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Abstract

Clinical Genome Data Model 
towards Precision Medicine

Hyo Jung Kim

Interdisciplinary Program of Medical Informatics

Graduate School of Medicine

Seoul National University

Background The transition to precision medicine and personalized medicine 

is accelerating owing to progress in genomic technology and the consequent 

accumulation of genomic information. However, the clinical application of 

genomic information remains limited, and its spread rate has been slower 

than expected. This lag has been attributed to complex causes, including 1) a 

knowledge gap between medical experts and bioinformaticians, 2) 

separation of the bioinformatics workflow from clinics, and 3) unique 

characteristics of genomic data. Nevertheless, current informational 

approaches to link genomic data to clinical fields mostly address the data 

structure problem. 

Objective We aimed to develop a genomic data model allowing for more 

interactive support in clinical decision-making. Informational modeling was 
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used as a knowledge communication scheme from the highly intellectual 

product of bioinformatics to a representative data component of a clinical 

decision.

Methods Reliability-related attributes were derived through failure mode 

and effect analysis (FMEA). This study involved a multidisciplinary 

working group that conducted clinico-genomic workflow analyses and 

attributes extraction. Based on these data, an entity-attribute model was then 

developed through abstraction and normalization. 

Results The outputs of FMEA were a dataflow snapshot obtained from next-

generation sequencing, the information process map extended to the clinico-

genomic context, and the set of attributes. Next, an entity-attribute model 

consisting of eight entities and 49 attributes was identified to develop the 

final genome data model, including: a linkage identifier to clinical 

information, experiment-related information, bioinformatics protocol-related 

information, physical location information, expression, annotation, actor 

information, and timeline information.

Conclusion The proposed genome data model could serve as a data-layer 

infrastructure supporting the intellectual interplay between medical experts 

and informative decision-making. Given the importance of recognizing a 

genome information system as a component of the clinical information 

system to realize precision medicine, the model could help enhance 

integration of genomic data in clinical settings.
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General Introduction

One of the significant tasks of medical informatics for the implementation 

of precision medicine is supporting clinicians by integrating personal 

genomic information with other clinical evidence so that constantly-

evolving knowledge and inherently complex genomic data can be handled 

on-demand at the point of care. The transition to precision medicine and 

personalized medicine was expected to be accomplished within a few years 

due to the outstanding high-throughput sequencing capabilities of next-

generation sequencing and the accumulation of knowledge about its 

interpretation. The prior studies present that this delay can be attributed to 

complicated factors, such as knowledge gaps between medical experts and 

bioinformatics, the separated workflow between clinical practice and 

bioinformatics analysis, the unique quantitative and qualitative data

structure of genomic data, which can make interpretation more complicated. 

In an attempt to solve this problem, there is an increasing demand for the 

integration of personal genomic information in the electronic medical 

records. However, it has not been proposed as a sustainable, scalable, and 

interoperable method for storage, management, and processing the genomic 

data concerning clinical utilization.

In this study, the current barriers were explored through literature 

review, and related concepts and methods were investigated about these 

phenomena. Moreover, we addressed the immediate task of storing, 
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processing, and delivering data based on next-generation sequencing 

analysis methods to prepare for multifaceted clinical utilization. Data 

modeling is the first and most crucial step in the multi-tiered design of 

information systems. The point is that the final product reliability, such as

specific clinical decision support algorithms or integrated information 

systems, is hardly improved over the designed reliability on the lower level 

of architecture. 

Chapter 1 proposed a clinical genomic data model based on 

Deoxyribonucleic Acid (DNA) level data extracted from next-generation 

sequencing (NGS) technology.  The multidisciplinary discussion reveals a 

set of genetic knowledge expressions that can be preserved and delivered 

the meaning for clinical decision making. In Chapter 2, the CPIC guideline, 

which is a knowledge of how to use available genomic test results to 

optimize drug therapy for individuals, is structured. Furthermore, we 

propose a modular drug genome clinical decision support system by linking 

the patient's genomic information and data-level information flow 

constructed in Chapter 1. Chapter 3 deals with the design and 

implementation of structured information about the HLA gene as one of the 

extensions to accommodate the diversity of naming systems as the 

discoveries that reveal their clinical significance in bioinformatics continue. 

The sustainability and scalability of the clinical genomics data model were 

verified by design and expand knowledge expression for HLA nomenclature. 
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In this study, we explored multidisciplinary space where medical 

informatics can contribute to precision medicine, and an approach that 

encompasses aspects of knowledge expression, functional realization, and 

usability of information systems was attempted.
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Chapter 1. Clinical Genome Data Model: Data 

Level Integration of Patient Specific Genomic 

and Clinical Data for Multifaceted Utilization*

1.1. Introduction

As the field of medicine transitions from experience-based medicine to data-

driven medicine, an apparent paradigm shift to precision medicine is 

underway, driven by the development of technologies in fields including 

medical information technology and computer engineering1,2. Genomic 

information is one of the most critical component of precision medicine, 

given its power to explain individual variability3. However, the practical 

clinical use of genomic information remains limited because its circulation 

is suboptimal, with each data processing step tending to be independently 

performed and thus isolated. To narrow this gap, many organizations have 

attempted to identify and develop methods to more effectively link genomic 

data to clinical information and thereby facilitate its use4-6. However, 

several challenges must be surmounted before realizing this goal.

First, a mismatch exists between the structure of genomic and clinical 

data. Genomic data based on next-generation sequencing (NGS) technology 

is stored as a number of file types at various stages of the bioinformatics 

                                           
*

The main body of the dissertation chapter 1 published as following paper: Kim, H. J., 
Kim, H. J., Park, Y., Lee, W. S., Lim, Y., & Kim, J. H. (2020). clinical Genome Data Model 
(cGDM) provides interactive clinical Decision Support for precision Medicine. Scientific 
reports, 10(1), 1-13.
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analysis, with flexible file specifications to accommodate the broad range of 

research interests in bioinformatics7. Raw genomic data can contain up to 

several tens of gigabytes of sequence information, each stored as a long 

string of data, and therefore cannot be used directly in this form in clinical 

practice without further processing. Since data processing to determine 

clinical relevance is both computationally intensive and time-consuming, 

genomic information is not readily accessible relative to other types of 

clinical data. Thus, for precision medicine and personalized medicine, pre-

processed genomic data needs to be linked with other clinical information 

and provided at the appropriate time. In order to resolve this issue, a 

structured database is needed to store and appropriately manage genomic 

information for easy accessibility.

Second, genomic data has different properties than conventional 

observational data used in clinical settings. Therefore, genomic data must be 

clarified by considering procedural dimensions. Since genomic workflows 

contain a large number of pipelines for information processing, significant 

differences between the interpretation of processed data and data obtained 

from different information systems relative to the clinical workflow are

inevitable8. Accordingly, a robust data model is required to serve as an 

information system to systematically manage genomic data, encompassing 

the detailed processes of data processing, analysis, and filtering. 

Additionally, information on the reliability and accuracy of these analyses 
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results, along with the detailed analytical process and equipment used, must 

also be systematically stored and managed, as it is an essential criterion for 

clinical decision-making9. Moreover, because genomic data is less variable 

than observational data, information integration will allow for maximization 

of the utility of the collected genomic information for clinical use.

The third challenge, majorly hindering the integration of genomic 

data with clinical information, is difficulty in mapping the two types of data 

for medical interpretation. The presence of biomarkers for specific diseases 

or drug reactions is a critical factor in clinical decision-making10. In the case 

of targeted sequencing, the data processor is informed about biomarkers 

related to the panel prior to analysis. In clinical practice, reannotation of 

patient genetic information according to updated biomarker discoveries 

from the biomedical research community is continuously required at the 

population level. Thus, a structured data model with consistent data 

representation would enable the rapid adoption of both evolving biomedical 

knowledge and individual medical records, which can be delivered to the 

point of care through agile data processing. Furthermore, patient genomic 

data expressing specific biomarkers should be readily accessible from the 

information system along with clinician-confirmed interpretations10,11.

Personal-health status can be converted to a composition of multi-

layered, multi-dimensional digitalized information for utilization in an 

information system that facilitates handling big data (Fig. 1). Indeed, vast 
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amounts of data and associated metadata from multiple medical measuring 

technologies, such as laboratory tests or imaging studies, have already been 

successfully merged in clinical information systems. Overall, although 

genomic information represents the most sound and intensive health-related 

signals provided by the human body throughout life, the weak links to 

medical practice highlighted above contribute to its underutilization in 

clinical decision-making. Therefore, it is necessary to effectively link and 

integrate clinical information with personal genomic information, helping to 

accelerate the shift to personalized medicine.
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Figure 1.1 Data-level linkage structure between conventional HIS and GIS 
From a software engineering perspective, a comprehensive hospital 

information system comprises components that represent separated data 

collection routes and distinguishing characters of the data. We suggest the 

concept of GIS to illustrate the implementation of the cGDM. This 

architecture supports both information and functional integration, even with 

existing clinical information systems.
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1.2. Purpose of Research

The proposed GDM is based on an entity-attribute model to effectively 

manage and maximize the use of genomic data in clinical practice. Through 

the development of this method, we focused on equal weighting to the 

clinical perspective and bioinformatics process analysis as business 

continuity, starting from the initial clinical intention to bioinformatics 

information processing associated with a knowledge-related protocol, 

finally offering a deliverable and interpretable form to the point-of-care 

clinician. The GDM was designed based on DNA level data from next-

generation sequencing (NGS) technology to deliver processed genomic data 

of patients from different pipelines by applying an appropriate information 

scale and granularity at the clinical level.

Toward this end, we began by redefining the obstacles to the spread 

of genomic information into routine care, including reliability problems of 

proposed measurement data that could cause hesitation in clinical decision-

making, and data structure problems that have hindered the integration of 

genomic data into existing information systems. From a clinical perspective, 

we focused on the reliability of information as well as the problem of a 

heterogeneous data structure. In this context, we define a bioinformatics 

process not as a “measurement,” but rather as a “production” to transition a 

physical form of existence to an interpretable human representation.
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Overall, we aimed to develop a model with appropriate information 

granularity and scale, which would minimize the possibility of 

misinterpretation at the point of care by formal and procedural variation 

related to the production process.
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1.3. Materials and Method

The study material was genomic information with clinical relevance based 

on NGS technology. A failure mode and effect analysis (FMEA) approach 

was adopted as the analysis process and attributes-extracting method, which 

was accomplished by assembling a multidisciplinary working group. From 

November 2017 to July 2018, process mapping, failure identification, and 

related attribute extraction were performed by the FMEA method at over 18 

team meetings. An entity-attribute model was then developed by 

reconstruction of the attribute set derived from the FMEA.
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1.3.1. The Production Process of Bringing Genomic 

Information to Bedside Care

Here, we define a genomic test as a series of team-based information 

production processes, in which the meaning of the information is expanded, 

represented, and reproduced by reference to an external knowledge base, 

rather than through direct extraction of inherent information. Despite the 

invariant nature of a personal genome, genomic information presented to a 

clinician may vary according to specific processing protocols adopted7,12-14.

This variability raises reliability issues for the use of genomic test results as 

clinical evidence15. 

As artifacts from production, genome information processed for 

clinical use may pose a likelihood of misinterpretation due to information 

distortion, omissions, and fragmented senses. Furthermore, information 

reliability is a critical factor determining the ability of clinicians to utilize 

the genomic information16. Thus, our approach in developing this cGDM for 

focussed on the multi-dimensional scope of information, including 

procedural factors, derived from NGS technology. 
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1.3.2. FMEA: An Attribute-Clarified Framework 

FMEA is a systematic prospective risk factor analysis approach that predicts 

and prevents possible errors, improving quality across team-based 

processes17. When used for advanced investigation, the method has 

advantages enabling exploration of uncertain, unforeseen complex 

workflows at an early stage18,19. Since its introduction in 1963, broad 

subtype applications of FMEA have been performed in broad domains 

including reliability engineering20,21, behaviour modeling22, software 

engineering23, conceptual design24, and knowledge management and 

representation25,26. In particular, FMEA has been applied as a method of 

knowledge representation to extract process reliability-related attributes and 

to structure and map entities and attributes22,26-28. In this study, the FMEA 

approach was adopted for workflow analysis and the attribute-extracting 

method.
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1.3.2.1 The working group 

A multidisciplinary expert team was formed from the areas of 

bioinformatics, medical informatics, and medicine. The participants 

included three bioinformaticians, two medical informaticians with clinical 

informatics and application expertise, and one medical doctor. The medical 

doctor has experience in both clinical practice and conducting translational 

research from the perspective of both biomedical science and clinical 

practice. 
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1.3.2.2 Workflow analysis

Over a period of nine months, process mapping, failure identification, and 

related attribute extraction were conducted using FMEA at over 18 team 

meetings. Structured data modeling for enhancement of data accessibility 

was then conducted using a logical data model, with the attribute set derived 

from the FMEA workflow diagram.

We chose the conventional FMEA workflow analysis21,28 and 

adapted it for cGDM development. Conventional FMEA consists of two 

main steps. First, the failure mode is identified through 1) assembling a 

multi-disciplinary team with at least one expert from each domain over the 

target production process, 2) combining components and process function in 

order to derive a workflow diagram, and 3) listing the modes that may lead 

to failure at each step. The second part involves modifying the process itself 

with consideration of priority, including 1) evaluating the severity and 

occurrence ranking of each failure mode and 2) proposing a modified 

workflow or audition guideline.

In this study, risk estimation and priority-scoring steps were not 

designed, since our purpose was to review the fragment of metadata 

composition that may cause unintended information distortion of 

misinterpretation. 
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1.3.3. Logical Data Modeling

Data models are the basis of computation ability for intelligent information 

systems29. The database design process can generally be divided into logical 

and physical database design30. The physical data model requires a clear and 

specific description over logical design, which depends on the existing 

development environment. Thus, we designed this cGDM as a logical data 

model based on the FMEA results to support data-level integration with any 

existing clinical information systems.

Logical data modeling methods are comprised of abstraction and 

normalization. Database abstraction refers to aggregation and generalization

that occur at the points of intersection31. We first abstracted the attributes 

derived from FMEA and expressed the factors corresponding to each step in 

the workflow. Then, normalization was performed to prevent duplication 

and inconsistency of data elements considering their names, scale, and 

relations.
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1.3.4. Demo Datasets for the real-world data 

validation

Two of representative public accessible dataset are selected for the 

development of the demo databases: The 1000 Genomes Project of the 

International Genome Sample Resource (IGSR) with population code 

"CEU" (Utah Residents with Northern and Western European Ancestry)32, 

the pancreatic cancer data from The Cancer Genome Atlas 

(TCGA_PAAD)33.

Collected datasets were VCF and MAF file format, and the Extract-

Transformation-Load (ETL) process of the genomic data was performed by 

two bioinformaticians with Python 2.7.16. ANNOVAR 2016Oct24 version 

was used as a clinical annotation tool for the 1000 Genome Project CEU 

dataset. The resulting dataset imported in a table within the MySQL server 

database by two medical informaticians. We ran the SQL scripts in MySQL 

5.6.46 on a Server with 8GB of RAM and an NVIDIA tesla c1060 / Quad-

core CPU running run on CentOS Linux release 7.7.1908. The final outputs 

took the form of SQL tables and functions.
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1.4. Results

This section primarily consists of Failure Mode and Effects Analysis

(FMEA) results and entity-attribute modeling. FMEA output is presented in 

two diagrams: a dataflow diagram that focusses on the derivation of the 

contents of the genetic test based on NGS sequencing technology, and an 

information process map that extends the viewpoint to the level of clinico-

genomic context. At this step, the protocol entity of the former dataflow 

diagram was subclassified to reveal the procedural dimension in information 

processing. Moreover, the set of attributes involved in each step of 

information transfer was identified. Finally, the cGDM are suggested as a 

result of structured data modeling based on the attribute set. 
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1.4.1. Dataflow diagram based on an NGS workflow

A workflow diagram was derived in order to illustrate the data flow in 

which the genomic information inherent in the human body is converted to a 

genomic test result. (Fig 2.) At this stage, the clinical view is minimized, 

with both the flow of information and the process of analyzing the specimen 

after the sample collection across experimental laboratory and compu-

tational analysis drawn on a large scale. 

The subtypes of processed variant information in the parallel 

structure, used to cope with the growing body of knowledge in 

bioinformatics, are listed at the bottom of Fig. 1. Variant information can be 

called in multiple types depending on the perspective and purpose of the 

analysis. For example, there are four types of genetic variation: single 

nucleotide variation (SNV), small insertion/deletion (InDel), copy number 

variation (CNV), and translocation/fusion. There are predictive biomarkers 

as well such as microsatellite instability (MSI) and tumor mutation burden 

(TMB). 

As the amount of NGS technology-based knowledge increases, 

more subclasses representing novel perspectives can be added. Scalable data 

modeling to support the differentiation of knowledge over time is essential 

not only for expressiveness but also for reducing the burden of information 

systems maintenance.
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In summary, we linked the separate offline workflows at this step 

that occurred in different places until genomic data could be provided as 

processed data. The workflow diagram provided the basis for detailed 

analysis and discussion.
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The objects shown in this diagram are classified into three class types- 'Action', 'Information', and 'Entity'. ‘Action’ was first posted with 

respect to what occurred in each expert domain and the resulting ‘information’ was displayed as a result of each action. Finally, 'Entity' was 

defined as the captured information class at each stage of the workflow. Subtypes of 'Variant Information' were drawn scalable to 

accommodate the potential extension of subclasses.

Figure 1.2 Data flowchart based on a next-generation sequencing workflow 
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1.4.2. Extending the NGS process under a clinico-

genomic context 

After establishing a consensus on a larger scale, we extended the 

information flow to the clinical context in detail. At this stage, the 

standpoint of the workflow analysis was clinical decision making. Hence, 

the workflow diagram started with a clinical decision. We extended the flow 

between several actions in the clinico-genomic context involving multiple 

entities identified, and detailed analysis was performed. In this process, the 

output data file format and detailed processes for handling output files, 

along with the tools required for linking to external knowledge databases, 

are also described.

The working group discussed mechanisms for extraction of the 

entity-attribute set which would avoid probable information distortion and 

omission. We considered that the genomic data model for clinical use should 

be the knowledge communication scheme, thus preserving its reliability-

related factors. At a minimum, the genomic data model must provide 

sufficient information to decide whether the confidence level of the genomic 

test result justifies its consideration as clinical evidence. For this function, 

failure was defined as that which causes misinterpretation or non-use of the 

genomic data for clinical decision. The process of producing clinical 

evidence from genomic data at the bioinformatics area (Fig. 3) shows a 

pattern that is a series of repeated representations of information converted 
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by reference knowledge bases and data processing rules. Thus, failure 

modes can be classified as incomplete specifications in three meta-

categories: origin, reference, or symbol. Due to the nature of the semantic 

interpretation, any fragmentation of symbol causes not only loss of 

information but also assignment information to direct the origin12,13.



２４

Figure 1.3 Failure mode identification: mapped next-generation sequencing process extended to a clinico-genomic context 

In the bioinformatics area (cyan background), information may be distorted by the insufficient representation of origin, processing rule, and 

external reference. To prevent this failure, identification and semantics, related attributes are listed under the boxes. In the clinical area(yellow 

background), the data model functions as a communication scheme for the collaborative process implemented in the hospital information 

system. Data-level integration facilitates just-in-time queries and reuse of data. 



２５

We conducted workflow analysis to extrapolate general descriptors 

of the related attributes with the goal of preserving information during 

production and delivery processes from clinical intention to clinical 

utilization. Figure 2 provides a more detailed data-level view, including how 

genomic information is realized as clinical evidence in a case based on a 

structured data model. The structured genome data model can support a 

report via presentation on a variety of transcription forms (report forms), 

which are optimized for initial intent. Furthermore, additional utilization 

paths are accessible in the clinical-information system. As shown in Fig. 2, 

data-level integration helps the amplification of the incidental utilization. 

(Fig. 4) To illustrate, consider a patient who orders whole-genome 

sequencing to screen for cancer biomarkers at their first visit. When the 

patient receives a prescription for antibiotics a year later at a visit for other 

symptoms, that same genomic test result can be re-used from a 

pharmacogenomics perspective for safer and more efficient drug 

prescription. The clinical decision support system plays a vital role by just-

in-time display of the matching information with pre-defined rule and 

knowledge-based processing6,34,35. A computational genome data model is a 

prerequisite for this implementation35-37. Finally, we introduce a logical data 

model in the next step of the study.
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Figure 1.4 How the implementation of the cGDM provides interactive clinical decision support in clinical information system 
A: When a doctor enters a prescription, a dataset for the prescription is generated and transmitted for storage. B: The dataset is passed along to the CDS 

module to search for the relevant knowledge base in accordance with a predefined set of rules. In this case, we internalized the systematic reference to the 

IWPC algorithm* integrated with the CGDM database. C: The PGx CDS module based on the cGDM selects the patient-specific warfarin dosing related 

variant information which matches the IWPC algorithm in real-time. The cGDM produces an effect as a knowledge representation backbone as well as a 

genomic data storage scheme in the process. (e.g., Expression converted from input variables (Ci) to output variable (Co) for further processing.) D: The 

recommendation, which personalized dosing results from the IWPC warfarin PGx estimation based on both clinical and genomic factors, are delivered to the 

prescriber. Trackable links for each origin of the used genomic data and evidence in the algorithm are also provided. 
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1.4.3. The cGDM

Finally, the cGDM was designed as an entity-attribute model consisting of 8 

entities and 46 attributes (Fig. 5). For a structured data model of the 

identified clinico-genomic attributes, logical modeling was conducted to 

ensure data-level linkage with conventional primary clinical databases. In 

order to define the entity-attribute model based on the action and collected 

data, tool/processor classes and the attributes of each class from Fig. 2, we 

define three types of classes as protocol and related attributes (Table 1). 

Since the cGDM is designed to support data-level integration with the 

existing system, only the minimum subject identifier is defined as ‘linkage 

identifier to clinical information.’ To represent the procedural dimension, 

which is stressed in the study, we combined two workflow analyses on 

different scales. For example, the entity ‘Protocol’ as a part of the 

procedural dimension is explicitly represented in Fig. 2, then expressed 

again as a list of lower steps in Fig. 3. Since clinical observation is typically 

considered as the collection of events38, the logical composition of the 

date/time and actor identifier related to the clinico-genomic context were 

declared.

The derived classes and entities in Table 1 were used to declare 

final entities and attributes in the cGDM (Fig. 5). The mapped Actions and 

Action-related classes (Collected Data and Tool/Processor) are categorized 

into subdomains and related attributes for each step in Table 1. In Table 1, 
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action and its result are grouped into one step, and the related attributes are 

represented by the attributes classified in the corresponding step. For 

normalization, related attributes are categorized to create one or more new 

groups called ‘entities’ for each step, and they are the basis for defining 

‘Entities’ in the Entity-Attribute model (Fig. 5). For example, ‘Physical 

information according to the coordinate system’ is one of the three 

subdomains of the action ‘Sequence Annotation.’ It can include an attribute 

set (Cytogenic location, Codon, Exon) representing physical location 

information for each variant. However, this "Physical information according 

to coordinate system" can be a subdomain in other steps besides "Sequence 

Annotation". And even though it is the same subdomain, the related-

attribute set may be different depending on which step or action. In 

summary, each step identified in the entire clinico-genomic process can 

include multiple entities, and one entity can be related to multiple steps. 

Even in the same entity, the configuration of the related attribute as a factor 

affecting each step may vary from step to step.
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Table 1.1 Extracted classes and related attribute sets from each step of clinic-

genomic context for the Entity-Attribute model. The processes in the clinico-

genomic workflow shown in Figure 2 are listed in order and associated with the 

classes, related attribute sets for each process. This table is an intermediate result 

between the result of FMEA and the final logical model. Derived related attributes 

are abstracted within each class and grouped into entities.

