prescription (more than 30 days)
dCumulative number of underlying conditions in each cateogry
eCumulative exposure to particulate matter (PM 10) was computed by taking the annual average of 
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PM 10. High cumulative exposure to PM 10 indicates highest quartile.  

Urban green space coverage was calculated by the area of parks and artificially designed green space 
divided by the area of residential districts. Low urban green space indicates lowest quartile. 
Environmental data were merged with residential area code in the NHIS-NSC with AirKorea database 
(PM 10) and Ministry of Land, Infrastructure and Transport database (urban green space)

Abbreviations: ; NHIS-NSC; National Health Insurance Service-National Sample Cohort; SD,
standard deviation; GGT, gamma-glutamyl transpeptidase; CVD, cardiovascular disease; N/C, non-
calculable; NAFLD, non-alcoholic fatty liver disease; CKD, chronic kidney disease

After adjusting for all of the variables included as the comprehensive risk 

factors for CVD, CKD (HR=2.897; 95% CI: 1.538-5.391), more than 65 years of 

age (HR=2.863; 95% CI: 2.598-3.155 vs. less than 65 years of age), and 

Parkinson’s disease (HR=2.831; 95% CI: 1.511-5.304) were some of the most 

notable risk factors associated with incident CVD that showed statistical 

significance. Due to the relatively small number of events for atrial fibrillation, the 

association between atrial fibrillation and incident CVD could not be calculated 

(Table 8). 

Table 9. Multivariable analysis of all variables for the association of CVD risk 
factors and incident CVD in the NHIS-NSC linked to the data on environmental 
exposure 

Category HR (95% CI) p-value
Sociodemographic factors
Age (≥65 vs. <65) 2.863 (2.598-3.155) <.0001
Male (vs. female) 1.348 (1.191-1.525) <.0001
Low income (vs. high income) 1.122 (1.028-1.225) 0.01

Clinical laboratory test and measurement
Hypertensiona (yes vs. no) 1.460 (1.323-1.612) <.0001
Type 2 diabetesb (yes vs. no) 1.499 (1.320-1.702) <.0001
Hyperlipidemiac (yes vs. no) 1.219 (1.108-1.341) <.0001
GGT (per unit increase in log scale) 1.115 (1.044-1.191) 0.0012
Body mass index (per unit increase) 1.027 (1.012-1.041) 0.0003

Lifestyle behavior
Cigarette smoking (yes vs. no) 1.458 (1.295-1.641) <.0001
Alcohol consumption (yes vs. no) 0.816 (0.738-0.903) <.0001
Physically inactive (yes vs. no) 1.296 (1.176-1.428) <.0001

Family history
Family history of CVD (yes vs. no) 1.254 (1.098-1.433) 0.0009

Underlying medical conditions
Atrial fibrillation (yes vs. no) N/C -
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Peripheral artery disease (yes vs. no) 1.029 (0.821-1.290) 0.805
Retinal vein occlusion (yes vs. no) 1.283 (0.793-2.075) 0.3093
Retinal artery occlusion (yes vs. no) 0.645 (0.090-4.623) 0.6627
Anemia (yes vs. no) 1.051 (0.918-1.202) 0.4724
NAFLD (yes vs. no) 1.227 (1.054-1.427) 0.0081
CKD (yes vs. no) 2.879 (1.538-5.391) 0.001
Migraine (yes vs. no)  1.304 (1.141-1.489) <.0001
Parkinson’s disease (yes vs. no) 2.831 (1.511-5.304) 0.0012
Severe mental illness (yes vs. no) 1.162 (0.938-1.439) 0.1687
Systemic lupus erythematosus (yes vs. no) 1.679 (0.745-3.780) 0.2112
Rheumatic arthritis (yes vs. no) 1.742 (1.078-2.814) 0.0234

Dental (oral) health
Chronic periodontitis (yes vs. no) 1.097 (1.006-1.197) 0.0372
Dental caries (yes vs. no) 1.032 (0.945-1.128) 0.4783

No. of comorbid conditionsd

1 (vs. 0) 1.075 (0.957-1.207) 0.2228
2 (vs. 0) 1.225 (1.086-1.381) 0.0009
≥3 (vs. 0) 1.438 (1.234-1.674) <.0001

Medication
Aspirin (yes vs. no) 1.396 (1.245-1.564) <.0001
Corticosteroid (yes vs. no) 1.338 (1.086-1.647) 0.0061
Antipsychotics (ye vs. no) 1.127 (0.527-2.411) 0.7581

Environmental exposuree

High cumulative exposure to PM 10 (vs. 
low) 1.080 (0.982-1.187)

0.1123

Low urban green space coverage (vs. high) 1.167 (1.058-1.287) 0.002

NOTE: HR (95% CI) presented above were adjusted for all other variables presented in the table 
except for the index score of comorbid conditions (underlying conditions omitted in the adjustment 
due to collinearity). 

aDefined as systolic blood pressure≥140 mmHg or diastolic blood pressure ≥90 mmHg or with 
antihypertensive prescription (more than 30 days) 
bDefined as fasting serum glucose≥126 mg/dL or with antidiabetic drug prescription (more than 30 
days) 
cDefined as total cholesterol≥240 mg/dL or with statin prescription (more than 30 days)
dCumulative number of all underlying health conditions.
eCumulative exposure to particulate matter (PM 10) was computed by taking the annual average of 
PM 10. High cumulative exposure to PM 10 indicates highest quartile.  
Urban green space coverage was calculated by the area of parks and artificially designed green space 
divided by the area of residential districts. Low urban green space indicates lowest quartile. 
Environmental data were merged with residential area code in the NHIS-NSC with AirKorea database 
(PM 10) and Ministry of Land, Infrastructure and Transport database (urban green space)

Abbreviations: CVD, cardiovascular disease; NHIS-NSC; National Health Insurance Service-
National Sample Cohort; GGT, gamma-glutamyl transpeptidase; N/C, non-calculable; NAFLD, non-
alcoholic fatty liver disease; CKD, chronic kidney disease
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The categories (variables) selected after removing those that did not show 

statistical significance were as follows: sociodemographic factors (age, male, low 

income), clinical laboratory test and measurement (hypertension, type 2 diabetes, 

hyperlipidemia, GGT, and body mass index), lifestyle behavior (cigarette smoking, 

alcohol consumption, physically inactive), family history (family history of CVD), 

underlying medical conditions (NAFLD, CKD, migraine, Parkinson’s disease, 

rheumatic arthritis), dental health (chronic periodontitis), medication (aspirin, 

corticosteroid), and environmental exposure (low urban green space coverage). The 

strength of the association of statistically significant variables with incident CVD is 

shown in Table 9.  

