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Abstract

Clinical Genome Data Model
towards Precision Medicine

Hyo Jung Kim
Interdisciplinary Program of Medical Informatics
Graduate School of Medicine

Seoul National University

Background The transition to precision medicine and personalized medicine
is accelerating owing to progress in genomic technology and the consequent
accumulation of genomic information. However, the clinical application of
genomic information remains limited, and its spread rate has been slower
than expected. This lag has been attributed to complex causes, including 1) a
knowledge gap between medical experts and bioinformaticians, 2)
separation of the bioinformatics workflow from clinics, and 3) unique
characteristics of genomic data. Nevertheless, current informational
approaches to link genomic data to clinical fields mostly address the data
structure problem.

Objective We aimed to develop a genomic data model allowing for more

interactive support in clinical decision-making. Informational modeling was



used as a knowledge communication scheme from the highly intellectual
product of bioinformatics to a representative data component of a clinical
decision.

Methods Reliability-related attributes were derived through failure mode
and effect analysis (FMEA). This study involved a multidisciplinary
working group that conducted clinico-genomic workflow analyses and
attributes extraction. Based on these data, an entity-attribute model was then
developed through abstraction and normalization.

Results The outputs of FMEA were a dataflow snapshot obtained from next-
generation sequencing, the information process map extended to the clinico-
genomic context, and the set of attributes. Next, an entity-attribute model
consisting of eight entities and 49 attributes was identified to develop the
final genome data model, including: a linkage identifier to clinical
information, experiment-related information, bioinformatics protocol-related
information, physical location information, expression, annotation, actor
information, and timeline information.

Conclusion The proposed genome data model could serve as a data-layer
infrastructure supporting the intellectual interplay between medical experts
and informative decision-making. Given the importance of recognizing a
genome information system as a component of the clinical information
system to realize precision medicine, the model could help enhance

integration of genomic data in clinical settings.
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General Introduction
One of the significant tasks of medical informatics for the implementation
of precision medicine is supporting clinicians by integrating personal
genomic information with other clinical evidence so that constantly-
evolving knowledge and inherently complex genomic data can be handled
on-demand at the point of care. The transition to precision medicine and
personalized medicine was expected to be accomplished within a few years
due to the outstanding high-throughput sequencing capabilities of next-
generation sequencing and the accumulation of knowledge about its
interpretation. The prior studies present that this delay can be attributed to
complicated factors, such as knowledge gaps between medical experts and
bioinformatics, the separated workflow between clinical practice and
bioinformatics analysis, the unique quantitative and qualitative data
structure of genomic data, which can make interpretation more complicated.
In an attempt to solve this problem, there is an increasing demand for the
integration of personal genomic information in the electronic medical
records. However, it has not been proposed as a sustainable, scalable, and
interoperable method for storage, management, and processing the genomic
data concerning clinical utilization.

In this study, the current barriers were explored through literature
review, and related concepts and methods were investigated about these

phenomena. Moreover, we addressed the immediate task of storing,

1



processing, and delivering data based on next-generation sequencing
analysis methods to prepare for multifaceted clinical utilization. Data
modeling is the first and most crucial step in the multi-tiered design of
information systems. The point is that the final product reliability, such as
specific clinical decision support algorithms or integrated information
systems, is hardly improved over the designed reliability on the lower level
of architecture.

Chapter 1 proposed a clinical genomic data model based on
Deoxyribonucleic Acid (DNA) level data extracted from next-generation
sequencing (NGS) technology. The multidisciplinary discussion reveals a
set of genetic knowledge expressions that can be preserved and delivered
the meaning for clinical decision making. In Chapter 2, the CPIC guideline,
which is a knowledge of how to use available genomic test results to
optimize drug therapy for individuals, is structured. Furthermore, we
propose a modular drug genome clinical decision support system by linking
the patient's genomic information and data-level information flow
constructed in Chapter 1. Chapter 3 deals with the design and
implementation of structured information about the HLA gene as one of the
extensions to accommodate the diversity of naming systems as the
discoveries that reveal their clinical significance in bioinformatics continue.
The sustainability and scalability of the clinical genomics data model were

verified by design and expand knowledge expression for HLA nomenclature.

2



In this study, we explored multidisciplinary space where medical
informatics can contribute to precision medicine, and an approach that
encompasses aspects of knowledge expression, functional realization, and

usability of information systems was attempted.



Chapter 1. Clinical Genome Data Model: Data
Level Integration of Patient Specific Genomic
and Clinical Data for Multifaceted Utilization

1.1. Introduction

As the field of medicine transitions from experience-based medicine to data-
driven medicine, an apparent paradigm shift to precision medicine is
underway, driven by the development of technologies in fields including
medical information technology and computer engineering'”. Genomic
information is one of the most critical component of precision medicine,
given its power to explain individual variability’. However, the practical
clinical use of genomic information remains limited because its circulation
is suboptimal, with each data processing step tending to be independently
performed and thus isolated. To narrow this gap, many organizations have
attempted to identify and develop methods to more effectively link genomic
data to clinical information and thereby facilitate its use™®. However,
several challenges must be surmounted before realizing this goal.

First, a mismatch exists between the structure of genomic and clinical
data. Genomic data based on next-generation sequencing (NGS) technology

is stored as a number of file types at various stages of the bioinformatics

" The main body of the dissertation chapter 1 published as following paper: Kim, H. J.,
Kim, H. J., Park, Y., Lee, W. S., Lim, Y., & Kim, J. H. (2020). clinical Genome Data Model
(cGDM) provides interactive clinical Decision Support for precision Medicine. Scientific
reports, 10(1), 1-13.
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analysis, with flexible file specifications to accommodate the broad range of
research interests in bioinformatics’. Raw genomic data can contain up to
several tens of gigabytes of sequence information, each stored as a long
string of data, and therefore cannot be used directly in this form in clinical
practice without further processing. Since data processing to determine
clinical relevance is both computationally intensive and time-consuming,
genomic information is not readily accessible relative to other types of
clinical data. Thus, for precision medicine and personalized medicine, pre-
processed genomic data needs to be linked with other clinical information
and provided at the appropriate time. In order to resolve this issue, a
structured database is needed to store and appropriately manage genomic
information for easy accessibility.

Second, genomic data has different properties than conventional
observational data used in clinical settings. Therefore, genomic data must be
clarified by considering procedural dimensions. Since genomic workflows
contain a large number of pipelines for information processing, significant
differences between the interpretation of processed data and data obtained
from different information systems relative to the clinical workflow are
inevitable®. Accordingly, a robust data model is required to serve as an
information system to systematically manage genomic data, encompassing
the detailed processes of data processing, analysis, and filtering.

Additionally, information on the reliability and accuracy of these analyses

5

i
S— |



results, along with the detailed analytical process and equipment used, must
also be systematically stored and managed, as it is an essential criterion for
clinical decision-making’. Moreover, because genomic data is less variable
than observational data, information integration will allow for maximization
of the utility of the collected genomic information for clinical use.

The third challenge, majorly hindering the integration of genomic
data with clinical information, is difficulty in mapping the two types of data
for medical interpretation. The presence of biomarkers for specific diseases
or drug reactions is a critical factor in clinical decision-making'’. In the case
of targeted sequencing, the data processor is informed about biomarkers
related to the panel prior to analysis. In clinical practice, reannotation of
patient genetic information according to updated biomarker discoveries
from the biomedical research community is continuously required at the
population level. Thus, a structured data model with consistent data
representation would enable the rapid adoption of both evolving biomedical
knowledge and individual medical records, which can be delivered to the
point of care through agile data processing. Furthermore, patient genomic
data expressing specific biomarkers should be readily accessible from the
information system along with clinician-confirmed interpretations'®'".

Personal-health status can be converted to a composition of multi-
layered, multi-dimensional digitalized information for utilization in an

information system that facilitates handling big data (Fig. 1). Indeed, vast
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amounts of data and associated metadata from multiple medical measuring
technologies, such as laboratory tests or imaging studies, have already been
successfully merged in clinical information systems. Overall, although
genomic information represents the most sound and intensive health-related
signals provided by the human body throughout life, the weak links to
medical practice highlighted above contribute to its underutilization in
clinical decision-making. Therefore, it is necessary to effectively link and
integrate clinical information with personal genomic information, helping to

accelerate the shift to personalized medicine.
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Figure 1.1 Data-level linkage structure between conventional HIS and GIS
From a software engineering perspective, a comprehensive hospital

information system comprises components that represent separated data
collection routes and distinguishing characters of the data. We suggest the
concept of GIS to illustrate the implementation of the c¢cGDM. This
architecture supports both information and functional integration, even with

existing clinical information systems.



1.2. Purpose of Research

The proposed GDM is based on an entity-attribute model to effectively
manage and maximize the use of genomic data in clinical practice. Through
the development of this method, we focused on equal weighting to the
clinical perspective and bioinformatics process analysis as business
continuity, starting from the initial clinical intention to bioinformatics
information processing associated with a knowledge-related protocol,
finally offering a deliverable and interpretable form to the point-of-care
clinician. The GDM was designed based on DNA level data from next-
generation sequencing (NGS) technology to deliver processed genomic data
of patients from different pipelines by applying an appropriate information
scale and granularity at the clinical level.

Toward this end, we began by redefining the obstacles to the spread
of genomic information into routine care, including reliability problems of
proposed measurement data that could cause hesitation in clinical decision-
making, and data structure problems that have hindered the integration of
genomic data into existing information systems. From a clinical perspective,
we focused on the reliability of information as well as the problem of a
heterogeneous data structure. In this context, we define a bioinformatics
process not as a “measurement,” but rather as a “production” to transition a

physical form of existence to an interpretable human representation.



Overall, we aimed to develop a model with appropriate information
granularity and scale, which would minimize the possibility of
misinterpretation at the point of care by formal and procedural variation

related to the production process.
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1.3. Materials and Method

The study material was genomic information with clinical relevance based
on NGS technology. A failure mode and effect analysis (FMEA) approach
was adopted as the analysis process and attributes-extracting method, which
was accomplished by assembling a multidisciplinary working group. From
November 2017 to July 2018, process mapping, failure identification, and
related attribute extraction were performed by the FMEA method at over 18
team meetings. An entity-attribute model was then developed by

reconstruction of the attribute set derived from the FMEA.
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1.3.1. The Production Process of Bringing Genomic

Information to Bedside Care

Here, we define a genomic test as a series of team-based information
production processes, in which the meaning of the information is expanded,
represented, and reproduced by reference to an external knowledge base,
rather than through direct extraction of inherent information. Despite the
invariant nature of a personal genome, genomic information presented to a
clinician may vary according to specific processing protocols adopted”'*"*.
This variability raises reliability issues for the use of genomic test results as
clinical evidence'’.

As artifacts from production, genome information processed for
clinical use may pose a likelihood of misinterpretation due to information
distortion, omissions, and fragmented senses. Furthermore, information
reliability is a critical factor determining the ability of clinicians to utilize
the genomic information'®. Thus, our approach in developing this cGDM for
focussed on the multi-dimensional scope of information, including

procedural factors, derived from NGS technology.

12



1.3.2. FMEA: An Attribute-Clarified Framework

FMEA is a systematic prospective risk factor analysis approach that predicts
and prevents possible errors, improving quality across team-based
processes'’. When used for advanced investigation, the method has
advantages enabling exploration of uncertain, unforeseen complex

18,19

workflows at an early stage ™ . Since its introduction in 1963, broad

subtype applications of FMEA have been performed in broad domains

20’21, behaviour modelingzz, software

including reliability engineering
engineering”, conceptual design®, and knowledge management and
representation”*°. In particular, FMEA has been applied as a method of
knowledge representation to extract process reliability-related attributes and
to structure and map entities and attributes®**®*®. In this study, the FMEA

approach was adopted for workflow analysis and the attribute-extracting

method.
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1.3.2.1 The working group

A multidisciplinary expert team was formed from the areas of
bioinformatics, medical informatics, and medicine. The participants
included three bioinformaticians, two medical informaticians with clinical
informatics and application expertise, and one medical doctor. The medical
doctor has experience in both clinical practice and conducting translational
research from the perspective of both biomedical science and clinical

practice.

14



1.3.2.2 Workflow analysis

Over a period of nine months, process mapping, failure identification, and
related attribute extraction were conducted using FMEA at over 18 team
meetings. Structured data modeling for enhancement of data accessibility
was then conducted using a logical data model, with the attribute set derived
from the FMEA workflow diagram.

21,28 and

We chose the conventional FMEA workflow analysis
adapted it for cGDM development. Conventional FMEA consists of two
main steps. First, the failure mode is identified through 1) assembling a
multi-disciplinary team with at least one expert from each domain over the
target production process, 2) combining components and process function in
order to derive a workflow diagram, and 3) listing the modes that may lead
to failure at each step. The second part involves modifying the process itself
with consideration of priority, including 1) evaluating the severity and
occurrence ranking of each failure mode and 2) proposing a modified
workflow or audition guideline.

In this study, risk estimation and priority-scoring steps were not
designed, since our purpose was to review the fragment of metadata

composition that may cause unintended information distortion of

misinterpretation.
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1.3.3. Logical Data Modeling

Data models are the basis of computation ability for intelligent information
systems”. The database design process can generally be divided into logical
and physical database design™. The physical data model requires a clear and
specific description over logical design, which depends on the existing
development environment. Thus, we designed this cGDM as a logical data
model based on the FMEA results to support data-level integration with any
existing clinical information systems.

Logical data modeling methods are comprised of abstraction and
normalization. Database abstraction refers to aggregation and generalization
that occur at the points of intersection’’. We first abstracted the attributes
derived from FMEA and expressed the factors corresponding to each step in
the workflow. Then, normalization was performed to prevent duplication
and inconsistency of data elements considering their names, scale, and

relations.
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1.3.4. Demo Datasets for the real-world data

validation

Two of representative public accessible dataset are selected for the
development of the demo databases: The 1000 Genomes Project of the
International Genome Sample Resource (IGSR) with population code
"CEU" (Utah Residents with Northern and Western European Ancestry)32,
the pancreatic cancer data from The Cancer Genome Atlas
(TCGA_PAAD)™.

Collected datasets were VCF and MAF file format, and the Extract-
Transformation-Load (ETL) process of the genomic data was performed by
two bioinformaticians with Python 2.7.16. ANNOVAR 20160ct24 version
was used as a clinical annotation tool for the 1000 Genome Project CEU
dataset. The resulting dataset imported in a table within the MySQL server
database by two medical informaticians. We ran the SQL scripts in MySQL
5.6.46 on a Server with 8GB of RAM and an NVIDIA tesla c1060 / Quad-
core CPU running run on CentOS Linux release 7.7.1908. The final outputs

took the form of SQL tables and functions.

17



1.4. Results

This section primarily consists of Failure Mode and Effects Analysis
(FMEA) results and entity-attribute modeling. FMEA output is presented in
two diagrams: a dataflow diagram that focusses on the derivation of the
contents of the genetic test based on NGS sequencing technology, and an
information process map that extends the viewpoint to the level of clinico-
genomic context. At this step, the protocol entity of the former dataflow
diagram was subclassified to reveal the procedural dimension in information
processing. Moreover, the set of attributes involved in each step of
information transfer was identified. Finally, the cGDM are suggested as a

result of structured data modeling based on the attribute set.
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1.4.1. Dataflow diagram based on an NGS workflow

A workflow diagram was derived in order to illustrate the data flow in
which the genomic information inherent in the human body is converted to a
genomic test result. (Fig 2.) At this stage, the clinical view is minimized,
with both the flow of information and the process of analyzing the specimen
after the sample collection across experimental laboratory and compu-
tational analysis drawn on a large scale.

The subtypes of processed variant information in the parallel
structure, used to cope with the growing body of knowledge in
bioinformatics, are listed at the bottom of Fig. 1. Variant information can be
called in multiple types depending on the perspective and purpose of the
analysis. For example, there are four types of genetic variation: single
nucleotide variation (SNV), small insertion/deletion (InDel), copy number
variation (CNV), and translocation/fusion. There are predictive biomarkers
as well such as microsatellite instability (MSI) and tumor mutation burden
(TMB).

As the amount of NGS technology-based knowledge increases,
more subclasses representing novel perspectives can be added. Scalable data
modeling to support the differentiation of knowledge over time is essential
not only for expressiveness but also for reducing the burden of information

systems maintenance.

19



In summary, we linked the separate offline workflows at this step
that occurred in different places until genomic data could be provided as
processed data. The workflow diagram provided the basis for detailed

analysis and discussion.

20
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Figure 1.2 Data flowchart based on a next-generation sequencing workflow

The objects shown in this diagram are classified into three class types- 'Action’, 'Information’, and 'Entity'. ‘Action’ was first posted with
respect to what occurred in each expert domain and the resulting ‘information’ was displayed as a result of each action. Finally, 'Entity' was
defined as the captured information class at each stage of the workflow. Subtypes of 'Variant Information' were drawn scalable to

accommodate the potential extension of subclasses.
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1.4.2. Extending the NGS process under a clinico-

genomic context

After establishing a consensus on a larger scale, we extended the
information flow to the clinical context in detail. At this stage, the
standpoint of the workflow analysis was clinical decision making. Hence,
the workflow diagram started with a clinical decision. We extended the flow
between several actions in the clinico-genomic context involving multiple
entities identified, and detailed analysis was performed. In this process, the
output data file format and detailed processes for handling output files,
along with the tools required for linking to external knowledge databases,
are also described.

The working group discussed mechanisms for extraction of the
entity-attribute set which would avoid probable information distortion and
omission. We considered that the genomic data model for clinical use should
be the knowledge communication scheme, thus preserving its reliability-
related factors. At a minimum, the genomic data model must provide
sufficient information to decide whether the confidence level of the genomic
test result justifies its consideration as clinical evidence. For this function,
failure was defined as that which causes misinterpretation or non-use of the
genomic data for clinical decision. The process of producing clinical
evidence from genomic data at the bioinformatics area (Fig. 3) shows a

pattern that is a series of repeated representations of information converted
22



by reference knowledge bases and data processing rules. Thus, failure
modes can be classified as incomplete specifications in three meta-
categories: origin, reference, or symbol. Due to the nature of the semantic
interpretation, any fragmentation of symbol causes not only loss of

information but also assignment information to direct the origin'>".
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Figure 1.3 Failure mode identification: mapped next-generation sequencing process extended to a clinico-genomic context

In the bioinformatics area (cyan background), information may be distorted by the insufficient representation of origin, processing rule, and
external reference. To prevent this failure, identification and semantics, related attributes are listed under the boxes. In the clinical area(yellow
background), the data model functions as a communication scheme for the collaborative process implemented in the hospital information
system. Data-level integration facilitates just-in-time queries and reuse of data.
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We conducted workflow analysis to extrapolate general descriptors
of the related attributes with the goal of preserving information during
production and delivery processes from clinical intention to clinical
utilization. Figure 2 provides a more detailed data-level view, including how
genomic information is realized as clinical evidence in a case based on a
structured data model. The structured genome data model can support a
report via presentation on a variety of transcription forms (report forms),
which are optimized for initial intent. Furthermore, additional utilization
paths are accessible in the clinical-information system. As shown in Fig. 2,
data-level integration helps the amplification of the incidental utilization.
(Fig. 4) To illustrate, consider a patient who orders whole-genome
sequencing to screen for cancer biomarkers at their first visit. When the
patient receives a prescription for antibiotics a year later at a visit for other
symptoms, that same genomic test result can be re-used from a
pharmacogenomics perspective for safer and more efficient drug
prescription. The clinical decision support system plays a vital role by just-
in-time display of the matching information with pre-defined rule and
knowledge-based processing®***. A computational genome data model is a
prerequisite for this implementation®~’. Finally, we introduce a logical data

model in the next step of the study.
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Stored data example in the CGDM database

E Patient Identifier| HGVS_Genomic_Change |HGNC_Gene_Symbol | Position (Ref_Allele |Alt_ ad _ID |Order_date

S 1224 NC_000010.10:9.96702047C>T CYP2C9 96702047 c T 10 WPC rs1799853 | 2018-08-23

g 1224 NC_000010.10:9.96741053A>C CYP2C9 96741053| A c o WPC 151057910 2018-08-23
(@] S 1224
= =
=
(e} =
Iy B CGDM based Clinical Support Sy
=3 Patient_|dentifier: 1224' warfarin dosing estimation function*
=3 Age_in_Year: '53' SELECT
o m Height_in_cm:175' Tri HGNC_Gene_Symbol as HGNC_Symbol,
3 = Weight_in_kg-70" — gger @SNP_ID as rsID,
3 =] o " ) : Entering - Cj P Refersnce_Asele, Atematve_Alsle, Genotype

Taking_Enzyme_Inducer: 'Y’ .

o Q Taking_Amiodarone: 'N' Warfarin Order PROM
- =4 ond g—D 0180515 Genomic_Alterations G, Cinical_Annotation C
o o rcer_Date: 2019-( WHERE G.Genomic_Aleration_ldentifier

S Order_Status: ‘Add —| =C Genomic_AReration_ldentfier
= — E(lescnber XXX e Co AND Patient_Identifier = '1224'
»n Q CYP2C9 "2 AN,
< Order_No: 2
P ﬁ DrugName : WARFARIN'
— P
@ = Dose :'8', .
3 Route : ‘PO, ( %&@_%m: CYP2CY

Frequency: ‘0D Dose calculation: IN (159332084 rs178 1057910) )
© B based on both clinical factors and
Q genomic information
o
T .
6 Recommendation matched the case D
& Computerized Physician Order Entry
= C A O PGx CDS alert user interface** O
@ @ Warfarin d
. . . . . - losing can be modified with a patient's VKORC1 and CYP2C9 phenotype.

o Q Patient ID: 1224 Patient Name: 000 Age: 53 Dx: Deep vein thrombosis HeightWeight: 175cm/70kg [ Sutmt MPC warfarin pharmacogenetic dosing estimation applied to the patient case display .
[0)] =3 Order Order Frequency Current ordered dose: 6 Predicted diplotype of the patient
o = status | O%® No Drug | Dose | Route | 'y ooy | Prescriber |..|.|.. i< ore I patient ID: 1224 _Patient Name: 000
< g‘ Done | 2019-05-14 1 REFAMPIN | 600mg | PO oD XXX Recommendation: [ RelatedGane | PGx Genotype

o Add | 20190515 | 2 | WARFARIN | 6mg | PO oo XXX Eatimeled wasfarin dose o e paSent: [_worct [ usnomn

ngveel
o) | cYP2Ce 1 2r3
5 mg/day
@ Please consult a clinical pharmacist for further considerations.
* Dx Diagnosis, BSA' Body surface area, IVI Intravenous infusion, PO: per 0s, oral administraion, OD once a day More evidence information on Web  Ihe patient Genomic test result detail Check
* Knowledge reference - International Wartarin Pharmacogenetics Consortium (2009). Estmation of the wartarin dose with clinical and pharmacogenebc data New England Journal of Medicine, 360(8), 753-764

Figure 1.4 How the implementation of the cGDM provides interactive clinical decision support in clinical information system

A: When a doctor enters a prescription, a dataset for the prescription is generated and transmitted for storage. B: The dataset is passed along to the CDS
module to search for the relevant knowledge base in accordance with a predefined set of rules. In this case, we internalized the systematic reference to the
IWPC algorithm* integrated with the CGDM database. C: The PGx CDS module based on the cGDM selects the patient-specific warfarin dosing related
variant information which matches the IWPC algorithm in real-time. The cGDM produces an effect as a knowledge representation backbone as well as a
genomic data storage scheme in the process. (e.g., Expression converted from input variables (Ci) to output variable (Co) for further processing.) D: The

recommendation, which personalized dosing results from the IWPC warfarin PGx estimation based on both clinical and genomic factors, are delivered to the
prescriber. Trackable links for each origin of the used genomic data and evidence in the algorithm are also provided.
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1.4.3. The cGDM

Finally, the cGDM was designed as an entity-attribute model consisting of 8
entities and 46 attributes (Fig. 5). For a structured data model of the
identified clinico-genomic attributes, logical modeling was conducted to
ensure data-level linkage with conventional primary clinical databases. In
order to define the entity-attribute model based on the action and collected
data, tool/processor classes and the attributes of each class from Fig. 2, we
define three types of classes as protocol and related attributes (Table 1).
Since the ¢cGDM is designed to support data-level integration with the
existing system, only the minimum subject identifier is defined as ‘linkage
identifier to clinical information.” To represent the procedural dimension,
which is stressed in the study, we combined two workflow analyses on
different scales. For example, the entity ‘Protocol’ as a part of the
procedural dimension is explicitly represented in Fig. 2, then expressed
again as a list of lower steps in Fig. 3. Since clinical observation is typically
considered as the collection of events™, the logical composition of the
date/time and actor identifier related to the clinico-genomic context were
declared.

The derived classes and entities in Table 1 were used to declare
final entities and attributes in the cGDM (Fig. 5). The mapped Actions and
Action-related classes (Collected Data and Tool/Processor) are categorized

into subdomains and related attributes for each step in Table 1. In Table 1,
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action and its result are grouped into one step, and the related attributes are
represented by the attributes classified in the corresponding step. For
normalization, related attributes are categorized to create one or more new
groups called ‘entities’ for each step, and they are the basis for defining
‘Entities’ in the Entity-Attribute model (Fig. 5). For example, ‘Physical
information according to the coordinate system’ is one of the three
subdomains of the action ‘Sequence Annotation.’ It can include an attribute
set (Cytogenic location, Codon, Exon) representing physical location
information for each variant. However, this "Physical information according
to coordinate system" can be a subdomain in other steps besides "Sequence
Annotation". And even though it is the same subdomain, the related-
attribute set may be different depending on which step or action. In
summary, each step identified in the entire clinico-genomic process can
include multiple entities, and one entity can be related to multiple steps.
Even in the same entity, the configuration of the related attribute as a factor

affecting each step may vary from step to step.
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Table 1.1 Extracted classes and related attribute sets from each step of clinic-
genomic context for the Entity-Attribute model. The processes in the clinico-
genomic workflow shown in Figure 2 are listed in order and associated with the
classes, related attribute sets for each process. This table is an intermediate result
between the result of FMEA and the final logical model. Derived related attributes
are abstracted within each class and grouped into entities.