Class
Related Attribute Entity

Action
Collected 

Data
Tool/

Processor

Sample 
Collection

Institution Identifier
Subject Identifier Test 
Identifier 
(Order ID or 
Accession No)

Linkage Identifier 
to

Clinical 
Information

Submission Date
Timeline 

Information

Medical Institution
Clinician

Actor Information

Specimen

Machine 
Sequencing

Test Description
Type of Sequence
Platform technology
Sequencer
Collection Date

Experiment 
Related 

Information
Timeline 

Information

Sequencing 
Institution
Experimenter

Actor Information

Read File

Alignment

Position
Reference allele
Alternative allele
Chromosome

Physical(Location) 
information
according to 

coordinate system

Analytics Institution
Bioinformatician

Actor Information

Initial 
Alignment 
File

InDel 
Realignment
/
Base
Recalibration

Position‘
Reference allele‘
Alternative allele‘
Chromosome‘

Physical(Location) 
information
according to 

coordinate system

Base quality(>Q20)

Quality Check 
information 

(Average) Depth of 
coverage
Mapping Quality 
(%Mapped reads)
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Received Date
Timeline 

Information

Analytics Institution
Bioinformatician

Actor Information

Adjusted
Alignment 
File

Variant 
Calling

Hetero-
/Homozygosity
Phasing information 
Missing

Genotype 
Expressions

Analytics Institution
Bioinformatician

Actor Information

Variant 
Caller

Tool
Step
Parameter   

Pipeline 
information

Origin
Version
Build
Parameter   

Data source

Variant 
File

Sequence 
Annotation 

Gene (HGNC Gene 
Symbol, Entrez ID, 
Ensembl IDl)
Variant 
(HGVS(genomic, 
coding, 
protein change + 
version), dbSNP, 
dbVar)

Variant 
Descriptive 
Expressions

Cytogenetic location 
Codon
Exon

Physical(Location) 
information
according to 

coordinate system
ClinVar, COSMIC ID
Molecular Effect
Variant Type
Functional Domain 

Functional 
Annotation

Analytics Institution
Bioinformatician

Actor Information

Annotator

Tool
Step
Parameter   

Pipeline 
information

Origin
Version
Build

Data source

Annotated 
Variant 
File
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Clinical 
Annotation 

ACMG actionable 
genes
FDA qualified 
biomarkers
User-defined 
biomarkers

Clinical 
Annotation

Analytics Institution
Bioinformatician

Actor Information

Documentation Date
Timeline 

Information
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Figure 1.5 The Clinical Genome Data Model: Structured data modelling with entities and attributes

The cGDM is designed as a logical data model of 8 entities and 46 attributes. The objects and related attributes derived through FMEA are 

integrated into a logical data model through abstraction and normalization.
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Figure 1.6 Semantic search implementation based on the CGDM

Even if the user does not know all the nomenclature or metadata relevant to the genomic data to be searched, search function based on the 
CGDM can uses information entered in the search fields in order to derive an extended search result. Through the generated SQL syntax, the 
user can determine which genomic metadata (such as chromosome and position, genome build version, HGVS ID) can be associated and 
extended to the outcome of the patient's data. In addition to the attributes "Biomarker" and "HGVS ID" presented in the example, multiple data 
queries can be made with a single attribute or combination of attributes presented in the CGDM. Therefore, by using these user interfaces with 
the data model, it is possible to trace and verify whether the queried genomic data of the patient represent more reliable information.
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1.4.4. Validation of the cGDM 

Here, the cGDM was finalized in the form of a logical model, which allows 

adaptation to the diverse development environments of existing 

heterogeneous clinical information systems. Logical model can play an 

essential role to generalize the complex phenomenon by abstraction and 

enhance understanding core ideas the model deliver between different 

stakeholders of in the complex system39. Whereas, the drawback of this 

approach is that physical modeling layer is needed in order to the data 

model implementation and validation. Thus, we design a physical data 

model implemented in relational database to evaluate the model validity for 

real-world data and to proof of concept how implementation of the cGDM 

enables interactive clinical decision support in clinical information system 

shown as Fig3 (Left side; Clinical decision support system for incidental 

utilization).
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Figure 1.7. Entity-relationship diagram of the CGDM implemented in RDBMS

The entity-relation for the physical model as a diagram (ERD) was presented based on the table shown in Supplementary Table 1. The diagram 

shows the entities and the attributes that describes the entity, and the relationship between the entities is also defined.
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1.4.4.1. Implementation of the real world data

This physical data model of the cGDM is provided in forms of entity-

relationship diagram and table (Supplementary Information Table 1; Fig 1.7). 

Also, one-click executable data definition language script is also freely 

accessible on a web page (https://github.com/SNUBI-HyojungKim/cGDM-

Clinical-Genome-Data-Model). 

For the data model validation with real-world data, we built pilot 

databases based on the cGDM and uploaded genomic data of over 2,000 

patients for multiple diseases, including acute lymphoblastic leukaemia, 

solid cancers, and depression cases (Table 2, internal databases). However, 

the pilot dataset related researches remains undergoing, we have built two 

representative demo datasets for open source (Table 2, demo databases) 

1000 genome CEU (Utah Residents with Northern and Western European 

Ancestry) population dataset for whole genome sequencing (n=99, 47.67 

GB), 2) TCGA PAAD (Pancreatic Adenocarcinoma) dataset for somatic 

mutation (n=155, 9.41 MB). We believe those well-known public dataset 

has advantages on data validation issue. Every demo dataset and source 

codes are freely available from at the Github page as mentioned above.
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Table 1.2 Summary of imported genomic data from various data sources in cGDM databases.

The databases are categorised into internal and demo database. The specifications of the database tables are informed in Table 1. This table 

presents row counts of each database table and data volumes of each database. The internal databases includes 3 private datasets (cancer panel, 

leukemia and depression) and 2 public datasets (TCGA COAD and TCGA LUAD). The demo databases includes 2 public datasets (1000 

Genome Phase3 CEU and TCGA PAAD).

Database

Internal database
Demo database

(public license)
Summary

                              Type of 

                              sequencing 

Table name

Cancer 

Panel
Leukemia Depression

TCGA 

COAD

TCGA 

LUAD

1KGP 

P3 CEU

TCGA 

PAAD
7 data sets

cancer 

panel
WES WES

somatic 

mut.

somatic 

mut.
WGS

Somatic 

mut.

WGS/WES/

targeted panel

CLINICAL_IDENTIFIER 10 503 1,000 459 522 99 155 2,748

EXPERIMENT_RELATED_INFORMATION 10 517 1,000 459 522 99 155 2,762

BIOINFORMATICS_PROTOCOL_RELATED_

INFORMATION
10 517 1,000 459 522 99 155 2,762

GENOMIC_ALTERATION 2733 29,279,631 842,199,347 361,933 318,947 229,525,363 56,159 1,101,744,113

MICROSATELLITE_INSTABILITY 0 0 0 0 0 0 775 775

CLINICAL_ANNOTATION 40 267 108 123 97 1 12 648

QUALITY_CHECK 10 517 1,000 0 0 0 0 1,527

Data volume
database total 2 MB 8.2 GB 144.7 GB 48.4 MB 42.6 MB 47.7 GB 9.4 MB 201.5 GB

per test 0.2 MB 8.12 MB 144.7 MB 0.1 MB 0.1 MB 481 MB 0.6 MB 91.8 MB
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Real-world data validation is designed to cover all three types of 

NGS tests (targeted panel, WES, WGS) and both cases of somatic mutations 

and germline variants. The storage capacity of data was reduced when 

converted into relational database with cGDM schema by 30% compared to 

the prepared data file in VCF format. Interestingly, as the data size of the 

genomic alteration table per test increased, the gap in data size by 

converting narrowed or overturned. The circumstance is due to the addition 

of multiple indexes for in-time query performance. Table indexing was 

generally required when an average of more than 30,000 rows per test 

occurs.
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1.4.4.2. How the implementation of the cGDM enables 

interactive clinical decision support

One of the major challenges of healthcare informatics is supporting 

clinicians who need to handle constantly evolving knowledge and inherently 

complex genomic data. Patient genomic data in static document format or in 

structured model but in which has vague designation of the variant limits 

functionality of clinico-genomic information system40. The cGDM could 

address the issue by working as a data-level infrastructure for interactive 

clinical decision support along with external knowledge bases (Fig.6). For 

the cGDM’s programmability test, we developed a pharmacogenomic 

clinical decision support function running on the cGDM database which 

reflects the knowledge of the IWPC warfarin dosing algorithm. The source 

code is freely available at https://github.com/SNUBI-HyojungKim/cGDM-

Clinical-Genome-Data-Model. Figure 7 illustrates both of logical 

information flow in back-end system and its appearance on the user 

interface. A query performance test is conducted with the algorithm 

procedure over 99 individuals in 1KGP P3 CEU database. The SQL stored 

procedure has executed in MySQL on a server with 8GB of RAM and quad-

core CPU running Linux CentOS 6. The average query out duration was 

0.013±0.008 second range from 0.00001 to 0.0460.
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Figure 1.7 The conceptual map of genomic decision support system based 
on the cGDM

While the accumulation of confirmatory knowledge could seem relatively 
slow compared to the speed of the vast discovery of the bioinformatics field, 
the benefits and impacts the two will have on patients when they are 
seamlessly connected are evident. The cGDM brings this process into 
computational space.
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Chapter 2. Pharmacogenomic Clinical Decision 

Support: Modular Implementation of CPIC 

Guideline

2.1. Introduction

As the development of sequencing technology and the results of research on 

pharmacogenomics (PGx) accumulate, efforts are being made to apply 

personalized drug prescriptions and dose adjustments in the clinical field. 

The same drug may cause adverse reactions due to congenital or acquired 

causes, and drug adverse reactions are a major obstacle to the safe and 

effective use of drugs. “The social costs and health disadvantages of these 

adverse drug reactions are well known. PGx use cases are of particular 

interest because over half of all primary care patients are exposed to PGx 

relevant drugs. Studies have found that 7% of U.S. Food and Drug 

Administration (FDA)-approved medications and 18% of the 4 billion

prescriptions written in the United States per year are affected by actionable 

PGx variants that nearly all individuals (98%) have at least one known, 

actionable variant by current Clinical Pharmacogenetics Implementation 

Consortium (CPIC) guidelines and that when pharmacogenes with at least 

one known, actionable, inherited variant are considered, over 97% of the 

U.S. population has at least one high-risk diplotype with an estimated 

impact on nearly 75 million prescriptions”41. Therefore, it is expected that 
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applying knowledge about the drug genome to avoid predictable adverse 

reactions to patients and maximizing the effects of drug treatment prior to 

drug prescriptions would improve patient safety and quality of treatment.

Various efforts are being made to establish a knowledge resource of 

pharmacogenomic knowledge that can be applied in clinical practice and to 

connect it to clinical information systems. Representatives are as follows; 

Clinical Pharmacogenetics Implementation Consortium (CPIC) of the 

Pharmacogenomics Research Network (PharmGKB)42 and the Dutch 

Pharmacogenetics Working Group (DPWG)43, International warfarin 

pharmacogenetics consortium (IWPC)44, Canadian Pharmacogenomics 

Network for Drug Safety (CPNDS)45. Efforts have been made to implement 

informed decision making using pharmacogenomic information in clinical 

settings based on these refined knowledge resources. In particular, recent 

attempts at systematic clinical implementation have been reported by the 

European Consortium 46, the IGNITE Network Pharmacogenetics Working 

Group 47,48, and the United Kingdom 49. In order for PGx to become routine 

in practice, attention has been paid to establishing a PGx decision support 

system integrated with EHR.

However, it has not been proposed as a sustainable, scalable, and 

interoperable design among different sites. When considering the 

complexity of dealing with the volatility of PGx knowledge and the 

considerable amount of information in patient-specific genomic data as an 
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extension of the clinical context, PGx clinical decision support pipeline 

focused on knowledge representation is needed.  Moreover, data 

processing methods is needed to provide PGx test result on demands. 

Clinical decision support (CDS) holds great promise for genomics but has 

had limited utility because executing CDS has required manual entry of 

genetic conditions into the problem list for decision support50.

In the study, we aim to develop a PGx CDS pipeline linking between 

clinical actionable drug-gene interaction knowledge and personal genomic 

data. First of all, we transform CPIC guideline knowledge resources into a 

machine-readable structured database. Finally, we suggest a PGx CDS 

service design based on the data model layer, both on CPIC guideline 

knowledge resources and personal genomic data.
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2.2. Purpose of Research

We propose PGx CDS that enables modular implementation between 

heterogeneous existing clinical information systems. Modeling of medical 

knowledge and representation of and reasoning about medical knowledge 

are the significant steps of the construction of CDS tool70. Although CPIC 

guidelines supporting the clinical application of pharmacogenomics 

knowledge provide reliable content, considerable modeling activities are 

required to transform knowledge from human-interpretable form to a 

machine-readable form for consistent application. 

Thus, we firstly collected, integrated CPIC guideline contents. Data 

integration gives a unified landscape by combining data from disconnected 

resources51 In this process, modeling the relationship between the sources 

and the global schema is, therefore, a crucial aspect. Then, we transform 

CPIC guideline knowledge resource to the machine-readable structured 

database along with content analysis. Exploratory analysis of the collected 

dataset reveals the rules or properties that the content implicitly implied. 

Finally, we propose a modular PGx CDS service by capturing the explicit 

and implicit knowledge flow of the CPIC knowledge resource through the 

modeling process and seamlessly unites actionable drug-gene interaction 

knowledge with patient genomic information on computational space.
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2.3. Material and Methods 

2.3.1 Material: CPIC guideline as knowledge resource

The CPIC was formed in 2009 as a shared project between PharmGKB 

(https://www.pharmgkb.org) and the Pharmacogenomics Research Network 

(PGRN) (http://www.pgrn.org). One of the goals of CPIC is to provide peer-

reviewed, updated, evidence-based, freely accessible guidelines for gene-

drug pairs6. All CPIC guidelines adhere to a standard format, and the terms 

used in CPIC guidelines to describe allele function and phenotype are 

standardized7,52. An ultimate goal for CPIC guidelines is to provide 

actionable guidelines for clinicians to make more precision decisions for 

specific drugs when genetic results are available. As a result of the 

admirable contribution of the consortium, it provides the most world-widely 

adoptable clinical pharmacogenomic implementation knowledge base. 

Efforts are underway to make CPIC guidelines more machine-readable, 

including making the guidelines available in various file formats53.
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2.3.2. Data Collection

CPIC guideline datasets are first collected between July 10th and August 

30th, and updated between 2019 March 15th and March 30th in 2020, via 

open assessed CPIC webpages and PharmGKB APIs. Collected data items 

are as follows; guideline list (drug-gene pair information included), drug 

resource mapping, gene resource mapping, gene allele definition, gene 

diplotype phenotype, clinical decision support guidelines. Except for the 

guideline list, other data formats are downloaded in comma-separated values 

form. Collected datasets are imported to a relational database management 

system (MySQL 5.6) for exploratory analysis and data-driven restructuring.

Figure 2.1. The configuration of the study environment
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2.3.3. Clinical decision support service architecture

Figure 2.2. Modular implementation of PGx CDS overview 

As discussed in Chapter 1, we perceive patient-specific genomic 

information as a sub-dimension of representation that reflects the patient's 

health status. Therefore, we consider the data level integration so that the 

service architecture ensures agile combined and computation with other sub-

dimensional information. 

Among collected 6 CPIC content categories, guideline title, drug 

resource mapping, gene resource mapping, and gene allele definition are 

used to construct a computable CPIC database (Figure 2.2, middle-left). 

Others, gene diplotype-phenotype and clinical decision support guideline 

categories, are applied to CDS rule function that matches PGx variant 

definition and patient genomic information and selects a personalized PGx 

CDS to alert given drug prescribing condition. The cGDM is adopted as a 
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patient-specific genome data model, developed in Chapter 1, to serve as a 

data layer infrastructure supporting the intellectual interplay between 

medical experts and informed decision-making.
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2.4. Results 

2.4.1. Collected CPIC guideline and exploratory 

analysis

The CPIC guidelines reviewed for machine-readable data conversion are a 

total of 24 guideline entries (Table 2.1) published to date on the official 

website42,54. Each guideline contains specific information related to certain 

gene-drug pairs; unique 20 genes and 62 drugs. Each guideline gives well-

curated knowledge in forms of procedural subcategories such as drug 

resource mapping, gene resource mapping, gene allele definition, gene 

diplotype-phenotype, allele frequency, clinical decision support guidelines. 

However, mainly due to differences in how each gene affects the drug 

efficacy or biological characters, the composition of the provided items are 

varied. 

Table 2.2 shows representative CPIC content items and their dataset 

availability according to each guideline. In the case of drug and gene 

resource mapping, every dataset is available. HLA-A and HLA-B gene 

allele definitions are not defined in CPIC standard format due to its unique 

biological character and high complexity. Gene diplotype-phenotype tables 

are not provided when the former form of information is not describable, or 

the only haplotype is existed (G6PD), or the structural variants have a 

meaningful proportion in the PGx gene. When the items reflect the PGx 
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drug-gene interpretation process, ensuring the entire item shows the 

feasibility of building a seamless digitalized pipeline. To explicit clinical 

decision support workflow and recommendation text files, guidelines that 

have complete data items are 10; 1) CYP2D6, CYP2C19 and Tricyclic 

Antidepressants (for 2 of 7 drugs), 2) CYP2D6 and Atomoxetine, 3) TPMT, 

NUDT15 and Thiopurines, 4) DPYD and Fluoropyrimidines, 5) CYP2D6, 

CYP2C19 and Selective Serotonin Reuptake Inhibitors, 6) RYR1, 

CACNA1S and Volatile anesthetic agents and Succinylcholine, 7) CYP2B6 

and efavirenz, 8) CYP2D6 and Ondansetron and Tropisetron, 9) CYP2D6 

and Tamoxifen, CYP2C19 and Voriconazole, 10) CYP2C9 and NSAIDs (for 

7 of 15 drugs).
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Table 2.1. The collected CPIC guideline overview 

CPIC Guideline Title Drug or Ingredient (unique n = 62) Gene (n = 20)

HLA-B and Abacavir abacavir HLA-B

HLA-B and Allopurinol allopurinol HLA-B

CYP2D6, CYP2C19 and Tricyclic Antidepressants
amitriptyline, clomipramine, desipramine, doxepin, imipramine, nortriptyline, 
trimipramine

CYP2C19, CYP2D6

UGT1A1 and Atazanavir atazanavir UGT1A1

CYP2D6 and Atomoxetine atomoxetine CYP2D6

TPMT, NUDT15 and Thiopurines azathioprine, mercaptopurine, thioguanine TPMT, NUDT15

DPYD and Fluoropyrimidines capecitabine, fluorouracil, tegafur DPYD

HLA-A, HLA-B and Carbamazepine and Oxcarbazepine carbamazepine, oxcarbazepine HLA-A, HLA-B
CYP2D6, CYP2C19 and Selective Serotonin Reuptake 
Inhibitors

citalopram, escitalopram, fluvoxamine, paroxetine, sertraline CYP2D6, CYP2C19

CYP2C19 and Clopidogrel clopidogrel CYP2C19
CYP2D6 and Codeine codeine CYP2D6

RYR1, CACNA1S and Volatile anesthetic agents and 
Succinylcholine

desflurane, enflurane, halothane, methoxyflurane, isoflurane, sevoflurane, 
succinylcholine

RYR1, CACNA1S

CYP2B6 and efavirenz efavirenz CYP2B6

CFTR and Ivacaftor ivacaftor CFTR

CYP2D6 and Ondansetron and Tropisetron ondansetron, tropisetron CYP2D6

IFNL3 and Peginterferon-alpha-based Regimens peginterferon alfa-2a, peginterferon alfa-2b, ribavirin IFNL3

CYP2C9, HLA-B and Phenytoin phenytoin CYP2C9, HLA-B

G6PD and Rasburicase rasburicase G6PD

SLCO1B1 and Simvastatin simvastatin SLCO1B1

CYP3A5 and Tacrolimus tacrolimus CYP3A5

CYP2D6 and Tamoxifen tamoxifen CYP2D6

CYP2C19 and Voriconazole voriconazole CYP2C19

CYP2C9, VKORC1, CYP4F2 and Warfarin warfarin
CYP2C9, VKORC1, 
CYP4F2

CYP2C0 and NSAIDs
aspirin, diclofenac, celecoxib, flurbiprofen, aceclofenac, ibuprofen, 
indomethacin, lornoxicam, lumiracoxib, meloxicam, metamizole, nabumetone, 
naproxen, piroxicam, tenoxicam

CYP2C8, CYP2C9
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Table 2.2. Dataset list and its availability over guidelines

CPIC Guideline Title
Original 

Publication
Date

Most Recent 
Update

Date

Drug 
Resource 
Mapping

Gene 
Resource 
Mapping

Gene Allele 
Dafinition 

Gene 
Diplotype-
phenotype

Clinical 
Decision 
Support

HLA-B and Abacavir April 2012 May 2014 Not available Not available Not available
HLA-B and Allopurinol February 2013 June 2015 Not available Not available Not available
CYP2D6, CYP2C19 and Tricyclic Antidepressants May 2013 October 2019 (2/7)
UGT1A1 and Atazanavir September 2015 November 2017 Not available
CYP2D6 and Atomoxetine Feburary 2019 October 2019
TPMT, NUDT15 and Thiopurines March 2011 February 2019
DPYD and Fluoropyrimidines December 2013 January 2020
HLA-A, HLA-B and Carbamazepine and 

Oxcarbazepine
September 2013 December 2017 Not available Not available

CYP2D6, CYP2C19 and Selective Serotonin 
Reuptake Inhibitors

August 2015 October 2019

CYP2C19 and Clopidogrel August 2011 March 2017 Not available
CYP2D6 and Codeine February 2012 October 2019 Not available
RYR1, CACNA1S and Volatile anesthetic agents and 

Succinylcholine
November 2018 September 2019

Not 
applicable*

CYP2B6 and efavirenz April 2019 No updates
CFTR and Ivacaftor March 2014 May 2019 Not available Not available
CYP2D6 and Ondansetron and Tropisetron December 2016 October 2019
IFNL3 and Peginterferon-alpha-based Regimens February 2014 No updates Not available Not available
CYP2C9, HLA-B and Phenytoin November 2014 No updates Not available Not available Not available
G6PD and Rasburicase August 2014 September 2018 Not available Not available
SLCO1B1 and Simvastatin October 2014 No updates Not available
CYP3A5 and Tacrolimus July 2015 No updates Not available
CYP2D6 and Tamoxifen January 2018 October 2019
CYP2C19 and Voriconazole December 2016 No updates

CYP2C9, VKORC1, CYP4F2 and Warfarin December 2016 No updates
Not 

applicable*
Not available

CYP2C9 and NSAIDs March 2020 No updates (7/15) (1/2) (1/2) (1/2) (7/15)

Number of available files grouped by guidelines 23 23 20 15 11
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2.4.2. Data integration and modeling

In this section, we briefly examine each CPIC content item in terms of its 

attribute and value set. On top of that, CPIC guideline title contains drug-

gene pair information at ingredient or drug class level. Drug resource 

mapping file provides for each drug of ingredient, respectively, which has 

four attributes; ‘Drug or Ingredient,’ ‘Source,’ ‘Code Type,’ ‘Code.’ Source 

attribute has a member of RxNorm, DrugBank, ATC, PharmGKB. In 

summary, this item provides definitions of drugs that can be identified in 

four representative external drug knowledge bases. Gene resource mapping

file is also expressed in the same attribute set, and provides unique indexes 

of 4 different external genome knowledge bases for each gene; PharmGKB, 

Ensembl, NCBI, HGNC. 

The Gene allele definition table can be divided into four districts 

when clustered with similar value properties as below (Figure 2.3). This 

table is a collection of PGx variant information in a gene. For example, we 

can start *4 in the C district. At the same line in D district, we can find the 

alternative allele Y and G. In the first line of those, reference allele C and A 

are shown. We could make the exact HGVS nomenclature when combine 

assigned A+B district. In this case, CYP2C19 *4 consists of two variants; 

NC_000010.11:g.94761900C>T and NC_000010.11:g.94762706A>G. This 

expression is interoperable with any line of A+B, for example, rs12248560 

and rs28399504 in terms of rsID from NCBI dbSNP. The machine cannot 
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interpret the table, evidently. We naturally extracted codified token from 

part A. As a consequence, we abstracted each value pattern and named its 

properties. As a consequence of data modeling and reconstruction, district A 

of gene allele definition table over 17 gene files results in Table 2.3.