Table 10. Multivariable analysis of statistically significant variables for the 
association of CVD risk factors and incident CVD in the NHIS-NSC linked to the 
data on environmental exposure

Category HR (95% CI) p-value
Sociodemographic factors
Age (≥65 vs. <65) 2.885 (2.619-3.177) <.0001
Male (vs. female) 1.334 (1.180-1.508) <.0001
Low income (vs. high income) 1.120 (1.026-1.223) 0.0114

Clinical laboratory test and measurement
Hypertensiona (yes vs. no) 1.458 (1.321-1.609) <.0001
Type 2 diabetesb (yes vs. no) 1.498 (1.319-1.700) <.0001
Hyperlipidemiac (yes vs. no) 1.220 (1.109-1.342) <.0001
GGT (per unit increase in log scale) 1.001 (1.000-1.002) 0.0015
Body mass index (per unit increase) 1.026 (1.012-1.040) <.0001

Lifestyle behavior
Cigarette smoking (yes vs. no) 1.457 (1.294-1.641) <.0001
Alcohol consumption (yes vs. no) 0.813 (0.734-0.899) <.0001
Physically inactive (yes vs. no) 1.292 (1.172-1.424) <.0001

Family history
Family history of CVD (yes vs. no) 1.257 (1.100-1.436) 0.0008

Underlying medical conditions
NAFLD (yes vs. no) 1.235 (1.062-1.436) 0.0062
CKD (yes vs. no) 2.995 (1.607-5.582) 0.0006
Migraine (yes vs. no)  1.311 (1.148-1.497) <.0001
Parkinson’s disease (yes vs. no) 2.949 (1.582-5.498) 0.0007
Rheumatic arthritis (yes vs. no) 1.820 (1.132-2.926) 0.0134

Dental (oral) health



５０

Chronic periodontitis (yes vs. no) 1.105 (1.014-1.204) 0.0225
Medication
Aspirin (yes vs. no) 1.403 (1.253-1.569) <.0001
Corticosteroid (yes vs. no) 1.344 (1.092-1.655) 0.0053

Environmental exposuree

Low urban green space coverage (vs. high) 1.156 (1.049-1.275) 0.0034

NOTE: HR (95% CI) presented above were adjusted for all other variables presented in the table 
except for the index score of comorbid conditions (underlying conditions omitted in the adjustment 
due to collinearity). Statistical significance was set to p<0.05 when selecting the variables. 

aDefined as systolic blood pressure≥140 mmHg or diastolic blood pressure ≥90 mmHg or with 
antihypertensive prescription (more than 30 days) 
bDefined as fasting serum glucose≥126 mg/dL or with antidiabetic drug prescription (more than 30 
days) 
cDefined as total cholesterol≥240 mg/dL or with statin prescription (more than 30 days)
dUrban green space coverage was calculated by the area of parks and artificially designed green space 
divided by the area of residential districts. Low urban green space indicates lowest quartile. 
Environmental data were merged with residential area code in the NHIS-NSC with Ministry of Land, 
Infrastructure and Transport database (urban green space)

Abbreviations: CVD, cardiovascular disease; NHIS-NSC; National Health Insurance Service-
National Sample Cohort; GGT, gamma-glutamyl transpeptidase; NAFLD, non-alcoholic fatty liver 
disease; CKD, chronic kidney disease

The subset of best (minimum) AIC was found in step 23, which includes 

the variables from sociodemographic factors (age, male, low income) to underlying 

medication conditions (atrial fibrillation, peripheral artery disease, retinal 

vein/artery occlusion, anemia, NAFLD, CKD, migraine, Parkinson’s disease, 

severe mental illness, and systemic lupus erythematosus (Figure 11).



５１

Figure 11. Step vs. Akaike information criterion plot in the stepwise selection 
fashion for selecting the subset of the variables with the best (minimum) Akaike 
information criterion

The magnitude of the associations of subset of variables with best (minimum) AIC 

with incident CVD is shown in Table 10.

Table 11. Multivariable analysis of the variable subset with best (minimum) 
Akaike Information Criteria for the association of CVD risk factors and incident 
CVD in the NHIS-NSC linked to the data on environmental exposure

Category HR (95% CI) p-value
Sociodemographic factors
Age (≥65 vs. <65) 3.096 (2.818-3.401) <.0001
Male (vs. female) 1.355 (1.198-1.533) <.0001
Low income (vs. high income) 1.115 (1.021-1.217) 0.0153

Clinical laboratory test and measurement
Hypertensiona (yes vs. no) 1.483 (1.344-1.637) <.0001
Type 2 diabetesb (yes vs. no) 1.567 (1.382-1.777) <.0001
Hyperlipidemiac (yes vs. no) 1.280 (1.166-1.406) <.0001
GGT (per unit increase in log scale) 1.001 (1.000-1.002) 0.0022
Body mass index (per unit increase) 1.030 (1.016-1.045) <.0001

Lifestyle behavior
Cigarette smoking (yes vs. no) 1.456 (1.293-1.639) <.0001
Alcohol consumption (yes vs. no) 0.811 (0.733-0.897) <.0001
Physically inactive (yes vs. no) 1.289 (1.170-1.421) <.0001
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Family history
Family history of CVD (yes vs. no) 1.266 (1.108-1.446) 0.0005

Underlying medical conditions
Atrial fibrillation (yes vs. no) N/C -
Peripheral artery disease (yes vs. no) 1.146 (0.917-1.432) 0.231
Retinal vein occlusion (yes vs. no) 1.330 (0.823-2.150) 0.2444
Retinal artery occlusion (yes vs. no) 0.616 (0.086-4.413) 0.6294
Anemia (yes vs. no) 1.062 (0.928-1.216) 0.38
NAFLD (yes vs. no) 1.247 (1.072-1.450) 0.0043
CKD (yes vs. no) 2.958 (1.580-5.538) 0.0007
Migraine (yes vs. no)  1.322 (1.158-1.510) <.0001
Parkinson’s disease (yes vs. no) 2.894 (1.549-5.407) 0.0009
Severe mental illness (yes vs. no) 1.183 (0.959-1.459) 0.1168
Systemic lupus erythematosus (yes vs. no) 2.034 (0.911-4.539) 0.083

NOTE: HR (95% CI) presented above were adjusted for all other variables presented in the table 
except for the index score of comorbid conditions (underlying conditions omitted in the adjustment 
due to collinearity). 

aDefined as systolic blood pressure≥140 mmHg or diastolic blood pressure ≥90 mmHg or with 
antihypertensive prescription (more than 30 days) 
bDefined as fasting serum glucose≥126 mg/dL or with antidiabetic drug prescription (more than 30 
days) 
cDefined as total cholesterol≥240 mg/dL or with statin prescription (more than 30 days)

Abbreviations: CVD, cardiovascular disease; NHIS-NSC, National Health Insurance Service-National 
Sample Cohort; GGT, gamma-glutamyl transpeptidase; N/C, non-calculable; NAFLD, non-alcoholic 
fatty liver disease; CKD, chronic kidney disease

After fitting the Cox proportional hazards model regularized by elastic net 

penalty (Figure 12 and 13), the following variables displayed non-zero coefficients 

and therefore retained in the model: sociodemographic factors (age, low income), 

clinical laboratory test and measurement (hypertension, hyperlipidemia), lifestyle 

behavior (alcohol consumption, physically inactive), family history (family history 

of CVD), underlying medical conditions (atrial fibrillation, peripheral artery 

disease, retinal artery occlusion, anemia, NAFLD, CKD, migraine, Parkinson’s 

disease, severe mental illness, systemic lupus erythematosus, rheumatic arthritis), 

dental health (chronic periodontitis, dental caries), medication (aspirin, 

corticosteroid, antipsychotics), and environmental exposure (high cumulative 

exposure to PM 10, low urban green space coverage).
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Figure 12. Log lambda vs. partial likelihood deviance plot in the regularized Cox 
proportional hazards model with elastic net penalty

The left vertical line represents the point with minimum log lambda and the right vertical line 
represents the point within the 1 standard error of the minimum log lambda

      

Figure 13. Regularization path for Cox proportional hazards model with elastic net 
penalty with each line representing the change of coefficient values for each 
variable
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The strength of association between variables selected from the 

regularized Cox proportional hazards regression with elastic net penalty and 

incident CVD is shown in Table 11.