Class
Collected Tool/ Related Attribute Entity
Action
Data Processor
Institution Identifier . .
Subject Identifier Test Linkage Identifier
R to
Identifier ..
Clinical
(Order ID or Inf .
Sample Accession No) nformation
Collection imeli
Submission Date Tlmellge
Information
M?d.l ca | Institution Actor Information
Clinician
Specimen
Test Description Experiment
Type of Sequence Related
Platform technology Information
Machine Sequencer Timeline
Sequencing Collection Date Information
Sequencing
Institution Actor Information
Experimenter
Read File
Position Physical(Location)
Reference allele information
Al ¢ Alternative allele according to
lghmen Chromosome coordinate system
qulytlcs In.stlltutlon Actor Information
Bioinformatician
Initial
Alignment
File
InDe} Position* Physical(Location)
Realignment . . .
/ Reference allele information
Alternative allele* according to
Base Chromosome* coordinate system
Recalibration Y
Base quality(>Q20)
(Average) Depth of Quality Check
coverage . information
Mapping Quality
(%Mapped reads)
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Received Date

Timeline
Information

Analytics Institution

Actor Information

Bioinformatician
Adjusted
Alignment
File
Hetero-
/Homozygosity Genotype
Variant Phasing information Expressions
Calling Missing
Apglytlcs In.stlitutlon Actor Information
Bioinformatician
Tool Pipeline
Step information
Variant Parameter
Caller Origin
\B/fiirlséon Data source
Parameter
Variant
File
Gene (HGNC Gene
Symbol, Entrez ID,
Ensembl IDI)
Variant Variant
(HGVS(genomic, Descriptive
coding, Expressions
protein change +
version), dbSNP,
Sequence dbVar)
Annotation Cytogenetic location Phy§ica1(Logation)
Codon 1nf0rm.at1on
Exon acqordlng to
coordinate system
ClinVar, COSMIC ID
Molecular Effect Functional
Variant Type Annotation
Functional Domain
Apglytlcs In.stl.tutlon Actor Information
Bioinformatician
Tool Pipeline
Step information
Annotator  Parameter
Origin
Version Data source
Build
Annotated
Variant
File
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Clinical
Annotation

ACMG actionable
genes

FDA qualified
biomarkers
User-defined
biomarkers

Clinical

Annotation

Analytics Institution
Bioinformatician

Actor Information

Documentation Date

Timeline

Information
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Work Flow Data Log Data

Linkage Identifier to Experiment related BI Protocol related

Clinical Information Information Information Wi
- Institution Identifier « Test Description - Pipeline « Submission Date
+ Subject Identifier * Type of Sequence = Tool + Collection Date
+ Test Identifier + Platform Technelogy = Step + Received Date
(Order ID or Accession No) + Sequencer = Parameter + Documentation Date

Physical Location
Information

- Position

* Reference Allele

- Alternative Allele

+ Chromosome

- Cytogenetic Location
- Codon

+ Exon

+ Quality Check
= Base Quality (>Q20)

(Average) Depth of coverage

= Mapping Quality
(%Mapped reads)

Processed Genomic Data

Expressions

+ Variant Descriptive Identifier

= Gene
{HGNC Gene Symbol,
Entrez ID, Ensembl 1D)

= Variant
(HGVS Genomic/coding/
protein change, dbSNP,
dbVar)

+ Genolype

= Hetero=
/Hemozygosity

= Phasing information

= Missing

= Data Source

+ Data Source

= Origin
= Version
= Build

Annotation

- Functional

= ClinVar, Cosmic ID
- Molecular Effect
= Variant Type

- Functional Domain

+ Clinical

= ACMG actionable genes
= FDA Qualified Biomarkers
= User-defined Biomarkers

Actor Information

- Medical Institution
» Clinician (Order)

- Sequencing Institution
+ Experimenter

+ Analytics Institution

- Bioinformatician

Figure 1.5 The Clinical Genome Data Model: Structured data modelling with entities and attributes
The cGDM is designed as a logical data model of 8 entities and 46 attributes. The objects and related attributes derived through FMEA are
integrated into a logical data model through abstraction and normalization.
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Figure 1.6 Semantic search implementation based on the CGDM

Even if the user does not know all the nomenclature or metadata relevant to the genomic data to be searched, search function based on the
CGDM can uses information entered in the search fields in order to derive an extended search result. Through the generated SQL syntax, the
user can determine which genomic metadata (such as chromosome and position, genome build version, HGVS ID) can be associated and
extended to the outcome of the patient's data. In addition to the attributes "Biomarker" and "HGVS ID" presented in the example, multiple data
queries can be made with a single attribute or combination of attributes presented in the CGDM. Therefore, by using these user interfaces with
the data model, it is possible to trace and verify whether the queried genomic data of the patient represent more reliable information.
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1.4.4. Validation of the cGDM

Here, the cGDM was finalized in the form of a logical model, which allows
adaptation to the diverse development environments of existing
heterogeneous clinical information systems. Logical model can play an
essential role to generalize the complex phenomenon by abstraction and
enhance understanding core ideas the model deliver between different
stakeholders of in the complex system®”. Whereas, the drawback of this
approach is that physical modeling layer is needed in order to the data
model implementation and validation. Thus, we design a physical data
model implemented in relational database to evaluate the model validity for
real-world data and to proof of concept how implementation of the cGDM
enables interactive clinical decision support in clinical information system
shown as Fig3 (Left side; Clinical decision support system for incidental

utilization).
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Figure 1.7. Entity-relationship diagram of the CGDM implemented in RDBMS

The entity-relation for the physical model as a diagram (ERD) was presented based on the table shown in Supplementary Table 1. The diagram

shows the entities and the attributes that describes the entity, and the relationship between the entities is also defined.

Clinical_ldentifier

Experiment_related_Information

Bioinformatics_Protocol_related_Infermation

Quality_Check

PK | Subject_Identifier int{11) NOT NULL
Patient_Number varchar(20) NOT NULL

Institution_ldentifier varchar(20) NOT NULL
Order_ldentifier varchar20) NOT NULL

Clinician_|dentifier varchan(20y NOT NULL

Submission_Date datetime NOT NULL

Entity
(attriputes with columng)

H———<  Onetodany

H—————0€  OnetoZeroorMany

PK

ES

Experiment_ldentifier inf{11) NOT NULL
Subject_ldentifier int(11) NOT NULL
Test_Description TEXT NULL
Sequencing_Type varchar(50) NOT NULL
Platform_Technology varchar(20) NOT NULL
Sequencer varchar(50) NOT NULL
Sequencing_Institution varchar(50) NOT NULL
Experimenter varchar(S0) NOT NULL
Collection_Date datetime NOT NULL

‘H_L( Pk
FK

Genomic_Alteration

PK

Genomic_Alteration_ldentifier int(11) NOT NULL
BI_Protacal_ldentifier inti11) NOT NULL
Paosition varchar(255) NOT NULL
Reference_Allele varchar(255) NOT NULL
Alternative_allele varchar(255) NOT NULL
Chromagome varchar(Z) NOT NULL
Cytogenetic_Location tex NULL

Codon text NOT NULL

Exon varchar(10) NULL
HGYS_Genamic_Change text NOT NULL
HGYS_Coding_Change texd NULL
HGYS_Protein_Change text NULL
HGYS_version varchar(20) NOT NULL
dbSNP_ID varchan(20) NULL

divar_ID varchar(20) NULL
Genome_Build varchar(20) NULL
Genomic_Source char(1 0) NOT NULL
HGNG_ene_Symbal varchar! 0) NOT NULL
Entrez_ID ini{11) NULL

Engermbl_ID char(15) NULL

Genotype char(3) NULL
clint/ar_variant_ID varchar(20) NULL
COSMIC_ID varchar(10) NULL
Molecular_Effectwarchan(20) NULL
Wariant_Type varchar(20) NOT MULL
Functional_Domain varchart0) NULL

BI_Protocol_dentifier int(11) NOT NULL

Experiment_ldentifier int(11) NOT NULL ”L
Pipeline_Name varchar(50) NOT NULL
Step Ini(Z) NOT MULL

Toal varchar(50) NOT NULL

Parameter varchar(50) NULL
Datasource_Origin varchar(30) NOT NULL
Datasource_version varchar(50) NULL
Datasource_Build varchar(50) NULL
Analytics_Institution varchar(50) NOT NULL

QC_ldentifier int(11) NOT NULL
BI_Protocal_ldentifier in(11) NOT NULL
Total_Reads higint(20) NOT NULL
Total_Aligned_Reads bigint(20) KNULL
Reads_aligned_Percent float NULL
Total_Bases higint20) NULL
Mapped_Bases higint(20) NULL
Depth_Mean float NULL

Depth_5D float NULL

Target_Bases bigini(2) NULL

Bioinfarmatician varchar(50) NOT NULL
Recieved_Date datetime NOT NULL
Documentation_Date datetime NOT MULL

3

Microsatellite Instability Alteration

PK | MS_Identifier int(11) NOT NULL
FK | BI_Protocol_ldentifier int(11) NOT NULL
MSI_Phenotype varchar(S0) NOT NULL

WSI_Marker_Name varchar(20) NOT NULL.

WSI_Marker_Status varchar(20) NOT NULL

Clinical Annotation

PK | Clinical_Annotation_ldentifier int(11) NOT NULL
FK | Genomic_Alteration_|dentifier int(11) NOT NULL
Biomarker Datasource varchar(255) NOT NULL
Biomarker_Name varchar(50) NOT NULL
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1.4.4.1. Implementation of the real world data

This physical data model of the ¢cGDM is provided in forms of entity-
relationship diagram and table (Supplementary Information Table 1; Fig 1.7).
Also, one-click executable data definition language script is also freely
accessible on a web page (https://github.com/SNUBI-HyojungKim/cGDM-
Clinical-Genome-Data-Model).

For the data model validation with real-world data, we built pilot
databases based on the cGDM and uploaded genomic data of over 2,000
patients for multiple diseases, including acute lymphoblastic leukaemia,
solid cancers, and depression cases (Table 2, internal databases). However,
the pilot dataset related researches remains undergoing, we have built two
representative demo datasets for open source (Table 2, demo databases)
1000 genome CEU (Utah Residents with Northern and Western European
Ancestry) population dataset for whole genome sequencing (n=99, 47.67
GB), 2) TCGA PAAD (Pancreatic Adenocarcinoma) dataset for somatic
mutation (n=155, 9.41 MB). We believe those well-known public dataset
has advantages on data validation issue. Every demo dataset and source

codes are freely available from at the Github page as mentioned above.
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Table 1.2 Summary of imported genomic data from various data sources in cGDM databases.

The databases are categorised into internal and demo database. The specifications of the database tables are informed in Table 1. This table
presents row counts of each database table and data volumes of each database. The internal databases includes 3 private datasets (cancer panel,
leukemia and depression) and 2 public datasets (TCGA COAD and TCGA LUAD). The demo databases includes 2 public datasets (1000
Genome Phase3 CEU and TCGA PAAD).

Database
Internal database Demq dgtabase Summary
(public license)
Cancer . . TCGA TCGA 1KGP TCGA
Type of ’ Panel Leukemia Depression COAD LUAD P3 CEU PAAD 7 data sets
sequencing - - -
Table name cancer WES WES somatic  somatic WGS Somatic WGS/WES/
panel mut. mut. mut. targeted panel
CLINICAL_IDENTIFIER 10 503 1,000 459 522 99 155 2,748
EXPERIMENT_RELATED_INFORMATION 10 517 1,000 459 522 99 155 2,762
BIOINFORMATICS_PROTOCOL_RELATED_
INFORMATION 10 517 1,000 459 522 99 155 2,762
GENOMIC_ALTERATION 2733 29,279,631 842,199,347 361,933 318,947 229,525,363 56,159 1,101,744,113
MICROSATELLITE_INSTABILITY 0 0 0 0 0 0 775 775
CLINICAL_ANNOTATION 40 267 108 123 97 1 12 648
QUALITY_CHECK 10 517 1,000 0 0 0 0 1,527
Dat | database total 2 MB 8.2 GB 144.7 GB 484 MB 42.6 MB 47.7GB 9.4 MB 201.5 GB
ata volume
per test 0.2 MB 8.12 MB 144.7 MB 0.1 MB 0.1 MB 481 MB 0.6 MB 91.8 MB
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Real-world data validation is designed to cover all three types of
NGS tests (targeted panel, WES, WGS) and both cases of somatic mutations
and germline variants. The storage capacity of data was reduced when
converted into relational database with cGDM schema by 30% compared to
the prepared data file in VCF format. Interestingly, as the data size of the
genomic alteration table per test increased, the gap in data size by
converting narrowed or overturned. The circumstance is due to the addition
of multiple indexes for in-time query performance. Table indexing was
generally required when an average of more than 30,000 rows per test

occurs.
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1.4.4.2. How the implementation of the cGDM enables

interactive clinical decision support

One of the major challenges of healthcare informatics is supporting
clinicians who need to handle constantly evolving knowledge and inherently
complex genomic data. Patient genomic data in static document format or in
structured model but in which has vague designation of the variant limits
functionality of clinico-genomic information system®’. The ¢cGDM could
address the issue by working as a data-level infrastructure for interactive
clinical decision support along with external knowledge bases (Fig.6). For
the ¢cGDM’s programmability test, we developed a pharmacogenomic
clinical decision support function running on the cGDM database which
reflects the knowledge of the IWPC warfarin dosing algorithm. The source
code is freely available at https://github.com/SNUBI-HyojungKim/cGDM-
Clinical-Genome-Data-Model. Figure 7 illustrates both of logical
information flow in back-end system and its appearance on the user
interface. A query performance test is conducted with the algorithm
procedure over 99 individuals in 1IKGP P3 CEU database. The SQL stored
procedure has executed in MySQL on a server with 8GB of RAM and quad-
core CPU running Linux CentOS 6. The average query out duration was

0.013+0.008 second range from 0.00001 to 0.0460.
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Figure 1.7 The conceptual map of genomic decision support system based

on the cGDM

While the accumulation of confirmatory knowledge could seem relatively
slow compared to the speed of the vast discovery of the bioinformatics field,
the benefits and impacts the two will have on patients when they are

seamlessly connected are evident. The cGDM brings this process into

computational space.
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Chapter 2. Pharmacogenomic Clinical Decision
Support: Modular Implementation of CPIC
Guideline

2.1. Introduction

As the development of sequencing technology and the results of research on
pharmacogenomics (PGx) accumulate, efforts are being made to apply
personalized drug prescriptions and dose adjustments in the clinical field.
The same drug may cause adverse reactions due to congenital or acquired
causes, and drug adverse reactions are a major obstacle to the safe and
effective use of drugs. “The social costs and health disadvantages of these
adverse drug reactions are well known. PGx use cases are of particular
interest because over half of all primary care patients are exposed to PGx
relevant drugs. Studies have found that 7% of U.S. Food and Drug
Administration (FDA)-approved medications and 18% of the 4 billion
prescriptions written in the United States per year are affected by actionable
PGx variants that nearly all individuals (98%) have at least one known,
actionable variant by current Clinical Pharmacogenetics Implementation
Consortium (CPIC) guidelines and that when pharmacogenes with at least
one known, actionable, inherited variant are considered, over 97% of the
U.S. population has at least one high-risk diplotype with an estimated

impact on nearly 75 million prescriptions™'. Therefore, it is expected that
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applying knowledge about the drug genome to avoid predictable adverse
reactions to patients and maximizing the effects of drug treatment prior to
drug prescriptions would improve patient safety and quality of treatment.
Various efforts are being made to establish a knowledge resource of
pharmacogenomic knowledge that can be applied in clinical practice and to
connect it to clinical information systems. Representatives are as follows;
Clinical Pharmacogenetics Implementation Consortium (CPIC) of the
Pharmacogenomics Research Network (PharmGKB)* and the Dutch
Pharmacogenetics Working Group (DPWG)*, International warfarin
pharmacogenetics consortium (IWPC)*, Canadian Pharmacogenomics
Network for Drug Safety (CPNDS)®. Efforts have been made to implement
informed decision making using pharmacogenomic information in clinical
settings based on these refined knowledge resources. In particular, recent
attempts at systematic clinical implementation have been reported by the
European Consortium *°, the IGNITE Network Pharmacogenetics Working

4748 "and the United Kingdom *°. In order for PGx to become routine

Group
in practice, attention has been paid to establishing a PGx decision support
system integrated with EHR.

However, it has not been proposed as a sustainable, scalable, and
interoperable design among different sites. When considering the

complexity of dealing with the volatility of PGx knowledge and the

considerable amount of information in patient-specific genomic data as an
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extension of the clinical context, PGx clinical decision support pipeline
focused on knowledge representation is needed. = Moreover, data
processing methods is needed to provide PGx test result on demands.
Clinical decision support (CDS) holds great promise for genomics but has
had limited utility because executing CDS has required manual entry of
genetic conditions into the problem list for decision support™.

In the study, we aim to develop a PGx CDS pipeline linking between
clinical actionable drug-gene interaction knowledge and personal genomic
data. First of all, we transform CPIC guideline knowledge resources into a
machine-readable structured database. Finally, we suggest a PGx CDS
service design based on the data model layer, both on CPIC guideline

knowledge resources and personal genomic data.
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2.2. Purpose of Research

We propose PGx CDS that enables modular implementation between
heterogeneous existing clinical information systems. Modeling of medical
knowledge and representation of and reasoning about medical knowledge
are the significant steps of the construction of CDS tool”. Although CPIC
guidelines supporting the clinical application of pharmacogenomics
knowledge provide reliable content, considerable modeling activities are
required to transform knowledge from human-interpretable form to a
machine-readable form for consistent application.

Thus, we firstly collected, integrated CPIC guideline contents. Data
integration gives a unified landscape by combining data from disconnected
resources”' In this process, modeling the relationship between the sources
and the global schema is, therefore, a crucial aspect. Then, we transform
CPIC guideline knowledge resource to the machine-readable structured
database along with content analysis. Exploratory analysis of the collected
dataset reveals the rules or properties that the content implicitly implied.
Finally, we propose a modular PGx CDS service by capturing the explicit
and implicit knowledge flow of the CPIC knowledge resource through the
modeling process and seamlessly unites actionable drug-gene interaction

knowledge with patient genomic information on computational space.
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2.3. Material and Methods

2.3.1 Material: CPIC guideline as knowledge resource

The CPIC was formed in 2009 as a shared project between PharmGKB
(https://www.pharmgkb.org) and the Pharmacogenomics Research Network
(PGRN) (http://www.pgrn.org). One of the goals of CPIC is to provide peer-
reviewed, updated, evidence-based, freely accessible guidelines for gene-
drug pairs6. All CPIC guidelines adhere to a standard format, and the terms
used in CPIC guidelines to describe allele function and phenotype are

standardized”>

. An ultimate goal for CPIC guidelines is to provide
actionable guidelines for clinicians to make more precision decisions for
specific drugs when genetic results are available. As a result of the
admirable contribution of the consortium, it provides the most world-widely
adoptable clinical pharmacogenomic implementation knowledge base.

Efforts are underway to make CPIC guidelines more machine-readable,

including making the guidelines available in various file formats™.

45



2.3.2. Data Collection

CPIC guideline datasets are first collected between July 10th and August
30th, and updated between 2019 March 15th and March 30th in 2020, via
open assessed CPIC webpages and PharmGKB APIs. Collected data items
are as follows; guideline list (drug-gene pair information included), drug
resource mapping, gene resource mapping, gene allele definition, gene
diplotype phenotype, clinical decision support guidelines. Except for the
guideline list, other data formats are downloaded in comma-separated values
form. Collected datasets are imported to a relational database management

system (MySQL 5.6) for exploratory analysis and data-driven restructuring.

CPIC Machine-readable Patient specific genomic data Patient specific
Knowledge Resource CPIC Knowledgebase based on NGS technology Genomic information
N
Web
Published DBMS SAB“SAS.L 56 Processed
MySQL 5.6 \% . "
Resources ¥ S——— (:] data files
Loaded ~—
PharmGKB Raw
APIs Data e.g. VCF...
. —

Data Analysis

The cGDM
Data Modeling
Data Manipulation
PGx CDS
*CPIC: The Clinical Pharmacogenetics Implementation Consortium; DBMS: database management system; PGx CDS: pharmacogenomics clinical decision

support system; VCF: variant call format

Figure 2.1. The configuration of the study environment
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2.3.3. Clinical decision support service architecture

EHR module

Prescribing
Module
(CPOE)

PGx variant Drug ID D é)
information

Action/flow

Data origin
Conventional
EHR Data
CDS Module
Tailored [
PGx ¢cGDM
Database

guideline

Query in
Patient data

Extracted
CDS Rule
Function

Computable
CPIC Database
Schema data

uery in
. Guidéline
information e

uery out
PGx variant
in file

i Data integration : i PGx genotype :
i _and modeling  batch upload ;
CPIC guideline Knowledge /' Patient Specific \
contents J origin . Genomic Data

Figure 2.2. Modular implementation of PGx CDS overview
As discussed in Chapter 1, we perceive patient-specific genomic
information as a sub-dimension of representation that reflects the patient's
health status. Therefore, we consider the data level integration so that the
service architecture ensures agile combined and computation with other sub-
dimensional information.

Among collected 6 CPIC content categories, guideline title, drug
resource mapping, gene resource mapping, and gene allele definition are
used to construct a computable CPIC database (Figure 2.2, middle-left).
Others, gene diplotype-phenotype and clinical decision support guideline
categories, are applied to CDS rule function that matches PGx variant
definition and patient genomic information and selects a personalized PGx

CDS to alert given drug prescribing condition. The cGDM is adopted as a
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patient-specific genome data model, developed in Chapter 1, to serve as a
data layer infrastructure supporting the intellectual interplay between

medical experts and informed decision-making.
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2.4. Results

2.4.1. Collected CPIC guideline and exploratory
analysis

The CPIC guidelines reviewed for machine-readable data conversion are a
total of 24 guideline entries (Table 2.1) published to date on the official

.. 4254
website ™

. Each guideline contains specific information related to certain
gene-drug pairs; unique 20 genes and 62 drugs. Each guideline gives well-
curated knowledge in forms of procedural subcategories such as drug
resource mapping, gene resource mapping, gene allele definition, gene
diplotype-phenotype, allele frequency, clinical decision support guidelines.
However, mainly due to differences in how each gene affects the drug
efficacy or biological characters, the composition of the provided items are
varied.

Table 2.2 shows representative CPIC content items and their dataset
availability according to each guideline. In the case of drug and gene
resource mapping, every dataset is available. HLA-A and HLA-B gene
allele definitions are not defined in CPIC standard format due to its unique
biological character and high complexity. Gene diplotype-phenotype tables
are not provided when the former form of information is not describable, or

the only haplotype is existed (G6PD), or the structural variants have a

meaningful proportion in the PGx gene. When the items reflect the PGx
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drug-gene interpretation process, ensuring the entire item shows the
feasibility of building a seamless digitalized pipeline. To explicit clinical
decision support workflow and recommendation text files, guidelines that
have complete data items are 10; 1) CYP2D6, CYP2C19 and Tricyclic
Antidepressants (for 2 of 7 drugs), 2) CYP2D6 and Atomoxetine, 3) TPMT,
NUDTI15 and Thiopurines, 4) DPYD and Fluoropyrimidines, 5) CYP2D6,
CYP2C19 and Selective Serotonin Reuptake Inhibitors, 6) RYRI,
CACNALIS and Volatile anesthetic agents and Succinylcholine, 7) CYP2B6
and efavirenz, 8) CYP2D6 and Ondansetron and Tropisetron, 9) CYP2D6
and Tamoxifen, CYP2C19 and Voriconazole, 10) CYP2C9 and NSAIDs (for

7 of 15 drugs).
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Table 2.1. The collected CPIC guideline overview

CPIC Guideline Title Drug or Ingredient (unique n = 62) Gene (n =20)
HLA-B and Abacavir abacavir HLA-B
HLA-B and Allopurinol allopurinol HLA-B
CYP2D6, CYP2C19 and Tricyclic Antidepressants amitriptyline, clomipramine, desipramine, doxepin, imipramine, nortriptyline, v p>19 cypape
trimipramine
UGT1ALl and Atazanavir atazanavir UGT1Al
CYP2D6 and Atomoxetine atomoxetine CYP2D6
TPMT, NUDT15 and Thiopurines azathioprine, mercaptopurine, thioguanine TPMT, NUDT15
DPYD and Fluoropyrimidines capecitabine, fluorouracil, tegafur DPYD
HLA-A, HLA-B and Carbamazepine and Oxcarbazepine carbamazepine, oxcarbazepine HLA-A, HLA-B
ﬁlzizlgfs’ CYP2CI9 and  Selective  Serotonin  Reuptake citalopram, escitalopram, fluvoxamine, paroxetine, sertraline CYP2D6, CYP2C19
CYP2C19 and Clopidogrel clopidogrel CYP2C19
CYP2D6 and Codeine codeine CYP2D6
RYR'I, CACNAI S and Volatile anesthetic agents and desﬂurane, 'enﬂurane, halothane, methoxyflurane, isoflurane, sevoflurane, RYR1, CACNAIS
Succinylcholine succinylcholine
CYP2B6 and efavirenz efavirenz CYP2B6
CFTR and Ivacaftor ivacaftor CFTR
CYP2D6 and Ondansetron and Tropisetron ondansetron, tropisetron CYP2D6
IFNL3 and Peginterferon-alpha-based Regimens peginterferon alfa-2a, peginterferon alfa-2b, ribavirin IFNL3
CYP2C9, HLA-B and Phenytoin phenytoin CYP2C9, HLA-B
G6PD and Rasburicase rasburicase G6PD
SLCO1BI and Simvastatin simvastatin SLCO1BI1
CYP3AS and Tacrolimus tacrolimus CYP3AS
CYP2D6 and Tamoxifen tamoxifen CYP2D6
CYP2C19 and Voriconazole voriconazole CYP2CI19
CYP2C9, VKORCI1, CYP4F2 and Warfarin warfarin CYP209, VKORCI,

CYP4F2
aspirin,  diclofenac, celecoxib, flurbiprofen, aceclofenac, ibuprofen,

CYP2CO0 and NSAIDs indomethacin, lornoxicam, lumiracoxib, meloxicam, metamizole, nabumetone, CYP2C8, CYP2C9
naproxen, piroxicam, tenoxicam
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Table 2.2. Dataset list and its availability over guidelines

Original Most Recent Gene  Allele Gene Clinical
CPIC Guideline Title Publication Update . Diplotype- Decision
Dafinition
Date Date phenotype Support
HLA-B and Abacavir April 2012 May 2014 Not available Not available  Not available
HLA-B and Allopurinol February 2013 June 2015 Not available Not available  Not available
CYP2D6, CYP2C19 and Tricyclic Antidepressants May 2013 October 2019 2/7)
UGT1A1 and Atazanavir September 2015 ~ November 2017 Not available
CYP2D6 and Atomoxetine Feburary 2019 October 2019
TPMT, NUDT15 and Thiopurines March 2011 February 2019
DPYD and Fluoropyrimidines December 2013 January 2020
HLA-A,  HLA-B and  Carbamazepine  and September 2013 December 2017 Not available ~ Not available
Oxcarbazepine
Cl\{{ellzplt)a%e | Iﬁ?l\igi’tzofsw and Selective Serotonin August 2015 October 2019
CYP2C19 and Clopidogrel August 2011 March 2017 Not available
CYP2D6 and Codeine February 2012 October 2019 Not available
RYRIT CACNAIS and Volatile anesthetic agents and November 2018 September 2019 Not
Succinylcholine applicable*
CYP2B6 and efavirenz April 2019 No updates
CFTR and Ivacaftor March 2014 May 2019 Not available  Not available
CYP2D6 and Ondansetron and Tropisetron December 2016 October 2019
IFNL3 and Peginterferon-alpha-based Regimens February 2014 No updates Not available ~ Not available
CYP2C9, HLA-B and Phenytoin November 2014 No updates Not available Not available  Not available
G6PD and Rasburicase August 2014 September 2018 Not available  Not available
SLCO1B1 and Simvastatin October 2014 No updates Not available
CYP3AS and Tacrolimus July 2015 No updates Not available
CYP2D6 and Tamoxifen January 2018 October 2019
CYP2C19 and Voriconazole December 2016 No updates
CYP2C9, VKORC1, CYP4F2 and Warfarin December 2016 No updates applIi\I c(;tble* Not available
CYP2C9 and NSAIDs March 2020 No updates (172) (172) (7/15)
Number of available files grouped by guidelines 20 15 11
¥ oy
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2.4.2. Data integration and modeling

In this section, we briefly examine each CPIC content item in terms of its
attribute and value set. On top of that, CPIC guideline title contains drug-
gene pair information at ingredient or drug class level. Drug resource
mapping file provides for each drug of ingredient, respectively, which has
four attributes; ‘Drug or Ingredient,” ‘Source,” ‘Code Type,” ‘Code.” Source
attribute has a member of RxNorm, DrugBank, ATC, PharmGKB. In
summary, this item provides definitions of drugs that can be identified in
four representative external drug knowledge bases. Gene resource mapping
file is also expressed in the same attribute set, and provides unique indexes
of 4 different external genome knowledge bases for each gene; PharmGKB,
Ensembl, NCBI, HGNC.