Figure 2.3. Gene allele definition table example
(a) Variant expression in HGVS nomenclature and its meaning. 
(b) Gene allele definition table collected from CPIC guideline contents. File 

has for distinctive areas; A) Reference Sequence level related values; B) 
Detail location and variant information given A; C)Star allele 
nomenclature; D) actual variant information at locus A+B
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Table 2.3. Reference Sequence Information for Locus assignment

HGNC_Gene_Symbol Chromosome Reference_Sequence_Source Reference_Assembly Complete Genomic Molecule ID Genomic Region ID Protein ID

CACNA1S 1 NCBI RefSeq GRCh38.p7 NC_000001.11 NG_009816.1 NP_000060.2

CFTR 7 NCBI RefSeq GRCh38.p2 NC_000007.14 NG_016465.3 NP_000483.3

CYP2B6 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_007929.1 NP_000758.1

CYP2C19 10 NCBI RefSeq GRCh38.p2 NC_000010.11 NG_008384.3 NP_000760.1

CYP2C9 10 NCBI RefSeq GRCh38.p2 NC_000010.11 NG_008385.1 NP_000762.2

CYP2D6 22 NCBI RefSeq GRCh38.p2 NC_000022.11 NG_008376.3 NP_000097.3

CYP3A5 7 NCBI RefSeq GRCh38.p2 NC_000007.14 NG_007938.1 NP_000768.1

CYP4F2 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_007971.2 NP_001073.3

DPYD+ 1 NCBI RefSeq GRCh38.p2 NC_000001.11 NG_008807.2 NP_000101.2

G6PD X NCBI RefSeq GRCh38.p2 NC_000023.11 NG_009015.2

IFNL3+ 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_042193.1

NUDT15 13 NCBI RefSeq GRCh38.p7 NC_000013.11 NG_047021.1 NP_060753.1

RYR1 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_008866.1 NP_000531.2

SLCO1B1 12 NCBI RefSeq GRCh38.p2 NC_000012.12 NG_011745.1 NP_006437.3

TPMT 6 NCBI RefSeq GRCh38.p2 NC_000006.12 NG_012137.2 NP_000358.1

UGT1A1 2 NCBI RefSeq GRCh38.p2 NC_000002.12 NG_002601.2 NP_000454.1

VKORC1 16 NCBI RefSeq GRCh38.p2 NC_000016.10 NG_ 011564.1

* HLA-A, HLA-B, CYP2C8 Allele Definition Tables are not available
+ source - https://www.pharmgkb.org/page/pgxGeneRef
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Table 2.4 shows information density and terminology variation in 

the value field of the gene allele definition table. Among 17 available PGx 

gene variant information, 11 genes adopted star allele nomenclature55, and 

G6PD has its own nomenclature, and WHO class to designate distinctive 

functions on drug reaction machanism56, two genes have a single PGx 

variant. Almost of PGx variant over 17 genes are single nucleotide variant 

(SNV) or insertion/deletion (InDel), but CYP2B6 and CYP2D6 include 14 

and 4 copy number variants respectively. The number of different loci that 

appear in CPIC guideline contents is 702.

Table 2.4. Gene allele definition table data profiles

HGNC 
Gene 

Symbol
(n=20)

No of 
Loci

No of 
assigned 

designation

Matrix 
size

Example values

CACNA1S 2 2 4 Reference c.520C>T
CFTR 40 42 1,640 2789+5G->A S977F

CYP2B6+ 38 38 1,444 *1 *38
CYP2C19 34 34 1,156 *1 *37
CYP2C8 not available
CYP2C9 58 61 3,538 *1 *61
CYP2D6+ 128 146 18,560 *1 *9xN, *139
CYP3A5 8 8 64 *1 *9
CYP4F2 2 2 4 *1 *3
DPYD 15 93 1395 Reference c.1003G>T (*11)
G6PD 173 187 32,351 202G>A_376A>G_1264C>G Yunan++

HLA-A not available
HLA-B not available

IFNL3 single variant(g.39248147C>T) rs12979860 reference (C)
rs12979860 variant 

(T)
NUDT15 17 19 323 *1 *19

RYR1 43 48 2,064 Reference c.1021G>A
SLCO1B1 29 37 1,073 *10 *9

TPMT 39 43 1,677 *1 *9
UGT1A1 5 10 50 *1 *80+*37

VKORC1 single variant(g.3109638C>T) rs9923231 reference (C)
rs9923231 variant 

(T)

* Star allele available gene count: N=11 (CYP2B6; CYP2C19; CYP2C9; CYP2D6; 
CYP3A5; CYP4F2; DPYD; NUDT15; SLCO1B1; TPMT; UGT1A1) 
+ CYP2D6 and CYP2B6 include 14 and 4 copy number variants respectively
++ G6PD Genetic Variant Nomenclature and WHO Class
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The Diplotype-Phenotype table consists of 3 sheets, each of which is a 

‘possible Diplotype,’ ‘Interpretation consult note,’ and ‘Implementation 

workflow.’

Figure 2.4. Diplotype-Phenotype table example and its meta-data structure
Data model construction was conducted within these multilayer data 

analysis results. Each rough data structure embedded in original contents 

has been reclassified into atomic level attributes, a group of entities, and 

data flow according to the CDS service scheme of this study. Data flow is 

declared as relations in the constructed data model. Normalization and 

abstraction were applied until the ambiguity of overlapping properties, and 

abnormal cardinality disappeared for the design of the entity-relationship 

model for the CDS service. Computable conversion of the CPIC 

knowledgebase and linking scheme in PGx CDS to patient genomic data 

based on knowledge representation is shown in Figure 2.5.
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Figure 2.5. Snapshot of CPIC guidelines content structure converted to be 
computable
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2.4.3. CDS Rule Extraction

The pre-and post-test alert file consists of two sheets;’Pre- and post-test 

alerts,’ ‘Flow Chart.’ Flow chart helps end-user’s understanding also easily 

convert to a conditional phrase in computer language. However, the trigger 

condition, a particular exact subset, is offered by the ‘Pre- and post-test 

alerts’ sheet. In other words, conditional trigger information for CDS 

function is distributed in two sheets. Firstly, ‘Flow Chart’ has one common 

condition whether the patient’s genomic information is available or not. 

There are two exceptions over three guidelines; one is filtering weight over 

40 kg criteria in case of ‘CYP2B6 and efavirenz’, the other has branched 

alert message between for pediatrics and adults in case of ‘CYP2D6 and

Atomoxetine’ and ‘CYP2C19 and Voriconazole’. The latter type of 

exception does not appear in ‘Flow chart’ but implied to provide two alert 

text message columns in ‘Pre- and post-test alerts.’ Through this separation 

and regrouping process, we constructed trigger condition, alert message, and 

trigger condition-alert message relation.

Figure 2.6. Collection of ‘Flow chart’ over available 15 guidelines
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2.4.4. Structured database construction

Finally, we have constructed a machine-readable CPIC guideline database in 

the form of a relational database. The database includes 15 tables and 46 

unique attributes (Figure 2.7). Interestingly, the left and right parts of the 

ERD are separated. 

The left side represents the knowledge that declares PGx related 

variant definition and converts those findings into interpretable codified 

phenotypes for each drug-gene pair for which the guideline is targeted. The 

right part is a guide that provides a tailored CDS message when an 

individual's codified phenotype and prescribing drug ingredient is known. 

The CDS message contents could break down a set of properties comprised 

of contraindication, dose adjustment guidelines, probable adverse reactions, 

and consult recommendations to the clinical pharmacist for further 

consideration. However, in this study, the CDS alert text was not structured 

because the distribution of the corresponding attributes when segmented by 

sentence was irregular.



６１

Figure 2.7. Entity-relationship diagram of reconstructed database based on 
CPIC contents
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2.4.5. PGx CDS service module

Figure 2.8 shows the developed PGx CDS service module. When the system 

evoked, the CDS module looks at patient genome data stored in the EHR 

server and returns potential phenotype according to the CPIC PGx variant 

definition. Also, the module query out individualized recommendations for 

the prescriber. The novelty of this modular solution is the machine-readable 

conversion of the CPIC guideline and seamless function execution in a

single EHR system. Data modeling reveals four components of the CPIC 

knowledge resource. The first is targeted phenomena identifier, CPIC 

guideline title, and drug-gene pair information. The effort to provide curated 

and filtered PGx variant definition list with expert knowledge with clinical 

relevance. Then, they try to capture related annotation systems for 

interpretation, such as the star allele system. This information is presented in 

the nomenclature field in the Gene-allele definition table and codified data 

field in the Diplotype-phenotype table. Final CDS alert texts are given with 

the assumption that a person who looks at guidelines knows the specific 

genotype information. Data flow crack is found in here, but we could bridge 

this gap with the patient-specific genome database proposed in Chapter 1.

Finally, seamless PGx CDS are enabled shown in Fig. 2.9. Through the data 

collection and reconstruction process, we could briefly explore the colossal 

landscape of their accomplishment. For enhancing usability, CPIC does 

process standardization along with the development of new guidelines.
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Figure 2.8. PGx CDS module architecture 

(A) In this step, service refers to the data in (A-1) and (A-2) to check if the prescribed drug has relevance to the pharmacogenomic guideline. (B) 

Execute a query into a patient-specific genome database by referring to pharmagenomic variant information declared in the CPIC knowledge 

base. (C) The search result includes the possession of genomic information of the patient is returns in the form of a phenotype. (D) Provide 

general guidance on the drug-dielectric guidelines. (E) Provide individualized PGx CDS alert message
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    Figure 2.9. PGx CDS module integration scenario with dataflow
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Chapter 3. Clinical Application of Clinical 

Genome Data Model: Integrating Star Allele 

and HLA Data Models   

“An ideal nomenclature would be one that is entirely unambiguous. One might hope 

that a geneticist of the year 2493 could pick up a 1993 copy of The American Journal 

of Human Genetics and quickly understand, from the designation of a mutation and 

without extensive study of other sources, the location of a nucleotide change. However, 

the complexity of the genome and its functions is such that a perfect nomenclature is 

unachievable.57” (Ernest Beutler, 1993)

3.1. Introduction

As Beutler envisioned, the perceived complexity of the genomics is 

expanding, and a perfect nomenclature is not achieved yet. However, there 

is some accomplishment, such as the HGVS nomenclature and star allele 

system that helps effective communication between scientists. The HGVS58

nomenclature has advantages in figure out a specific locus from the 

nomenclature. Nevertheless, it does not specify a specific reference 

sequence. Thus the same variant could be described using different 

reference sequences, which might cause confusion. Furthermore, the 

expression is not scalable enough to express functional combinations. Thus 

star allele nomenclature was introduced in 200655. The star allele nomenclature 

could contain multiple-locus in one name (so-called star), and one locus could be

placed in redundant stars. The star-allele nomenclature is the result of efforts 

to standardize genetic polymorphism annotation for the cytochrome P450 
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genes. As clinical pharmacogenetic testing becomes widespread, this system 

has played a vital role in effectively delivering the patient's genotype and 

predicted clinical phenotype. As genomics research expands, the system 

remains a valuable tool for the broader community of genetic researchers to 

exploit our ever-improving ability to catalog variability in the human 

genome55. However, as scientific discoveries accumulate, the number of 

assigned stars is increased, and the complexity of the naming system itself is 

also expanded. For example, *1 is mostly accepted as a reference sequence 

functionality, but a few exceptions occur as known population distribution 

of the variants are changed. In addition, there are highly curated 

representative registries according to research interest so we could use those 

naming system as an auxiliary identifier. We prove the concept in Chapter 2 

using PGx variant definition construction and interoperable interpretation in 

the data of the patient-specific genomic information in cGDM.

Furthermore, there are independent nomenclatures such as the 

human leukocyte antigen (HLA) system. The HLA system59 is known to be 

the most polymorphic in human. The HLA polymorphism is not evenly 

spread throughout the molecule but is clustered in the antigen-binding 

groove60. HLA is a protein that plays a vital role in our body's immune 

function with a wide variety of allele types.61. HLA diversity is particularly 

important in organ transplantation because transplant recipients and donors 

with different serological HLA proteins will exhibit organ transplant 
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rejection62. Therefore, transplant recipients must perform HLA screening 

before transplantation. Recently, HLA diversity has been reported to cause 

severe drug hypersensitivity as well as organ transplantation63. However, the 

HLA results of transplant patients and donors have not been used to predict 

future adverse drug reactions. This is because the HLA test is performed in 

various ways, from a simple serological test to an NGS test. Besides, while 

the nomenclature that represents the HLA test results is continuously 

updated, the test results simply have been stored in free text in the electronic 

medical record (EMR) 64.
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3.2. Purpose of Research

Firstly, the HLA database is designed to be used in clinical practice with 

data-driven approach. Construction of HLA DB linked in hospital 

information system could bring clinical pharmacogenomics information to 

physicians. Secondly, the HLA database is covering multiple test methods 

enable to protect from the harm due to the non-use of health-related data65.

Ultimately, we try to validate the model consistency to cope with the 

evolving annotation systems by construction of HLA database.
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3.3. Material and Methods 

We used the dataset extracted the results of the HLA test performed and 

demographics of patients using SUPREME® between February 2002 and 

June 2018, a clinical data warehouse of Seoul National University 

Hospital66. With a data-driven approach, we could extract clinical context 

enriched entities and attributes. Also, HLA nomenclature has been adopted 

as the primary material for designing and elaborating the HLA entity.

We designed the cGDM HLA as a physical data model in a 

relational database on MySQL 5.6 in an agile manner. Data-driven modeling 

is comprised of data mining and clarification of implicit properties and 

relations67.
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3.4. Results

3.4.1. Summary of collected dataset 

Collected dataset from SUPREME® has 11,287 records for 11,144 patients; 

4,039 male and 7,105 female patients, including 2,642 high-resolution tests, 

5,835 low-resolution tests, and 2,810 tests. Gathered data fields are shown 

in Table 3.1 below. We filtered these fields with data existence, and remove 

its redundancy. Then, the reclassification of each field was conducted 

compared to the cGDM schema. Unlike the expectation that it will be a true 

subset of the existing cGDM schema, except for the HLA nomenclature, 

unique properties remain that called 'related patient.' This is caused by a 

unique clinical context when the HLA test ordered, organ transplantation. In 

this case, donor-recipient tag information or family relationship information 

has significant meaning for test result application. For internal integrity, we 

decide to capture this information with the appended entity for further use.  
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Table 3.1. Extracted field list gathered from the EHR records

Document item 
name

full name or example 
data

MRN patient identification no

PatientDOB Birthdate

PatientName patient name 

PatientSex patient sex

TestCode test code

TestDate test date

TestName test name

Name name (data not found)

PatientType donor/recipient

diagnosis dx (data not found)

RelatedPatientsNo relatives(data not found)

A1_gene A11 

A1_allele *11

A2_gene A24

A2_allele *24

B1_gene B7

B1_allele *07

B2_gene B62

B2_allele *15

C1_gene Not tested

C1_allele Not tested

C2_gene Not tested

C2_allele Not tested

DR1_gene DR1

DR1_allele *01:01g

DR2_gene DR4

DR2_allele *04:03g

DQ1_gene Not tested

DQ1_allele Not tested

DQ2_gene Not tested

DQ2_allele Not tested

RelatedPatientName NA
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3.4.2. HLA data model

HLA entity is added in forms of tokenized HLA nomenclature. HLA gene

classes and its subtypes are represented in Supplementary information 2. 

Because this nomenclature is logically well developed, one of the major 

challenges was in its version control. Opportunely, the HLA community 

provides a version conversion tool and table as a text file. We parsed the 

HLA test results from the dataset with nomenclature logic and normalized 

its values with mass conversion when we uploaded the dataset to the DBMS 

table.

Figure 3.1. HLA Database design merged in the cGDM schema
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General Discussion†

The rapid accumulation of genome information has led to a paradigm shift 

in medicine. Nevertheless, significant barriers remain to overcome inflection 

points. Through multi-disciplinary analysis and consideration of this 

phenomenon, we determined two main causes: 1) reliability-related result 

variance among numerous pipelines and processes, and 2) the unique data 

structure of genome information. Since these two causes have mutual 

influences, an integrative solution may be more effective than a point 

solution. Moreover, we foresee that GIS will become an essential 

component of an integrated clinical information system in the precision 

medicine era. In this context, this cGDM could serve as a genomic 

information representation scheme enabling the intellectual interaction 

between medical experts and informed decision making, ultimately 

contributing to the enhancement of personal genomic data utilization at the 

point of care.

                                           
†

The part of the dissertation general discussion published in following paper: Kim, H. J., 
Kim, H. J., Park, Y., Lee, W. S., Lim, Y., & Kim, J. H. (2020). clinical Genome Data Model 
(cGDM) provides interactive clinical Decision Support for precision Medicine. Scientific 
reports, 10(1), 1-13.
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The GDM as an Infrastructure for a GIS

We recommend the GDM as a genomic information representation scheme 

for clinical purposes. To ensure the convenient and appropriate clinical use 

of genomic data, medical informatics technology is needed as part of the 

infrastructure supporting the integration of clinic and genomic layers of 

information68,69. Given the multi-level and multi-dimensional nature of 

health, clinicians must perform decision-making for a given case based on a 

collection of segmented data representing a person’s health, including 

laboratory data, imaging, and observation data assessed by experts. 

Currently, a clinical information system is typically used as a core tool for 

supporting this knowledge in a management process. To broaden 

perspectives in the era of precision medicine, we propose a concept of 

genome information system (GIS) as an integral component of an expected

clinical information system for precision medicine (Fig. 1.1).

The cGDM can serve as a data-level infrastructure for 

implementation of the GIS. When decision makers face unfamiliar health-

status measurements, determining clinical significance and meaning is 

challenging69,70. The cGDM was designed to preserve genomic information 

at an appropriate information scale and granularity covering the procedural 

dimension, which is related to the confidence level as a clinical 

measurement for clinical application. The design of the cGDM allows 

processed genomic data for a general purpose to be stored and merged with 
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existing clinical data, providing outputs in an interoperable data format. 

Likewise, sequencing analysis, data processing, and presentation of 

processed information can be managed in a form that can be explicitly 

confirmed. Once data are uploaded to the cGDM-based database, they serve 

as a supportive backbone for any downstream functional applications such 

as report generation or a clinical decision support system. (e.g., Fig 8; Fig 3) 

To develop a system for the systematic management of genomic data, it is 

necessary to unify its data structure with that of other existing components 

of clinical information systems, ensuring sufficient reliability for identifying 

the original data generation process71
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Current Approach to Genomic Data Management

The Health Level 7 (HL7) clinical genomics working group provided a 

model for health information exchange and Fast Health Interoperability 

Resources (FHIR) genomics, a model that integrates genetic and clinical 

information via the HL7 interfacing standard70,72. FHIR provides standards 

for medical and genomic information exchange and offers open-source and 

open application programming interfaces (APIs) that can easily be applied 

in clinical fields among heterogeneous data sources. FHIR and FHIR 

genomics have made substantial contributions toward the implementation of 

medical information exchange and are drawing electronic health records 

vendors' attention in this respect.

The Global Alliance for Genomics & Health (GA4GH) was 

established in 2013 to develop public tools that enable the responsible, 

voluntary, and secure sharing of clinical and genomic data73. The federated 

approach of GA4GH does not involve the storage and management of data 

in centralized data repositories. Instead, it provides an API that enables users 

to request and share data while holding data for institutions74. 

The FHIR and GA4GH consortium of HL7 were developed with 

the intention to facilitate the exchange of genomic and clinical data among 

multiple sites. Both resources have a common character as a form of 

information exchange at the communication level. These systems use the 

latest web technologies such as the representational state transfer (REST) 



７７

API to make it easier for developers to implement clinical applications or 

information systems in the healthcare industry.

The International Organization for Standardization (ISO) Technical 

Committee 215 (Medical Information) has proposed genomic information 

standards. ISO 27720:2009 (GSVML; General Sequence Variation Markup 

Language) is a standard that defines how genetic sequencing variation 

information is exchanged based on XML. The scope of this standard is in 

the data exchange format and does not include the database schema. 

Although all genetic sequencing is within the standard's scope, the SNP is 

the main target of this standard.  Another standard for more specific 

clinical utilization of genomic information is ISO/TS 20428 Health 

information - Data elements and their metadata for describing structure 

information in electronic health records established in 2017. Additionally, 

ISO/CD TS 23357 Genomic informatics – clinical genomics data sharing 

specification for next generation sequencing is under development state.



７８

Table 4.1 Comparison table of characteristics of related resources

*via SMART on FHIR, CDS Hooks, HL7 Inforbutton

cGDM: clinical Genome Data Model; OMOP G-CDM: Observational Medical Outcomes Partnership Genome Common Data Model; FHIR: Fast Healthcare Interoperability 

Resources; GA4GH: Global Alliance for Genomics and Health; ISO/TS 20428:2017: Health informatics - Data elements and their metadata for describing structured clinical 

genomic sequence information in electronic health records; ISO/TS 25720:2009: Health informatics - Genomic Sequence Variation Markup Language(GSVML); API: 

Application Programming Interface; GDC: Genomic Data Common; SNP: Single Nucleotide Polymorphism; SNUBI: Seoul National University Biomedical Informatics; 

OHDSI: Observational Health Data Science and Informatics; HL7: Health Level Seven; NIH: National Institutes of Health; NCI: National Cancer Institute

Resource Publication 
(year)

Data management scope Computability

Purpose Organization
Storage Exchange

Clinical 
data 

linkage

Patient 
identification

for CDS 
rule

for report 
generation

cGDM 2020 O X O O O O
Data level EHR 
integration

SNUBI

OMOP 
G-CDM

2019 O X O X X X
Federated Research 
Network

OHDSI 

FHIR 
Genomics

2020 
(2015~)

X O O O O * O
Information 
Exchange

HL7

GA4GH 
Genomics 
API

in progress 
(2015~)

X O X X X X

Data interchange for 
bioinformatics 
research 

GA4GH

ISO/TS 
20428:2017

2017 X O O O X O
Structuring 
sequencing report

ISO/TC215 (Health 
Informatics)

ISO/TS 
25720:2009

2009 X O X X X O SNP data exchange
ISO/TC215 (Health 
Informatics)

GDC 2017 X O X X X X
Cancer related 
genomic data sharing

NIH NCI 
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Observational Medical Outcomes Partnership Common Data Model 

(OMOP-CDM) aims to conduct distributed research across observational 

databases in multiple institutions using a common data model approach. 

Genomic Common Data Model (G-CDM) proposed as an extension part of 

OMOP-CDM represents genomic information75. Focused on research 

purposes, the granularity and scale of knowledge representation have limited 

for multifaceted clinical application.

The almost resources discussed earlier focus on data exchange 

formats for utilization rather than on EHR integration of genomic 

information. Therefore, the system is being developed by designing 

functions first rather than expressing knowledge of the genomic information 

itself, and by further defining the element whenever the function is added. 

This development methodology has strength for easy and fast software 

function development. On the one hand, however, all of reviewed resources 

are on a separate layer from the ground level schema in data management.
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The cGDM: A Step beyond the Capabilities of the 

Existing Systems

To develop a system for the systematic management of genomic data, it is 

necessary to unify the data structure with that of other components of 

clinical information systems, and to ensure sufficient reliability for 

identifying the data generation process18. Conventional systems have 

focussed on data structure unification issues first, to harmonise 

heterogeneous systems among separate institutions76. By contrast, our 

model was designed to achieve both clinico-genomic knowledge 

representation accompanied by traceability of the genomic data, to enable 

determination the clinical significance of a genomic test result provided to a 

clinician. 

Through the developed cGDM, standardization and integration of 

the structure of genomic data can be realized, along with tracing of the 

information in a step-by-step manner until the data related to the target are 

extracted according to clinical or research requirements. To secure the 

clarity of genomic information, we defined the basis for each attribute and 

focused on designing an entity set that can accurately represent the genomic 

data to be delivered to the target user, without information distortion, 

through composition of the basis.

To allow better assessment of the meaningfulness of genomic 

information, we defined the basis for each attribute and focused on 
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designing an entity set that accurately represents the genomic data that are 

delivered to the target user, without information distortion. Furthermore, the 

cGDM is adaptable as a data-level extension to any existing information 

system, regardless of database system or application platform. Effectiveness 

and feasibility of genomic data management in the computational 

environment in terms of the data-level EHR integration approach by the 

cGDM were also broadly evaluated in Chapter 2 and 3. 
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Unrecognized Ambiguity in the Interdisciplinary 

Knowledge Interplay

Accumulation of basic, translational, and regulatory science is a prerequisite 

to implementing personalized medicine in routine care22. As a basic science, 

bioinformatics has witnessed explosive and rapid progress since the 

completion of the Human Genome Project. In the context of regulatory 

science, there are currently several ongoing efforts within the bioinformatics 

and molecular biology domains,10,11,77 with great maturation in the body of 

knowledge during the last decade, including principles and 

recommendations related to NGS technology. These efforts have focussed 

primarily on the standardization of bioinformatics protocols and the file 

structures for intra- or interlaboratory communication.