Table 12. Multivariable analysis of the variables selected from the Cox regression 
model regularized by an elastic net penalty for the association of CVD risk factors 
and incident CVD in the NHIS-NSC linked to the data on environmental exposure 

Category HR (95% CI) p-value
Sociodemographic factors
Age (≥65 vs. <65) 2.879 (2.613-3.172) <.0001
Low income (vs. high income) 1.101 (1.009-1.202) 0.0308

Clinical laboratory test and measurement
Hypertensiona (yes vs. no) 1.566 (1.420-1.727) <.0001
Hyperlipidemiab (yes vs. no) 1.258 (1.146-1.382) <.0001

Lifestyle behavior
Alcohol consumption (yes vs. no) 1.130 (1.033-1.236) 0.0074
Physically inactive (yes vs. no) 1.240 (1.125-1.366) <.0001

Family history
Family history of CVD (yes vs. no) 1.238 (1.084-1.414) 0.0017

Underlying medical conditions
Atrial fibrillation (yes vs. no) N/C
Peripheral artery disease (yes vs. no) 1.012 (0.807-1.269) 0.918
Retinal artery occlusion (yes vs. no) 0.703 (0.099-4.994) 0.7243
Anemia (yes vs. no) 0.930 (0.815-1.062) 0.2841
NAFLD (yes vs. no) 1.298 (1.117-1.510) 0.0007
CKD (yes vs. no) 3.392 (1.814-6.342) 0.0001
Migraine (yes vs. no)  1.180 (1.034-1.347) 0.0138
Parkinson’s disease (yes vs. no) 2.740 (1.464-5.128) 0.0016
Severe mental illness (yes vs. no) 1.096 (0.885-1.356) 0.4018
Systemic lupus erythematosus (yes vs. no) 1.554 (0.692-3.493) 0.2858
Rheumatic arthritis (yes vs. no) 1.555 (0.964-2.510) 0.0704

Dental (oral) health
Chronic periodontitis (yes vs. no) 1.151 (1.055-1.256) 0.0015
Dental caries (yes vs. no) 1.023 (0.936-1.117) 0.6191

Medication
Aspirin (yes vs. no) 1.500 (1.340-1.680) <.0001
Corticosteroid (yes vs. no) 1.309 (1.063-1.612) 0.0111
Antipsychotics (ye vs. no) 1.197 (0.560-2.559) 0.6423

Environmental exposurec

High cumulative exposure to PM 10 (vs. low) 1.068 (0.972-1.175) 0.1722
Low urban green space coverage (vs. high) 1.172 (1.062-1.292) 0.0015

NOTE: HR (95% CI) presented above were adjusted for all other variables presented in the table 
except for the index score of comorbid conditions (underlying conditions omitted in the adjustment 
due to collinearity). 
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aDefined as systolic blood pressure≥140 mmHg or diastolic blood pressure ≥90 mmHg or with 
antihypertensive prescription (more than 30 days) 
bDefined as total cholesterol≥240 mg/dL or with statin prescription (more than 30 days)
cCumulative exposure to particulate matter (PM 10) was computed by taking the annual average of 
PM 10. High cumulative exposure to PM 10 indicates highest quartile.  
Urban green space coverage was calculated by the area of parks and artificially designed green space 
divided by the area of residential districts. Low urban green space indicates lowest quartile. 
Environmental data were merged with residential area code in the NHIS-NSC with AirKorea database 
(PM 10) and Ministry of Land, Infrastructure and Transport database (urban green space)

Abbreviations: CVD, cardiovascular disease; NHIS-NSC; National Health Insurance Service-
National Sample Cohort; GGT, gamma-glutamyl transpeptidase; N/C, non-calculable; NAFLD, non-
alcoholic fatty liver disease; CKD, chronic kidney disease

The categories (variables) meeting all of the three statistics-based criteria 

for variable selection methods (statistical significance, best AIC, and elastic net 

penalty) were sociodemographic factors (age, low income), clinical laboratory test 

and measurement (hypertension, hyperlipidemia), lifestyle behavior (alcohol 

consumption, physically inactive), family history (family history of CVD), and 

underlying conditions (NAFLD, CKD, migraine, and Parkinson’s disease). The 

association of the variables meeting all of the three statistics-based criteria were 

similar to the associations found in each criteria (Table 12).

Table 13. Multivariable analysis of the variables meeting the three criteria 
(statistical significance, best AIC, and elastic net) for the association of CVD risk 
factors and incident CVD in the NHIS-NSC linked to the data on environmental 
exposure from particulate matter and urban green space

Category HR (95% CI) p-value
Sociodemographic factors
Age (≥65 vs. <65) 3.174 (2.892-3.484) <.0001
Low income (vs. high income) 1.091 (0.999-1.190) 0.0518

Clinical laboratory test and measurement
Hypertensiona (yes vs. no) 1.616 (1.466-1.780) <.0001
Hyperlipidemiab (yes vs. no) 1.359 (1.240-1.489) <.0001

Lifestyle behavior
Alcohol consumption (yes vs. no) 1.129 (1.033-1.234) 0.0075
Physically inactive (yes vs. no) 1.229 (1.115-1.354) <.0001

Family history
Family history of CVD (yes vs. no) 1.250 (1.095-1.428) 0.001

Underlying medical conditions
NAFLD (yes vs. no) 1.337 (1.150-1.555) 0.0002
CKD (yes vs. no) 3.499 (1.878-6.518) <.0001
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Migraine (yes vs. no)  1.204 (1.056-1.373) 0.0056
Parkinson’s disease (yes vs. no) 2.884 (1.547-5.376) 0.0009

NOTE: HR (95% CI) presented above were adjusted for all other variables presented in the table 
except for the index score of comorbid conditions (underlying conditions omitted in the adjustment 
due to collinearity). 

aDefined as systolic blood pressure≥140 mmHg or diastolic blood pressure ≥90 mmHg or with 
antihypertensive prescription (more than 30 days) 
bDefined as fasting serum glucose≥126 mg/dL or with antidiabetic drug prescription (more than 30 
days) 

Abbreviations: AIC, Akaike Information Criteria; CVD, cardiovascular disease; NHIS-NSC, National 
Health Insurance Service-National Sample Cohort; GGT, gamma-glutamyl transpeptidase; NAFLD, 
non-alcoholic fatty liver disease; CKD, chronic kidney disease

3. Model performance evaluation

The baseline characteristics of training cohort used for model development and test 

cohort used for performance evaluation of the DeepSurv and Cox proportional 

hazards models are shown in Table 13. There was no statistically significant 

difference between training cohort and test cohort for each of the variable used as 

input features.