The Gene allele definition table can be divided into four districts
when clustered with similar value properties as below (Figure 2.3). This
table is a collection of PGx variant information in a gene. For example, we
can start *4 in the C district. At the same line in D district, we can find the
alternative allele Y and G. In the first line of those, reference allele C and A
are shown. We could make the exact HGVS nomenclature when combine
assigned A+B district. In this case, CYP2C19 *4 consists of two variants;
NC_000010.11:2.94761900C>T and NC _000010.11:2.94762706 A>G. This
expression is interoperable with any line of A+B, for example, rs12248560

and rs28399504 in terms of rsID from NCBI dbSNP. The machine cannot
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interpret the table, evidently. We naturally extracted codified token from
part A. As a consequence, we abstracted each value pattern and named its
properties. As a consequence of data modeling and reconstruction, district A

of gene allele definition table over 17 gene files results in Table 2.3.

(a) HGVS nomenclature for CYO2C19 *4 variant

Prefix for a letter prefix for
Complete genome Linear genomic reference sequence

GRCh38.p2 NC_000010.111g/94761900C>T)| Nucleotide
P NC_000010.11{g|94762706A>G chanse
Reference Sequence Reference sequence file Actual description of a variant
identifier

(b) CYP2C19 allele definition table from CPIC (and PharmGKB)
A A 8 C 1] 13 F G H 1 ) K L
B GENEﬂCV&FLSm _o
2 rlml'vmw;t“anmarorg -806C>T 1A>G 7CT 10T>C 50T>C S5A>C 83A>T 151A>G 12401C>T 12416C>T 12455G>C

Effect on protein

3 (NP_000760.1) 5' region M1V P3S FaL L17P noL K28 $51G R73C H78Y G91R

Position at NC_000010.11
(Homo sapiens
chromosome 10,

4 GRCh38 p2) 0 94761900C>Tlg 94762706A>Glg 94762712C>Tig 94762715T>Cig 94762755T>Clg 94762760A>Clg 94762788A>Tig 94762856A>Glg 94775106C>Tjg 94775121C>Tjg 94775160G

Position at NG_008384.3
(CYP2C19 RefSeqGene,

forward relative to

s 94220C>T 9.5026A>G 95032C>T 95035T>C 95075T>C 9.5080A>C 95108A>T 95176A>G Q17426C>T | g 17441C>T | 917480G>Q

6 rsiD 512248560 | 1528399504 | rs367543002 | rs367543003 | rs55752064 | rs17882687 15145328984 rs1 1820373
9 Alcle

a . Q C A C T T A A A C C G

° C

10 -

1 » Y G

12 .

13

14|

15,

16 *C

17

18

19

20

21 [

2 C

23

24 I

Figure 2.3. Gene allele definition table example

(a) Variant expression in HGVS nomenclature and its meaning.

(b) Gene allele definition table collected from CPIC guideline contents. File
has for distinctive areas; A) Reference Sequence level related values; B)
Detail location and variant information given A; C)Star allele
nomenclature; D) actual variant information at locus A+B
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Table 2.3. Reference Sequence Information for Locus assignment

HGNC_Gene_Symbol Chromosome Reference Sequence Source Reference Assembly Complete Genomic Molecule ID  Genomic Region ID Protein ID
CACNAIS 1 NCBI RefSeq GRCh38.p7 NC _000001.11 NG _009816.1 NP_000060.2
CFTR 7 NCBI RefSeq GRCh38.p2 NC _000007.14 NG _016465.3 NP _000483.3
CYP2B6 19 NCBI RefSeq GRCh38.p2 NC _000019.10 NG _007929.1 NP_000758.1
CYP2C19 10 NCBI RefSeq GRCh38.p2 NC _000010.11 NG _008384.3 NP_000760.1
CYP2C9 10 NCBI RefSeq GRCh38.p2 NC _000010.11 NG_008385.1 NP_000762.2
CYP2D6 22 NCBI RefSeq GRCh38.p2 NC _000022.11 NG _008376.3 NP_000097.3
CYP3AS 7 NCBI RefSeq GRCh38.p2 NC _000007.14 NG _007938.1 NP_000768.1
CYP4F2 19 NCBI RefSeq GRCh38.p2 NC _000019.10 NG _007971.2 NP _001073.3
DPYD" 1 NCBI RefSeq GRCh38.p2 NC_000001.11 NG_008807.2 NP_000101.2
G6PD X NCBI RefSeq GRCh38.p2 NC_000023.11 NG_009015.2

IFNL3" 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_042193.1

NUDTI5 13 NCBI RefSeq GRCh38.p7 NC_000013.11 NG_047021.1 NP_060753.1
RYRI 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_008866.1 NP_000531.2
SLCOIBI1 12 NCBI RefSeq GRCh38.p2 NC_000012.12 NG_011745.1 NP_006437.3
TPMT 6 NCBI RefSeq GRCh38.p2 NC_000006.12 NG_012137.2 NP_000358.1
UGTIA1 2 NCBI RefSeq GRCh38.p2 NC_000002.12 NG_002601.2 NP_000454.1
VKORC1 16 NCBI RefSeq GRCh38.p2 NC _000016.10 NG_011564.1

* HLA-A, HLA-B, CYP2CS8 Allele Definition Tables are not available

" source - https://www.pharmgkb.org/page/pgxGeneRef
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Table 2.4 shows information density and terminology variation in
the value field of the gene allele definition table. Among 17 available PGx
gene variant information, 11 genes adopted star allele nomenclature®, and
G6PD has its own nomenclature, and WHO class to designate distinctive
functions on drug reaction machanism®®, two genes have a single PGx
variant. Almost of PGx variant over 17 genes are single nucleotide variant
(SNV) or insertion/deletion (InDel), but CYP2B6 and CYP2D6 include 14
and 4 copy number variants respectively. The number of different loci that
appear in CPIC guideline contents is 702.

Table 2.4. Gene allele definition table data profiles

HGNC No of
Gene No of . Matrix
. assigned . Example values
Symbol Loci designation size
(n=20)
CACNAIS 2 2 4 Reference ¢.520C>T
CFTR 40 42 1,640 2789+5G->A S977F
CYP2B6" 38 38 1,444 *] *38
CYP2C19 34 34 1,156 *] *37
CYP2C8 not available
CYP2C9 58 61 3,538 *] *61
CYP2D6" 128 146 18,560 *] *9xN, *139
CYP3AS 8 8 64 *] *9
CYP4F2 2 2 4 *] *3
DPYD 15 93 1395 Reference ¢.1003G>T (*11)
G6PD 173 187 32,351 202G>A _376A>G_1264C>G Yunan™
HLA-A not available
HLA-B not available
IFNL3  single variant(g.39248147C>T) rs12979860 reference (C) “12979?%) variant
NUDTI15 17 19 323 *] *19
RYRI1 43 48 2,064 Reference c.1021G>A
SLCOI1B1 29 37 1,073 *10 *9
TPMT 39 43 1,677 *1 *9
UGTI1ALI 5 10 50 *] *80+*37
VKORCI single variant(g.3109638C>T) 159923231 reference (C) “99232(3Tl) variant

* Star allele available gene count: N=11 (CYP2B6; CYP2C19; CYP2C9; CYP2D6;
CYP3AS5; CYP4F2; DPYD; NUDTI15; SLCO1BI1; TPMT; UGT1A1)

" CYP2D6 and CYP2B6 include 14 and 4 copy number variants respectively

" G6PD Genetic Variant Nomenclature and WHO Class
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The Diplotype-Phenotype table consists of 3 sheets, each of which is a

‘possible Diplotype,” ‘Interpretation consult note,” and ‘Implementation

workflow.’

Item: Diplotype-Phenotype table

| Sheetl Diplotype
| Possible Diplotype

Coded Diplotype/Phenotype summary

|:| EHR Pricrity Result notation

Phenotype
Sheet 2 Activity Score(optional)
Interpretation consult note
EHR Priority Result notation
D Consultation(drug or ingredient name)
Text Provided with Test Result
Sheet 3 Workflow diagram
Implementation workilow
Notes

L

Figure 2.4. Diplotype-Phenotype table example and its meta-data structure
Data model construction was conducted within these multilayer data

analysis results. Each rough data structure embedded in original contents

has been reclassified into atomic level attributes, a group of entities, and

data flow according to the CDS service scheme of this study. Data flow is

declared as relations in the constructed data model. Normalization and

abstraction were applied until the ambiguity of overlapping properties, and

abnormal cardinality disappeared for the design of the entity-relationship

model for the CDS service. Computable conversion of the CPIC

knowledgebase and linking scheme in PGx CDS to patient genomic data

based on knowledge representation is shown in Figure 2.5.

57



CPIC Guidelines

) Drug resource
] mappings

|,—o—. Related Drugs [

CPIC guidelines H—

AIC code

~—+g Related Genes [t Generesource

mappings
PGx gene allele definition table
i e
Reference sequences related The actual description of a HGCID
to locus expression variant Gene Symbol

I E Internal tebie

Gene_Allele_Nomenclature p—+ Actual genetic alteration

et Onie-to-Many

H— o€ One-to-Zeroor Many

;[ Qiaiompg-qh%aufge,tébie item name  CPIC contents item
Molecular phenotype IUPAC
Allele frequency table description nucleoditde
code
Implementation
consult Note
pre-and post-test alerts and flow chart
Trigger condition CDS alert text
- PGx phenotype - Contraindi_catilon
- Activity score - Dosing guideline .
- Age criteria - Probable adverse reaction
- Consult recommendation

CPIC Guidelines

Drug resource Related S Related Gene resource
mappings Drugs CPIC guideline Genes mappings

_PGx gene allele definition table

pre-and post-test alerts and flow chart REfg‘ggg f:tﬁ:ce&ces The actual description of a
Diplotype-phenotype table _ expression  —* retant
\ E 1
CDS alert text Trigger Condition Molef‘.ng;Crn%htieswnutvpe ‘ i ene_Allele_Nomenclature| Actual genetic alteration
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Figure 2.5. Snapshot of CPIC guidelines content structure converted to be
computable
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2.4.3. CDS Rule Extraction

The pre-and post-test alert file consists of two sheets;’Pre- and post-test
alerts,” ‘Flow Chart.” Flow chart helps end-user’s understanding also easily
convert to a conditional phrase in computer language. However, the trigger
condition, a particular exact subset, is offered by the ‘Pre- and post-test
alerts’ sheet. In other words, conditional trigger information for CDS
function is distributed in two sheets. Firstly, ‘Flow Chart’ has one common
condition whether the patient’s genomic information is available or not.
There are two exceptions over three guidelines; one is filtering weight over
40 kg criteria in case of ‘CYP2B6 and efavirenz’, the other has branched
alert message between for pediatrics and adults in case of ‘CYP2D6 and
Atomoxetine’ and ‘CYP2C19 and Voriconazole’. The latter type of
exception does not appear in ‘Flow chart’ but implied to provide two alert
text message columns in ‘Pre- and post-test alerts.” Through this separation
and regrouping process, we constructed trigger condition, alert message, and

trigger condition-alert message relation.

=

Figure 2.6. Collection of ‘Flow chart’ over available 15 guidelines
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2.4.4. Structured database construction

Finally, we have constructed a machine-readable CPIC guideline database in
the form of a relational database. The database includes 15 tables and 46
unique attributes (Figure 2.7). Interestingly, the left and right parts of the
ERD are separated.

The left side represents the knowledge that declares PGx related
variant definition and converts those findings into interpretable codified
phenotypes for each drug-gene pair for which the guideline is targeted. The
right part is a guide that provides a tailored CDS message when an
individual's codified phenotype and prescribing drug ingredient is known.
The CDS message contents could break down a set of properties comprised
of contraindication, dose adjustment guidelines, probable adverse reactions,
and consult recommendations to the clinical pharmacist for further
consideration. However, in this study, the CDS alert text was not structured
because the distribution of the corresponding attributes when segmented by

sentence was irregular.
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HGNC_Gane_Symeol varchar20) NOT NULL e
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Figure 2.7. Entity-relationship diagram of reconstructed database based on
CPIC contents
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2.4.5. PGx CDS service module

Figure 2.8 shows the developed PGx CDS service module. When the system
evoked, the CDS module looks at patient genome data stored in the EHR
server and returns potential phenotype according to the CPIC PGx variant
definition. Also, the module query out individualized recommendations for
the prescriber. The novelty of this modular solution is the machine-readable
conversion of the CPIC guideline and seamless function execution in a
single EHR system. Data modeling reveals four components of the CPIC
knowledge resource. The first is targeted phenomena identifier, CPIC
guideline title, and drug-gene pair information. The effort to provide curated
and filtered PGx variant definition list with expert knowledge with clinical
relevance. Then, they try to capture related annotation systems for
interpretation, such as the star allele system. This information is presented in
the nomenclature field in the Gene-allele definition table and codified data
field in the Diplotype-phenotype table. Final CDS alert texts are given with
the assumption that a person who looks at guidelines knows the specific
genotype information. Data flow crack is found in here, but we could bridge
this gap with the patient-specific genome database proposed in Chapter 1.
Finally, seamless PGx CDS are enabled shown in Fig. 2.9. Through the data
collection and reconstruction process, we could briefly explore the colossal
landscape of their accomplishment. For enhancing usability, CPIC does

process standardization along with the development of new guidelines.
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Figure 2.8. PGx CDS module architecture

(A) In this step, service refers to the data in (A-1) and (A-2) to check if the prescribed drug has relevance to the pharmacogenomic guideline. (B)
Execute a query into a patient-specific genome database by referring to pharmagenomic variant information declared in the CPIC knowledge

base. (C) The search result includes the possession of genomic information of the patient is returns in the form of a phenotype. (D) Provide

general guidance on the drug-dielectric guidelines. (E) Provide individualized PGx CDS alert message
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Figure 2.9. PGx CDS module integration scenario with dataflow
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Chapter 3. Clinical Application of Clinical
Genome Data Model: Integrating Star Allele
and HLA Data Models

“An ideal nomenclature would be one that is entirely unambiguous. One might hope
that a geneticist of the year 2493 could pick up a 1993 copy of The American Journal
of Human Genetics and quickly understand, from the designation of a mutation and
without extensive study of other sources, the location of a nucleotide change. However,
the complexity of the genome and its functions is such that a perfect nomenclature is
unachievable.”” (Ernest Beutler, 1993)

3.1. Introduction

As Beutler envisioned, the perceived complexity of the genomics is
expanding, and a perfect nomenclature is not achieved yet. However, there
is some accomplishment, such as the HGVS nomenclature and star allele
system that helps effective communication between scientists. The HGVS™®
nomenclature has advantages in figure out a specific locus from the
nomenclature. Nevertheless, it does not specify a specific reference
sequence. Thus the same variant could be described using different
reference sequences, which might cause confusion. Furthermore, the
expression is not scalable enough to express functional combinations. Thus
star allele nomenclature was introduced in 2006>. The star allele nomenclature

could contain multiple-locus in one name (so-called star), and one locus could be

placed in redundant stars. The star-allele nomenclature is the result of efforts

to standardize genetic polymorphism annotation for the cytochrome P450
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genes. As clinical pharmacogenetic testing becomes widespread, this system
has played a vital role in effectively delivering the patient's genotype and
predicted clinical phenotype. As genomics research expands, the system
remains a valuable tool for the broader community of genetic researchers to
exploit our ever-improving ability to catalog variability in the human
genome™. However, as scientific discoveries accumulate, the number of
assigned stars is increased, and the complexity of the naming system itself is
also expanded. For example, *1 is mostly accepted as a reference sequence
functionality, but a few exceptions occur as known population distribution
of the variants are changed. In addition, there are highly curated
representative registries according to research interest so we could use those
naming system as an auxiliary identifier. We prove the concept in Chapter 2
using PGx variant definition construction and interoperable interpretation in
the data of the patient-specific genomic information in cGDM.

Furthermore, there are independent nomenclatures such as the
human leukocyte antigen (HLA) system. The HLA system™ is known to be
the most polymorphic in human. The HLA polymorphism is not evenly
spread throughout the molecule but is clustered in the antigen-binding
groove®. HLA is a protein that plays a vital role in our body's immune
function with a wide variety of allele types.®'. HLA diversity is particularly
important in organ transplantation because transplant recipients and donors

with different serological HLA proteins will exhibit organ transplant
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rejection®®. Therefore, transplant recipients must perform HLA screening
before transplantation. Recently, HLA diversity has been reported to cause
severe drug hypersensitivity as well as organ transplantation63. However, the
HLA results of transplant patients and donors have not been used to predict
future adverse drug reactions. This is because the HLA test is performed in
various ways, from a simple serological test to an NGS test. Besides, while
the nomenclature that represents the HLA test results is continuously
updated, the test results simply have been stored in free text in the electronic

medical record (EMR) 64,

67



3.2. Purpose of Research

Firstly, the HLA database is designed to be used in clinical practice with
data-driven approach. Construction of HLA DB linked in hospital
information system could bring clinical pharmacogenomics information to
physicians. Secondly, the HLA database is covering multiple test methods
enable to protect from the harm due to the non-use of health-related data®.
Ultimately, we try to validate the model consistency to cope with the

evolving annotation systems by construction of HLA database.
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3.3. Material and Methods

We used the dataset extracted the results of the HLA test performed and
demographics of patients using SUPREME® between February 2002 and
June 2018, a clinical data warehouse of Seoul National University
Hospital®®. With a data-driven approach, we could extract clinical context
enriched entities and attributes. Also, HLA nomenclature has been adopted
as the primary material for designing and elaborating the HLA entity.

We designed the ¢cGDM HLA as a physical data model in a
relational database on MySQL 5.6 in an agile manner. Data-driven modeling
is comprised of data mining and clarification of implicit properties and

relations®’.
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3.4. Results

3.4.1. Summary of collected dataset

Collected dataset from SUPREME® has 11,287 records for 11,144 patients;
4,039 male and 7,105 female patients, including 2,642 high-resolution tests,
5,835 low-resolution tests, and 2,810 tests. Gathered data fields are shown
in Table 3.1 below. We filtered these fields with data existence, and remove
its redundancy. Then, the reclassification of each field was conducted
compared to the cGDM schema. Unlike the expectation that it will be a true
subset of the existing cGDM schema, except for the HLA nomenclature,
unique properties remain that called 'related patient.' This is caused by a
unique clinical context when the HLA test ordered, organ transplantation. In
this case, donor-recipient tag information or family relationship information
has significant meaning for test result application. For internal integrity, we

decide to capture this information with the appended entity for further use.
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Table 3.1. Extracted field list gathered from the EHR records

Document item full name or example

name data
MRN patient identification no
PatientDOB Birthdate
PatientName patient name
PatientSex patient sex
TestCode test code
TestDate test date
TestName test name
Name name (data not found)
PatientType donor/recipient
diagnosis dx (data not found)
RelatedPatientsNo relatives(data not found)
Al gene All
Al allele *11
A2 gene A24
A2 allele *24
B1 gene B7
B1 allele *07
B2 gene B62
B2 allele *15
C1_gene Not tested
Cl1 allele Not tested
C2 gene Not tested
C2 allele Not tested
DR1 gene DR1
DRI1 allele *01:01g
DR2 gene DR4
DR2 allele *04:03¢g
DQI1 gene Not tested
DQ1 allele Not tested
DQ2 gene Not tested
DQ2 allele Not tested
RelatedPatientName NA
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3.4.2. HLA data model

HLA entity is added in forms of tokenized HLA nomenclature. HLA gene
classes and its subtypes are represented in Supplementary information 2.
Because this nomenclature is logically well developed, one of the major
challenges was in its version control. Opportunely, the HLA community
provides a version conversion tool and table as a text file. We parsed the
HLA test results from the dataset with nomenclature logic and normalized
its values with mass conversion when we uploaded the dataset to the DBMS

table.

Common entities with the cGDM Extension entity represent HLA nomenclature

1 SubjectIGentAicaton Number Sudjec_O GOM generate
2 Subjectname Sudject_Name Name
3 Pabent Igenticaton Number Pasent 10 MRN
4 B date Ben_Date PatientDOB
5 Gender Gender PatientSex
6 Race Race
7 Etnicity Emnicity
8 Instason code instuton_Code  GOM generate
9 Register Igentficason Numbde Register_iO GOM generate
10 Submission date Submission_Date  GOM generate [ HLA Star Allele
1 Star Allee identScaton Numi Star_Alele_iD  GOM generate
— 2 Protocol Identiicaton Numbe Protocol_ID
1 Speomenidentcaton  Speamen_iD GOM generate 3 A1_gene Algene
Number ALl
2 SubjectIdenticaton Numben Subject_ID GOM generate 4 A1_atiele Alalidle |1
3 Speamen ongintrpe Onigin_Type 5 A2_gene A2 gene  |axe
4 Body ste Body_Ste 6 A2_atiele A2 allele |20
5 Body site code Body_Ste_Code 781 gene Blgene o7
6 Physical tpe Physical_Type 8 B1_allele Blallele |07
7 Physical type code Physical_Type_Code 982_gene B2gene o6
8 Speamen tipe Speamen_Type :: 22‘-;‘:‘: Zi_nllek 15
9 Speamen block Igentficason Block_ID [ s.m*:m, = | Clgene |nottested
Number 12 C1_allele C1 allele Not tested
0 Sovcmen wzsssen  Acaesion O 12 C2_gene C2gene |nottested
11 Collecton date Cotlecton_Date [ DateOfTestl 14 C2_allele C2allele |not tested
12 Receved date Receied_Date 15 OR1_gene DR1gene _or1
12 Diferentiation state Diter_State WORL skl DR1.allele  |*or01g
17 OR2_gene DR2 gene _|ors
18 DR2_atiele DR2.allele |0s:03g
Protocol 19 0Q1_gene DQ1 gene |Nottested
1 Protocol Identicabon Numbet protocol_(0 GOM generate 20 001_atele QL allele ot tested
2 Specimen identiicaton  Specimen_iD GOM generate 21002_ o0 Q2 gene ot testes
3 Testname Test_Name @ 22 DQ2_allele DQ2_allele  |not tested
4 Type of sequencing Sequenang_Type GOM generate
5 Ordered date Orcer_Date
6 Order identication Number  Order_ID
7 Labname Lab_Name
8 Reagent Reagent
9 Recewed Date Recene_Date
10 Blotormataian Bionformataan
11 Analydcs insstuton Analydcs_insttuton
12 Sequencer identicaton hum Sequencer_ID
13 Panel identicaton Number  Panel_ID
14 Pipeline Identficaton Numbde: Pipeline_ID
15 SNVARDel pipeline detai iden SNV_IinDel_PD_D
16 Copy Number Variason pipelit CNV_PD_IO
17 Transiocaton pipeine detad i Translocasion_PD_ID
18 Microsatelite Instabisty Aterat MSI_PD_O
19 Tumor mutation burden pipels TMB_PD_IO
20 Documentcreatondate  Docu_Creation_Date
21 Document version Docu_Version

Figure 3.1. HLA Database design merged in the cGDM schema
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General Discussion’

The rapid accumulation of genome information has led to a paradigm shift
in medicine. Nevertheless, significant barriers remain to overcome inflection
points. Through multi-disciplinary analysis and consideration of this
phenomenon, we determined two main causes: 1) reliability-related result
variance among numerous pipelines and processes, and 2) the unique data
structure of genome information. Since these two causes have mutual
influences, an integrative solution may be more effective than a point
solution. Moreover, we foresee that GIS will become an essential
component of an integrated clinical information system in the precision
medicine era. In this context, this cGDM could serve as a genomic
information representation scheme enabling the intellectual interaction
between medical experts and informed decision making, ultimately
contributing to the enhancement of personal genomic data utilization at the

point of care.