Translational science represents the next challenge for the 

realization of actual health promotion with personalized medicine78. In the 

context of clinico-genomics, translational approaches ultimately target the 

syntactic and semantic interoperability between genomics and clinical 

practice, to ensure business continuity in terms of knowledge 

management23,24,79. Previous approaches have stressed a need for structural 

transformation to overcome the currently low adaptation of genomic 

information for clinical decision-making. However, the other major cause, 

the knowledge gap, has yet to be seriously considered because the solution 

appears obvious: the education of medical experts in bioinformatics 
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principles. 

Nevertheless, this raises the question of the specific level of 

bioinformatics knowledge required in clinical practice. Our working group 

agreed that clinicians do not need to be bioinformatics experts to implement 

precision medicine. Preferably, the key is education on how to understand 

genomic data and confidence levels, and then be provided with sufficient 

information to make clinical decisions. Based on this perspective, we 

identified a previously unrecognised ambiguity related to the knowledge 

interplay between bioinformatics and medical practices (Fig. 3). Although 

the genome is the most concrete type of observational data representing an 

individual's inheritance, the genomic information delivered to clinicians is 

rarely transformed to a human-readable form and is also rarely a direct 

representation of the genomic sequence. Instead, this information is more of 

an intellectual product, processed in a purpose-weighted result file structure. 

Thus, the question of reliability of the genomic information must be 

addressed before it is adopted by the physician, similar to other types of 

conventional observational data.

Considering the knowledge gap in this clinico-genomic context, 

unrecognised ambiguities may occur on each side. For example, when 

linking the outputs of bioinformatics to clinical fields, the indicator of 

information quality moves from internal consistency within the same 

protocol to external consistency between different protocols. Thus, to 
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accomplish the final goal of precision medicine, more discussion is needed 

about how data will cross this intermediate space, then about how to best 

represent and deliver crossover information. 
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Adoption of FMEA to Information Processing

To best of our knowledge, the methodology proposed herein has not yet 

been applied in the field of genetic information processing. FMEA is the 

most commonly used methodology for determining reliability of 

manufacturing and design processes17,20,21,80,81. We perceive the result of 

genetic testing not as an output of static measurement, but rather as an 

output of an intellectual production process. When conducting 

bioinformatics analyses, there is no requirement for unification among the 

processes, since the internal consistency within each process guarantees 

scientific rigour. Moreover, the flexible data specifications used in the 

bioinformatics field have the advantage of supporting various research 

applications7, but that advantage becomes an obstacle to data integration for 

comprehensive clinical decision making. In addition, relevant external 

knowledge, tools, platforms, and analytical techniques cannot be unified 

because they are still under development. Considering this large 

interdisciplinary hyperspace, our approach aims to improve the quality of 

information delivery while responding to an enormous, growing body of 

knowledge that has yet to be integrated within its own basic-science field. 

Therefore, the FMEA was adopted to derive and clarify a set of metadata 

designed to prevent information from being distorted.

To facilitate the use of genomic test results in clinical practice, it is 
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essential to integrate genomic data into clinical decision support systems 

regarding data volume and knowledge management6,34,37,82. Data modeling 

is the first and most crucial step in the multi-tiered design of information 

systems. The final product reliability, for example specific clinical decision 

support algorithms or integrated information systems, is hardly improved 

over the designed reliability on the lower level of architecture (data-level)20.

This viewpoint was projected to the study design. An important 

consideration is that the analytic scheme presented here can help to enhance 

clinico-genomic understanding for experts on both the medical and 

bioinformatics sides of the workflow. (see Methods Section) Throughout the 

development of this method, we focussed on equally weighting the clinical 

perspective and bioinformatics process analysis in the context of business 

continuity, starting from our initial clinical intention through bioinformatics 

information processing by a knowledge-based protocol, finally offering a 

deliverable and interpretable form to the point-of-care clinician.
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Limitations

Multi-omics data have a fundamental limitation of unification, which is 

derived from the difference of knowledge expression forms related to the 

processing methodology, final processed data depending on the target layer, 

and its biological characteristics. In addition, prior to NGS, there were 

already several structured models according to differences in data scale and 

technical maturity. The entity and attribute set defined in the GDM is 

derived from analysis of the workflow of NGS. Therefore, we do not 

consider the elements of other technology-based workflows in multi-omics 

layers.

The methods, equipment, data processing and analytical techniques 

for extracting data from targets in nature will continue to evolve and 

accumulate. The cGDM was designed to be flexible and able to readily 

adapt to technological changes. However, an eventual failure in responding 

to these changes cannot be excluded and represents a potential limitation of 

this study. 

Several standard models have been generated, based on differences 

in data scale and technical maturity, prior to the development of NGS 

technology. Thus, we have not considered multi-omics data. Focussing on 

NGS technology-based workflow helped us to determine an optimized 

information scale and granularity for the clinical level, and to design a 

model to generalise and process genomic data based on individual patients. 
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The cGDM could be extended to be a part of technology-wide data model 

integration for multi-omics data management.

The data model proposed in this study aims to clarify blind points 

within the interdisciplinary genomic-clinical interface, connecting separated 

expertise within a single platform to provide a broad perspective that covers 

the information reliability required for clinical evidence. In particular, we 

have made a novel attempt to adopt the FMEA method for a systematic 

meta-level data design process. Future work will focus on the development 

of functional systems to conduct real-world validation, including a data-

upload pipeline from processed genome data files, as well as a clinical 

decision support tools based on the cGDM. 
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Supplementary Information

Supplementary Figure S1. PGx CDS mock-up application based on the cGDM architecture
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Supplementary Table S1. Table Specification of the cGDM
The logical entities and attributes expressed in Figure 1.5 were converted into physical entities and attributes. Here, we provided our 
physical data model as the following table. The required data type, description, and example value for each attribute defined are described. 
All of the logical entities and attributes in Figure 1.5 have been transformed and defined in the physical model presented here. So, by 
applying this sort of conversion to physical model, each researchers can construct a genomic database according to the environment of the 
existing information system.

CLINICAL IDENTIFIER  Table specification 

# Logical Name Physical Name PK Required Data Type Description Example

1 Subject Identifier Subject_Identifier PK Yes int(11) 
Arbitrary person identifier 
defined in the CGDM database

1

2 Patient Number Patient_Number Yes varchar(20)
Patient number of existing HIS 
database used to link with the 
CGDM database

12345678

3 Medical Institution Identifier Institution_Identifier Yes varchar(20)
An abbreviation of the hospital 
name where the patient data 
linked with  the CGDM database

SNUH

4 Order Identifier Order_Identifier Yes varchar(20)

Unique key value represents an 
order of existing HIS database 
used to link with the CGDM 
database

602489471

5 Clinician Identifier Clinicain_Identifier Yes varchar(20)

Unique key value represents a 
physician of existing HIS 
database used to link with the 
CGDM database

A2068494

6 Submission Date Submission_Date Yes datetime
Date of the beginning of the data 
production period (e.g. ordered 
date)

2018-08-17 13:44
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EXPERIMENT RELATED INFORMATION  Table specification

# Logical Name Physical Name PK Required Data Type Description Example

1 Experiment Identifier Experiment_Identifier PK Yes int(11) 
Arbitrary identifier of the 
experiment defined in the CGDM 
database

11

2 Subject Identifier Subject_Identifier FK Yes int(11) 
Arbitrary person identifier 
defined in the CGDM database

1

3 Test Description Test_Description No text
Detailed description for ordered 
test

4 Type of sequencing Sequencing_Type Yes varchar(50)
Library strategy for genome 
sequencing 

{WGS, WES, Targeted 
sequencing, etc.}72

5 Platform technology Platform_Technology Yes varchar(20)
The technology platform used to 
identify the variant

NGS

6 Sequencer Sequencer Yes varchar(50) Sequencing equipment Illumina Hiseq 2500

7 Sequencing Institution Sequencing _Institution Yes varchar(50) Name of sequencing institution SNUBI

8 Experimenter Experimenter Yes varchar(50)
Name of the primary 
experimenter

BJ Min

9 Collection Date Collection_Date Yes datetime Date of the sample collection 2018-09-03 11:00

BIOINFORMATICS PROTOCOL RELATED INFORMATION  Table specification

# Logical Name Physical Name PK Required Data Type Description Example

1
Bioinformatics Protocol 
Identifier

BI_Protocol_Identifier PK Yes int(11) 
Arbitrary identifier of the 
bioinformatics protocol defined 
in the CGDM database

121
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2 Experiment Identifier Experiment_Identifier FK Yes int(11) 
Arbitrary identifier of the 
experiment defined in the CGDM
database

11

3 Pipeline Name Pipeline_Name Yes varchar(50) Name of the pipeline SNUBI WXS data pipeline

4 Step (of the pipeline) Step Yes int(3) 
The order in which the steps are 
executed

1

5 Tool (of the pipeline) Tool Yes varchar(50) Procedure description
(alignment, sort, deduplication, 
variant calling, etc.}

6 Parameter (of the pipeline) Parameter Yes varchar(50) The name of tools GATK

7
Datasource origin (used in the 
pipeline)

Datasource_Origin Yes varchar(50) The version of tools v2.5-2

8
Datasource version (used in the 
pipeline)

Datasource_Version No varchar(50)
Preset parameters used for the 
step

stand_call_conf=30,stand_emit_c
onf=10

9
Datasource Build (used in the 
pipeline)

Datasource_Build No varchar(50) The source of databases 1kG, Mills, dbSNP137

10 Analytics Institution Analytics_Institution Yes varchar(50)
Name of the bioinformatics 
analytics institution

SNUBI

11 Bioinformatician Bioinformatician Yes varchar(50)
Name of the primary 
bioinformatician 

YM Park

12 Received Date Received_Date Yes datetime
Date of the raw data file (eg. 
BAM file) received

2018-09-15 17:35

13 Documentation Date Documentation_Date Yes datetime
Date of the processed data stored 
in the CGDM database 

2018-09-22 11:22
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QUALITY CHECK  Table specification

# Logical Name Physical Name PK Required Data Type Description Example

1 Quality Check Identifier QC_Identifier PK Yes int(11) 
Arbitrary identifier of the quality 
check matrix in the CGDM 
database

123

2
Bioinformatics Protocol 
Identifier

BI_Protocol_Identifier FK Yes int(11) 
Arbitrary identifier of the 
bioinformatics protocol in the 
CGDM database

121

3 Total Reads Total_Reads Yes bigint Total number of reads 100720000

4 Total Aligned Reads Total_Aligned_Reads No bigint Total number of aligned reads 99168912

5 % Reads Aligned Reads_Aligned_Percent No float Percentage of reads aligned 98.46 ( = 4/3)

6 Total Bases Total_Bases No bigint Total number of bases 7260000

7 Total Mapped Bases Mapped_Bases No bigint Total number of mapped bases 7050000

8 Average on target depth Depth_Mean No float Mean on target depth 71.94

9
Standard deviation on target 
depth 

Depth_SD No float
Standard deviation of on target 
depth

16.54

10 On Target Bases Target_Bases No bigint On target bases 2640000

GENOMIC ALTERATION  Table specification

# Logical Name Physical Name PK Required Data Type Description Example

1 Genomic Alteration Identifier
Genomic_Alteration_Ide
ntifier

PK Yes int(11) 
Arbitrary identifier of the 
genomic alteration defined in the 
CGDM database

14009
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2
Bioinformatics Protocol 
Identifier

BI_Protocol_Identifier FK Yes int(11) 
Arbitrary identifier of the 
bioinformatics protocol defined 
in the CGDM database

121

3 Position Position Yes varchar(255)
The genomic position where the 
alteration occurs

180888597

4 Reference allele Reference_Allele Yes varchar(255)
The base found in the reference 
genome

A

5 Alternative allele Alternative_Allele Yes varchar(255) Any base other than the reference T

6 Chromosome Chromosome Yes varchar(2)
The chromosome where the 
alteration occurs

7

7 Cytogenetic location Cytogenetic_Location No text
Cytogenetic band that the 
location of the alteration maps to

17q12

8 Codon Codon No text
The codon where the alteration is 
identified

12

9 Exon Exon No varchar(10)
The exonic location where the 
alteration is identified

19

10 HGVS genomic change
HGVS_Genomic_Chang
e

Yes text
Description of the nucleotide 
change for a genomic sequence 
(supplied by HGVS)

NG_007873.3:g.176429T>A

11 HGVS coding change HGVS_Coding_Change No text

Description of the nucleotide 
change for a coding DNA 
sequence 
(supplied by HGVS)

NM_004333.4:c.1799T>A
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12 HGVS protein change HGVS_Protein_Change No text
Description of the nucleotide 
change for a protein sequence 
(supplied by HGVS)

NP_004324.2:p.Val600Glu

13 HGVS version HGVS_Version Yes varchar(20) The version number of HGVS HGVS version 15.11

14 dbSNP Identification Number dbSNP_ID No varchar(20)
The identification tag (supplied 
by NCBI dbSNP)

rs56046546

15 dbVar Identification Number dbVar_ID No varchar(20)
The identification tag (supplied 
by NCBI dbVar)

nsv1123397

16 Genome build Genome_Build No varchar(20)
Genomic coordinates of the 
reference

GRCh37/hg19

17 Genomic source Genomic_Source Yes varchar(10) Class of genomic source
{Somatic, Germline, Unknown, 
etc.}

18 HGNC gene symbol HGNC_Gene_Symbol No varchar(20)
The official gene symbol 
approved by the HGNC

ALK, JMJD7-PAL2G4B

19 Entrez gene ID Entrez_ID No integer
Entrez Gene ID (supplied by 
NCBI)

238

20 Ensembl gene ID Ensembl_ID No char(15)
Ensembl Gene ID (supplied by 
Ensembl)

ENSG00000171094

21 Genotype Genotype No char(3) Allelic state of the given variant 0|1, 0|0, .|., etc

22
clinVar Variation Identification 
Number

clinVar_Variant_ID No varchar(20)
The identification tag (supplied 
by clinVar)

188275

23
COSMIC Identification 
Number

COSMIC_ID No varchar(10)
The identification tag (supplied 
by COSMIC)

COSM476

24 Molecular Effects Molecular_Effect No varchar(50)
Effects of mutations on protein 
function

{Missense, Nonsense, Frameshift, 
Promoter, etc}
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25 Variant type Variant_Type Yes varchar(20)
The type of variant in a sequence 
of DNA

{Substitution, Deletion, 
Duplication, Insertion, InDel, 
Inversion, Conversion, etc.}

26 Functional Domain Functional_Domain No varchar(50)
The functional domain where the 
alteration occurs

ATP-binging domain

CLINICAL ANNOTATION  Table specification

# Logical Name Physical Name PK Required Data Type Description Example

1 Clinical Annotation Identifier
Clinical_Annotation_Ide
ntifier

PK Yes int(11) 
Arbitrary identifier of the clinical 
annotation defined in the CGDM 
database

22

2 Genomic Alteration Identifier
Genomic_Alteration_Ide
ntifier

FK Yes int(11) 
Arbitrary identifier of the 
genomic alteration defined in the 
CGDM database

14009

3 Biomarker Datasource Biomarker_Datasource Yes varchar(255)
Name of datasource for 
biomarkers of genomic data

ACMG actionable genes

4 Biomarker Name Biomarker_Name Yes varchar(50)
Name of predictive indicator 
from biomarker datasource

EGFR Exon 19 Deletion

MICROSATELLITE INSTABILITY  Table specification 

# Logical Name Physical Name PK Required Data Type Description Example

1
Microsatellite Instability 
Identifier

MSI_Identifier PK Yes int(11) 
Arbitrary identifier of 
microsatellite instability defined 
in the CGDM database

14
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2
Bioinformatics Protocol 
Identifier

BI_Protocol_Identifier FK Yes int(11) 
Arbitrary identifier of the 
bioinformatics protocol defined 
in the CGDM database

121

3 MSI phenotype MSI_Phenotype Yes varchar(50)
Distinct phenotype of the 
microsatellite instability

{Microsatellite Stable (MSS), 
MSI-Low (MSI-L), MSI-High 
(MSI-H),  Indeterminate MSI}

4 MSI marker name MSI_Marker_Name Yes varchar(20) Name of the MSI marker BAT26

5 MSI marker status MSI_Marker_Status Yes varchar(20) Determined MSI status Positive
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Supplementary Table S2. IUPAC nucleotide code table for processing 

double/triple based code

Symbol Meaning

a a; adenine

c c; cytosine

g g; guanine

t t; thymine in DNA; uracil in RNA

m a or c

r a or g

w a or t

s c or g

y c or t

k g or t

v a or c or g; not t

h a or c or t; not g

d a or g or t; not c

b c or g or t; not a

n a or c or g or t

*reference: Cornish-Bowden, A. Nucl Acid Res 13, 3021-3030 (1985)
,https://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/iupac_
nt_abbreviations.html 에서 재인용
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Supplementary Table S3. Number of HLA alleles

Category Locus Allele 

number

Protein 

number

Null allele 

number

Class I HLA-A 673 527 46

HLA-B 1077 911 38

HLA-C 360 283 8

HLA-E 9 3 0

HLA-F 21 4 0

HLA-G 36 14 1

Pseudogenes 39

Total 2215 1742 93

Class II HLA-DRA 3 2 0

HLA-DRB 669 546 8

HLA-DQA1 34 25 1

HLA-DQB1 93 68 1

HLA-DPA1 27 16 0

HLA-DPB1 128 114 2

HLA-DMA 4 4 0

HLA-DMB 7 7 0

HLA-DOA 12 3 1

HLA-DOB 9 4 0

Total 986 789 13

MHC-

like

MICA 64 54 0

MICB 30 19 2

Total 94 73 2

* reference: Shiina, T., Hosomichi, K., Inoko, H., & Kulski, J. K. (2009). The HLA 
genomic loci map: expression, interaction, diversity and disease. Journal of human 
genetics, 54(1), 15-39. Table 4. Number of HLA alleles 
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국문 초록

정밀의학을 위한

임상유전체데이터모델

김 효 정

서울대학교 의과대학

의료정보학 협동과정

진료 현장에서 의사결정을 내려야 하는 임상의에게 개인 유전체

정보를 다른 임상 근거들과 통합하여 보다 쉽게 다룰 수 있도록

구조화하여 지원하는 것은 정밀의학 구현을 위한 의료정보학의 주요

과제 중 하나이다. 차세대 염기서열 분석법과 같은 대량신속처리 유전체

기술의 등장과 그에 따른 해석정보의 축적으로 정밀 의학 및 개인

맞춤형 의학으로의 전환이 가시화 되는 듯 보였으나, 차세대염기서열

분석 기술 기반의 개인유전체 정보의 임상 활용은 여전히 제한적이다. 

선행연구에서는 임상현장에서 유전체정보의 활용이 더딘 이유로 의료

전문가와 생물정보학자들 사이의 지식 격차, 진료 현장과 생물정보학

작업절차 간의 분리, 유전체 데이터만의 독특한 양적, 질적 자료구조의

특성과 같은 복합적인 원인을 제시하고 있다. 이러한 문제를 해결하고자

하는 시도로서 개인유전체정보를 병원정보시스템에 통합해야 한다는

요구가 높아지고 있으나 임상현장에서 활용하는 것을 목적으로 하는

지속가능하고 상호운용가능한 저장, 관리, 처리 방식에 대한 구체적인

논의는 부족한 실정이다. 
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본 연구에서는 임상정보시스템에 개인 유전체 정보가 통합되어

임상에 적용되기까지 현재의 장벽들을 문헌고찰을 통해 재탐색하고

관련된 개념과 방법들을 고찰하였다. 그리고 차세대 염기서열

분석방법을 기반으로 한 데이터를 어떻게 임상에서 활용하기 쉽도록

저장하고 처리하고 전달할 것인가 하는 당면한 과제에 단계적으로

접근하였다. 정보시스템 설계에 있어 데이터 모델의 설계는

최종시스템의 기능이 데이터 모델에 표현된 정보량 안에서 제한된다는

점에서 가장 일차적이며 중요한 단계이다. 따라서 1장에서는 다학제적

논의를 통해 임상의사결정에 활용할 수 있는 유전체 지식표현을 논리적

데이터모델의 형태로 도출하여 차세대염기서열분석기술 기반의

임상유전체데이터모델(cGDM; clinical Genome Data Model)을

제안하였다. 2장에서는 약물치료를 개인별로 최적화하기 위해 이용

가능한 유전체검사결과를 사용하는 방법에 대한 지식체인 CPIC 

guideline을 구조화하여 1장에서 구축한 환자의 유전체 정보와 데이터

레벨의 정보흐름을 구현함으로써 모듈 방식의 약물유전체

임상의사결정지원시스템을 제시한다. 3장에서는 생명정보학에서 임상적

의미를 드러내는 발견들이 지속됨에 따른 명명체계의 다양함을 수용하는

확장 체계의 하나로서 HLA gene에 대한 구조화된 정보 설계와 구현을

다루었다. 즉, HLA nomenclature를 대상으로 지식표현을 설계, 

확장하여 임상유전체데이터모델의 지속가능성과 확장성을 검증하였다. 

본 연구에서는 중개과학으로서 의료정보학이 정밀의료에 기여할

수 있는 다학제적공간을 탐색하고 정보시스템의 지식표현, 기능구현, 

사용성 측면을 포괄하는 접근을 시도하였다. 본 연구의 결과로 제시된

임상유전체데이터모델은 논리적인 데이터모델 수준에서 설계되어 기존

병원정보시스템에 사용된 개발 언어에 제약을 받지 않고 데이터 수준의

확장체계로 활용할 수 있다. 즉, 정형화된 데이터를 기반으로
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임상정보를 처리하는 기존의 다양한 정보시스템 아키텍쳐의 설계에

통합되어 각 기관 혹은 사용자의 필요에 맞게 CDSS나 서식에 연결하는

등 다양한 기능의 구현을 지원할 수 있다. 또한 연구용 데이터의 수집과

분석에 사용될 수도 있어 개인유전체분석결과를 실질적인 데이터 순환

사이클에 연결하는 데 기여할 수 있다. 궁극적으로, 의료전문가와

정보를 활용한 임상의사결정간의 지적상호작용을 지원하는 데이터 계층

인프라를 제공한다. 

Keyword: 정밀의료, 지식중개, 지식공학, 통합병원정보시스템, 

유전체데이터모델, 약물유전체정보를 활용한 임상의사결정지원시스템
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Background The transition to precision medicine and personalized medicine 

is accelerating owing to progress in genomic technology and the consequent 

accumulation of genomic information. However, the clinical application of 

genomic information remains limited, and its spread rate has been slower 

than expected. This lag has been attributed to complex causes, including 1) a 

knowledge gap between medical experts and bioinformaticians, 2) 

separation of the bioinformatics workflow from clinics, and 3) unique 

characteristics of genomic data. Nevertheless, current informational 

approaches to link genomic data to clinical fields mostly address the data 

structure problem.  

Objective We aimed to develop a genomic data model allowing for more 

interactive support in clinical decision-making. Informational modeling was 



 

used as a knowledge communication scheme from the highly intellectual 

product of bioinformatics to a representative data component of a clinical 

decision. 

Methods Reliability-related attributes were derived through failure mode 

and effect analysis (FMEA). This study involved a multidisciplinary 

working group that conducted clinico-genomic workflow analyses and 

attributes extraction. Based on these data, an entity-attribute model was then 

developed through abstraction and normalization.  

Results The outputs of FMEA were a dataflow snapshot obtained from next-

generation sequencing, the information process map extended to the clinico-

genomic context, and the set of attributes. Next, an entity-attribute model 

consisting of eight entities and 49 attributes was identified to develop the 

final genome data model, including: a linkage identifier to clinical 

information, experiment-related information, bioinformatics protocol-related 

information, physical location information, expression, annotation, actor 

information, and timeline information. 