Table 14. Baseline characteristics of training and test cohort derived from the 
NHIS-NSC linked to the data on environmental exposure from particulate matter 
and urban green space used for model development and evaluation 

Category Training cohort
(N=109,799)

Test cohort
(N=27,450)

p-value

Sociodemographic factors
Age
<65 years 95,035 (86.5) 23,733 (86.5) 0.981

≥65 years 14,764(13.5) 3,717 (13.5)

Sex
Male 53,558 (48.8) 13,347 (48.6) 0.645
Female 56,241 (51.2) 14,103 (51.4)

Income status 
High income 39,978 (36.4) 10,017 (36.5) 0.802
Low income 69,821 (63.6) 17,433 (63.5)

Clinical laboratory
test and measurement
Hypertensiona 17,484 (15.9) 4,491 (16.4) 0.077
Type 2 diabetesb 7,623 (6.9) 1,997 (24.1) 0.054
Hyperlipidemiac 26,261 (23.9) 6,619 (24.1) 0.497
GGT, U/L 23 (16-39) 23 (16-39)
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Body mass index, kg/m2 23.8 (3.0) 23.8 (3.0) 0.296
Lifestyle behavior
Cigarette smoking 41,466 (37.7) 10,202 (37.1) 0.067
Alcohol consumption 49,665 (45.2) 12,318 (44.9) 0.286
Physically inactive 74,274 (67.6) 18,398 (67.0) 0.059

Family history
Family history of CVD 11,361 (10.3) 18,398 (10.4) 0.754

Underlying 
medical conditions
Atrial fibrillation 12 (0.01) 3 (0.01) 0.250
Peripheral artery disease 2,434 (2.2) 622 (2.3) 0.622
Retinal vein occlusion 417 (0.4) 131 (0.5) 0.220
Retinal artery occlusion 47 (0.04) 8 (0.03) 0.312
Anemia 13,220 (12.0) 3,325 (12.1) 0.741
NAFLD 6,760 (6.2) 1,632 (5.9) 0.191
CKD 108 (0.1) 30 (0.1) 0.609
Migraine  10,800 (9.8) 2,708 (9.8) 0.885
Parkinson’s disease 110 (0.1) 21 (0.08) 0.256
Severe mental illness 3,819 (3.5) 898 (3.3) 0.093
Systemic 
lupus erythematosus 

187 (0.17) 48 (0.2) 0.870

Rheumatic arthritis 488 (0.44) 124 (0.5) 0.871
Dental (oral) health
Chronic periodontitis 50,699 (46.2) 12,683 (46.2) 0.929
Dental caries 41,365 (37.7) 10,430 (38.0) 0.324

Medication
Aspirin 11,200 (10.2) 2,784 (10.1) 0.775
Corticosteroid 2,720 (2.5) 731 (2.6) 0.078
Antipsychotics 237 (0.2) 56 (0.2) 0.703

Environmental exposuree

High cumulative
exposure to PM 10

32,391 (29.5) 8,082 (29.4) 0.851

Low urban green space 
coverage 

25,712 (23.4) 6413 (23.4) 0.847

NOTE: Data above presented as n (%) or mean ±SD, unless otherwise specified. p-value calculated 
from chi-square test for categorical variables (Fisher’s exact test for variables containing categories 
with observations less than 5) and t-test for continuous variable.

aDefined as systolic blood pressure≥140 mmHg or diastolic blood pressure ≥90 mmHg or with 
antihypertensive prescription (more than 30 days) 
bDefined as fasting serum glucose≥126 mg/dL or with antidiabetic drug prescription (more than 30 
days) 
cDefined as total cholesterol≥240 mg/dL or with statin prescription (more than 30 days)
dCumulative number of underlying conditions in each cateogry
eCumulative exposure to particulate matter (PM 10) was computed by taking the annual average of 
PM 10. High cumulative exposure to PM 10 indicates highest quartile.  

Urban green space coverage was calculated by the area of parks and artificially designed green space 
divided by the area of residential districts. Low urban green space indicates lowest quartile. 
Environmental data were merged with residential area code in the NHIS-NSC with AirKorea database 
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(PM 10) and Ministry of Land, Infrastructure and Transport database (urban green space)

Abbreviations: NHIS-NSC; National Health Insurance Service-National Sample Cohort; SD, standard 
deviation; GGT, gamma-glutamyl transpeptidase; CVD, cardiovascular disease; N/C, non-calculable; 
NAFLD, non-alcoholic fatty liver disease; CKD, chronic kidney disease; PM, particulate matter 

Among the Uno’s C-index for the models constructed with DeepSurv, the 

hybrid approach using all of the variables that showed statistical significance from 

the Cox proportional hazards model (Model 2) showed the best performance 

(Uno’s C-index 0.7069; change in C-index +0.045, percent change of +6.73 %, p-

value for difference in the C-index <0.0001 compared to the model with basic 

clinical factors). The worst performance of the DeepSurv model was found in the 

model constructed with common variables included in Model 2-4 (meeting all three 

of the statistics-based criteria) (Uno’s C-index 0.6630; change in C-index +0.001; 

percent change of +0.11 %, p-value for difference in the C-index 0.7231 compared 

to the model with basic clinical factors). Also, the DeepSurv model with subset of 

variables with best AIC (Model 3) and variables selected from regularized Cox 

proportional hazards model (Model 4) showed poor performance with no 

statistically significant improvement from the model with basic clinical factors for 

Model 3 and marginal improvement for Model 4, respectively. Comparison of the 

predictive performance DeepSurv models with input features derived from basic 

clinical factors, ESC SCORE factors, and multivariable factors with hybrid 

approach are shown in Table 14.
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Table 15. Comparison of the predictive performance of the models for CVD risk with Cox proportional hazards deep neural network 
(DeepSurv) model with all variables (Model 1) and hybrid approaches (Model 2-5) in the NHIS-NSC linked to the data on environmental 
exposure  

DeepSurv
Model

Uno’s
C-index

Change in 
C-index

Percent
Change

p-value for difference

Basic clinical factors 0.6623 - (ref) - (ref) - (ref)
ESC SCORE factors 0.6835 +0.021 +3.20 % <0.0001
Multivariable factors

Model 1
(All variables)

0.6983 +0.036 +5.44 % <0.0001

Hybrid approaches with Cox PHM
Model 2
(Statistically significant variables from Cox 
PHM)

0.7069 +0.045 +6.73 % <0.0001

Model 3
(Subset of variables with best AIC
from Cox PHM)

0.6782 +0.016 +2.40 % 0.2287

Model 4
(Variable selected from regularized Cox 
PHM by elastic net penalty)

0.6840 +0.022 +3.28 % <0.0001

Model 5
(Common variables included in  
Model 2-4)

0.6630 +0.001 +0.11 % 0.7231

NOTE: Variables included in each model is listed below. 
Basic clinical factors: age, sex, BMI

ESC SCORE: age, sex, systolic blood pressure, total cholesterol, and cigarette smoking 
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Multivariable factors: 
Model 1 includes the following variables: age, sex, income status, hypertension, type 2 diabetes, hyperlipidemia, GGT, BMI, cigarette smoking, alcohol consumption, physically 
inactive, family history of CVD, atrial fibrillation, peripheral artery disease, retinal vein occlusion, retinal artery occlusion, anemia, NAFLD, CKD, migraine, Parkinson’s 
disease, severe mental illness, systemic lupus erythematosus, rheumatic arthritis
is, chronic periodontitis, dental caries, aspirin, corticosteroid, antipsychotics, high particulate matter (PM10), and low urban green space

Model 2 includes statistically significant variables from the Cox proportional hazards model: age, sex, income status, hypertension, type 2 diabetes, hyperlipidemia, GTP, BMI, 
cigarette smoking, alcohol consumption, physically inactive, family history of CVD, NAFLD, CKD, migraine, Parkinson’s disease, rheumatic arthritis, chronic periodontitis, 
aspirin, corticosteroid, and low urban green space

Model 3 includes variables with best (minimum) AIC: age, sex, income status, hypertension, type 2 diabetes, hyperlipidemia, GGT, BMI, cigarette smoking, alcohol 
consumption, physically inactive, family history of CVD, atrial fibrillation, peripheral artery disease, retinal vein occlusion, retinal artery occlusion, anemia, NAFLD, CKD, 
migraine, Parkinson’s disease, severe mental illness, systemic lupus erythematosus