" The part of the dissertation general discussion published in following paper: Kim, H. J.,
Kim, H. J., Park, Y., Lee, W. S., Lim, Y., & Kim, J. H. (2020). clinical Genome Data Model
(cGDM) provides interactive clinical Decision Support for precision Medicine. Scientific
reports, 10(1), 1-13.
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The GDM as an Infrastructure for a GIS

We recommend the GDM as a genomic information representation scheme
for clinical purposes. To ensure the convenient and appropriate clinical use
of genomic data, medical informatics technology is needed as part of the
infrastructure supporting the integration of clinic and genomic layers of

8.5 Given the multi-level and multi-dimensional nature of

information
health, clinicians must perform decision-making for a given case based on a
collection of segmented data representing a person’s health, including
laboratory data, imaging, and observation data assessed by experts.
Currently, a clinical information system is typically used as a core tool for
supporting this knowledge in a management process. To broaden
perspectives in the era of precision medicine, we propose a concept of
genome information system (GIS) as an integral component of an expected
clinical information system for precision medicine (Fig. 1.1).

The c¢GDM can serve as a data-level infrastructure for
implementation of the GIS. When decision makers face unfamiliar health-
status measurements, determining clinical significance and meaning is
challenging®°. The cGDM was designed to preserve genomic information
at an appropriate information scale and granularity covering the procedural
dimension, which 1is related to the confidence level as a clinical

measurement for clinical application. The design of the cGDM allows

processed genomic data for a general purpose to be stored and merged with
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existing clinical data, providing outputs in an interoperable data format.
Likewise, sequencing analysis, data processing, and presentation of
processed information can be managed in a form that can be explicitly
confirmed. Once data are uploaded to the cGDM-based database, they serve
as a supportive backbone for any downstream functional applications such
as report generation or a clinical decision support system. (e.g., Fig 8; Fig 3)
To develop a system for the systematic management of genomic data, it is
necessary to unify its data structure with that of other existing components
of clinical information systems, ensuring sufficient reliability for identifying

the original data generation process’'
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Current Approach to Genomic Data Management

The Health Level 7 (HL7) clinical genomics working group provided a
model for health information exchange and Fast Health Interoperability
Resources (FHIR) genomics, a model that integrates genetic and clinical
information via the HL7 interfacing standard’®’?. FHIR provides standards
for medical and genomic information exchange and offers open-source and
open application programming interfaces (APIs) that can easily be applied
in clinical fields among heterogeneous data sources. FHIR and FHIR
genomics have made substantial contributions toward the implementation of
medical information exchange and are drawing electronic health records
vendors' attention in this respect.

The Global Alliance for Genomics & Health (GA4GH) was
established in 2013 to develop public tools that enable the responsible,
voluntary, and secure sharing of clinical and genomic data’. The federated
approach of GA4GH does not involve the storage and management of data
in centralized data repositories. Instead, it provides an API that enables users
to request and share data while holding data for institutions’*.

The FHIR and GA4GH consortium of HL7 were developed with
the intention to facilitate the exchange of genomic and clinical data among
multiple sites. Both resources have a common character as a form of
information exchange at the communication level. These systems use the

latest web technologies such as the representational state transfer (REST)
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API to make it easier for developers to implement clinical applications or
information systems in the healthcare industry.

The International Organization for Standardization (ISO) Technical
Committee 215 (Medical Information) has proposed genomic information
standards. ISO 27720:2009 (GSVML; General Sequence Variation Markup
Language) is a standard that defines how genetic sequencing variation
information is exchanged based on XML. The scope of this standard is in
the data exchange format and does not include the database schema.
Although all genetic sequencing is within the standard's scope, the SNP is
the main target of this standard. Another standard for more specific
clinical utilization of genomic information is ISO/TS 20428 Health
information - Data elements and their metadata for describing structure
information in electronic health records established in 2017. Additionally,
ISO/CD TS 23357 Genomic informatics — clinical genomics data sharing

specification for next generation sequencing is under development state.
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Table 4.1 Comparison table of characteristics of related resources

Data management scope Computability
Resource  Publication Clinical Patient for CDS  for report Purpose Organization
(vear) Storage Exchange .data identification rule generation
linkage
cGDM 2020 0 X 0 0 0 0 E?;;;VIELEHR SNUBI
OMOP Federated Research
G-CDM 2019 (0] X (0] X X X Network OHDSI
FHIR 2020 * Information
Genomics (2015~) X O 0 0 O 0 Exchange HL7
GA4GH . Data interchange for
Genomics z‘z‘oﬁg‘lg)ress X 0 X X X X bioinformatics GA4GH
API research
ISO/TS Structuring ISO/TC215 (Health
20428:2017 2017 X O 0 0 X 0 sequencing report Informatics)
ISO/TS ISO/TC215 (Health
25720:2009 2009 X (0] X X X (0] SNP data exchange Informatics)
GDC 2017 X 0 X X X X Cancer related NIH NCI

genomic data sharing

*via SMART on FHIR, CDS Hooks, HL7 Inforbutton

c¢GDM: clinical Genome Data Model; OMOP G-CDM: Observational Medical Outcomes Partnership Genome Common Data Model; FHIR: Fast Healthcare Interoperability
Resources; GA4GH: Global Alliance for Genomics and Health; ISO/TS 20428:2017: Health informatics - Data elements and their metadata for describing structured clinical
genomic sequence information in electronic health records; ISO/TS 25720:2009: Health informatics - Genomic Sequence Variation Markup Language(GSVML); API:
Application Programming Interface; GDC: Genomic Data Common; SNP: Single Nucleotide Polymorphism; SNUBI: Seoul National University Biomedical Informatics;
OHDSI: Observational Health Data Science and Informatics; HL7: Health Level Seven; NIH: National Institutes of Health; NCI: National Cancer Institute
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Observational Medical Outcomes Partnership Common Data Model
(OMOP-CDM) aims to conduct distributed research across observational
databases in multiple institutions using a common data model approach.
Genomic Common Data Model (G-CDM) proposed as an extension part of
OMOP-CDM represents genomic information””. Focused on research
purposes, the granularity and scale of knowledge representation have limited
for multifaceted clinical application.

The almost resources discussed earlier focus on data exchange
formats for utilization rather than on EHR integration of genomic
information. Therefore, the system is being developed by designing
functions first rather than expressing knowledge of the genomic information
itself, and by further defining the element whenever the function is added.
This development methodology has strength for easy and fast software
function development. On the one hand, however, all of reviewed resources

are on a separate layer from the ground level schema in data management.
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The ¢cGDM: A Step beyond the Capabilities of the
Existing Systems

To develop a system for the systematic management of genomic data, it is
necessary to unify the data structure with that of other components of
clinical information systems, and to ensure sufficient reliability for
identifying the data generation process'®. Conventional systems have
focussed on data structure wunification issues first, to harmonise
heterogeneous systems among separate institutions’®. By contrast, our
model was designed to achieve both clinico-genomic knowledge
representation accompanied by traceability of the genomic data, to enable
determination the clinical significance of a genomic test result provided to a
clinician.

Through the developed cGDM, standardization and integration of
the structure of genomic data can be realized, along with tracing of the
information in a step-by-step manner until the data related to the target are
extracted according to clinical or research requirements. To secure the
clarity of genomic information, we defined the basis for each attribute and
focused on designing an entity set that can accurately represent the genomic
data to be delivered to the target user, without information distortion,
through composition of the basis.

To allow better assessment of the meaningfulness of genomic

information, we defined the basis for each attribute and focused on
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designing an entity set that accurately represents the genomic data that are
delivered to the target user, without information distortion. Furthermore, the
cGDM is adaptable as a data-level extension to any existing information
system, regardless of database system or application platform. Effectiveness
and feasibility of genomic data management in the computational
environment in terms of the data-level EHR integration approach by the

c¢GDM were also broadly evaluated in Chapter 2 and 3.

8 1



Unrecognized Ambiguity in the Interdisciplinary

Knowledge Interplay

Accumulation of basic, translational, and regulatory science is a prerequisite
to implementing personalized medicine in routine care”’. As a basic science,
bioinformatics has witnessed explosive and rapid progress since the
completion of the Human Genome Project. In the context of regulatory
science, there are currently several ongoing efforts within the bioinformatics

- . 10,11
and molecular biology domains,'*'""’

with great maturation in the body of
knowledge during the last decade, including principles and
recommendations related to NGS technology. These efforts have focussed
primarily on the standardization of bioinformatics protocols and the file
structures for intra- or interlaboratory communication.

Translational science represents the next challenge for the
realization of actual health promotion with personalized medicine’. In the
context of clinico-genomics, translational approaches ultimately target the
syntactic and semantic interoperability between genomics and clinical
practice, to ensure business continuity in terms of knowledge

3,24,79
managementz’ 7

. Previous approaches have stressed a need for structural
transformation to overcome the currently low adaptation of genomic
information for clinical decision-making. However, the other major cause,

the knowledge gap, has yet to be seriously considered because the solution

appears obvious: the education of medical experts in bioinformatics
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principles.

Nevertheless, this raises the question of the specific level of
bioinformatics knowledge required in clinical practice. Our working group
agreed that clinicians do not need to be bioinformatics experts to implement
precision medicine. Preferably, the key is education on how to understand
genomic data and confidence levels, and then be provided with sufficient
information to make clinical decisions. Based on this perspective, we
identified a previously unrecognised ambiguity related to the knowledge
interplay between bioinformatics and medical practices (Fig. 3). Although
the genome is the most concrete type of observational data representing an
individual's inheritance, the genomic information delivered to clinicians is
rarely transformed to a human-readable form and is also rarely a direct
representation of the genomic sequence. Instead, this information is more of
an intellectual product, processed in a purpose-weighted result file structure.
Thus, the question of reliability of the genomic information must be
addressed before it is adopted by the physician, similar to other types of
conventional observational data.

Considering the knowledge gap in this clinico-genomic context,
unrecognised ambiguities may occur on each side. For example, when
linking the outputs of bioinformatics to clinical fields, the indicator of
information quality moves from internal consistency within the same

protocol to external consistency between different protocols. Thus, to
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accomplish the final goal of precision medicine, more discussion is needed
about how data will cross this intermediate space, then about how to best

represent and deliver crossover information.

84



Adoption of FMEA to Information Processing

To best of our knowledge, the methodology proposed herein has not yet
been applied in the field of genetic information processing. FMEA is the
most commonly used methodology for determining reliability of

manufacturing and design processes' %1081,

We perceive the result of
genetic testing not as an output of static measurement, but rather as an
output of an intellectual production process. When conducting
bioinformatics analyses, there is no requirement for unification among the
processes, since the internal consistency within each process guarantees
scientific rigour. Moreover, the flexible data specifications used in the
bioinformatics field have the advantage of supporting various research
applications’, but that advantage becomes an obstacle to data integration for
comprehensive clinical decision making. In addition, relevant external
knowledge, tools, platforms, and analytical techniques cannot be unified
because they are still under development. Considering this large
interdisciplinary hyperspace, our approach aims to improve the quality of
information delivery while responding to an enormous, growing body of
knowledge that has yet to be integrated within its own basic-science field.
Therefore, the FMEA was adopted to derive and clarify a set of metadata

designed to prevent information from being distorted.

To facilitate the use of genomic test results in clinical practice, it is
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essential to integrate genomic data into clinical decision support systems

regarding data volume and knowledge management®***"#2

. Data modeling
is the first and most crucial step in the multi-tiered design of information
systems. The final product reliability, for example specific clinical decision
support algorithms or integrated information systems, is hardly improved
over the designed reliability on the lower level of architecture (data-level)™.
This viewpoint was projected to the study design. An important
consideration is that the analytic scheme presented here can help to enhance
clinico-genomic understanding for experts on both the medical and
bioinformatics sides of the workflow. (see Methods Section) Throughout the
development of this method, we focussed on equally weighting the clinical
perspective and bioinformatics process analysis in the context of business
continuity, starting from our initial clinical intention through bioinformatics

information processing by a knowledge-based protocol, finally offering a

deliverable and interpretable form to the point-of-care clinician.
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Limitations

Multi-omics data have a fundamental limitation of unification, which is
derived from the difference of knowledge expression forms related to the
processing methodology, final processed data depending on the target layer,
and its biological characteristics. In addition, prior to NGS, there were
already several structured models according to differences in data scale and
technical maturity. The entity and attribute set defined in the GDM is
derived from analysis of the workflow of NGS. Therefore, we do not
consider the elements of other technology-based workflows in multi-omics
layers.

The methods, equipment, data processing and analytical techniques
for extracting data from targets in nature will continue to evolve and
accumulate. The cGDM was designed to be flexible and able to readily
adapt to technological changes. However, an eventual failure in responding
to these changes cannot be excluded and represents a potential limitation of
this study.

Several standard models have been generated, based on differences
in data scale and technical maturity, prior to the development of NGS
technology. Thus, we have not considered multi-omics data. Focussing on
NGS technology-based workflow helped us to determine an optimized
information scale and granularity for the clinical level, and to design a

model to generalise and process genomic data based on individual patients.
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The cGDM could be extended to be a part of technology-wide data model
integration for multi-omics data management.

The data model proposed in this study aims to clarify blind points
within the interdisciplinary genomic-clinical interface, connecting separated
expertise within a single platform to provide a broad perspective that covers
the information reliability required for clinical evidence. In particular, we
have made a novel attempt to adopt the FMEA method for a systematic
meta-level data design process. Future work will focus on the development
of functional systems to conduct real-world validation, including a data-
upload pipeline from processed genome data files, as well as a clinical

decision support tools based on the cGDM.
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Supplementary Information

Supplementary Figure S1. PGx CDS mock-up application based on the cGDM architecture

Stored data example in the CGDM database

Patient identifier], HGVS_Genomic_Change |HGNC_Gene_Symbol| Position |Ref_Allele |Alt_Allele i dbSNP_ID | Order_date
1224 NC_000010.10:9 96702047C>T CYP2CY 96702047 < T 10 Wee rE1799053 | 2018-08-23
1224 NC_000010.10:9.96741053A>C CYP2CY 96741053 A < o MWPC rs1057910 | 2018-08-23
1224
< c * @ o
1000 genome phase 3 CEU v Search
Patient No: PADE983 Name: Paul Molive Fr24
Dx: Deep vein thrombosis  156cm / 45kg Submit
Pt Name (Pt No)
X Date Order No  Drug Dose DoseUnt  Route  Frequency/Duration Prescriber
Mario Speedwagon (PA0E884)
M-21-Unknown-187-79 20200710 1 warfarin 6 mg PO fal] Dr. Kim

Petey Cruiser (PAOGSES)

F-22-Unknown-189-61

Anna Sthesia (PADG986)

PGx CDS message
M-23-Unknown-161-97

Paul Molive (PA0E98S) Warfarin dosing can be modified with a patient’s VKORC1 and CYP2C# phenotype
2 56-45 IWPC warfarin pharmacogenelics dosing estimation applied to the patient's case display below.
F-24-Unknown-156-45

Current ordered dose: & mgiday (= 42.0 mgiweek)
Anna Mull (PAQES94) €: & mgiday (= 42.0 mg
MZrimmown-1340s Recommendation: 3.7 mgfday = 26 0 mg/week

Gail Forcewind (PADOT000)

F-26-Unknown-168-81 Related Gene PGx Genotype
: VKORC1 AG

Paige Turner (PAO7037) =

F-27-Unknown-185-63 CYP2CY "2z

Bob Frapples (PAO7048)

M-28-Unknown-172-9: Please consult a clinical pharmacist for further considerations.
-28-Unknown-172-95

v More evidence information on Web
. snubi.ora B0,
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Supplementary Table S1. Table Specification of the cGDM
The logical entities and attributes expressed in Figure 1.5 were converted into physical entities and attributes. Here, we provided our
physical data model as the following table. The required data type, description, and example value for each attribute defined are described.
All of the logical entities and attributes in Figure 1.5 have been transformed and defined in the physical model presented here. So, by
applying this sort of conversion to physical model, each researchers can construct a genomic database according to the environment of the

existing information system.

CLINICAL IDENTIFIER Table specification

# |Logical Name

Physical Name

PK

Required

Data Type

Description

Example

—_—

Subject Identifier

Subject Identifier

PK

Yes

int(11)

Arbitrary person identifier
defined in the CGDM database

2 [Patient Number

Patient Number

Yes

varchar(20)

Patient number of existing HIS
database used to link with the
CGDM database

12345678

3 |[Medical Institution Identifier

Institution_Identifier

Yes

varchar(20)

An abbreviation of the hospital
name where the patient data
linked with the CGDM database

SNUH

4 |Order Identifier

Order_Identifier

Yes

varchar(20)

Unique key value represents an
order of existing HIS database
used to link with the CGDM
database

602489471

5 |Clinician Identifier

Clinicain_Identifier

Yes

varchar(20)

Unique key value represents a
physician of existing HIS
database used to link with the
CGDM database

A2068494

6 |Submission Date

Submission_Date

Yes

datetime

Date of the beginning of the data
production period (e.g. ordered
date)

2018-08-17 13:44
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EXPERIMENT RELATED INFORMATION Table specification

# |Logical Name Physical Name PK |Required|Data Type |Description Example
Arbitrary identifier of the

1 |[Experiment Identifier Experiment Identifier |PK |Yes int(11) experiment defined in the CGDM |11
database

. . . . . Arbitrary person identifier
2 |Subject Identifier Subject Identifier FK |Yes int(11) defined in the CGDM database
3 |Test Description Test_Description No text gzttalled description for ordered
. . Library strategy for genome {WGS, WES, Targeted

4 |Type of sequencing Sequencing_Type Yes varchar(50) sequencing sequencing, cfc.}
The technology platform used to

5 |Platform technology Platform Technology Yes varchar(20) identify the variant NGS

6 |Sequencer Sequencer Yes varchar(50) |Sequencing equipment [llumina Hiseq 2500

7 |Sequencing Institution Sequencing _Institution Yes varchar(50) |Name of sequencing institution |SNUBI

8 |Experimenter Experimenter Yes varchar(50) Name. of the primary BJ Min
experimenter

9 |Collection Date Collection Date Yes datetime Date of the sample collection 2018-09-03 11:00

BIOINFORMATICS PROTOCOL RELATED INFORMATION Table specification

# |Logical Name Physical Name PK |Required|Data Type |Description Example
Bioinformatics Protocol Arbitrary identifier of the
1 Identifi BI Protocol Identifier |PK |Yes int(11) bioinformatics protocol defined |121
entrier in the CGDM database
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Arbitrary identifier of the

2 |Experiment Identifier Experiment Identifier |FK |Yes int(11) experiment defined in the CGDM |11

database
3 |Pipeline Name Pipeline Name Yes varchar(50) |Name of the pipeline SNUBI WXS data pipeline

L . The order in which the steps are
4 |Step (of the pipeline) Step Yes int(3) executed 1
5 |Tool (of the pipeline) Tool Yes varchar(50) |Procedure description (ahgnment,. sort, deduplication,
variant calling, etc.}
6 |Parameter (of the pipeline) Parameter Yes varchar(50) |The name of tools GATK
7 I]))i;gsizgce origin (used in the Datasource Origin Yes varchar(50) |The version of tools v2.5-2
] Datasource version (used in the Datasource Version No varchar(50) Preset parameters used for the stand call conf=30,stand _emit c
pipeline) - step onf=10
9 Il))i;tealsiﬁ:)rce Build (used in the Datasource Build No varchar(50) |The source of databases 1kG, Mills, dbSNP137
10|{Analytics Institution Analytics_Institution Yes varchar(50) Name .Of t'he l.)101'nformatlcs SNUBI
- analytics institution

11|Bioinformatician Bioinformatician Yes varchar(50) N.ar.ne of the. primary YM Park

bioinformatician
12|Received Date Received Date Yes datetime Date of the rawldata file (cg. 2018-09-1517:35

BAM file) received

. . . Date of the processed data stored .
13|Documentation Date Documentation Date Yes datetime in the CGDM database 2018-09-22 11:22
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QUALITY CHECK Table specification

# |Logical Name Physical Name PK |Required|Data Type |Description Example
Arbitrary identifier of the quality

1 |Quality Check Identifier QC Identifier PK |Yes int(11) check matrix in the CGDM 123
database

Bioinformatics Protocol Arbitrary identifier of the
2 I donti g . ¢s Frotoco BI Protocol Identifier |FK |Yes int(11) bioinformatics protocol in the 121
entiie CGDM database

3 |Total Reads Total Reads Yes bigint Total number of reads 100720000

4 |Total Aligned Reads Total Aligned Reads No bigint Total number of aligned reads 99168912

5 |% Reads Aligned Reads_Aligned Percent No float Percentage of reads aligned 98.46 (=4/3)

6 |Total Bases Total Bases No bigint Total number of bases 7260000

7 |Total Mapped Bases Mapped Bases No bigint Total number of mapped bases  |7050000

8 |Average on target depth DepthMean No float Mean on target depth 71.94

9 Standard deviation on target Depth SD No float Standard deviation of on target 16.54

depth - depth

10{On Target Bases Target Bases No bigint On target bases 2640000

GENOMIC ALTERATION Table specification

# |Logical Name Physical Name PK |Required|Data Type |Description Example

Genomic Alteration Ide Arbitrary identifier of the
1 |Genomic Alteration Identifier . - — |PK|Yes int(11) genomic alteration defined in the |14009
ntifier
CGDM database
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Bioinformatics Protocol

Arbitrary identifier of the

2 Identifier BI Protocol Identifier |FK |Yes int(11) bioinformatics protocol defined |121
in the CGDM database
3 |Position Position Yes varchar(255) The genomic position where the 180888597
alteration occurs
4 |Reference allele Reference Allele Yes varchar(255) The base found in the reference A
- genome
5 |Alternative allele Alternative Allele Yes varchar(255)|Any base other than the reference |T
6 |Chromosome Chromosome Yes varchar(2) The chromosome where the 7
alteration occurs
. . . . Cytogenetic band that the
7 |Cytogenetic location Cytogenetic_Location No text location of the alteration maps to 17q12
8 |Codon Codon No text The qodon where the alteration is 12
identified
The exonic location where the
9 |Exon Exon No varchar(10) alteration is identificd 19
. Description of the nucleotide
10|JHGVS genomic change HGVS_Genomic_Chang Yes text change for a genomic sequence |NG_007873.3:2.176429T>A
e .
(supplied by HGVS)
Description of the nucleotide
11/HGVS coding change HGVS_Coding Change | [No [text gil;gegﬁcior a coding DNA NM_004333.4:c.1799T>A
(supplied by HGVS)
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Description of the nucleotide

12|[HGVS protein change HGVS Protein_Change No text change for a protein sequence NP_004324.2:p.Val600Glu
(supplied by HGVS)
13|HGVS version HGVS_Version Yes varchar(20) |The version number of HGVS HGVS version 15.11
. . The identification tag (supplied
14|dbSNP Identification Number |dbSNP_ID No varchar(20) by NCBI dbSNP) rs56046546
. . The identification tag (supplied
15|dbVar Identification Number |dbVar ID No varchar(20) by NCBI dbVar) nsv1123397
16/Genome build Genome_Build No varchar(20) |S¢nomic coordinates of the GRCh37/hg19
- reference
17|Genomic source Genomic_Source Yes varchar(10) |Class of genomic source e{tSco;n atic, Germline, Unknown,
The official gene symbol
18|HGNC gene symbol HGNC_Gene_Symbol No varchar(20) approved by the HGNC ALK, IMID7-PAL2G4B
19|Entrez gene ID Entrez_ID No integer I]E]Iggclz) Gene ID (supplied by 238
20|Ensembl gene ID Ensembl_ID No char(1s)  |Ensembl Gene ID (supplied by \p\9500000171094
Ensembl)
21|Genotype Genotype No char(3) Allelic state of the given variant |01, 00, .|., etc
2 clinVar Variation Identification clinVar Variant ID No varchar(20) The 1.dent1ﬁcat10n tag (supplied 188275
Number - - by clinVar)
COSMIC Identification The identification tag (supplied
23 Number COSMIC ID No varchar(10) by COSMIC) COSM476
24|Molecular Effects Molecular Effect No varchar(50) Effec.ts of mutations on protein | {Missense, Nonsense, Frameshift,
- function Promoter, etc}
95
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The type of variant in a sequence

{Substitution, Deletion,

25| Variant type Variant_Type Yes varchar(20) Duplication, Insertion, InDel,
- of DNA . .
Inversion, Conversion, etc.}
26|Functional Domain Functional Domain No varchar(50) The ﬁm ctional domain where the ATP-binging domain
- alteration occurs
CLINICAL ANNOTATION Table specification
# |Logical Name Physical Name PK |Required|Data Type |Description Example
Clinical Annotation Ide Arbitrary identifier of the clinical
1 |Clinical Annotation Identifier ntifier — |PK|Yes int(11) annotation defined in the CGDM |22
database
Genomic Alteration Ide Arbitrary identifier of the
2 |Genomic Alteration Identifier . - — |FK|Yes int(11) genomic alteration defined in the |14009
ntifier
CGDM database
3 |Biomarker Datasource Biomarker Datasource Yes varchar(255) Name of datasource fgr ACMG actionable genes
- biomarkers of genomic data
. . Name of predictive indicator .
4 |Biomarker Name Biomarker Name Yes varchar(50) . EGFR Exon 19 Deletion
- from biomarker datasource
MICROSATELLITE INSTABILITY Table specification
# |Logical Name Physical Name PK |Required|Data Type |Description Example
. . o Arbitrary identifier of
1 i\glcr:lrt(i)fsiatrelhte Instability MSI Identifier PK |Yes int(11) microsatellite instability defined |14
entihie in the CGDM database
96



Bioinformatics Protocol

Arbitrary identifier of the

Identifier BI Protocol Identifier |FK |Yes int(11) bioinformatics protocol defined (121

in the CGDM database

Distinct phenotype of the {Microsatellite Stable (MSS),
MSI phenotype MSI_Phenotype Yes varchar(50) microsatellite instability MSI-Low (MSI-L), MSI-High

(MSI-H), Indeterminate MSI}
MSI marker name MSI Marker Name Yes varchar(20) |Name of the MSI marker BAT26
MSI marker status MSI Marker Status Yes varchar(20) |Determined MSI status Positive
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Supplementary Table S2. IUPAC nucleotide code table for processing
double/triple based code

Symbol Meaning

a; adenine
C; cytosine

o

g, guanine
t; thymine in DNA; uracil in RNA
aorc
aorg
aort
corg
cort
gort
aorcorg,nott
aorcort;notg
aor gort; notc
Cc or g ort; not a

B o AD><d < u 8 +mnm o

aorcorgort

*reference: Cornish-Bowden, A. Nucl Acid Res 13, 3021-3030 (1985)
,https:// www.nebi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/iupac

nt_abbreviations.html o4 A <Q1-&

98



Supplementary Table S3. Number of HLA alleles

Category Locus Allele Protein Null allele
number number number
Class I HLA-A 673 527 46
HLA-B 1077 911 38
HLA-C 360 283 8
HLA-E 9 3 0
HLA-F 21 4 0
HLA-G 36 14 1
Pseudogenes 39
Total 2215 1742 93
Class IT HLA—-DRA 3 2 0
HLA-DRB 669 546 8
HLA-DQA1 34 25 1
HLA-DQB1 93 68 1
HLA-DPA1 27 16 0
HLA-DPBI1 128 114 2
HLA-DMA 4 4 0
HLA-DMB 7 7 0
HLA-DOA 12 3 1
HLA-DOB 9 4 0
Total 986 789 13
MHC— MICA 64 54 0
like
MICB 30 19 2
Total 94 73 2

* reference: Shiina, T., Hosomichi, K., Inoko, H., & Kulski, J. K. (2009). The HLA
genomic loci map: expression, interaction, diversity and disease. Journal of human
genetics, 54(1), 15-39. Table 4. Number of HLA alleles
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Abstract

Clinical Genome Data Model
towards Precision Medicine

Hyo Jung Kim
Interdisciplinary Program of Medical Informatics
Graduate School of Medicine

Seoul National University

Background The transition to precision medicine and personalized medicine
is accelerating owing to progress in genomic technology and the consequent
accumulation of genomic information. However, the clinical application of
genomic information remains limited, and its spread rate has been slower
than expected. This lag has been attributed to complex causes, including 1) a
knowledge gap between medical experts and bioinformaticians, 2)
separation of the bioinformatics workflow from clinics, and 3) unique
characteristics of genomic data. Nevertheless, current informational
approaches to link genomic data to clinical fields mostly address the data
structure problem.