Conclusion The proposed genome data model could serve as a data-layer 

infrastructure supporting the intellectual interplay between medical experts 

and informative decision-making. Given the importance of recognizing a 

genome information system as a component of the clinical information 

system to realize precision medicine, the model could help enhance 

integration of genomic data in clinical settings. 
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General Introduction 

One of the significant tasks of medical informatics for the implementation 

of precision medicine is supporting clinicians by integrating personal 

genomic information with other clinical evidence so that constantly-

evolving knowledge and inherently complex genomic data can be handled 

on-demand at the point of care. The transition to precision medicine and 

personalized medicine was expected to be accomplished within a few years 

due to the outstanding high-throughput sequencing capabilities of next-

generation sequencing and the accumulation of knowledge about its 

interpretation. The prior studies present that this delay can be attributed to 

complicated factors, such as knowledge gaps between medical experts and 

bioinformatics, the separated workflow between clinical practice and 

bioinformatics analysis, the unique quantitative and qualitative data 

structure of genomic data, which can make interpretation more complicated. 

In an attempt to solve this problem, there is an increasing demand for the 

integration of personal genomic information in the electronic medical 

records. However, it has not been proposed as a sustainable, scalable, and 

interoperable method for storage, management, and processing the genomic 

data concerning clinical utilization. 

In this study, the current barriers were explored through literature 

review, and related concepts and methods were investigated about these 

phenomena. Moreover, we addressed the immediate task of storing, 



 

processing, and delivering data based on next-generation sequencing 

analysis methods to prepare for multifaceted clinical utilization. Data 

modeling is the first and most crucial step in the multi-tiered design of 

information systems. The point is that the final product reliability, such as 

specific clinical decision support algorithms or integrated information 

systems, is hardly improved over the designed reliability on the lower level 

of architecture.  

Chapter 1 proposed a clinical genomic data model based on 

Deoxyribonucleic Acid (DNA) level data extracted from next-generation 

sequencing (NGS) technology.  The multidisciplinary discussion reveals a 

set of genetic knowledge expressions that can be preserved and delivered 

the meaning for clinical decision making. In Chapter 2, the CPIC guideline, 

which is a knowledge of how to use available genomic test results to 

optimize drug therapy for individuals, is structured. Furthermore, we 

propose a modular drug genome clinical decision support system by linking 

the patient's genomic information and data-level information flow 

constructed in Chapter 1. Chapter 3 deals with the design and 

implementation of structured information about the HLA gene as one of the 

extensions to accommodate the diversity of naming systems as the 

discoveries that reveal their clinical significance in bioinformatics continue. 

The sustainability and scalability of the clinical genomics data model were 

verified by design and expand knowledge expression for HLA nomenclature. 



 

In this study, we explored multidisciplinary space where medical 

informatics can contribute to precision medicine, and an approach that 

encompasses aspects of knowledge expression, functional realization, and 

usability of information systems was attempted. 

 
 



 

Chapter 1. Clinical Genome Data Model: Data 

Level Integration of Patient Specific Genomic 

and Clinical Data for Multifaceted Utilization* 

 

1.1. Introduction 

As the field of medicine transitions from experience-based medicine to data-

driven medicine, an apparent paradigm shift to precision medicine is 

underway, driven by the development of technologies in fields including 

medical information technology and computer engineering1,2. Genomic 

information is one of the most critical component of precision medicine, 

given its power to explain individual variability3. However, the practical 

clinical use of genomic information remains limited because its circulation 

is suboptimal, with each data processing step tending to be independently 

performed and thus isolated. To narrow this gap, many organizations have 

attempted to identify and develop methods to more effectively link genomic 

data to clinical information and thereby facilitate its use4-6.  However, 

several challenges must be surmounted before realizing this goal. 

First, a mismatch exists between the structure of genomic and clinical 

data. Genomic data based on next-generation sequencing (NGS) technology 

is stored as a number of file types at various stages of the bioinformatics 

                                            
* The main body of the dissertation chapter 1 published as following paper: Kim, H. J., 

Kim, H. J., Park, Y., Lee, W. S., Lim, Y., & Kim, J. H. (2020). clinical Genome Data Model 

(cGDM) provides interactive clinical Decision Support for precision Medicine. Scientific 

reports, 10(1), 1-13. 



 

analysis, with flexible file specifications to accommodate the broad range of 

research interests in bioinformatics7. Raw genomic data can contain up to 

several tens of gigabytes of sequence information, each stored as a long 

string of data, and therefore cannot be used directly in this form in clinical 

practice without further processing. Since data processing to determine 

clinical relevance is both computationally intensive and time-consuming, 

genomic information is not readily accessible relative to other types of 

clinical data. Thus, for precision medicine and personalized medicine, pre-

processed genomic data needs to be linked with other clinical information 

and provided at the appropriate time. In order to resolve this issue, a 

structured database is needed to store and appropriately manage genomic 

information for easy accessibility. 

Second, genomic data has different properties than conventional 

observational data used in clinical settings. Therefore, genomic data must be 

clarified by considering procedural dimensions. Since genomic workflows 

contain a large number of pipelines for information processing, significant 

differences between the interpretation of processed data and data obtained 

from different information systems relative to the clinical workflow are 

inevitable8. Accordingly, a robust data model is required to serve as an 

information system to systematically manage genomic data, encompassing 

the detailed processes of data processing, analysis, and filtering. 

Additionally, information on the reliability and accuracy of these analyses 



 

results, along with the detailed analytical process and equipment used, must 

also be systematically stored and managed, as it is an essential criterion for 

clinical decision-making9. Moreover, because genomic data is less variable 

than observational data, information integration will allow for maximization 

of the utility of the collected genomic information for clinical use. 

The third challenge, majorly hindering the integration of genomic 

data with clinical information, is difficulty in mapping the two types of data 

for medical interpretation. The presence of biomarkers for specific diseases 

or drug reactions is a critical factor in clinical decision-making10. In the case 

of targeted sequencing, the data processor is informed about biomarkers 

related to the panel prior to analysis. In clinical practice, reannotation of 

patient genetic information according to updated biomarker discoveries 

from the biomedical research community is continuously required at the 

population level. Thus, a structured data model with consistent data 

representation would enable the rapid adoption of both evolving biomedical 

knowledge and individual medical records, which can be delivered to the 

point of care through agile data processing. Furthermore, patient genomic 

data expressing specific biomarkers should be readily accessible from the 

information system along with clinician-confirmed interpretations10,11. 

 Personal-health status can be converted to a composition of multi-

layered, multi-dimensional digitalized information for utilization in an 

information system that facilitates handling big data (Fig. 1). Indeed, vast 



 

amounts of data and associated metadata from multiple medical measuring 

technologies, such as laboratory tests or imaging studies, have already been 

successfully merged in clinical information systems. Overall, although 

genomic information represents the most sound and intensive health-related 

signals provided by the human body throughout life, the weak links to 

medical practice highlighted above contribute to its underutilization in 

clinical decision-making. Therefore, it is necessary to effectively link and 

integrate clinical information with personal genomic information, helping to 

accelerate the shift to personalized medicine.



 

 

Figure 1.1 Data-level linkage structure between conventional HIS and GIS  

From a software engineering perspective, a comprehensive hospital 

information system comprises components that represent separated data 

collection routes and distinguishing characters of the data. We suggest the 

concept of GIS to illustrate the implementation of the cGDM. This 

architecture supports both information and functional integration, even with 

existing clinical information systems. 

 



 

1.2. Purpose of Research 

The proposed GDM is based on an entity-attribute model to effectively 

manage and maximize the use of genomic data in clinical practice. Through 

the development of this method, we focused on equal weighting to the 

clinical perspective and bioinformatics process analysis as business 

continuity, starting from the initial clinical intention to bioinformatics 

information processing associated with a knowledge-related protocol, 

finally offering a deliverable and interpretable form to the point-of-care 

clinician. The GDM was designed based on DNA level data from next-

generation sequencing (NGS) technology to deliver processed genomic data 

of patients from different pipelines by applying an appropriate information 

scale and granularity at the clinical level. 

 Toward this end, we began by redefining the obstacles to the spread 

of genomic information into routine care, including reliability problems of 

proposed measurement data that could cause hesitation in clinical decision-

making, and data structure problems that have hindered the integration of 

genomic data into existing information systems. From a clinical perspective, 

we focused on the reliability of information as well as the problem of a 

heterogeneous data structure. In this context, we define a bioinformatics 

process not as a “measurement,” but rather as a “production” to transition a 

physical form of existence to an interpretable human representation. 

  



 

Overall, we aimed to develop a model with appropriate information 

granularity and scale, which would minimize the possibility of 

misinterpretation at the point of care by formal and procedural variation 

related to the production process. 

 



 

1.3. Materials and Method 

The study material was genomic information with clinical relevance based 

on NGS technology. A failure mode and effect analysis (FMEA) approach 

was adopted as the analysis process and attributes-extracting method, which 

was accomplished by assembling a multidisciplinary working group. From 

November 2017 to July 2018, process mapping, failure identification, and 

related attribute extraction were performed by the FMEA method at over 18 

team meetings. An entity-attribute model was then developed by 

reconstruction of the attribute set derived from the FMEA. 

 



 

1.3.1. The Production Process of Bringing Genomic 

Information to Bedside Care  

Here, we define a genomic test as a series of team-based information 

production processes, in which the meaning of the information is expanded, 

represented, and reproduced by reference to an external knowledge base, 

rather than through direct extraction of inherent information. Despite the 

invariant nature of a personal genome, genomic information presented to a 

clinician may vary according to specific processing protocols adopted7,12-14. 

This variability raises reliability issues for the use of genomic test results as 

clinical evidence15.  

 As artifacts from production, genome information processed for 

clinical use may pose a likelihood of misinterpretation due to information 

distortion, omissions, and fragmented senses. Furthermore, information 

reliability is a critical factor determining the ability of clinicians to utilize 

the genomic information16. Thus, our approach in developing this cGDM for 

focussed on the multi-dimensional scope of information, including 

procedural factors, derived from NGS technology.  

 



 

1.3.2. FMEA: An Attribute-Clarified Framework  

FMEA is a systematic prospective risk factor analysis approach that predicts 

and prevents possible errors, improving quality across team-based 

processes17. When used for advanced investigation, the method has 

advantages enabling exploration of uncertain, unforeseen complex 

workflows at an early stage18,19. Since its introduction in 1963, broad 

subtype applications of FMEA have been performed in broad domains 

including reliability engineering20,21, behaviour modeling22, software 

engineering23, conceptual design24, and knowledge management and 

representation25,26. In particular, FMEA has been applied as a method of 

knowledge representation to extract process reliability-related attributes and 

to structure and map entities and attributes22,26-28. In this study, the FMEA 

approach was adopted for workflow analysis and the attribute-extracting 

method. 



 

1.3.2.1 The working group  

A multidisciplinary expert team was formed from the areas of 

bioinformatics, medical informatics, and medicine. The participants 

included three bioinformaticians, two medical informaticians with clinical 

informatics and application expertise, and one medical doctor. The medical 

doctor has experience in both clinical practice and conducting translational 

research from the perspective of both biomedical science and clinical 

practice.  



 

1.3.2.2 Workflow analysis 

Over a period of nine months, process mapping, failure identification, and 

related attribute extraction were conducted using FMEA at over 18 team 

meetings. Structured data modeling for enhancement of data accessibility 

was then conducted using a logical data model, with the attribute set derived 

from the FMEA workflow diagram. 

We chose the conventional FMEA workflow analysis21,28 and 

adapted it for cGDM development. Conventional FMEA consists of two 

main steps. First, the failure mode is identified through 1) assembling a 

multi-disciplinary team with at least one expert from each domain over the 

target production process, 2) combining components and process function in 

order to derive a workflow diagram, and 3) listing the modes that may lead 

to failure at each step. The second part involves modifying the process itself 

with consideration of priority, including 1) evaluating the severity and 

occurrence ranking of each failure mode and 2) proposing a modified 

workflow or audition guideline. 

In this study, risk estimation and priority-scoring steps were not 

designed, since our purpose was to review the fragment of metadata 

composition that may cause unintended information distortion of 

misinterpretation. 



 

1.3.3. Logical Data Modeling  

Data models are the basis of computation ability for intelligent information 

systems29. The database design process can generally be divided into logical 

and physical database design30. The physical data model requires a clear and 

specific description over logical design, which depends on the existing 

development environment. Thus, we designed this cGDM as a logical data 

model based on the FMEA results to support data-level integration with any 

existing clinical information systems.  

Logical data modeling methods are comprised of abstraction and 

normalization. Database abstraction refers to aggregation and generalization 

that occur at the points of intersection31. We first abstracted the attributes 

derived from FMEA and expressed the factors corresponding to each step in 

the workflow. Then, normalization was performed to prevent duplication 

and inconsistency of data elements considering their names, scale, and 

relations. 

 



 

1.3.4. Demo Datasets for the real-world data 

validation 

Two of representative public accessible dataset are selected for the 

development of the demo databases: The 1000 Genomes Project of the 

International Genome Sample Resource (IGSR) with population code 

"CEU" (Utah Residents with Northern and Western European Ancestry)32, 

the pancreatic cancer data from The Cancer Genome Atlas 

(TCGA_PAAD)33. 

Collected datasets were VCF and MAF file format, and the Extract-

Transformation-Load (ETL) process of the genomic data was performed by 

two bioinformaticians with Python 2.7.16. ANNOVAR 2016Oct24 version 

was used as a clinical annotation tool for the 1000 Genome Project CEU 

dataset. The resulting dataset imported in a table within the MySQL server 

database by two medical informaticians. We ran the SQL scripts in MySQL 

5.6.46 on a Server with 8GB of RAM and an NVIDIA tesla c1060 / Quad-

core CPU running run on CentOS Linux release 7.7.1908. The final outputs 

took the form of SQL tables and functions. 



 

1.4. Results 

This section primarily consists of Failure Mode and Effects Analysis 

(FMEA) results and entity-attribute modeling. FMEA output is presented in 

two diagrams: a dataflow diagram that focusses on the derivation of the 

contents of the genetic test based on NGS sequencing technology, and an 

information process map that extends the viewpoint to the level of clinico-

genomic context. At this step, the protocol entity of the former dataflow 

diagram was subclassified to reveal the procedural dimension in information 

processing. Moreover, the set of attributes involved in each step of 

information transfer was identified. Finally, the cGDM are suggested as a 

result of structured data modeling based on the attribute set.  

 



 

1.4.1. Dataflow diagram based on an NGS workflow 

A workflow diagram was derived in order to illustrate the data flow in 

which the genomic information inherent in the human body is converted to a 

genomic test result. (Fig 2.) At this stage, the clinical view is minimized, 

with both the flow of information and the process of analyzing the specimen 

after the sample collection across experimental laboratory and compu-

tational analysis drawn on a large scale.  

The subtypes of processed variant information in the parallel 

structure, used to cope with the growing body of knowledge in 

bioinformatics, are listed at the bottom of Fig. 1. Variant information can be 

called in multiple types depending on the perspective and purpose of the 

analysis. For example, there are four types of genetic variation: single 

nucleotide variation (SNV), small insertion/deletion (InDel), copy number 

variation (CNV), and translocation/fusion. There are predictive biomarkers 

as well such as microsatellite instability (MSI) and tumor mutation burden 

(TMB).  

As the amount of NGS technology-based knowledge increases, 

more subclasses representing novel perspectives can be added. Scalable data 

modeling to support the differentiation of knowledge over time is essential 

not only for expressiveness but also for reducing the burden of information 

systems maintenance. 

  



 

In summary, we linked the separate offline workflows at this step 

that occurred in different places until genomic data could be provided as 

processed data. The workflow diagram provided the basis for detailed 

analysis and discussion.



 

 The objects shown in this diagram are classified into three class types- 'Action', 'Information', and 'Entity'. ‘Action’ was first posted with 

respect to what occurred in each expert domain and the resulting ‘information’ was displayed as a result of each action. Finally, 'Entity' was 

defined as the captured information class at each stage of the workflow. Subtypes of 'Variant Information' were drawn scalable to 

accommodate the potential extension of subclasses. 

Figure 1.2 Data flowchart based on a next-generation sequencing workflow  



 

1.4.2. Extending the NGS process under a clinico-

genomic context  

After establishing a consensus on a larger scale, we extended the 

information flow to the clinical context in detail. At this stage, the 

standpoint of the workflow analysis was clinical decision making. Hence, 

the workflow diagram started with a clinical decision. We extended the flow 

between several actions in the clinico-genomic context involving multiple 

entities identified, and detailed analysis was performed. In this process, the 

output data file format and detailed processes for handling output files, 

along with the tools required for linking to external knowledge databases, 

are also described. 

The working group discussed mechanisms for extraction of the 

entity-attribute set which would avoid probable information distortion and 

omission. We considered that the genomic data model for clinical use should 

be the knowledge communication scheme, thus preserving its reliability-

related factors. At a minimum, the genomic data model must provide 

sufficient information to decide whether the confidence level of the genomic 

test result justifies its consideration as clinical evidence. For this function, 

failure was defined as that which causes misinterpretation or non-use of the 

genomic data for clinical decision. The process of producing clinical 

evidence from genomic data at the bioinformatics area (Fig. 3) shows a 

pattern that is a series of repeated representations of information converted 



 

by reference knowledge bases and data processing rules. Thus, failure 

modes can be classified as incomplete specifications in three meta-

categories: origin, reference, or symbol. Due to the nature of the semantic 

interpretation, any fragmentation of symbol causes not only loss of 

information but also assignment information to direct the origin12,13.



 

  

 

 

 

Figure 1.3 Failure mode identification: mapped next-generation sequencing process extended to a clinico-genomic context  

In the bioinformatics area (cyan background), information may be distorted by the insufficient representation of origin, processing rule, and 

external reference. To prevent this failure, identification and semantics, related attributes are listed under the boxes. In the clinical area(yellow 

background), the data model functions as a communication scheme for the collaborative process implemented in the hospital information 

system. Data-level integration facilitates just-in-time queries and reuse of data.  

 

 

Figure 1.0.1 Failure mode identification: mapped next-generation sequencing process extended to a clinico-genomic context  

In the bioinformatics area(cyan background), information may be distorted by the insufficient representation of origin, 

processing rule, and external reference. To prevent this failure, identification and semantics, related attributes are listed under 

the boxes. In the clinical area(yellow background), the data model functions as a communication scheme for the collaborative 



 

 We conducted workflow analysis to extrapolate general descriptors 

of the related attributes with the goal of preserving information during 

production and delivery processes from clinical intention to clinical 

utilization. Figure 2 provides a more detailed data-level view, including how 

genomic information is realized as clinical evidence in a case based on a 

structured data model. The structured genome data model can support a 

report via presentation on a variety of transcription forms (report forms), 

which are optimized for initial intent. Furthermore, additional utilization 

paths are accessible in the clinical-information system. As shown in Fig. 2, 

data-level integration helps the amplification of the incidental utilization. 

(Fig. 4) To illustrate, consider a patient who orders whole-genome 

sequencing to screen for cancer biomarkers at their first visit. When the 

patient receives a prescription for antibiotics a year later at a visit for other 

symptoms, that same genomic test result can be re-used from a 

pharmacogenomics perspective for safer and more efficient drug 

prescription. The clinical decision support system plays a vital role by just-

in-time display of the matching information with pre-defined rule and 

knowledge-based processing6,34,35. A computational genome data model is a 

prerequisite for this implementation35-37. Finally, we introduce a logical data 

model in the next step of the study.



 

 

 

 

 

 

 

 

 

Figure 1.4 How the implementation of the cGDM provides interactive clinical decision support in clinical information system  

A: When a doctor enters a prescription, a dataset for the prescription is generated and transmitted for storage. B: The dataset is passed along to the CDS 

module to search for the relevant knowledge base in accordance with a predefined set of rules. In this case, we internalized the systematic reference to the 

IWPC algorithm* integrated with the CGDM database. C: The PGx CDS module based on the cGDM selects the patient-specific warfarin dosing related 

variant information which matches the IWPC algorithm in real-time. The cGDM produces an effect as a knowledge representation backbone as well as a 

genomic data storage scheme in the process. (e.g., Expression converted from input variables (Ci) to output variable (Co) for further processing.) D: The 

recommendation, which personalized dosing results from the IWPC warfarin PGx estimation based on both clinical and genomic factors, are delivered to the 

prescriber. Trackable links for each origin of the used genomic data and evidence in the algorithm are also provided.  

 



 

1.4.3. The cGDM 

Finally, the cGDM was designed as an entity-attribute model consisting of 8 

entities and 46 attributes (Fig. 5). For a structured data model of the 

identified clinico-genomic attributes, logical modeling was conducted to 

ensure data-level linkage with conventional primary clinical databases. In 

order to define the entity-attribute model based on the action and collected 

data, tool/processor classes and the attributes of each class from Fig. 2, we 

define three types of classes as protocol and related attributes (Table 1). 

Since the cGDM is designed to support data-level integration with the 

existing system, only the minimum subject identifier is defined as ‘linkage 

identifier to clinical information.’ To represent the procedural dimension, 

which is stressed in the study, we combined two workflow analyses on 

different scales. For example, the entity ‘Protocol’ as a part of the 

procedural dimension is explicitly represented in Fig. 2, then expressed 

again as a list of lower steps in Fig. 3. Since clinical observation is typically 

considered as the collection of events38, the logical composition of the 

date/time and actor identifier related to the clinico-genomic context were 

declared. 

The derived classes and entities in Table 1 were used to declare 

final entities and attributes in the cGDM (Fig. 5). The mapped Actions and 

Action-related classes (Collected Data and Tool/Processor) are categorized 

into subdomains and related attributes for each step in Table 1. In Table 1, 



 

action and its result are grouped into one step, and the related attributes are 

represented by the attributes classified in the corresponding step. For 

normalization, related attributes are categorized to create one or more new 

groups called ‘entities’ for each step, and they are the basis for defining 

‘Entities’ in the Entity-Attribute model (Fig. 5). For example, ‘Physical 

information according to the coordinate system’ is one of the three 

subdomains of the action ‘Sequence Annotation.’ It can include an attribute 

set (Cytogenic location, Codon, Exon) representing physical location 

information for each variant. However, this "Physical information according 

to coordinate system" can be a subdomain in other steps besides "Sequence 

Annotation". And even though it is the same subdomain, the related-

attribute set may be different depending on which step or action. In 

summary, each step identified in the entire clinico-genomic process can 

include multiple entities, and one entity can be related to multiple steps. 

Even in the same entity, the configuration of the related attribute as a factor 

affecting each step may vary from step to step.



 

Table 1.1 Extracted classes and related attribute sets from each step of clinic-

genomic context for the Entity-Attribute model. The processes in the clinico-

genomic workflow shown in Figure 2 are listed in order and associated with the 

classes, related attribute sets for each process. This table is an intermediate result 

between the result of FMEA and the final logical model. Derived related attributes 

are abstracted within each class and grouped into entities. 

 

Class 

Related Attribute Entity 
Action 

Collected 

Data 

Tool/ 

Processor 

Sample 

Collection 
  

Institution Identifier 

Subject Identifier Test 

Identifier  

(Order ID or 

Accession No) 

Linkage Identifier 

to 

Clinical 

Information 

Submission Date 
Timeline 

Information 

Medical Institution 

Clinician 
Actor Information 

  Specimen 
 

  

Machine 

Sequencing 
    

Test Description 

Type of Sequence 

Platform technology 

Sequencer 

Collection Date 

Experiment 

Related 

Information 

Timeline 

Information 

Sequencing 

Institution 

Experimenter 

Actor Information 

  Read File     

Alignment     

Position 

Reference allele 

Alternative allele 

Chromosome 

Physical(Location) 

information 

according to 

coordinate system 

Analytics Institution 

Bioinformatician 
Actor Information 

  

Initial 

Alignment 

File 

      

InDel 

Realignment 

/ 

Base 

Recalibration 

    

Position‘ 

Reference allele‘ 

Alternative allele‘ 

Chromosome‘ 

Physical(Location) 

information 

according to 

coordinate system 

   
Base quality(>Q20) 

Quality Check 

information    
  

(Average) Depth of 

coverage 

Mapping Quality  

(%Mapped reads) 
    



 

Received Date 
Timeline 

Information 

Analytics Institution 

Bioinformatician 
Actor Information 

  

Adjusted 

Alignment 

File 

      

Variant 

Calling 
    

Hetero-

/Homozygosity 

Phasing information  

Missing 

Genotype 

Expressions 

Analytics Institution 

Bioinformatician 
Actor Information 

  

  

  

  

Variant 

Caller 

  

Tool 

Step 

Parameter    

Pipeline 

information 

Origin 

Version 

Build 

Parameter    

Data source 

  
Variant 

File 
      

Sequence 

Annotation  

  

  

  

  

  

Gene (HGNC Gene 

Symbol, Entrez ID, 

Ensembl IDl) 

Variant 

(HGVS(genomic, 

coding,  

protein change + 

version), dbSNP, 

dbVar) 

Variant 

Descriptive 

Expressions 

Cytogenetic location  

Codon 

Exon 

Physical(Location) 

information 

according to 

coordinate system 

ClinVar, COSMIC ID 

Molecular Effect 

Variant Type 

Functional Domain  

Functional 

Annotation 

Analytics Institution 

Bioinformatician 
Actor Information 

    
Annotator 

  

Tool 

Step 

Parameter    

Pipeline 

information 

Origin 

Version 

Build 

Data source 

  

Annotated 

Variant 

File 
 

    



 

Clinical 

Annotation  

  

  

  

  

  

ACMG actionable 

genes 

FDA qualified 

biomarkers 

User-defined 

biomarkers 

Clinical 

Annotation 

Analytics Institution 

Bioinformatician 
Actor Information 

Documentation Date 
Timeline 

Information 

 

 



 

 

 

Figure 1.5 The Clinical Genome Data Model: Structured data modelling with entities and attributes  

The cGDM is designed as a logical data model of 8 entities and 46 attributes. The objects and related attributes derived through FMEA are 

integrated into a logical data model through abstraction and normalization. 