Model 4 includes variables selected from the regularized Cox proportional hazards regression model with elastic net penalty: age , income status, hypertension, hyperlipidemia, 
alcohol consumption, physically inactive, family history of CVD, atrial fibrillation, peripheral artery disease, retinal artery occlusion, anemia, NAFLD, CKD, migraine, 
Parkinson’s disease, severe mental illness, systemic lupus erythematosus, rheumatic arthritis, chronic periodontitis, dental caries, aspirin, corticosteroid, antipsychotics, high 
particulate matter (PM10), and low urban green space

Model 5 includes: age, income status, hypertension, hyperlipidemia, alcohol consumption, physically inactive, family history of CVD, NAFLD, CKD, migraine, Parkinson’s 
disease 

Abbreviations: CVD, cardiovascular disease; NHIS-NSC, National Health Insurance Service-National Sample Cohort; ESC SCORE, European Society of Cardiology 
Systematic Coronary Risk Evaluation; Cox PHM, Cox proportional hazards model; AIC, Akaike Information Criteria; GGT, gamma-glutamyl transpeptidase; NAFLD, non-
alcoholic fatty liver disease; CKD, chronic kidney disease

*Difference in Uno’s C-index (concordance statistic) in each model compared to the model with basic clinical factors
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In the Cox proportional hazards models, the best performance was 

observed in the model with all variables without any statistics-based variable 

selection methods (Model 1) (Uno’s C-index 0.7041; change in C-index +0.041, 

percent change of +6.17 %, p-value for difference in the C-index <0.0001 

compared to the model with basic clinical factors). With the exception of the Cox 

proportional hazards regression model built with common variables meeting all 

three of the statistics-based criteria for statistical significance, best AIC, and elastic 

net penalty (Model 5), other models showed statistically significant improvement 

in predictive performance (Table 14). The overall performance benefit of using 

DeepSurv was observed in the hybrid approach of Model 2 with hybrid approach 

using statistically significant variables selected from the Cox proportional hazards 

model (Uno’s C-index: 0.7069) and was the highest performance observed in 

DeepSurv and Cox proportional hazards models using variable sets selected from 

basic clinical factors, ESC SCORE factors, and multivariable factors with 

statistics-based approach for variable selection (Model 1-5). Due to the poor 

performance of the models constructed with variable sets from elastic net penalty 

and common variables meeting all of the statistics-based criteria, these two 

approaches were neglected in the models developed with progressively adding 

input features in each data category from sociodemographic factors to 

environmental exposure. Therefore, the progressive approach was limited to all 

variables and statistically significant variables in each data category.
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Table 16. Comparison of the predictive performance of the models for CVD risk with Cox proportional hazards model in the NHIS-NSC linked 
to the data on environmental exposure 

Cox PH 
Model

Uno’s
C-index

Change
in C-index

Percent
Change

p-value for difference*

Basic clinical factors 0.6642 - (ref) - (ref) - (ref)
ESC SCORE factors 0.6838 +0.020 +2.95 % <0.0001
Multivariable factors

Model 1
(All variables)

0.7052 +0.041 +6.17 % <0.0001

Model 2
(Statistically significant variables from 
Cox PHM)

0.7041 +0.040 +6.01 % <0.0001

Model 3
(Subset of variables with best AIC
from Cox PHM)

0.6988 +0.035 +5.21 % <0.0001

Model 4
(Variable selected from regularized 
Cox PHM by elastic net penalty)

0.6873 +0.023 +3.48 % 0.0025

Model 5
(Common variables included in  
Model 2-4)

0.6706 +0.006 +0.96 % 0.3362

NOTE: Variables included in each model is listed below. 
Basic clinical factors: age, sex, BMI

ESC SCORE: age, sex, systolic blood pressure, total cholesterol, and cigarette smoking 
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Multivariable factors: 
Model 1 includes the following variables: age, sex, income status, hypertension, type 2 diabetes, hyperlipidemia, GGT, BMI, cigarette smoking, alcohol consumption, physically 
inactive, family history of CVD, atrial fibrillation, peripheral artery disease, retinal vein occlusion, retinal artery occlusion, anemia, NAFLD, CKD, migraine, Parkinson’s 
disease, severe mental illness, systemic lupus erythematosus, rheumatic arthritis
is, chronic periodontitis, dental caries, aspirin, corticosteroid, antipsychotics, high particulate matter (PM10), and low urban green space

Model 2 includes statistically significant variables from the Cox proportional hazards model: age, sex, income status, hypertension, type 2 diabetes, hyperlipidemia, GTP, BMI, 
cigarette smoking, alcohol consumption, physically inactive, family history of CVD, NAFLD, CKD, migraine, Parkinson’s disease, rheumatic arthritis, chronic periodontitis, 
aspirin, corticosteroid, and low urban green space

Model 3 includes variables with best (minimum) AIC: age, sex, income status, hypertension, type 2 diabetes, hyperlipidemia, GGT, BMI, cigarette smoking, alcohol 
consumption, physically inactive, family history of CVD, atrial fibrillation, peripheral artery disease, retinal vein occlusion, retinal artery occlusion, anemia, NAFLD, CKD, 
migraine, Parkinson’s disease, severe mental illness, systemic lupus erythematosus

Model 4 includes variables selected from the regularized Cox proportional hazards regression model with elastic net penalty: age , income status, hypertension, hyperlipidemia, 
alcohol consumption, physically inactive, family history of CVD, atrial fibrillation, peripheral artery disease, retinal artery occlusion, anemia, NAFLD, CKD, migraine, 
Parkinson’s disease, severe mental illness, systemic lupus erythematosus, rheumatic arthritis, chronic periodontitis, dental caries, aspirin, corticosteroid, antipsychotics, high 
particulate matter (PM10), and low urban green space

Model 5 includes common variables included in model 2,3, and 4 (meeting all of the criteria): age, income status, hypertension, hyperlipidemia, alcohol consumption, physically 
inactive, family history of CVD, NAFLD, CKD, migraine, Parkinson’s disease 

Abbreviations: CVD, cardiovascular disease; NHIS-NSC, National Health Insurance Service-National Sample Cohort; ESC SCORE, European Society of Cardiology 
Systematic Coronary Risk Evaluation; AIC, Akaike Information Criteria; GGT, gamma-glutamyl transpeptidase; NAFLD, non-alcoholic fatty liver disease; CKD, chronic 
kidney disease

*Difference in Uno’s C-index (concordance statistic) in each model compared to the model with basic clinical factors
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When the input features in each data category containing all the variables

ranging from sociodemographic factors to environmental exposure were 

progressively added for DeepSurv and Cox proportional hazards, the performance 

of the Cox proportional hazards model steadily improved with the highest 

performance observed in step 7 (all of the variables included in sociodemographic, 

clinical laboratory test and measurement, lifestyle behavior, family history, medical 

conditions, dental health, and medication). Extending the data category to 

environmental exposure did not offer improved performance compared to the 

model constructed in the previous step. The DeepSurv model showed the best 

performance in step 3 (all of the variables included in sociodemographic, clinical 

laboratory test and measurement, and lifestyle behavior). For DeepSurv models, 

using additional data categories beyond step 3 did not show performance benefit. 