Objective We aimed to develop a genomic data model allowing for more

interactive support in clinical decision-making. Informational modeling was

i



used as a knowledge communication scheme from the highly intellectual
product of bioinformatics to a representative data component of a clinical
decision.

Methods Reliability-related attributes were derived through failure mode
and effect analysis (FMEA). This study involved a multidisciplinary
working group that conducted clinico-genomic workflow analyses and
attributes extraction. Based on these data, an entity-attribute model was then
developed through abstraction and normalization.

Results The outputs of FMEA were a dataflow snapshot obtained from next-
generation sequencing, the information process map extended to the clinico-
genomic context, and the set of attributes. Next, an entity-attribute model
consisting of eight entities and 49 attributes was identified to develop the
final genome data model, including: a linkage identifier to clinical
information, experiment-related information, bioinformatics protocol-related
information, physical location information, expression, annotation, actor
information, and timeline information.

Conclusion The proposed genome data model could serve as a data-layer
infrastructure supporting the intellectual interplay between medical experts
and informative decision-making. Given the importance of recognizing a
genome information system as a component of the clinical information
system to realize precision medicine, the model could help enhance

integration of genomic data in clinical settings.
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General Introduction
One of the significant tasks of medical informatics for the implementation
of precision medicine is supporting clinicians by integrating personal
genomic information with other clinical evidence so that constantly-
evolving knowledge and inherently complex genomic data can be handled
on-demand at the point of care. The transition to precision medicine and
personalized medicine was expected to be accomplished within a few years
due to the outstanding high-throughput sequencing capabilities of next-
generation sequencing and the accumulation of knowledge about its
interpretation. The prior studies present that this delay can be attributed to
complicated factors, such as knowledge gaps between medical experts and
bioinformatics, the separated workflow between clinical practice and
bioinformatics analysis, the unique quantitative and qualitative data
structure of genomic data, which can make interpretation more complicated.
In an attempt to solve this problem, there is an increasing demand for the
integration of personal genomic information in the electronic medical
records. However, it has not been proposed as a sustainable, scalable, and
interoperable method for storage, management, and processing the genomic
data concerning clinical utilization.

In this study, the current barriers were explored through literature
review, and related concepts and methods were investigated about these

phenomena. Moreover, we addressed the immediate task of storing,

1



processing, and delivering data based on next-generation sequencing
analysis methods to prepare for multifaceted clinical utilization. Data
modeling is the first and most crucial step in the multi-tiered design of
information systems. The point is that the final product reliability, such as
specific clinical decision support algorithms or integrated information
systems, is hardly improved over the designed reliability on the lower level
of architecture.

Chapter 1 proposed a clinical genomic data model based on
Deoxyribonucleic Acid (DNA) level data extracted from next-generation
sequencing (NGS) technology. The multidisciplinary discussion reveals a
set of genetic knowledge expressions that can be preserved and delivered
the meaning for clinical decision making. In Chapter 2, the CPIC guideline,
which is a knowledge of how to use available genomic test results to
optimize drug therapy for individuals, is structured. Furthermore, we
propose a modular drug genome clinical decision support system by linking
the patient's genomic information and data-level information flow
constructed in Chapter 1. Chapter 3 deals with the design and
implementation of structured information about the HLA gene as one of the
extensions to accommodate the diversity of naming systems as the
discoveries that reveal their clinical significance in bioinformatics continue.
The sustainability and scalability of the clinical genomics data model were

verified by design and expand knowledge expression for HLA nomenclature.



In this study, we explored multidisciplinary space where medical
informatics can contribute to precision medicine, and an approach that
encompasses aspects of knowledge expression, functional realization, and

usability of information systems was attempted.



Chapter 1. Clinical Genome Data Model: Data
Level Integration of Patient Specific Genomic
and Clinical Data for Multifaceted Utilization™

1.1. Introduction

As the field of medicine transitions from experience-based medicine to data-
driven medicine, an apparent paradigm shift to precision medicine is
underway, driven by the development of technologies in fields including
medical information technology and computer engineering'?. Genomic
information is one of the most critical component of precision medicine,
given its power to explain individual variability®. However, the practical
clinical use of genomic information remains limited because its circulation
is suboptimal, with each data processing step tending to be independently
performed and thus isolated. To narrow this gap, many organizations have
attempted to identify and develop methods to more effectively link genomic
data to clinical information and thereby facilitate its use*®. However,
several challenges must be surmounted before realizing this goal.

First, a mismatch exists between the structure of genomic and clinical
data. Genomic data based on next-generation sequencing (NGS) technology

is stored as a number of file types at various stages of the bioinformatics

* The main body of the dissertation chapter 1 published as following paper: Kim, H. J.,
Kim, H. J., Park, Y., Lee, W. S., Lim, Y., & Kim, J. H. (2020). clinical Genome Data Model
(cGDM) provides interactive clinical Decision Support for precision Medicine. Scientific
reports, 10(1), 1-13.
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analysis, with flexible file specifications to accommodate the broad range of
research interests in bioinformatics’. Raw genomic data can contain up to
several tens of gigabytes of sequence information, each stored as a long
string of data, and therefore cannot be used directly in this form in clinical
practice without further processing. Since data processing to determine
clinical relevance is both computationally intensive and time-consuming,
genomic information is not readily accessible relative to other types of
clinical data. Thus, for precision medicine and personalized medicine, pre-
processed genomic data needs to be linked with other clinical information
and provided at the appropriate time. In order to resolve this issue, a
structured database is needed to store and appropriately manage genomic
information for easy accessibility.

Second, genomic data has different properties than conventional
observational data used in clinical settings. Therefore, genomic data must be
clarified by considering procedural dimensions. Since genomic workflows
contain a large number of pipelines for information processing, significant
differences between the interpretation of processed data and data obtained
from different information systems relative to the clinical workflow are
inevitable®, Accordingly, a robust data model is required to serve as an
information system to systematically manage genomic data, encompassing
the detailed processes of data processing, analysis, and filtering.

Additionally, information on the reliability and accuracy of these analyses



results, along with the detailed analytical process and equipment used, must
also be systematically stored and managed, as it is an essential criterion for
clinical decision-making®. Moreover, because genomic data is less variable
than observational data, information integration will allow for maximization
of the utility of the collected genomic information for clinical use.

The third challenge, majorly hindering the integration of genomic
data with clinical information, is difficulty in mapping the two types of data
for medical interpretation. The presence of biomarkers for specific diseases
or drug reactions is a critical factor in clinical decision-making®. In the case
of targeted sequencing, the data processor is informed about biomarkers
related to the panel prior to analysis. In clinical practice, reannotation of
patient genetic information according to updated biomarker discoveries
from the biomedical research community is continuously required at the
population level. Thus, a structured data model with consistent data
representation would enable the rapid adoption of both evolving biomedical
knowledge and individual medical records, which can be delivered to the
point of care through agile data processing. Furthermore, patient genomic
data expressing specific biomarkers should be readily accessible from the
information system along with clinician-confirmed interpretations!®,

Personal-health status can be converted to a composition of multi-
layered, multi-dimensional digitalized information for utilization in an

information system that facilitates handling big data (Fig. 1). Indeed, vast



amounts of data and associated metadata from multiple medical measuring
technologies, such as laboratory tests or imaging studies, have already been
successfully merged in clinical information systems. Overall, although
genomic information represents the most sound and intensive health-related
signals provided by the human body throughout life, the weak links to
medical practice highlighted above contribute to its underutilization in
clinical decision-making. Therefore, it is necessary to effectively link and
integrate clinical information with personal genomic information, helping to

accelerate the shift to personalized medicine.



B PGHD : Person Generated Health Data
LIS : Laboratory Information System
PACS : Picture Archive and Communication System
CPOE : Computerized Physician Order Entry
EMR : Electronic Medical Record

B GIS : Genome Information System
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Figure 1.1 Data-level linkage structure between conventional HIS and GIS
From a software engineering perspective, a comprehensive hospital

information system comprises components that represent separated data
collection routes and distinguishing characters of the data. We suggest the
concept of GIS to illustrate the implementation of the c¢GDM. This
architecture supports both information and functional integration, even with

existing clinical information systems.



1.2. Purpose of Research

The proposed GDM is based on an entity-attribute model to effectively
manage and maximize the use of genomic data in clinical practice. Through
the development of this method, we focused on equal weighting to the
clinical perspective and bioinformatics process analysis as business
continuity, starting from the initial clinical intention to bioinformatics
information processing associated with a knowledge-related protocol,
finally offering a deliverable and interpretable form to the point-of-care
clinician. The GDM was designed based on DNA level data from next-
generation sequencing (NGS) technology to deliver processed genomic data
of patients from different pipelines by applying an appropriate information
scale and granularity at the clinical level.

Toward this end, we began by redefining the obstacles to the spread
of genomic information into routine care, including reliability problems of
proposed measurement data that could cause hesitation in clinical decision-
making, and data structure problems that have hindered the integration of
genomic data into existing information systems. From a clinical perspective,
we focused on the reliability of information as well as the problem of a
heterogeneous data structure. In this context, we define a bioinformatics
process not as a “measurement,” but rather as a “production” to transition a

physical form of existence to an interpretable human representation.



Overall, we aimed to develop a model with appropriate information
granularity and scale, which would minimize the possibility of
misinterpretation at the point of care by formal and procedural variation

related to the production process.
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1.3. Materials and Method

The study material was genomic information with clinical relevance based
on NGS technology. A failure mode and effect analysis (FMEA) approach
was adopted as the analysis process and attributes-extracting method, which
was accomplished by assembling a multidisciplinary working group. From
November 2017 to July 2018, process mapping, failure identification, and
related attribute extraction were performed by the FMEA method at over 18
team meetings. An entity-attribute model was then developed by

reconstruction of the attribute set derived from the FMEA.
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1.3.1. The Production Process of Bringing Genomic

Information to Bedside Care

Here, we define a genomic test as a series of team-based information
production processes, in which the meaning of the information is expanded,
represented, and reproduced by reference to an external knowledge base,
rather than through direct extraction of inherent information. Despite the
invariant nature of a personal genome, genomic information presented to a
clinician may vary according to specific processing protocols adopted’12-24,
This variability raises reliability issues for the use of genomic test results as
clinical evidence®.

As artifacts from production, genome information processed for
clinical use may pose a likelihood of misinterpretation due to information
distortion, omissions, and fragmented senses. Furthermore, information
reliability is a critical factor determining the ability of clinicians to utilize
the genomic information®®. Thus, our approach in developing this cGDM for
focussed on the multi-dimensional scope of information, including

procedural factors, derived from NGS technology.
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1.3.2. FMEA: An Attribute-Clarified Framework

FMEA is a systematic prospective risk factor analysis approach that predicts
and prevents possible errors, improving quality across team-based
processes’’. When used for advanced investigation, the method has
advantages enabling exploration of uncertain, unforeseen complex
workflows at an early stage'®!®. Since its introduction in 1963, broad
subtype applications of FMEA have been performed in broad domains
including reliability engineering®®?!, behaviour modeling??, software
engineering®, conceptual design?, and knowledge management and
representation®2%, In particular, FMEA has been applied as a method of
knowledge representation to extract process reliability-related attributes and
to structure and map entities and attributes?>26-8, In this study, the FMEA
approach was adopted for workflow analysis and the attribute-extracting

method.
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1.3.2.1 The working group

A multidisciplinary expert team was formed from the areas of
bioinformatics, medical informatics, and medicine. The participants
included three bioinformaticians, two medical informaticians with clinical
informatics and application expertise, and one medical doctor. The medical
doctor has experience in both clinical practice and conducting translational
research from the perspective of both biomedical science and clinical

practice.
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1.3.2.2 Workflow analysis

Over a period of nine months, process mapping, failure identification, and
related attribute extraction were conducted using FMEA at over 18 team
meetings. Structured data modeling for enhancement of data accessibility
was then conducted using a logical data model, with the attribute set derived
from the FMEA workflow diagram.

We chose the conventional FMEA workflow analysis?*?® and
adapted it for cGDM development. Conventional FMEA consists of two
main steps. First, the failure mode is identified through 1) assembling a
multi-disciplinary team with at least one expert from each domain over the
target production process, 2) combining components and process function in
order to derive a workflow diagram, and 3) listing the modes that may lead
to failure at each step. The second part involves modifying the process itself
with consideration of priority, including 1) evaluating the severity and
occurrence ranking of each failure mode and 2) proposing a modified
workflow or audition guideline.

In this study, risk estimation and priority-scoring steps were not
designed, since our purpose was to review the fragment of metadata
composition that may cause unintended information distortion of

misinterpretation.
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1.3.3. Logical Data Modeling

Data models are the basis of computation ability for intelligent information
systems?®. The database design process can generally be divided into logical
and physical database design®. The physical data model requires a clear and
specific description over logical design, which depends on the existing
development environment. Thus, we designed this cGDM as a logical data
model based on the FMEA results to support data-level integration with any
existing clinical information systems.

Logical data modeling methods are comprised of abstraction and
normalization. Database abstraction refers to aggregation and generalization
that occur at the points of intersection®!. We first abstracted the attributes
derived from FMEA and expressed the factors corresponding to each step in
the workflow. Then, normalization was performed to prevent duplication
and inconsistency of data elements considering their names, scale, and

relations.
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1.3.4. Demo Datasets for the real-world data

validation

Two of representative public accessible dataset are selected for the
development of the demo databases: The 1000 Genomes Project of the
International Genome Sample Resource (IGSR) with population code
"CEU" (Utah Residents with Northern and Western European Ancestry)®,
the pancreatic cancer data from The Cancer Genome Atlas
(TCGA_PAAD)%®,

Collected datasets were VCF and MAF file format, and the Extract-
Transformation-Load (ETL) process of the genomic data was performed by
two bioinformaticians with Python 2.7.16. ANNOVAR 20160ct24 version
was used as a clinical annotation tool for the 1000 Genome Project CEU
dataset. The resulting dataset imported in a table within the MySQL server
database by two medical informaticians. We ran the SQL scripts in MySQL
5.6.46 on a Server with 8GB of RAM and an NVIDIA tesla ¢1060 / Quad-
core CPU running run on CentOS Linux release 7.7.1908. The final outputs

took the form of SQL tables and functions.
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1.4. Results

This section primarily consists of Failure Mode and Effects Analysis
(FMEA) results and entity-attribute modeling. FMEA output is presented in
two diagrams: a dataflow diagram that focusses on the derivation of the
contents of the genetic test based on NGS sequencing technology, and an
information process map that extends the viewpoint to the level of clinico-
genomic context. At this step, the protocol entity of the former dataflow
diagram was subclassified to reveal the procedural dimension in information
processing. Moreover, the set of attributes involved in each step of
information transfer was identified. Finally, the cGDM are suggested as a

result of structured data modeling based on the attribute set.
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1.4.1. Dataflow diagram based on an NGS workflow

A workflow diagram was derived in order to illustrate the data flow in
which the genomic information inherent in the human body is converted to a
genomic test result. (Fig 2.) At this stage, the clinical view is minimized,
with both the flow of information and the process of analyzing the specimen
after the sample collection across experimental laboratory and compu-
tational analysis drawn on a large scale.

The subtypes of processed variant information in the parallel
structure, used to cope with the growing body of knowledge in
bioinformatics, are listed at the bottom of Fig. 1. Variant information can be
called in multiple types depending on the perspective and purpose of the
analysis. For example, there are four types of genetic variation: single
nucleotide variation (SNV), small insertion/deletion (InDel), copy number
variation (CNV), and translocation/fusion. There are predictive biomarkers
as well such as microsatellite instability (MSI) and tumor mutation burden
(TMB).

As the amount of NGS technology-based knowledge increases,
more subclasses representing novel perspectives can be added. Scalable data
modeling to support the differentiation of knowledge over time is essential
not only for expressiveness but also for reducing the burden of information

systems maintenance.
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In summary, we linked the separate offline workflows at this step
that occurred in different places until genomic data could be provided as
processed data. The workflow diagram provided the basis for detailed

analysis and discussion.
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Figure 1.2 Data flowchart based on a next-generation sequencing workflow
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The objects shown in this diagram are classified into three class types- 'Action’, 'Information’, and 'Entity". ‘Action’ was first posted with

respect to what occurred in each expert domain and the resulting ‘information’ was displayed as a result of each action. Finally, 'Entity’ was

defined as the captured information class at each stage of the workflow. Subtypes of 'Variant Information’ were drawn scalable to

accommaodate the potential extension of subclasses.
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1.4.2. Extending the NGS process under a clinico-

genomic context

After establishing a consensus on a larger scale, we extended the
information flow to the clinical context in detail. At this stage, the
standpoint of the workflow analysis was clinical decision making. Hence,
the workflow diagram started with a clinical decision. We extended the flow
between several actions in the clinico-genomic context involving multiple
entities identified, and detailed analysis was performed. In this process, the
output data file format and detailed processes for handling output files,
along with the tools required for linking to external knowledge databases,
are also described.

The working group discussed mechanisms for extraction of the
entity-attribute set which would avoid probable information distortion and
omission. We considered that the genomic data model for clinical use should
be the knowledge communication scheme, thus preserving its reliability-
related factors. At a minimum, the genomic data model must provide
sufficient information to decide whether the confidence level of the genomic
test result justifies its consideration as clinical evidence. For this function,
failure was defined as that which causes misinterpretation or non-use of the
genomic data for clinical decision. The process of producing clinical
evidence from genomic data at the bioinformatics area (Fig. 3) shows a
pattern that is a series of repeated representations of information converted
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by reference knowledge bases and data processing rules. Thus, failure
modes can be classified as incomplete specifications in three meta-
categories: origin, reference, or symbol. Due to the nature of the semantic
interpretation, any fragmentation of symbol causes not only loss of

information but also assignment information to direct the origin!213,
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Figure 1.3 Failure mode identification: mapped next-generation sequencing process extended to a clinico-genomic context

In the bioinformatics area (cyan background), information may be distorted by the insufficient representation of origin, processing rule, and
external reference. To prevent this failure, identification and semantics, related attributes are listed under the boxes. In the clinical area(yellow
background), the data model functions as a communication scheme for the collaborative process implemented in the hospital information
system. Data-level integration facilitates just-in-time queries and reuse of data.
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We conducted workflow analysis to extrapolate general descriptors
of the related attributes with the goal of preserving information during
production and delivery processes from clinical intention to clinical
utilization. Figure 2 provides a more detailed data-level view, including how
genomic information is realized as clinical evidence in a case based on a
structured data model. The structured genome data model can support a
report via presentation on a variety of transcription forms (report forms),
which are optimized for initial intent. Furthermore, additional utilization
paths are accessible in the clinical-information system. As shown in Fig. 2,
data-level integration helps the amplification of the incidental utilization.
(Fig. 4) To illustrate, consider a patient who orders whole-genome
sequencing to screen for cancer biomarkers at their first visit. When the
patient receives a prescription for antibiotics a year later at a visit for other
symptoms, that same genomic test result can be re-used from a
pharmacogenomics perspective for safer and more efficient drug
prescription. The clinical decision support system plays a vital role by just-
in-time display of the matching information with pre-defined rule and
knowledge-based processing®3+35. A computational genome data model is a
prerequisite for this implementation®>=’. Finally, we introduce a logical data

model in the next step of the study.
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Stored data example in the CGDM database
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Figure 1.4 How the implementation of the cGDM provides interactive clinical decision support in clinical information system
A: When a doctor enters a prescription, a dataset for the prescription is generated and transmitted for storage. B: The dataset is passed along to the CDS
module to search for the relevant knowledge base in accordance with a predefined set of rules. In this case, we internalized the systematic reference to the
IWPC algorithm* integrated with the CGDM database. C: The PGx CDS module based on the cGDM selects the patient-specific warfarin dosing related
variant information which matches the IWPC algorithm in real-time. The cGDM produces an effect as a knowledge representation backbone as well as a
genomic data storage scheme in the process. (e.g., Expression converted from input variables (Ci) to output variable (Co) for further processing.) D: The
recommendation, which personalized dosing results from the IWPC warfarin PGx estimation based on both clinical and genomic factors, are delivered to the
prescriber. Trackable links for each origin of the used genomic data and evidence in the algorithm are also provided.
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1.4.3. The cGDM

Finally, the cGDM was designed as an entity-attribute model consisting of 8
entities and 46 attributes (Fig. 5). For a structured data model of the
identified clinico-genomic attributes, logical modeling was conducted to
ensure data-level linkage with conventional primary clinical databases. In
order to define the entity-attribute model based on the action and collected
data, tool/processor classes and the attributes of each class from Fig. 2, we
define three types of classes as protocol and related attributes (Table 1).
Since the ¢cGDM s designed to support data-level integration with the
existing system, only the minimum subject identifier is defined as ‘linkage
identifier to clinical information.” To represent the procedural dimension,
which is stressed in the study, we combined two workflow analyses on
different scales. For example, the entity ‘Protocol’ as a part of the
procedural dimension is explicitly represented in Fig. 2, then expressed
again as a list of lower steps in Fig. 3. Since clinical observation is typically
considered as the collection of events®, the logical composition of the
date/time and actor identifier related to the clinico-genomic context were
declared.

The derived classes and entities in Table 1 were used to declare
final entities and attributes in the cGDM (Fig. 5). The mapped Actions and
Action-related classes (Collected Data and Tool/Processor) are categorized

into subdomains and related attributes for each step in Table 1. In Table 1,
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action and its result are grouped into one step, and the related attributes are
represented by the attributes classified in the corresponding step. For
normalization, related attributes are categorized to create one or more new
groups called ‘entities’ for each step, and they are the basis for defining
‘Entities’ in the Entity-Attribute model (Fig. 5). For example, ‘Physical
information according to the coordinate system’ is one of the three
subdomains of the action ‘Sequence Annotation.’ It can include an attribute
set (Cytogenic location, Codon, Exon) representing physical location
information for each variant. However, this "Physical information according
to coordinate system" can be a subdomain in other steps besides "Sequence
Annotation”. And even though it is the same subdomain, the related-
attribute set may be different depending on which step or action. In
summary, each step identified in the entire clinico-genomic process can
include multiple entities, and one entity can be related to multiple steps.
Even in the same entity, the configuration of the related attribute as a factor

affecting each step may vary from step to step.
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Table 1.1 Extracted classes and related attribute sets from each step of clinic-
genomic context for the Entity-Attribute model. The processes in the clinico-
genomic workflow shown in Figure 2 are listed in order and associated with the
classes, related attribute sets for each process. This table is an intermediate result
between the result of FMEA and the final logical model. Derived related attributes
are abstracted within each class and grouped into entities.