 



 

 
Figure 1.6 Semantic search implementation based on the CGDM 

Even if the user does not know all the nomenclature or metadata relevant to the genomic data to be searched, search function based on the 

CGDM can uses information entered in the search fields in order to derive an extended search result. Through the generated SQL syntax, the 

user can determine which genomic metadata (such as chromosome and position, genome build version, HGVS ID) can be associated and 

extended to the outcome of the patient's data. In addition to the attributes "Biomarker" and "HGVS ID" presented in the example, multiple data 

queries can be made with a single attribute or combination of attributes presented in the CGDM. Therefore, by using these user interfaces with 

the data model, it is possible to trace and verify whether the queried genomic data of the patient represent more reliable information. 



 

1.4.4. Validation of the cGDM  

Here, the cGDM was finalized in the form of a logical model, which allows 

adaptation to the diverse development environments of existing 

heterogeneous clinical information systems. Logical model can play an 

essential role to generalize the complex phenomenon by abstraction and 

enhance understanding core ideas the model deliver between different 

stakeholders of in the complex system39. Whereas, the drawback of this 

approach is that physical modeling layer is needed in order to the data 

model implementation and validation. Thus, we design a physical data 

model implemented in relational database to evaluate the model validity for 

real-world data and to proof of concept how implementation of the cGDM 

enables interactive clinical decision support in clinical information system 

shown as Fig3 (Left side; Clinical decision support system for incidental 

utilization).



 

Figure 1.7. Entity-relationship diagram of the CGDM implemented in RDBMS  

The entity-relation for the physical model as a diagram (ERD) was presented based on the table shown in Supplementary Table 1. The diagram 

shows the entities and the attributes that describes the entity, and the relationship between the entities is also defined. 

 



 

1.4.4.1. Implementation of the real world data 

This physical data model of the cGDM is provided in forms of entity-

relationship diagram and table (Supplementary Information Table 1; Fig 1.7). 

Also, one-click executable data definition language script is also freely 

accessible on a web page (https://github.com/SNUBI-HyojungKim/cGDM-

Clinical-Genome-Data-Model).  

For the data model validation with real-world data, we built pilot 

databases based on the cGDM and uploaded genomic data of over 2,000 

patients for multiple diseases, including acute lymphoblastic leukaemia, 

solid cancers, and depression cases (Table 2, internal databases). However, 

the pilot dataset related researches remains undergoing, we have built two 

representative demo datasets for open source (Table 2, demo databases) 

1000 genome CEU (Utah Residents with Northern and Western European 

Ancestry) population dataset for whole genome sequencing (n=99, 47.67 

GB), 2) TCGA PAAD (Pancreatic Adenocarcinoma) dataset for somatic 

mutation (n=155, 9.41 MB). We believe those well-known public dataset 

has advantages on data validation issue. Every demo dataset and source 

codes are freely available from at the Github page as mentioned above.  



 

Table 1.2 Summary of imported genomic data from various data sources in cGDM databases.  

The databases are categorised into internal and demo database. The specifications of the database tables are informed in Table 1. This table 

presents row counts of each database table and data volumes of each database. The internal databases includes 3 private datasets (cancer panel, 

leukemia and depression) and 2 public datasets (TCGA COAD and TCGA LUAD). The demo databases includes 2 public datasets (1000 

Genome Phase3 CEU and TCGA PAAD). 

 
Database 

 

  
Internal database 

 Demo database 

(public license)  
Summary 

                              Type of  

                              sequencing  

 Table name 

 Cancer 

Panel 
Leukemia Depression 

TCGA 

COAD 

TCGA 

LUAD 

  1KGP  

P3 CEU 

TCGA 

PAAD  
7 data sets 

 

cancer 

panel 
WES WES 

somatic 

mut. 

somatic 

mut. 

 
WGS 

Somatic 

mut.  

WGS/WES/ 

targeted panel 

CLINICAL_IDENTIFIER   10 503 1,000 459 522   99 155 
 

2,748 

EXPERIMENT_RELATED_INFORMATION   10 517 1,000 459 522   99 155 
 

2,762 

BIOINFORMATICS_PROTOCOL_RELATED_ 

INFORMATION 
  10 517 1,000 459 522   99 155 

 
2,762 

GENOMIC_ALTERATION   2733 29,279,631 842,199,347 361,933 318,947   229,525,363 56,159 
 

1,101,744,113 

MICROSATELLITE_INSTABILITY   0 0 0 0 0   0 775 
 

775 

CLINICAL_ANNOTATION   40 267 108 123 97   1 12 
 

648 

QUALITY_CHECK   10 517 1,000 0 0   0 0 
 

1,527 

Data volume 
database total   2 MB 8.2 GB 144.7 GB 48.4 MB 42.6 MB   47.7 GB 9.4 MB 

 
201.5 GB 

per test  0.2 MB 8.12 MB 144.7 MB 0.1 MB 0.1 MB  481 MB 0.6 MB  91.8 MB 



 

Real-world data validation is designed to cover all three types of 

NGS tests (targeted panel, WES, WGS) and both cases of somatic mutations 

and germline variants. The storage capacity of data was reduced when 

converted into relational database with cGDM schema by 30% compared to 

the prepared data file in VCF format. Interestingly, as the data size of the 

genomic alteration table per test increased, the gap in data size by 

converting narrowed or overturned. The circumstance is due to the addition 

of multiple indexes for in-time query performance. Table indexing was 

generally required when an average of more than 30,000 rows per test 

occurs. 

 



 

1.4.4.2. How the implementation of the cGDM enables 

interactive clinical decision support 

One of the major challenges of healthcare informatics is supporting 

clinicians who need to handle constantly evolving knowledge and inherently 

complex genomic data. Patient genomic data in static document format or in 

structured model but in which has vague designation of the variant limits 

functionality of clinico-genomic information system40. The cGDM could 

address the issue by working as a data-level infrastructure for interactive 

clinical decision support along with external knowledge bases (Fig.6). For 

the cGDM’s programmability test, we developed a pharmacogenomic 

clinical decision support function running on the cGDM database which 

reflects the knowledge of the IWPC warfarin dosing algorithm. The source 

code is freely available at https://github.com/SNUBI-HyojungKim/cGDM-

Clinical-Genome-Data-Model. Figure 7 illustrates both of logical 

information flow in back-end system and its appearance on the user 

interface. A query performance test is conducted with the algorithm 

procedure over 99 individuals in 1KGP P3 CEU database. The SQL stored 

procedure has executed in MySQL on a server with 8GB of RAM and quad-

core CPU running Linux CentOS 6. The average query out duration was 

0.013±0.008 second range from 0.00001 to 0.0460. 

 



 

 

Figure 1.7 The conceptual map of genomic decision support system based 

on the cGDM 

 

While the accumulation of confirmatory knowledge could seem relatively 

slow compared to the speed of the vast discovery of the bioinformatics field, 

the benefits and impacts the two will have on patients when they are 

seamlessly connected are evident. The cGDM brings this process into 

computational space. 

  



 

Chapter 2. Pharmacogenomic Clinical Decision 

Support: Modular Implementation of CPIC 

Guideline 
 

 

2.1. Introduction 

As the development of sequencing technology and the results of research on 

pharmacogenomics (PGx) accumulate, efforts are being made to apply 

personalized drug prescriptions and dose adjustments in the clinical field. 

The same drug may cause adverse reactions due to congenital or acquired 

causes, and drug adverse reactions are a major obstacle to the safe and 

effective use of drugs. “The social costs and health disadvantages of these 

adverse drug reactions are well known. PGx use cases are of particular 

interest because over half of all primary care patients are exposed to PGx 

relevant drugs. Studies have found that 7% of U.S. Food and Drug 

Administration (FDA)-approved medications and 18% of the 4 billion 

prescriptions written in the United States per year are affected by actionable 

PGx variants that nearly all individuals (98%) have at least one known, 

actionable variant by current Clinical Pharmacogenetics Implementation 

Consortium (CPIC) guidelines and that when pharmacogenes with at least 

one known, actionable, inherited variant are considered, over 97% of the 

U.S. population has at least one high-risk diplotype with an estimated 

impact on nearly 75 million prescriptions”41. Therefore, it is expected that 



 

applying knowledge about the drug genome to avoid predictable adverse 

reactions to patients and maximizing the effects of drug treatment prior to 

drug prescriptions would improve patient safety and quality of treatment. 

Various efforts are being made to establish a knowledge resource of 

pharmacogenomic knowledge that can be applied in clinical practice and to 

connect it to clinical information systems. Representatives are as follows; 

Clinical Pharmacogenetics Implementation Consortium (CPIC) of the 

Pharmacogenomics Research Network (PharmGKB)42 and the Dutch 

Pharmacogenetics Working Group (DPWG)43, International warfarin 

pharmacogenetics consortium (IWPC)44, Canadian Pharmacogenomics 

Network for Drug Safety (CPNDS)45. Efforts have been made to implement 

informed decision making using pharmacogenomic information in clinical 

settings based on these refined knowledge resources. In particular, recent 

attempts at systematic clinical implementation have been reported by the 

European Consortium 46, the IGNITE Network Pharmacogenetics Working 

Group 47,48, and the United Kingdom 49. In order for PGx to become routine 

in practice, attention has been paid to establishing a PGx decision support 

system integrated with EHR. 

However, it has not been proposed as a sustainable, scalable, and 

interoperable design among different sites. When considering the 

complexity of dealing with the volatility of PGx knowledge and the 

considerable amount of information in patient-specific genomic data as an 



 

extension of the clinical context, PGx clinical decision support pipeline 

focused on knowledge representation is needed.  Moreover, data 

processing methods is needed to provide PGx test result on demands. 

Clinical decision support (CDS) holds great promise for genomics but has 

had limited utility because executing CDS has required manual entry of 

genetic conditions into the problem list for decision support50. 

In the study, we aim to develop a PGx CDS pipeline linking between 

clinical actionable drug-gene interaction knowledge and personal genomic 

data. First of all, we transform CPIC guideline knowledge resources into a 

machine-readable structured database. Finally, we suggest a PGx CDS 

service design based on the data model layer, both on CPIC guideline 

knowledge resources and personal genomic data.



 

2.2. Purpose of Research 

We propose PGx CDS that enables modular implementation between 

heterogeneous existing clinical information systems. Modeling of medical 

knowledge and representation of and reasoning about medical knowledge 

are the significant steps of the construction of CDS tool70. Although CPIC 

guidelines supporting the clinical application of pharmacogenomics 

knowledge provide reliable content, considerable modeling activities are 

required to transform knowledge from human-interpretable form to a 

machine-readable form for consistent application.  

Thus, we firstly collected, integrated CPIC guideline contents. Data 

integration gives a unified landscape by combining data from disconnected 

resources51 In this process, modeling the relationship between the sources 

and the global schema is, therefore, a crucial aspect. Then, we transform 

CPIC guideline knowledge resource to the machine-readable structured 

database along with content analysis. Exploratory analysis of the collected 

dataset reveals the rules or properties that the content implicitly implied. 

Finally, we propose a modular PGx CDS service by capturing the explicit 

and implicit knowledge flow of the CPIC knowledge resource through the 

modeling process and seamlessly unites actionable drug-gene interaction 

knowledge with patient genomic information on computational space.



 

2.3. Material and Methods  

2.3.1 Material: CPIC guideline as knowledge resource 

The CPIC was formed in 2009 as a shared project between PharmGKB 

(https://www.pharmgkb.org) and the Pharmacogenomics Research Network 

(PGRN) (http://www.pgrn.org). One of the goals of CPIC is to provide peer-

reviewed, updated, evidence-based, freely accessible guidelines for gene-

drug pairs6. All CPIC guidelines adhere to a standard format, and the terms 

used in CPIC guidelines to describe allele function and phenotype are 

standardized7,52. An ultimate goal for CPIC guidelines is to provide 

actionable guidelines for clinicians to make more precision decisions for 

specific drugs when genetic results are available. As a result of the 

admirable contribution of the consortium, it provides the most world-widely 

adoptable clinical pharmacogenomic implementation knowledge base. 

Efforts are underway to make CPIC guidelines more machine-readable, 

including making the guidelines available in various file formats53. 

 



 

2.3.2. Data Collection 

CPIC guideline datasets are first collected between July 10th and August 

30th, and updated between 2019 March 15th and March 30th in 2020, via 

open assessed CPIC webpages and PharmGKB APIs. Collected data items 

are as follows; guideline list (drug-gene pair information included), drug 

resource mapping, gene resource mapping, gene allele definition, gene 

diplotype phenotype, clinical decision support guidelines. Except for the 

guideline list, other data formats are downloaded in comma-separated values 

form. Collected datasets are imported to a relational database management 

system (MySQL 5.6) for exploratory analysis and data-driven restructuring. 

 

Figure 2.1. The configuration of the study environment 



 

2.3.3. Clinical decision support service architecture 

 

Figure 2.2. Modular implementation of PGx CDS overview   

 

As discussed in Chapter 1, we perceive patient-specific genomic 

information as a sub-dimension of representation that reflects the patient's 

health status. Therefore, we consider the data level integration so that the 

service architecture ensures agile combined and computation with other sub-

dimensional information.  

Among collected 6 CPIC content categories, guideline title, drug 

resource mapping, gene resource mapping, and gene allele definition are 

used to construct a computable CPIC database (Figure 2.2, middle-left). 

Others, gene diplotype-phenotype and clinical decision support guideline 

categories, are applied to CDS rule function that matches PGx variant 

definition and patient genomic information and selects a personalized PGx 

CDS to alert given drug prescribing condition. The cGDM is adopted as a 



 

patient-specific genome data model, developed in Chapter 1, to serve as a 

data layer infrastructure supporting the intellectual interplay between 

medical experts and informed decision-making. 

 

 



 

2.4. Results  

2.4.1. Collected CPIC guideline and exploratory 

analysis 

 

The CPIC guidelines reviewed for machine-readable data conversion are a 

total of 24 guideline entries (Table 2.1) published to date on the official 

website42,54. Each guideline contains specific information related to certain 

gene-drug pairs; unique 20 genes and 62 drugs. Each guideline gives well-

curated knowledge in forms of procedural subcategories such as drug 

resource mapping, gene resource mapping, gene allele definition, gene 

diplotype-phenotype, allele frequency, clinical decision support guidelines. 

However, mainly due to differences in how each gene affects the drug 

efficacy or biological characters, the composition of the provided items are 

varied.  

Table 2.2 shows representative CPIC content items and their dataset 

availability according to each guideline. In the case of drug and gene 

resource mapping, every dataset is available. HLA-A and HLA-B gene 

allele definitions are not defined in CPIC standard format due to its unique 

biological character and high complexity. Gene diplotype-phenotype tables 

are not provided when the former form of information is not describable, or 

the only haplotype is existed (G6PD), or the structural variants have a 

meaningful proportion in the PGx gene. When the items reflect the PGx 



 

drug-gene interpretation process, ensuring the entire item shows the 

feasibility of building a seamless digitalized pipeline. To explicit clinical 

decision support workflow and recommendation text files, guidelines that 

have complete data items are 10; 1) CYP2D6, CYP2C19 and Tricyclic 

Antidepressants (for 2 of 7 drugs), 2) CYP2D6 and Atomoxetine, 3) TPMT, 

NUDT15 and Thiopurines, 4) DPYD and Fluoropyrimidines, 5) CYP2D6, 

CYP2C19 and Selective Serotonin Reuptake Inhibitors, 6) RYR1, 

CACNA1S and Volatile anesthetic agents and Succinylcholine, 7) CYP2B6 

and efavirenz, 8) CYP2D6 and Ondansetron and Tropisetron, 9) CYP2D6 

and Tamoxifen, CYP2C19 and Voriconazole, 10) CYP2C9 and NSAIDs (for 

7 of 15 drugs). 



 

Table 2.1. The collected CPIC guideline overview 

CPIC Guideline Title  Drug or Ingredient (unique n = 62) Gene (n = 20) 

HLA-B and Abacavir abacavir HLA-B 

HLA-B and Allopurinol allopurinol HLA-B 

CYP2D6, CYP2C19 and Tricyclic Antidepressants 
amitriptyline, clomipramine, desipramine, doxepin, imipramine, nortriptyline, 

trimipramine 
CYP2C19, CYP2D6 

UGT1A1 and Atazanavir atazanavir UGT1A1 

CYP2D6 and Atomoxetine atomoxetine CYP2D6 

TPMT, NUDT15 and Thiopurines azathioprine, mercaptopurine, thioguanine TPMT, NUDT15 

DPYD and Fluoropyrimidines capecitabine, fluorouracil, tegafur DPYD 

HLA-A, HLA-B and Carbamazepine and Oxcarbazepine carbamazepine, oxcarbazepine HLA-A, HLA-B 

CYP2D6, CYP2C19 and Selective Serotonin Reuptake 

Inhibitors 
citalopram, escitalopram, fluvoxamine, paroxetine, sertraline CYP2D6, CYP2C19 

CYP2C19 and Clopidogrel clopidogrel CYP2C19 

CYP2D6 and Codeine codeine CYP2D6 

RYR1, CACNA1S and Volatile anesthetic agents and 

Succinylcholine 

desflurane, enflurane, halothane, methoxyflurane, isoflurane, sevoflurane, 

succinylcholine 
RYR1, CACNA1S 

CYP2B6 and efavirenz efavirenz CYP2B6 

CFTR and Ivacaftor ivacaftor CFTR 

CYP2D6 and Ondansetron and Tropisetron ondansetron, tropisetron CYP2D6 

IFNL3 and Peginterferon-alpha-based Regimens peginterferon alfa-2a, peginterferon alfa-2b, ribavirin IFNL3 

CYP2C9, HLA-B and Phenytoin phenytoin CYP2C9, HLA-B 

G6PD and Rasburicase rasburicase G6PD 

SLCO1B1 and Simvastatin simvastatin SLCO1B1 

CYP3A5 and Tacrolimus tacrolimus CYP3A5 

CYP2D6 and Tamoxifen tamoxifen CYP2D6 

CYP2C19 and Voriconazole voriconazole CYP2C19 

CYP2C9, VKORC1, CYP4F2 and Warfarin warfarin 
CYP2C9, VKORC1, 

CYP4F2 

CYP2C0 and NSAIDs 

aspirin, diclofenac, celecoxib, flurbiprofen, aceclofenac, ibuprofen, 

indomethacin, lornoxicam, lumiracoxib, meloxicam, metamizole, nabumetone, 

naproxen, piroxicam, tenoxicam 

CYP2C8, CYP2C9 



 

Table 2.2. Dataset list and its availability over guidelines 

CPIC Guideline Title 

Original 

Publication 

 Date 

Most Recent 

Update 

Date 

Drug 

Resource 

Mapping 

Gene 

Resource 

Mapping 

Gene Allele 

Dafinition  

Gene 

Diplotype-

phenotype 

Clinical 

Decision 

Support 

HLA-B and Abacavir April 2012 May 2014  
  

Not available Not available Not available 

HLA-B and Allopurinol February 2013 June 2015 
  

Not available Not available Not available 

CYP2D6, CYP2C19 and Tricyclic Antidepressants May 2013 October 2019 
    

(2/7) 

UGT1A1 and Atazanavir September 2015 November 2017 
    

Not available 

CYP2D6 and Atomoxetine Feburary 2019 October 2019 
     

TPMT, NUDT15 and Thiopurines March 2011 February 2019 
     

DPYD and Fluoropyrimidines December 2013 January 2020 
     

HLA-A, HLA-B and Carbamazepine and 

Oxcarbazepine 
September 2013 December 2017 

  
Not available Not available 

 

CYP2D6, CYP2C19 and Selective Serotonin 

Reuptake Inhibitors 
August 2015 October 2019 

     

CYP2C19 and Clopidogrel August 2011 March 2017 
    

Not available 

CYP2D6 and Codeine February 2012 October 2019 
    

Not available 

RYR1, CACNA1S and Volatile anesthetic agents and 

Succinylcholine 
November 2018 September 2019 

   

Not 

applicable*  

CYP2B6 and efavirenz April 2019 No updates 
     

CFTR and Ivacaftor March 2014 May 2019 
   

Not available Not available 

CYP2D6 and Ondansetron and Tropisetron December 2016 October 2019 
     

IFNL3 and Peginterferon-alpha-based Regimens February 2014 No updates 
   

Not available Not available 

CYP2C9, HLA-B and Phenytoin November 2014 No updates 
  

Not available Not available Not available 

G6PD and Rasburicase August 2014 September 2018 
   

Not available Not available 

SLCO1B1 and Simvastatin October 2014 No updates 
    

Not available 

CYP3A5 and Tacrolimus July 2015 No updates 
    

Not available 

CYP2D6 and Tamoxifen January 2018 October 2019 
     

CYP2C19 and Voriconazole December 2016 No updates 
     

CYP2C9, VKORC1, CYP4F2 and Warfarin December 2016 No updates       
Not 

applicable* 
Not available 

CYP2C9 and NSAIDs March 2020 No updates (7/15)  (1/2)  (1/2)  (1/2) (7/15) 

Number of available files grouped by guidelines 23 23 20 15 11 



 

2.4.2. Data integration and modeling  

 In this section, we briefly examine each CPIC content item in terms of its 

attribute and value set. On top of that, CPIC guideline title contains drug-

gene pair information at ingredient or drug class level. Drug resource 

mapping file provides for each drug of ingredient, respectively, which has 

four attributes; ‘Drug or Ingredient,’ ‘Source,’ ‘Code Type,’ ‘Code.’ Source 

attribute has a member of RxNorm, DrugBank, ATC, PharmGKB. In 

summary, this item provides definitions of drugs that can be identified in 

four representative external drug knowledge bases. Gene resource mapping 

file is also expressed in the same attribute set, and provides unique indexes 

of 4 different external genome knowledge bases for each gene; PharmGKB, 

Ensembl, NCBI, HGNC.  

 The Gene allele definition table can be divided into four districts 

when clustered with similar value properties as below (Figure 2.3). This 

table is a collection of PGx variant information in a gene. For example, we 

can start *4 in the C district. At the same line in D district, we can find the 

alternative allele Y and G. In the first line of those, reference allele C and A 

are shown. We could make the exact HGVS nomenclature when combine 

assigned A+B district. In this case, CYP2C19 *4 consists of two variants; 

NC_000010.11:g.94761900C>T and NC_000010.11:g.94762706A>G. This 

expression is interoperable with any line of A+B, for example, rs12248560 

and rs28399504 in terms of rsID from NCBI dbSNP. The machine cannot 



 

interpret the table, evidently. We naturally extracted codified token from 

part A. As a consequence, we abstracted each value pattern and named its 

properties. As a consequence of data modeling and reconstruction, district A 

of gene allele definition table over 17 gene files results in Table 2.3.  

 

 

  

Figure 2.3. Gene allele definition table example 

(a) Variant expression in HGVS nomenclature and its meaning.  