Although addition of environmental exposure showed a minimal improvement in 

the DeepSurv model (step 8 compared to step 7), this change was not statistically 

significant (p-value for difference in Uno’s C-index). Comparison of the 

performance between DeepSurv and Cox proportional hazards regression models 

by progressively adding data categories is depicted in Figure 14.
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Figure 14. Performance evaluation of the DeepSurv and Cox proportional 
hazards model for CVD risk by progressively adding variables from accessible data 
categories in the NHIS-NSC linked to environmental exposure data

NOTE: See Table 9 for the list of variables included in each data category from 1 to 8

*Denotes the statistical significance for difference in Uno’s concordance statistic (C-index) compared 
to the previous model (i.e. 2. vs. 3 and 3 vs. 4). Refer to Table 8 for the list of variables included in 
each data category. 

Abbreviations: CVD, cardiovascular disease; NHIS-NSC, National Health Insurance Service-National 
Sample Cohort; Cox PHM, Cox proportional hazards model; Socio, sociodemographic factors
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As the data category and the relevant variables that showed statistical 

significance in the Cox proportional hazards regression analysis for incident CVD 

event was progressively added to the DeepSurv and Cox proportional hazards 

model, performance for both of the models showed steady improvement. However, 

DeepSurv model constructed in step 3 (all of the statistically significant variables 

included in sociodemographic, clinical laboratory test and measurement, and 

lifestyle behavior, which is same as all variables since all of the variables in these 

data categories showed statistical significance) outperformed the Cox proportional 

hazards model. Progressively adding data categories containing statistically 

significant variables chosen from Cox proportional hazards regression for 

DeepSurv (hybrid approach) models showed superior performance to the Cox 

proportional hazards models across all of the data categories. Although addition of 

the environmental exposure data (low urban green space coverage) offered 

marginal improvement in the performance for both DeepSurv and Cox proportional 

hazards models, the difference in Uno’s C-index was not statistically significant 

compared to the model constructed in the step before (difference in Uno’s C-index 

in step 8 compared to step 7).  
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Figure 15. Performance evaluation of the DeepSurv with a hybrid approach
and Cox proportional hazards model for CVD risk by progressively adding 
statistically significant variables from accessible data categories in the NHIS-NSC 
linked to environmental exposure data

NOTE: See Table 10 for the list of variables included in each data category from 1 to 8

*Denotes the statistical significance for difference in Uno’s concordance statistic (C-index)     
compared to the previous model (i.e. 2. vs. 3 and 3 vs. 4). Refer to Table 9 for the list of variables         
included in each data category.

Abbreviations: CVD, cardiovascular disease; NHIS-NSC, National Health Insurance Service-
National Sample Cohort; Cox PHM, Cox proportional hazards model; Socio, sociodemographic 
factors
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IV. DISCUSSION

1. Key findings and contributions

In this large, population-based data derived from a nationally representative cohort 

linked to environmental exposure data, the best performance of the DeepSurv 

model was found in a hybrid approach when a set of statistically significant 

variables from the Cox proportional hazards regression. Unlike DeepSurv, the best 

performance for Cox proportional hazards regression was observed when all 

variables were used as input features. With progressively adding all and statistically 

significant variables in each category ranging from sociodemographic factors to 

environmental exposure, the performance of Cox proportional hazards regression 

steadily increased for when all and statistically significant variables were used as 

input features. Meanwhile, incremental improvement in the performance was 

notable in the DeepSurv models when only statistically significant variables were 

progressively added. Also, input features from simple assessment of 

sociodemographic factors, clinical laboratory test and measurement, and lifestyle 

behavior for DeepSurv robustly outperformed Cox proportional hazards model 

with addition of statistically significant variables up to data categories pertaining to 

lifestyle behavior, family history, medical condition, dental health, and medication.

For both DeepSurv and Cox proportional hazards models, extending the data 

category to environmental exposure did not offer significant performance benefit.

This study makes two main contributions in the data-driven 

cardiovascular health research: (1) the evaluation of the predictive performance of 

DeepSurv and Cox proportional hazards regression with input features selected 

from extensive literature review and statistics-based variable selection methods and 
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(2) their relative contribution to the performance of the models progressively 

extending the data category from sociodemographic to environmental exposure 

data. Overall, this study provided evidence on the best method for selecting input 

features for DeepSurv and Cox proportional hazards model and explored the 

potential benefit of expanding the data categories as input features, especially with 

data linkage to environmental exposure. 

2. Comparison to other studies

It is well-known that excessive data collection could be costly and maybe 

unnecessary if the collected data do not extensively contribute to the predictive 

performance of the models for CVD outcome140. In general, most of the studies on 

CVD risk assessment did not provide further evidence on the possibility of change 

in model performance if more data on CVD risk factors from different data 

categories were added to the evaluation of the CVD risk. Also, most of the studies 

have examined the CVD risk as a binary outcome rather than the aspect of survival 

analysis with deep neural networks. 

With regards to the degree of adding variable from multiple data 

categories to the predictive model with DeepSurv and Cox proportional hazards 

regression, significant improvement was observed when clinical laboratory test and 

measurement and lifestyle behavior data were added to sociodemographic factors. 

However, only marginal improvement in the performance was found in DeepSurv 

and Cox proportional hazards regression when environmental exposure data were 

added in the hybrid approach.

This finding suggests, in relation with previous studies, that data from 

multiple dimensions should be considered for the optimal performance of the 
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predictive model. In the COronary CT Angiography EvaluatioN For Clinical 

Outcomes: An InteRnational Multicenter (CONFIRM) registry study conducted 

with patients suspected of coronary artery disease (CAD), the investigators used 

the information abstracted from the computed tomographic angiography and 

clinical variables to build a machine learning (ML) based model for predicting all-

cause mortality141. The CONFIRM registry study found that the ensemble ML 

technique outperformed the well-established models including Framingham Risk 

Score142 (FRS), segment stenosis score143 (SSS), segment involvement score144

(SIS), and modified Duke index145 (DI). While the performance of the ML 

technique for predicting the all-cause mortality as a binary outcome was notable in 

this study, the metrics that were compared (FRS, SSS, SIS, and DI) to the ML 

technique are used for assessing cardiovascular risk, not the risk of all-cause 

mortality, While the CONFIRM registry study used a wide range of data 

dimensions from clinical imaging and data, the input features were selected based 

on the information gain and the contribution of each data type were not examined. 

Also, the patients in the CONFIRM registry comprised of those suspected with 

CAD whose coronary angiography data were available. In the analysis with 

multiple data categories derived from the NHIS-NSC, the subjects were free of 

CVD at baseline without any information on clinical imaging, and the survival 

analysis models were implemented rather than binary classification models for the 

cardiovascular outcome. 