Class
) Collected Tool/ Related Attribute Entity
Action
Data Processor
Institution Identifier . .
Subject Identifier Test Llnkagetldentlfler
Identifier CIinc;caI
(Order ID or .
Sample Accession No) Information
Collection Submission Date T|meI|n_e
Information
M(_ed_lc_al Institution Actor Information
Clinician
Specimen
Test Description Experiment
Type of Sequence Related
Platform technology Information
Machine Sequencer Timeline
Sequencing Collection Date Information
Sequencing
Institution Actor Information
Experimenter
Read File
Position Physical(Location)
Reference allele information
Alignment Alternative allele acc_ording to
Chromosome coordinate system
A_na_lytlcs In_stl_tutlon Actor Information
Bioinformatician
Initial
Alignment
File
InDe_I Position® Physical(Location)
Realignment . . -
/ Referen(?e allele mform_atlon
Base Alternative allele’ according to

Recalibration

Chromosome*

coordinate system

Base quality(>Q20)
(Average) Depth of
coverage

Mapping Quality
(%Mapped reads)

Quality Check
information
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Received Date

Timeline
Information

Analytics Institution
Bioinformatician

Actor Information

Adjusted
Alignment
File
Hetero-
/Homozygosity Genotype
Variant Phasing information Expressions
Calling Missing
A_“a_'y“cs In:c,tl_tutlon Actor Information
Bioinformatician
Tool Pipeline
Step information
Variant Parameter
Caller Origin
Version Data source
Build
Parameter
Variant
File
Gene (HGNC Gene
Symbol, Entrez ID,
Ensembl 1DI)
Variant Variant
(HGVS(genomic, Descriptive
coding, Expressions
protein change +
version), dbSNP,
Sequence dbVar)
Annotation Cytogenetic location Phy_S|](‘:aI(L0(_:at|on)
Codon information
Exon acc_ordlng to
coordinate system
Clinvar, COSMIC ID
Molecular Effect Functional
Variant Type Annotation
Functional Domain
A_na_lytlcs In_stl_tutlon Actor Information
Bioinformatician
Tool -
Pipeline
Step information
Annotator  Parameter
Origin
Version Data source
Build
Annotated
Variant
File
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Figure 1.5 The Clinical Genome Data Model: Structured data modelling with entities and attributes
The cGDM is designed as a logical data model of 8 entities and 46 attributes. The objects and related attributes derived through FMEA are
integrated into a logical data model through abstraction and normalization.
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Figure 1.6 Semantic search implementation based on the CGDM

Even if the user does not know all the nomenclature or metadata relevant to the genomic data to be searched, search function based on the
CGDM can uses information entered in the search fields in order to derive an extended search result. Through the generated SQL syntax, the
user can determine which genomic metadata (such as chromosome and position, genome build version, HGVS ID) can be associated and
extended to the outcome of the patient's data. In addition to the attributes "Biomarker" and "HGVS ID" presented in the example, multiple data
queries can be made with a single attribute or combination of attributes presented in the CGDM. Therefore, by using these user interfaces with
the data model, it is possible to trace and verify whether the queried genomic data of the patient represent more reliable information.
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1.4.4. Validation of the cGDM

Here, the cGDM was finalized in the form of a logical model, which allows
adaptation to the diverse development environments of existing
heterogeneous clinical information systems. Logical model can play an
essential role to generalize the complex phenomenon by abstraction and
enhance understanding core ideas the model deliver between different
stakeholders of in the complex system®. Whereas, the drawback of this
approach is that physical modeling layer is needed in order to the data
model implementation and validation. Thus, we design a physical data
model implemented in relational database to evaluate the model validity for
real-world data and to proof of concept how implementation of the cGDM
enables interactive clinical decision support in clinical information system
shown as Fig3 (Left side; Clinical decision support system for incidental

utilization).
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Figure 1.7. Entity-relationship diagram of the CGDM implemented in RDBMS

The entity-relation for the physical model as a diagram (ERD) was presented based on the table shown in Supplementary Table 1. The diagram

shows the entities and the attributes that describes the entity, and the relationship between the entities is also defined.

Clinical_ldentifier

Experiment_related_Information

Bioinformatics_Protocol_related_Information

Quality_Check

PK | Subject_Identifier int(11) NOT NULL
Patient_Number varchar(20) NOT NULL
Institution_ldentifier varchar(20) NOT NULL
Order_ldentifier varchar(20) NOT NULL

Clinician_ldentifier varchar(20) NOT NULL

Submission_Date datetime NOT NULL

Entity
(attributes with colurnns)

H———<  One-to-Many

H————0<  One-to-Zero orMany

=
=

Experiment_Identifier int(11) NOT NULL
Subject_ldentifier int(11) NOT NULL
Test_Description TEXT NULL
Sequencing_Type varchar(50) NOT NULL
Platform_Technology varchar(20) NOT NULL
Sequencer varchar(50) NOT NULL
Sequencing_Institution varchar(50) NOT NULL.
Experimenter varchar(50) NOT NULL
Collection_Date datetime NOT NULL

PK
sl

Genomic_Alteration

P

=

Genomic_Alteration_Identifier int(11) NOT NULL
BI_Protocol_ldentifier int(11) NOT NULL
Position varchar(255) NOT NULL
Reference_Allele varchar(255) NOT NULL
Alternative_Allele varchar(255) NOT NULL
Chromosome varchar(2) NOT NULL
Cytogenetic_Location text NULL

Codon text NOT NULL

Exon varchar(10) NULL
HGYS_Genomic_Change text NOT NULL
HGVS_Coding_Change text NULL
HGVS_Protein_Change text NULL
HGVS_Version varchar(20) NOT NULL
dbSNP_ID varchar(20) NULL

dhVar_ID varchar(20) NULL
Genome_Build varchar(20) NULL
Genomic_Source char(10) NOT NULL
HGNC_Gene_Symbol varchar(10) NOT NULL
Entrez_ID int(11) NULL

Ensembl_ID char(15) NULL

Genotype char(3) NULL

clinvar_Variant_ID varchar(20) NULL
COSMIC_ID varchar(10) NULL
Molecular_Effect varchar(20) NULL
Variant_Type varchar(20) NOT NULL

Functional_Domain varchar(50) NULL

BI_Protocol_Identifier int(11) NOT NULL
Experiment_Identifier int(11) NOT NULL
Pipeline_Name varchar(50) NOT NULL
Step Int(3) NOT NULL

Tool varchar(50) NOT NULL

Parameter varchar(50) NULL
Datasource_Origin varchar(50) NOT NULL
Datasource_Version varchar(50) NULL
Datasource_Build varchar(50) NULL
Analytics_Institution varchar(50) NOT NULL
Bioinformatician varchar(50) NOT NULL
Recieved_Date datetime NOT NULL
Documentation_Date datetime NOT MULL

s

QC_ldentifier int(11) NOT NULL
BI_Protocol_ldentifier int(11) NOT NULL
Total_Reads bigint(20) NOT NULL
Total_Aligned_Reads bigint(20) NULL
Reads_Aligned_Percent float NULL
Total_Bases bigint(20) NULL
Mapped_Bases bigint(20) NULL
Depth_Mean float NULL

Depth_SD float NULL

Target_Bases higint(20) NULL

F

Microsatellite Instability Alteration

PK | MSI_Identifier int(11) NOT NULL
FK | BI_Protocol_ldentifier int(11) NOT NULL
MSI_Phenotype varchar(50) NOT NULL

MSI_Marker_Name varchar(20) NOT NULL.
MSI_Marker_Status varchar(20) NOT NULL

Clinical Annotation

Clinical_Annotation_ldentifier int(11) NOT NULL
Genormic_Alteration_dentifier int(11) NOT NULL
Biomarker Datasource varchar(255) NOT NULL
Biomarker_Name varchar(50) NOT NULL
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1.4.4.1. Implementation of the real world data

This physical data model of the cGDM is provided in forms of entity-
relationship diagram and table (Supplementary Information Table 1; Fig 1.7).
Also, one-click executable data definition language script is also freely
accessible on a web page (https://github.com/SNUBI-HyojungKim/cGDM-
Clinical-Genome-Data-Model).

For the data model validation with real-world data, we built pilot
databases based on the cGDM and uploaded genomic data of over 2,000
patients for multiple diseases, including acute lymphoblastic leukaemia,
solid cancers, and depression cases (Table 2, internal databases). However,
the pilot dataset related researches remains undergoing, we have built two
representative demo datasets for open source (Table 2, demo databases)
1000 genome CEU (Utah Residents with Northern and Western European
Ancestry) population dataset for whole genome sequencing (n=99, 47.67
GB), 2) TCGA PAAD (Pancreatic Adenocarcinoma) dataset for somatic
mutation (n=155, 9.41 MB). We believe those well-known public dataset
has advantages on data validation issue. Every demo dataset and source

codes are freely available from at the Github page as mentioned above.
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Table 1.2 Summary of imported genomic data from various data sources in cGDM databases.

The databases are categorised into internal and demo database. The specifications of the database tables are informed in Table 1. This table
presents row counts of each database table and data volumes of each database. The internal databases includes 3 private datasets (cancer panel,
leukemia and depression) and 2 public datasets (TCGA COAD and TCGA LUAD). The demo databases includes 2 public datasets (1000
Genome Phase3 CEU and TCGA PAAD).

Database
Internal database Demg dgtabase Summary
(public license)
Cancer . . TCGA TCGA 1KGP TCGA
STgrpueeg(f:in Panel Leukemia Depression COAD LUAD P3 CEU PAAD 7 data sets
Table name d € cancer WES WES somatic  somatic WGS Somatic WGS/WES/
panel mut. mut. mut. targeted panel
CLINICAL_IDENTIFIER 10 503 1,000 459 522 99 155 2,748
EXPERIMENT_RELATED_INFORMATION 10 517 1,000 459 522 99 155 2,762
BIOINFORMATICS_PROTOCOL_RELATED_ - - .
INFORMATION 10 517 1,000 459 522 99 155 2,762
GENOMIC_ALTERATION 2733 29,279,631 842,199,347 361,933 318,947 229,525,363 56,159 1,101,744,113
MICROSATELLITE_INSTABILITY 0 0 0 0 0 0 775 775
CLINICAL_ANNOTATION 40 267 108 123 97 1 12 648
QUALITY_CHECK 10 517 1,000 0 0 0 0 1,527
Dat 1 database total 2 MB 8.2 GB 144.7 GB 48,4 MB 42.6 MB 477 GB 9.4 MB 201.5 GB
ata volume
per test 0.2 MB 8.12 MB 144.7 MB 0.1 MB 0.1 MB 481 MB 0.6 MB 91.8 MB
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Real-world data validation is designed to cover all three types of
NGS tests (targeted panel, WES, WGS) and both cases of somatic mutations
and germline variants. The storage capacity of data was reduced when
converted into relational database with cGDM schema by 30% compared to
the prepared data file in VCF format. Interestingly, as the data size of the
genomic alteration table per test increased, the gap in data size by
converting narrowed or overturned. The circumstance is due to the addition
of multiple indexes for in-time query performance. Table indexing was
generally required when an average of more than 30,000 rows per test

occurs.
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1.4.4.2. How the implementation of the cGDM enables

interactive clinical decision support

One of the major challenges of healthcare informatics is supporting
clinicians who need to handle constantly evolving knowledge and inherently
complex genomic data. Patient genomic data in static document format or in
structured model but in which has vague designation of the variant limits
functionality of clinico-genomic information system*®. The ¢cGDM could
address the issue by working as a data-level infrastructure for interactive
clinical decision support along with external knowledge bases (Fig.6). For
the cGDM’s programmability test, we developed a pharmacogenomic
clinical decision support function running on the cGDM database which
reflects the knowledge of the IWPC warfarin dosing algorithm. The source
code is freely available at https://github.com/SNUBI-HyojungKim/cGDM-
Clinical-Genome-Data-Model. Figure 7 illustrates both of logical
information flow in back-end system and its appearance on the user
interface. A query performance test is conducted with the algorithm
procedure over 99 individuals in 1IKGP P3 CEU database. The SQL stored
procedure has executed in MySQL on a server with 8GB of RAM and quad-
core CPU running Linux CentOS 6. The average query out duration was

0.013+0.008 second range from 0.00001 to 0.0460.

39



Integrated in clinical workflow

R B

Clinical decision support modules

ac
A=

Active CDS

Passive CDS

Asynchronous
CDS

-

&

Personalized Warfarin

Pharmacogenomic dosing algorithm

Knowledge transfer: Rules
and variant definitions
|

IWPC warfarin dosing
algorithm* in article

1’_/;\.
‘ cpIC || Iw;a ACMG |eee

Clinical-genomic
evidence knowledge(bases)
%, for clinical implementation  /

\
the cGDM

database

Patient specific structured
genome data model

\:}n clinical utilization purposej

Figure 1.7 The conceptual map of genomic decision support system based

on the cGDM

While the accumulation of confirmatory knowledge could seem relatively

slow compared to the speed of the vast discovery of the bioinformatics field,

the benefits and impacts the two will have on patients when they are
seamlessly connected are evident. The cGDM brings this process into

computational space.



Chapter 2. Pharmacogenomic Clinical Decision
Support: Modular Implementation of CPIC
Guideline

2.1. Introduction

As the development of sequencing technology and the results of research on
pharmacogenomics (PGx) accumulate, efforts are being made to apply
personalized drug prescriptions and dose adjustments in the clinical field.
The same drug may cause adverse reactions due to congenital or acquired
causes, and drug adverse reactions are a major obstacle to the safe and
effective use of drugs. “The social costs and health disadvantages of these
adverse drug reactions are well known. PGx use cases are of particular
interest because over half of all primary care patients are exposed to PGx
relevant drugs. Studies have found that 7% of U.S. Food and Drug
Administration (FDA)-approved medications and 18% of the 4 billion
prescriptions written in the United States per year are affected by actionable
PGx variants that nearly all individuals (98%) have at least one known,
actionable variant by current Clinical Pharmacogenetics Implementation
Consortium (CPIC) guidelines and that when pharmacogenes with at least
one known, actionable, inherited variant are considered, over 97% of the
U.S. population has at least one high-risk diplotype with an estimated

impact on nearly 75 million prescriptions™*. Therefore, it is expected that
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applying knowledge about the drug genome to avoid predictable adverse
reactions to patients and maximizing the effects of drug treatment prior to
drug prescriptions would improve patient safety and quality of treatment.

Various efforts are being made to establish a knowledge resource of
pharmacogenomic knowledge that can be applied in clinical practice and to
connect it to clinical information systems. Representatives are as follows;
Clinical Pharmacogenetics Implementation Consortium (CPIC) of the
Pharmacogenomics Research Network (PharmGKB)* and the Dutch
Pharmacogenetics Working Group (DPWG)®, International warfarin
pharmacogenetics consortium (IWPC)*, Canadian Pharmacogenomics
Network for Drug Safety (CPNDS)*. Efforts have been made to implement
informed decision making using pharmacogenomic information in clinical
settings based on these refined knowledge resources. In particular, recent
attempts at systematic clinical implementation have been reported by the
European Consortium 6, the IGNITE Network Pharmacogenetics Working
Group "8, and the United Kingdom “°. In order for PGx to become routine
in practice, attention has been paid to establishing a PGx decision support
system integrated with EHR.

However, it has not been proposed as a sustainable, scalable, and
interoperable design among different sites. When considering the
complexity of dealing with the volatility of PGx knowledge and the

considerable amount of information in patient-specific genomic data as an
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extension of the clinical context, PGx clinical decision support pipeline
focused on knowledge representation is needed. Moreover, data
processing methods is needed to provide PGx test result on demands.
Clinical decision support (CDS) holds great promise for genomics but has
had limited utility because executing CDS has required manual entry of
genetic conditions into the problem list for decision support®.

In the study, we aim to develop a PGx CDS pipeline linking between
clinical actionable drug-gene interaction knowledge and personal genomic
data. First of all, we transform CPIC guideline knowledge resources into a
machine-readable structured database. Finally, we suggest a PGx CDS
service design based on the data model layer, both on CPIC guideline

knowledge resources and personal genomic data.
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2.2. Purpose of Research

We propose PGx CDS that enables modular implementation between
heterogeneous existing clinical information systems. Modeling of medical
knowledge and representation of and reasoning about medical knowledge
are the significant steps of the construction of CDS tool’®. Although CPIC
guidelines supporting the clinical application of pharmacogenomics
knowledge provide reliable content, considerable modeling activities are
required to transform knowledge from human-interpretable form to a
machine-readable form for consistent application.

Thus, we firstly collected, integrated CPIC guideline contents. Data
integration gives a unified landscape by combining data from disconnected
resources® In this process, modeling the relationship between the sources
and the global schema is, therefore, a crucial aspect. Then, we transform
CPIC guideline knowledge resource to the machine-readable structured
database along with content analysis. Exploratory analysis of the collected
dataset reveals the rules or properties that the content implicitly implied.
Finally, we propose a modular PGx CDS service by capturing the explicit
and implicit knowledge flow of the CPIC knowledge resource through the
modeling process and seamlessly unites actionable drug-gene interaction

knowledge with patient genomic information on computational space.

44



2.3. Material and Methods

2.3.1 Material: CPIC guideline as knowledge resource

The CPIC was formed in 2009 as a shared project between PharmGKB
(https://www.pharmgkb.org) and the Pharmacogenomics Research Network
(PGRN) (http://www.pgrn.org). One of the goals of CPIC is to provide peer-
reviewed, updated, evidence-based, freely accessible guidelines for gene-
drug pairs®. All CPIC guidelines adhere to a standard format, and the terms
used in CPIC guidelines to describe allele function and phenotype are
standardized’?. An ultimate goal for CPIC guidelines is to provide
actionable guidelines for clinicians to make more precision decisions for
specific drugs when genetic results are available. As a result of the
admirable contribution of the consortium, it provides the most world-widely
adoptable clinical pharmacogenomic implementation knowledge base.
Efforts are underway to make CPIC guidelines more machine-readable,

including making the guidelines available in various file formats®.

45



2.3.2. Data Collection

CPIC guideline datasets are first collected between July 10th and August
30th, and updated between 2019 March 15th and March 30th in 2020, via
open assessed CPIC webpages and PharmGKB APIs. Collected data items
are as follows; guideline list (drug-gene pair information included), drug
resource mapping, gene resource mapping, gene allele definition, gene
diplotype phenotype, clinical decision support guidelines. Except for the
guideline list, other data formats are downloaded in comma-separated values
form. Collected datasets are imported to a relational database management

system (MySQL 5.6) for exploratory analysis and data-driven restructuring.

CPIC Machine-readable Patient specific genomic data Patient specific
Knowledge Resource CPIC Knowledgebase based on NGS technology Genomic information
Web
Publizhed DBMS DBMS Processed
MySQL 5.6 MySQL 5.6 '
Resources y S~ s VY ¢| data files
Loaded ~—
PharmGKB Raw VCF
APls Data -8 VL.
9 \
Data Analysis
. The ¢cGDM
Data Modeling
Data Manipulation

PGx CDS

*CPIC: The Clinical Pharmacogenetics Implementation Consortium; DBMS: database management system; PGx CDS: pharmacogenomics clinical decision
support system; VCF: variant call format

Figure 2.1. The configuration of the study environment
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2.3.3. Clinical decision support service architecture

Prescribing EHR
(op, ) LCoS e

Conventional

EHR Data
CDS Module
S Ay o 17 ! I i
! PGx variant Drug ID (D (T_) r i
: information guideling Query in :
; ¢ Extracted Patient data
! Computable PGx cGDM !
| CPIC Database CDS Rule X
] - - . Database :
1\ Schema + data Query in Function uery out :
! . Guidéline PGx variant |
1 information m file 1
L e e e e e e e e e e e e e e A e -
! Data integration | i PGx genotype
! 1 1 H
i and modeling 1 ¢ _batch upload |
/ CPIC guideline \‘. Knowledge / Patient Specific
" contents origin % Genomic Data

Figure 2.2. Modular implementation of PGx CDS overview
As discussed in Chapter 1, we perceive patient-specific genomic
information as a sub-dimension of representation that reflects the patient's
health status. Therefore, we consider the data level integration so that the
service architecture ensures agile combined and computation with other sub-
dimensional information.

Among collected 6 CPIC content categories, guideline title, drug
resource mapping, gene resource mapping, and gene allele definition are
used to construct a computable CPIC database (Figure 2.2, middle-left).
Others, gene diplotype-phenotype and clinical decision support guideline
categories, are applied to CDS rule function that matches PGx variant
definition and patient genomic information and selects a personalized PGx

CDS to alert given drug prescribing condition. The cGDM is adopted as a
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patient-specific genome data model, developed in Chapter 1, to serve as a
data layer infrastructure supporting the intellectual interplay between

medical experts and informed decision-making.
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2.4. Results

2.4.1. Collected CPIC guideline and exploratory
analysis

The CPIC guidelines reviewed for machine-readable data conversion are a
total of 24 guideline entries (Table 2.1) published to date on the official
website*?4, Each guideline contains specific information related to certain
gene-drug pairs; unique 20 genes and 62 drugs. Each guideline gives well-
curated knowledge in forms of procedural subcategories such as drug
resource mapping, gene resource mapping, gene allele definition, gene
diplotype-phenotype, allele frequency, clinical decision support guidelines.
However, mainly due to differences in how each gene affects the drug
efficacy or biological characters, the composition of the provided items are
varied.

Table 2.2 shows representative CPIC content items and their dataset
availability according to each guideline. In the case of drug and gene
resource mapping, every dataset is available. HLA-A and HLA-B gene
allele definitions are not defined in CPIC standard format due to its unique
biological character and high complexity. Gene diplotype-phenotype tables
are not provided when the former form of information is not describable, or
the only haplotype is existed (G6PD), or the structural variants have a

meaningful proportion in the PGx gene. When the items reflect the PGx

49



drug-gene interpretation process, ensuring the entire item shows the
feasibility of building a seamless digitalized pipeline. To explicit clinical
decision support workflow and recommendation text files, guidelines that
have complete data items are 10; 1) CYP2D6, CYP2C19 and Tricyclic
Antidepressants (for 2 of 7 drugs), 2) CYP2D6 and Atomoxetine, 3) TPMT,
NUDT15 and Thiopurines, 4) DPYD and Fluoropyrimidines, 5) CYP2D6,
CYP2C19 and Selective Serotonin Reuptake Inhibitors, 6) RYR1,
CACNAI1S and \Volatile anesthetic agents and Succinylcholine, 7) CYP2B6
and efavirenz, 8) CYP2D6 and Ondansetron and Tropisetron, 9) CYP2D6
and Tamoxifen, CYP2C19 and Voriconazole, 10) CYP2C9 and NSAIDs (for

7 of 15 drugs).
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Table 2.1. The collected CPIC guideline overview

CPIC Guideline Title Drug or Ingredient (unique n = 62) Gene (n = 20)
HLA-B and Abacavir abacavir HLA-B
HLA-B and Allopurinol allopurinol HLA-B
CYP2D6, CYP2C19 and Tricyclic Antidepressants fr’:‘n',]tlgf;ﬁ'l?z clomipramine, desipramine, doxepin, imipramine, nortriptyline, ~ypoc19 cypape
UGT1ALl and Atazanavir atazanavir UGT1A1l
CYP2D6 and Atomoxetine atomoxetine CYP2D6
TPMT, NUDT15 and Thiopurines azathioprine, mercaptopurine, thioguanine TPMT, NUDT15
DPYD and Fluoropyrimidines capecitabine, fluorouracil, tegafur DPYD
HLA-A, HLA-B and Carbamazepine and Oxcarbazepine carbamazepine, oxcarbazepine HLA-A, HLA-B
ﬁ;ﬁig r63 CYP2C19 and Selective Serotonin Reuptake citalopram, escitalopram, fluvoxamine, paroxetine, sertraline CYP2D6, CYP2C19
CYP2C19 and Clopidogrel clopidogrel CYP2C19
CYP2D6 and Codeine codeine CYP2D6
RYR_l, CACI_\IAlS and Volatile anesthetic agents and desﬂ_urane, _enflurane, halothane, methoxyflurane, isoflurane, sevoflurane, RYRL, CACNAILS
Succinylcholine succinylcholine
CYP2B6 and efavirenz efavirenz CYP2B6
CFTR and lvacaftor ivacaftor CFTR
CYP2D6 and Ondansetron and Tropisetron ondansetron, tropisetron CYP2D6
IFNL3 and Peginterferon-alpha-based Regimens peginterferon alfa-2a, peginterferon alfa-2b, ribavirin IFNL3
CYP2C9, HLA-B and Phenytoin phenytoin CYP2C9, HLA-B
G6PD and Rasburicase rasburicase G6PD
SLCO1BL1 and Simvastatin simvastatin SLCO1B1
CYP3AS5 and Tacrolimus tacrolimus CYP3A5
CYP2D6 and Tamoxifen tamoxifen CYP2D6
CYP2C19 and Voriconazole voriconazole CYP2C19
CYP2C9, VKORC1, CYP4F2 and Warfarin warfarin CYP2C9, VKORCH,

CYP4F2
aspirin,  diclofenac, celecoxib, flurbiprofen, aceclofenac, ibuprofen,

CYP2CO0 and NSAIDs indomethacin, lornoxicam, lumiracoxib, meloxicam, metamizole, nabumetone, CYP2C8, CYP2C9
naproxen, piroxicam, tenoxicam
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Table 2.2. Dataset list and its availability over guidelines

Original Most Recent Gene Allele Gene Clinical
CPIC Guideline Title Publication Update Dafiniti Diplotype- Decision
afinition
Date Date phenotype Support
HLA-B and Abacavir April 2012 May 2014 Not available  Not available  Not available
HLA-B and Allopurinol February 2013 June 2015 Not available  Not available  Not available
CYP2D6, CYP2C19 and Tricyclic Antidepressants May 2013 October 2019 2/7)
UGT1ALl and Atazanavir September 2015  November 2017 Not available
CYP2D6 and Atomoxetine Feburary 2019 October 2019
TPMT, NUDT15 and Thiopurines March 2011 February 2019
DPYD and Fluoropyrimidines December 2013 January 2020
H(I)‘A'A’ HLA-B and  Carbamazepine  and September 2013~ December 2017 Not available  Not available
xcarbazepine
CF\Q(PZDG, C\_(F_’2C19 and Selective  Serotonin August 2015 October 2019
euptake Inhibitors
CYP2C19 and Clopidogrel August 2011 March 2017 Not available
CYP2D6 and Codeine February 2012 October 2019 Not available
RYRlZ CACN_AlS and \Volatile anesthetic agents and November 2018 September 2019 Not
Succinylcholine applicable*
CYP2B6 and efavirenz April 2019 No updates
CFTR and lvacaftor March 2014 May 2019 Not available  Not available
CYP2D6 and Ondansetron and Tropisetron December 2016 October 2019
IFNL3 and Peginterferon-alpha-based Regimens February 2014 No updates Not available  Not available
CYP2C9, HLA-B and Phenytoin November 2014  No updates Not available  Not available  Not available
G6PD and Rasburicase August 2014 September 2018 Not available  Not available
SLCO1B1 and Simvastatin October 2014 No updates Not available
CYP3AS5 and Tacrolimus July 2015 No updates Not available
CYP2D6 and Tamoxifen January 2018 October 2019
CYP2C19 and Voriconazole December 2016 No updates
CYP2C9, VKORC1, CYP4F2 and Warfarin December 2016 No updates applli\lc(;tble* Not available
CYP2C9 and NSAIDs March 2020 No updates (1/2) (1/2) (7/15)
Number of available files grouped by guidelines 20 15 11
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2.4.2. Data integration and modeling

In this section, we briefly examine each CPIC content item in terms of its
attribute and value set. On top of that, CPIC guideline title contains drug-
gene pair information at ingredient or drug class level. Drug resource
mapping file provides for each drug of ingredient, respectively, which has
four attributes; ‘Drug or Ingredient,” ‘Source,” ‘Code Type,” ‘Code.” Source
attribute has a member of RxNorm, DrugBank, ATC, PharmGKB. In
summary, this item provides definitions of drugs that can be identified in
four representative external drug knowledge bases. Gene resource mapping
file is also expressed in the same attribute set, and provides unique indexes
of 4 different external genome knowledge bases for each gene; PharmGKB,
Ensembl, NCBI, HGNC.