(b) Gene allele definition table collected from CPIC guideline contents. File 

has for distinctive areas; A) Reference Sequence level related values; B) 

Detail location and variant information given A; C)Star allele 

nomenclature; D) actual variant information at locus A+B 

   



 

Table 2.3. Reference Sequence Information for Locus assignment 

HGNC_Gene_Symbol Chromosome Reference_Sequence_Source Reference_Assembly Complete Genomic Molecule ID Genomic Region ID Protein ID 

CACNA1S 1 NCBI RefSeq GRCh38.p7 NC_000001.11 NG_009816.1 NP_000060.2 

CFTR 7 NCBI RefSeq GRCh38.p2 NC_000007.14 NG_016465.3 NP_000483.3 

CYP2B6 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_007929.1 NP_000758.1 

CYP2C19 10 NCBI RefSeq GRCh38.p2 NC_000010.11 NG_008384.3 NP_000760.1 

CYP2C9 10 NCBI RefSeq GRCh38.p2 NC_000010.11 NG_008385.1 NP_000762.2 

CYP2D6 22 NCBI RefSeq GRCh38.p2 NC_000022.11 NG_008376.3 NP_000097.3 

CYP3A5 7 NCBI RefSeq GRCh38.p2 NC_000007.14 NG_007938.1 NP_000768.1 

CYP4F2 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_007971.2 NP_001073.3 

DPYD+ 1 NCBI RefSeq GRCh38.p2 NC_000001.11 NG_008807.2 NP_000101.2 

G6PD X NCBI RefSeq GRCh38.p2 NC_000023.11 NG_009015.2 
 

IFNL3+ 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_042193.1 
 

NUDT15 13 NCBI RefSeq GRCh38.p7 NC_000013.11 NG_047021.1 NP_060753.1 

RYR1 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_008866.1 NP_000531.2 

SLCO1B1 12 NCBI RefSeq GRCh38.p2 NC_000012.12 NG_011745.1 NP_006437.3 

TPMT 6 NCBI RefSeq GRCh38.p2 NC_000006.12 NG_012137.2 NP_000358.1 

UGT1A1 2 NCBI RefSeq GRCh38.p2 NC_000002.12 NG_002601.2 NP_000454.1 

VKORC1 16 NCBI RefSeq GRCh38.p2 NC_000016.10 NG_ 011564.1 
 

* HLA-A, HLA-B, CYP2C8 Allele Definition Tables are not available 
+ source - https://www.pharmgkb.org/page/pgxGeneRef 



 

Table 2.4 shows information density and terminology variation in 

the value field of the gene allele definition table. Among 17 available PGx 

gene variant information, 11 genes adopted star allele nomenclature55, and 

G6PD has its own nomenclature, and WHO class to designate distinctive 

functions on drug reaction machanism56, two genes have a single PGx 

variant. Almost of PGx variant over 17 genes are single nucleotide variant 

(SNV) or insertion/deletion (InDel), but CYP2B6 and CYP2D6 include 14 

and 4 copy number variants respectively. The number of different loci that 

appear in CPIC guideline contents is 702. 

Table 2.4. Gene allele definition table data profiles 

HGNC 

Gene 

Symbol 

(n=20) 

No of 

Loci 

No of 

assigned 

designation 

Matrix 

size  
Example values 

CACNA1S 2 2 4 
 

Reference c.520C>T 

CFTR 40 42 1,640 
 

2789+5G->A S977F 

CYP2B6+ 38 38 1,444 
 

*1 *38 

CYP2C19 34 34 1,156 
 

*1 *37 

CYP2C8 not available 

CYP2C9 58 61 3,538 
 

*1 *61 

CYP2D6+ 128 146 18,560 
 

*1 *9xN, *139 

CYP3A5 8 8 64 
 

*1 *9 

CYP4F2 2 2 4 
 

*1 *3 

DPYD 15 93 1395 
 

Reference c.1003G>T (*11) 

G6PD 173 187 32,351 
 

202G>A_376A>G_1264C>G Yunan++ 

HLA-A not available 

HLA-B not available 

IFNL3 single variant(g.39248147C>T) 
 

rs12979860 reference (C) 
rs12979860 variant 

(T) 

NUDT15 17 19 323 
 

*1 *19 

RYR1 43 48 2,064 
 

Reference c.1021G>A 

SLCO1B1 29 37 1,073 
 

*10 *9 

TPMT 39 43 1,677 
 

*1 *9 

UGT1A1 5 10 50 
 

*1 *80+*37 

VKORC1 single variant(g.3109638C>T) 
 

rs9923231 reference (C) 
rs9923231 variant 

(T) 

* Star allele available gene count: N=11 (CYP2B6; CYP2C19; CYP2C9; CYP2D6; 

CYP3A5; CYP4F2; DPYD; NUDT15; SLCO1B1; TPMT; UGT1A1)  
+ CYP2D6 and CYP2B6 include 14 and 4 copy number variants respectively 
++ G6PD Genetic Variant Nomenclature and WHO Class 



 

The Diplotype-Phenotype table consists of 3 sheets, each of which is a 

‘possible Diplotype,’ ‘Interpretation consult note,’ and ‘Implementation 

workflow.’ 

 

Figure 2.4. Diplotype-Phenotype table example and its meta-data structure 

 Data model construction was conducted within these multilayer data 

analysis results. Each rough data structure embedded in original contents 

has been reclassified into atomic level attributes, a group of entities, and 

data flow according to the CDS service scheme of this study. Data flow is 

declared as relations in the constructed data model. Normalization and 

abstraction were applied until the ambiguity of overlapping properties, and 

abnormal cardinality disappeared for the design of the entity-relationship 

model for the CDS service. Computable conversion of the CPIC 

knowledgebase and linking scheme in PGx CDS to patient genomic data 

based on knowledge representation is shown in Figure 2.5. 



 

 

 
Figure 2.5. Snapshot of CPIC guidelines content structure converted to be 

computable 

 

 



 

2.4.3. CDS Rule Extraction 

The pre-and post-test alert file consists of two sheets;’Pre- and post-test 

alerts,’ ‘Flow Chart.’ Flow chart helps end-user’s understanding also easily 

convert to a conditional phrase in computer language. However, the trigger 

condition, a particular exact subset, is offered by the ‘Pre- and post-test 

alerts’ sheet. In other words, conditional trigger information for CDS 

function is distributed in two sheets. Firstly, ‘Flow Chart’ has one common 

condition whether the patient’s genomic information is available or not. 

There are two exceptions over three guidelines; one is filtering weight over 

40 kg criteria in case of ‘CYP2B6 and efavirenz’, the other has branched 

alert message between for pediatrics and adults in case of ‘CYP2D6 and 

Atomoxetine’ and ‘CYP2C19 and Voriconazole’. The latter type of 

exception does not appear in ‘Flow chart’ but implied to provide two alert 

text message columns in ‘Pre- and post-test alerts.’ Through this separation 

and regrouping process, we constructed trigger condition, alert message, and 

trigger condition-alert message relation. 

Figure 2.6. Collection of ‘Flow chart’ over available 15 guidelines 

 



 

2.4.4. Structured database construction 

Finally, we have constructed a machine-readable CPIC guideline database in 

the form of a relational database. The database includes 15 tables and 46 

unique attributes (Figure 2.7). Interestingly, the left and right parts of the 

ERD are separated.  

The left side represents the knowledge that declares PGx related 

variant definition and converts those findings into interpretable codified 

phenotypes for each drug-gene pair for which the guideline is targeted. The 

right part is a guide that provides a tailored CDS message when an 

individual's codified phenotype and prescribing drug ingredient is known. 

The CDS message contents could break down a set of properties comprised 

of contraindication, dose adjustment guidelines, probable adverse reactions, 

and consult recommendations to the clinical pharmacist for further 

consideration. However, in this study, the CDS alert text was not structured 

because the distribution of the corresponding attributes when segmented by 

sentence was irregular. 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 2.7. Entity-relationship diagram of reconstructed database based on 

CPIC contents 

 

 

 

 

 

 

 

 

 



 

2.4.5. PGx CDS service module 

Figure 2.8 shows the developed PGx CDS service module. When the system 

evoked, the CDS module looks at patient genome data stored in the EHR 

server and returns potential phenotype according to the CPIC PGx variant 

definition. Also, the module query out individualized recommendations for 

the prescriber. The novelty of this modular solution is the machine-readable 

conversion of the CPIC guideline and seamless function execution in a 

single EHR system. Data modeling reveals four components of the CPIC 

knowledge resource. The first is targeted phenomena identifier, CPIC 

guideline title, and drug-gene pair information. The effort to provide curated 

and filtered PGx variant definition list with expert knowledge with clinical 

relevance. Then, they try to capture related annotation systems for 

interpretation, such as the star allele system. This information is presented in 

the nomenclature field in the Gene-allele definition table and codified data 

field in the Diplotype-phenotype table. Final CDS alert texts are given with 

the assumption that a person who looks at guidelines knows the specific 

genotype information. Data flow crack is found in here, but we could bridge 

this gap with the patient-specific genome database proposed in Chapter 1. 

Finally, seamless PGx CDS are enabled shown in Fig. 2.9. Through the data 

collection and reconstruction process, we could briefly explore the colossal 

landscape of their accomplishment. For enhancing usability, CPIC does 

process standardization along with the development of new guidelines.



 

Figure 2.8. PGx CDS module architecture  

(A) In this step, service refers to the data in (A-1) and (A-2) to check if the prescribed drug has relevance to the pharmacogenomic guideline. (B) 

Execute a query into a patient-specific genome database by referring to pharmagenomic variant information declared in the CPIC knowledge 

base. (C) The search result includes the possession of genomic information of the patient is returns in the form of a phenotype. (D) Provide 

general guidance on the drug-dielectric guidelines. (E) Provide individualized PGx CDS alert message



 

 

    Figure 2.9. PGx CDS module integration scenario with dataflow



 

 

Chapter 3. Clinical Application of Clinical 

Genome Data Model: Integrating Star Allele 

and HLA Data Models    

 

 
“An ideal nomenclature would be one that is entirely unambiguous. One might hope 

that a geneticist of the year 2493 could pick up a 1993 copy of The American Journal 

of Human Genetics and quickly understand, from the designation of a mutation and 

without extensive study of other sources, the location of a nucleotide change. However, 

the complexity of the genome and its functions is such that a perfect nomenclature is 

unachievable.57” (Ernest Beutler, 1993)  

 

3.1. Introduction  

As Beutler envisioned, the perceived complexity of the genomics is 

expanding, and a perfect nomenclature is not achieved yet. However, there 

is some accomplishment, such as the HGVS nomenclature and star allele 

system that helps effective communication between scientists. The HGVS58 

nomenclature has advantages in figure out a specific locus from the 

nomenclature. Nevertheless, it does not specify a specific reference 

sequence. Thus the same variant could be described using different 

reference sequences, which might cause confusion. Furthermore, the 

expression is not scalable enough to express functional combinations. Thus 

star allele nomenclature was introduced in 200655. The star allele nomenclature 

could contain multiple-locus in one name (so-called star), and one locus could be 

placed in redundant stars. The star-allele nomenclature is the result of efforts 

to standardize genetic polymorphism annotation for the cytochrome P450 

genes. As clinical pharmacogenetic testing becomes widespread, this system 



 

has played a vital role in effectively delivering the patient's genotype and 

predicted clinical phenotype. As genomics research expands, the system 

remains a valuable tool for the broader community of genetic researchers to 

exploit our ever-improving ability to catalog variability in the human 

genome55. However, as scientific discoveries accumulate, the number of 

assigned stars is increased, and the complexity of the naming system itself is 

also expanded. For example, *1 is mostly accepted as a reference sequence 

functionality, but a few exceptions occur as known population distribution 

of the variants are changed. In addition, there are highly curated 

representative registries according to research interest so we could use those 

naming system as an auxiliary identifier. We prove the concept in Chapter 2 

using PGx variant definition construction and interoperable interpretation in 

the data of the patient-specific genomic information in cGDM. 

Furthermore, there are independent nomenclatures such as the 

human leukocyte antigen (HLA) system. The HLA system59 is known to be 

the most polymorphic in human. The HLA polymorphism is not evenly 

spread throughout the molecule but is clustered in the antigen-binding 

groove60. HLA is a protein that plays a vital role in our body's immune 

function with a wide variety of allele types.61. HLA diversity is particularly 

important in organ transplantation because transplant recipients and donors 

with different serological HLA proteins will exhibit organ transplant 

rejection62. Therefore, transplant recipients must perform HLA screening 



 

before transplantation. Recently, HLA diversity has been reported to cause 

severe drug hypersensitivity as well as organ transplantation63. However, the 

HLA results of transplant patients and donors have not been used to predict 

future adverse drug reactions. This is because the HLA test is performed in 

various ways, from a simple serological test to an NGS test. Besides, while 

the nomenclature that represents the HLA test results is continuously 

updated, the test results simply have been stored in free text in the electronic 

medical record (EMR) 64. 

 

 

 



 

3.2. Purpose of Research 

Firstly, the HLA database is designed to be used in clinical practice with 

data-driven approach. Construction of HLA DB linked in hospital 

information system could bring clinical pharmacogenomics information to 

physicians. Secondly, the HLA database is covering multiple test methods 

enable to protect from the harm due to the non-use of health-related data65. 

Ultimately, we try to validate the model consistency to cope with the 

evolving annotation systems by construction of HLA database.



 

3.3. Material and Methods  

We used the dataset extracted the results of the HLA test performed and 

demographics of patients using SUPREME®  between February 2002 and 

June 2018, a clinical data warehouse of Seoul National University 

Hospital66. With a data-driven approach, we could extract clinical context 

enriched entities and attributes. Also, HLA nomenclature has been adopted 

as the primary material for designing and elaborating the HLA entity. 

We designed the cGDM HLA as a physical data model in a 

relational database on MySQL 5.6 in an agile manner. Data-driven modeling 

is comprised of data mining and clarification of implicit properties and 

relations67. 



 

3.4. Results 

3.4.1. Summary of collected dataset  

Collected dataset from SUPREME®  has 11,287 records for 11,144 patients; 

4,039 male and 7,105 female patients, including 2,642 high-resolution tests, 

5,835 low-resolution tests, and 2,810 tests. Gathered data fields are shown 

in Table 3.1 below. We filtered these fields with data existence, and remove 

its redundancy. Then, the reclassification of each field was conducted 

compared to the cGDM schema. Unlike the expectation that it will be a true 

subset of the existing cGDM schema, except for the HLA nomenclature, 

unique properties remain that called 'related patient.' This is caused by a 

unique clinical context when the HLA test ordered, organ transplantation. In 

this case, donor-recipient tag information or family relationship information 

has significant meaning for test result application. For internal integrity, we 

decide to capture this information with the appended entity for further use.   



 

Table 3.1. Extracted field list gathered from the EHR records 

Document item 

name 

full name or example 

data 

MRN patient identification no 

PatientDOB Birthdate 

PatientName patient name  

PatientSex patient sex 

TestCode test code 

TestDate test date 

TestName test name 

Name name (data not found) 

PatientType donor/recipient 

diagnosis dx (data not found) 

RelatedPatientsNo relatives(data not found) 

A1_gene A11  

A1_allele *11 

A2_gene A24 

A2_allele *24 

B1_gene B7 

B1_allele *07 

B2_gene B62 

B2_allele *15 

C1_gene Not tested 

C1_allele Not tested 

C2_gene Not tested 

C2_allele Not tested 

DR1_gene DR1 

DR1_allele *01:01g 

DR2_gene DR4 

DR2_allele *04:03g 

DQ1_gene Not tested 

DQ1_allele Not tested 

DQ2_gene Not tested 

DQ2_allele Not tested 

RelatedPatientName NA 

 



 

3.4.2. HLA data model 

HLA entity is added in forms of tokenized HLA nomenclature. HLA gene 

classes and its subtypes are represented in Supplementary information 2. 

Because this nomenclature is logically well developed, one of the major 

challenges was in its version control. Opportunely, the HLA community 

provides a version conversion tool and table as a text file. We parsed the 

HLA test results from the dataset with nomenclature logic and normalized 

its values with mass conversion when we uploaded the dataset to the DBMS 

table. 

 

Figure 3.1. HLA Database design merged in the cGDM schema 



 

General Discussion†  
 

The rapid accumulation of genome information has led to a paradigm shift 

in medicine. Nevertheless, significant barriers remain to overcome inflection 

points. Through multi-disciplinary analysis and consideration of this 

phenomenon, we determined two main causes: 1) reliability-related result 

variance among numerous pipelines and processes, and 2) the unique data 

structure of genome information. Since these two causes have mutual 

influences, an integrative solution may be more effective than a point 

solution. Moreover, we foresee that GIS will become an essential 

component of an integrated clinical information system in the precision 

medicine era. In this context, this cGDM could serve as a genomic 

information representation scheme enabling the intellectual interaction 

between medical experts and informed decision making, ultimately 

contributing to the enhancement of personal genomic data utilization at the 

point of care. 

 

                                            
† The part of the dissertation general discussion published in following paper: Kim, H. J., 

Kim, H. J., Park, Y., Lee, W. S., Lim, Y., & Kim, J. H. (2020). clinical Genome Data Model 

(cGDM) provides interactive clinical Decision Support for precision Medicine. Scientific 

reports, 10(1), 1-13. 

 



 

The GDM as an Infrastructure for a GIS 

We recommend the GDM as a genomic information representation scheme 

for clinical purposes. To ensure the convenient and appropriate clinical use 

of genomic data, medical informatics technology is needed as part of the 

infrastructure supporting the integration of clinic and genomic layers of 

information68,69. Given the multi-level and multi-dimensional nature of 

health, clinicians must perform decision-making for a given case based on a 

collection of segmented data representing a person’s health, including 

laboratory data, imaging, and observation data assessed by experts. 

Currently, a clinical information system is typically used as a core tool for 

supporting this knowledge in a management process. To broaden 

perspectives in the era of precision medicine, we propose a concept of 

genome information system (GIS) as an integral component of an expected 

clinical information system for precision medicine (Fig. 1.1). 

The cGDM can serve as a data-level infrastructure for 

implementation of the GIS. When decision makers face unfamiliar health-

status measurements, determining clinical significance and meaning is 

challenging69,70. The cGDM was designed to preserve genomic information 

at an appropriate information scale and granularity covering the procedural 

dimension, which is related to the confidence level as a clinical 

measurement for clinical application. The design of the cGDM allows 

processed genomic data for a general purpose to be stored and merged with 



 

existing clinical data, providing outputs in an interoperable data format. 

Likewise, sequencing analysis, data processing, and presentation of 

processed information can be managed in a form that can be explicitly 

confirmed. Once data are uploaded to the cGDM-based database, they serve 

as a supportive backbone for any downstream functional applications such 

as report generation or a clinical decision support system. (e.g., Fig 8; Fig 3) 

To develop a system for the systematic management of genomic data, it is 

necessary to unify its data structure with that of other existing components 

of clinical information systems, ensuring sufficient reliability for identifying 

the original data generation process71



 

Current Approach to Genomic Data Management 

The Health Level 7 (HL7) clinical genomics working group provided a 

model for health information exchange and Fast Health Interoperability 

Resources (FHIR) genomics, a model that integrates genetic and clinical 

information via the HL7 interfacing standard70,72. FHIR provides standards 

for medical and genomic information exchange and offers open-source and 

open application programming interfaces (APIs) that can easily be applied 

in clinical fields among heterogeneous data sources. FHIR and FHIR 

genomics have made substantial contributions toward the implementation of 

medical information exchange and are drawing electronic health records 

vendors' attention in this respect. 

 The Global Alliance for Genomics & Health (GA4GH) was 

established in 2013 to develop public tools that enable the responsible, 

voluntary, and secure sharing of clinical and genomic data73. The federated 

approach of GA4GH does not involve the storage and management of data 

in centralized data repositories. Instead, it provides an API that enables users 

to request and share data while holding data for institutions74.  

The FHIR and GA4GH consortium of HL7 were developed with 

the intention to facilitate the exchange of genomic and clinical data among 

multiple sites. Both resources have a common character as a form of 

information exchange at the communication level. These systems use the 

latest web technologies such as the representational state transfer (REST) 



 

API to make it easier for developers to implement clinical applications or 

information systems in the healthcare industry. 

The International Organization for Standardization (ISO) Technical 

Committee 215 (Medical Information) has proposed genomic information 

standards. ISO 27720:2009 (GSVML; General Sequence Variation Markup 

Language) is a standard that defines how genetic sequencing variation 

information is exchanged based on XML. The scope of this standard is in 

the data exchange format and does not include the database schema. 

Although all genetic sequencing is within the standard's scope, the SNP is 

the main target of this standard.  Another standard for more specific 

clinical utilization of genomic information is ISO/TS 20428 Health 

information - Data elements and their metadata for describing structure 

information in electronic health records established in 2017. Additionally, 

ISO/CD TS 23357 Genomic informatics – clinical genomics data sharing 

specification for next generation sequencing is under development state.  

 



 

Table 4.1 Comparison table of characteristics of related resources 

*via SMART on FHIR, CDS Hooks, HL7 Inforbutton 

cGDM: clinical Genome Data Model; OMOP G-CDM: Observational Medical Outcomes Partnership Genome Common Data Model; FHIR: Fast Healthcare Interoperability 

Resources; GA4GH: Global Alliance for Genomics and Health; ISO/TS 20428:2017: Health informatics - Data elements and their metadata for describing structured clinical 

genomic sequence information in electronic health records; ISO/TS 25720:2009: Health informatics - Genomic Sequence Variation Markup Language(GSVML); API: 

Application Programming Interface; GDC: Genomic Data Common; SNP: Single Nucleotide Polymorphism; SNUBI: Seoul National University Biomedical Informatics; 

OHDSI: Observational Health Data Science and Informatics; HL7: Health Level Seven; NIH: National Institutes of Health; NCI: National Cancer Institute

Resource 
  

Publication 

(year) 

Data management scope 
 

Computability 

Purpose Organization 
Storage Exchange 

Clinical 

data  

linkage 

  
Patient 

identification 

for CDS 

rule 

for report  

generation 

cGDM 2020 O X O 
 

O O O 
Data level EHR 

integration 
SNUBI 

OMOP  

G-CDM 
2019 O X O 

 
X X X 

Federated Research 

Network 
OHDSI  

FHIR 

Genomics 
2020 

(2015~) 
X O O 

 
O O * O 

Information 

Exchange 
HL7 

GA4GH 

Genomics 

API 

in progress 

(2015~) 
X O X 

 
X X X 

Data interchange for 

bioinformatics 

research  

GA4GH 

ISO/TS 

20428:2017 
2017 X O O 

 
O X O 

Structuring 

sequencing report 

ISO/TC215 (Health 

Informatics) 

ISO/TS 

25720:2009 
2009 X O X 

 
X X O SNP data exchange 

ISO/TC215 (Health 

Informatics) 

GDC 2017 X O X   X X X 
Cancer related 

genomic data sharing 
NIH NCI  



 

Observational Medical Outcomes Partnership Common Data Model 

(OMOP-CDM) aims to conduct distributed research across observational 

databases in multiple institutions using a common data model approach. 

Genomic Common Data Model (G-CDM) proposed as an extension part of 

OMOP-CDM represents genomic information75. Focused on research 

purposes, the granularity and scale of knowledge representation have limited 

for multifaceted clinical application. 

The almost resources discussed earlier focus on data exchange 

formats for utilization rather than on EHR integration of genomic 

information. Therefore, the system is being developed by designing 

functions first rather than expressing knowledge of the genomic information 

itself, and by further defining the element whenever the function is added. 

This development methodology has strength for easy and fast software 

function development. On the one hand, however, all of reviewed resources 

are on a separate layer from the ground level schema in data management. 

 

 

 



 

The cGDM: A Step beyond the Capabilities of the 

Existing Systems 

To develop a system for the systematic management of genomic data, it is 

necessary to unify the data structure with that of other components of 

clinical information systems, and to ensure sufficient reliability for 

identifying the data generation process18. Conventional systems have 

focussed on data structure unification issues first, to harmonise 

heterogeneous systems among separate institutions76. By contrast, our 

model was designed to achieve both clinico-genomic knowledge 

representation accompanied by traceability of the genomic data, to enable 

determination the clinical significance of a genomic test result provided to a 

clinician.  

Through the developed cGDM, standardization and integration of 

the structure of genomic data can be realized, along with tracing of the 

information in a step-by-step manner until the data related to the target are 

extracted according to clinical or research requirements. To secure the 

clarity of genomic information, we defined the basis for each attribute and 

focused on designing an entity set that can accurately represent the genomic 

data to be delivered to the target user, without information distortion, 

through composition of the basis. 