A previous study using ML algorithms among elderly patients referred to 

the Sandwell and West Birmingham Hospitals National Health Service (NHS) 

Trust in the United Kingdom to identify atrial fibrillation (AF) found that adding 

cardiovascular biomarker data (brain natriuretic peptide [BNF], fibroblast growing 
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factor [FGF-23], tumor necrosis factor-related apoptosis-induced ligand receptor 2 

[TRAIL-2]) into the clinical risk factors (age, sex, and body mass index) improved 

the predictive performance of the model13. While this study shows the value of 

quantifying cardiovascular biomarkers as additional input features for improving 

the performance of the model for identifying AF, other common risk factors such as 

hypertension or diabetes were not considered in the models. Although the extensive 

collection of the biomarker data associated with AF has shown to be valuable in 

this study, the contribution of the common and rather easily collectable risk 

factors146,147 (e.g. hypertension and diabetes) was not extensively evaluated. Since 

information on hypertension or diabetes can be more easily assessed with clinical 

measurement and added to the ML-based model compared to the biomarker data, 

finding the input features that could maximize the performance of the model should 

be implemented considering both cost and effectiveness of collecting such data. In 

the NHIS-NSC study with data linkage to the environmental exposure data with 

DeepSurv and Cox proportional hazards regression, the input features selected 

from the statistics-based models (hybrid approach for DeepSurv) were also 

incrementally added. With this attempt in the NHIS-NSC study, the potential 

contribution of each data dimension were comprehensively examined. Also, the 

time element was considered as a part of the survival analysis model in the NHIS-

NSC study compared to the report from the Sandwell and West Birmingham 

Hospitals NHS Trust. 

While DeepSurv successfully models increasingly complex relationships 

between a patient’s covariates and their risk of failure in other studies, especially in 

real survival data experiments such as Worcester Heart Attack Study (WHAS) with 

1638 observations and 5 features (age, sex, BMI, left heart failure complications, 
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and order of MI, which showed approximately 0.05 increase in C-index compared 

to cox proportional hazards model. In the NHIS-NSC study, significant 

performance benefit of DeepSurv was observed when clinical laboratory test and 

measurement data and lifestyle behavior data were added to the sociodemographic 

data. When implementing predictive modeling for future CVD risk using deep 

neural network and regression-based survival analysis from the NHIS-NSC, input 

features from sociodemographic, clinical laboratory test and measurement, and 

lifestyle behavior should be primarily considered before collecting risk factors 

from other data categories such as medical/dental claims, medication use, and data 

linkage to environmental exposure. 

Recent evidence suggests that learning-based algorithms do not always 

outperform traditional statistical methods for the prediction of clinical outcomes. A 

recent systematic review comparing the performance of ML algorithms (e.g. 

random forest, artificial neural networks, and support vector machines) and logistic 

regression for binary classification of study outcomes based on 71 studies showed 

that the difference in area under the curve was negligible among the comparisons 

with low risk of bias (difference in AUC: 0.00; 95% CI: -0.18 to 0.18 for 145 

comparisons at low risk of bias)148. In addition, data from a recent study on 

Medicare patients concluded that, ML algorithms showed only marginal 

improvement over logistic regression for predicting hospitalization with heart 

failure149. 

Although the outcome and evaluation method for comparison of

DeepSurv with a hybrid approach was based on predicted log-hazard and time-

dependent C-index rather than binary classification of the outcomes, the findings 

from the recent meta-analysis and Medicare study support the evidence that 
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learning-based algorithms do not always show superior performance to the 

traditional statistical methods. 

Also, while the exact factors that lead to the difference in performance 

was not fully known in this study due to the lack of explainable artificial 

intelligence (XAI) technique for DeepSurv, more studies should be conducted with 

different number of risk factors, follow-up duration, and number of events. 

Although Cox proportional hazards model has been the standard method for 

clinical risk prediction, use of deep learning based survival analysis such as

DeepSurv should be considered in clinical risk modeling with patient-level survival 

data o find the best performance of the model when multiple source and data likage 

are available.

3. Strengths and limitations 

In contrast to the most recent predictive modeling studies for

cardiovascular event as a binary outcome, this study with a large population-based 

data implemented deep learning based survival analysis combined with Cox 

proportional hazards regression (i.e. hybrid approach) with sufficient patient-level 

data linked to environmental exposure. Thus, this study allowed the evaluation of 

model performance from statistics-based variable selection methods and 

progressively adding variables from different data categories.  

Potential limitations of this study should also be noted. This analysis 

addressing the survival model does not clearly provide etiological background or 

proposed mechanism. Furthermore, larger studies with more data dimensions (e.g. 

biomarkers, clinical imaging and measurement data, etc) and longer follow-up 

duration in diverse populations are needed to assess the effectiveness of extensive 
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data collection of cardiovascular risk factors for predictive performance of the deep 

learning based survival models. The current analysis has a limited generalizability 

because the data was derived from a single ethnic-group with a relatively short 

follow-up duration for the outcome. Also, data on environmental exposure to 

particulate matter and urban green space coverage was linked to the NHIS-NSC 

using residential area code as the common key. This area-level exposure potentially 

owes to the large variations among individuals residing in the same administrative 

area with different daily exposure to particulate matter and urban green space. Thus, 

future study should collect individualized measurement for environmental exposure 

(i.e. data from portable particulate monitor or smartphone geolocation) and utilize 

them to test if addition of individually measured environmental data could 

significantly improve the performance of deep learning based survival analysis

model. 

4. Implications

In the real-world settings, especially for the enrollees of the NHIS who 

undergo national health screening, their past history of medical/dental claims and 

drug prescription are routinely collected and easily traceable through the NHIS 

system. Therefore, policymakers for public health could consider the cost 

associated with collecting the information before implementing predictive 

modeling approach of any type. While the NHIS currently provides data-driven 

service on computing the health risk for few diseases based on the integrated

information derived from the medical claims, climate, and social network service, 

whether the predicted health outcome could be improved when other data 

dimensions are added is not clearly determined. Because the NHIS database is 



７５

being managed at the national level, marginal improvement with the multivariable 

model in the predictive models could inform a large number of the individuals of 

their future health risk. Also, the performance of Cox proportional hazards 

regression steadily increased as more number of variables in data categories were 

added up from sociodemographic factors to environmental exposure data. 

Nonetheless, the DeepSurv model with variables included in sociodemographic 

factors, clinical laboratory and measurement, and health behavior could offer the 

best predictive performance with minimal number of input features, and given that 

these are relatively easily accessible from the insurance eligibility and health 

screening data in the clinical settings or the NHIS system, the effectiveness of 

expanding the data on CVD risk factors up to environmental exposure data for the 

entire population should be carefully reviewed before implementation of prediction 

models for CVD risk assessment. 

5. Future perspectives 

The current DeepSurv model for CVD risk assessment lacks 

explainability and automated variable selection technique considering survival (i.e. 

right-censored) data. Along with the ongoing expansion of the available data source, 

advanced deep learning based survival analysis models in the future should be 

implemented with explainability and automated variable selection techniques for 

comprehensive cardiovascular risk assessment and evaluating the relative 

contribution of each data type for predictive performance (Figure 16). Also, data on 

environmental exposure should be measured for each individual for more precise 

assessment for cardiovascular health risk.

While this study could only integrate information on sociodemographic, 
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medical/dental claims, lifestyle behavior, medication, some of the clinical 

laboratory test and measurement, and environmental exposure, future study should 

consider expanding the data collection to multiple sources such as dietary factors, 

web search quires, financial data, genomics, gut microbiome, and medical images

for potential applications in personalized healthcare, public health policy, and data-

driven health research.