The Gene allele definition table can be divided into four districts
when clustered with similar value properties as below (Figure 2.3). This
table is a collection of PGx variant information in a gene. For example, we
can start *4 in the C district. At the same line in D district, we can find the
alternative allele Y and G. In the first line of those, reference allele C and A
are shown. We could make the exact HGVS nomenclature when combine
assigned A+B district. In this case, CYP2C19 *4 consists of two variants;
NC_000010.11:9.94761900C>T and NC_000010.11:9.94762706 A>G. This
expression is interoperable with any line of A+B, for example, rs12248560

and rs28399504 in terms of rsID from NCBI dbSNP. The machine cannot
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interpret the table, evidently. We naturally extracted codified token from
part A. As a consequence, we abstracted each value pattern and named its
properties. As a consequence of data modeling and reconstruction, district A

of gene allele definition table over 17 gene files results in Table 2.3.

(a) HGVS nomenclature for CYO2C19 *4 variant

Prefix for a letter prefix for
Complete genome Linear genomic reference sequence

NC_000010.11:1g/94761900C>T| Nucleotide
GRCh38.p2 NC 000010‘1194762706A>G charge
Reference Sequence %efelj?_nce sequence file Actual description of a variant
identifier
(b) CYP2C19 allele definition table from CPIC (and PharmGKB)
2 http:/'www pharmvar org -B06C>T 1A>G 7C-T 10T>C S0T>C 55A>C 83A>T 151A>G 12401C>T 12416C>T 12455G>C

Effect on protein
3 (NP_000760.1) 5'region M1V P3s F4L L7p naL K28l 851G R73C H78Y GI1R

K L

Position at NC_000010.11
(Homo sapiens
chromosome 10,

“ GRCh38 p2) lo 94761900C>Tjg 94762706A~G|g 94762712C>Tjg 947627 15T>Cig 94762755T>Cla 94762760A>Clg 94762788A>T|g 94762856A>Glg 94775106C>Tjg 94775121C>Tjg 94775160G:

Position at NG_008384 3
(CYP2C19 RefSeqGene,
forward relative to

s g 4220C>T g 5026A>G g 5032C>T g 5035T>C 9 5075T>C 9 5080A>C 9 5108A>T q5176A>G q17426C>T | g17441C>T | g17480G>(

6 rsiD 1512248560 | rs28399504 | rs367543002 | rs367543003 | rs55752064 1517882687 15145328984 15118203754
19 Allele |
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Figure 2.3. Gene allele definition table example

(a) Variant expression in HGVS nomenclature and its meaning.

(b) Gene allele definition table collected from CPIC guideline contents. File
has for distinctive areas; A) Reference Sequence level related values; B)
Detail location and variant information given A; C)Star allele
nomenclature; D) actual variant information at locus A+B
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Table 2.3. Reference Sequence Information for Locus assignment

HGNC_Gene_Symbol Chromosome Reference_Sequence_Source Reference_Assembly Complete Genomic Molecule ID  Genomic Region ID Protein ID
CACNA1S 1 NCBI RefSeq GRCh38.p7 NC_000001.11 NG_009816.1 NP_000060.2
CFTR 7 NCBI RefSeq GRCh38.p2 NC_000007.14 NG_016465.3 NP_000483.3
CYP2B6 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_007929.1 NP_000758.1
CYP2C19 10 NCBI RefSeq GRCh38.p2 NC_000010.11 NG_008384.3 NP_000760.1
CYP2C9 10 NCBI RefSeq GRCh38.p2 NC_000010.11 NG_008385.1 NP_000762.2
CYP2D6 22 NCBI RefSeq GRCh38.p2 NC_000022.11 NG_008376.3 NP_000097.3
CYP3A5 7 NCBI RefSeq GRCh38.p2 NC_000007.14 NG_007938.1 NP_000768.1
CYP4F2 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_007971.2 NP_001073.3
DPYD* 1 NCBI RefSeq GRCh38.p2 NC_000001.11 NG_008807.2 NP_000101.2
G6PD X NCBI RefSeq GRCh38.p2 NC_000023.11 NG_009015.2

IFNL3* 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_042193.1

NUDT15 13 NCBI RefSeq GRCh38.p7 NC_000013.11 NG_047021.1 NP_060753.1
RYR1 19 NCBI RefSeq GRCh38.p2 NC_000019.10 NG_008866.1 NP_000531.2
SLCO1B1 12 NCBI RefSeq GRCh38.p2 NC_000012.12 NG_011745.1 NP_006437.3
TPMT 6 NCBI RefSeq GRCh38.p2 NC_000006.12 NG_012137.2 NP_000358.1
UGT1Al 2 NCBI RefSeq GRCh38.p2 NC_000002.12 NG_002601.2 NP_000454.1
VKORC1 16 NCBI RefSeq GRCh38.p2 NC_000016.10 NG_ 011564.1

*HLA-A, HLA-B, CYP2C8 Allele Definition Tables are not available

*source - https://www.pharmgkb.org/page/pgxGeneRef
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Table 2.4 shows information density and terminology variation in
the value field of the gene allele definition table. Among 17 available PGx
gene variant information, 11 genes adopted star allele nomenclature®®, and
G6PD has its own nomenclature, and WHO class to designate distinctive
functions on drug reaction machanism®®, two genes have a single PGx
variant. Almost of PGx variant over 17 genes are single nucleotide variant
(SNV) or insertion/deletion (InDel), but CYP2B6 and CYP2D6 include 14
and 4 copy number variants respectively. The number of different loci that
appear in CPIC guideline contents is 702.

Table 2.4. Gene allele definition table data profiles

HGNC
Gene No of N.O of Matrix
Svmbol Loci as_5|gne_d size Example values
ym designation
(n=20)
CACNA1S 2 2 4 Reference €.520C>T
CFTR 40 42 1,640 2789+5G->A S977F
CYP2B6* 38 38 1,444 *1 *38
CYP2C19 34 34 1,156 *1 *37
CYP2C8 not available
CYP2C9 58 61 3,538 *1 *61
CYP2D6* 128 146 18,560 *1 *OxN, *139
CYP3A5 8 8 64 *1 *9
CYP4F2 2 2 4 *1 *3
DPYD 15 93 1395 Reference €.1003G>T (*11)
G6PD 173 187 32,351 202G>A _376A>G_1264C>G Yunan**
HLA-A not available
HLA-B not available
IFNL3  single variant(g.39248147C>T) rs12979860 reference (C) r512979‘(3%0 variant
NUDT15 17 19 323 *1 *19
RYR1 43 48 2,064 Reference c.1021G>A
SLCO1B1 29 37 1,073 *10 *9
TPMT 39 43 1,677 *1 *9
UGT1A1 5 10 50 *1 *80+*37
VKORC1 single variant(g.3109638C>T) rs9923231 reference (C) r599232(§|_1) variant

* Star allele available gene count: N=11 (CYP2B6; CYP2C19; CYP2C9; CYP2DG6;
CYP3AS5; CYP4F2; DPYD; NUDT15; SLCO1B1; TPMT; UGT1Al)

* CYP2D6 and CYP2B6 include 14 and 4 copy number variants respectively

** GB6PD Genetic Variant Nomenclature and WHO Class
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The Diplotype-Phenotype table consists of 3 sheets, each of which is a
‘possible Diplotype,” ‘Interpretation consult note,” and ‘Implementation

workflow.’

Item: Diplotype-Phenotype table

Sheet 1 Diplotype
Possible Diplotype
EHR Priority Result notation

D Coded Diplotype/Phenotype summary

Phenotype
Sheet 2 Activity Score(optional)
Interpretation consult note
EHR Priority Result notation
) N —— |:| Consultation(drug or ingredient name)
] e Text Provided with Test Result

D Sheet 3 Workflow diagram
EH]D <>_ Implementation workilow Not

[ ; }_ ‘ otes
1= | [

Figure 2.4. Diplotype-Phenotype table example and its meta-data structure
Data model construction was conducted within these multilayer data

analysis results. Each rough data structure embedded in original contents
has been reclassified into atomic level attributes, a group of entities, and
data flow according to the CDS service scheme of this study. Data flow is
declared as relations in the constructed data model. Normalization and
abstraction were applied until the ambiguity of overlapping properties, and
abnormal cardinality disappeared for the design of the entity-relationship
model for the CDS service. Computable conversion of the CPIC
knowledgebase and linking scheme in PGx CDS to patient genomic data

based on knowledge representation is shown in Figure 2.5.

57



CPIC Guidelines

! Drug resource Rx T
Related Drugs |+ mappings ARSS. | . ;.gq:gt_qn.\b EEEeSe

CPIC guidelines 'H—J g

X

m «|  Gene resource S
Related Genes [t 1 mappings 4
I

“Ensempl ID
s PGx gene allele definition table GonoID m
inti HG\'CID‘\“ ——

Reference sequences related The actual description of a % 2

to locus expression variant Gene Symbol

A E Internal teble
Gene_Allele_Nomenclature P—H Actual genetic alteration
H———c€  One-to-Many
N 20 H o< One-to-Zero or Many
i Diglotyge-gh%gg/ge table item name  CPIC contents item
Molecular phenotype IUPAC
Allele frequency table description nucleoditde
code
Implementation
consult Note
pre-and post-test alerts and flow chart
CDS alert text

Trigger condition
- Contraindication
- Dosing guideline

- Probable adverse reaction

- PGx phenotype
- Activity score

- Age criteria .
9 - Consult recommendation
CPIC Guidelines
Drug resource Related A Related Gene resource
mappings Drugs CPIC guideline Genes mappings
PGx gene allele definition table
A 4
pre-and post-test alerts and flow chart R“g;;‘ecg ::?:fu"sces The actual description of a
Diplotype-phenotype table expression = ¥atang
\
Molecular phenot | A ¥
CDS alert text Trigger Condition olecular phenotype (gl ene_Allele_Nomenclature| Actual genetic alteration
description
Implementation
consult Note

Figure 2.5. Snapshot of CPIC guidelines content structure converted to be
computable
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2.4.3. CDS Rule Extraction

The pre-and post-test alert file consists of two sheets;’Pre- and post-test
alerts,” ‘Flow Chart.” Flow chart helps end-user’s understanding also easily
convert to a conditional phrase in computer language. However, the trigger
condition, a particular exact subset, is offered by the ‘Pre- and post-test
alerts’ sheet. In other words, conditional trigger information for CDS
function is distributed in two sheets. Firstly, ‘Flow Chart” has one common
condition whether the patient’s genomic information is available or not.
There are two exceptions over three guidelines; one is filtering weight over
40 kg criteria in case of ‘CYP2B6 and efavirenz’, the other has branched
alert message between for pediatrics and adults in case of ‘CYP2D6 and
Atomoxetine” and ‘CYP2C19 and Voriconazole’. The latter type of
exception does not appear in ‘Flow chart’ but implied to provide two alert
text message columns in ‘Pre- and post-test alerts.” Through this separation
and regrouping process, we constructed trigger condition, alert message, and

trigger condition-alert message relation.

Figure 2.6. Collection of ~ ‘Flow chart’ over available 15 guidelines
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2.4.4. Structured database construction

Finally, we have constructed a machine-readable CPIC guideline database in
the form of a relational database. The database includes 15 tables and 46
unique attributes (Figure 2.7). Interestingly, the left and right parts of the
ERD are separated.

The left side represents the knowledge that declares PGx related
variant definition and converts those findings into interpretable codified
phenotypes for each drug-gene pair for which the guideline is targeted. The
right part is a guide that provides a tailored CDS message when an
individual's codified phenotype and prescribing drug ingredient is known.
The CDS message contents could break down a set of properties comprised
of contraindication, dose adjustment guidelines, probable adverse reactions,
and consult recommendations to the clinical pharmacist for further
consideration. However, in this study, the CDS alert text was not structured
because the distribution of the corresponding attributes when segmented by

sentence was irregular.
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Figure 2.7. Entity-relationship diagram of reconstructed database based on

CPIC contents
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2.4.5. PGx CDS service module

Figure 2.8 shows the developed PGx CDS service module. When the system
evoked, the CDS module looks at patient genome data stored in the EHR
server and returns potential phenotype according to the CPIC PGx variant
definition. Also, the module query out individualized recommendations for
the prescriber. The novelty of this modular solution is the machine-readable
conversion of the CPIC guideline and seamless function execution in a
single EHR system. Data modeling reveals four components of the CPIC
knowledge resource. The first is targeted phenomena identifier, CPIC
guideline title, and drug-gene pair information. The effort to provide curated
and filtered PGx variant definition list with expert knowledge with clinical
relevance. Then, they try to capture related annotation systems for
interpretation, such as the star allele system. This information is presented in
the nomenclature field in the Gene-allele definition table and codified data
field in the Diplotype-phenotype table. Final CDS alert texts are given with
the assumption that a person who looks at guidelines knows the specific
genotype information. Data flow crack is found in here, but we could bridge
this gap with the patient-specific genome database proposed in Chapter 1.
Finally, seamless PGx CDS are enabled shown in Fig. 2.9. Through the data
collection and reconstruction process, we could briefly explore the colossal
landscape of their accomplishment. For enhancing usability, CPIC does

process standardization along with the development of new guidelines.
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Figure 2.9. PGx CDS module integration scenario with dataflow
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Chapter 3. Clinical Application of Clinical
Genome Data Model: Integrating Star Allele
and HLA Data Models

“An ideal nomenclature would be one that is entirely unambiguous. One might hope
that a geneticist of the year 2493 could pick up a 1993 copy of The American Journal
of Human Genetics and quickly understand, from the designation of a mutation and
without extensive study of other sources, the location of a nucleotide change. However,
the complexity of the genome and its functions is such that a perfect nomenclature is
unachievable.>” (Ernest Beutler, 1993)

3.1. Introduction

As Beutler envisioned, the perceived complexity of the genomics is
expanding, and a perfect nomenclature is not achieved yet. However, there
is some accomplishment, such as the HGVS nomenclature and star allele
system that helps effective communication between scientists. The HGVS%
nomenclature has advantages in figure out a specific locus from the
nomenclature. Nevertheless, it does not specify a specific reference
sequence. Thus the same variant could be described using different
reference sequences, which might cause confusion. Furthermore, the
expression is not scalable enough to express functional combinations. Thus
star allele nomenclature was introduced in 2006%. The star allele nomenclature
could contain multiple-locus in one name (so-called star), and one locus could be
placed in redundant stars. The star-allele nomenclature is the result of efforts
to standardize genetic polymorphism annotation for the cytochrome P450

genes. As clinical pharmacogenetic testing becomes widespread, this system
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has played a vital role in effectively delivering the patient's genotype and
predicted clinical phenotype. As genomics research expands, the system
remains a valuable tool for the broader community of genetic researchers to
exploit our ever-improving ability to catalog variability in the human
genome®. However, as scientific discoveries accumulate, the number of
assigned stars is increased, and the complexity of the naming system itself is
also expanded. For example, *1 is mostly accepted as a reference sequence
functionality, but a few exceptions occur as known population distribution
of the variants are changed. In addition, there are highly curated
representative registries according to research interest so we could use those
naming system as an auxiliary identifier. We prove the concept in Chapter 2
using PGx variant definition construction and interoperable interpretation in
the data of the patient-specific genomic information in cGDM.

Furthermore, there are independent nomenclatures such as the
human leukocyte antigen (HLA) system. The HLA system®® is known to be
the most polymorphic in human. The HLA polymorphism is not evenly
spread throughout the molecule but is clustered in the antigen-binding
groove®. HLA is a protein that plays a vital role in our body's immune
function with a wide variety of allele types.5!. HLA diversity is particularly
important in organ transplantation because transplant recipients and donors
with different serological HLA proteins will exhibit organ transplant

rejection®?. Therefore, transplant recipients must perform HLA screening
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before transplantation. Recently, HLA diversity has been reported to cause
severe drug hypersensitivity as well as organ transplantation®®. However, the
HLA results of transplant patients and donors have not been used to predict
future adverse drug reactions. This is because the HLA test is performed in
various ways, from a simple serological test to an NGS test. Besides, while
the nomenclature that represents the HLA test results is continuously
updated, the test results simply have been stored in free text in the electronic

medical record (EMR) 5,
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3.2. Purpose of Research

Firstly, the HLA database is designed to be used in clinical practice with
data-driven approach. Construction of HLA DB linked in hospital
information system could bring clinical pharmacogenomics information to
physicians. Secondly, the HLA database is covering multiple test methods
enable to protect from the harm due to the non-use of health-related data®®.
Ultimately, we try to validate the model consistency to cope with the

evolving annotation systems by construction of HLA database.
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3.3. Material and Methods

We used the dataset extracted the results of the HLA test performed and
demographics of patients using SUPREME® between February 2002 and
June 2018, a clinical data warehouse of Seoul National University
Hospital®®. With a data-driven approach, we could extract clinical context
enriched entities and attributes. Also, HLA nomenclature has been adopted
as the primary material for designing and elaborating the HLA entity.

We designed the cGDM HLA as a physical data model in a
relational database on MySQL 5.6 in an agile manner. Data-driven modeling
is comprised of data mining and clarification of implicit properties and

relations®’.
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3.4. Results

3.4.1. Summary of collected dataset

Collected dataset from SUPREME® has 11,287 records for 11,144 patients;
4,039 male and 7,105 female patients, including 2,642 high-resolution tests,
5,835 low-resolution tests, and 2,810 tests. Gathered data fields are shown
in Table 3.1 below. We filtered these fields with data existence, and remove
its redundancy. Then, the reclassification of each field was conducted
compared to the cGDM schema. Unlike the expectation that it will be a true
subset of the existing cGDM schema, except for the HLA nomenclature,
unique properties remain that called 'related patient." This is caused by a
unique clinical context when the HLA test ordered, organ transplantation. In
this case, donor-recipient tag information or family relationship information
has significant meaning for test result application. For internal integrity, we

decide to capture this information with the appended entity for further use.
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Table 3.1. Extracted field list gathered from the EHR records

Document item

full name or example

name data
MRN patient identification no
PatientDOB Birthdate
PatientName patient name
PatientSex patient sex
TestCode test code
TestDate test date
TestName test name
Name name (data not found)
PatientType donor/recipient
diagnosis dx (data not found)
RelatedPatientsNo relatives(data not found)
Al gene All
Al allele *11
A2_gene A24
A2 allele *24
B1 gene B7
B1_allele *07
B2_gene B62
B2 allele *15
C1 _gene Not tested
C1_allele Not tested
C2_gene Not tested
C2_allele Not tested
DR1_gene DR1
DR1 allele *01:01g
DR2_gene DR4
DR2_allele *04:03¢g
DQ1_gene Not tested
DQ1 _allele Not tested
DQ2_gene Not tested
DQ2_allele Not tested
RelatedPatientName NA
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3.4.2. HLA data model

HLA entity is added in forms of tokenized HLA nomenclature. HLA gene
classes and its subtypes are represented in Supplementary information 2.
Because this nomenclature is logically well developed, one of the major
challenges was in its version control. Opportunely, the HLA community
provides a version conversion tool and table as a text file. We parsed the
HLA test results from the dataset with nomenclature logic and normalized
its values with mass conversion when we uploaded the dataset to the DBMS

table.

Common entities with the cGDM Extension entity represent HLA nomenclature

Subject
1 Subject identiicason Number Sudject ID GOM generate
2 Subjectname Subject_Name Norme
3 Patient identficaton Numser Patient_iD MRN
4 Binth aate Bith_Date PatientDOB
5 Gender Gender PatientSex
8 Race Race
7 Emnicty Emniciy
8 Inssttion code insttution_Code  GOM generate
9 Register Igentfication Numbe Register_iD GOM generate
10 Submission date Submission_Date _ GOM generate Star Allele
1 Star Allele Identiication Num! Star_Allele_ID  GOM generale
— 2 Protocol Identifcaton Mumbe Protocol_iD
1 Speamen identiicabon Specimen_ID GOM generate 3 A1_gene AL gene
Numbder ALl
2 Subjectidentfication Numben Subject_ID GOM generate 4 A1_atiele Alallele |11
3 Speamen ongin ype Ongin_Type 5 A2_gene AZM o
4 Boay site Boay_Ste 6 A2_allele A2_allele o2
5 Body site code Body_Stte_Code 7 81_gene B1_gene 87
& Physical e Prysical_Type 8 61_allele Blalicle  |v07
7 Physical trpe code Physical_Type_Code 9 82_gene B2_gene 862
8 Speomentipe Specimen_Type 10 B2_allele B2allele |15
9 Speamen block dentiicaton Biock_I0 11G1_gene Clgene |nottested
Number 12 C1_allele C1 allele Not tested
=3 €2 gone e
11 Coliection date Collection_Date 14 C2_allele c2 allele Not tested
12 Recewved date Receivea_Date 15 OR1_gene DR1gene  |oR1
13 Diflerentiaton state Oier_State 16 DR1_aliele DR1allele  |*ov01g
17 DR2_gene DR2 gene OR4
18 DR2_allele DR2_allele *04:03g
19.001_gene DQl gene |Nottested
1 Protocol Identification Number Protacel_ID GOM generate 20 DQ1_alisle DQLallcle  Inot tested
2 's:’::;:mmmm:mn Specimen_ID GOM generate 21 002_gene DQ2.gene |Not tested
3 Testname Test_Name [ Testhame | 22 0Q2_allele DQ2.allele |not tested
4 Type of sequencing Sequencing_Type  GOM generate
5 Ordered date Order_Date
& Order dentication Number  Order_ID
7 Labname Lab_Name
& Reagent Reagent
@ Received Date Receive_Date
10 Biginformatician Bioinformatician
11 Analybcs institution Analytics_institution
12 Sequencer identfication Num Sequencer_ID
13 Panel Identiication Number  Panel_ID
14 Pipeline Identificabon Numbei Pipeline_ID
18 Microsatelite Instabikty ARerat MSI_PD_ID
19 Tumor mutation burden pipeli TMB_PD_ID
20 Document creation date. Docu_Creation_Date
21 Documentversion Docu_Version

Figure 3.1. HLA Database design merged in the cGDM schema
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General Discussion?

The rapid accumulation of genome information has led to a paradigm shift
in medicine. Nevertheless, significant barriers remain to overcome inflection
points. Through multi-disciplinary analysis and consideration of this
phenomenon, we determined two main causes: 1) reliability-related result
variance among numerous pipelines and processes, and 2) the unique data
structure of genome information. Since these two causes have mutual
influences, an integrative solution may be more effective than a point
solution. Moreover, we foresee that GIS will become an essential
component of an integrated clinical information system in the precision
medicine era. In this context, this cGDM could serve as a genomic
information representation scheme enabling the intellectual interaction
between medical experts and informed decision making, ultimately
contributing to the enhancement of personal genomic data utilization at the

point of care.

" The part of the dissertation general discussion published in following paper: Kim, H. J.,
Kim, H. J., Park, Y., Lee, W. S., Lim, Y., & Kim, J. H. (2020). clinical Genome Data Model
(cGDM) provides interactive clinical Decision Support for precision Medicine. Scientific
reports, 10(1), 1-13.
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The GDM as an Infrastructure for a GIS

We recommend the GDM as a genomic information representation scheme
for clinical purposes. To ensure the convenient and appropriate clinical use
of genomic data, medical informatics technology is needed as part of the
infrastructure supporting the integration of clinic and genomic layers of
information®®, Given the multi-level and multi-dimensional nature of
health, clinicians must perform decision-making for a given case based on a
collection of segmented data representing a person’s health, including
laboratory data, imaging, and observation data assessed by experts.
Currently, a clinical information system is typically used as a core tool for
supporting this knowledge in a management process. To broaden
perspectives in the era of precision medicine, we propose a concept of
genome information system (GIS) as an integral component of an expected
clinical information system for precision medicine (Fig. 1.1).