To allow better assessment of the meaningfulness of genomic 

information, we defined the basis for each attribute and focused on 



 

designing an entity set that accurately represents the genomic data that are 

delivered to the target user, without information distortion. Furthermore, the 

cGDM is adaptable as a data-level extension to any existing information 

system, regardless of database system or application platform. Effectiveness 

and feasibility of genomic data management in the computational 

environment in terms of the data-level EHR integration approach by the 

cGDM were also broadly evaluated in Chapter 2 and 3. 



 

Unrecognized Ambiguity in the Interdisciplinary 

Knowledge Interplay 

Accumulation of basic, translational, and regulatory science is a prerequisite 

to implementing personalized medicine in routine care22. As a basic science, 

bioinformatics has witnessed explosive and rapid progress since the 

completion of the Human Genome Project. In the context of regulatory 

science, there are currently several ongoing efforts within the bioinformatics 

and molecular biology domains,10,11,77 with great maturation in the body of 

knowledge during the last decade, including principles and 

recommendations related to NGS technology. These efforts have focussed 

primarily on the standardization of bioinformatics protocols and the file 

structures for intra- or interlaboratory communication. 

 Translational science represents the next challenge for the 

realization of actual health promotion with personalized medicine78. In the 

context of clinico-genomics, translational approaches ultimately target the 

syntactic and semantic interoperability between genomics and clinical 

practice, to ensure business continuity in terms of knowledge 

management23,24,79. Previous approaches have stressed a need for structural 

transformation to overcome the currently low adaptation of genomic 

information for clinical decision-making. However, the other major cause, 

the knowledge gap, has yet to be seriously considered because the solution 

appears obvious: the education of medical experts in bioinformatics 



 

principles.  

 Nevertheless, this raises the question of the specific level of 

bioinformatics knowledge required in clinical practice. Our working group 

agreed that clinicians do not need to be bioinformatics experts to implement 

precision medicine. Preferably, the key is education on how to understand 

genomic data and confidence levels, and then be provided with sufficient 

information to make clinical decisions. Based on this perspective, we 

identified a previously unrecognised ambiguity related to the knowledge 

interplay between bioinformatics and medical practices (Fig. 3). Although 

the genome is the most concrete type of observational data representing an 

individual's inheritance, the genomic information delivered to clinicians is 

rarely transformed to a human-readable form and is also rarely a direct 

representation of the genomic sequence. Instead, this information is more of 

an intellectual product, processed in a purpose-weighted result file structure. 

Thus, the question of reliability of the genomic information must be 

addressed before it is adopted by the physician, similar to other types of 

conventional observational data. 

 Considering the knowledge gap in this clinico-genomic context, 

unrecognised ambiguities may occur on each side. For example, when 

linking the outputs of bioinformatics to clinical fields, the indicator of 

information quality moves from internal consistency within the same 

protocol to external consistency between different protocols. Thus, to 



 

accomplish the final goal of precision medicine, more discussion is needed 

about how data will cross this intermediate space, then about how to best 

represent and deliver crossover information.   

 



 

Adoption of FMEA to Information Processing 

To best of our knowledge, the methodology proposed herein has not yet 

been applied in the field of genetic information processing. FMEA is the 

most commonly used methodology for determining reliability of 

manufacturing and design processes17,20,21,80,81.  We perceive the result of 

genetic testing not as an output of static measurement, but rather as an 

output of an intellectual production process. When conducting 

bioinformatics analyses, there is no requirement for unification among the 

processes, since the internal consistency within each process guarantees 

scientific rigour. Moreover, the flexible data specifications used in the 

bioinformatics field have the advantage of supporting various research 

applications7, but that advantage becomes an obstacle to data integration for 

comprehensive clinical decision making. In addition, relevant external 

knowledge, tools, platforms, and analytical techniques cannot be unified 

because they are still under development. Considering this large 

interdisciplinary hyperspace, our approach aims to improve the quality of 

information delivery while responding to an enormous, growing body of 

knowledge that has yet to be integrated within its own basic-science field. 

Therefore, the FMEA was adopted to derive and clarify a set of metadata 

designed to prevent information from being distorted. 

To facilitate the use of genomic test results in clinical practice, it is 



 

essential to integrate genomic data into clinical decision support systems 

regarding data volume and knowledge management6,34,37,82. Data modeling 

is the first and most crucial step in the multi-tiered design of information 

systems. The final product reliability, for example specific clinical decision 

support algorithms or integrated information systems, is hardly improved 

over the designed reliability on the lower level of architecture (data-level)20. 

This viewpoint was projected to the study design. An important 

consideration is that the analytic scheme presented here can help to enhance 

clinico-genomic understanding for experts on both the medical and 

bioinformatics sides of the workflow. (see Methods Section) Throughout the 

development of this method, we focussed on equally weighting the clinical 

perspective and bioinformatics process analysis in the context of business 

continuity, starting from our initial clinical intention through bioinformatics 

information processing by a knowledge-based protocol, finally offering a 

deliverable and interpretable form to the point-of-care clinician.  

 



 

Limitations 

Multi-omics data have a fundamental limitation of unification, which is 

derived from the difference of knowledge expression forms related to the 

processing methodology, final processed data depending on the target layer, 

and its biological characteristics. In addition, prior to NGS, there were 

already several structured models according to differences in data scale and 

technical maturity. The entity and attribute set defined in the GDM is 

derived from analysis of the workflow of NGS. Therefore, we do not 

consider the elements of other technology-based workflows in multi-omics 

layers. 

The methods, equipment, data processing and analytical techniques 

for extracting data from targets in nature will continue to evolve and 

accumulate. The cGDM was designed to be flexible and able to readily 

adapt to technological changes. However, an eventual failure in responding 

to these changes cannot be excluded and represents a potential limitation of 

this study.    

Several standard models have been generated, based on differences 

in data scale and technical maturity, prior to the development of NGS 

technology. Thus, we have not considered multi-omics data. Focussing on 

NGS technology-based workflow helped us to determine an optimized 

information scale and granularity for the clinical level, and to design a 

model to generalise and process genomic data based on individual patients. 



 

The cGDM could be extended to be a part of technology-wide data model 

integration for multi-omics data management. 

The data model proposed in this study aims to clarify blind points 

within the interdisciplinary genomic-clinical interface, connecting separated 

expertise within a single platform to provide a broad perspective that covers 

the information reliability required for clinical evidence. In particular, we 

have made a novel attempt to adopt the FMEA method for a systematic 

meta-level data design process. Future work will focus on the development 

of functional systems to conduct real-world validation, including a data-

upload pipeline from processed genome data files, as well as a clinical 

decision support tools based on the cGDM.  



 

Supplementary Information 

Supplementary Figure S1. PGx CDS mock-up application based on the cGDM architecture 
 

 



 

Supplementary Table S1. Table Specification of the cGDM 
The logical entities and attributes expressed in Figure 1.5 were converted into physical entities and attributes. Here, we provided our 

physical data model as the following table. The required data type, description, and example value for each attribute defined are described. 

All of the logical entities and attributes in Figure 1.5 have been transformed and defined in the physical model presented here. So, by 

applying this sort of conversion to physical model, each researchers can construct a genomic database according to the environment of the 

existing information system. 

CLINICAL IDENTIFIER  Table specification  

# Logical Name Physical Name PK Required  Data Type Description  Example 

1 Subject Identifier  Subject_Identifier PK Yes int(11)  
Arbitrary person identifier 

defined in the CGDM database 
1 

2 Patient Number  Patient_Number    Yes varchar(20) 

Patient number of existing HIS 

database used to link with the 

CGDM database 

12345678 

3 Medical Institution Identifier  Institution_Identifier    Yes varchar(20) 

An abbreviation of the hospital 

name where the patient data 

linked with  the CGDM database 

SNUH 

4 Order Identifier Order_Identifier   Yes varchar(20) 

Unique key value represents an 

order of existing HIS database 

used to link with the CGDM 

database 

602489471 

5 Clinician Identifier Clinicain_Identifier   Yes varchar(20) 

Unique key value represents a 

physician of existing HIS 

database used to link with the 

CGDM database 

A2068494 

6 Submission Date  Submission_Date    Yes datetime 

Date of the beginning of the data 

production period (e.g. ordered 

date) 

2018-08-17 13:44 



 

        
EXPERIMENT RELATED INFORMATION  Table specification 

# Logical Name Physical Name PK Required  Data Type Description  Example 

1 Experiment Identifier  Experiment_Identifier PK Yes int(11)  

Arbitrary identifier of the 

experiment defined in the CGDM 

database 

11 

2 Subject Identifier  Subject_Identifier FK Yes int(11)  
Arbitrary person identifier 

defined in the CGDM database 
1 

3 Test Description  Test_Description    No text 
Detailed description for ordered 

test 
  

4 Type of sequencing Sequencing_Type    Yes varchar(50) 
Library strategy for genome 

sequencing  

{WGS, WES, Targeted 

sequencing, etc.}72 

5 Platform technology Platform_Technology   Yes varchar(20) 
The technology platform used to 

identify the variant 
NGS 

6 Sequencer  Sequencer    Yes varchar(50) Sequencing equipment Illumina Hiseq 2500 

7 Sequencing Institution Sequencing _Institution   Yes varchar(50) Name of sequencing institution SNUBI 

8 Experimenter  Experimenter    Yes varchar(50) 
Name of the primary 

experimenter 
BJ Min 

9 Collection Date Collection_Date   Yes datetime Date of the sample collection 2018-09-03 11:00 

        
BIOINFORMATICS PROTOCOL RELATED INFORMATION  Table specification 

# Logical Name Physical Name PK Required  Data Type Description  Example 

1 
Bioinformatics Protocol 

Identifier 
BI_Protocol_Identifier PK Yes int(11)  

Arbitrary identifier of the 

bioinformatics protocol defined 

in the CGDM database 

121 



 

2 Experiment Identifier Experiment_Identifier FK Yes int(11)  

Arbitrary identifier of the 

experiment defined in the CGDM 

database 

11 

3 Pipeline Name Pipeline_Name   Yes varchar(50) Name of the pipeline SNUBI WXS data pipeline 

4 Step (of the pipeline) Step   Yes int(3)  
The order in which the steps are 

executed 
1 

5 Tool (of the pipeline) Tool   Yes varchar(50) Procedure description 
(alignment, sort, deduplication, 

variant calling, etc.} 

6 Parameter (of the pipeline) Parameter   Yes varchar(50) The name of tools GATK 

7 
Datasource origin (used in the 

pipeline) 
Datasource_Origin   Yes varchar(50) The version of tools v2.5-2 

8 
Datasource version (used in the 

pipeline) 
Datasource_Version   No varchar(50) 

Preset parameters used for the 

step 

stand_call_conf=30,stand_emit_c

onf=10 

9 
Datasource Build (used in the 

pipeline) 
Datasource_Build   No varchar(50) The source of databases 1kG, Mills, dbSNP137 

10 Analytics Institution  Analytics_Institution   Yes varchar(50) 
Name of the bioinformatics 

analytics institution 
SNUBI 

11 Bioinformatician  Bioinformatician   Yes varchar(50) 
Name of the primary 

bioinformatician  
YM Park 

12 Received Date Received_Date   Yes datetime 
Date of the raw data file (eg. 

BAM file) received 
2018-09-15 17:35 

13 Documentation Date  Documentation_Date    Yes datetime 
Date of the processed data stored 

in the CGDM database  
2018-09-22 11:22 

        
 

 

 



 

QUALITY CHECK  Table specification 

# Logical Name Physical Name PK Required  Data Type Description  Example 

1 Quality Check Identifier QC_Identifier PK Yes int(11)  

Arbitrary identifier of the quality 

check matrix in the CGDM 

database 

123 

2 
Bioinformatics Protocol 

Identifier 
BI_Protocol_Identifier FK Yes int(11)  

Arbitrary identifier of the 

bioinformatics protocol in the 

CGDM database 

121 

3 Total Reads Total_Reads   Yes bigint Total number of reads 100720000 

4 Total Aligned Reads Total_Aligned_Reads   No bigint Total number of aligned reads 99168912 

5 % Reads Aligned Reads_Aligned_Percent   No float Percentage of reads aligned 98.46 ( = 4/3) 

6 Total Bases Total_Bases   No bigint Total number of bases 7260000 

7 Total Mapped Bases Mapped_Bases   No bigint Total number of mapped bases 7050000 

8 Average on target depth Depth_Mean   No float Mean on target depth 71.94 

9 
Standard deviation on target 

depth  
Depth_SD   No float 

Standard deviation of on target 

depth 
16.54 

10 On Target Bases Target_Bases   No bigint On target bases 2640000 

        
GENOMIC ALTERATION  Table specification 

# Logical Name Physical Name PK Required  Data Type Description  Example 

1 Genomic Alteration Identifier 
Genomic_Alteration_Ide

ntifier 
PK Yes int(11)  

Arbitrary identifier of the 

genomic alteration defined in the 

CGDM database 

14009 



 

2 
Bioinformatics Protocol 

Identifier 
BI_Protocol_Identifier FK Yes int(11)  

Arbitrary identifier of the 

bioinformatics protocol defined 

in the CGDM database 

121 

3 Position Position   Yes varchar(255) 
The genomic position where the 

alteration occurs 
180888597 

4 Reference allele Reference_Allele   Yes varchar(255) 
The base found in the reference 

genome 
A 

5 Alternative allele Alternative_Allele   Yes varchar(255) Any base other than the reference T 

6 Chromosome Chromosome   Yes varchar(2) 
The chromosome where the 

alteration occurs 
7 

7 Cytogenetic location Cytogenetic_Location   No text 
Cytogenetic band that the 

location of the alteration maps to 
17q12 

8 Codon Codon   No text 
The codon where the alteration is 

identified 
12 

9 Exon Exon   No varchar(10) 
The exonic location where the 

alteration is identified 
19 

10 HGVS genomic change 
HGVS_Genomic_Chang

e 
  Yes text 

Description of the nucleotide 

change for a genomic sequence  

(supplied by HGVS) 

NG_007873.3:g.176429T>A 

11 HGVS coding change HGVS_Coding_Change   No text 

Description of the nucleotide 

change for a coding DNA 

sequence  

(supplied by HGVS) 

NM_004333.4:c.1799T>A 



 

12 HGVS protein change HGVS_Protein_Change   No text 

Description of the nucleotide 

change for a protein sequence  

(supplied by HGVS) 

NP_004324.2:p.Val600Glu 

13 HGVS version HGVS_Version   Yes varchar(20) The version number of HGVS HGVS version 15.11 

14 dbSNP Identification Number dbSNP_ID   No varchar(20) 
The identification tag (supplied 

by NCBI dbSNP) 
rs56046546 

15 dbVar Identification Number dbVar_ID   No varchar(20) 
The identification tag (supplied 

by NCBI dbVar) 
nsv1123397 

16 Genome build Genome_Build   No varchar(20) 
Genomic coordinates of the 

reference 
GRCh37/hg19 

17 Genomic source Genomic_Source   Yes varchar(10) Class of genomic source 
{Somatic, Germline, Unknown, 

etc.} 

18 HGNC gene symbol HGNC_Gene_Symbol   No varchar(20) 
The official gene symbol 

approved by the HGNC 
ALK, JMJD7-PAL2G4B  

19 Entrez gene ID Entrez_ID   No integer 
Entrez Gene ID (supplied by 

NCBI) 
238 

20 Ensembl gene ID Ensembl_ID   No char(15) 
Ensembl Gene ID (supplied by 

Ensembl) 
ENSG00000171094 

21 Genotype Genotype   No char(3) Allelic state of the given variant 0|1, 0|0, .|., etc 

22 
clinVar Variation Identification 

Number 
clinVar_Variant_ID   No varchar(20) 

The identification tag (supplied 

by clinVar) 
188275 

23 
COSMIC Identification 

Number 
COSMIC_ID   No varchar(10) 

The identification tag (supplied 

by COSMIC) 
COSM476 

24 Molecular Effects Molecular_Effect    No varchar(50) 
Effects of mutations on protein 

function 

{Missense, Nonsense, Frameshift, 

Promoter, etc} 



 

25 Variant type Variant_Type   Yes varchar(20) 
The type of variant in a sequence 

of DNA 

{Substitution, Deletion, 

Duplication, Insertion, InDel, 

Inversion, Conversion, etc.} 

26 Functional Domain Functional_Domain   No varchar(50) 
The functional domain where the 

alteration occurs 
ATP-binging domain 

        
CLINICAL ANNOTATION  Table specification 

# Logical Name Physical Name PK Required  Data Type Description  Example 

1 Clinical Annotation Identifier 
Clinical_Annotation_Ide

ntifier 
PK Yes int(11)  

Arbitrary identifier of the clinical 

annotation defined in the CGDM 

database 

22 

2 Genomic Alteration Identifier 
Genomic_Alteration_Ide

ntifier 
FK Yes int(11)  

Arbitrary identifier of the 

genomic alteration defined in the 

CGDM database 

14009 

3 Biomarker Datasource Biomarker_Datasource   Yes varchar(255) 
Name of datasource for 

biomarkers of genomic data 
ACMG actionable genes 

4 Biomarker Name Biomarker_Name   Yes varchar(50) 
Name of predictive indicator 

from biomarker datasource 
EGFR Exon 19 Deletion 

        
MICROSATELLITE INSTABILITY  Table specification  

# Logical Name Physical Name PK Required  Data Type Description  Example 

1 
Microsatellite Instability 

Identifier 
MSI_Identifier PK Yes int(11)  

Arbitrary identifier of 

microsatellite instability defined 

in the CGDM database 

14 



 

2 
Bioinformatics Protocol 

Identifier 
BI_Protocol_Identifier FK Yes int(11)  

Arbitrary identifier of the 

bioinformatics protocol defined 

in the CGDM database 

121 

3 MSI phenotype MSI_Phenotype   Yes varchar(50) 
Distinct phenotype of the 

microsatellite instability 

{Microsatellite Stable (MSS), 

MSI-Low (MSI-L), MSI-High 

(MSI-H),  Indeterminate MSI} 

4 MSI marker name MSI_Marker_Name   Yes varchar(20) Name of the MSI marker BAT26 

5 MSI marker status MSI_Marker_Status   Yes varchar(20) Determined MSI status Positive 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Table S2. IUPAC nucleotide code table for processing 

double/triple based code 

Symbol Meaning 

a a; adenine 

c c; cytosine 

g g; guanine 

t t; thymine in DNA; uracil in RNA 

m a or c 

r a or g 

w a or t 

s c or g 

y c or t 

k g or t 

v a or c or g; not t 

h a or c or t; not g 

d a or g or t; not c 

b c or g or t; not a 

n a or c or g or t 

*reference: Cornish-Bowden, A. Nucl Acid Res 13, 3021-3030 (1985) 

,https://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/iupac_

nt_abbreviations.html 에서 재인용 



 

Supplementary Table S3. Number of HLA alleles 

Category Locus Allele 
number 

Protein 
number 

Null allele 
number 

Class I HLA-A 673 527 46 

  HLA-B 1077 911 38 

  HLA-C 360 283 8 

  HLA-E 9 3 0 

  HLA-F 21 4 0 

  HLA-G 36 14 1 

  Pseudogenes 39     

  Total 2215 1742 93 

Class II HLA-DRA 3 2 0 

  HLA-DRB 669 546 8 

  HLA-DQA1 34 25 1 

  HLA-DQB1 93 68 1 

  HLA-DPA1 27 16 0 

  HLA-DPB1 128 114 2 

  HLA-DMA 4 4 0 

  HLA-DMB 7 7 0 

  HLA-DOA 12 3 1 

  HLA-DOB 9 4 0 

  Total 986 789 13 

MHC-
like 

MICA 64 54 0 

  MICB 30 19 2 

  Total 94 73 2 

* reference: Shiina, T., Hosomichi, K., Inoko, H., & Kulski, J. K. (2009). The HLA 

genomic loci map: expression, interaction, diversity and disease. Journal of human 

genetics, 54(1), 15-39. Table 4. Number of HLA alleles  
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국문 초록 

정밀의학을 위한 

임상유전체데이터모델  

김 효 정  

서울대학교 의과대학 

의료정보학 협동과정 

 

진료 현장에서 의사결정을 내려야 하는 임상의에게 개인 유전체 

정보를 다른 임상 근거들과 통합하여 보다 쉽게 다룰 수 있도록 

구조화하여 지원하는 것은 정밀의학 구현을 위한 의료정보학의 주요 

과제 중 하나이다. 차세대 염기서열 분석법과 같은 대량신속처리 유전체 

기술의 등장과 그에 따른 해석정보의 축적으로 정밀 의학 및 개인 

맞춤형 의학으로의 전환이 가시화 되는 듯 보였으나, 차세대염기서열 

분석 기술 기반의 개인유전체 정보의 임상 활용은 여전히 제한적이다. 

선행연구에서는 임상현장에서 유전체정보의 활용이 더딘 이유로 의료 

전문가와 생물정보학자들 사이의 지식 격차, 진료 현장과 생물정보학 

작업절차 간의 분리, 유전체 데이터만의 독특한 양적, 질적 자료구조의 

특성과 같은 복합적인 원인을 제시하고 있다. 이러한 문제를 해결하고자 

하는 시도로서 개인유전체정보를 병원정보시스템에 통합해야 한다는 

요구가 높아지고 있으나 임상현장에서 활용하는 것을 목적으로 하는 

지속가능하고 상호운용가능한 저장, 관리, 처리 방식에 대한 구체적인 

논의는 부족한 실정이다.  



 

 

본 연구에서는 임상정보시스템에 개인 유전체 정보가 통합되어 

임상에 적용되기까지 현재의 장벽들을 문헌고찰을 통해 재탐색하고 

관련된 개념과 방법들을 고찰하였다. 그리고 차세대 염기서열 

분석방법을 기반으로 한 데이터를 어떻게 임상에서 활용하기 쉽도록 

저장하고 처리하고 전달할 것인가 하는 당면한 과제에 단계적으로 

접근하였다. 정보시스템 설계에 있어 데이터 모델의 설계는 

최종시스템의 기능이 데이터 모델에 표현된 정보량 안에서 제한된다는 

점에서 가장 일차적이며 중요한 단계이다. 따라서 1장에서는 다학제적 

논의를 통해 임상의사결정에 활용할 수 있는 유전체 지식표현을 논리적 

데이터모델의 형태로 도출하여 차세대염기서열분석기술 기반의 

임상유전체데이터모델(cGDM; clinical Genome Data Model)을 

제안하였다. 2장에서는 약물치료를 개인별로 최적화하기 위해 이용 

가능한 유전체검사결과를 사용하는 방법에 대한 지식체인 CPIC 

guideline을 구조화하여 1장에서 구축한 환자의 유전체 정보와 데이터 

레벨의 정보흐름을 구현함으로써 모듈 방식의 약물유전체 

임상의사결정지원시스템을 제시한다. 3장에서는 생명정보학에서 임상적 

의미를 드러내는 발견들이 지속됨에 따른 명명체계의 다양함을 수용하는 

확장 체계의 하나로서 HLA gene에 대한 구조화된 정보 설계와 구현을 

다루었다. 즉, HLA nomenclature를 대상으로 지식표현을 설계, 

확장하여 임상유전체데이터모델의 지속가능성과 확장성을 검증하였다.  

본 연구에서는 중개과학으로서 의료정보학이 정밀의료에 기여할 

수 있는 다학제적공간을 탐색하고 정보시스템의 지식표현, 기능구현, 

사용성 측면을 포괄하는 접근을 시도하였다. 본 연구의 결과로 제시된 

임상유전체데이터모델은 논리적인 데이터모델 수준에서 설계되어 기존 

병원정보시스템에 사용된 개발 언어에 제약을 받지 않고 데이터 수준의 

확장체계로 활용할 수 있다. 즉, 정형화된 데이터를 기반으로 



 

 

임상정보를 처리하는 기존의 다양한 정보시스템 아키텍쳐의 설계에 

통합되어 각 기관 혹은 사용자의 필요에 맞게 CDSS나 서식에 연결하는 

등 다양한 기능의 구현을 지원할 수 있다. 또한 연구용 데이터의 수집과 

분석에 사용될 수도 있어 개인유전체분석결과를 실질적인 데이터 순환 

사이클에 연결하는 데 기여할 수 있다. 궁극적으로, 의료전문가와 

정보를 활용한 임상의사결정간의 지적상호작용을 지원하는 데이터 계층 

인프라를 제공한다.  
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