Figure 16. Future perspectives of the data-driven cardiovascular research using 
integrated data from multiple dimensions for advanced deep-learning based 
survival analysis models   

Abbreviation: XAI, eXplainable Artificial Intelligence 
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V. CONCLUSION

In summary, abstracting information on multivariable factors offered 

improvement in the predictive performance of DeepSurv model for CVD risk 

compared to the basic clinical factors comprised of age, sex, and body mass index, 

especially with a hybrid approach when statistically significant variables from Cox 

proportional hazards model were selected as input feature set and progressively 

added. Information on sociodemographic factors, clinical laboratory test and 

measurement, and lifestyle behavior enriched the performance benefit of DeepSurv 

model for CVD risk assessment that was superior to the Cox proportional hazards 

models with statistically significant variables added up to medication use. To attain 

the best performance of the predictive modeling for CVD risk with DeepSurv using

the minimum number of data categories, sociodemographic factors, clinical 

laboratory test and measurement, and lifestyle behavior data abstracted from the 

NHIS-NSC should be primarily considered. Also, extensive data linkage for input 

features should be carefully determined prior to the model development with 

DeepSurv as expanding the data categories up to environmental exposure data from 

the NHIS-NSC only offered marginal improvement in predictive performance for 

CVD risk. Future studies with deep learning based survival analysis for CVD risk 

assessment should be implemented with explainable artificial intelligence 

technique, automated variable selection methods, and individualized data on 

environmental exposure with other data sources derived from multiple dimensions. 
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국 문 초 록

배경 및 목적: 심혈관질환 위험평가 및 예측모델링에서 다양한 심혈관질

환 위험인자들의 모델 성능향상에 대한 기여도는 논란의 요지로 보고되

어왔다. 또한, 지속적으로 증가하는 활용 가능한 심혈관질환 관련 데이

터의 종류와 양에도 불구하고 포괄적인 심혈관질환 위험평가와 최적의

예측 모형 개발을 위해 데이터를 어느 범위와 수준까지 수집해야 하는지

에 대한 근거는 부족한 현황이다. 본 연구에서는 콕스 모형과 결합된 딥

러닝 기반 생존분석 접근법 및 콕스 모형을 활용한 심혈관질환 위험평가

와 예측모델링에서 헬스케어-환경 연계 데이터 활용방법 및 범주에 따

른 모델 성능향상에 대한 기여도를 평가하고자 하였다.

연구 방법: 전통적 심혈관질환 위험 평가 도구 및 관찰 연구들에 포함

된 심혈관질환 위험요인 관련 변수들을 체계적 문헌고찰 방법론을 활용

하여 의학연구 문헌데이터베이스 (PubMed and Embase)에서 포괄적으

로 정보를 수집하였다. 미세먼지 누적장기노출 및 도시녹지면적에 대한

환경 노출 데이터와 연계 된 국민건강보험공단 표본코호트, (National 

Health Insurance Service-National Sample Cohort, NHIS-NSC)에서

각 심혈관질환 위험인자들의 데이터 확보 가능성을 검토하였다. NHIS-

NSC를 기준으로 2009년에서 2010년 사이에 국가건강검진을 받은 40

세 이상 대상자 중 과거 심혈관질환 병력이 없는 대상자 137,249명의

환자에 대한 정보를 수집하여 2011 년 1 월 1 일부터 2013 년 12 월

31 일까지 신규 발생한 심혈관질환에 대해 시간 경과에 따라 추적 조사

하였다. 통계 기반 변수선택 방법은 콕스비례위험모형에서 통계적 유의

성, 최소 (최상의) Akaike Information Criteria (AIC)의 하위 집합, 

elastic net penalty로 정규화 된 콕스비례위험모형에서 선택된 변수 및

위에 언급된 모든 기준을 충족하는 변수 세트로 선정하였다. 위에 명시

된 통계적 방법 외 모든 데이터 범주에 속한 변수 및 콕스비례위험모형

에서 통계적으로 유의미한 변수 (하이브리드 접근법)를 점진적으로 입력
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피쳐로 추가하는 전략으로 딥러닝 기반 생존분석 (Cox proportional 

hazards deep neural network, DeepSurv) 및 콕스비례위험모형에서

예측 모델들을 훈련 세트 (전체 샘플의 80 %)를 기반으로 개발하였다. 

DeepSurv 및 콕스비례 위험모형을 활용한 심혈관질환 예측 모델의 성

능평가는 생존분석을 활용한 예측 모델링에 가장 적합한 평가지표로 알

려진 Uno’s concordance statistics (C-index)를 사용하여 테스트 세

트 (총 샘플의 20 %)에서 수행하였다.

결과: 체계적 문헌고찰, 데이터 취합 및 추출 가능성 검토 후, 인구사회

학적 요인, 건강검진 및 측정 결과, 생활습관, 가족력, 건강상태, 구강건

강, 약물 및 환경 노출 데이터 범주에서 총 31 개의 심혈관질환 위험인

자가 지역환경 자료와 연계된 NHIS-NSC에서 확인되었다. 통계 기반

변수선택 방법으로 개발한 심혈관질환 예측 모델 중 콕스비례위험모형에

서 통계적으로 유의미한 변수를 DeepSurv에 적용한 하이브리드 접근법

이 Uno 's C-index 값 0.7069, 모든 변수를 콕스비례위험모형에 적용

한 콕스비례위험모형이 Uno 's C-index 값 0.7052로 나타나 기본 임

상 요인 (연령, 성별 및 체질량지수)이 포함된 예측 모델과 비교하여 통

계적으로 유의미한 모델 예측력 증가를 보였다 (두 모델 모두 Uno’s

C-index 차이에 대한 p-value : <0.0001). 인구사회학적 특성에서 환

경 노출에 이르기까지 각 데이터 범주에서 모두 통계적으로 유의미한 변

수들이 심혈관질환 예측 모델링을위한 DeepSurv 및 Cox 비례 위험 회

귀에 입력 피쳐로 점진적으로 추가 된 경우, 인구사회학적 요인, 건강검

진 및 측정 결과, 생활습관 요인 중 통계적으로 유의미한 변수들로 구성

된 DeepSurv 모델이 의약품 사용까지 고려한 Cox 비례 위험 회귀를

기반으로 한 모델 보다 뛰어난 성능을 나타냈다. 미세먼지 및 도시녹지

면적에 대한 환경 노출 데이터를 거주지를 기반으로 NHIS-NSC와 연

계 후 점진적으로 입력 피쳐로 추가 시 DeepSurv 및 콕스비례위험모형

을 활용한 심혈관질환 예측 모델링 성능을 통계적으로 유의미한 수준으

로 개선하지 못했다.
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결론: 최소 입력 피쳐를 갖춘 생존 분석 기반 심혈관질환 예측 모델에서

최상의 성능을 얻으려면 인구사회학적, 건강검진 및 측정 결과, 및 생활

습관에 대한 정보를 NHIS-NSC에서 수집하여 DeepSurv의 입력 피쳐

로 활용해야한다. 지역환경 자료와 연계된 NHIS-NSC에서 모든 데이터

범주를 사용할 수 있을 때 점진적으로 각 데이터 범주 중 콕스비례위험

모형에서 통계적으로 유의미한 심혈관질환 위험인자를 점진적으로 입력

피쳐로 DeepSurv 모델에 추가하는 하이브리드 접근법에서 심혈관질환

예측 모델링 성능이 점차 향상 될 것으로 기대할 수 있다. 주거 지역 코

드를 사용한 NHIS-NSC와 환경 노출 데이터 연계는 DeepSurv 및 콕

스비례위험모형 모두에서 심혈관질환 예측 모델링 성능이 향상되었지만

통계적으로 유의미한 증가 수준은 아닌 것으로 나타나 환경 노출 데이터

연계 및 적용 시 검토가 필요할 것으로 추정된다.

----------------------------------------------------------------------------------------------------

주요어: 심혈관질환; 헬스케어 데이터; 환경 노출; 딥러닝 기반 생존 분

석; 콕스비례위험모형
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