The cGDM can serve as a data-level infrastructure for
implementation of the GIS. When decision makers face unfamiliar health-
status measurements, determining clinical significance and meaning is
challenging® ™. The cGDM was designed to preserve genomic information
at an appropriate information scale and granularity covering the procedural
dimension, which is related to the confidence level as a clinical
measurement for clinical application. The design of the cGDM allows

processed genomic data for a general purpose to be stored and merged with

74



existing clinical data, providing outputs in an interoperable data format.
Likewise, sequencing analysis, data processing, and presentation of
processed information can be managed in a form that can be explicitly
confirmed. Once data are uploaded to the cGDM-based database, they serve
as a supportive backbone for any downstream functional applications such
as report generation or a clinical decision support system. (e.g., Fig 8; Fig 3)
To develop a system for the systematic management of genomic data, it is
necessary to unify its data structure with that of other existing components
of clinical information systems, ensuring sufficient reliability for identifying

the original data generation process’?
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Current Approach to Genomic Data Management

The Health Level 7 (HL7) clinical genomics working group provided a
model for health information exchange and Fast Health Interoperability
Resources (FHIR) genomics, a model that integrates genetic and clinical
information via the HL7 interfacing standard’®’2, FHIR provides standards
for medical and genomic information exchange and offers open-source and
open application programming interfaces (APIs) that can easily be applied
in clinical fields among heterogeneous data sources. FHIR and FHIR
genomics have made substantial contributions toward the implementation of
medical information exchange and are drawing electronic health records
vendors' attention in this respect.

The Global Alliance for Genomics & Health (GA4GH) was
established in 2013 to develop public tools that enable the responsible,
voluntary, and secure sharing of clinical and genomic data’. The federated
approach of GA4GH does not involve the storage and management of data
in centralized data repositories. Instead, it provides an API that enables users
to request and share data while holding data for institutions’.

The FHIR and GA4GH consortium of HL7 were developed with
the intention to facilitate the exchange of genomic and clinical data among
multiple sites. Both resources have a common character as a form of
information exchange at the communication level. These systems use the

latest web technologies such as the representational state transfer (REST)
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API to make it easier for developers to implement clinical applications or
information systems in the healthcare industry.

The International Organization for Standardization (ISO) Technical
Committee 215 (Medical Information) has proposed genomic information
standards. 1SO 27720:2009 (GSVML; General Sequence Variation Markup
Language) is a standard that defines how genetic sequencing variation
information is exchanged based on XML. The scope of this standard is in
the data exchange format and does not include the database schema.
Although all genetic sequencing is within the standard's scope, the SNP is
the main target of this standard. Another standard for more specific
clinical utilization of genomic information is ISO/TS 20428 Health
information - Data elements and their metadata for describing structure
information in electronic health records established in 2017. Additionally,
ISO/CD TS 23357 Genomic informatics — clinical genomics data sharing

specification for next generation sequencing is under development state.
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Table 4.1 Comparison table of characteristics of related resources

Data management scope Computability
Resource  Publication Clinical Patient forCDS  for report Purpose Organization
(year) Storage  Exchange data . i :
. identification rule generation
linkage
¢cGDM 2020 0 X o 0 0 0 Data level EHR SNUBI
integration
OMOP Federated Research
G-CDM 2019 0 X 0 X X X Network OHDSI
FHIR 2020 . Information
Genomics (2015-~) X © © © © © Exchange HLY
GA4GH i oroar Data interchange for
Genomics progress X 0 X X X X bioinformatics GA4GH
(2015~)
API research
ISO/TS Structuring ISO/TC215 (Health
20428:2017 2017 X © © © X © sequencing report Informatics)
ISO/TS ISO/TC215 (Health
257202009 2009 X 0 X X X 0 SNP data exchange Informatics)
GDC 2017 X 0 X X X X Cancer related NIH NCI

genomic data sharing

*via SMART on FHIR, CDS Hooks, HL7 Inforbutton

cGDM: clinical Genome Data Model; OMOP G-CDM: Observational Medical Outcomes Partnership Genome Common Data Model; FHIR: Fast Healthcare Interoperability
Resources; GA4GH: Global Alliance for Genomics and Health; ISO/TS 20428:2017: Health informatics - Data elements and their metadata for describing structured clinical
genomic sequence information in electronic health records; 1ISO/TS 25720:2009: Health informatics - Genomic Sequence Variation Markup Language(GSVML); API:
Application Programming Interface; GDC: Genomic Data Common; SNP: Single Nucleotide Polymorphism; SNUBI: Seoul National University Biomedical Informatics;
OHDSI: Observational Health Data Science and Informatics; HL7: Health Level Seven; NIH: National Institutes of Health; NCI: National Cancer Institute
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Observational Medical Outcomes Partnership Common Data Model
(OMOP-CDM) aims to conduct distributed research across observational
databases in multiple institutions using a common data model approach.
Genomic Common Data Model (G-CDM) proposed as an extension part of
OMOP-CDM represents genomic information”™. Focused on research
purposes, the granularity and scale of knowledge representation have limited
for multifaceted clinical application.

The almost resources discussed earlier focus on data exchange
formats for utilization rather than on EHR integration of genomic
information. Therefore, the system is being developed by designing
functions first rather than expressing knowledge of the genomic information
itself, and by further defining the element whenever the function is added.
This development methodology has strength for easy and fast software
function development. On the one hand, however, all of reviewed resources

are on a separate layer from the ground level schema in data management.
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The cGDM: A Step beyond the Capabilities of the
Existing Systems

To develop a system for the systematic management of genomic data, it is
necessary to unify the data structure with that of other components of
clinical information systems, and to ensure sufficient reliability for
identifying the data generation process'®. Conventional systems have
focussed on data structure unification issues first, to harmonise
heterogeneous systems among separate institutions’®. By contrast, our
model was designed to achieve both clinico-genomic knowledge
representation accompanied by traceability of the genomic data, to enable
determination the clinical significance of a genomic test result provided to a
clinician.

Through the developed cGDM, standardization and integration of
the structure of genomic data can be realized, along with tracing of the
information in a step-by-step manner until the data related to the target are
extracted according to clinical or research requirements. To secure the
clarity of genomic information, we defined the basis for each attribute and
focused on designing an entity set that can accurately represent the genomic
data to be delivered to the target user, without information distortion,
through composition of the basis.

To allow better assessment of the meaningfulness of genomic

information, we defined the basis for each attribute and focused on
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designing an entity set that accurately represents the genomic data that are
delivered to the target user, without information distortion. Furthermore, the
cGDM is adaptable as a data-level extension to any existing information
system, regardless of database system or application platform. Effectiveness
and feasibility of genomic data management in the computational
environment in terms of the data-level EHR integration approach by the

cGDM were also broadly evaluated in Chapter 2 and 3.
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Unrecognized Ambiguity in the Interdisciplinary

Knowledge Interplay

Accumulation of basic, translational, and regulatory science is a prerequisite
to implementing personalized medicine in routine care??. As a basic science,
bioinformatics has witnessed explosive and rapid progress since the
completion of the Human Genome Project. In the context of regulatory
science, there are currently several ongoing efforts within the bioinformatics
and molecular biology domains,**:7" with great maturation in the body of
knowledge during the last decade, including principles and
recommendations related to NGS technology. These efforts have focussed
primarily on the standardization of bioinformatics protocols and the file
structures for intra- or interlaboratory communication.

Translational science represents the next challenge for the
realization of actual health promotion with personalized medicine’. In the
context of clinico-genomics, translational approaches ultimately target the
syntactic and semantic interoperability between genomics and clinical
practice, to ensure business continuity in terms of knowledge
management?>247 Previous approaches have stressed a need for structural
transformation to overcome the currently low adaptation of genomic
information for clinical decision-making. However, the other major cause,
the knowledge gap, has yet to be seriously considered because the solution
appears obvious: the education of medical experts in bioinformatics
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principles.

Nevertheless, this raises the question of the specific level of
bioinformatics knowledge required in clinical practice. Our working group
agreed that clinicians do not need to be bioinformatics experts to implement
precision medicine. Preferably, the key is education on how to understand
genomic data and confidence levels, and then be provided with sufficient
information to make clinical decisions. Based on this perspective, we
identified a previously unrecognised ambiguity related to the knowledge
interplay between bioinformatics and medical practices (Fig. 3). Although
the genome is the most concrete type of observational data representing an
individual's inheritance, the genomic information delivered to clinicians is
rarely transformed to a human-readable form and is also rarely a direct
representation of the genomic sequence. Instead, this information is more of
an intellectual product, processed in a purpose-weighted result file structure.
Thus, the question of reliability of the genomic information must be
addressed before it is adopted by the physician, similar to other types of
conventional observational data.

Considering the knowledge gap in this clinico-genomic context,
unrecognised ambiguities may occur on each side. For example, when
linking the outputs of bioinformatics to clinical fields, the indicator of
information quality moves from internal consistency within the same

protocol to external consistency between different protocols. Thus, to
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accomplish the final goal of precision medicine, more discussion is needed
about how data will cross this intermediate space, then about how to best

represent and deliver crossover information.

8 4



Adoption of FMEA to Information Processing

To best of our knowledge, the methodology proposed herein has not yet
been applied in the field of genetic information processing. FMEA is the
most commonly used methodology for determining reliability of
manufacturing and design processes!’?218081 \we perceive the result of
genetic testing not as an output of static measurement, but rather as an
output of an intellectual production process. When conducting
bioinformatics analyses, there is no requirement for unification among the
processes, since the internal consistency within each process guarantees
scientific rigour. Moreover, the flexible data specifications used in the
bioinformatics field have the advantage of supporting various research
applications’, but that advantage becomes an obstacle to data integration for
comprehensive clinical decision making. In addition, relevant external
knowledge, tools, platforms, and analytical techniques cannot be unified
because they are still under development. Considering this large
interdisciplinary hyperspace, our approach aims to improve the quality of
information delivery while responding to an enormous, growing body of
knowledge that has yet to be integrated within its own basic-science field.
Therefore, the FMEA was adopted to derive and clarify a set of metadata
designed to prevent information from being distorted.

To facilitate the use of genomic test results in clinical practice, it is
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essential to integrate genomic data into clinical decision support systems
regarding data volume and knowledge management®343782_ Data modeling
is the first and most crucial step in the multi-tiered design of information
systems. The final product reliability, for example specific clinical decision
support algorithms or integrated information systems, is hardly improved
over the designed reliability on the lower level of architecture (data-level)?.
This viewpoint was projected to the study design. An important
consideration is that the analytic scheme presented here can help to enhance
clinico-genomic understanding for experts on both the medical and
bioinformatics sides of the workflow. (see Methods Section) Throughout the
development of this method, we focussed on equally weighting the clinical
perspective and bioinformatics process analysis in the context of business
continuity, starting from our initial clinical intention through bioinformatics
information processing by a knowledge-based protocol, finally offering a

deliverable and interpretable form to the point-of-care clinician.
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Limitations

Multi-omics data have a fundamental limitation of unification, which is
derived from the difference of knowledge expression forms related to the
processing methodology, final processed data depending on the target layer,
and its biological characteristics. In addition, prior to NGS, there were
already several structured models according to differences in data scale and
technical maturity. The entity and attribute set defined in the GDM is
derived from analysis of the workflow of NGS. Therefore, we do not
consider the elements of other technology-based workflows in multi-omics
layers.

The methods, equipment, data processing and analytical techniques
for extracting data from targets in nature will continue to evolve and
accumulate. The cGDM was designed to be flexible and able to readily
adapt to technological changes. However, an eventual failure in responding
to these changes cannot be excluded and represents a potential limitation of
this study.

Several standard models have been generated, based on differences
in data scale and technical maturity, prior to the development of NGS
technology. Thus, we have not considered multi-omics data. Focussing on
NGS technology-based workflow helped us to determine an optimized
information scale and granularity for the clinical level, and to design a

model to generalise and process genomic data based on individual patients.
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The cGDM could be extended to be a part of technology-wide data model
integration for multi-omics data management.

The data model proposed in this study aims to clarify blind points
within the interdisciplinary genomic-clinical interface, connecting separated
expertise within a single platform to provide a broad perspective that covers
the information reliability required for clinical evidence. In particular, we
have made a novel attempt to adopt the FMEA method for a systematic
meta-level data design process. Future work will focus on the development
of functional systems to conduct real-world validation, including a data-
upload pipeline from processed genome data files, as well as a clinical

decision support tools based on the cGDM.
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Supplementary Information

Supplementary Figure S1. PGx CDS mock-up application based on the cGDM architecture

Stored data example in the CGDM database

Patient identifier] HGVS_Genomic_Change |HGNC_Gene_Symbol| Position |Ref_Aliele | Alt_Allele iz dbSNP_ID |Order_date
1224 NC_000010.10:.96T02047C>T CYP2C9 96702047 c T 10 MWPC 31799853 | 2018-08-23
1224 NC_000010.10:9.96741053A>C CYP2C9 96741053 A [+ o MWPC rs1057910 | 2018-08-23
122
€« c * BB o»P
1000 genome phase 3 CEU v = Search
Patient No: PAD6989 Name: Paul Molive Fi24
Dx: Deep vein thrombosis  156cm / 45kg Submit
) Date Order No  Drug Dose Dose Unit  Route  Frequency/Duration Prescriber
Mario Speedwagon (PA0E984)
M-21-Unknown-187-79 20200710 1 warfarin 6 mg PO oD Dr. Kim

Petey Cruiser (PA0G985)

F-22-Unknown-189-61

Anna Sthesia (PA06986)

PGx CDS message
M-23-Unknown-161-87

Paul Molive (PADSQBQ} Warfarin dosing can be modified with a patient's VKORCT and CYP2C9 phenotype
. - IWPC warfarin pharmacogenelics dosing estimation applied to the patient's case display below.
F-24-Unknown-156-45

rrent order e & mg/day (= 42 0 mg/week)
Anna Mull (PADB994) Currentordered dose. & maiaay (= 42 0 moies

M-25-Unknown-194-65 Recommendation: 3 7 mgiday = 26.0 mgiweek

Gail Forcewind (PAQ7000)
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Paige Turner (PAQ7037)
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Bob Frapples (PAQ7048)
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Supplementary Table S1. Table Specification of the cGDM

The logical entities and attributes expressed in Figure 1.5 were converted into physical entities and attributes. Here, we provided our
physical data model as the following table. The required data type, description, and example value for each attribute defined are described.
All of the logical entities and attributes in Figure 1.5 have been transformed and defined in the physical model presented here. So, by
applying this sort of conversion to physical model, each researchers can construct a genomic database according to the environment of the
existing information system.

CLINICAL IDENTIFIER Table specification

# |Logical Name Physical Name PK |Required|Data Type |Description Example

Avrbitrary person identifier
defined in the CGDM database

Patient number of existing HIS
2 |Patient Number Patient_Number Yes varchar(20) |database used to link with the 12345678
CGDM database

An abbreviation of the hospital
3 [Medical Institution Identifier  |Institution_Ildentifier Yes varchar(20) |name where the patient data SNUH
linked with the CGDM database
Unique key value represents an
order of existing HIS database
used to link with the CGDM
database

Unique key value represents a
physician of existing HIS
database used to link with the
CGDM database

1 |Subject Identifier Subject_Identifier PK|Yes int(11)

4 |Order Identifier Order_Identifier Yes varchar(20) 602489471

5 [Clinician Identifier Clinicain_Identifier Yes varchar(20) A2068494

Date of the beginning of the data
6 |Submission Date Submission_Date Yes datetime production period (e.g. ordered  |2018-08-17 13:44
date)

90



EXPERIMENT RELATED INFORMATION Table specification

# |Logical Name Physical Name PK |Required|Data Type |Description Example
Arbitrary identifier of the

1 |Experiment Identifier Experiment_Identifier |PK|Yes int(11) experiment defined in the CGDM |11
database

. - . e . Avrbitrary person identifier
2 |Subject Identifier Subject_Identifier FK|Yes int(11) defined in the CGDM database
3 [Test Description Test_Description No text t[;;called description for ordered
. . Library strategy for genome {WGS, WES, Targeted

4 |Type of sequencing Sequencing_Type Yes varchar(50) sequencing sequencing, etc.}”2
The technology platform used to

5 |Platform technology Platform_Technology Yes varchar(20) identify the variant NGS

6 |Sequencer Sequencer Yes varchar(50) [Sequencing equipment Illumina Hiseq 2500

7 |Sequencing Institution Sequencing _Institution Yes varchar(50) |Name of sequencing institution |SNUBI

8 |Experimenter Experimenter Yes varchar(50) Name_ of the primary BJ Min
experimenter

9 |Collection Date Collection_Date Yes datetime Date of the sample collection 2018-09-03 11:00

BIOINFORMATICS PROTOCOL RELATED INFORMATION Table specification

# |Logical Name Physical Name PK |Required|Data Type |Description Example

Bioinformatics Protocol Arbitrary identifier of the
1 BI_Protocol_ldentifier |PK|Yes int(11) bioinformatics protocol defined |121

Identifier

in the CGDM database
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Arbitrary identifier of the

2 |Experiment Identifier Experiment_Identifier |FK|Yes int(11) experiment defined in the CGDM |11
database
3 |Pipeline Name Pipeline_Name Yes varchar(50) [Name of the pipeline SNUBI WXS data pipeline
L . The order in which the steps are
4 |Step (of the pipeline) Step Yes int(3) executed 1
5 [Tool (of the pipeline) Tool Yes varchar(50) [Procedure description (all_gnment,-sort, deduplication,
variant calling, etc.}
6 [Parameter (of the pipeline) Parameter Yes varchar(50) |The name of tools GATK
7 ;;ﬁ?gg;ce origin (used in the Datasource_Origin Yes varchar(50) |The version of tools v2.5-2
8 D_atas_ource version (used in the Datasource_Version No varchar(50) Preset parameters used for the stan_d_calI_conf:30,stand_em|t_c
pipeline) step onf=10
9 Fl?i:z?gg;ce Build (used in the Datasource_Build No varchar(50) |The source of databases 1kG, Mills, dbSNP137
10|Analytics Institution Analytics_Institution Yes varchar(50) Name_of t_he b |0|_nformat|cs SNUBI
analytics institution
11(Bioinformatician Bioinformatician Yes varchar(50) N_ar_ne of the_ primary YM Park
bioinformatician
12|Received Date Received_Date Yes datetime Date Of. the raw_data file (eg. 2018-09-15 17:35
BAM file) received
13|Documentation Date Documentation_Date Yes datetime _Date of the processed data stored 2018-09-22 11:22
in the CGDM database
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QUALITY CHECK Table specification

# |Logical Name Physical Name PK |Required|Data Type |Description Example
Arbitrary identifier of the quality
1 |Quality Check Identifier QC_ldentifier PK |Yes int(11) check matrix in the CGDM 123
database
Bioinformatics Protocol Arbitrary identifier of the
2 Identifier BI_Protocol_ldentifier |FK|Yes int(11) bioinformatics protocol in the 121
CGDM database
3 |Total Reads Total_Reads Yes bigint Total number of reads 100720000
4 |Total Aligned Reads Total_Aligned_Reads No bigint Total number of aligned reads 99168912
5 |% Reads Aligned Reads_Aligned_Percent No float Percentage of reads aligned 98.46 (=4/3)
6 |Total Bases Total_Bases No bigint Total number of bases 7260000
7 |Total Mapped Bases Mapped_Bases No bigint Total number of mapped bases  |7050000
8 |Average on target depth Depth_Mean No float Mean on target depth 71.94
9 Standard deviation on target Depth_SD No float Standard deviation of on target 16.54
depth depth
10|On Target Bases Target_Bases No bigint On target bases 2640000
GENOMIC ALTERATION Table specification
# |Logical Name Physical Name PK |Required|Data Type |Description Example
Genomic Alteration Ide Arbitrary identifier of the
1 |Genomic Alteration Identifier e = — 7|PK|Yes int(11) genomic alteration defined in the {14009
ntifier
CGDM database
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Bioinformatics Protocol

Arbitrary identifier of the

2 Identifier BI_Protocol_ldentifier |FK|Yes int(11) bioinformatics protocol defined 121
in the CGDM database

3 |Position Position Yes varchar(255) The genomic position where the 180888597
alteration occurs

4 |Reference allele Reference_Allele Yes varchar(255) The base found in the reference A
genome

5 |Alternative allele Alternative_Allele Yes varchar(255)|Any base other than the reference |T
The chromosome where the

6 |Chromosome Chromosome Yes varchar(2) alteration oceurs 7

. . . . Cytogenetic band that the

7 |Cytogenetic location Cytogenetic_Location No text location of the alteration maps to 17912

8 |Codon Codon No text The qo_don where the alteration is 12
identified

9 |[Exon Exon No varchar(10) The exonic I.O catlpr} where the 19
alteration is identified

. Description of the nucleotide

10|HGVS genomic change Ie-|GVS_Genom|c_Chang Yes text change for a genomic sequence |NG_007873.3:9.176429T>A
(supplied by HGVS)
Description of the nucleotide

11|HGVS coding change HGVS_Coding_Change No text gg;sgﬁc?r a coding DNA NM_004333.4:c.1799T>A
(supplied by HGVS)
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Description of the nucleotide

12|HGVS protein change HGVS_Protein_Change No text change for a protein sequence NP_004324.2:p.Val600Glu
(supplied by HGVS)
13{HGVS version HGVS_Version Yes varchar(20) |The version number of HGVS HGVS version 15.11
e The identification tag (supplied
14|dbSNP Identification Number |dbSNP_ID No varchar(20) by NCBI dbSNP) rs56046546
e The identification tag (supplied
15|dbVar Identification Number |dbVar_ID No varchar(20) by NCBI dbVar) nsv1123397
16|Genome build Genome_Build No varchar(20) iig&?&g coordinates of the GRCh37/hg19
17|Genomic source Genomic_Source Yes varchar(10) |Class of genomic source gio}matlc, Germline, Unknown,
The official gene symbol i
18|HGNC gene symbol HGNC_Gene_Symbol No varchar(20) approved by the HGNC ALK, IMID7-PAL2G4B
19|Entrez gene 1D Entrez_ID No integer Erg:trBelz) Gene ID (supplied by 238
20|Ensembl gene 1D Ensembl_ID No char(15) Eﬂzgmg:)Gene ID (supplied by ENSG00000171094
21|Genotype Genotype No char(3) Allelic state of the given variant |0|1, 0|0, .|., etc
29 clinvVar Variation Identification clinVar_Variant_ID No varchar(20) The |_dent|f|cat|on tag (supplied 188275
Number by clinVar)
COSMIC Identification The identification tag (supplied
23 Number COSMIC_ID No varchar(10) by COSMIC) COSM476
24|Molecular Effects Molecular_Effect No varchar(50) Effec_ts of mutations on protein  |{Missense, Nonsense, Frameshift,
function Promoter, etc}
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The type of variant in a sequence

{Substitution, Deletion,

25|Variant type Variant_Type Yes varchar(20) of DNA Duplication, Insertion, InDel,
Inversion, Conversion, etc.}
26|Functional Domain Functional_Domain No varchar(50) ;?sr;%rg:'ggigomam where the ATP-binging domain
CLINICAL ANNOTATION Table specification
# |Logical Name Physical Name PK |Required|Data Type |Description Example
Clinical Annotation Ide Arbitrary identifier of the clinical
1 |Clinical Annotation Identifier ntifier — " |PK|Yes int(11) annotation defined in the CGDM (22
database
Genomic Alteration Ide Arbitrary identifier of the
2 |Genomic Alteration Identifier ntifier — T |FK|Yes int(11) genomic alteration defined in the {14009
CGDM database
3 |Biomarker Datasource Biomarker_Datasource Yes varchar(255) tl:li?)mzrolje?:?: gz;%enffcr data ACMG actionable genes
4 |Bi . Name of predictive indicator .
iomarker Name Biomarker_Name Yes varchar(50) from biomarker datasource EGFR Exon 19 Deletion
MICROSATELLITE INSTABILITY Table specification
# |Logical Name Physical Name PK |Required|Data Type |Description Example
. . - Arbitrary identifier of
1 Microsatelite Instability MSI_Identifier PK|Yes int(11) microsatellite instability defined |14

Identifier

in the CGDM database
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Bioinformatics Protocol

Arbitrary identifier of the

Identifier BI_Protocol_ldentifier |FK|Yes int(11) _bioinformatics protocol defined |121

in the CGDM database

Distinct phenotype of the {Microsatellite Stable (Mss),
MSI phenotype MSI_Phenotype Yes varchar(50) microsatellite instability MSI-Low (MSI-L), MSI-High

(MSI-H), Indeterminate MSI}
MSI marker name MSI_Marker_Name Yes varchar(20) [Name of the MSI marker BAT26
MSI marker status MSI_Marker_Status Yes varchar(20) |Determined MSI status Positive
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Supplementary Table S2. IUPAC nucleotide code table for processing
double/triple based code

Symbol Meaning

a a; adenine

C; cytosine
g, guanine
t; thymine in DNA; uracil in RNA
aorc
aorg
aort
corg
cort
gort
aorcorg,nott
aorcort;notg
aor gort; notc
c or gort; nota

B oA <4 < o 88 «+no

aorcorgort

*reference: Cornish-Bowden, A. Nucl Acid Res 13, 3021-3030 (1985)
,https://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/iupac_

nt_abbreviations.html o] A = <1-&
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Supplementary Table S3. Number of HLA alleles

Category  Locus Allele Protein Null allele
number number number
Class I HLA-A 673 527 46
HLA-B 1077 911 38
HLA-C 360 283 3
HLA-E 9 3 0
HLA-F 21 4 0
HLA-G 36 14 1
Pseudogenes 39
Total 2215 1742 93
Class IT HLA-DRA 3 2 0
HLA-DRB 669 546 8
HLA-DQA1 34 25 1
HLA-DQB1 93 68 1
HLA-DPA1 27 16 0
HLA-DPBI1 128 114 2
HLA-DMA 4 4 0
HLA-DMB 7 7 0
HLA-DOA 12 3 1
HLA-DOB 9 4 0
Total 986 789 13
MHC— MICA 64 54 0
like
MICB 30 19 2
Total 94 73 2

* reference: Shiina, T., Hosomichi, K., Inoko, H., & Kulski, J. K. (2009). The HLA
genomic loci map: expression, interaction, diversity and disease. Journal of human
genetics, 54(1), 15-39. Table 4. Number of HLA alleles
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